@MASTERSTHESIS{ 2013:1592807994, title = {RSAPP, um algoritmo baseado em rough sets para aux?lio ao processo de descoberta de conhecimento em banco de dados}, year = {2013}, url = "http://tede2.pucrs.br/tede2/handle/tede/5237", abstract = "As t?cnicas, business intelligence (BI) firmaram-se como grandes aliadas das organiza??es nas tarefas de transformar dados em conhecimento, apoiando a m?dia e alta gest?o na tomada de decis?es. As ferramentas de BI em sua, composi??o s?o fundadas em t?cnicas de gest?o do conhecimento, tais como Data Warehouse (DW), OLAP (Online Analytical Processing), minara??o de dados (MD), entre outras. Neste contexto, observa-se que em muitos casos, projatos de MD acabam sendo inviabilizados por alguns fatores, tais como, custo do projeto, dura??o e principalmente, a incerteza na obten??o de resultados que retornem o investimento despedindo no projeto. O presente trabalho busca minimizar os fatores acima por meio um diagn?stico sobre dados, atrav?s de um algoritmo baseado em Rough Sets Theory (Teoria dos Conjuntos Aproximados (TCA)). O algoritmo desenvolvido, nomeado Rough Set App (RSAPP) objetiva criar um diagn?stico sobre os dados persistidos no DW, a fim de mapear quais atributos possuem maior potencial de gerar modelos de minera??o mais preciosos e resultados mais interessantes. Desta forma, entende-se que o diagn?stico gerado por RSAPP pode complementar o processo de KDD (Knowledge Discovery in database), reduzindo o tempo gasto nas atividades de entendimento e redu??o da dimensionalidade dos dados. No trabalho se faz uma descri??o detalhada acerca do algoritmo implementado, bem como o relato dos, testes que foram executados. Ao final faz-se uma an?lise emp?rica sobre os resultados a fim de estimar a efic?cia do algoritmo quanto a sua proposta.", publisher = {Pontif?cia Universidade Cat?lica do Rio Grande do Sul}, scholl = {Programa de P?s-Gradua??o em Ci?ncia da Computa??o}, note = {Faculdade de Inform?ca} }