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ABSTRAÇÕES DE PROGRAMAÇÃO DE ALTO NÍVEL PARA
PROCESSAMENTO DE FLUXO CONTÍNUO DE DADOS DISTRIBUÍDOS

RESUMO

Aplicações de processamento de fluxo contínuo de dados (stream processing) re-
presentam uma parte significativa dos softwares atuais. Uma quantidade maior de da-
dos é gerada todos os dias e de fontes variadas (através de dispositivos computacionais
e aplicações), que requerem processamento em tempo hábil. Arquiteturas de memória
compartilhada não conseguem atender demandas de processamento em larga escala. No
contexto de computação de alta performance, a interface de programação MPI (Message
Passing Interface) é considerada o estado da arte para implementar programas paralelos
em C/C++. No entanto, a exploração de paralelismo de fluxo contínuo de dados usando MPI
é difícil e sujeita a erros aos desenvolvedores de aplicação, pois ele expõe os detalhes de
baixo nível das arquiteturas de computadores e sistemas operacionais. Os programadores
precisam lidar com mecanismos de serialização de dados, comunicação entre processos,
sincronização, tolerância a falhas, balanceamento de carga, escalonamento de trabalhos e
estratégias de paralelismo. Este trabalho aborda um subconjunto desses problemas e de-
safios, oferecendo duas abstrações de alto-nível para processamento de fluxo contínuo de
dados em arquiteturas de memória distribuída. Primeiramente, foi criada uma biblioteca de
paralelismo de fluxo contínuo de dados nomeada de DSPARLIB. A biblioteca foi construída
como uma biblioteca de esqueletos equipada com os padrões paralelos Farm e Pipeline,
provendo abstrações acima do MPI. Depois, a linguagem SPAR foi estendida para suportar
arquiteturas de memória distribuída, uma vez que ela é uma linguagem de domínio espe-
cífico para expressar paralelismo de fluxo contínuo de dados usando anotações do C++11,
que se mostram produtivas em arquiteturas de memória compartilhada. Este trabalho con-
seguiu estender o compilador e a linguagem SPAR sem alterar significativamente a sintaxe
e a semântica, gerando código que usa DSPARLIB como ambiente de execução paralelo.



Os experimentos foram conduzidos usando aplicações reais de processamento de fluxo
contínuo de dados em diferentes configurações de cluster. Este trabalho demonstra que
a DSPARLIB provê uma interface mais simples que o MPI e apresenta um desempenho
competitivo. O compilador da linguagem SPAR foi capaz de gerar código paralelo automa-
ticamente, sem perdas de desempenho em comparação com código escrito à mão com
a DSPARLIB. Por último, com todas essas abstrações de alto nível, a SPAR se torna a
primeira linguagem baseada em anotações para expressar paralelismo de fluxo contínuo
de dados em C++ a suportar arquiteturas de memória distribuída, evitando refatorações de
código significativas para permitir a execução paralela em clusters.

Palavras-Chave: Programação Paralela, Paralelismo de Fluxo, Geração de Código Para-
lelo, Linguagem de Domínio Específico, Bibliotecas de Esqueleto, Esqueletos Algorít-
micos, Padrões Paralelos, Processamento Paralelo, Arquiteturas de Memória Distri-
buída, Programação Distribuída, C++, Pipeline, Farm.



HIGH-LEVEL PROGRAMMING ABSTRACTIONS FOR DISTRIBUTED
STREAM PROCESSING

ABSTRACT

Stream processing applications represent a significant part of today’s software. An
increased amount of streaming data is generated every day from various sources (com-
puting devices and applications), which requires to be processed on time. Shared-memory
architectures cannot cope with these large-scale processing demands. In High-Performance
Computing (HPC), Message Passing Interface (MPI) is the state-of-the-art parallel API (Ap-
plication Programming Interface) for implementing parallel C/C++ programs. However, the
stream parallelism exploitation using MPI is difficult and error-prone to application develop-
ers because it exposes low-level details to them, regarding computer architectures and op-
erating systems. Programmers have to deal with implementation mechanisms for data ser-
izalization, process communication and synchronization, fault tolerance, work scheduling,
load balancing, and parallelism strategies. Our research work addresses a subset of these
challenges and problems providing two high-level programming abstractions for distributed
stream processing. First, we created a distributed stream parallelism library called DSPAR-
LIB. It was built as a skeleton library equipped with Farm and Pipeline parallel patterns to
provide programming abstractions on top of MPI. Second, we extend the SPAR language
and compiler roles to support distributed memory architectures since it is a Domain-Specific
Language (DSL) for expressing stream parallelism using C++11 annotation that has been
proved to be productive on shared-memory architectures. We managed to make it work
without significantly changing the easy of use language syntax and semantics, generating
automatic parallel code with SPAR’s compiler using DSPARLIB as the parallel runtime. The
experiments were conducted using real-world stream processing applications and testing
different cluster configurations. We demonstrated that DSPARLIB provides a simpler API
than MPI and a competitive performance. Also, the SPAR’s compiler was able to generate



parallel code automatically without performance penalties compared to handwritten codes
in DSPARLIB. Finally, with all these high-level programming abstractions implemented,
SPAR becomes the first annotation-based language for expressing stream parallelism in
C++ programs to support distributed-memory architectures, avoiding significant sequential
code refactoring to enable parallel execution on clusters.

Keywords: Parallel Programming, Stream Parallelism, Parallel Code Generation, Domain-
Specific Language, Skeleton Library, Algorithmic Skeletons, Parallel Patterns, Par-
allel Processing, Distributed Memory Architectures, Distributed Programming, C++,
Pipeline, Farm.
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1. INTRODUCTION

The hardware industry has made significant progress in the last decades. From
big, expensive, and slow machines of the 1980s, to cheaper, smaller, and faster machines
of 2020 [TS06]. In previous decades, processor clock speeds increased at a steady pace,
and single-threaded programs would become faster with each new processor technology
advancement. Increasing frequencies also increases energy consumption and heat pro-
duction [MRR12], which limits the improvement of single-core execution speed. Instead
of increasing clock frequencies, the industry has shifted to multi-core processors. In 2020,
high-end 64-core 128-thread processors have become available1, whereas earlier processor
releases have been focused in 4, 8, or 16 cores.

Programmers need to use parallel programming techniques to extract the full poten-
tial of a multicore processor. There have been initiatives for parallelizing code automatically,
but they have not been successful [MRR12, MSM04]. Therefore, the programmer must ex-
plicitly use parallelism techniques in the code. However, the main programming paradigm is
still sequential programming rather than parallel programming. Sequential code cannot use
more than one processor core, which limits the performance scalability of the code. If new
processors with more cores become available, sequential code cannot use the full potential
of the new processor. In general, programmers can no longer rely on single-core execution
to benefit from continued hardware improvements.

Given that new processor technologies are focused on multicore, it is important to
write efficient parallel code. The challenges of writing parallel code are well documented
in the literature [MRR12, Col89, Gri16, ADKT17, MSM04]. Parallel programming is often
error-prone and can lead to poor performance if not done properly. For instance, modi-
fying shared state must be done in a synchronized manner, but the synchronization itself
might incur significant overheads or poor scaling. Fortunately, this problem has been stud-
ied for a long time. Nowadays, programming languages have built-in abstractions for paral-
lelism exploitation such as the Stream API available in Java 8 [Ora20]. For Microsoft .NET,
C# has language-integrated queries (LINQ) that can exploit parallelism [Mic20]. Other lan-
guages such as Rust and C++ have libraries that implement parallel abstractions such as
Rayon [Ray20] or TBB [Rei07]. Application programmers nowadays have a wide range of
options for parallelism exploitation.

Programmers looking for ways to exploit parallelism in their languages might find
concepts like map and reduce. These abstractions are called parallel patterns and come
from concepts that have been studied for decades. Algorithmic skeletons [Col89] became
the theoretical framework for other studies in the area of parallelism abstractions. [MSM04]
and [MRR12] give a practical introduction to parallel design patterns and structured parallel

1https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
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programming, which are based on algorithmic skeletons. In the context of stream process-
ing, FastFlow [ADKT17], GrPPI [dRADFG17], and Thread Building Blocks [Rei07] allow the
programmer to implement structured stream parallelism using the well known pipeline and
farm patterns. Most of these libraries for C++ only support shared-memory architectures and
cannot use other resources in an HPC cluster. Furthermore, the programmer might have to
introduce significant code refactoring to existing code bases to exploit stream parallelism.

Moreover, distributed stream processing applications are becoming commonplace
to further scale computation. In general, these applications process a possibly infinite, con-
tinuous, live stream of data. The data might be audio, video, sensor data, social media
posts, stocks, and other types. Big Data frameworks play a big role in the field of distributed
stream processing. Some of them are Apache Flink, Storm, Spark, Akka Streams, and oth-
ers. The vast majority of such frameworks run in the Java Virtual Machine. There is space
for C++ to become an important language in this field. The works in PiCo [Mis17] and Thrill
[BAJ+16] describe ways in which C++ could become a mainstream Big Data language due
to its expressiveness (with features brought by C++11 and C++14) and performance.

Unfortunately, distributed computing is not trivial due to well-known challenges such
as network communication, reliability, and serialization [AGT14, TS06]. Specifically, the
programmer must be aware of the costs of sending data back and forth through the network.
In addition to that, data must be encoded (serialized) in a way that can be sent to other
nodes in the network. The serialization process is complex but practical in languages such
as Java, Python, C#, and others because their dynamic runtimes keep metadata about
classes and types available during execution. Even in these languages, serialization is an
important topic due to the potential of becoming a bottleneck [AGT14], and existing Big data
frameworks provide multiple ways to configure and customize serialization [Lig19, CKE+15,
Apa19, ZCF+10]. In C and C++, serialization is significantly more difficult since there is no
metadata about types available during runtime.

Therefore, our work is motivated by the following problems:

• Programmability abstractions: Refactoring effort to introduce parallelism in existing
C++ codebases or the necessity of rewriting existing code in different languages;

• Distributed-memory parallelism exploitation: Challenges inherent to distributed pro-
gramming such as serialization, network communication, reliability, and performance.

The first problem is being addressed by SPAR [GDTF17] for shared-memory archi-
tectures. SPAR is a DSL (domain-specific language) compatible with C++11, which allows
programmers to take existing C++ code and parallelize it using simple C++ annotations.
Application programmers only need to learn the annotations and how to use them to par-
allelize existing code. SPAR uses the annotations to generate code that uses FastFlow
for parallelism. This method provides increased productivity with negligible performance
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losses [GHDF18a]. The question is, can we also provide the same advantages regard-
ing programming abstractions and performance for distributed-memory architectures
in SPAR?

Although SPAR supports multicore code generation to FastFlow, the original thesis
could not make it work for the FastFlow’s API (Application Programming Interface) that is
for distributed-memory architectures [Gri16]. As MPI is ubiquitous in HPC, [GF17] studied
whether SPAR can be integrated with MPI. However, no automatic code generation for clus-
ter has been implemented. The prior work also highlighted the need for a pattern-based
library for implementing stream processing without exposing the MPI low-level routines.

The long-term vision for SPAR is that it should be able to express stream paral-
lelism with increased productivity and higher-level abstractions while scaling to any problem
size. Support for distributed-memory architectures is necessary to achieve this vision. In
Figure 1.1, we show the layered research framework proposed by [Gri16]. It is possible to
see that multicore exploitation is done by generating FastFlow code using SPAR compiler,
which was created by using CINCLE (Compiler Infrastructure for New C/C++ Languages
Extensions). In this work, we developed DSPARLIB and extended SPAR to support clus-
ters. GMaVis is a high-level description language for geospatial visualization in the ap-
plication layer. It supports parallelism with SPAR for performance-critical sections of the
code [LGMF17, LGMF15].

Figure 1.1 – Global research framework. Adapted from [Gri16].

The SPAR programming model has been proven generic enough to generate par-
allel code using different runtime libraries such as TBB [HGDF20] and OpenMP[Hof20],
support self-adaptive parallelism degree abstractions [VGF21], and provide service level
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objective via C++-11 attributes [GSV+18, GVS+19]. Also, the abstractions of SPAR were
extended for supporting heterogeneous CPU and GPU computing along with a new struc-
tured parallel API called GSParLib [Roc20]. Similar extension were performed by [Lö20] for
combining stream and data parallelism on multicores. Therefore, there are opportunities to
improve the support space of SPAR for more computer architectures and runtime libraries.

Our goal is to design efficient and high-level programming abstractions for dis-
tributed stream parallelism. Therefore, the following scientific contributions were achieved:

• A new structured stream parallelism API (called DSPARLIB) for parallel and distributed
stream processing, including efficient data serialization, scheduling, synchronization,
and network communication.

• An extension to SPAR language to support parallel and distributed stream processing
without changing the original semantics.

• New source-to-source code generation algorithms that avoid the redesign of stream
pattern-based transformation rules in SPAR.

This document is organized as follows: Chapter 2 introduces the main concepts of
stream processing and stream parallelism. We also explore tools and libraries for structured
stream parallelism and parallel patterns. Chapter 4 contains the related work, in which we
look into stream processing DSLs and recent developments in big data streaming for C++.
Chapter 3 introduces the SPAR language, how to use it, and how the transformation rules
work. Chapter 5 introduces DSPARLIB, our distributed streaming patterns library, where we
present design and performance discussions. Chapter 6 introduces the changes to SPAR

to support distributed streaming with DSPARLIB. Finally, Chapter 7 presents the conclusion
and future works.
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2. STREAM PROCESSING

Stream processing has become more important as the demand for data processing
grows. Over the last few years, several companies developed tools for distributed, scalable
stream processing, and Big Data tools are now widely available. Furthermore, research in
the area of algorithmic skeletons explored parallel patterns for streaming applications.

In this chapter, we explore stream processing, stream parallelism patterns, and Big
Data frameworks. Section 2.1 to 2.6 explore basic concepts found in stream processing such
as operators, windowing, and back-pressure. Section 2.7 explores streaming in the field of
algorithmic skeletons and parallel programming patterns. Section 2.8 explores frameworks
for distributed streaming in the context of Big Data. Section 2.9 covers libraries for distributed
programming in C++. Finally, 2.10 summarizes this chapter.

2.1 Streams

Stream Processing is a computing model to perform real-time processing in live
data streams [AGT14]. Data sources often produce data on the scale of millions of data
items per day. Streaming systems must be able to handle streams with varied throughput
due to spikes or slowdowns. Streams also may vary in format and content, requiring suitable
pre-processing steps. Streaming systems must process data quickly to provide valuable
information in a timely manner.

A data stream is a potentially infinite sequence of tuples that share a schema,
where each tuple is an atomic data item similar to a database record [AGT14]. Examples
of sources of data streams are videos, audio, tweets from Twitter, events from sensors, or
even a bounded stream of lines from a file or records from a database. A stream processing
application may output data to one or more data sinks, which can be file systems, databases,
message queues, and others. Figure 2.1 provides an abstract representation of a stream.

Figure 2.1 – Abstract stream. Adapted from [Gri16].

Therefore, a data stream is a channel continually transmitting data items or data to
be processed by a sequence of operators.
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2.2 Stream Operators

To manipulate a data stream, the programmer may define operators, which are the
functions applied to every item of the stream. Operators are used to adapt data items to a
more appropriate format (for instance, parsing the data), perform a computation, aggregation
(reducing a stream to a reduced form, for instance, summing a stream of numbers), splitting
(usually for parallelism), merging (combining multiple streams into one), and many others
[AGT14]. Figure 2.2 offers an overview of operators working together.

Figure 2.2 – Stream operators overview.

As will be presented in Section 2.8, many Big Data frameworks implement stream
processing concepts. [Mis17] classifies their APIs as declarative or topological. Declara-
tive APIs can be informally described as APIs that expose stream operators such as Map,
Reduce, and other functions and methods commonly found in functional programming lan-
guages. Topological APIs allow the programmer to create topologies composed of graph
nodes forming a DAG (directed acyclic graph), which are components of a topological API.
The work of [Mis17] creates a formal definition of declarative APIs.

Operators that keep state are called stateful operators. These operators, differ-
ent from stateless operators, need a more elaborate implementation in the runtime. For
instance, a de-duplication operator needs to keep a list of previous stream items. When
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a stream item arrives, it is checked against the list and removed if it is a duplicated data
[AGT14].

However, a stream operator might run in a multithreaded context, potentially caus-
ing data races during concurrent reads and writes. In these cases, stateful operators must
use synchronization mechanisms. [MRR12] explains that, for parallelization of aggregation
operations, their functions must be associative. Sums and multiplications are examples of
associative operations, but there are caveats regarding integer overflow and floating-point
arithmetic. Tools like TBB (Thread Building Blocks) allow the user to define a stateful Farm
stage, where manual synchronization is necessary.

Stateful operators also further complicate application recovery when a failure hap-
pens in a distributed context. If a cluster node holds application state for a stateful operator,
it must be reconstructed when the application node restarts [AGT14]. This requires the
runtime to persist the state outside of the application by replication, saving a snapshot or
checkpoint, transactional logs, or a combination of these techniques [NPP+17, CKE+15].

Stateless operators simplify execution and runtime implementation. They do not
need to save any kind of state, thus their recovery is trivial. Furthermore, they can run in
parallel and do not need any kind of synchronization.

2.3 Windowing

Some operators need a bounded stream to operate, for instance, a sum of a stream
of numbers. It is infeasible (due to the continuous nature of many streams) or impractical
(due to the volume of data) to perform an aggregation to the whole stream [Mis17, AGT14,
CKE+15]. Windowing refers to a strategy of buffering data items to apply functions over it.
Windows enable extracting aggregate information over a finite list of items.

Therefore, windows have a triggering policy and an eviction policy. The triggering
policy dictates when a window is generated or emitted from a window operator. The eviction
policy dictates which elements can be held on the stream. For instance, the eviction policy
might limit the buffering by a length of time (collect all items during 5 seconds) or by a
count of items (create a window for every 100 items) [ZCF+10, CKE+15, AGT14]. Therefore,
common eviction policies are count-based or time-based, however, the policy can have any
implementation. Figure 2.3 shows an example of a sliding window with size 4 and step 1.

There are different types of windows. Some windows are fixed in size and do not
overlap, often called as tumbling window. Another common type is the sliding window, where
windows are fixed in size but overlapping is allowed, for instance: a list of events generated
in the last 10 minutes, where one window is emitted every 2 minutes. In this example, there
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Figure 2.3 – Stream windowing.

is 8 minute per window emitted in sequence. In general, windowing can have a multitude of
parameters to define the boundaries of a window [AGT14].

2.4 Fault tolerance

In a distributed stream processing context, it is necessary to consider how to handle
failures. Fault-tolerance is the ability to deal with failures of transient nature, which can
happen when: a node in the distributed system fails, a message fails to be delivered, or any
kind of error that may stop the stream computing process. According to [AGT14], this does
not include errors in the application logic, since this will require a change of the code.

Usually, this aspect is discussed in terms of delivery guarantees such as at-most-
once (or best effort), at-least-once, and exactly-once [TS06, AGT14]. The meaning of each
term varies depending on which tool is being considered. It is also discussed in terms of the
guarantees of the data source itself: if a data source cannot be “rewound” or cannot ensure
delivery, the guarantees are often reduced to at-least-once or at-most-once.

There are tools that also define "exactly-once" in terms of the effect each item has
in the final state of the computation: the final state reflects the processing of each item
exactly once by having idempotency (even if the underlying communication provides only at-
least-once guarantees). Apache Kafka is frequently used as a data source that can provide
exactly-once guarantees in streaming applications [KNR11] as we will describe in Section
2.8.8.
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[AGT14] explains that not all operators are equally critical in a distributed stream
processing application. Therefore, some operators might require less strict guarantees. It
may be acceptable for some types of applications to lose a small number of events or fail
sometimes, as long as the failures are kept to a minimum.

Fault tolerance can be implemented at application or runtime levels. The runtime
might rely on monitoring of each stage to check if the failure is fatal and the application can-
not continue, or if the operator can simply be restarted from a previous state. The runtime
must also deal with delivery and processing guarantees. Application-level fault tolerance
deals with checkpointing or other mechanisms that save the state of an operator, which
sometimes require the programmer to provide functions to guide the runtime during check-
pointing or state bootstrapping [AGT14].

2.5 Serialization

In a distributed stream processing scenario, the framework needs to serialize and
deserialize data going through the network. When running a stream processing program in a
single process, serialization is not necessary since they share the same memory space. The
serialization process might be computationally expensive [AGT14]. Moreover, checkpointing
requires serialization to save the operator state.

Automatic serialization is normally provided by frameworks running in a dynamic
environment, such as most JVM-based frameworks [Lig19, CKE+15, Apa19]. This is pos-
sible because Java maintains class meta-data in memory during program execution. This
meta-data can be queried using the Reflection API.

In contrast, C++ libraries such as Thrill[BAJ+16] and FastFlow[ADKT17] offer lim-
ited serialization capabilities due to the nature of C++. Thrill can automatically serialize data
when it is contiguous in memory, using C++ templates. FastFlow allows zero-copy serializa-
tion and deserialization by offering specific methods in which the programmer can perform
serialization and deserialization using their preferred method.

It is important, therefore, to choose a good format and serialization method that
is fast enough and results in a small serialization overhead. Also, this term should not be
confused with serializability, which is a property of execution schedules that lead to the same
state as if the operations were applied sequentially.
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2.6 Back-pressure

When an operator in the stream slows down, the runtime should prevent the appli-
cation from failing due to upstream data sources producing more data than the system can
handle. When a runtime has a back-pressure mechanism, it usually refers to the runtime
ability to deal with producers and consumers operating at different speeds [KBF+15, Lig19].
When a source of data pushes more data downstream than the system can consume, the
program becomes at risk of collapsing due to resource exhaustion (often memory or net-
work buffers). Back-pressure attempts to slow down producers upstream (closer to the data
sources) so that they do not overflow the stream with data items that will take too long to
consume. Each implementation has its way of dealing with back-pressure.

When back-pressure happens, the slowest operator in the dataflow graph severely
limits the throughput [AGT14]. To detect back-pressure, the stream must be constantly
monitored. Some useful metrics are latency (the lower, the better), CPU utilization, and
throughput. Frameworks such as Apache Flink can detect which operator in the stream
dataflow graph is causing back-pressure [CKE+15].

To mitigate back-pressure, the programmer can optimize the operator or change its
type. Operators of type split and merge help with load balancing. Meanwhile, since stateless
operators have no state, they can run in parallel [AGT14, Lig19, Akk19].

2.7 Structured Stream Parallelism

The concept of algorithmic skeletons encompasses several parallel programming
patterns that separate concerns between application programmers and system program-
mers [MRR12, Col89, MSM04]. Tools such as Thread Building Blocks (TBB) [Rei07] and
FastFlow [ADKT17] implement several skeletons, including Map, Reduce, and the stream-
ing Pipeline and Farm patterns. The field of structured stream parallelism studies patterns
in which a stream computation can run in parallel using algorithmic skeletons.

A Pipeline is a common pattern in stream parallelism. A Pipeline separate stages
of a computation into independent parts that can run in parallel, which is similar to the way
a dataflow is composed of operators potentially running in parallel. The maximum through-
put of a Pipeline is directly related to the number of stages, and do not benefit from extra
processors [MRR12]. For instance, the maximum speedup of a Pipeline with n stages is n.
However, the maximum throughput is also limited by the slowest stage, since all items must
pass through all the stages.

Figure 2.4 shows a representation of a Pipeline pattern. The process starts by
sending data to the first stage, or producing the data in the first stage. Data will flow through
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the stages, where each stage can perform computation independently from other stages.
The data emitted by each stage might be a different type than what was received.

Figure 2.4 – Pipeline representation. Adapted from [MRR12].

To scale a Pipeline pattern implementation, stages can be replicated if they are
stateless [MRR12]. This way, a Pipeline stage can benefit from extra processors. Each
stage in a Pipeline can either be sequential in-order, sequential out-of-order, or parallel. A
sequential stage is a stage that has only one Worker, while a parallel stage may have many
Workers. A Pipeline with parallel stages is also called a Farm [Gri16, AD99].

Figure 2.5 illustrates the Farm pattern. Similar to Pipelines, there is data flowing
through all components. Farms can be represented with the expression farm(e, w , c) [Gri16],
where e is the Emitter, w is the Worker, and c is the Collector. Workers are stateless, and
therefore can be replicated and execute in parallel.

Figure 2.5 – Farm representation. Adapted from Pipeline example of [MRR12].

In general, a Pipeline stage has a queue of items to be processed [ADKT17], which
is common in stream processing for shared-memory architectures. In the case of a Farm,
each Worker may have a queue of items to be processed, or all Workers may share a
common queue. Items are then distributed to queues using a round-robin or other load
balancing methods, or all items are pushed to the queue of the stage where Workers perform
polling [DMM17]. FastFlow [ADKT17] uses unbounded lock-free queues in each stage for
efficient parallelism. For distributed architectures, the Emitter can send data to the Workers
using round-robin or on-demand scheduling [GF17].
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In particular, FastFlow allows an optimization that reduces resource usage when
the Collector is unnecessary. The Farm can be expressed with farm(e, w) [Gri16], and Figure
2.6 shows its representation.

Figure 2.6 – Farm without Collector. Adapted from Pipeline example of [MRR12].

However, the Workers of a Farm might produce results out of order. This is a
problem for applications such as audio and video processing, where the final result must
be in the same order as the source material. To deal with this case, a Collector can be
configured to process items in the order they were initially produced. A simple strategy is
to tag each stream item with a sequential identifier, and then buffer out-of-order items in the
Collector [GHDF18b]. Enforcing stream ordering needs extra runtime effort and may results
in performance penalty [MRR12]. However, depending on the computation, the penalty may
be not significant, according to [GHDF18b].

As seen in Section 2.3, windowing is necessary to perform aggregations in pos-
sibly infinite streams. The work of [DMM17] studied windowing mechanisms under an al-
gorithmic skeleton approach. They proposed and implemented four new parallel patterns:
Window Farming, Key Partitioning, Pane Farming, and Window Partitioning. We describe
them briefly.

Window Farming is a simple approach where each window is buffered in the Emitter
stage, and then each window is sent to a different Worker. This is shown in Figure 2.7.
Window farming increases output but may not optimize for latency, because each window is
processed sequentially by the Workers. An optimization exists to reduce latency by having
Workers control the window buffering, while the Emitter just performs a round-robin load
balancing.

Key Partitioning is similar to Window Farming. A key is used to split the stream, but
parallelism only happens for each key. This becomes a problem for skewed data, where it
becomes difficult to perform load-balancing. Items with the same key are processed by the
same node in order.

Pane Farming is the most elaborated pattern. We show a computing graph in
Figure 2.8. Pane Farming divides each window into panes, whose sizes depend on the
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Figure 2.7 – Window Farming. Extracted from [DMM17].

eviction policies (window size and step). The pattern can be used if the function f executed
by the stage can be decomposed into two functions h and g that can be used in the form
f (w) = h(g(p1), g(p2), ..., g(pd )) where pn is a pane of the window, and the window w has
d panes. The functions are used to calculate aggregates over panes and then merge the
results using 2 farm stages. This process can also be done by key. Pane Farming improves
throughput and latency.

Figure 2.8 – Pane Farming. Extracted from [DMM17].

