Export this record: EndNote BibTex

Please use this identifier to cite or link to this item: https://tede2.pucrs.br/tede2/handle/tede/9643
Document type: Tese
Title: Applying machine learning to electronic health records : a study on two adverse events
Other Titles: Aplicando aprendizado de máquina à prontuários eletrônicos do paciente : um estudo em dois eventos adversos
Author: Santos, Henrique Dias Pereira dos 
Advisor: Vieira, Renata
Abstract (native): In the hospital environment, the incidence of adverse events (AE) (unforeseen incidents that cause harm to patients) is the primary concern of risk management teams. The use of machine learning techniques could help healthcare professional to identify and mitigate adverse events.This thesis develops experiments to evaluate machine learning approaches to identify two major adverse events in electronic health records (EHR). The first algorithm was created to identify fall events in clinical notes using language models and neural networks. We annotated 1,402 clinical sentences with fall events to train a Token Classifier (TkC) to detect words within the context of falls. The TkC was able to correctly identify 85% of the sentences with fall events. For medication review, we built an unsupervised algorithm based on graph structure to rank outlier prescriptions. In our experiments, the proposed algorithm, the DDC-Outlier, correctly classified 68% (F-measure) of prescribed medications as underdoses and overdoses. Finally, to better understand the performance of our approach in a real-world scenario, we deployed a decision support system for clinical pharmacy in a 1,200-bed hospital. All experiments, source-codes, and the anonymized datasets are publicly available on the GitHub page of our research group.
Abstract (english): No ambiente hospitalar, a incidência de eventos adversos (EA) (incidentes imprevistos que causam danos aos pacientes) é a principal preocupação das equipes de gerenciamento de risco. Esta tese desenvolve experimentos para avaliar abordagens de aprendizado de máquina para identificar dois grandes eventos adversos em prontruários eletrônicos do paciente (PEP). O primeiro algoritmo foi criado para identificar eventos de queda em evoluções clínicas usando modelos de linguagem e redes neurais. Anotamos 1.402 sentenças em evoluções clínicas com eventos de queda para treinar um Classificador de Token (TkC) para detectar palavras dentro do contexto de quedas. O TkC foi capaz de identificar corretamente 85% das sentenças com eventos de queda. Para a avaliação de prescrições, construímos um algoritmo não-supervisionado com base em estrutura de grafos para classificar as prescrições fora-do-padrão. Em nossos experimentos, o algoritmo proposto, o DDC-Outlier, classificou corretamente 68% (Medida-F) dos medicamentos prescritos como subdoses e overdoses. Finalmente, para entender melhor o desempenho de nossa abordagem em um cenário do mundo real, implantamos um sistema de suporte à decisão para farmácia clínica em um hospital de 1.200 leitos. Todos os experimentos, códigos-fonte e conjuntos de dados anônimos estão disponíveis publicamente na página GitHub de nosso grupo de pesquisa.
Keywords: Electronic Health Records
Adverse Events
Machine Learning
Supervised Learning
Unsupervised Learning
Prontuário Eletrônico do Paciente
Eventos Adversos
Aprendizado de Máquina
Aprendizado Supervisionado
Aprendizado Não-Supervisionado
CNPQ Knowledge Areas: CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
Language: eng
Country: Brasil
Publisher: Pontifícia Universidade Católica do Rio Grande do Sul
Institution Acronym: PUCRS
Department: Escola Politécnica
Program: Programa de Pós-Graduação em Ciência da Computação
Access type: Acesso Aberto
Fulltext access restriction: Trabalho não apresenta restrição para publicação
URI: http://tede2.pucrs.br/tede2/handle/tede/9643
Issue Date: 26-Mar-2021
Appears in Collections:Programa de Pós-Graduação em Ciência da Computação

Files in This Item:
File Description SizeFormat 
HENRIQUE DIAS PEREIRA DOS SANTOS_TES.pdfHENRIQUE_DIAS_PEREIRA_DOS_SANTOS_TES829.65 kBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.