@MASTERSTHESIS{ 2016:897544061, title = {Recomenda??o de algoritmos de aprendizado de m?quina para predi??o de falhas de software por meio de meta-aprendizado}, year = {2016}, url = "http://tede2.pucrs.br/tede2/handle/tede/8312", abstract = "A predi??o de falhas de software ? uma parte significativa da garantia de qualidade do software e ? normalmente utilizada para detectar m?dulos propensos a falhar baseados em dados coletados ap?s o processo de desenvolvimento do projeto. Diversas t?cnicas de aprendizado de m?quina t?m sido propostas para gera??o de modelos preditivos a partir da coleta dos dados, por?m nenhuma se tornou a solu??o padr?o devido as especificidades de cada projeto. Por isso, a hip?tese levantada por este trabalho ? que recomendar algoritmos de aprendizado de m?quina para cada projeto ? mais importante e ?til do que o desenvolvimento de um ?nico algoritmo de aprendizado de m?quina a ser utilizado em qualquer projeto. Para alcan?ar este objetivo, prop?e-se nesta disserta??o um framework para recomendar algoritmos de aprendizado de m?quina capaz de identificar automaticamente o algoritmo mais adequado para aquele projeto espec?fico. A solu??o, chamada FMA-PFS, faz uso da t?cnica de meta-aprendizado, a fim de aprender o melhor algoritmo para um projeto em particular. Os resultados mostram que o framework FMA-PFS recomenda tanto o melhor algoritmo, quanto o melhor ranking de algoritmos no contexto de predi??o de falhas de software.", publisher = {Pontif?cia Universidade Cat?lica do Rio Grande do Sul}, scholl = {Programa de P?s-Gradua??o em Ci?ncia da Computa??o}, note = {Escola Polit?cnica} }