Window Partitioning implements the Map-Reduce pattern for data streams. A win-
dow is divided between n Workers, and at any time, only one window is being processed by
the pattern. Since each Worker has a piece of the window, this pattern requires the Workers
to perform window buffering logic. In a keyed scenario, each Worker must keep a window
buffer per key. The Map function is executed in parallel for each partition (using a Worker
Farm), and then the results are sent to the Collector to perform the Reduce function. This
pattern optimizes for latency and slightly improves throughput. A diagram is shown in Figure
2.9.
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Figure 2.9 – Window Partitioning. Extracted from [DMM17].

Each pattern has its strengths and weaknesses. However, [DMM17] briefly sug-
gests that, since skeletons can be nested arbitrarily, these patterns can be used together to
improve latency and throughput at the same time.

So far we discussed the used of skeleton libraries for stream processing. Instead
of using libraries, another approach is the use of DSLs for stream parallelism. In particular,
StreamIt [TKG+01] is a DSL that has been developed for almost two decades at MIT. A
newer approach is SPAR [Gri16], which supports C++11. The code is parallelized using
C++ annotations. These tools and DSLs will be described in Chapter 4.

2.8 Frameworks and Libraries for Distributed Streaming

In this section, we present tools for the distributed stream processing domain. We
explore the following characteristics: Design goals, runtime characteristics, serialization on
distributed scenarios, the language in which the tool was implemented, how stream paral-
lelism is achieved, back-pressure and fault-tolerance characteristics. Many of these tools
are widely used Big Data frameworks.

To describe the API of each tool, we based on the work of [Mis17], which makes a
distinction between declarative and topological-oriented APIs. There is an overlap between
the tools we analyzed and the tools [Mis17] analyzed. We use the classification given by
their work when this overlap exists.
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2.8.1 Akka Streams

Akka Streams [Lig19] is a Java, Scala and .NET [Akk19] library that allows the
programmer to define stream processing pipelines using a dataflow-like API. The library is
part of Akka, an actor model implementation designed to build message-driven concurrent
systems.

Akka Streams focuses on providing a minimal and consistent API, with composi-
tionality as a key principle. The API is also designed to provide a complete solution for
distributed stream processing, being able to express any topology (i.e. pipelines, graphs)
found in the stream processing domain.

Akka Streams achieve these design goals through an API that allows programmers
to define computation graphs. Each node in the graph has a given number of input and
output “ports”. The building blocks of the API consist of 3 nodes: Source, Sink, and Flow.
The Source node has exactly one output port and is used at the beginning of a computation
graph. The Sink node has exactly one input port and is used to express the end of a com-
putation. The Flow node has exactly one input and one output port. It is used to express
generic steps connecting downstream and upstream nodes.

Each node may contain several processing stages. This is achieved by providing a
processing stage API that is idiomatic to the programming language. In the Scala API, this
is done by using functions like map, flatMap, filter, and others. These functions are also
part of the Scala enumerator API. In the C# API, the API is similar, where the programmer
can use functions that are part of the IEnumerator API such as Select (equivalent to map in
Scala), SelectMany (equivalent to flatMap) and Where (equivalent to filter). Each processing
stage can also be marked as asynchronous, which creates an async boundary. An example
of a word count program using the C# Akka Streams API is shown in Listing 2.1.

1 var words = ... //a stream of text
2 var counts = words
3 .GroupBy (10, x => x) //max groups: 10
4 .Select(x => new { Word: x, Count: 1 })
5 .Async()
6 .Sum((l, r) => new {
7 Word: l.Word ,
8 Count: r.Count + l.Count})
9 .MergeSubstreams (); // merge groups

Listing 2.1 – Akka Streams. Adapted from [Akk19].

An async boundary separates groups of processing stages that will execute in par-
allel. In Listing 2.1, the Async method separates the computation in 2 groups: the first group
is composed by GroupBy and Select. The other group is composed by Sum. These 2 groups
run in parallel. Effectively, an item crossing an async boundary is forwarded to the next node
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using asynchronous messages, or simply, an actor message. If no async boundaries are
defined, then all processing stages are executed synchronously in the same actor (a pro-
cess called “operator fusion” [AGT14]) without any performance penalties that come from
sending an asynchronous message to another actor. Therefore, adding an async boundary
increases processing overhead, but provides parallelism between stages.

Another way to achieve parallelism is by using nodes of type Balance and Merge.
Balance is a node that has one input and many output ports. Each item processed is then
forwarded to one of the output ports. Merge is a node that has many input nodes and one
output ports, where each item received in any input port is processed and forwarded to the
output port. To achieve parallelism, a Flow must be marked async and also must be put
between the Balance and Merge. Additionally, each output port of the Balance node must
be connected with the Merge node. By having both a graph-based and functional-based
APIs, we consider that Akka Streams has a hybrid topological and declarative API.

Akka Streams provides a back-pressure mechanism. In general, items are pro-
duced by upstream nodes according to the demand signaled by downstream nodes. Up-
stream nodes may employ several strategies to slow down item production if downstream
nodes are not able to cope with item production. Some of these strategies depend on
whether it is possible to just not produce an item (if the production can be controlled), buffer-
ing items, drop items or ultimately tearing down the stream. These strategies are back-
pressure strategies, preventing upstream nodes from overflowing the stream with items.
Back-pressure comes with Akka Streams by default and is automatically handled, although
the programmer can define buffer sizes for each node. Additionally, if consumers are faster
than producers, then the producers can keep pushing items to the stream since downstream
nodes keep signaling demand.

Akka Streams is built on top of the Akka actor framework. Actors encapsulate state
and behavior, which is similar to a class in object-oriented languages. Actors, however, com-
municate via asynchronous messages, and each actor has a “Mailbox”, which is a queue of
messages to be processed by the actor. Additionally, actor frameworks such as Akka pro-
vide an actor hierarchy (actors may have child actors) and a supervision strategy to handle
failures. In general, each Akka Stream node in the graph is an actor, and async boundaries
separate groups of processing stages in different actors.

Fault-tolerance is implemented using Akka fault-tolerance mechanisms. However,
unless explicitly stated, any error will tear down the entire stream, meaning all processing
will stop. Akka Streams has a distinction between errors and failures. Errors are normal
data items and are expected in normal execution. The distinction between an error and a
success can be done using Scala’s Either[T1, T2] type. Since it is a normal stream item,
the programmer must detect and deal with them manually. Failures occur when the stream
itself had an error. Exceptions are considered failures (for instance, a Java DivisionByZe-

roException). Akka Streams offers a wealth of recovering options, which include dropping
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the item from the stream and continuing processing, tearing down the stream, or retrying
the item on the failing stage. Retrying can be useful in scenarios where the stage calls a
remote network service that could timeout or fail for any reason. For timeouts, a common
strategy is to use an Exponential Backoff strategy, where the retry is delayed by a delay that
exponentially increases up to a given maximum value. An example of error handling in Akka
Streams is shown in Listing 2.2. The listing is written in C# using Akka.NET, but the Java
and Scala versions are similar.

1 var planB = Source.From(new List <string > {
2 "five", "six", "seven", "eight"
3 });
4 Source.From(Enumerable.Range(0, 10))
5 .Select(n => n < 5 ? n.ToString () :
6 throw new ArithmeticException("Boom!"))
7 .RecoverWithRetries(attempts: 1, exception =>
8 exception is ArithmeticException ? planB : null)
9 .RunForeach(Console.WriteLine , materializer);

Listing 2.2 – Error handling in Akka Streams. Adapted from [Akk19].

The API supports defining windows with simple grouping functions. The function
groupedWithin creates a non-overlapping window by time or count. For instance, the pro-
grammer can generate windows every N minutes with a maximum of M items. The sliding

function allows to create a sliding window for a given number of items and is also a function
of the Scala enumerator API. Therefore programmers familiar with Scala may also find this
function intuitive enough.

Akka Streams supports distributed computing with Akka Cluster and StreamRefs.
In general, Akka does not provide any delivery guarantees, which is a deliberate design
decision, inherited by Akka Streams. Sending an item over a network connection may cause
failures, and the user must deal with it manually. Additionally, the design principles of Akka
are the same as Erlang regarding delivery guarantees, where the user itself must implement
idempotent logic to deal with at-least-once deliveries. The user must retry an operation if it
fails, which could lead to an item being received twice in the other actor or stream operator.

To send a message between separate computers (or JVM and .NET instances), the
message must be serialized. Akka supports any serialization strategy. By default, the JVM
implementation uses Protocol Buffers, but the user may choose the serialization method
(global or type-specific). The .NET implementation uses Protocol Buffers as well, but a
common option is to use JSON. Additionally, the .NET implementation may use Hyperion, a
library that provides polymorphic serialization, where the types of each field are also present
in the serialized format.
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2.8.2 Apache Flink

Apache Flink [CKE+15] is a platform for distributed stream processing written in
Scala, designed for high availability and high scalability. Flink provides many APIs with
different abstraction levels. The lowest-level API is the DataStream API, which resembles
the API of common stream parallelism tools such as Akka Streams and Storm. There are
high-level APIs such as Table API and SQL, which makes data streaming available to a wider
audience that is familiar with relational databases. However, we focus on the DataStream
API. We notice that there is also a DataSet API, but a DataSet in Flink is a stream that has
an end, while DataStream represents potentially infinite streams. DataSet and DataStream
are part of the Core API, and in the following paragraphs, we will refer to both APIs as "Core
API" for simplicity, since they are similar.

The building blocks of the Core API are data sources, transformations, and data
sinks. Flink comes with predefined data sources and data sinks, which may be in-memory
collections, files, network sockets, and standard input. Moreover, third-party connectors are
available. For instance, Apache Kafka, Cassandra, Amazon Kinesis, Twitter Streaming API
(source only) and others. Projects like Apache Bahir provide extra third-party connectors.

Stream transformations can be done via the Operator API. The expected operators
are available, such as Map, FlatMap, Reduce, and others, which is considered to be a
declarative API [Mis17]. The API provides a way to logically partition streams by a key
using the KeyBy operator. The operator will output many streams. The next operators
will be applied to each logical stream. This allows Flink to parallelize stream processing
based on the logical partitions, while a non-keyed stream will not be processed in parallel.
Additionally, Flink processes all stream items in FIFO order by default, however, this does not
work when the stage outputs multiple streams. This behavior is the same as Akka Streams,
as described in Section 2.8.1.

Apache Flink provides a rich API for windowing. There are 3 types of windows:
tumbling, sliding, and session. Tumbling is fixed-size and non-overlapping, while sliding is
overlapping. Tumbling and Sliding can be configured based on time length or item count.
The session windowing strategy generates windows based on bursts of activity, where the
user specifies a maximum time of inactivity. After the configured time passes and no items
arrive at the operator, a new window is generated. The windows are non-overlapping but
may have varied size. There is another type of window called “global”, which is useful when
the programmer needs to specify a custom windowing strategy.

In listing 2.3, we show an example of Apache Flink using the Scala programming
language. The example takes a stream of text lines and prints a count of the words received
in the last 5 seconds, printing the result each second. In the example, WordWithCount is a
class with fields word and count which are used to group and aggregate elements.
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1 val env = StreamExecutionEnvironment.getExecutionEnvironment
2
3 //read socker text stream lines
4 val textStream = env.socketTextStream(
5 "localhost", 8080, ’\n’)
6
7 val windowCounts = textStream
8 .flatMap { w => w.split("\\s") } // line to words
9 .map { w => WordWithCount(w, 1) } // parse

10 .keyBy("word") //group by "word" field
11 .timeWindow(Time.seconds (5), Time.seconds (1)) // window
12 .sum("count") // aggregate
13
14 //single -thread print
15 windowCounts.print().setParallelism (1)
16 env.execute("Socket Window WordCount")

Listing 2.3 – Word counting in Flink. Adapted from [Fli19].

Back-pressure is handled by using buffers. Each stage has a buffer size containing
unprocessed items. If a stage attempts to add items to a stage with no available buffer space,
this will cause back-pressure. When back-pressure happens, the stage will stop and wait for
buffer space to become available. Special care is taken where two stages are processed in
different machines, where Flink never writes too much data in the network channel. However,
it is recommended to check whether back-pressure problems are happening. Flink provides
monitoring, in which it is possible to check which node is causing excessive back-pressure.

Apache Flink also provides a fault-tolerance method called Checkpointing, which
requires the use of a persistent data stream system such as Apache Kafka that is a per-
sistent log-based messaging system. If Apache Flink has a failure, the computation state
can be restored by using a checkpoint, which stores the stream number emitted by the data
source, and the computation state of each stage. When all sinks receive a checkpoint, the
checkpoint itself is acknowledged by the job manager. By using checkpoints, Apache Flink
only reprocesses source data produced after the last acknowledged checkpoint. The pro-
grammer can choose the processing guarantees depending on the sources and sinks used.
Using Apache Kafka as a source and sink, Flink can guarantee exactly-once processing
(meaning that the final state reflects the processing of each item exactly once), and for low-
latency scenarios, the programmer can use a more relaxed at-least-once guarantee. These
guarantees are highly dependent on data sources and data sinks. For instance, a TCP
socket data source has only at-most-once guarantees.

Flink implements a serialization framework that can automatically deal with POJO
(Plain Old Java Object) objects, primitive types and their boxed variants, and core Java
classes such as lists and sets. More complex types such as generic types are handled
by the Kyro library, and the programmer may provide any serialization method when Flink
or Kyro fail. The user can also register types beforehand to speed up serialization. For
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instance, Flink can correctly serialize and deserialize objects based on their supertypes, but
it is faster if the user can inform all subtypes that will be used during execution beforehand.

Apache Flink uses Akka, the actor framework introduced on Section 2.8.1 to co-
ordinate remote communication. The architecture of Flink consists of a Job Manager and
Task Manager. The Job Manager is responsible for coordinating task execution, while the
Task Manager is responsible for executing tasks and managing stream buffers. However,
Akka is used only for coordination; actual data streams between remote nodes are done via
network connections that are managed by a network manager in each Task Manager. This
mechanism is described in Figure 2.10.
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Figure 2.10 – Flink Job Manager. Actor System is Akka. [Fli19].

2.8.3 Apache Storm

Apache Storm [Apa19] is a real-time stream processing system written in Java.
Storm is designed to be easy to use and can be used in any language that has an imple-
mentation of the Thrift protocol, which is a protocol that comprises RPC and serialization,
similar to Protocol Buffers.

The building blocks of Apache Storm are Spouts and Bolts. Spouts are data
sources while Bolts process data sources, possibly generating other data streams. Bolts
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are used for data transformations and data sinks. For the rest of this section, we will re-
fer to spouts and bolts as “components” for simplicity. Each component has a name, and
a Topology represents components connected, creating a graph. The connection between
components is done by groupings.

A grouping is a set of components connected by a name. Several types of group-
ings are available, and the most basic grouping available is the Shuffle grouping. Shuffle
means that each bolt connected to another component will receive an equal amount of data
items. Like Apache Flink, it is also possible to define logical partitioning using the Fields
grouping, which defines a key to partition the stream. However, Storm can deal with key im-
balance using the Partial Key grouping, which implements an algorithm that provides better
load balancing when data is skewed towards a given key.

The programmer can implement classes that inherit from IRichSpout and IRich-

Bolt to create spouts and bolts using the Topology API, which, as its name suggests, can
be considered a topological API [Mis17]. The spout implementation must have a nextTuple

method that returns a data item to be inserted in the stream. Likewise, the bolt must im-
plement a similar nextTuple method, which receives by parameter the next item from the
stream. Moreover, spouts and bolts must declare their outputs using an OutputFieldsDe-

clarer object. Additionally, the parallelism level of each component can be indicated on the
component itself using the methods setBolt and setSpout. Listing 2.4 shows an example of
the Topological API. We do not demonstrate how to create a bolt and a spout for simplicity.

1 TopologyBuilder builder = new TopologyBuilder ();
2
3 builder.setSpout("sentences",
4 new RandomSentenceSpout (), 5);
5 builder.setBolt("split", new SplitSentence (), 8)
6 .shuffleGrouping("sentences");
7 builder.setBolt("count", new WordCount (), 12)
8 .fieldsGrouping("split", new Fields("word"));

Listing 2.4 – Word counting in Storm Topology API [Apa19].

Although the API’s topology is verbose, it is very simple to understand. The topol-
ogy has at-least-once delivery guarantees while a higher-level Trident API ensures exactly-
once guarantees. The Trident API has a simpler and less verbose API, including support
for a declarative-style definition of the computation [Mis17]. Additionally, there are two ex-
perimental APIs for even higher-level declarative stream processing: the Streams API that
closely resembles the Java Stream API, which lets the programmer use lambda functions
for expressive stream computations in enumerators, and an SQL API. Listing 2.5 shows an
example of the Trident API.

1 FixedBatchSpout spout = new FixedBatchSpout(
2 new Fields("sentence"), 3,
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3 new Values("the cow jumped over the moon"),
4 new Values("the man went to the store"),
5 new Values("four score and seven years ago"),
6 new Values("how many apples can you eat"));
7 spout.setCycle(true);
8
9 TridentTopology topology = new TridentTopology ();

10 TridentState wordCounts =
11 topology.newStream("spout1", spout)
12 .each(
13 new Fields("sentence"),
14 new Split (),
15 new Fields("word"))
16 .groupBy(new Fields("word"))
17 .persistentAggregate(
18 new MemoryMapState.Factory (),
19 new Count (),
20 new Fields("count"))
21 .parallelismHint (6);

Listing 2.5 – Word counting in Storm Trident API. Adapted from [Apa19].

The runtime of Storm is comprised of a worker process, executors (threads) and
tasks. The parallelism hint passed in the setBolt and setSpout methods refer to the initial
number of executors (threads) that will be spawned for the component, and can be changed
at runtime. Each component also has a parameter for the number of tasks, which is the
maximum number of parallel instances of a component. Usually, this is set to the same
number as the number of executors, but the programmer can set it to 2 or more tasks per
executor to allow for more flexibility when increasing the number of threads when more
servers join the cluster.

Figure 2.11 – Apache Storm Topology [Sto19].
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Figure 2.11 shows a demonstration of the parallelism hint. The Green Bolt was set
to 2 executors and 4 tasks (the task parameter is not present in the picture). Effectively, the
maximum parallelism of the Green Bolt as shown in the picture is 2, however, if more worker
processes and executors are added to the cluster, the Green Bolt will benefit from this extra
capacity, possibly reaching a parallelism level of 4. The Blue Spout, however, will at most
run in 2 threads, because the number of tasks is equal to the number of executors. The
topology needs to be redeployed to the Storm cluster if the programmer wants to change the
number of tasks.

The back-pressure mechanism is similar to Apache Flink, where each component
has a buffer with limited capacity. Storm components have 2 buffers: a sending buffer and a
receiving buffer. Storm checks how full the receiving buffer is before adding an item to the
buffer, and if it passes a certain threshold, the spout is throttled.

Apache Storm runs in a cluster managed by Apache Zookeeper, and communi-
cation is done via the Thrift protocol. Zookeeper is used only for coordination. Commu-
nication between components in the same worker process is done via LMAX Disruptor, a
high-performance inter-thread messaging library. Communication between components in
different worker processes is done via ZeroMQ. Since Apache Storm can be managed via
the Thrift protocol, it enables any language with a Thrift client to communicate with Apache
Storm. Currently, Python, Ruby, and Javascript are supported by the Apache Storm team,
while a C# client is maintained by the Microsoft Azure team.

2.8.4 Apache Spark

Apache Spark [ZCF+10] is a general-purpose cluster computing system written in
Scala. It executes computation graphs in a Spark cluster and has a rich set of APIs for batch
processing, machine learning, graph processing, and micro-batch streaming. In general, the
APIs are designed to be easy to use and supports many languages, such as Java, Scala,
Python, and R.

The building block of Spark is a data structure called RDD (Resilient Distributed
Dataset). Any RDD can be built from in-memory collections or Hadoop-compatible data
sources. The RDD parallelizes operations automatically while also allowing logical partition-
ing with keys similar to Apache Flink and Storm. Common operators are available, like map,
filter, aggregate, and others.

The RDD is resilient and can be restored if any computing node in the cluster fails.
The RDD also carries a history of operations that lead to the current state, so that when an
RDD fails, it can be restored later based on the history of computations, assuming that all
operations are deterministic.
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For the streaming domain, Spark offers a declarative DStream API, which allows
consuming data from live data streams, such as Kafka topics, Twitter, TCP sockets, and
others. DStream means Discretized Stream and is composed of a sequence of RDDs. Each
RDD can be thought as a micro-batch, where each RDD comprises of 200 milliseconds of
streamed data. This setting can be configured for smaller, more frequent batches. Data
transformation operators are applied to each RDD in the stream. This process is shown in
Figure 2.12 and an API example is shown in 2.6.

Figure 2.12 – Spark DStream mini-batching [Spa19].

Besides supporting common streaming operations via micro-batching, Spark also
allows windowing (sliding and non-sliding) with duration and step. The APIs are rich and
support several levels of abstractions, from RDDs to Datasets and SQL. Spark also has
APIs for graph processing (GraphX), machine learning with MLlib and support for the R
programming language.

1 val textFile = sc.textFile("hdfs ://...")
2 val counts = textFile
3 .flatMap(line => line.split(" "))
4 .map(word => (word , 1))
5 .reduceByKey(_ + _)
6 counts.saveAsTextFile("hdfs ://...")

Listing 2.6 – Word counting in Spark. Adapted from [ZCF+10].

Serialization in Spark can be done with default Java serialization or a library called
Kyro, which is faster and generates a more compact representation than Java. However,
Kyro comes with several shortcomings regarding support for all Java serializable types, and
the user must register all classes that can be serialized upfront. Spark uses Kyro for internal
data structures, such as RDDs composed of known simple types. It is recommended to try
Kyro for network-intensive applications.

Delivery guarantees depend on data sources. With resilient distributed data sources
like HDFS, Spark can provide exactly-once processing. However, data output is at-least-
once, meaning the same data may be outputted twice. The user must implement idempotent
property if needed. Regarding reliability, back-pressure is handled automatically but must
be enabled in the configuration. Spark measures batch scheduling delays and processing
times to determine how fast the system can process incoming data.
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2.8.5 Apache Heron

Apache Heron [KBF+15] is a streaming system maintained by Twitter written in
Java and C++. Twitter used Storm in production for several years, but Storm presented
may shortcomings at the scale that Twitter operates, regarding performance and debuga-
bility. We noticed that Heron was released as open-source around 2016, and a complete
rewrite of Apache Storm core (from Clojure to Java) was completed in 2019, therefore, many
shortcomings of Storm back in 2015 may have been addressed by newer releases.

One of the key features of Heron is compatibility with Apache Storm API, where it
is possible to easily migrate applications from Storm to Heron. However, Heron also offers
the Streamlet API which is heavily inspired by Java 8 Stream API. It is still possible to use
Spouts and Bolts, as described in Section 2.8.3. Therefore, all features supported in Storm
are also supported in Heron. In this section, we briefly describe the differences between
Heron and Storm.

Heron has 2 core architectural components: Stream Manager and Topology Man-
ager. The topology manager manages stream processing topologies, which are composed
of a logical plan and a physical plan. The logical plan contains information on the operations
that will be executed and how components connect each other. After submitting a topol-
ogy to the Topology Manager, it creates the physical plan, which defines how the processes
are divided between containers. A container has a Stream Manager and multiple Heron
Instances. The Stream Manager is responsible for routing data items between components
(spouts and bolts) and connect to other Stream Managers in other containers. Additionally,
Stream Managers deal with back-pressure, which is similar to the current strategy used in
Storm. Essentially, the Stream Manager communicates with other Stream Managers to slow
down the spout that feeds into the lagging component.

This process is shown in Figure 2.13. The bolt B3, shown in Red in the container A
is operating at a slower speed than normal. The stream manager slows down the feeding of
S1 into B3 for back-pressure, but this alone does not solve the problem, since the network
communication from containers B, C and D is still happening. If the container A does not
consume from the network, the network buffer will fill up. Therefore, the Stream Manager
in container A communicates with B, C, and D that a back-pressure is happening. Finally,
containers B, C and D will analyze the physical plan of A and stop feeding data to the S1
bolt in container A. When B3 begins normal operation, container A will communicate with B,
C and D to resume normal operation and stop the back-pressure.

The Streamlet API aforementioned is a declarative API, very similar to the Java 8
Stream API. The Streamlet API allows to define type-safe stream operations without the ver-
bosity and debugging challenges presented by the original Topology API present in Storm.
The API is similar to the Akka Streams API, where key components are Sources, Operators,
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Figure 2.13 – Heron back-pressure mechanism [Her19].

and Sinks. Heron automatically converts these components into spouts and bolts. The user
can also chain Streamlet operations such as map, flatMap, filter, and others. Similar to Flink
and Storm, windowing and logical partitions by key are also available. Listing 2.7 shows an
example of the Heron Streamlet API.

1 Builder builder = Builder.newBuilder ()
2 .newSource (() -> "mary had a little lamb")
3 .flatMap(sentence -> Arrays.asList(
4 sentence.split("\\s+")))
5 .reduceByKeyAndWindow(
6 // Key extractor
7 word -> word ,
8 // Value extractor
9 word -> 1,

10 // Windowing
11 WindowConfig.TumblingCountWindow (50),
12 // Reduce operation (a running sum)
13 (x, y) -> x + y
14 )
15 // The result is logged
16 .log();

Listing 2.7 – Word counting in Heron Streamlet API. Adapted from [Her19].

As usual, delivery guarantees are highly context-dependent. Heron uses the term
"effectively-once" as an alternative to "exactly-once" since the term in some contexts can
be misleading. The description given by the Heron documentation of what “effectively-once”
means is similar to the exactly-once guarantees of Apache Flink: The final state of the
computation will reflect the processing of each item once, but an item can be processed
more than once. For effectively-once delivery guarantees, Heron requires the stream state
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to be rewindable, like a Kafka stream. Additionally, Heron requires the topology to be stateful
and idempotent.

2.8.6 Apache Samza

Apache Samza [NPP+17] is a distributed real-time stream processing system. Apa-
che Samza is designed to solve problems related to the Lambda architecture, which consists
of keeping duplicated logic for batch and stream processing as well as the high costs regard-
ing code maintenance that it causes [Mis17, NPP+17, Cur18].

The use case presented by Samza is as follows: it is common for companies to
keep 2 systems in parallel: a stream processing system that deals with live data streams
(Flink, Storm, etc), and a batch processing system that reprocesses the whole dataset
(Hadoop, Spark, etc). Meanwhile, it is necessary to reprocess the whole dataset some-
times, given that business logic code changes very often, and bugs are inevitable in prac-
tice. Therefore, the code changes must be done in both the stream processing code and the
batch processing code. Samza offers a unified model for batching and processing, mean-
ing that programmers only need to change the code in one place. This may also reduce
infrastructure costs since there is no need to keep separate servers for both deployments.

When a code change happens, sometimes reprocessing needs to be applied in
the whole dataset. However, with appropriate monitoring, bugs can be quickly caught. The
reprocessing needs to be applied only for the data items produced in the latest minutes.
Samza is designed to make this operation simpler. Also, in distributed systems, data items
may arrive late and out of order. Samza is designed to be able to detect this case, rewind
the state and reapply the operations so that the state reflects the processing of data items
in the correct order.

