@MASTERSTHESIS{ 2016:984569102, title = {Utiliza??o de m?todos de decomposi??o emp?ricos no pr?-processamento de dados de resson?ncia magn?tica funcional}, year = {2016}, url = "http://tede2.pucrs.br/tede2/handle/tede/6961", abstract = "A t?cnica de imagem por resson?ncia magn?tica funcional ? um exame n?o invasivo que permite mapear e explorar diversas fun??es cerebrais por meio de varia??es na concentra??o de oxi-hemoglobina nas regi?es de atividade neural. Uma das t?cnicas para avaliar e mapear essas fun??es cerebrais ? o exame em estado de repouso, que ? mais indicado em pacientes/volunt?rios que tenham algum tipo de problema neurol?gico, pois n?o faz o uso de tarefas cognitivas para gerar as imagens de mapeamento cerebral. O principal problema desse exame ? ser muito sens?vel aos diferentes tipos de ru?do presentes ao longo do exame, como os de origem fisiol?gica, principalmente provenientes da respira??o e dos batimentos card?acos. O tipo de ru?do mais comum e que mais afeta os dados ? causado pela movimenta??o da cabe?a do paciente/volunt?rio. Pensando nisso, esta disserta??o tem como objetivo estudar e avaliar a efic?cia da utiliza??o de m?todos emp?ricos de decomposi??o durante a etapa de pr?-processamento para a redu??o de ru?do em dados oriundos de exames por resson?ncia magn?tica funcional. Os algoritmos escolhidos foram o de Decomposi??o em Modos Emp?ricos e o de Decomposi??o Emp?rica da Curva M?dia. Esses algoritmos foram escolhidos por serem utilizados em sinais n?o-estacion?rios e n?o-lineares. Este estudo foi realizado com 33 crian?as do Projeto ACERTA (Avalia??o de Crian?as do Risco de Transtornos de Aprendizagem) classificadas em dois grupos: bons leitores (14 crian?as) e maus leitores (19 crian?as). Estes dados foram submetidos a cinco diferentes estrat?gias de pr?-processamento: duas para as etapas usuais de pr?-processamento utilizando ou n?o a etapa de censura dos movimentos; uma para o m?todo de Decomposi??o em Modos Emp?ricos; e duas para o m?todo de Decomposi??o Emp?rica da Curva M?dia, sendo que uma estrat?gia utiliza altera??es no algoritmo original propostas por este trabalho. De acordo com as an?lises estat?sticas realizadas, o algoritmo de Decomposi??o Emp?rica da Curva M?dia, tanto o original quanto o modificado, mostrou ser um m?todo promissor para a redu??o de ru?do nos dados reais de fMRI.", publisher = {Pontif?cia Universidade Cat?lica do Rio Grande do Sul}, scholl = {Programa de P?s-Gradua??o em Engenharia El?trica}, note = {Faculdade de Engenharia} }