@PHDTHESIS{ 2017:294264325, title = {Reconhecimento de entidades nomeadas na ?rea da geologia : bacias sedimentares brasileiras}, year = {2017}, url = "http://tede2.pucrs.br/tede2/handle/tede/8035", abstract = "O tratamento da informa??o textual torna-se cada vez mais relevante para muitos dom?nios. Nesse sentido, uma das primeira tarefas para Extra??o de Informa??es a partir de textos ? o Reconhecimento de Entidades Nomeadas (REN), que consiste na identifica??o de refer?ncias feitas a determinadas entidades e sua classifica??o. REN compreende muitos dom?nios, entre eles os mais usuais s?o medicina e biologia. Um dos dom?nios desafiadores no reconhecimento de EN ? o de Geologia, sendo essa uma ?rea carente de recursos lingu?sticos computacionais. A presente tese prop?e um m?todo para o reconhecimento de EN relevantes no dom?nio da Geologia, sub?rea Bacia Sedimentar Brasileira, em textos da l?ngua portuguesa. Definiram-se features gen?ricas e geol?gicas para a gera??o do modelo de aprendizado. Entre as abordagens autom?ticas para classifica??o de EN, a mais proeminente ? o modelo probabil?stico Conditional Random Fields (CRF). O CRF tem sido utilizado eficazmente no processamento de textos em linguagem natural. A fim de gerar um modelo de aprendizado foi criado o GeoCorpus, um corpus de refer?ncia para REN Geol?gicas, anotado por especialistas. Avalia??es experimentais foram realizadas com o objetivo de comparar o m?todo proposto com outros classificadores. Destacam-se os melhores resultados para o CRF, o qual alcan?ou 76,78% e 54,33% em Precis?o e Medida-F.", publisher = {Pontif?cia Universidade Cat?lica do Rio Grande do Sul}, scholl = {Programa de P?s-Gradua??o em Ci?ncia da Computa??o}, note = {Escola Polit?cnica} }