In Apache Samza, application state is kept in the local disk or RAM. For each in-
coming data item, Samza processes it and the state changes. This change of state is stored
in a changelog, which is often implemented as a Kafka topic that can be rewound and re-
played. The changelog is used when a node cannot be restored after a failure. In general,
Samza tries to restore the node in the same physical machine where its application state
was being recorded, which helps to recover application state faster. This mechanism is op-
posed to other streaming systems that store data in a remote storage system, causing high
latency, excessive resource usage and long recovery times. Samza calls this mechanism
Host Affinity. In experiments at LinkedIn, Samza has used the Host Affinity strategy effec-
tively in 85% of restart cases, reducing recovery time from 30 minutes to 30 seconds. Thus,
the main differential of Samza is being able to handle large application states, up to 100s of
terabytes in size.
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Another aspect in which Samza differs is in the back-pressure mechanism. Samza
uses Apache Kafka for streaming, and Kafka writes data items into a log file in the disk.
Effectively, there is a large disk buffer between two computation stages, meaning that Kafka
handles the buffering between stages. Samza itself has no back-pressure mechanism due
to this characteristic. Samza offers at-least-once processing guarantees.

Samza has a rich set of APIs that cover many use cases, in a similar way to Heron
and Spark. There is a High-Level Streaming API that supports common operators using a
similar API to the Java 8 Stream API. Samza supports windowing, sliding window and logical
partitioning of streams using the PartitionBy operator. Additionally, there is a low-level Task
API, in which the programmer can implement an interface with a process method, while
the output of the task is collected by a Message Collector. An example of the high-level
streaming API is shown in Listing 2.8.

1 lines
2 .map(kv -> kv.value)
3 .flatMap(s -> Arrays.asList(s.split("\\W+")))
4 .window(Windows.keyedSessionWindow(
5 w -> w, Duration.ofSeconds (5),
6 () -> 0,
7 (m, prevCount) -> prevCount + 1,
8 new StringSerde (),
9 new IntegerSerde ()), "count")

10 .map(windowPane ->
11 KV.of(windowPane.getKey ().getKey (),
12 windowPane.getKey ().getKey () + ": "
13 + windowPane.getMessage ().toString ()))
14 .sendTo(counts);

Listing 2.8 – Word counting in Samza Stream API. Adapted from [NPP+17].

2.8.7 Apache NiFi

Apache NiFi [NiF19] is a distributed stream processing system with a key differen-
tial: it represents computation graphs in a visual interface through a browser. The user can
edit a graph in the browser using the many components that ship with NiFi. NiFi integrates
with many tools such as Kafka, Amazon S3, Hadoop, and others.

NiFi is a system that tries to solve the problem of frequent changes in stream pro-
cessing application code and how to connect systems that originally may have not meant
to operate together. The key building blocks of the graph are FlowFiles and Processors. A
FlowFile is a piece of data (which we are calling data item in this section) and a processor is
a NiFi component that acts as a data producer, transformer, and data sink.
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NiFi provides a rich interface that allows defining a graph and monitor execution.
There is an extensive set of predefined processors (more than 300). NiFi features an Ex-
pression Language to work with data. NiFi also has a Java API to define new processors.
This makes NiFi a good tool for abstracting stream processing and possibly enabling a wider
audience to use streaming tools. Additionally, the interface shows performance statistics
and diagnostics to check whether a stage in the graph is facing any problems.

Apache NiFi can run in a cluster managed by Zookeeper. A node of the cluster is
elected by Zookeeper as the primary node, which will replicate any changes to the graph to
other nodes. NiFi offers "guaranteed delivery", which we conservatively assume to mean at-
least-once delivery. NiFi achieves this by writing data items in a persistent write-ahead log.
It also supports back-pressure by monitoring queue sizes and setting an expiration time for
data items. Some performance aspects can be tuned in a fine-grained, processor-specific
fashion, to allow a choice between low latency and high throughput as well as data loss
tolerance.

2.8.8 Kafka Streams

Many of the distributed stream processing frameworks presented in this chapter
implement message delivery guarantees, often expressed in terms of "at-least-once" or
"exactly-once" semantics. Frameworks often rely on external data producers that can rewind
and replay data to provide exactly-once semantics, which generally means that the final state
of the computation reflects the processing of each item exactly once. Apache Kafka [KNR11]
provides these features.

Kafka is a distributed streaming platform. The core of Kafka is composed of mes-
saging topics and partitions implemented as a commit log, in which each message has a
unique offset. The commit log is persisted for a configured amount of time. A common
use-case for Kafka is for Publish & Subscribe systems, where Kafka provides the Producer
and Consumer API. However, Kafka also has a Stream API, which will be discussed in this
section.

The Stream API has three building blocks: A Source Processor, Stream Proces-
sor, and a Sink Processor. The Source Processor is a stream processor that has no input
streams. Instead, it only consumes messages from a one or multiple Kafka topics, and
produces a stream which is another Kafka topic (with the same characteristics regarding
offsets, replayability, ordering, etc). A Sink Processor takes input streams and sends them
to a specific Kafka Topic. The Stream Processor takes a stream and apply stateful or state-
less transformations on it, and then produces one or more output data items to downstream
processors. The Kafka Streams DSL provides common operators such as map, flatMap,
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filter, aggregations, windows, and others. Operators can be chained together, and support
lambda functions in Java 8+ and Scala, as shown in the example in Listing 2.9.

1 KStream <String , String > textLines = builder.stream(
2 "streams -plaintext -input",
3 Consumed.with(stringSerde , stringSerde));
4 KTable <String , Long > wordCounts = textLines
5 .flatMapValues(value ->
6 Arrays.asList(value.split("\\W+")))
7 .groupBy ((key , value) -> value)
8 .count();
9 wordCounts.toStream ().to("streams -wordcount -output",

10 Produced.with(Serdes.String (), Serdes.Long()));

Listing 2.9 – Word counting in Kafka Streams API. Adapted from [KNR11].

Fault-tolerance is a key feature of Kafka itself. Therefore, this property extends to
Kafka Streams as well. When a node or computation fails, Kafka can rewind state and replay
a changelog to rebuild the computation state. This is possible because all topic messages
are durable and have an offset, which enables restoring the stream to a previous point in
time. This strategy of having a changelog is also used by Apache Samza, which itself uses
Kafka to enable this feature. However, Samza also includes a Host Affinity mechanism to
restore state faster without replaying the whole changelog. Another aspect similar to Apache
Samza is the lack of back-pressure. Kafka consumers operate in a pull-based messaging
model, so the consumers can choose the rate at which they consume data. Moreover, since
Kafka writes to a commit log in the disk, the buffer space is very large for any connection
between producers and consumers.

Since Kafka Stream relies on Kafka topics, other characteristics such as scalability
and performance are also dependent on the capacities of Kafka itself. Kafka runs in a
Zookeeper cluster to provide distributed computing. To add a node to a Kafka cluster, the
number of partitions in a topic must be changed. Moreover, once created, the number of
partitions in a topic cannot be reduced. Partitions are the way to achieve parallelism in
Kafka. When a message arrives in a topic, one of the partitions will receive the message.
However, these details concern low-level Kafka topics, which is out of the scope of this
section.

Serialization in Kafka Streams is handled by default serialization and deserialization
mechanisms. They can deal with simple types such as String and Java numbers. For more
complex types, Kafka uses the JSON format. However, the serialization method can be
completely overridden by the user. Therefore, Kafka Streams uses Kafka, a core component
used for fault-tolerance in many other streaming systems. Kafka Streams provide an easy-
to-use streams DSL over Kafka topics with exactly-once processing semantics.
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2.9 Tools for distributed programming

In this section, we cover HPX and MPI, which are tools used for distributed-memory
programming. While there are other tools, we focus on HPX and MPI. Both are significantly
different from each other. HPX is a newer C++ runtime library for efficient parallelism ex-
ploitation while MPI is a mature and well-known standard for message passing.

2.9.1 Message Passing Interface

One of the most important challenges to be solved when developing a distributed
system is how to coordinate several machines in a network towards the same goal. In this
domain, message passing is one of the most successful paradigms available, and it has
been extensively studied for decades. In 1994, several interfaces for message passing were
made available, and a standardization effort was put in place. The result was the Message
Passing Interface standard, also known as MPI [For12]. This effort studied several of the
available tools at the time, and a standard was created to provide a solid foundation on which
distributed applications can be built. The design goals of the MPI standard are focused on
efficient communication, portability, language-independent semantics, and thread-safety.

The MPI standard covers a programming API and tools to execute MPI programs.
The MPI standard does not implement MPI, but defines how implementations should be-
have. The standard defines the MPI for C and Fortran programming languages, although
bindings for other languages also exist. MPI additionally defines startup utilities, such as
mpiexec to run MPI programs. It is common for MPI implementations to provide also an
mpirun utility, but it is not standardized. In this section we cover basic MPI concepts.

1 int main(int argc , char** argv) {
2 MPI_Init (&argc , &argv);
3 MPI_Comm comm = MPI_COMM_WORLD;
4 int rank;
5 MPI_Comm_rank(comm , &rank);
6
7 int senderRank = 0;
8 int receiverRank = 1;
9 if (rank == 0) {

10 int dataToSend = 42;
11 MPI_Send (& dataToSend , 1, MPI_INT , receiverRank , 0, comm);
12 }
13 else if (rank == 1) {
14 MPI_Status status;
15 int dataReceived;
16 MPI_Recv (& dataReceived , 1, MPI_INT , sourceRank , 0, comm , &

status);
17 printf("received %i\n", dataReceived);
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18 }
19 MPI_Finalize ();
20 }

Listing 2.10 – MPI basic point-to-point communication.

The basic communication mechanism in MPI is point-to-point communication. This
is shown in Listing 2.10. The MPI standard describes MPI_Send and MPI_Recv functions
to send and receive data, respectively. In this case, there are 2 processes involved in the
communication: the sender and the receiver. Each process is identified by a rank in a
communicator. MPI defines the communicator MPI_COMM_WORLD, which provides a flat view
of all process ranks available. Both MPI_Send and MPI_Recv have similar parameters:

• buf: the address of the data buffer to send to another process. This is also the receive
buffer for the MPI_Recv call, and must be as large as the sent buffer.

• count: number of elements in the send buffer, or the number of elements to receive;

• datatype: the datatype of each element in the buffer;

• dest: the process rank of the destination. This parameter is only present in MPI_Send.

• source: rank of the source, or MPI_ANY_SOURCE to receive messages from any process.
This parameter is only present in MPI_Recv.

• tag: a message tag, which can be used to distinguish between types of messages.
MPI_Send must specify a tag, while MPI_Recv may use MPI_ANY_TAG to receive mes-
sages with any tag.

• comm: the communicator. Can be MPI_COMM_WORLD or a communicator created using
other MPI functions.

• status: an object that informs the source process, tag, and error of the message. This
parameter is only present in MPI_Recv.

In MPI, the sender “pushes” data to the receiver [For12]. The receiver can match
a message using the source, tag and comm parameters to receive messages only from a
particular process. However, the sender can also specify wildcards for source and tag, to
receive messages regardless of the source process or message tag. Therefore, senders
must know the receivers, while receivers can receive from any process. When wildcards are
used, the status object will contain the source process and the actual message tag.

The receiver must allocate a buffer large enough to receive the data. This means
that both sender and receiver must agree on the size of the communicated data. However,
this is not always possible. A solution for this problem is to send 2 messages: the size
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of the buffer first, and then the actual data. The receiver allocates a buffer based on the
first message, and use the buffer on the second. Listing 2.11 shows a pseudocode for
this solution. In this example, the sender allocates an array with a random size, which the
receiver does not know. We use 2 messages: one for the size and another for the data itself.
We set different tags in each message to specify their purpose. There is a built-in solution
in MPI for this problem, without having to send 2 messages.

1 #define SIZE_TAG 0
2 #define DATA_TAG 1
3 MPI_Comm comm = MPI_COMM_WORLD;
4 if (rank == 0) {
5 int size = random_between (1, 1000);
6 int* buffer = new int[size];
7 MPI_Send(size , 1, MPI_INT , 1, SIZE_TAG , comm);
8 MPI_Send(buffer , size , MPI_INT , 1, DATA_TAG , comm);
9 delete [] buffer;

10 }
11 else if (rank == 1) {
12 int size = 0;
13 MPI_Status status;
14 MPI_Recv (&size , 1, MPI_INT , 1, SIZE_TAG , comm , &status);
15 int* buffer = new int[size];
16 MPI_Recv(buffer , size , MPI_INT , 1, DATA_TAG , comm , &status);
17 }

Listing 2.11 – MPI dynamic buffer size solution. MPI has built-in mechanisms for this
purpose.

In Listing 2.12, we use MPI_Probe and MPI_Get_count. First, we probe MPI to
test for a message. This function blocks until a message is received. MPI_Probe can also
match on a wildcard source and tag. In this case, we probe without using wildcards. The
status object is used in the MPI_Get_count to get the size of the transmitted data. Using
this method, only one message is sent, but we first receive the envelope of the message.
The envelope of the message are the source, destination, tag, and communicator. The
MPI_Get_count uses the envelope and queries the size of the message.

1 #define ARRAY_TAG 999
2 MPI_Comm comm = MPI_COMM_WORLD;
3 if (rank == 0) {
4 int size = random_between (1, 1000);
5 int* buffer = new int[size];
6 MPI_Send(buffer , size , MPI_INT , 1, ARRAY_TAG , comm);
7 delete [] buffer;
8 }
9 else if (rank == 1) {

10 int size = 0;
11 MPI_Status status;
12 MPI_Probe(1, ARRAY_TAG , comm , &status);
13 MPI_Get_count (&status , MPI_INT , &size);
14 int* buffer = new int[size];
15 MPI_Recv(buffer , size , MPI_INT , 1, DATA_TAG , comm , &status);
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16 }

Listing 2.12 – MPI probe and get count calls.

The MPI functions presented so far are blocking. There are many other functions
that specify runtime behavior, and blocking/nonblocking operation. Specifically, there are
many communication modes for point-to-point communications: standard, buffered, syn-
chronous, and ready.

• Buffered: In this communication mode, the send operation can start whether or not a
matching receive has been called on the receiver process. It can also complete before
the receive call (it does not wait for the receiver to call a matching receive). The data
sent is buffered if a receive has not been called. This function may fail if there is not
enough buffer space;

• Synchronous: The send call only completes when a matching receive starts receiving
the message;

• Ready: The send call can only be started if a matching receive had already been
called. Otherwise, the behavior of the call is undefined ;

• Standard: Behavior depends on the MPI implementation. It is up to the implementation
to choose whether a call is buffered or not.

There are variants of MPI_Send for each communication mode. Each communica-
tion mode adds a prefix (B, S, or R) to the name:

• MPI_Send: No prefix, standard mode;

• MPI_Bsend: Buffered mode;

• MPI_Ssend: Synchronous mode;

• MPI_Rsend: Ready mode;

Additionally, MPI specifies nonblocking operations. In this case, the call always
returns immediately. An example of such call is MPI_Isend. The parameters of the call
are the same as MPI_Send, but it also returns a MPI_Request object. This object can be
used in MPI_Wait to wait for the operation to complete when necessary. This allows the
programmer to overlap communication and computation. Furthermore, nonblocking calls
can also specify the communication mode. For instance, MPI_Issend specifies non-blocking
(call returns immediately) but synchronous (will only finish when the receiver starts actually
receiving the data).
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1 #define ARRAY_TAG 999
2 MPI_Comm comm = MPI_COMM_WORLD;
3 if (rank == 0) {
4 int size = random_between (1, 1000);
5 MPI_Request req;
6 int* buffer = new int[size];
7 MPI_Isend(buffer , size , MPI_INT , 1, ARRAY_TAG , comm , &req);
8 doOtherComputation ();
9 MPI_Wait(req);

10 delete [] buffer;
11 }
12 ...

Listing 2.13 – MPI nonblocking calls.

The example in Listing 2.13 shows how overlapping communication and computa-
tion is supported by the MPI standard. If the programmer wants to check whether a request
has finished already without waiting, MPI_Test can be used. This strategy could improve
performance when it is possible to overlap MPI communication and computation. How-
ever, [DT16] shows that many MPI implementations have poor overlapping. Therefore, the
programmer must test whether nonblocking gives a performance gain for their particular
application and MPI implementation.

In addition to point-to-point operations, there are also collective operations that
require all ranks in a communicator to participate in the MPI call. A simple example of a
collective operation is MPI_Barrier(comm), which synchronizes all process. Examples of
other collective operations are:

• MPI_Bcast(data, count, type, root, comm): Broadcasts a value to all processes
in the communicator. The parameter root is the source rank that has the data to
broadcast. All processes must call root with the same value if the communicator is an
intra-communicator. We omit instructions for intercommunicators for brevity.

• MPI_Scatter and MPI_Gather: For brevity, we do not show the parameters of these
functions. MPI_Scatter allows to send chunks of an array to different processes. MPI_-
Gather allows to collect arrays from other processes and join them in one of the pro-
cesses. Additionally, MPI_Allgather does the same as MPI_Gather, but all processes
will have a copy of the entire gathered array.

• MPI_Reduce: Allows many processes to participate in a reduce operation. This func-
tions works in the same way as the previous ones. The root rank will receive the result
of the operation. An example of reduce operation is multiplying all numbers in arrays
distributed over many ranks.

• Management functions: Functions can be used to manage communicators, process
groups, and spawning new processes dynamically. Some examples are MPI_Comm_-
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spawn to create new processes, MPI_Comm_split to split a communicator into smaller
communicators, and MPI_Intercomm_merge to merge inter-communicators into a new
intra-communicator. For instance: the MPI_Comm_spawn returns an inter-communicator
for the spawned processes. They can be merged into a single communicator by having
the original process and the newly spawned process call MPI_Intercomm_merge.

Stream processing in MPI has been studied before [PMG+17, MMP10, WR09,
MnDdRA+18]. We will detail these studies in Section 4.

MPI is not a high-level library for parallelism. Although it abstracts some network
details, the programmer must be aware of the costs of sending and receiving data to other
clusters. Serialization is done by sending buffers using pointers, types and buffer lengths.
MPI therefore only specifies a generic message passing interface. All other details must be
taken care by the programmer itself.

2.9.2 HPX

HPX [KHAL+14] is a C++ parallel runtime system that extends the C++11 and
C++14 standards to support fine-grained and distributed-memory efficient parallelism ex-
ploitation. HPX focuses on providing a runtime system ready for exascale computing. The
work identifies 4 key issues that limits the scalability of any application. They use the appro-
priate acronym SLOW:

• Starvation: concurrent work is insufficient to fully utilize computing resources;

• Latency: Intrinsic delays in remote resource access;

• Overheads: Sequential work does not need the overhead of parallel resource manage-
ment;

• Waiting for contention resolution: This causes delays due to oversubscribed shared
resources.

The work proposes a solution for these 4 issues using a combination of modules:
LCO (Local Control Objects), AGAS (Active Global Address Space), a threading subsystem,
and the Parcel subsystem. The Parcel subsystem is responsible for network communication
between localities. A locality in HPX is an entity with bounded and finite latencies. An
example of locality is a compute node in a cluster. Localities communicate via parcels,
which encapsulate remote method calls. Parcels contain the ID of the object in which to
perform the remote call, the method to call, arguments, and an optional continuation (which
is called with the result of the method call).
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The object ID is a global ID of an object, possibly located in another locality. To
support this functionality, HPX implements AGAS (Active Global Address Space). AGAS im-
plements a dynamic and adaptive address space, which allows HPX to move data between
localities without changing its global ID.

When a locality receives a parcel message, HPX executes the appropriate method
call in the threading subsystem. This subsystem implements fine-grained task-based par-
allelism, where each message becomes an HPX-thread. An HPX-thread is a lightweight
thread that does not require kernel calls to implement context switching. A single CPU core
can execute millions of threads per second (assuming they perform no work). Additionally,
HPX adds the lightweight thread to a work queue, and executes them using work-stealing to
improve load balancing.

In comparison to MPI, HPX focuses on “carrying the computation to the data”,
instead of “carrying data to the computation”. In MPI, the common procedure is to pass
messages with the data that needs to be computed to other processes. In HPX, the parcel
message tells the locality which method should run. This approach seeks to reduce the
network usage [KHAL+14]. HPX can also run on top of MPI, which can be used as a fast
networking layer between localities.

The programmer interacts with HPX using LCOs (Local Control Objects). There
are several types of LCOs:

• Futures: Proxies for results that are not yet available. If the user requests the data
when the future LCO is not yet completed, the HPX-thread is suspended until data
becomes available. Suspended threads are also considered as LCOs themselves.

• Dataflow: Operations on sets of futures. Manages data dependencies without global
synchronization. Dataflow LCOs allow the programmer to specify a function to execute
when a set of futures become ready.

• Traditional concurrency control mechanisms: HPX implements mutex, semaphores,
condition variables and barriers. HPX also follows the C++14 standard, and imple-
ments these mechanisms in compliance with the standard.

The runtime of HPX is asynchronous in nature, and the APIs reflect this model.
There are 3 ways of calling functions: synchronously, asynchronously and fire&forget. Syn-
chronous calls are similar to plain C++ function calls, where the caller waits for the function
to complete. In HPX, synchronous calls cause the caller HPX-thread to suspend. Asyn-
chronous calls do not suspend the caller thread. Instead, the call to an asynchronous func-
tion returns a future. Finally, fire&forget simply schedules a computation into an HPX-thread.
This call does not return values to the caller, and may need less communication since the
caller does not need to be notified about the completion of the future.
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Using HPX dataflow LCOs, the programmer can to some extent, write code that
looks sequential, but executes within the runtime of HPX. With dataflow LCOs, HPX un-
derstands the dependencies between futures, and compute them in parallel when possible.
Listing 2.14 presents a sequential and a dataflow version of compound interest calculation1.
This example is not parallel, but it shows how dataflow works. The for loop sets up the
dataflow execution graph, it does not calculate. Notice that in the HPX dataflow version,
interest and principal are futures, but the add and calc are plain C++ functions. The
unwrapping function allows plain C++ functions to be called with future arguments.

1 double add(double principal , double interest) {
2 return principal + interest;
3 }
4
5 double calc(double principal , double rate) {
6 return principal * rate;
7 }
8
9 // Sequential version

10 int t = 5; // number of time periods to use
11 double principal = init_principal;
12 double rate = init_rate;
13 for (int i = 0; i < t; ++i) {
14 double interest = calc(principal , rate);
15 principal = add(principal , interest);
16 }
17
18 //HPX dataflow version
19 shared_future <double > principal = make_ready_future(init_principal);
20 shared_future <double > rate = make_ready_future(init_rate);
21
22 for (int i = 0; i < t; ++i) {
23 shared_future <double > interest = dataflow(
24 unwrapping(calc), principal , rate);
25 principal = dataflow(unwrapping(add), principal , interest);
26 }
27
28 // wait for the dataflow execution graph to be finished
29 double result = principal.get();

Listing 2.14 – HPX Local Control Objects. Adapted from HPX documentation.

However, to efficiently distribute a computation over many localities, programmers
must be aware of serialization and networking. A complete example of a 1D stencil is avail-
able on HPX documentation website2. We do not include the examples here for brevity. An
efficiently distributed application in HPX is concerned with load balancing, reducing network
communications, serialization, and efficiently performing the computation without blocking.
In that sense, HPX is not a high-level abstraction for parallel programming.

1Adapted form the documentation website in https://hpx-docs.stellar-group.org/latest/html/
examples/interest_calculator.html#examples-interest-calculator

2Available at https://hpx-docs.stellar-group.org/latest/html/examples/1d_stencil.html
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To send and receive data to other localities, the programmer must implement com-
ponents or actions. Each component has one or more actions, which should be defined
using macros such as HPX_REGISTER_COMPONENT and HPX_REGISTER_ACTION. HPX’s docu-
mentation often uses a client/server model in the example applications. Components are
servers, and can be accessed with a client. HPX provides abstractions to define a client for
a component (server).

In HPX, it is possible to execute programs using the same model as MPI. In MPI, all
processes execute the same binary, and the programmer often needs to check the current
process rank, and run logic based on it. The flow of the program must be coordinated
based on the ranks. It is also possible to execute multiple binaries. However, by default,
the HPX process launched in the command line controls the entire program flow while other
localities provide the computing resources via components, AGAS, and the parcel system.
The programmer must explicitly define which locality will be used in a component/action call.

[KHAL+14] reports good performance results, being consistently faster than MPI
and OpenMP state-of-the-art benchmark programs. Benchmarks show HPX is able to
achieve 98% of the theoretical peak performance on a single node, and 87% on a distributed
workload.

To the best of our knowledge, there are no studies about stream processing with
HPX. There is an online repository called HpxFlow3 which seems to implement dataflow
map/reduce patterns, but has not been actively maintained. It does not have a scientific
publication, and only a single example of the API.

2.10 Summary

In this chapter, we reviewed tools for distributed stream processing. Table 2.1
shows a summary of this section. Our goal in this table is to compare distributed-memory
programming tools that were designed for or can be used for implementing parallel stream
processing applications. The guarantees marked with an asterisk * can be upgraded to
exactly-once by using a persistent commit-log data source such as Apache Kafka. The
majority of the reviewed tools are Java-based, which is one of the main languages used
in businesses applications. They provide similar declarative and functional-based APIs to
define stream computations. There are tools that offer topological and graph-based APIs.
There are also tools that implement micro-batch streaming, such as Spark. In batch stream-
ing, data is buffered until a trigger is activated (e.g. Spark by default buffers 200ms of data).
Other tools such as Apache Flink, implement real-time steaming, which does not need to
buffer items.

3Available in https://github.com/STEllAR-GROUP/hpxflow



56

Most tools discussed in Section 2.8 implement at-least-once guarantees. There
are tools that claim to support exactly-once guarantees, often relying on Apache Kafka as a
streaming channel that can be “rewinded” and “replayed”. Most tools that support at-least-
once guarantees recommend users to implement idempotent operators. These operators
should be able to receive the same message multiple times without changing the result.

Serialization in the JVM can be done automatically due to runtime type information
(also known as reflection). Frameworks have default serialization methods, frequently using
external libraries such as Protobuf and Kyro. Other frameworks support JSON serialization.
NiFi and Samza lets the user define serialization and by default support a wide range of
formats. Specifically, NiFi lets the user define the mime-type of the data (such as applica-

tion/json) on the graph node. Kafka offers its own serialization abstraction, but allows the
user to override it. On the other hand, MPI does not offer serialization abstractions. HPX
uses Boost serialization.

Back-pressure is implemented in different ways. Flink, Storm and NiFi implement
message buffers. If the buffer is full, the stream operator stops and waits until the buffer
space is available. Other frameworks such as Akka Streams use demand signals, where the
consumers send notifications to the producers when they are ready to receive messages.
MPI and HPX do not abstract back-pressure.

Regarding fault-tolerance, each framework has a different implementation. Akka
uses the actor supervision model to restart actors when they fail as well as implements basic
retry strategies. Other frameworks implement more robust strategies, saving the messages
to permanent storage with write-ahead logs in Kafka, checkpoints in Flink, and channels
in Samza. Open MPI implements User-Level Fault Mitigation (ULFM) to detect failures.
The programmer has to perform recovery manually. HPX does not offer any mechanisms
for fault-tolerance besides standard C++ exceptions, which also have to be handled by the
programmer.

Meanwhile, most tools execute in the JVM that has a garbage collector, which may
impact application performance [Mis17, BAJ+16] or kill the JVM due to GC pressure [Hü15].
This inspired the creation of C++ big-data frameworks, which will be discussed in Section
4.2. However, frameworks such as Apache Flink implemented techniques to avoid the GC
(Garbage Collector) by managing memory manually [Hü15]. Therefore, even when running
in the JVM, it can achieve good performance with low resource utilization by significantly
reducing GC time. We have not found studies that compare this technique with a C or C++
implementation.

