@MASTERSTHESIS{ 2022:922728251, title = {Phantom-based strategy for the optimization of FDG pet brain imaging reconstruction}, year = {2022}, url = "http://tede2.pucrs.br/tede2/handle/tede/10112", abstract = "Background: Positron emission tomography (PET) imaging with [18F]FDG provides valuable information regarding the underlying pathological processes in neurodegenerative disorders, such as Alzheimer’s disease (AD). PET imaging in these populations should be as short as possible to limit head movements and to improve patient comfort. Image reconstruction protocol optimization is usually performed by acquiring images from an anthropomorphic phantom and assessing both image quality and quantification accuracy. Objective: To develop and validate a phantom-based optimization strategy for [18F]FDG-PET imaging reconstruction to reduce acquisition time while maintaining adequate quantification accuracy and image quality. Methods: [18F]FDG-PET images of a Hoffman 3D brain phantom were acquired. Optimization strategies were developed to obtain images with no apparent quality loss and adequate quantification accuracy in the analyzed regions. Analytical and iterative reconstruction methods were compared by means of image quality and quantitative accuracy metrics. Lastly, the optimized reconstruction protocol was evaluated in [18F]FDG-PET retrospective data acquired from healthy individuals and AD patients. Results: Phantom study: OSEM reconstruction algorithm was optimized (4 iterations and 32 subsets). It resulted in remarkably similar images compared to the current clinical settings, with a 50% reduction in scan time (5 min with a post-reconstruction filter of 4 mm). Clinical study: Quantification and image quality metrics were similar between optimized and clinical protocols, and no significant differences between protocols were observed. Two experienced physicians visually assessed the images in terms of noise, contrast, and overall image quality. No difference between protocols was identified by the physicians. Conclusion: Shortening the acquisition time is therefore possible by optimizing image reconstruction parameters while maintaining adequate quantification accuracy and image quality. The optimized protocol obtained in this study was assessed in human data and presented comparable results to those of the clinical protocol.", publisher = {Pontifícia Universidade Católica do Rio Grande do Sul}, scholl = {Programa de Pós-Graduação em Engenharia Elétrica}, note = {Escola Politécnica} }