Export this record: EndNote BibTex

Please use this identifier to cite or link to this item: https://tede2.pucrs.br/tede2/handle/tede/5246
Document type: Dissertação
Title: O reconhecimento de entidades nomeadas por meio de conditional Random Fields para a língua portuguesa
Author: Amaral, Daniela Oliveira Ferreira do 
Advisor: Vieira, Renata
Abstract (native): Muitas tarefas de Processamento da Linguagem Natural envolvem a previsão de um grande número de variáveis, as quais dependem umas das outras. Métodos de predição estruturada são, essencialmente, uma combinação de classificação e de modelagem baseada em grafo. Eles unem a competência dos métodos de classificação com a capacidade desse tipo de modelagem de reproduzir, compactamente, dados multivariados. Os métodos de classificação realizam a predição usando um grande conjunto de features como entrada. Conditional Random Fields (CRF) é um método probabilístico de predição estruturada e tem sido amplamente aplicado em diversas áreas, tais como processamento da linguagem natural, incluindo o Reconhecimento de Entidades Nomeadas (REN), visão computacional e bioinformática. Sendo assim, neste trabalho é proposta a aplicação do CRF para o REN em textos da Língua Portuguesa e, sequencialmente, avaliar o seu desempenho com base no corpus do HAREM. Finalmente, testes comparativos da abordagem determinada versus a similar da literatura foram realizados, ilustrando a competitividade e eficácia do sistema proposto.
Abstract (english): Many tasks in Natural Language Processing involves the provision of a large number of variables, which depend on each other. Structured prediction methods are essentially a combination of classification and modeling based on graphs. They combine the power of classification methods with the ability of this type of modeling to play compactly, multivariate data. The classification methods perform prediction using a large set of features as input. Conditional Random Fields (CRF) is a probabilistic method for predicting structured and has been widely applied in various areas such as natural language processing, including the Named Entity Recognition (NER), computer vision, and bioinformatics. Therefore, this dissertation proposes the application of CRF to NER for the Portuguese Language and to evaluate their performance based on the HAREM corpus. Finally, comparative tests of similar approaches were performed, illustrating the efficiency and competitiveness of the proposed system.
Keywords: INFORMÁTICA
PROCESSAMENTO DA LINGUAGEM NATURAL
ONTOLOGIA
ANÁLISE SEMÂNTICA (PROGRAMAÇÃO)
CNPQ Knowledge Areas: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Language: por
Country: BR
Publisher: Pontifícia Universidade Católica do Rio Grande do Sul
Institution Acronym: PUCRS
Department: Faculdade de Informáca
Program: Programa de Pós-Graduação em Ciência da Computação
Citation: AMARAL, Daniela Oliveira Ferreira do. O reconhecimento de entidades nomeadas por meio de conditional Random Fields para a língua portuguesa. 2013. 100 f. Dissertação (Mestrado em Ciência da Computação) - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2013.
Access type: Acesso Aberto
URI: http://tede2.pucrs.br/tede2/handle/tede/5246
Issue Date: 8-Mar-2013
Appears in Collections:Programa de Pós-Graduação em Ciência da Computação

Files in This Item:
File Description SizeFormat 
457280.pdfTexto Completo1.43 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.