We cover HPX and MPI, which are libraries for distributed-memory programming.
Both use different approaches: MPI is a simpler message-passing model while HPX imple-
ments a global address space, a message subsystem, and re-implement the C++ standard
library to work with its threading subsystem. While stream processing libraries have been
proposed for MPI, we could not find any well documented or well maintained library. This is
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in contrast with HPX itself, which is actively maintained and has documentation, examples,
and tests.

Table 2.1 – Distributed-memory programming tools that were designed for or can be used
for implementing parallel stream processing applications.

Name API Serialization Language Back-pressure Fault-tolerance Guarantees

Akka Streams Topological &
Declarative

Protobuf,
JSON Scala Yes,

demand signals
Actor supervision,
retry strategies None

Akka Streams
.NET

Topological &
Declarative

Protobuf,
JSON,
Hyperion

C# Yes,
demand signals

Actor supervision,
retry strategies None

Apache Flink Declarative Own method
+ Kyro Java Yes, buffer

space Checkpoints At-least-once*

Apache Storm Topological &
Declarative

Thrift and
JSON

Java,
Clojure

Yes, buffer
space

Spout message
replay At-least-once*

Apache Spark Declarative Java or
Kyro Scala Yes, by measuring

processing times
RDD keeps the
history of operations At-least-once

Apache Heron Declarative Protobuf Java and C++ Yes, spout slowdown Spout message
replay At-least-once

Apache Samza Declarative Customizable Java No, uses Kafka queues
as a buffer

State changelogs,
host-affinity recovery At-least-once*

Apache NiFi Visual Defined on
graph node Java Yes, buffer sizes,

data item expiration Write-ahead log At-least-once

Apache Kafka Declarative Own method Scala No, Kafka queues Consumer offsets Exactly-once
MPI Impls (MPICH,
Open MPI) MPI Standard None C N/A User-level

fault mitigation None

HPX HPX LCOs Boost C++ N/A None None
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3. SPAR: STREAM PARALLELISM DOMAIN-SPECIFIC LANGUAGE

In this section, we introduce SPAR (acronym for Stream Parallelism), a domain-
specific language compatible with C++ for structured stream parallelism [Gri16]. The lan-
guage addresses limitations found in other DSLs regarding productivity and performance by
providing an annotations-based syntax to define streams, and ultimately generating paral-
lel code with FastFlow for shared-memory architectures. The approach of using DSLs for
stream parallelism is not new. In particular, the StreamIt language [TKG+01] provides a pro-
ductive syntax. However, it requires the user to learn an entirely new language dedicated to
stream processing, which is an obstacle for introducing stream parallelism in existing code.
Meanwhile, major C++ compilers include tools such as OpenMP [DM98], which allows the
user to parallelize code using data parallelism. However, support for OpenMP needs to be
implemented in the compiler itself, and stream parallelism on OpenMP is challenging.

C++11 brought support for attributes. For instance: if a method or class is depre-
cated, the programmer can mark the method with the [[deprecated]] attribute, and option-
ally specify a reason for the deprecation. Users of this method will see a deprecation warning
when compiling the program. The list of supported attributes in major C++ compilers is lim-
ited, but they are part of the C++ syntax. Each compiler may support different attributes. Any
C++11 compliant parser needs to deal with attributes and include it in a syntax tree. SPAR

relies on C++ attributes. This is inspired by the REPARA project [DGS+16], which describes
the use of C++ attributes and code transformation rules for expressing parallel patterns.
SPAR implements a new set of attributes friendly to the stream processing domain. It allows
application programmer to tag a region of the code indicating a intensive stream processing
region (by annotating with the ToStream attribute) along with sequential code wrappers indi-
cating the stream operators/stages (by annotating with the Stage attribute). SPAR offers also
auxiliary attributes to declare the input and output data dependencies (Input and Output)
as well as the degree of parallelism of a given stateless operator by using the Replicate

attribute. Therefore, SPAR does not add different syntax to C++, which makes it suitable to
be used in existing code that compiles with C++11. It also makes SPAR easier to extend,
since the work of parsing the attributes is already done and they are fully represented in
the syntax tree. The approach taken by OpenMP may require additional work in the parsing
phase since it uses C/C++ directives which are not fully represented in the syntax tree (i.e.
they are unparsed #pragma strings).
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Figure 3.1 – SPAR methodology. Extracted from [Gri16].

3.1 SPAR Annotations

SPAR has an annotation methodology to guide application developer through 5
questions. Figure 3.1 contains the questions and the result when answering these questions.
The next paragraphs explain each of the questions:

1. Where is the stream region? In general, a stream computation starts by produc-
ing stream items to be processed by subsequent stages. This is normally a for or
while loop. The [[spar::ToStream]] can be placed before any region that must be
parallelized.

2. What will be consumed and produced from outside? The programmer must identify
the input and output data in form of variables. If the stream uses data parameters out-
side of the stream area, they must be passed using spar::Input annotation. Likewise,
if the stream produces a value, they can be declared in the spar::Output annotation.
For instance: [[spar::ToStream, spar::Input(param), spar::Output(result)]].

3. Which are the stages inside the stream region? The programmer has to identify
which are the code wrappers that can run independently as separated stages. A com-
mon use case is decoupling network or disk I/O from computation, allowing to read
data while doing CPU-bound work. Each stage is tagged with [[spar::Stage]].

4. What my stages will produce and consume? The programmer must identify the
input and output data in form of variables for each stage. This is because each stage
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produces data for the next stage. These dependencies must be specified with annota-
tions similar to [[spar::Stage, spar::Input(x), spar::Output(y)]]

5. Can I replicate a stage? If a stage contains no state, it can be replicated for increasing
the degree of parallelism. The stage can easily be replicated with spar::Replicate(n)

where n is the number of Worker replicas.

Listing 3.1 shows a toy example when using SPAR for expressing stream paral-
lelism. The annotation [[spar::ToStream]] is added in the beginning of the stream pro-
cessing region before the while loop. Stream elements are read in a loop until the stream
ends. The first stage has 4 annotations: spar::Stage to indicate that the block is a stage;
spar::Input(stream_element) means that the stage takes stream_element as input. Like-
wise, spar::Output(stream_element) means that the stage emits stream_element to the
next step. In this example, we multiply the stream items by 2. If this is an expensive stateless
operation, it can be replicated and run in parallel. This is done with spar::Replicated(10).
SPAR generates a farm with 10 Workers. The last stage prints the results.

1 [[spar:: ToStream ]] while (1) {
2 int stream_element;
3 if (! read_in (& stream_element)) { break; }
4 [[spar::Stage ,
5 spar::Input(stream_element),
6 spar:: Output(stream_element),
7 spar:: Replicate (10)]] {
8 stream_element *= 2;
9 }

10 [[spar::Stage ,spar:: Input(stream_element)]] {
11 std::cout << stream_element << std::endl;
12 }
13 }

Listing 3.1 – Example of stream parallelism with SPAR. Adapted from [Gri16].

3.2 SPAR transformation rules

SPAR uses the annotation information to transform the sequential code into parallel
code. Based on the annotations, SPAR chooses the appropriate parallel pattern. It can be
a Farm, Pipeline, or a composition of Pipeline with Farms. This is done using code trans-
formation rules. The rules are implemented inside the compiler so that they are completely
abstracted from the programmer. The following notation were created to describe the rules:

• Tid represents a region of the code marked with the ToStream attribute, where id is a
numeric identifier.
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• Sid represents a stage, which is a subsection of the code that can run in parallel in
relation to other stages.

• Ii is an auxiliary annotation for the Stage (Sid ) attribute. It declares the input variables
of the stage and is equivalent to the Input annotation. The attribute may contain a list
of variables to define the input variables in the code.

• Oi is an auxiliary annotation for the Stage (Sid ) attribute. It declares the output variables
of the stage. The attribute may contain a list of variables to define the output variables
in the code.

• Rn is an auxiliary annotation for the Stage (Sid ) attribute. It declares the number of
independent replicas of the stage.

• �n represents a generic block of code.

• [[...]] represents a list of attributes such as Tid , Sid , Ii , Oi and Rn. This is similar to the
actual C++ attribute list syntax.

• {...} denotes the scope of the attributes.

Given these definitions, a set of rules are applied to the source code to instantiate
farm and pipeline parallel patterns. A pipeline can be defined as pipeline(S1, S2, ..., Sn) with
two or more stages. A farm can be defined as farm(E , W , C) where E is an Emitter stage,
W is a Worker that can be replicated, and C is a Collector stage to gather the results.
Definitions for transformation rules can be found in Table 3.1.

Table 3.1 – Definitions for transformation rules. Extracted from [GDTF17].

D0 A generic stage ψ is a � annotated with S that contains in its attribute list
Rn and Oi and therefore requiring a further � gathering its results.

D1 A � may appear as a pipe stage or as an E or C stage in a farm if its
annotation list S does not contain the attribute Rn.

D2 A � with an annotation list S containing an Rn attribute may only appear as
a W stage in a farm.

D3 A T is a farm when the first S annotation contains Rn in the attribute list of a
maximum two S.

D4 A T is a pipe when the first S does not have Rn in the attribute list or when
there are more than two Ss

D5 A farm is a stage of pipe when D3 cannot be applied and � is annotated
with S that contains Rn in the attribute list.

We present 5 of the main transformation rules of SPAR. There are more rules
defined in [Gri16].

Rule 1 in Equation 3.1 will transform the given annotation schema into a Farm by
applying definitions D1, D2 and D3. When D1 is applied, �0 becomes an Emitter stage
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because it is not replicated (Rn). D2 implies �1 must be a Worker node. D3 implies that T0

is a farm, since the first � with an S annotation has the R attribute.

[[T0]]{�0, [[S0, Rn]]{�1}} ⇒ farm(E(�0), W (�1)) (3.1)

Rule 2 in Equation 3.2 generates a generic block C(Ψ). From definition D0, there
must be a � if a block annotated with S is also annotated with Oi .

[[T0]]{�0, [[S0, Oi , Rn]]{�1}} ⇒ farm(E(�0), W (�1), C(Ψ)) (3.2)

Rule 3 in Equation 3.3 generates the Collector C of the Farm from a � instead of
being an automatically generated generic block C(Ψ).

[[T0]]{�0, [[S0, Rn]]{�1}, [[S1]]{�2}} ⇒ farm(E(�0), W (�1), C(�2)) (3.3)

Rule 4 in Equation 3.4 generates a Pipeline instead of a Farm when there is no R
in the first S. This rule is applied due to definition D4.

[[T0]]{�0, [[S0]]{�1}} ⇒ pipe(�0,�1) (3.4)

Finally, rule 5 in Equation 3.5 allows composition of Pipeline and Farm. In this case,
D3 cannot be applied because R is in the second block annotated with S instead of the first.
Instead, definition D5 is applied.

[[T0]]{�0, [[S0]]{�1}, [[S1, Rn]]{�2}} ⇒ pipe(�0, farm(E(�1), W (�2))) (3.5)

Listing 3.1 shows a minimal example of a SPAR stream. The annotation [[spar::

ToStream]] is added in the beginning of the stream before the while loop. Items are then
read and passed to the first [[spar::Stage]] where they are computed using a pipeline-
farm (notice the spar::Replicated(10) annotation).
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3.3 SPAR Compiler & Runtime

At the time SPAR was created, a C++ parser was needed and tools such as GCC
and Clang were tested to provide the syntax tree. SPAR needs to perform aggressive code
transformations based on a syntax tree that accurately represents the code. GCC and Clang
would provide a more abstract syntax tree with different semantics, making them unsuitable
for use in SPAR. This prompted the creation of CINCLE (Compiler Infrastructure for New
C/C++ Language Extensions), which can provide a C++11 syntax tree and allows source-
to-source transformations directly in the AST.

Figure 3.2 illustrates the CINCLE infrastructure. First, the front-end calls GCC to
check the code. This means that the annotated code must be valid C++ before the code
transformations. If the code is valid, the AST is produced using Flex and Bison. The middle-
end and back-end analyze the AST and transform the code. For instance: SPAR analyzes
the annotations, and based on the annotations, generates code using transformation rules.
Finally, the transformed code is compiled with GCC.

Figure 3.2 – CINCLE Infrastructure. Extracted from [Gri16].

Figure 3.3 shows the structure of the SPAR compiler. The Semantic Analysis and
AST Transform steps are the logic implemented for SPAR while other steps are implemented
by CINCLE.

Figure 3.3 – SPAR compiler. Extracted from [GDTF17].

Additionally, SPAR accepts the following compiler flags to control runtime execution
characteristics:

• -spar_ordered: This option is useful when a stream computation needs to output
results in the same order that the stream items were produced. For instance: a video
application needs to output the video frames in the same order they were captured by
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the camera. This might not be the case in a farm computation, since the Workers might
finish computing their items in an unpredictable order. This option is implemented by
FastFlow with the ff_ofarm class, which reorders the items in the last stage of the farm
(Collector).

• -spar_ondemand: By default, FastFlow uses non-blocking queues to store stream items
received from other stages. The default size is 512. When a queue size reaches
512 items, previous stages stop producing items. This option changes it to 1, which
changes the scheduling behavior to act on-demand: only produce items when the next
stage finished processing an item.

• -spar_blocking: By default, FastFlow uses active pushing and popping from com-
munication queues to achieve low latency. However, this might use significant CPU
resources. This option changes it to a non-active, blocking behavior which uses fewer
CPU resources, but might increase latency.

In general, annotation-based stream parallelism has been focused on shared-memory
architectures. So far, this is the case of SPAR as well. [GF17] initiated efforts to implement
an MPI backend for SPAR, but so far SPAR does not support MPI or any form of distributed
computing. While FastFlow, the main backend for SPAR, has support for distributed com-
puting, [Gri16] encountered several limitations using it for distributed stream processing.
Regardless of any FastFlow shortcomings in this area, [WR09] argues that an MPI imple-
mentation is desirable in the HPC context because several numerical libraries already use
MPI to parallelize the computation. Furthermore, due to the popularity of MPI, we expect
MPI would be installed in most HPC clusters. By using MPI, we can increase the scalability
that is limited to a single host with FastFlow in SPAR.

The results of [GF17] towards supporting distributed streaming on SPAR shows
that SPAR increases productivity with negligible performance loss. The researchers used the
FastFlow code generated by SPAR and rewrote it manually to use MPI instead of FastFlow.
A proper backend for MPI in SPAR does not exist. However, many problems still need to be
solved to provide a complete solution. Namely, sizes of dynamic arrays need to be informed
to SPAR, but currently, there is no syntax for it. Serialization and deserialization of arbitrary
data types is also a significant challenge. More importantly, this previous work also argues
that a library for parallel streaming patterns is necessary, due to the complexity of generating
code for MPI directly. A library that abstracts the details of MPI while having an API similar
to FastFlow can make the code generation phase easier, reliable, and compatible with the
pattern-based transformation rules proposed in the Griebler’s thesis [Gri16].
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4. RELATED WORK

In our related work, we include parallel programming APIs for stream parallelism in
C++. We divide this chapter in 2 sections: Section 4.1 introduces C++ libraries for stream
parallelism, while Section 4.4 introduces domain-specific languages and high-level program-
ming interfaces for stream parallelism.

4.1 Runtime Libraries

This section shows libraries for stream parallelism in C++. We describe each li-
brary with a brief example. We also discuss serialization strategies, networking and the
programming interface.

4.1.1 FastFlow

FastFlow [ADKT17] is a high-level C++ patterns-based parallel programming li-
brary. The architecture of FastFlow is conceptually composed of 3 layers: building blocks
such as queues and nodes, core parallel design patterns such as Pipeline and Farm, and
high-level patterns such as parallel_for and parallel_reduce. FastFlow components
communicate via non-blocking queues. Its communication is designed to have low over-
head and has good performance for fine-grain parallelism. The framework architecture can
be seen in Figure 4.1.

Figure 4.1 – FastFlow architecture [Fas19].
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FastFlow abstracts parallelism details using the algorithmic skeletons approach
[Col89]. The programmer uses an abstraction that implements parallelism efficiently. Fast-
Flow is also designed to support heterogeneous computing, possibly running algorithms on
clusters with computing accelerators.

Regarding distributed computing, FastFlow has support for multi-node setups us-
ing ZeroMQ as the transport layer, and a specific abstraction to define distributed nodes
[ACD+12]. For shared-memory parallelism, FastFlow offers the Pipeline and ff_node API, in
which the programmer defines an operation to be applied to a stream item. Nodes can be
connected to form any streaming topology in the form of a graph. For distributed-memory
architectures, the ff_dnode is available, which contains the a similar API as ff_node with
extra methods for serialization.

1 // sender
2 void* svc(void* task) {
3 char* s1 = new char [12 + 1];
4 strncpy(s1, "hello world!", 12 + 1);
5 mystring_t* s = new mystring_t (12, s1);
6 return s;
7 }
8 void prepare(svector <iovec >& v, void* ptr , const int) {
9 mystring_t* p = static_cast <mystring_t *>(ptr);

10 struct iovec iov = {ptr , sizeof(mystring_t)};
11 v.push_back(iov);
12 iov.iov_base = p->str;
13 iov.iov_len = p->length + 1;
14 v.push_back(iov);
15 }
16
17 // receiver
18 void* svc(void* task) {
19 mystring_t* s = (mystring_t *)task;
20 printg("Received %s\n", s->str);
21 return task;
22 }
23 void unmarshalling(svector <msg_t*>* const v[], const int vlen , void

*& task) {
24 mystring_t* p = static_cast <mystring_t *>(v[0]-> operator [](0) ->

getData ());
25 p->str = static_cast <char*>(v[0]-> operator [](1) ->getData ());
26 assert(strlen(p->str) == p->length);
27 task=p; //task will be passed to the svc method
28 }

Listing 4.1 – FastFlow serialization.

Listing 4.1 shows how serialization is done in FastFlow1. The serialization in Fast-
Flow is not abstracted from the application programmer. The methods prepare and unmar-

shalling need to be implemented. The prepare method transforms the data into a set of
1http://calvados.di.unipi.it/storage/talks/2012_dFF_CGS.pdf
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messages using iovec. The same data can be deserialized in the unmarshalling method.
The user also needs to cast the data to the correct type manually, it is not a type-safe API.

The support for distributed computing in FastFlow is still evolving. There is no doc-
umentation discussing about delivery guarantees and back-pressure mechanisms. There
is also no written documentation about the distributed API, only code examples. FastFlow
uses ZeroMQ for distributed communication, which by itself has no delivery guarantees and
no back-pressure mechanism. We describe FastFlow further in Chapter 5.

4.1.2 GRPPI

GRPPI (Generic Reusable Parallel Pattern Interface) [dRADFG17] is a C++ library
that implements composable and generic interfaces for parallel patterns. Given the num-
ber of parallelism libraries currently available such as TBB, FastFlow, and Open MPI, no
standard or implementation covers all of the parallel patterns, according to [dRADFG17].
Specifically, GRPPI implements the patterns Pipeline, Farm, Filter, Accumulator, Map, Re-
duce, Stencil and Divide & Conquer. The back-end of GRPPI can be chosen by the user.
Currently, GRPPI supports C++ threads, OpenMP, Intel TBB, FastFlow, and CUDA Thrust.

The GRPPI API makes extensive use of C++ templates and C++11 lambda func-
tions. Patterns can be composed together seamlessly since patterns themselves are im-
plemented as functions. From the programmer point of view, minimal code refactorings are
needed, and different back-ends can be used in the same computation, taking advantage of
different hardware capabilities when possible.

Listing 4.2 shows an example of GrPPI’s API. A Pipeline is composed with a Farm
pattern, which in turn transforms each character coming from a string stream to its upper-
case form. The internal Map is executed sequentially, while Pipeline and Map are executed
by a back-end chosen by the user.

1 grppi:: pipeline(executor ,
2 [&]() -> optional <string > {
3 string word;
4 in >> word;
5 if (in) return word;
6 else return {};
7 },
8 grppi::farm(4,
9 []( auto word) {

10 grppi:: sequential_execution seq {};
11 grppi::map(seq , begin(word), end(word),
12 begin(word), []( char c) {
13 return std:: toupper(c);
14 });
15 return word;
16 }),
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17 [&]( auto word) {
18 out << word << std::endl;
19 });

Listing 4.2 – GRPPI example. Adapted from [Gar18].

Additionally, the support for distributed computing was studied by [MnDdRA+18,
LGFd+19] using MPI. However, we could not find the source code to understand how se-
rialization is done since the work does not provide a link to the online repository with the
MPI code. However, [LGFd+19] mentions that GrPPI uses Boost MPI. We believe this is a
just initial prototype work since it is not easy to provide a high-level abstraction to distributed
parallel programming.

4.1.3 PiCo

Nowadays, different Java-based Big-Data platforms exist. However, each platform
exposes a different API, which leads to a lack of standard in the big data domain. The work
of [Mis17] surveyed many commercial platforms such as Apache Spark, Apache Flink, and
Apache Storm to create a unified semantics for Big Data analytics frameworks.

By creating a unified model, the work compared multiple Big Data tools with dif-
ferent levels of abstraction (framework API, program semantics dataflow, parallel execution
dataflow, process network dataflow and execution platform). One key aspect of the work
by [Mis17] is the differentiation between Topological and Declarative APIs. Furthermore,
[Mis17] argues that there is no semantic difference between batching and streaming opera-
tions. Any API exposed by these frameworks can be translated into a dataflow graph.

Using the unified model, [Mis17] created a data-model agnostic DSL for Big Data
called PiCo (Pipeline Composition), based on polymorphic operators that can be reused with
any data type. With this theoretical foundation, a fluent C++14 DSL was developed, which
is demonstrated in Listing 4.3. The API exhibits a functional interface based on method
chaining, where Pipelines can be composed together. Operations are represented as C++
types that are added to a Pipeline.

1 Pipe countWords;
2 countWords
3 .add(FlatMap <std::string , std::string >( tokenizer))
4 .add(Map <std::string , KV >([&]( std:: string in)
5 {return KV(in ,1);}))
6 .add(PReduce <KV >([&]( KV v1 , KV v2)
7 {return v1+v2;}));
8
9 ReadFromFile reader ();

10 WriteToDisk <KV> writer ([&]( KV in) {
11 return in.to_string ();
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12 });
13 /* compose the pipeline */
14 Pipe p2;
15 p2 //the empty pipeline
16 .add(reader) // add single operator
17 .to(countWords) // append a pipeline
18 .add(writer); // add single operator
19 /* execute the pipeline */
20 p2.run();

Listing 4.3 – PiCo example. Adapted from [Mis17].

PiCo runs on top of FastFlow. Currently, there is no support for distributed-memory
architectures. However, it could be implemented using FastFlow itself or the new GAM
(Global Asynchronous Memory) model [Dro17].

4.1.4 Thrill

Thrill [BAJ+16] is an experimental C++14 framework for distributed stream pro-
cessing. Thrill is similar to Apache Flink and Apache Spark but is implemented in C++ for
performance advantages and low-level control of memory structures. Thrill focus on provid-
ing an easy way to program distributed algorithms in C++. The building block of the API
is the DIA (Distributed Immutable Array). A DIA supports common operators such as Map,
Filter, FlatMap, windowing, aggregations and logical partitioning. An example of Thrill’s API
is shown in Listing 4.4.

1 auto word_pairs = ReadLines(ctx , input)
2 .template FlatMap <Pair >(
3 // flatmap lambda: split and emit each word
4 []( const std:: string& line , auto emit) {
5 SplitView(line , ’ ’, [&]( StringView sv) {
6 emit(Pair(sv.ToString (), 1));
7 });
8 });
9 word_pairs

10 .ReduceByKey(
11 // key extractor: the word string
12 []( const Pair& p) { return p.first; },
13 // commutative reduction: add counters
14 []( const Pair& a, const Pair& b) {
15 return Pair(a.first , a.second + b.second);
16 })
17 .Map ([]( const Pair& p) {
18 return p.first + ": "
19 + std:: to_string(p.second);
20 })

Listing 4.4 – Thrill example. Adapted from [Thr19].
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Networking in Thrill is done via TCP sockets and optionally via MPI. Thrill is an
experimental effort still in its early stages of development. Currently, no delivery guarantees
or fault-tolerance mechanism are implemented.

Thrill deals with serialization using the Cereal library, which provides a lightweight
serializer and deserializer with an API similar to Boost archives. Thrill by default implements
serializers for numbers, strings, and std::pair. Additionally, Thrill implements serialization
for types that are trivial, which are types that are binary-compatible with C. For instance, a
class with 2 integer fields is trivial (also called POD - Plain Old Datatype). For more complex
cases, the programmer can use the Cereal library manually.

4.2 MPI-based stream APIs

In the HPC context, MPI remains the de-facto parallelism abstraction [MMP10].
Libraries such as Open MPI [GFB+04] offer a robust MPI implementation, taking advantage
of fast networks and newer MPI standards. Developers creating distributed algorithms need
to understand the MPI standard to efficiently scale computations across multiple nodes.

Additionally, some computations can take advantage of the stream processing
paradigm. MPI programs communicate by sending messages to one another. There-
fore, it is possible to abstract this communication in a stream-like structure as shown by
[PMG+17, WR09, MMP10]. However, the related works presented here attempt to extend
the capabilities of MPI towards streaming, without necessarily abstracting low-level MPI de-
tails. In this section, we discuss these related works by describing their API, their design
goals, and features relevant to parallel streaming such as load balancing and ordering con-
straints.

4.2.1 Hybrid MPI Streaming

The work of [MMP10] is focused on providing a high-performance MPI abstraction
using a hybrid approach. The work is mainly concerned with supporting heterogeneous
topologies. [MMP10] supports MPI and TCP sockets. The work also optimizes local com-
munication by using POSIX Threads instead of OS processes. The authors do not give a
name for the library. Therefore, we will call it “MPI Hybrid”.

The authors argue that streaming applications can exploit heterogeneous networks.
In a streaming programming model, an application is composed of highly independent “ker-
nels”. Kernels have inputs and outputs, like Pipeline stages. Kernels also run in parallel to
each other and can be stateful or stateless. This is similar to Pipeline stages described in
Section 2.7: stages have inputs and outputs, and run in parallel to each other. In Figure 4.2,
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the work shows the use of MPI in a hybrid streaming scenario. An expensive computation
is parallelized using a parallel MPI kernel. Communication with other sequential kernels is
done via TCP sockets, although the work does not make this clear.

Figure 4.2 – Hybrid MPI streaming model. Extracted from [MMP10].

Readers familiar with structured parallel streaming patterns may recognize the sim-
ilarity of Figure 4.2 with the Farm pattern. The first sequential kernel acts as an Emitter, the
MPI kernel acts as a set of replicated Workers, and the last sequential kernel can be a
Collector.

We show an example of the API in Listing 4.5. Each kernel is defined as a function
that takes a osf_KernelContext_t and returns a osf_Result_t. The stream must first be
opened with osf_Open. To send data to other kernels, the function osf_Put is used. No
MPI-specific details are required. To receive an item from the stream, osf_Get is used.

