@MASTERSTHESIS{ 2012:1318420384, title = {Random forests estoc?stico}, year = {2012}, url = "http://tede2.pucrs.br/tede2/handle/tede/5226", abstract = "Na ?rea de Minera??o de Dados, experimentos vem sendo realizados utilizando Conjuntos de Classificadores. Estes experimentos s?o baseados em compara??es emp?ricas que sofrem com a falta de cuidados no que diz respeito ? quest?es de aleatoriedade destes m?todos. Experimentamos o Random Forests para avaliar a efici?ncia do algoritmo quando submetido a estas quest?es. Estudos sobre os resultados mostram que a sensibilidade do Random Forests ? significativamente maior quando comparado com a de outros m?todos encontrados na literatura, como Bagging e Boosting. O proposito desta disserta??o ? diminuir a sensibilidade do Random Forests quando submetido a aleatoriedade. Para alcan?ar este objetivo, implementamos uma extens?o do m?todo, que chamamos de Random Forests Estoc?stico. Logo especificamos como podem ser alcan?adas melhorias no problema encontrado no algoritmo combinando seus resultados. Por ?ltimo, um estudo ? apresentado mostrando as melhorias atingidas no problema de sensibilidade", publisher = {Pontif?cia Universidade Cat?lica do Rio Grande do Sul}, scholl = {Programa de P?s-Gradua??o em Ci?ncia da Computa??o}, note = {Faculdade de Inform?ca} }