@MASTERSTHESIS{ 2018:235400873, title = {Leannet : uma arquitetura que utiliza o contexto da cena para melhorar o reconhecimento de objetos}, year = {2018}, url = "http://tede2.pucrs.br/tede2/handle/tede/8168", abstract = "A vis?o computacional ? a ci?ncia que permite fornecer aos computadores a ca- pacidade de verem o mundo em sua volta. Entre as tarefas, o reconhecimento de objetos pretende classificar objetos e identificar a posi??o onde cada objeto est? em uma imagem. Como objetos costumam ocorrer em ambientes particulares, a utiliza??o de seus contex- tos pode ser vantajosa para melhorar a tarefa de reconhecimento de objetos. Para utilizar o contexto na tarefa de reconhecimento de objetos, a abordagem proposta realiza a iden- tifica??o do contexto da cena separadamente da identifica??o do objeto, fundindo ambas informa??es para a melhora da detec??o do objeto. Para tanto, propomos uma nova arquite- tura composta de duas redes neurais convolucionais em paralelo: uma para a identifica??o do objeto e outra para a identifica??o do contexto no qual o objeto est? inserido. Por fim, a informa??o de ambas as redes ? concatenada para realizar a classifica??o do objeto. Ava- liamos a arquitetura proposta com os datasets p?blicos PASCAL VOC 2007 e o MS COCO, comparando o desempenho da abordagem proposta com abordagens que n?o utilizam o contexto. Os resultados mostram que nossa abordagem ? capaz de aumentar a probabili- dade de classifica??o para objetos que est?o em contexto e reduzir para objetos que est?o fora de contexto.", publisher = {Pontif?cia Universidade Cat?lica do Rio Grande do Sul}, scholl = {Programa de P?s-Gradua??o em Ci?ncia da Computa??o}, note = {Escola Polit?cnica} }