The programmer can use osf_RegisterKernel to configure a kernel with different
features. One of the features is the kernel type, which can be “polling” or “callback”. Not
much is explained about these options. Based on the name given, we presume that “polling”
means the consumer kernel keeps sending polling messages to the producer kernel. The
programmer can configure a polling kernel by using the OSF_KRNTYP_POLLING flag, as shown
in line 20. The callback option is not explained nor used in the code. The authors do not
elaborate the load balancing strategies used for either polling or callback modes. Similarly,
the stateful/stateless features are also unexplained. For instance, the OSF_KRN_STATELESS

flag is used in line 20, but the work does not elaborate on the effects of these flags. We
presume that there is a OSF_KRN_STATEFUL flag as well. After registering the kernels, the
stream can be started with osf_StartStreams(), and then finalized with osf_Finalize().

1 // Source kernel: opens an output stream
2 osf_Result_t SourceKernel(osf_KernelContext_t*ctx) {
3 static osf_Stream_t*s = NULL;
4 if (s==NULL)osf_Open (&s, OSF_STR_OUT , 1);
5 ... record = sin(t)+sin (4+2*t);
6 osf_Put(s, &record , sizeof(record));
7 return OSF_ERR_SUCCESS;
8 }
9 /* Destination kernel: takes the data from source kernel and

elaborates */
10 osf_Result_t FilterKernel(osf_KernelContext_t*ctx) {
11 static osf_Stream_t*sIn = NULL;
12 if (sIn==NULL)osf_Open (&sIn , OSF_STR_INPUT , 0);
13 ... res = osf_Get( sIn , &x, sizeof(double) ,&receive );
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14 return OSF_ERR_SUCCESS;
15 }
16 /*Main function: registers the kernels and starts the streams */
17 int main (...) {
18 osf_KernelContext_t*kctx
19 osf_Init (...)
20 osf_RegisterKernel (0,OSF_KRNTYP_POLLING , OSF_KRN_STATELESS ,

SourceKernel , &kctx);
21 osf_RegisterKernel (1,OSF_KRNTYP_POLLING , OSF_KRN_STATELESS ,

FilterKernel , &kctx);
22 osf_StartStreams ();
23 osf_Finalize ();
24 }

Listing 4.5 – Hybrid MPI example. Adapted from [MMP10].

Hybrid MPI can work with complex hybrid topologies. However, launching such an
application might be complicated. Programmers familiar with MPI might recall that launching
an MPI application can be done by simply calling mpirun or mpiexec. However, if the appli-
cation needs TCP sockets and may run in multiple clusters (as well as multiple nodes in a
cluster), it becomes difficult. Hybrid MPI includes a launcher application that reads a XML
file and starts the processes. This XML contains all the necessary information to generate
scripts and MPI hostfiles. It is unclear whether the launcher needs to be installed on every
node that participates in the computation.

MPI Hybrid was used to parallelize a financial application that simulates the stock
market. The application is described in Figure 4.3. The work is randomly generated in a
sequential kernel. Then, an MPI application processes the items with a matching engine
and an order confirmation module. After processing the order, it is stored on disk by a
sequential kernel. The MPI implementation used was MPICH2.

Figure 4.3 – Hybrid MPI evaluation program [MMP10].

The authors achieved an improvement of 32% in latency compared to a MPI-only
approach. However, it is unclear whether the MPI application is replicated or not, or how
kernels communicate. For instance: how the random data generator communicates with the
MPI application? In our understanding, the communication is done with TCP sockets. We
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also understand that nothing is replicated, since the matching engine and order confirmation
module are stateful. The performance improvement, as argued by the authors, come from
avoiding the overhead of MPICH2 by using a simpler socket-based approach. The work
does not test an application based on the topology shown in Figure 4.2.

Although some details of the work are still unclear, it provides a method to im-
prove latency by avoiding MPI whenever necessary. However, the work does not explore
alternatives such as Open MPI, which implements optimizations for local communication
[GFB+04, Ope20]2. It also does not show the performance characteristics of using POSIX
threads, which can further improve performance by avoiding the network entirely. The au-
thors chose a real-world application in which the worker stages are stateful and cannot be
replicated. Therefore, it is difficult to test other scenarios, such as the effects of replication.
The work also does not say whether the library supports ordering constraints. However, it
may support dynamic work scheduling with the OSF_KRNTYP_POLLING kernel flag. We could
not find a code repository to investigate the questions raised in this section.

4.2.2 Lightweight API for MPI Streaming

[WR09] proposes a lightweight API for MPI stream processing. This work focuses
on the correctness of the communication and studies the implementation of a graph-coloring
algorithm that automatically creates intra- and inter-communicators. These communicators
are created to ensure that a message is not sent to the wrong process. This becomes
important when using MPI in different parts of a program at the same time. The authors do
not give a name for the library, this way, we will call it “Lightweight Stream MPI”, which is in
the title of [WR09]. Listing 4.6 shows an example of the streaming part of a program written
with the library. We adapted multiple code listings in [WR09]. The code is an implementation
of the Eratosthenes’s Sieve.

1 #include <workflow.h>
2 int main(int argc , char*argv [])
3 {
4 environment_t env;
5 getEnvironment(argc ,argv ,&env);
6 MPI_Init (&argc ,&argv);
7 MPIComm comm;
8 workflow_Init(MPI_COMM_WORLD ,&env ,&comm);
9 int stop = -1, maxnum = 10000 , num = 0, prime = 1, first = 1;

10 while (TRUE) {
11 if (env.numin == 0) {
12 // First stage
13 if (num++ < maxnum)
14 workflow_Send (&num , MPI_INT , comm);
15 else {

2https://www.open-mpi.org/faq/?category=sm
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16 workflow_Send (&stop , MPI_INT , comm);
17 break;
18 }
19 } else if (env.numout != 0) {
20 // Middle stage
21 workflow_Recv (&num , MPI_INT , comm);
22 if (num == stop) {
23 workflow_Send (&stop , MPI_INT , comm);
24 break;
25 } else if (first) {
26 prime = num;
27 first = FALSE;
28 } else if (num % prime != 0)
29 workflow_Send (&num , MPI_INT , comm);
30 else /*not a prime */
31 ;
32 } else {
33 // Last stage
34 workflow_Recv (&num , MPI_INT , comm);
35 if (num == stop) break;
36 printf(" number is %d\n", num);
37 }
38 }
39 workflow_Finalize (&comm);
40 MPIFinalize ();
41 }

Listing 4.6 – Lightweight MPI example adapted from [WR09].

Lightweight Stream MPI abstracts details regarding process communication. First,
the programmer must initialize the environment. In this particular scenario, the authors con-
struct the environment using a MPICH config file, which specifies the inputs and outputs of
each MPI process. The environment_t env variable contains the input and output informa-
tion for the process.

Lightweight Stream MPI provides workflow_Send and workflow_Recv functions to
communicate with other processes. It is unclear whether [WR09] supports Farm patterns.
The work does not explain in detail how workflow_Send distributes work, but it seems that a
process can have multiple output ranks, as suggested by the numout field in line 19. How-
ever, the text in [WR09] also suggests that workflow_Send broadcasts the data item to all the
output ranks. This makes implementing a Farm pattern difficult. The work also does not clar-
ify whether any load balancing is done at any point, and does not present any performance
analysis.

Lightweight Stream MPI is not a high-level abstraction for streaming applications.
workflow_Send and workflow_Recv still resembles MPI_send and MPI_recv. Notice that the
functions need to receive a type (like MPI_INT) and a communicator. Therefore, we assume
serialization is done in the same way as MPI. The stream stopping signal also has to be
handled manually, as shown in lines 14, 21 and 35.
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In our work, we intent to abstract more MPI details, including MPI data types, com-
municators and stream management such as starting and stopping a stream. [WR09] fo-
cuses on reliably integrating a lightweight streaming API into existing applications that al-
ready use MPI. Work scheduling, performance, serialization and higher-level abstractions
are not the concern of [WR09].

4.2.3 MPI Streams

MPI Streams [PMG+17, PML+15] proposes an extension to the MPI standard to
support streaming applications. The work creates a generic streaming model consisting of
producers, consumers, and communication channels. MPI Streams isolates producers and
consumers using MPI communicators. This allows for safer operation in a larger project with
multiple modules using MPI, since processes in a communicator do not interfere with other
communicators [WR09].

MPI Streams define 8 new functions. Many details of these functions are specifi-
cally made to support Map and Reduce operations. The main functions are:

1. int MPIStream_CreateChannel(int isProducer, int isConsumer, MPI_Comm comm,

MPIStream_Channel* channel): Creates a communication channel. This is a collec-
tive operation, and the programmer must set the isProducer and isConsumer parame-
ters accordingly. This allows the programmer to create multi-producer multi-consumer
streams. This can facilitate the creation of a Farm pattern by creating a single-producer
multi-consumer channel for the Emitter and Workers. The MPIStream_Channel* param-
eter is the resulting channel.

2. int MPIStream_Attach(MPI_Datatype streamDataType, MPI_Datatype resultData-

Type, MPI_Datatype processDataType, MPIStream_Operation * operation, MPI_-

Stream * stream, MPIStream_Channel * channel): Attaches an operation in a stream.
MPIStream_Operation is an object that stores 2 functions: an intermediate function,
and a terminal function. The intermediate function executes for each stream item. This
function can be used to store local state in the process. The terminal function is called
by data consumers when the stream ends in a collective reduce operation. This func-
tion must be compatible with the MPI_reduce operation (such as MPI_SUM, or an user
defined operation with compatible input and output parameters). The datatype pa-
rameters are MPI datatypes, therefore serialization is not abstracted. The parameters
streamDataType and resultDataType specify the inputs and outputs of the operation.
The role of processDataType is only briefly explained, without much detail. All the
code examples in [PML+15] set the 3 datatype parameters to MPI_INT. Oddly, the most
recent paper about the library [PMG+17] mentions a MPIStream_Attach method that



76

only receives the streamDataType. The MPI_Stream object contains metadata about
the stream structure.

3. int MPIStream_Send/MPIStream_Isend(void * sendbuf, MPI_Stream * stream): Al-
lows the producer to send data to a stream. There is the synchronous and asyn-
chronouos version following the standard of MPI, in which asynchronous functions are
prefixed with MPI_I. The data type is set on the MPIStream_Attach, therefore it is not
needed here.

4. int MPIStream_Operate/MPIStream_Ioperate(MPI_Stream*stream): Runs the inter-
mediate function of the MPIStream_Operation object configured in the MPIStream_At-

tach call. Automatically receives and process stream elements.

Listing 4.7 shows an example of the MPI Streams API. First, the programmer must
initialize MPI (omitted for brevity) and determine if the process is a data producer or con-
sumer. The channel is created using the MPIStream_CreateChannel function. Then, the
programmer defines an operation and attach it with MPIStream_CreateChannel. Notice that
the function AccumulateOverTime receives pointers to the stream data with void* in, and a
textttvoid* inout to store local state. These pointers need to be casted to the correct pointer
type. The producer emits 100 stream elements, while the consumers store local state con-
taining the sum of all elements they processed. The terminal operation MPI_SUM sums the
local state of all consumers. The example does not show how to access this reduced value.

1 #include "MPIStream.h"
2 int main(int argc , char **argv) {
3 // .. setup MPI , get nprocs , myrank
4 // two data consumers , the rest are data producers
5 int is_data_producer = myrank < (nprocs - 2);
6 int is_data_consumer = myrank >= (nprocs - 2);
7 // stream initialization stage
8 MPIStream_Channel channel;
9 MPIStream_CreateChannel(is_data_producer , is_data_consumer ,

MPI_COMM_WORLD , &channel);
10 // specify stream operation
11 MPIStream_Operation operation;
12 operation.intermediate_function = &AccumulateOverTime;
13 operation.terminal_function = MPI_SUM;
14 // attach the specified operation to a parallel stream
15 MPIStream stream0;
16 MPIStream_Attach(MPI_INT , MPI_INT , MPI_INT , &operation , &stream0 ,

&channel);
17
18 if (is_data_consumer) // data consumers keep on processing data
19 MPIStream_Operate (& stream0);
20 if (is_data_producer) {
21 for (int i = 0; i < 100; i++) // stream out 100 elements
22 MPIStream_Send (&i, &stream0);
23 MPIStream_Terminate (& stream0); // send termination signal
24 }
25 // Finalize
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26 MPIStream_FreeChannel (& channel);
27 MPI_Finalize ();
28 return 0;
29 }
30 // user -defined operation on stream
31 void AccumulateOverTime(void *in , void *inout , int *len , MPI_Datatype

*datatype) {
32 if (*len == 0)
33 *(int *)inout = 0; // initialize the result
34 else if (*len == 1)
35 *(( int *)inout) += *(( int *)in); // accumulate the result
36 }

Listing 4.7 – MPI Streams example. Adapted from [PML+15].

MPI Streams do not abstract serialization. The user must be familiar with MPI_-
Datatype and use them. Furthermore, the library also does not support ordering con-
straints [PML+15]. The consumers support multiple producers and process elements using
a “first-come first-served” approach. The work does not elaborate on the producer side of
load balancing, but we presume it has some dynamic scheduling behavior. It only produces
data when necessary. However, each consumer has a buffer of stream elements. The buffer
stores up to 5 asynchronous requests and use MPI_Testany to receive the data. The work
does not elaborate on what happens when the buffer is full, and a producer sends data to it.
We presume the producer blocks until an element is processed and buffer space becomes
available again. As an optimization, the work uses persistent communication available in
MPI 2. This reduces the overhead of point-to-point communications (like MPI_recv).

[PML+15] evaluated the performance of MPI Streams, running an extensive set
of benchmarks on the Beskow Cray XC40 and Vesta BlueGene/Q supercomputers. With
32 data producers and 32 data consumers, the maximum available network bandwidth
on Beskow is 15GB/s, and 7GB/s on Vesta. Using an extensive set of benchmarks, MPI
Streams used 65% of the total available network bandwidth of Beskow (9GB/s), and 52%
of Vesta (3.5GB/s). For 2,048 producers and consumers, the library achieves 200GB/s
on Beskow, and 80GB/s on Vesta. [PMG+17] tested MPI Streams on LHC (Large Hadron
Collider) events, and processed 2.2 million events/second with 1000 consumer processes.
Additionally, MPI Streams also processed 55 million words/second on a word counting ap-
plication.

MPI Streams allows the programmer to build streaming applications with a producer-
consumer architecture, but it does not clarify whether a Pipeline application with many stages
or a whether a Farm pattern is possible. The abstractions provided by MPI Streams are in-
stead focused on the Map/Reduce patterns. MPI Streams also does not abstract MPI details,
instead it provides an abstraction for streaming while requiring the programmer to deal with
MPI details, such as communicators, process ranks, and serialization. In our work, we in-
tend to abstract these details and provide a high-level stream parallel pattern library, focused
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on Pipeline and Farm patterns. We could not find an available online repository with the MPI
Streams code.

4.2.4 Skeleton-Based MPI Libraries

In addition to MPI-based libraries that extend MPI to support stream processing
applications, other C/++ skeleton libraries have been proposed that include support for MPI.
[GVL10] performed an extensive survey on skeleton libraries and we describe some of the
libraries here. We also describe their design goals and how they differ from our work. It
is especially interesting for us to understand how the libraries perform data serialization in
MPI. In general, the libraries presented here are not being developed anymore.

ESkel [Col04] is proposed by the same authors of Algorithmic Skeletons [Col89].
ESkel is a C library that implements the patterns Pipeline, Farm, and Divide-and-Conquer.
ESkel is a simple library based on MPI. Users of eSkel must be familiar with basic MPI
concepts as well. Serialization is done by using “eDM” (eSkel Data Model). This model
is very similar to MPI, in which the user must specify a pointer to data, size, and type of
data. The difference is that eDM also needs a “spread” argument, which specifies whether
the data is local or distributed among many processes. In our work, we intend to abstract
serialization and MPI details. The library itself has not changed since 2005. However, the
work proposes 4 principles for skeleton libraries:

1. Propagate the concept of skeletons with minimal disruption: eSkel realizes this by im-
plementing skeletons in C rather than in functional languages. Also, skeletons should
work well with current technologies, acting as bridges to the current standards.

2. Allow ad-hoc parallelism: Some algorithms are not obviously expressed as instances
of skeletons, such as the Cannon’s matrix multiplication. Therefore, skeletons should
also be allowed alongside ad-hoc parallelism.

3. Accommodate diversity: Sometimes, skeleton libraries impose constraints that make
implementing algorithms as skeletons not viable. For instance, a Pipeline skeleton
implementation that requires every input to produce an output makes some algorithms
difficult to implement if they need multiple outputs per input.

4. Show the pay-back: the library should be easy to learn, and should demonstrate that
the benefits outweigh the initial overheads. The library should also outperform the
conventional implementation.

SkeTo [MIEH06] is a C++ library that uses the theory of Constructive Algorithmics
to instantiate and optimize skeletons. SkeTo supports MPI and applies optimizations to the
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patterns using source-to-source transformation with OpenC++ [MKI+04]. The optimizations
reduce the number of intermediate data structures passed between skeletons. SkeTo also
provides parallel data structures, such as a Parallel List, Tree, and Matrix. SkeTo implements
Map and Reduce patterns. [MIEH06] does not provide details regarding serialization. How-
ever, we presume serialization is not a particularly difficult issue because the programmer
must use the parallel data structures provided by the library. This data structure is made to
be distributed among processes or threads. In our work, we implement Pipeline and Farm
patterns, which SkeTo does not provide.

Muesli [EK14] implements MPI support for Farm patterns in a hybrid environment
using MPI and OpenMP. Similar to SkeTo [MIEH06], Muesli also provides parallel and dis-
tributed data structures such as distributed arrays and matrices. It also allows serializing
arbitrary data types. The programmer can implement the abstract class MSL_Serializable

on the type that needs to be serialized. The API requires the programmer to copy the data
to another buffer, provided by Muesli. Our approach for serialization has similar goal to
FastFlow, where data is not copied to another buffer (also called zero-copy serialization).

Although [GVL10] mentions that SKELib [DS00] implements distributed-memory
support using MPI, it actually uses TCP/IP sockets. SKELib implements Farm, Pipeline,
Map, While, and Seq skeletons. The work does not elaborate on how serialization is done.

Quaff [FSCL06] is a C++ template-based skeletons library, aiming at reducing the
overhead of object-oriented abstractions. According to [FSCL06], libraries like Muesli fre-
quently introduce overheads due to virtual function calls. Quaff seeks to provide efficient,
low-overhead skeletons with a high-level API. The work supports MPI but does not elaborate
on the serialization process. However, we found an online repository3 and it seems that it
uses the Boost MPI implementation, which includes serialization functionality. In our work
we do not enforce any serialization method, although we provide abstractions using C++
templates to simplify serialization for types that are contiguous in memory.

4.3 Summary of runtime libraries

In this section, we summarize our findings regarding C/C++ libraries for distributed
stream parallelism. Many high-level dataflow and patterns-based C++ exist with support
of MPI or other distributed frameworks. In general, they are not well documented or have
tradeoffs that we do not believe to be ideal. All libraries have one or more of the following
problems:

• Lack of documentation for the distributed support or no documentation at all;
3https://github.com/MKG/quaff
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• No public repository available or downloadable source files (therefore we cannot use
in our work);

• Obligatory use of Boost serialization or external libraries (like Cereal);

• Not actively in development anymore (for instance, Muesli v3.0 is 4 years old);

• Some libraries do not abstract MPI details or are based on dataflow, which are not
skeleton-based.

Although Thrill also supports distributed computing over MPI, it works in a way
similar to Apache Spark with batch streaming, and offers dataflow-like stream processing.
DSPARLIBimplements a more generic API based on Pipeline and Farm patterns. PiCo de-
scribes itself as a DSL. However, the implementation is in essence a C++ template library
for shared-memory architectures. Thrill and PiCo have shown that C++ can be an effec-
tive language for stream processing due to its performance and expressiveness using the
features of C++11 and C++14. We verified that Thrill does implement MPI 4, since the im-
plementation is publicly available and serialization and networking is described in [BAJ+16].
We also found the code for MPI and TCP socket communication on the repository of Thrill.
For GrPPI, we found the GitHub repository without the MPI support code. We presume the
library is still in an early prototype state, being not ready to be used in other works.

We also reviewed how these works implement distributed computing. We are in-
terested in implementation details such as networking and data serialization. These works
have helped us understand more of the stream processing and stream parallelism domains
in a distributed context. MPI-based streaming is of the utmost importance for our work, for
reasons that will be described further in Section 5.4. However, we found that many MPI-
based solutions do not abstract MPI details [PMG+17, MMP10, WR09]. This is a design
choice of these libraries, which focus on extending the MPI standard towards streaming.

Moreover, some skeleton-based libraries also do not abstract MPI details [Col04].
Other libraries have unclear or difficult serialization strategies, enforcing the use of a specific
serialization method chosen by the authors [EK14, FSCL06]. Other skeleton libraries do not
implement Pipeline and Farm patterns [MIEH06].

A common theme among skeleton libraries that support distributed-memory pro-
gramming is the need to use their distributed data structures [EK14, MIEH06]. This makes
the libraries difficult to use for simpler data structures that are not distributed (and do not
need to be). For instance, in a video processing application, each item in the stream can
be a different frame. In a streaming scenario, we transfer the bytes of the frame to other
nodes in the cluster. It is important for a streaming library to be compatible with any video
API. In our case, we use OpenCV in tested applications. It is important that the library offers
as few obstacles as possible for this, using a straightforward approach. Our approach is

4https://github.com/thrill/thrill/tree/master/thrill/net/mpi
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described in Section 5.6. Furthermore, it is important that serialization is a core part of the
library. Most works do not describe serialization in depth or enforce a single mechanism
[EK14, LGFd+19]. It is important to let the user specify serialization in a different way if
needed, to improve performance.

To implement support for distributed-memory architectures in SPAR, we need a
structured stream parallelism library based on parallel patterns. Since MPI is ubiquitous
in HPC, this library can support MPI as a runtime environment. The serialization strategy
must be clearly explained and must allow zero-copy serialization, with a simple API that
facilitates code generation. We prefer not to adventure ourselves into undocumented and
unmaintained libraries, therefore, we propose DSPARLIB to tackle the issues we found in
the related work. Differently, our programming abstraction level is much higher in the sense
that the listed libraries and API could be used as runtime for DSPARLIB.

Table 4.1 shows a summary of the runtime libraries. We show that libraries often do
not implement stream patterns. Some of then implement data-parallel patterns. Serialization
is often done with low-level MPI or external libraries such as Boost and Cereal. Documen-
tation for the libraries is scarce, therefore, it is difficult to find information on their APIs,
serialization methods, or automatic scheduling implementation. Communication in general
is done implicitly, where the programmer does not need to know how programs communicate
with each other. However, for libraries that extend MPI, communication is explicit. DSPAR-
LIB covers the gaps in these related works by implementing streaming patterns with a clear
serialization approach based on C++ templates, allowing zero-copy serialization. DSPAR-
LIB also implements auto-scheduling, which is often poorly documented in the literature, and
communication is implicit.

Table 4.1 – Related work comparison for C++ programming and runtime libraries.
Work Stream Patterns Runtime Serialization Doc. Auto-Sch. Comm.
FastFlow [ADKT17] Yes ZeroMQ Zero-copy Almost none Yes Implicit
GrPPI [dRADFG17] Yes MPI* Boost* None Yes Implicit
PiCo [Mis17] No None N/A N/A Yes Implicit
MPI Streams [PMG+17] No MPI Low-level MPI None No Explicit
MPI Hybrid [MMP10] No MPI Low-level MPI None No Explicit
MPI Lightweight [WR09] No MPI Low-level MPI None No Explicit
Thrill [BAJ+16] No TCP, MPI “Cereal” library Yes Yes Implicit
eSkel [Col04] Yes MPI Low-level MPI Yes No Implicit
Muesli [EK14] Yes MPI Boost Yes Yes Implicit
Quaff [FSCL06] Yes MPI Boost None No Implicit

DSPARLIB Yes MPI
Zero-copy with
template-based
helpers

Chapter 5 Yes Implicit
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4.4 High-level parallel programming interfaces

StreamIt is a programming language developed by MIT since 2001. StreamIt has
language-level support for stream parallelism and generates code in the Java programming
language [TKA02, TKG+01]. StreamIt provides a toolset with a graph visualizer that shows
the computation graph with dotviz, and a benchmarking suite of 12 real-world applications
parallelized with StreamIt. StreamIt supports multi-core architectures and distributed com-
puting via TCP/IP.

A StreamIt program is composed of filters. Each filter has an initialization function
and a worker function. The worker function declares its inputs and the rate in which it pops
and pushes from an implicit FIFO queue that connects filters through a Pipeline.

StreamIt has many language constructs that allow for flexible stream parallelism
dataflow graphs. Listing 4.8 shows some of StreamIt features. The stream is built by the
MovingAverage block, which adds 3 stages to a Pipeline. IntSource generates a stream
of integers in increasing order. Notice that the work push 1 means it pushes 1 element to
the stream each time it is requested. The Averager generates an average of the last 10
elements as indicated in the peek keyword and effectively calculates a sliding window with
a window size of 10 and a step size of 1. Ultimately, the IntPrinter takes an element from
the stream and prints it. Notice that each element must be popped from the implicit FIFO
queue.

1 void- >void pipeline MovingAverage {
2 add IntSource ();
3 add Averager (10);
4 add IntPrinter ();
5 }
6 void- >int filter IntSource {
7 int x;
8 init { x = 0; }
9 work push 1 { push(x++); }

10 }
11 int- >int filter Averager(int n) {
12 work pop 1 push 1 peek n {
13 int sum = 0;
14 for ( int i = 0; i < n; i++) {
15 sum += peek(i);
16 }
17 push(sum/n);
18 pop();
19 }
20 }
21 int- >void filter IntPrinter {
22 work pop 1 { print(pop()); }
23 }

Listing 4.8 – StreamIt example. Adapted from [Str06].
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Spidle [CHR+03] is a stream programming DSL. It allows users to define connec-
tors and filters to form a computation graph. The DSL is designed to define the structure
of the computation while the computation itself is implemented in C or C++ programming
languages. For instance, Listing 4.9 shows the definition of a filter.

1 filter Weighting {
2 interface {
3 stream in bit [50][16] e;
4 stream out bit [40][16] x;
5 }
6 import {
7 func Weighting_filter from "rpe.c";
8 }
9 run {

10 Weighting_filter (e, x);
11 }
12 }

Listing 4.9 – Spidle example [CHR+03].

DirectFlow [LB07] is a DSL for information-flow systems that seeks a balance be-
tween expressiveness and efficiency. The language has few components, where a pipe is
the basic building block. Pipes can be further connected to form a Pipeline. A basic exam-
ple is shown in Listing 4.10, where the inputs and outputs are declared, and a process is
executed where a data packet is taken from an input port, processed, and then the packet is
sent to the output port.

1 pipe Filter {
2 inport in;
3 outport out;
4 process {
5 Object packet;
6 packet = in ?;
7 out ! packet;
8 }
9 }

Listing 4.10 – DirectFlow example [LB07].

There are parallel programming interfaces that offer annotation-based parallelism.
OpenMP [DM98] is considered the de-facto standard for parallel programming in shared-
memory paradigm [Gri16]. OpenMP uses C pragmas to express parallelism. There are
ways to introduce stream parallelism via task dependencies on OpenMP 4.5 [Ope20, Gri16].
However, OpenMP lacks more natural stream parallelism abstractions, therefore, the user
must deal with low-level details of stream parallelism. Another project is ompSs [Omp20b],
which is an implementation of OpenMP standard API. OpenMP features such as task de-
pendencies were first proposed by OmpSs. OmpSs also supports MPI for cluster computing,
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however, memory must be allocated using ompSs functions, where memory can be allocated
locally or across all cluster nodes [Omp20a].

OpenStream [PC13] is an extension to OpenMP that adds features for better ex-
ploitation of stream parallelism. This is done by adding Pipeline parallelism directives in a
GCC-based compiler. OpenStream implements stream parallelism via data flow or FIFO
queue behaviors. Application programmers use pragma annotations to use the features. No
distributed-memory architectures are suported.

[HBB+18] reviewed other languages, such as CQL [ABW06], Lustre [CPHP87], SPL
[HSG17, AGT14] and others. The review offers a view into the principles of stream DSLs,
and an assessment of the adoption of such languages. In general, DSLs follow principles
around performance, generality, and productivity. Performance principles are windowing,
partitioning, stream graph, and restrictions. These principles dictate how the stream is pro-
cessed and how parallelism is achieved. Generality concerns the language elements them-
selves, such as orthogonality (no redundant language features), no built-ins (operators are
user-defined), and others. The productivity principle concerns familiarity (some streaming
languages are similar to SQL) and conciseness (common tasks have concise syntax). How-
ever, streaming languages may not follow all principles defined by [HBB+18]. Adoption is a
problem for streaming DSLs. There is no single language broadly adopted. However, it is
possible to create a standard language that could be used by many streaming frameworks,
analogous to the SQL standard supported in all mainstream relational databases. [HBB+18]
also mentions a lack of coordination in streaming research, where new researchers do not
know each other’s work.

4.5 Summary of high-level programming interfaces

In the Section 4.4 we reviewed some high-level programming interfaces for stream
parallelism. The programming interfaces are external DSLs, extensions to GCC to imple-
ment compiler directives. The programming interfaces are similar in their goals, each one
attempting to optimize a certain aspect of stream processing. Specifically, SPAR is the only
one which allows the programmer to seamlessly use C++ and annotations, which may help
the language to be adopted to parallelize existing code.

Table 4.2 shows a summary of DSLs reviewed in Section 4.4. Tools such as
StreamIt, Spidle, and DirectFlow implement new external DSLs that require rewriting the
application source code on the new language. Spidle can utilize original C code, however,
it must be put in a separate file. Although SPAR is also a DSL, it is compatible with C++11
code. The application programmer does not need to rewrite existing source code. The exter-
nal DSLs are either not based on C++ or do not support distributed-memory architectures.
Furthermore, the approaches followed by [PC13] and [Omp20b] require parsing C pragmas,
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which are not fully represented in the C++ syntax tree. With C++11, the annotations are fully
represented in the syntax tree, which makes it more suitable to create new DSLs [Gri16].
The high-level programming interfaces exploit parallelism via operating system threads or
custom runtime implementations. Serialization is not necessary for most of them, since they
run in shared-memory architectures. Therefore, SPAR is the only high-level programming
interface based on C++ annotations, supporting shared-memory and distributed-memory
architectures.

Table 4.2 – Related work comparison for high-level programming interfaces.
Work Interface Type Distributed Language Serialization Runtime
StreamIt [TKA02] External DSL Yes Java Java Custom
Spidle [CHR+03] External DSL No C N/A Threads
DirectFlow [LB07] External DSL No Java N/A Threads
OpenStream [PC13] C pragmas No C/C++ N/A Threads
ompSs [Omp20b] C pragmas Yes C/C++ N/A Custom

SPAR [GDTF17] C++ annotations Yes C++ Sections 5.6
and 6.3.6

FastFlow
and DSPARLIB
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5. DSPARLIB: DISTRIBUTED STREAM PARALLELISM LIBRARY

In this chapter, we describe the design and implementation of DSPARLIB (acronym
for Distributed Stream Parallelism Library), a library for stream parallelism for distributed
architectures.

The library will be used to generate parallel code for distributed architectures using
SPAR. However, the API aims easy of use for C++ application programmers. DSPARLIB

aims also performance comparable to MPI handwritten programs. The abstractions provided
by the library can not add much overhead.

This chapter is structured as follows: Section 5.1 covers the design goals of the
API. Section 5.2 provides a high-level overview of the main building blocks of DSPARLIB. In
Section 3 we show how SPAR generates FastFlow code for shared-memory architectures
while the support for distributed-memory architectures (such as clusters) has not yet been
implemented. In Section 4.1.1, we provided an overview of FastFlow. Differently, now we
describe how SPAR uses the FastFlow API in Section 5.3. This analysis will tell which
features DSPARLIB needs for compatibility with SPAR. Section 5.4 discusses our choice for
MPI in this work. Sections 5.5 to 5.10 describe how the library works, which are the main
abstractions, and how serialization is done. Finally, we test the performance of DSPARLIB

against handwritten MPI applications in Section 5.11.

5.1 Design Goals

In this section, we cover the design goals of DSPARLIB. One of the goals of this
work is to support distributed-memory architectures in SPAR. This will be done by generating
code using DSPARLIB. However, supporting SPAR code generation is not the only use case
planned for the library.

DSPARLIB has to be easy to use by application programmers. We focus on provid-
ing a safe and high-level API that checks for incorrect usage at compilation time as much as
possible. In the latest years, the Rust programming language has been focusing on memory
and type safety. We are familiar with the Rust programming language [PGF19], and we take
inspiration on these design goals and apply them in the design of DSPARLIB. Specifically,
DSPARLIB does not unnecessarily expose the application programmer to raw pointers, and
DSPARLIB also ensures that types are correct at compile-time using C++ templates, never
using void*.

During compilation time, DSPARLIB has to detect the intended usage of the ab-
straction, for instance, whether a sequential wrapper is intended to be an Emitter, Worker, or
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Collector. Depending on the intended usage, DSPARLIB emit usage errors at compile time
if any are found.

Having compile-time checks helped during the development of the code generation,
described in Chapter 6. In the beginning, our code generation process would often generate
wrong code, but the compile-time checks ensured that we could catch these errors early,
instead of having to run the code and debug it to understand what went wrong. Therefore,
we argue that this strategy is good for application programmers, and also good for automated
code generation development.

Serialization is a major issue that needs to be solved in C++, as discussed in previ-
ous sections. Instead of using a third-party library such as Boost or Cereal, DSPARLIB has
to offer a simpler and lightweight strategy that abstracts details of serialization, while allow-
ing efficient and zero-copy serialization. If low-level serialization in the chosen distributed
runtime (MPI) is needed, DSPARLIB has to allow it.

Finally, refactoring operations have to be done with safety and simplicity. An exam-
ple is changing the sequential wrapper used as a Worker to be used as an Emitter (when
it makes sense). If the Emitter does not receive stream items, the programmer only imple-
ments the necessary methods without receiving parameters that are ignored. We explain
this further in Section 5.5. [Col04] created 4 principles for developing skeleton-based li-
braries as shown in Section 4.2.4. We describe in the following how the principles apply to
DSPARLIB:

1. Propagate the concept of skeletons with minimal disruption. The libraries should
have simple concepts and act as a bridge to the standards of the day. We implement
DSPARLIB in C++, which is a widely used language. The distributed runtime is MPI,
which is a widely-used parallel programming standard for HPC. We design a simple API
that allows the programmer to “wrap” existing code with few refactorings. The library is
header-only where there is no need to compile dynamic or static libraries separately.
We also used the concepts commonly found in the literature such as Pipeline and
Farm.

2. Allow ad-hoc parallelism. The libraries should allow the programmer to employ
other parallelism techniques, because it is unrealistic to assume all algorithms are effi-
ciently expressible using skeletons. We do not prevent the programmer from spawning
threads or using other runtime libraries together with DSPARLIB. For instance: using
MPI or GPU parallel linear algebra libraries [BCC+97] together with DSPARLIB should
be possible, but we have not tested it. However, the user must be careful to not in-
terfere with DSPARLIB messaging mechanisms (i.e. the user should not send MPI
messages to the DSPARLIB nodes).

3. Accommodate diversity. The libraries should balance design simplicity with the prag-
matic need for flexibility so that more algorithms can be expressed in a skeletal system.
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We support semi-arbitrary pattern nesting, where the programmer can use a Farm in-
side a Pipeline when needed. Furthermore, sequential code wrappers are easy to
change and maintain.

4. Show the pay-back. To increase acceptance of the libraries, they must show how they
improve the status quo and why the benefits outweigh the initial overheads of moving
code to such libraries. In this work, we show that the API is simpler than writing MPI
code by hand. We also show that the overheads for real-world applications are not
significant when comparing to MPI programs. Furthermore, developers have easy
access to features that can significantly improve performance such as the on-demand
scheduling.

5.2 DSPARLIB Building Blocks

DSPARLIB was designed for programmers to develop parallel stream processing
applications following a building block concept, which is adopted in different styles by state-
of-the-art structured parallel programming APIs such as FastFlow and TBB. In our context,
a block consist of kernels named as Sequential Wrapper, Input Serializer, and Output Se-
rializer, which are illustrated in Figure 5.1. A block must have a Sequential Wrapper and
optionally Input or Output Serializers. This input and output customization are needed de-
pending on the parallel pattern and dataflow dependency. Therefore, the programmer has
three block types to be used on the parallel patterns.

Figure 5.1 – DSPARLIB’s fundamental block.

Figure 5.2 is presenting the parallel patterns available. The Farm requires three
blocks. The first one becomes the Emitter (scheduler) of the stream items. The second one
becomes the Worker (intensive computation) for replicating stateless operators. The third
one is to become the Collector (gathers Workers’ results) for joining the Workers’ stream
items. The communication is from the left hand to the right hand side, which is following
the formal definition in Section 2.7. Therefore, the three block types are necessarily applied.
The Pipeline pattern may have two or more blocks that become the parallel stages, which is
analogous to workstations of an assemble line.
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Figure 5.2 – DSPARLIB’s building blocks.

Pattern composition is also supported in DSPARLIB by nesting Farm into Pipeline
stages such as depicted in Figure 5.3. Doing that, the Farm pattern has to change the origi-
nal block types for Emitter and Collector, where Input and Output Serializers are respectively
need as they communicate with other stages in the Pipeline.

Figure 5.3 – Pattern composition/nesting in DSPARLIB.

For now these are the supported building blocks, which can also be seen as lego
bricks to build parallel stream processing programs without entering on the low-level distributed-
memory architecture developing. In the future, we plan to increase the flexibility, offering new
block types, arbitrary nesting, and new parallel patterns. The next sections will provide cod-
ing details following this building block concept.

5.3 FastFlow in SPAR

DSPARLIB was inspired by FastFlow. FastFlow has a very dynamic API where
arbitrary computation graphs can be built. However, SPAR uses only a subset of these
features to generate Pipeline and Farm patterns, as described in Section 3. These patterns
are provided by the FastFlow API as the core patterns, and serve as building blocks for more
elaborate patterns. In this section, we analyze how SPAR uses FastFlow to understand
which features are important for our work.
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One of the building blocks of FastFlow is the ff::ff_node struct. There is also
a ff::ff_node_t<IN_t, OUT_t = IN_t>: ff_node where IN_t and OUT_t are the types of
data processed by the node. This typed node provides a typed pointer to the programmer,
so casting void* to the actual type is not necessary. There are also more types that in-
herit ff::ff_node to implement other features, such as support for functions and lambdas.
SPAR uses the typed node ff::ff_node_t<IN_t, OUT_t = IN_t>. To use it, the program-
mer needs to implement a class or struct as shown in Listing 5.1:

1 class Emitter: public ff::ff_node_t <TaskData > {
2 TaskData* svc(TaskData* notused) {
3 for (int i = 0; i< 100; i++) {
4 ff_send_out(new TaskData(i));
5 }
6 }
7 };

Listing 5.1 – FastFlow ff_node_t Emitter.

To implement a ff::ff_node_t<TaskData>, the programmer must override the Task-

Data * svc(TaskData * notused) method. However, in Listing 5.1, we have an Emitter of
data, which does not depend on a task item coming from the stream (and in this example
we name the task parameter as notused). In this case, the argument TaskData* notused

will be NULL. The function ff_send_out is used to send the data to the next stage. The code
produces 100 data items and sends them to the stream.

Listing 5.2 shows the implementation of a Worker. The programming interface is
the same as the producer, but the code inside svc is different. The code takes an item from
the stream, performs computation with the item, and sends the result to the next node.

The programmer must carefully place the ff_node_t instance in the correct position
of the stream. For instance: if the programmer accidentally places a Worker in place of the
Emitter and does not check for NULL, dereferencing the NULL pointer would cause a runtime
error.

1 class Worker: public ff::ff_node_t <TaskData > {
2 TaskData * svc(TaskData * t) {
3 int workerResult = t.number * 2;
4 delete taskData;
5 ff_send_out(new TaskData(workerResult));
6 }
7 };

Listing 5.2 – FastFlow ff_node Worker.

Another way to create a node is to use a function instead of a class or struct.
The function can be passed to the pattern instance (Farms or nodes) later. This is shown in
Listing 5.3.
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1 TaskData * myWrapper(TaskData * t, ff_node *const) {
2 int workerResult = t.number * 2;
3 delete taskData;
4 ff_send_out(new TaskData(workerResult));
5 }
6 ...
7 ff_node_F <TaskData > wrapperNode(myWrapper);

Listing 5.3 – FastFlow function wrapper.

Listing 5.4 shows the implementation of a Collector. The interface and usage are
similar to the Worker example, but the stage must return the GO_ON tag to inform the FastFlow
runtime that it must wait for new items.

1 class Collector: public ff::ff_node_t <TaskData > {
2 TaskData * svc(TaskData * t) {
3 std::cout << t.number << std::endl;
4 delete t;
5 return (TaskData *) GO_ON;
6 }
7 };

Listing 5.4 – FastFlow ff_node Collector.

To create the Farm pattern, the programmer must create an instance of ff::ff_-
farm. If the programmer needs to process stream items in the order they were produced,
ff::ff_OFarm can be used instead. Listing 5.5 shows how to create and run a Farm pat-
tern. First, we instantiate the Workers and pass them to the Farm class instance using the
constructor. Later, we can set the Emitter and Collector nodes, and call set_scheduling_-
ondemand if we intend to use on-demand scheduling.

1 std::vector <unique_ptr <ff::ff_node >> workers;
2 for(int i=0; i < replicas; i++){
3 workers.push_back(std:: make_unique <Worker >());
4 }
5 ff::ff_OFarm <task_data > ofarm(move(workers));
6
7 Emitter e;
8 ofarm.setEmitterF(e);
9 Collector c;

10 ofarm.setCollectorF(c);
11
12 ofarm.set_scheduling_ondemand ();
13
14 ofarm.run_and_wait_end ();

Listing 5.5 – FastFlow Farm example.

The SPAR compiler generates FastFlow code using the API described in this sec-
tion, which follows a structured parallel programming approach [MRR12]. Since SPAR also
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follows this approach for code generation inside the compiler and to be compliant with the
design principles, DSPARLIB has to provide a “similar” structured parallel programming API
such as FastFlow. For instance, Farm, Pipeline, and the combination of Pipeline with Farm
patterns. In the next section, we will describe which are the similarities and benefits of
DSPARLIB with respect to FastFlow’s API as well as the implementation design choices.

5.4 Runtime for DSPARLIB

Our runtime choice is guided by two factors: supporting future autonomic com-
puting research and programming flexibility for distributed-memory architectures such as
clusters. The overall motivation of the SPAR project is to make structured stream parallelism
easier for application programmers. This is achieved by having simple annotations to sepa-
rate the computation into many parallel stages. However, the distributed-memory introduces
new challenges: deploying the program in the cluster can be significantly more inconvenient
and serialization of data stream items can be difficult in C++. In this section, we evaluate
runtime libraries for distributed parallelism.

Griebler’s thesis [Gri16] pointed out FastFlow’s limitations for distributed-memory
architectures in SPAR. FastFlow uses ZeroMQ, a message queue system that needs to
be installed on every node of the cluster. In HPC, it is common for clusters to have an
MPI implementation already available. The MPI program can be started by running mpirun

or mpiexec while in FastFlow the processes need to be manually launcher. Moreover, the
support for distributed computing in FastFlow is so far experimental and undocumented1. It
is still worth considering the use of FastFlow, if the rich feature set it provides on shared-
memory architectures can also be available for distributed-memory architectures.

HPX was also considered. HPX is a C++ runtime library for massive parallelism,
covered in Section 2.9.2. HPX supports batch systems such as PBS, which facilitates run-
ning programs on a cluster. Performance is also shown to be better than MPI for some
workloads [KHAL+14]. However, as discussed in Section 2.9.2, it is unclear how well HPX
supports stream parallelism. We found no studies about HPX and streaming applications
besides an unmaintained library on GitHub. It is also not clear how well HPX works when
using ad-hoc parallelism, such as MPI linear algebra libraries or manually creating threads,
and C++ synchronization primitives (mutexes, condition variables, and others). HPX re-
implements these primitives to make them work with the threading subsystem without block-
ing threads. Data serialization abstractions are a little better then in MPI.

We use MPI [For12] since it provides the necessary features and flexibility for im-
plementing DSPARLIB, including dynamic allocation of processes. MPI is already installed

1For instance, tutorial on distributed support is not available at http://calvados.di.unipi.it/storage/
tutorial/html/tutorial.html
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in many HPC clusters and researchers can take advantage of MPI implementations specific
to that cluster. For instance: supercomputer manufacturers, such as Cray, support MPI 3.0
with their own MPI implementation which is based on MPICH. Furthermore, there are HPC
libraries that use MPI, such as Scalapack [BCC+97]. Therefore, DSPARLIB could be used
together with these libraries, although we have not tested it. There are studies showing
that MPI can be used in streaming applications, covered in Section 2.9.1. Finally, our work
continues a previous study [GF17] that shows it is possible to support distributed-memory
architectures on SPAR with MPI.

DSPARLIB will initially support Open MPI. We specifically support Open MPI be-
cause MPI implementations have different behavior when compared to each other, even if
the API is the same. Early tests on Windows MPI with default configurations showed that
it runs out of memory if the message consumer is too slow when using round-robin Farm
scheduling. In Open MPI, the same behavior is not observed. Open MPI is also a mature
product with extensive documentation. The downside of using MPI is the complexity. Specif-
ically, collective operations need to be called by all processes in the communicator. For
instance: when dynamically spawning a process, all other processes need to call the MPI_-

Spawn function. Other functions need only the participation of two processes, for instance:
MPI_Recv and MPI_Send. DSPARLIB will hide this complexity behind a simpler API.

5.5 DSPARLIB’s Sequential Wrappers

In this section, we describe the DSPARLIB API to express sequential code wrap-
pers, which attempts to offer the functionality of FastFlow’s ff_node. With this, it is possible
to reuse the same code generation logic/strategy currently implemented in SPAR. While this
API is heavily inspired by FastFlow, we are implementing it differently in a way that might
improve usability for programmers who will not use SPAR. Many of those improvements are
dedicated to catching errors in compile-time instead of run-time.

The concept of a sequential code wrapper was introduced earlier in Section 5.2.
The wrapper is a class that “wraps” the sequential code of the application. The wrapped
code is managed by DSPARLIB. This allows DSPARLIB to run the code in parallel to other
codes. The wrapped code also has access to an Emit function to send data to other com-
ponents (Pipeline stages or Farm components).

In Listing 5.6, we show an example of a sequential code wrapper that takes an
integer and emits the square root of the integer as a double. The method Process is called
once for every stream item and has no return type (void). Notice that this method executes
only when a stream item is received : there is no other situation where this method is called.
Each method of the interface has a well-defined role. Differently, in FastFlow the svc method
is called in at least 2 situations: Called only once in an Emitter, or once for each stream item
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in a Worker or a Collector. Therefore, svc has 2 responsibilities: start the stream and emit
items, or compute stream items.

1 class Worker: public Wrapper <int , double > {
2 public:
3 void Process(int &i) override {
4 double square_root = sqrt(i);
5 Emit(square_root);
6 };
7 };

Listing 5.6 – DSPARLIB sequential wrapper example.

In DSPARLIB, a sequential code wrapper is a thin abstraction layer that just wraps
sequential code. There is no platform-specific details in a sequential wrapper. This is in
contrast to FastFlow, where distributed support is done with a ff_dnode class that wraps
the code, communicates with the network, and specifies de/serialization. Furthermore, the
programmer must be aware of the architecture of the stream: the ff_dnode is only used to
communicate with the network. The programmer can use both ff_node and ff_dnode to
write efficient programs that communicate over the network only when necessary. Shared-
memory architecture support can be developed for DSPARLIB without changing the wrap-
pers.

The wrapper in Listing 5.6 can be used as a Worker or any stage that is not the
start or end of the Pipeline. Consider the following pattern instantiation with the schema
pipe(�0, farm(E(�1), W (�2), C(�3))), which is a Pipeline with a sequential stage with
block �0 and a Farm stage. The wrapper on the Listing 5.6 can be put in place of E(�1)
or W (�2). However, it can not be put in place of C(�3), as the Collector is the last one, it
can not emit data this scenario. This is checked at compile-time in the Farm pattern. If the
programmer needs to collect the results produced by the code in Listing 5.6, they can use a
Collector as shown in Listing 5.7. Notice that the base class is still the same Wrapper<TIn,

TOut> and the overridden method is also the same void Process(TIn& input).

Notice also that there is the struct Nothing in the second template parameter of
the Wrapper<double, Nothing> declaration. This is a struct used to inform that no data will
be emitted by this wrapper. Setting TOut to Nothing renders the Emit method (seen on List-
ing 5.6) unusable and by using C++ template metaprogramming and SFINAE (Substitution
Failure Is Not An Error) techniques, the Emit method is removed from the base class. For
instance, the programmer cannot even call Emit(Nothing{}) because the method does not
exist in this case. This prevents incorrect usage of the API at compile time. We tried to use
void instead of Nothing, but we were unable to make it work.

1 class MyCollector : public Wrapper <double , Nothing > {
2 public:
3 void Process(double &sqrtResult) {
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4 std::cout << sqrtResult << std::endl;
5 //Emit(Nothing {}); would cause compilation error
6 };
7 };

Listing 5.7 – DSPARLIB Collector example.

The input of the Process method is a reference instead of a pointer. C++ does not
allow this type of value to be null, therefore, the input parameter is always a valid object. This
reduces the need for defensive programming, such as checking for NULL or nullptr at every
stream item. This is not necessary when using FastFlow either, but we argue that during a
refactoring, the programmer might end up with code that accidentally tries to dereference a
NULL pointer when transforming a Worker into an Emitter, as described in Section 5.3. We
intend to catch as much as possible incorrect API usage during compilation instead of during
runtime.

Revisiting the FastFlow Emitter example in Listing 5.1, we see that the svc method
receives a parameter that is not supposed to be used (the value is NULL). DSPARLIB does
it differently, as can be seen on Listing 5.8. The TIn template parameter is Nothing, which
indicates that the stage will not receive anything. The effect is that the programmer cannot
override the Process method, and there is no reason to implement void Process(Nothing&)

which is never called. If the programmer tries to write the code void Process(Nothing&)

override, the template meta-programming techniques employed will avoid marking the base
method as virtual, therefore, the programmer cannot override it. Without the override key-
word, the programmer will be implementing another method unrelated to the Wrapper inter-
face. Take into account that the programmer can implement an Emitter that receives stream
items, but in this example, we are describing the first stage or Emitter of the whole stream.

To avoid exposing pointers to the programmer and possible confusions caused
by calling the Process method in multiple ways, all stages that receive Nothing as input
must implement the void Produce() method. The method does not receive any parameters
and the base class offers the Emit(TOut&) method. This is also achieved by using meta-
programming techniques, where DSPARLIB requires the programmer to implement void
Produce() and produces a compilation error if the method is not implemented.

1 class MyEmitter : public Wrapper <Nothing , int > {
2 public:
3 void Produce () {
4 for (int i = 0; i < 100; i++) {
5 Emit(i);
6 }
7 };
8 };

Listing 5.8 – DSPARLIB Emitter example.
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The programmer can also run code when a stream starts or ends, and run code
for the first stream item. When the first stream item is received, both methods Process

and OnFirstItem are called. In Listing 5.9 we show how to use these methods. We use
OnFirstItem on OpenCV video applications to open the result video file, with the resolution
indicated on the first item.

1 class VideoWriterWrapper : public Wrapper <VideoFrame , Nothing > {
2 public:
3 cv:: VideoWriter video;
4 void Start() override {
5 std::cout << "Started !" << std::endl;
6 }
7 void OnFirstItem(VideoFrame& frame) override {
8 cv::Size frame_size(frame.width , frame.height);
9 video.open(" result.avi", frame_size);

10 }
11 void Process(VideoFrame& frame) override {
12 video.write(frame.AsOpenCVVideoFrame ());
13 }
14 void End() {
15 video.close();
16 }
17 };

Listing 5.9 – Start and End methods on wrappers.

So far, we have not described how these stages will physically communicate with
each other. In the next section, we will address the serialization problem in DSPARLIB with
MPI.

5.6 Serialization and deserialization in MPI

Frameworks and libraries for structured parallelism that run in a shared-memory
architecture do not have to handle serialization. FastFlow uses queues that store the point-
ers to the data in memory, therefore, the item data does not have to be copied. In MPI or
in any other distributed environment, data must be copied between processes (in the same
or different machines). This is a complex task with different options available. For instance,
in Java and .NET based applications, serialization can be done mostly automatically since
these environments allow the use of runtime reflection (or introspection). This allows users
of these frameworks to write code that never handle serialization because frameworks will
often handle it automatically.

Languages such as Rust allow the use of procedural macros to introspect structs at
compile time and generate fast serialization code. Java frameworks running as a GraalVM
native image can also use compile-time class introspection for low-memory usage and fast
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serialization speeds. Recently, C# has also implemented similar features to allow compile-
time source code generation.

However, serialization and deserialization are often expensive and can be a sig-
nificant part of the computation. Although Big Data streaming frameworks usually deal with
this problem transparently, they allow the programmer to customize the serialization method.
FastFlow has a ff::ff_dnode struct for distributed computing, which allows the program-
mer to perform fast zero-copy deserialization of data coming from a ZeroMQ queue and
operating system routines such as iovec.

DSPARLIB will use a similar strategy using the MPI_Send and MPI_Recv functions.
In MPI, primitive data types and simple structs can be serialized in a many ways. In Listing
5.10, we show 2 ways of sending and receiving a simple data type that is contiguous in
memory: using the appropriate MPI type MPI_INT (lines 2 and 6) or sending it as bytes using
MPI_BYTE (lines 3 and 7). We will discuss the implications of sending data using MPI_BYTE

in Section 5.7. For data that is allocated contiguously in memory such as a simple struct,
the programmer can use MPI_BYTE or define a MPI_Datatype as well, but for brevity, we do
not show the use of MPI_Datatype here. We do not use MPI_Datatype in our final solution,
however, the abstractions built into DSPARLIB do not prohibit the programmer to use MPI_-

Datatype if needed.

1 int data = getData ();
2 MPI_Send (&data , 1, MPI_INT , proc , tag , comm);
3 MPI_Send (&data , sizeof(int), MPI_BYTE , proc , tag , comm);
4
5 int recv;
6 MPI_Recv (&recv , 1, MPI_INT , proc , tag , comm);
7 MPI_Recv (&recv , sizeof(int), MPI_BYTE , proc , tag , comm);

Listing 5.10 – MPI Send example.

For structs with pointers, the pointer needs to be send separately, together with
the size or use MPI_Get_count to discover the size of the message. Complex data structures
also need their fields to be sent individually. Two of our tested applications (lane detection
and face recognition) need to send OpenCV matrices of type cv::Mat. The class has a
complex structure and many fields. It is possible to extract the field values and call an
appropriate constructor, making it possible to serialize and deserialize data items.

In Listing 5.11, we show an example with a simplified version of the cv::Mat class.
Observe that the order of the sends and receives matter: the order that the data is received
must match the order of the data sent. The receiver must allocate memory based on the size
received earlier. Another solution to reduce the number of sends and receives is shown in
Listing 5.12. In this example, we send the whole contiguous data structure first. DSPARLIB

assumes that all nodes in the cluster use the same data representation (same architecture,
ex: x86-64). Since the char* data pointer is just a simple integer value in memory, there is
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no problem sending it to the receiver as long as the receiver does not dereference the pointer
before receiving the actual data. Sending fewer messages might improve performance even
if the same total amount of data is sent between processes. We show it in Section 6.5

1 struct Mat {
2 char* data;
3 int size;
4 int width;
5 int height;
6 int type;
7 };
8
9 Mat m = readFrame (...);

10
11 MPI_Send (&m.type , sizeof(int), MPI_BYTE , ...);
12 MPI_Send (&m.width , sizeof(int), MPI_BYTE , ...);
13 MPI_Send (&m.height , sizeof(int), MPI_BYTE , ...);
14 MPI_Send (&m.size , sizeof(int), MPI_BYTE , ...);
15 MPI_Send(m.data , m.size , MPI_BYTE , ...);
16
17 Mat m;
18 MPI_Recv (&m.type , sizeof(int), MPI_BYTE , ...);
19 MPI_Recv (&m.width , sizeof(int), MPI_BYTE , ...);
20 MPI_Recv (&m.height , sizeof(int), MPI_BYTE , ...);
21 MPI_Recv (&m.size , sizeof(int), MPI_BYTE , ...);
22 m.data = new char[m.size];
23 MPI_Recv(m.data , m.size , MPI_BYTE , ...);

Listing 5.11 – MPI Send complex data structure example 1.

1
2 Mat m = readFrame (...);
3
4 MPI_Send (&m, sizeof(Mat), MPI_BYTE , ...);
5 MPI_Send(m.data , m.size , MPI_BYTE , ...);
6
7 Mat recv;
8 MPI_Recv (&m, sizeof(Mat), MPI_BYTE , ...);
9 m.data = new char[m.size];

10 MPI_Recv(m.data , m.size , MPI_BYTE , ...);

Listing 5.12 – MPI Send complex data structure example 2.

5.7 Process communication and serialization in DSPARLIB

In DSPARLIB, each stream data item is called a message. A message is composed
of a header and the data payload. The header struct MessageHeader is shown in Listing
5.13. The sender is the MPI rank of the process that sent the message and the target is
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the MPI rank intended to receive the message. The type indicates whether the message is
a stream data item or a stream stop signal. The id indicates the ID of the message, starting
from 0. The Emitter increases the ID counter by 1 for each message emitted. This is used
for implementing the ordering in the Collector later.

1 struct MessageHeader {
2 int sender;
3 int target;
4 int type;
5 uint64_t id;
6 };

Listing 5.13 – DSPARLIB Message Header.

Consider the communication channel between a sender and a receiver, repre-
sented in Figure 5.4. The sender sends 2 messages msg1, msg2, and each message has 2
fields field1, field2. The programmer decides to send field1, field2 in 2 separate messages.
Consequently, the receiver starts by accepting any message of type MessageHeader from
any sender. The receiver will receive the header for msg1 first. The next 2 messages are
field1, field2. If many senders are sending data to the receiver, the messages from different
senders could interleave. However, upon reception of a MessageHeader, the receiver will only
match messages coming from a specific sender. This matching mechanism is described in
Section 2.9.1. This mechanism is necessary to build a Farm pattern. The Collector might
receive messages from many Workers at the same time, therefore, we need to match one
sender at a time.

Figure 5.4 – Flow of messages.

Notice that there is no message to inform the end of a single data item. The end
of the message is implicit in the code itself: it requires the sender and receiver to call equiv-
alent send and receive methods. After sending or receiving messages, both processes can
do other tasks such as processing the data or start sending another message. There is,
however, a message to inform the end of the whole stream. In Section 5.9, we show how
the stream is stopped.
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In general, the process of exchanging messages is done by using simple MPI sends
and receives. However, the MPI_Send and MPI_Recv functions have many parameters that
the programmer have to deal with. DSPARLIB offers a simple way to emit a message to other
processes without having to deal with MPI types, tags, and communicators. It is necessary
that the programmer handles allocation of buffers and send messages in the correct order
while the rest is abstracted.

MPI allows the programmer to specify the data type to send and receive. Let us
consider why this parameter is useful for MPI implementations. There could be 2 processes
running in different CPU architectures on MPI. By passing the correct MPI types, the im-
plementation would do the correct conversions. For instance, different CPU architectures
may have different endianness (big-endian, little-endian). The data needs to be correctly
converted by the MPI implementation. Open MPI supports heterogeneous clusters2 and
does conversions when necessary. However, we presume this scenario is rare. We limit
DSPARLIB for scenarios where the same binary runs distributed among many nodes run-
ning the same CPU architecture (for instance, x86-64), having the same data representation
in all cluster nodes. By imposing this limitation on DSPARLIB, it is possible to use a simpler
approach for serializing data: sending the raw bytes of the data and use MPI_BYTE data type.

We implemented the MPISender class to simplify the usability of the MPI_Send and
MPI_Recv functions. This is shown in Listing 5.14. The main method is StartSendingMes-

sageTo(int target, uint64_t id). This method is responsible for sending the message
header to the target rank and also returns the message header object to the caller. This
header object can be used in the SendTo template methods. Since the message header
contains the target rank, SendTo can use it to send the stream data to the correct rank.
Moreover, by using template methods, it is possible to support any contiguous data type
of any size, without having to specify sends and receives for each type. The endianness
problem described earlier can be solved partially by using specialized overloads or template
specializations on the MPISender and MPIReceiver classes, but we do not do that at the
moment being.

The template methods allow sending up to 3-dimensional statically and dynamically
allocated arrays, as well as single contiguously allocated data items. We do not show all
these methods in Listing 5.14 for brevity. The template methods can send messages of
any contiguously allocated type, and we use the type template parameter to get its size.
Furthermore, for statically allocated arrays, we use template size_t parameters to get the
size of each dimension. Based on the number of elements and size of the data type, it
is possible to calculate the size of the buffers to send and receive. In Section 6.3.7, we
also describe sending and receiving C++ STL types. However, first we want the reader to
familiarize with the core DSPARLIB abstractions and then we will revisit this topic later.

2Documentation in https://github.com/open-mpi/ompi/wiki/Heterogeneous
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1 class MPISender {
2 MessageHeader StartSendingMessageTo(int target , uint64_t id) { ... }
3 MessageHeader SendStopMessageTo(int target , uint64_t id) { ... }
4 DemandSignal SendDemand(int target) { ... }
5 template <typename T>
6 void SendTo(MessageHeader &header , T &buffer) {
7 size_t totalBytes = sizeof(T);
8 MPI_Send (&buffer , (int)totalBytes , MPI_BYTE , header.target ,

MPI_DSPAR_STREAM_MESSAGE , comm);
9 }

10 template <typename T, size_t I>
11 void SendTo(MessageHeader &header , T (& buffer)[I]) {
12 size_t totalBytes = sizeof(buffer);
13 MPI_Send(buffer , (int)totalBytes , MPI_BYTE , header.target ,

MPI_DSPAR_STREAM_MESSAGE , comm);
14 }
15 template <typename T>
16 void SendTo(MessageHeader &header , T *buffer , size_t dimension) {
17 size_t dataSizeInBytes = sizeof(T);
18 size_t totalBytes = dataSizeInBytes * dimension;
19 MPI_Send(buffer , (int)totalBytes , MPI_BYTE , header.target ,

MPI_DSPAR_STREAM_MESSAGE , comm);
20 }
21 };

Listing 5.14 – DSPARLIB MPI Sender.

Similarly to the MPISender , we implemented the MPIReceiver class shown in List-
ing 5.15. For each SendTo method in MPISender, there is a corresponding Receive method
capable of receiving data up to 3-dimensional arrays. It also uses template parameters to
calculate buffer sizes. Notice that both MPISender and MPIReceiver also deal with sending
and receiving demand signals through SendDemand and ReceiveDemand, which are used for
on-demand scheduling.

1 class MPIReceiver {
2 MessageHeader StartReceivingMessage ();
3 DemandSignal ReceiveDemand ();
4 template <typename T>
5 void Receive(MessageHeader &header , T *buffer);
6
7 template <typename T, size_t I>
8 void Receive(MessageHeader &header , T (* buffer)[I]);
9

10 template <typename T>
11 void Receive(MessageHeader &header , T(* buffer), size_t dimension1);
12 };

Listing 5.15 – DSPARLIB MPI Receiver.

By implementing MPISender and MPIReceiver, the calls to MPI are wrapped, mak-
ing sure the correct MPI tags and buffer sizes are used. Furthermore, C++ templates provide
a method to allow the programmer to call the same SendTo method for any data type, ab-
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stracting the serialization process for more complex array types. However, the programmer
must still call SendTo and Receive methods in the correct order to correctly serialize and
deserialize a type.

Another layer of abstraction can be built on top of MPISender and MPIReceiver,
called SendReceive. This class encapsulates the process of serialization and deserialization
for a given type. The interface is shown in Listing 5.16. This class is implemented by the end
user of DSPARLIB. For instance: if the programmer needs to serialize an OpenCV cv::Mat

class, the programmer can implement a class that inherits from SenderReceiver and call
the correct SendTo and Receive method calls. Check that the virtual methods in Sender-

Receiver take MPISender and MPIReceiver parameters as well as MessageHeader& param-
eters. The end user will never create MessageHeader instances by themselves, DSPARLIB

will automatically handle them whenever a message needs to be sent. The OnStart method
is called after MPI_Init is called. This is useful if the programmer wants to set up a MPI_-

Datatytpe and use low-level MPI_Send and MPI_Send instead of the higher-level MPISender
and MPIReceiver objects.

1 template <typename T>
2 class SenderReceiver
3 {
4 virtual void Send(MPISender &sender , MessageHeader &msg , T &data) =

0;
5
6 virtual T Receive(MPIReceiver &sender , MessageHeader &msg) = 0;
7
8 virtual void OnStart (){ };
9 };

Listing 5.16 – SenderReceiver class.

Some programs might only need to serialize simple structs or primitive types like
int, double, char. In these cases, the programmer does not need to define a Sender-

Receiver, because DSPARLIB already provides a generic SenderReceiver to send any type
contiguous in memory. We show the implementation in Listing 5.17, and how to instantiate
it in line 21.

1 namespace dspar {
2 template <typename T>
3 class TrivialSenderReceiver : public SenderReceiver <T> {
4 void Send(MPISender &sender ,MessageHeader &msg , T &data) {
5 sender.SendTo(msg , data);
6 };
7 T Receive(MPIReceiver &receiver , MessageHeader &msg) {
8 T data;
9 receiver.Receive(msg , &data);

10 return data;
11 };
12 };
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13
14 template <typename T>
15 TrivialSendReceive <T> SendReceive () {
16 return TrivialSendReceive <T>();
17 };
18
19 }
20
21 auto doubleSenderReceiver = dspar:: SenderReceiver <double >();

Listing 5.17 – TrivialSenderReceiver class.

Finally, we show how to send a dynamically allocated pointer in Figure 5.18. We
represent an integer array with a struct called IntArray, which contains the size and the
pointer of the allocation. The sender first sends the size field. In the receiving side, we
instantiate the struct and receive the size, passing a pointer to the size field. The array
ptr is sent by specifying its size. The receiver allocates data and passes the buffer ptr and
size to receive it.

1 struct IntArray {
2 size_t size;
3 int* ptr;
4 }
5
6 ...
7
8 class SizedPtrSenderReceiver : public SenderReceiver <IntArray > {
9 void Send(MPISender &sender ,MessageHeader &msg , IntArray &data) {

10 sender.SendTo(msg , data.size);
11 sender.SendTo(msg , data.ptr , data.size);
12 };
13 IntArray Receive(MPIReceiver &receiver , MessageHeader &msg) {
14 IntArray data;
15 receiver.Receive(msg , &data.size);
16 data.ptr = new int[data.size];
17 receiver.Receive(msg , data.ptr , data.size);
18 return data;
19 };
20 };

Listing 5.18 – Sending structs with pointers.

C++ compilers implement RTTI (Run-Time Type Information), which provides infor-
mation about the types during runtime. However, it does not work for automatic serialization
purposes. RTTI provides basic information about a type and does not allow to list the fields
of a struct. Furthermore, there is no standard way to get the size of a dynamically allocated
pointer. The programmer needs to specify the size of the allocations. However, other details
are abstracted so that DSPARLIB makes this process significantly simpler. In many cases, a
single SendTo call may be sufficient to serialize the data, without dealing with MPI low-level
details.
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5.8 Pipelines and Farms in DSPARLIB

In this section, we will present the Farm and Pipeline APIs in DSPARLIB. To build
a Farm or Pipeline, the programmer needs to instantiate the wrappers and serializers prop-
erly. However, for the Farm pattern, this can be challenging, given that 4 generic templates
are used in the type definition. These types depend on the input and output types of the
wrappers. In this section, we show the constructors for the patterns and C++11 techniques
to make it easier when using them.

Listing 5.19 shows the type definition for the class FarmPattern, with 4 type param-
eters and 7 constructor arguments. The constructor can be complicated to use, but ensures
the object is correctly initialized with the proper stages and serializers (SenderReceiver
objects). From the 7 constructor arguments, 3 are of type Wrapper and 4 are serializers
(SenderReceiver). It needs 4 serializers: the Farm input, Emitter output (which is also the
Worker input), Worker output (which is also the Collector input), and the Farm output (Col-
lector output).

1 template <typename EmitterInput ,
2 typename EmitterOutput ,
3 typename WorkerOutput ,
4 typename CollectorOutput >
5 class FarmPattern : public AbstractPipelineElement {
6 FarmPattern(
7 SenderReceiver <EmitterInput > &worldToEmitter ,
8 Wrapper <EmitterInput , EmitterOutput > &emitter ,
9 SenderReceiver <EmitterOutput > &emitterToWorkers ,

10 Wrapper <EmitterOutput , WorkerOutput > &worker ,
11 SenderReceiver <WorkerOutput > &workerToCollector ,
12 Wrapper <WorkerOutput , CollectorOutput > &collector ,
13 SenderReceiver <CollectorOutput > &collectorToWorld) { }
14 }

Listing 5.19 – FarmPattern constructor.

DSPARLIB also allows instantiating Pipeline stages. These Pipeline stages can
be used in Pipeline compositions, which will be shown later. The constructor for Pipeline-
Stage is shown in Listing 5.20. Notice that this class also extends from another class called
AbstractPipelineElement, which allows Pipeline composition with Stages and Farms. The
constructor of PipelineStage takes a stage and 2 serializers for the input and output types.

1 template <typename TIn , typename TOut >
2 class PipelineStage:
3 public AbstractPipelineElement
4 {
5 PipelineStage(Wrapper <TIn , TOut > &_wrapper ,
6 SenderReceiver <TIn > &_inputReceiver ,
7 SenderReceiver <TOut > &_outputSender) {}



105

8 }

Listing 5.20 – PipelineStage class.

Listing 5.21 shows how the programmer can construct these objects. It is possible
to use C++ type inference and the auto keyword. This allows the programmer to avoid hav-
ing to specify all the type parameters manually. By analyzing the Farm pattern use case, we
found that applications use recurrently the Farm pattern alone without any other stages. In
Section 5.11, we will show several benchmark applications and all of them use only a simple
Farm pattern. dspar::Farm automatically infers the types and fails compilation if the pro-
grammer specifies incompatible stages and serializers. The same is done for dspar::Stage.
We also show a more common use case in the method SimpleFarm, where the application
is just a Farm pattern. The farm object has the following configuration methods: SetWorker-
Replicas to set the number of Worker replicas, SetCollectorIsOrdered to enable ordering
constraints in the Collector, and SetOnDemandScheduling to enable on-demand scheduling.
The default scheduling is round-robin.

Listing 5.21 also shows the Pipeline object, which is used for Pipeline composition.
The stages of the Pipeline are passed as parameters. The method Start calculates the
complete Pipeline graph and which MPI ranks will run in which stage. Each MPI rank process
will be responsible for a stage. This process will be described with more detail later.

1 void PipelineComposition () {
2 auto doubleSerializer = dspar:: SendReceive <double >();
3
4 auto stageBeforeFarm = dspar:: Stage(firstStage , doubleSerializer);
5
6 auto farm = dspar::Farm(
7 doubleSerializer ,
8 emitter , doubleSerializer ,
9 worker , doubleSerializer ,

10 collector ,
11 doubleSerializer);
12
13 farm.SetWorkerReplicas (10);
14 farm.SetOnDemandScheduling(true);
15 farm.SetCollectorIsOrdered(true);
16
17 auto stageAfterFarm = dspar:: Stage(lastStage , doubleSerializer);
18
19 Pipeline p(& stageBeforeFarm , &farm , &stageAfterFarm);
20 p.Start();
21 }
22
23 void SimpleFarm () {
24 auto doubleSerializer = dspar:: SendReceive <double >();
25 auto farm = dspar::Farm(
26 emitter , doubleSerializer ,
27 worker , doubleSerializer ,
28 collector);
29
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30 farm.SetWorkerReplicas (10);
31 farm.SetOnDemandScheduling(true);
32 farm.SetCollectorIsOrdered(true);
33 farm.Start ();
34 }

Listing 5.21 – Simpler Pipeline creation.

To instantiate patterns, the application programmer must think about how the in-
formation flows through the pattern and build the patterns with the correct types. In Listing
5.22, we show the syntax to build the Farm pattern. In the “edges” of the Farm (Emitter
and Collector), communication with other patterns may happen. In this case, the Emitter’s
input or Collector’s output must be serialized. Therefore, the programmer must specify the
SenderReceiver. TIn and TOut are the generic input and output types of the wrappers.

1 auto farm = dspar::Farm(
2 <if Emitter TIn != Nothing > SenderReceiver <Emitter TIn >
3 <Emitter wrapper >,
4 SenderReceiver <Emitter TOut >
5 <Worker wrapper >,
6 SenderReceiver <Worker TOut >,
7 <Collector wrapper >,
8 <if Collector TOut != Nothing > SenderReceiver <Collector TOut >
9 );

Listing 5.22 – Farm instantiation syntax.

We explained the patterns API of DSPARLIB and showed how programmers can
use it for parallelizing stream processing applications on distributed-memory architectures.
The next section will explain how these classes are used by the DSPARLIB runtime.

5.9 DSParNode class

In this section, we explain how the wrapper classes are used by the runtime to run
the stream. This section will also explain in detail how the stream is managed, how stream
ordering is done, and how it supports also on-demand scheduling. Listing 5.23 shows the
interface of DSParNode class, which is run by all MPI processes in DSPARLIB.
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1 class DSParNode: public DSparLifecycle
2 {
3 AfterStart OnStart ()
4 void OnStop ()
5 virtual void OnReceiveMessage(MessageHeader &msg)
6 virtual StopResponse OnReceiveStop(MessageHeader &msg)
7 };

Listing 5.23 – DSParNode interface.

DSParNode extends from another class called DSparLifecycle, which is an abstract
class that listens for messages coming from other processes. The only concern of DSPar-
Lifecycle is to notify the derived classes about the most important events of the stream,
such as stream start, stream stop, and new messages. All the methods shown in Listing
5.23 are overriding methods in the base DSParLifecycle class. They are called in a loop as
shown in Listing 5.24. The OnReceiveStop processes a stop signal and returns a StopRe-

sponse telling whether the node must finish execution or ignore the signal. This is useful for
Collectors to keep track of which Workers have stopped and only stop when the last Worker
stops. Similarly, the OnStart method returns whether the node must start receiving mes-
sages immediately after starting or finish execution. This is useful for Emitters that do not
receive stream items.

1 AfterStart behavior = OnStart ();
2 if (behavior == AfterStart :: ReceiveMessages)
3 while (true) {
4 MessageHeader msg =
5 receiver.StartReceivingMessage ();
6 if (msg.type == STOP_TYPE) {
7 StopResponse response = OnReceiveStop(msg);
8 if (response == StopResponse ::Stop)
9 break;

10 }
11 else if (msg.type == MESSAGE_TYPE)
12 OnReceiveMessage(msg);
13 }
14
15 OnStop ();

Listing 5.24 – DSParLifecycle main loop.

When a data message is received, the OnReceiveMessage is called. The class

DSParNode receives the data message and calls the Process method in the Wrapper class,
which was explained in Section 5.5. If the message was received out of order and ordering
constraints are enabled, the data is stored and processed later. This is shown in Listing
5.25. This listing also shows the usage of SenderReceiver on line 2.

1 void OnReceiveMessage(MessageHeader &msg) override {
2 StageInput data = inputReceiver.Receive(this- >GetReceiver (), msg);
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3 if (stageConfiguration.Ordered)
4 ReorderAndProcess(msg , data);
5 else
6 ProcessInput(data , msg);
7 };

Listing 5.25 – DSParNode OnReceiveMessage.

When the node has ordering constraints enabled, the method ReorderAndProcess

is called. The code of this method is in Listing 5.26 and was based on [GHDF18b]. First, the
ID of the message is checked. If the ID is in the expected order, then it is processed immedi-
ately. If the item is out of order, it is stored in an std::priority_queue<MessageToReorder>.
The struct MessageToReorder stores the header and the data. It also implements bool

operator< method to compare the header IDs, which is necessary for the std::priority_-

queue to order the messages in ascending order of the IDs. The message with the lowest
ID is returned by orderedMessages.top() but the ID is checked again. If the ID is out of
order, then the process stops. If the ID is in order, it is processed and removed from the
queue. The variable currentMessage holds the current expected message ID. This ordering
algorithm does not work if a node skips a message (does not call Emit when it receives an
input). Support for these scenarios can be added in the future. This could be supported by
implementing a stream control message to notify when a stream item is skipped by a node.

1 void ReorderAndProcess(MessageHeader &msg ,
2 StageInput &data) {
3 if (msg.id <= this- >currentMessage) {
4 ProcessInput(data , msg);
5 this- >currentMessage ++;
6 while (true) {
7 if (orderedMessages.size() == 0) break;
8 auto top = orderedMessages.top();
9 if (top.header.id > this- >currentMessage) break;

10 ProcessInput(top.data , top.header);
11 orderedMessages.pop();
12 this- >currentMessage ++;
13 }
14 }
15 else {
16 MessageToReorder <StageInput > msgReorder(msg , data);
17 orderedMessages.push(msgReorder);
18 }
19 }

Listing 5.26 – DSParNode Reordering.

The default scheduling is round-robin. The round-robin scheduling tries to emit
data to each node in a circular list. The performance characteristics of this method may
vary between MPI implementations. We observed that Open MPI makes MPI_Send return as
soon as the data is written into an internal buffer or when the target rank finishes receiving it.
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This is allowed by the MPI Standard as discussed in Section 2.9.1. In programs with small
message sizes and a small number of stream items, we observed that the Emitter finishes
executing soon after the program starts, but the Workers may still take a long time to finish
because MPI_Send does not await for the message to be received in the other process.
However, this behavior of MPI_Send is implementation-dependent [For12]. If the number
of buffered messages increases, we Open MPI forces MPI_Send to block until more buffer
space is available. Other MPI implementations may behave differently.

DSPARLIB also implements on-demand scheduling. With on-demand scheduling,
the Workers of a Farm pattern receive new messages only when they request the Emitter
for more work. The Emitter also only emits messages when a Worker sends the demand
request. This can improve load balancing if the network is not a bottleneck. It increases
network usage because more messages are being sent between the processes. To support
on-demand scheduling, we implement a simple demand signaling algorithm. We chose to
name it “demand signaling” because it is similar to Akka Streams, which calls this process
“demand signaling” as explained in Section 2.8.1. Our implementation is simpler and not
as full-featured as Akka Streams. Akka streams uses it to control back-pressure as well.
Although we are not concerned with back-pressure in this moment, this algorithm also pro-
vides a basic back-pressure mechanism because the Emit function (called by the wrapper)
will block until a demand signal is received. This is the mechanism that makes the Emitter
only send data when necessary as shown in Listing 5.27. The demand signal has a sender

field that tells DSPARLIB which rank is demanding more messages.

1 void WaitDemandAndEmit(StageOutput &data) {
2 DemandSignal demand = this- >WaitForDemand ();
3 int targetRank = demand.sender;
4 MessageHeader header = this- >GetSender ().StartSendingMessageTo(

targetRank);
5 outputSender.Send(this- >GetSender (), header , data);
6 };

Listing 5.27 – Wait for demand and emit.

Workers emit the demand signal in 2 moments: when the node starts in the OnStart

method and right after processing a message on OnReceiveMessage. Listing 5.27 shows
this process. Each DSParNode instance has a NodeConfiguration object. When AskForDe-

mandUpstream is true, it will send demand to an upstream MPI rank (source). In the case
of a Worker node, the source is the Emitter rank. The Next method returns the rank of the
Emitter node. It is called Next because the sources variable of type dspar::CircularVector

is a circular iterator: once it reaches the end of the list, it restarts from the beginning. In the
Farm pattern, the Worker has only one source, therefore, Next just returns the same value
over and over. The round-robin scheduling uses this class to iterate over the Worker ranks
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repeatedly. Listing 5.28 shows the OnStart method, but the code in OnReceiveMessage is
similar regarding on-demand scheduling, therefore, we do not show it here.

1 AfterStart OnStart () {
2 stage.Start();
3 stage.Produce ();
4 if (stageConfiguration.AskForDemandUpstream)
5 this- >SendDemand(sources.Next());
6 if (sources.Count() > 0)
7 return AfterStart :: ReceiveMessages;
8 else
9 return AfterStart :: StopNode;

10 };

Listing 5.28 – OnStart method.

5.10 Planning node allocation

Before starting the nodes, DSPARLIB needs to know which node (a DSParLife-

cycle instance) must be ran by a given MPI rank. This section describes the process of
allocating DSPARLIB nodes and ranks of Open MPI.

The programmer can set the parallelism degree of a Farm pattern. This is shown
in Listing 5.21. The simplest Farm instantiation with only 1 Worker replica needs at least
3 processes: 1 process for the Emitter (E), 1 for the Worker (W), and 1 process for the
Collector (C). If the programmer sets N processes for the parallelism degree on a Farm,
then N + 2 processes are needed. It is possible to visualize this specific node configuration
for MPI processes in Figure 5.5.

Rank 0

E

Rank 1

W

Rank 2

C

Figure 5.5 – Early MPI DSPARLIB layout proposal, single Worker.

The latest version of DSPARLIB places the Emitter and Collector as neighbors
(Emitter on rank 0 and Collector on rank 1). The layout of this approach is shown in Figure
5.6. This approach enables testing different degrees of parallelism easier. In our hostfiles,
we are able to isolate the Emitter and Collector by setting their ranks on a particular cluster
node. The first approach, represented in Figure 5.5 would require generating a different
hostfile (process allocation strategy) for each degree of parallelism, because the rank of
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the Collector varies according to the total number of Workers. This approach does not work
when testing Pipeline compositions inside the Farm, but we do not use such composition in
the DSPARLIB benchmarks (Section 5.11).

Rank 0

E

Rank 2

W

Rank 1

C

...

W

Rank N

W

Figure 5.6 – Current MPI DSPARLIB layout, multiple Workers.

If the default Open MPI process allocation is used, rank 0 and 1 will be placed in
the same cluster node equipped with multi-core processor. If the Emitter and Collector are
network or disk I/O intensive, both processes may have degraded performance since they
would compete for limited resources. It can be argued that the process allocation strategy
of DSPARLIB may even increase the chances of having this problem, if no proper hostfiles
are provided.

Each parallel pattern in DSPARLIB implements the AbstractPipelineElement class.
This class informs the Pipeline class how the processes will be allocated. Specifically,
each AbstractPipelineElement class has information about its inputs and outputs and
how many processes are needed in total. These are communicated by rank offsets. A Farm,
for instance, will communicate its input offset as 0 and output offset as 1. If there are other
AbstractPipelineElement instances before the Farm, these offsets will be used to calcu-
late the actual ranks where the Farm will be positioned. For instance: if there are 2 previous
PipelineStage instances before the Farm, the input offset 0 will be summed to 2. There-
fore, the Farm will have its Emitter on rank 2. The output offset 1 will be summed to 2, and
therefore the Farm Collector will be 3. The offset interface is required when implementing
AbstractPipelineElement, and is shown in Listing 5.29.

1 class FarmPattern: public AbstractPipelineElement {
2 int Start(MPI_Comm comm , int startingRank ,
3 std::vector <int > inputRanks ,
4 std::vector <int > outputRanks) {
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5 ...
6 }
7 ...
8 int GetTotalNumberOfProcessesNeeded () override {
9 return 1 + workerReplicas + 1;

10 };
11 std::vector <int > GetInputOffsetRanks () override {
12 return { 0 };
13 }
14 std::vector <int > GetOutputOffsetRanks () override {
15 return { 1 };
16 }
17 };

Listing 5.29 – AbstractPipelineElement offset methods.

Finally, Pipeline identifies the current process rank and then identifies which Ab-

stractPipelineElement will run in the given rank. Once the node is identified, Pipeline
calls the method Start of the AbstractPipelineElement. This method is also shown in List-
ing 5.29. Additionally, the FarmPattern checks whether the given rank is an Emitter, Worker
or Collector.

In Figure 5.7, we show how classes in DSPARLIB relate to each other in a class
diagram. DSparNode inherits from DSParLifecycle. FarmPattern and PipelineStage create
instances of DSparNode and run them based on their process rank. Therefore, we represent
them as an aggregation. The FarmPattern should also aggregate Wrapper and Sender-

Receiver, but in reality they are just a container for these objects. When the Pipeline runs,
the FarmPattern just passes the wrappers to the new instance of DSParNode.

Figure 5.7 – Class relationships in DSPARLIB.



113

5.11 Performance tests

In this section, we present performance experiments. Applications written with
DSPARLIB are compared with the same programs written with MPI directly, with no abstrac-
tions. The Mandelbrot and Prime numbers are data-parallel instead of stream processing
applications. However, data parallel applications can also be expressed in a streaming fash-
ion [Gri16]. We provide a brief description for all the used benchmark applications:

1. BZIP2 is a compression library and program used in many Linux distributions. The
MPIBZIP2 is a parallel version for distributed-memory architectures using Open MPI,
which was based on the Pbzip [Gil04]. The parallelism strategy of MPIBZIP2 is master-
worker, where the master splits the file in smaller blocks, and workers compress the
blocks. The master collects the results and writes the final result to disk [GF17]. In
DSPARLIB, the parallel implementation uses a Farm pattern with ordered constraints.
The Emitter splits the file, the Workers compress the blocks, and the Collector writes
the result to disk.

2. Lane detection: is a program that detects the road lanes on a video stream using
OpenCV [GHDF17]. The computation is CPU intensive. The result is a new video
stream where the road lanes are drawn frame-by-frame. We used a pre-existing
handwritten MPI application [VRJ+20] to compare the performance against DSPAR-
LIB, although we had to fix bugs in the implementation. In both versions, parallelism
is achieved using stream parallelism. The MPI version implements a Farm-like3 com-
putation with ordering constraints implemented manually, while the DSPARLIB version
uses the Farm pattern.

3. Face recognition: is a program that performs face recognition in a video stream us-
ing OpenCV [GHDF17]. A machine learning model is trained at the beginning of the
program and is used to detect a specific face in the video. The result of the stream is a
new video with visual indications where the faces were detected. There were no pre-
existing handwritten MPI versions for this application, therefore, we developed it using
a Farm-like strategy with ordering. The DSPARLIB version uses the Farm pattern with
ordering enabled.

4. Mandelbrot: Computes a black and white image of the Mandelbrot Set [Gri16]. It does
not write an image to the disk. Instead, it just computes it to show on the screen. We
wrote the MPI version ourselves using a Farm-like strategy without ordering. We do not
use a pre-existing Mandelbrot MPI application because we want to ensure the same

3The application implements the components of the Farm (Emitter, Worker and Collector) directly in the
application code.
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sequential code is used in all versions. The DSPARLIB version uses the Farm pattern
with ordering disabled.

5. Prime numbers: Counts the number of prime numbers in a given range [GDTF15]. In
this benchmark, we used the range 0 to 1.2 million. We used a pre-existing handwritten
MPI program [GF17] that performs the same computation using a Farm-like strategy
without ordering. The DSPARLIB version uses the Farm pattern with ordering disabled.

Our tests measured the throughput of the applications compared to the MPI ver-
sions. We also compare the round-robin and on-demand schedulers when they are avail-
able. We do not change the way the original applications measure the throughput. The
throughput is measured by the formula items/time, where items is the total number of stream
items transmitted and time is the execution time of the application. PBZIP2 compression is
measured in MB/second using the size of the original file and the execution time.

All tests ran on LAD (Laboratório de Alto Desempenho) at PUCRS, in the Cer-
rado cluster. Each node has 2 Intel(R)Xeon(R) CPU E5-2620 v3 @ 2.40GHz (12 cores,
24 threads) with 24GB of RAM memory. The MPI implementation is Open MPI 1.4.5. The
operating system is Ubuntu 16.04 64 bits with kernel 4.4.0-146-generic. The machines are
connected via Gigabit Ethernet and InfiniBand QDR 4x (32GBit/s), and Open MPI automati-
cally uses InfiniBand when available 4. The application is compiled on GCC 9.3.0 using -O3
optimizations. OpenCV version is 2.4.13. We allocated the nodes 06 to 13 in the cluster.

We tested the output of all applications to check whether the results using DSPAR-
LIB are the same as the sequential version. For instance, the Lane Detection and Person
Recognition applications generates a video file. We compare the MD5 hash of the DSPAR-
LIB result and the sequential result to certify that they are the same. For the PBZIP2 ap-
plication, we decompress the compressed files produced by mpibzip2 and our version of
PBZIP2 to check whether the decompressed files have the same MD5 hash. The Prime
Numbers application prints the total amount of prime numbers in a range, therefore, we just
check whether the sequential and parallel versions produce the same result. For the Man-
delbrot test, we create a version that generates image files, and again we used an MD5 hash
program to check the result.

With Open MPI, the user can configure how the processes will be allocated in
the cluster using hostfiles and flags in the mpiexec command. Depending on how they
are allocated, the performance characteristics might change. Therefore, we tested different
process allocation configurations. We also set the maximum number of processes on each
node to avoid hyper-threading. This way, each node runs 12 processes on 12 physical cores.
We have 3 process allocation strategies:

1. Isolate Collector and Emitter, fill node first (fillnode-ec-isolate): This strategy
allocates all available cores in the cluster node first, and will only use another node if

4https://www.open-mpi.org/faq/?category=tcp#tcp-auto-disable
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the current node is fully allocated. The Collector and Emitter are allocated in different
nodes (an entired node for them).

2. Collector and Emitter in the same node, fill node first (fillnode-ec-samenode):
This strategy allocates all available cores in the node first, and will only use another
node if the current node is fully allocated. The Collector and Emitter are isolated from
the Workers, but they are placed in the same node.

3. Isolate Collector and Emitter, round-robin allocation (roundrobin-ec-isolate):
This strategy allocates one process in each available node in a round-robin fashion.
For instance: the Worker 2 is placed in node #2, Worker 3 is placed in node #3, and
so on. The Collector and Emitter are isolated: each one runs in a separate node.

Our experiments were configured such as follows. For each application, we test
different degrees of parallelism, from 4 to 72. We start at 4 and increment the parallelism
degree by 4 after testing it 30 times for each process allocation strategy. This process is
also repeated for each of the MPI configurations explained before. The process allocation
strategy that had the best results for most of the applications was roundrobin-ec-isolate.
Therefore, we will focus on showing results for this specific strategy. When necessary, we
show performance results using different process allocation strategies.

5.11.1 Lane detection performance

Figure 5.8 shows the throughput in frames per second (FPS) in the Y-axis, and the
number of Farm Workers (MPI processes) in the X-axis, also called degree of parallelism.
The lines have error-bars to show the standard deviation. Four applications are being tested:
Two pre-existing MPI applications that implement on-demand and round-robin scheduling.
The mpi-ond label refers to the MPI on-demand version and mpi-rr refers to the MPI round-
robin version. Likewise, dspar-ond and dspar-rr are the DSPARLIB on-demand and round-
robin versions, respectively. The 4 applications require ordering in the Collector.

Our peak throughput was 214.55 frames per second with 32 Workers with DSPAR-
LIB on-demand. The on-demand MPI version has similar performance until 28 Workers.
The difference becomes more evident as more processes are used. At 32 Workers, the
bottleneck in disk I/O starts to show. The program stop scaling.

In order to evaluate the disk impact, Figure 5.9 shows the performance of the appli-
cation without writing the resulting video to disk. The performance gap between on-demand
and round-robin scheduling becomes more evident. At 72 Workers, the program is still
speeding up and computes 566.28 frames per second. Although we do not have results for
MPI versions, it is expected a similar behavior.
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Figure 5.8 – Lane detection throughput in frames per second.
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Figure 5.9 – Lane detection throughput in frames per second, no I/O.

The results in Figure 5.8 show that the DSPARLIB version is faster than the MPI
version. We expected the MPI version to be faster because it can perform serialization more
efficiently. Both versions, however, need to send 3 messages to transmit a video frame.
The MPI version uses a header message of size MPI_INT (4 bytes) to communicate the
frame number and 2 messages to send the frame data. DSPARLIB sends a bigger header
message with 24 bytes and then 2 messages to send the frame data. Although DSPARLIB

consumes more network bandwidth, it was not an issue if compared to the MPI version.
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5.11.2 Face recognition performance

Figure 5.10 shows the throughput in frames per second (FPS) of the face recog-
nition application. The application processes 450 video frames of size 640x480 pixels. In
this test, frames are more expensive to compute, and we never reach a disk I/O bottleneck.
At 72 Workers, the application is still scaling well in all versions. The MPI on-demand and
DSPARLIB on-demand versions have similar performance, but DSPARLIB is slightly faster.
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Figure 5.10 – Face recognition throughput in frames per second.

There is a possibility of bias in this test since we wrote the MPI versions ourselves.
If a pre-existing MPI application exists, we would use it, but it was not the case for the
face recognition application. DSPARLIB and MPI are sending and receiving similar mes-
sages, and the MPI version has an advantage since the header messages (message ID)
are smaller. This is similar to lane detection, where header messages are smaller, but
DSPARLIB is still faster. Therefore, there might be room for improvement in the MPI version.

5.11.3 BZIP2 performance

Instead of writing a new MPI streaming version of BZIP2, we use the already ex-
isting program mpibzip2. However, mpibzip2 is a master-worker application instead of a
streaming application. Since the DSPARLIB version isolates the Emitter and Collector, we
isolate the mpibzip2 master in a separate cluster node as well. We compress a 512MB MP4
video file. Since the MP4 file format is already compressed, the compression ratio achieved
by the BZIP2 algorithm is small. We also slightly modified the mpibzip program to allow the
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user to specify a different output file location. At the time of writing this document, the LAD
cluster had some performance issues when writing files to the NFS. This change allows the
benchmark to use the /tmp directory in a local filesystem instead of a network filesystem.
We show both versions: with and without writing to the /tmp file. We did not change any
compression or scheduling code in mpibzip2, only the output directory.

Figure 5.11 shows the performance of all versions. In mpibzip2, the master process
is responsible for reading the data from the uncompressed file, and write the compressed
data to the output file. This causes a networking and synchronization bottleneck since the
master is responsible for a significant part of the network I/O and resources management.
At 44 processes, the mpizip2 master reaches its maximum throughput. The DSPARLIB

version has the advantage of having an extra MPI process for the Collector. In this test, the
Collector is isolated in another cluster node. Consequently, I/O work is divided between two
machines, and the performance continues to scale as more processes are added.
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Figure 5.11 – BZIP2 compression throughput in MB/s.

In Figure 5.12 we show a test without changing the mpibzip2 program. We also
configured the programs to write in the NFS file. The mpibzip2 is even slower than the
previous benchmark on Figure 5.11, and has similar performance to DSPARLIB. Due to the
networking issue, all versions got slower, thus requiring the modification to mpibzip2. Notice
that DSPARLIB reaches only 80MB/s with 72 processes. while in Figure 5.11 we show that
DSPARLIB on-demand reaches 275MB/s.
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Figure 5.12 – BZIP2 compression throughput in MB/s, writing to an NFS filesystem.

5.11.4 Mandelbrot Set performance

The Mandelbrot application computes a 2000x2000 pixel image of the Mandelbrot
set, using 10,000 iterations. The performance difference between the versions is significant
as shown in Figure 5.13. The MPI program was written by ourselves and there might be
room for improvement. The computation is done on a line-by-line basis in all versions, which
is also similar to the shared-memory parallelism strategy proposed in [Gri16].

The differences between DSPARLIB and MPI in this case is large. This is a very
small workload, and minimal measurement differences result in significant differences in
the throughput graph. When we run the DSPARLIB program with dynamic process alloca-
tion, DSPARLIB creates a new communication group containing all the spawned processes.
However, for the MPI versions, all processes live in MPI_COMM_WORLD. We added extra MPI_-

barrier to synchronize the start and finishing points of all processes in order to get an
accurate measurement, but still observe a difference.

In fact, all benchmarks in this chapter show slightly better results for DSPARLIB.
We could not prove that dynamic process allocation strategy provides better performance,
because our experiments were not made to stress this fact. Although the results in this
chapter suggest that Open MPI may perform some optimizations when dynamically allocat-
ing processes, further investigations on this aspect can explain precisely which are the main
reasons that DSPARLIB is better than Open MPI.

Therefore, we also ran a test with a larger workload. The results are shown in
Figure 5.14. The performance between MPI and DSPARLIB is similar, as the small mea-
surement differences are less significant compared to the total test time. In this test, lines
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Figure 5.13 – Mandelbrot Set throughput, size 2000x2000.

near the middle of the Mandelbrot image are more expensive to compute than other re-
gions, causing load balancing issues. The on-demand scheduling is better in this situation,
resulting in better performance for the DSPARLIB and MPI on-demand implementations.
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Figure 5.14 – Mandelbrot Set throughput, size 6000x6000.
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5.11.5 Prime numbers performance

In this benchmark application, the performance difference is bigger than in the Man-
delbrot. This is shown in Figure 5.15. The difference between the on-demand and round-
robin versions is due to load balancing issues. The program checks all numbers between
1 and 1.2 million. An interesting characteristic of this test is the computation involved in
checking whether a number is prime or not. Different numbers have different computation
times, which results in load balancing issues.

The round-robin scheduling is not efficient in this scenario. This is because even
numbers (trivially proven non-prime using number % 2 == 0) are always delivered to the
same Workers. These Workers end up being starved, because their computation is trivial.
Meanwhile, other works have to perform more work. Furthermore, if there are too many
messages enqueued by MPI in a Worker, the Emitter must wait the Worker finish its current
computation since MPI_Send is a blocking operation (assuming our understanding of the MPI
standard MPI_Send is correct in Section 5.9). While the Emitter is blocked, other Workers
must wait to receive new data items and stay idle. Using the on-demand scheduler, Workers
ask for more work as soon as they are ready.
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Figure 5.15 – Prime numbers throughput in numbers checked per second.

Another detail that can be observed in Figure 5.15 is the unstable behavior for the
round-robin versions. To understand why it happens, consider the sequence of numbers a
given process will receive under different degrees of parallelism. The Worker #2 will first
receive the number 3. If there are 60 Workers, the sequence of numbers the Worker #2
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will receive is 3, 63, 123, 183, 243, and so on. With 64 Workers, the sequence changes: it
becomes 3, 67, 131, 195, 259, and so on. The first sequence never gives the process #2 a
number divisible by 5, which can be quickly proven to be non-prime. Meanwhile, the Worker
#3 will always receive even numbers, which are trivial to prove they are not prime. The level
of difficulty is unevenly spread over Workers depending on the sequence. Each parallelism
degree will result in a different sequence and different performance characteristics. The
on-demand scheduler changes this pattern in a non-deterministic way and distributes the
difficulty level among Workers.

5.11.6 Comparison of the process allocation strategies

The round-robin MPI process allocation (roundrobin-ec-isolate) resulted in the
best performance for most of the applications. In this subsection, we will compare the per-
formance results for the process allocation strategies. All applications are using DSPARLIB

with on-demand scheduler shown in the previous subsections. Although roundrobin-ec-

isolate resulted in best performance, it needs 2 extra cluster nodes. For brevity, we do not
show all applications in this chapter, though they have similar behavior.

The Mandelbrot’s results is shown in Figure 5.16. Observe that the roundrobin-

ec-isolate is the best process allocation strategy across all degrees of parallelism. Since
Workers are allocated using round-robin, this can reduce the competition for network re-
sources among processes in the same machine. The difference between fillnode-ec-

isolate and fillnode-ec-samenode is not significant, as can be seen by the error-bars.

The lane detection benchmark is shown in Figure 5.17. This program achieves
the best performance at 32 Workers with roundrobin-ec-isolate. After 36 processes, the
best performance is achieved with fillnode-ec-isolate, but it does not perform better than
roundrobin-ec-isolate with 32 Workers.

For the prime numbers benchmark, the round-robin allocation is significantly bet-
ter for up to 56 processes, as shown in Figure 5.18. This might be due to the way that
roundrobi-/isolate is balancing the network load among more cluster nodes. The other
configurations concentrate the load in a small number of nodes first. For more than 64
Workers, fillnode-ec-isolate offers better performance than roundrobin-ec-isolate ,
achieving more than 300,000 numbers checked per second. There is a small variation in per-
formance for fillnode-ec-isolate and roundrobin-ec-isolate, especially for more than
64 processes.

For the face recognition, we do not show the performance plot for brevity. The the
results are similar to the others: roundrobin-ec-isolate strategy is the best configuration
for most degrees of parallelism. At 72 processes, the fillnode-ec-isolate wins by a small
margin and the roundrobin-ec-isolate standard deviation is significant.
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Figure 5.16 – Mandelbrot benchmark using different process allocation strategies.
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Figure 5.17 – Lane detection benchmark using different process allocation strategies.

5.11.7 Overall performance outcomes

In this section, we presented performance results for DSPARLIB compared to MPI
versions. In all tests, DSPARLIB performs faster or as fast as handwritten MPI programs
in the Cerrado cluster at LAD - Laboratório de Alto Desempenho PUCRS. Specifically, we
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Figure 5.18 – Prime numbers benchmark using different process allocation strategies.

used the range of nodes Cerrado06n to Cerrado13n. Further testing could be done in other
clusters or different machines in the Cerrado cluster. Specifically, it would be interesting
to see whether DSPARLIB still has a performance advantage on a cluster connected via
Ethernet instead of InfiniBand.

In some cases, DSPARLIB was faster than handwritten MPI programs with the
same work scheduling algorithm. However, some results are drastically better. In Section
5.11.4 we described some variables in the tests that are yet to be investigated in more depth,
to better understand why the measured performance is better. Another hypothesis is that
the use of MPI_BYTE disables endian checking and conversion in Open MPI, as explained in
Section 5.7. This could provide a performance advantage because Open MPI would perform
less work. Meanwhile, all MPI handwritten applications use appropriate data types, such as
MPI_INT or a user-defined MPI_Datatype. In this case, Open MPI may perform more work to
encode and decode the data. However, we have not tested this hypothesis.

Furthermore, we show that the roundrobin-ec-isolate process allocation strategy
had the best performance. We expected this to be the case for most degrees of parallelism.
Moreover, when analyzing the performance of the fillnode configurations, separating the
Emitter and Collector in separate cluster nodes seems to have limited effect, and requires
more computing resources.

The round-robin scheduler is the default, because it is the simplest scheduler in
DSPARLIB. For programmers that want to use DSPARLIB, they can try using the on-demand
scheduler to increase performance. This scheduler has consistently better results compared
to the round-robin scheduler for unbalanced workloads, being also easy to enable. For the
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process allocation strategy, we suggest the programmer to test different configurations on
their clusters, as each cluster may perform differently than ours.

5.12 Final Remarks

In this chapter, we described DSPARLIB, a new library for stream parallelism on
MPI. Application programmers that are familiar with libraries such as FastFlow [ADKT17] or
TBB (Thread Building Blocks) [Rei07] will find many similarities in DSPARLIB.

DSPARLIB can make distributed stream programming easier when compared to
handwritten MPI. Furthermore, writing MPI programs can be error-prone. During perfor-
mance testing, we had to fix bugs in handwritten MPI C++ programs due to memory and
logic errors when controlling the stream. DSPARLIB handles the stream correctly and does
not expose low-level details to the application programmer.

Additionally, DSPARLIB also provides on-demand scheduling to improve load bal-
ancing when networking is not a bottleneck. This type of scheduling requires effort to imple-
ment in handwritten MPI. With DSPARLIB, this can be easily enabled with a simple configu-
ration on a Farm pattern. Therefore, application programmers have easier access to features
that increase performance without having to deal with low-level implementation details.

Although the high-level DSPARLIB API does not offer all stream parallelism func-
tionality implemented in other libraries (such as feedback loops and arbitrary computation
graphs of FastFlow), it covers many use cases. Furthermore, the internal structure of
DSPARLIB allows implementing more advanced features in the future.

To increase performance, some optimizations are still left to be implemented, such
as reducing the message header size or sending the header together with the data in a
single MPI_Send call. This can reduce the total number of MPI messages, which is important
in clusters with limited networking capabilities. DSPARLIB currently lacks error handling and
fault tolerance. Future works could implement ULFM (User-level fault mitigation) [BBH+13]
on DSPARLIB, which is supported by Open MPI. The delivery guarantees of DSPARLIB are
only as strong as the underlying MPI implementation. In the case of Open MPI, delivery of
messages is not guaranteed5.

5https://www.open-mpi.org/faq/?category=ft#dr-support
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6. HIGH-LEVEL DISTRIBUTED STREAM PARALLELISM

Our goal is to extend the SPAR language [Gri16] to be used for distributed-memory
architectures [GDTF17]. This chapter aims to describe the investigations, principles and
implementations to make it possible for SPAR without changing the level of abstraction. In
the previous chapter, we have described the DSPARLIB library for distributed stream paral-
lelism. This chapter will describe how SPAR was modified to generate code for DSPARLIB

in the compiler and language levels. To distinguish the shared and distributed-memory im-
plementation, we will refer to “SPAR-multicore” or “multicore version” for the FastFlow code
generation targeting shared-memory architectures. For distributed-memory architectures
code generation with DSPARLIB, we will refer to “SPAR-distributed” or “distributed version”.
When we refer to processes executed by both versions, we will refer to them simply as SPAR.

Section 6.1 will describe the parts of SPAR language that will were changed to
support serialization of dynamically allocated arrays. Section 6.2 will revisit the transforma-
tion rules and show that they have not been changed at all. We also address limitations in
DSPARLIB API and how the code generation process was changed.

Section 6.3 presents details on how the code generation was implemented as well
as refactors in the existing code. In section 6.5, we ran benchmarks of the code generated
by SPAR-distributed and compared the results with programs written with DSPARLIB.

Moreover, we demonstrate that SPAR-distributed can be also used in more complex
programs by parallelizing the Ferret application in Section 6.6, where we explored other
challenges with serialization and how they can be alleviated with the C++ STL.

We assess the programmability of SPAR-distributed in Section 6.7 and present a
table comparing the SLOC of applications in multiple versions (serial, MPI, DSPARLIB, and
SPAR-distributed). Section 6.8 shows where SPAR-distributed still needs to be improved,
exposing limitations that can be addressed in the future. Finally, we conclude this chapter in
Section 6.9 by summarizing our findings.

6.1 New extensions to the SPAR Language

In this work, we intend to preserve the high-level programming abstraction of the
language. However, the distributed-memory environment rises new challenges. In the pre-
vious chapters, we have described the problem of serialization. The DSPARLIB allows the
user to specify how the data is sent to another process.

Stage communication on SPAR is expressed with the spar::Input and spar::

Output annotations. The syntax for both annotations are the same. It accepts a list of vari-
ables that will be sent to another process. In SPAR-multicore it is trivial to communicate data
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between stages, since it is a shared-memory architecture where we can just comunicate with
a queue.

In SPAR-distributed, the actual bytes of the data must be copied to the network. In
case of arrays, we need also inform the data sizes. Listing 6.1 shows the new spar::Input

and spar::Output syntax in line 10. Although the new syntax is array[size], it also sup-
ports arrays of many dimensions. Using this syntax, contiguously-allocated arrays (including
C-style char* strings) can be serialized. This will not work for complex data structures with
data layouts that are not understood by DSPARLIB. We will present a use case of SPAR-
distributed in the Ferret application later (Section 6.6), showing how we serialized complex
Ferret data structures. We will also present the shortcomings of the strategy we used.

1
2 [[spar:: ToStream ]] while (true) {
3 int size = 42;
4 char* array = new char[size];
5 char** array2d = new char*[size];
6 for (int i = 0; i< size; i++) {
7 array2d[i] = new char [10];
8 }
9 ...

10 [[spar::Stage , spar::Input(size , array[size],
11 array2d[size ][10]) ]] {
12 ...
13 }
14 }

Listing 6.1 – New input/output syntax.

SPAR parses the spar::Input and spar::Output syntax using CINCLE’s parsed
tree structure. Currently, SPAR-multicore expects the first syntax node after the annotation
name to be a list of identifiers, where the number of child nodes of each expression (each
identifier) is 1 and it must be an identifier expression. Listing 6.2 shows the relevant part of
the code. The number of child nodes is checked on line 1.

1 if (postfix_expression- >childs_n == 1) {
2 cincle ::node *id_expression = return_node_onlyleft_down(

postfix_expression , NODE_TYPE_id_expression);
3 if (id_expression == NULL) {
4 std::cerr << "NULL ERROR when searching id_expression with:

return_node_onlyleft_down (...) ;" << std::endl;
5 return false;
6 }
7 ...
8 }

Listing 6.2 – Parsing identifiers.



128

When the user enters the new syntax, each expression has 4 nodes. Figure 6.1
presents a visualization of the node tree for arrays with the size expression. The first post-
fix_expression node contains the name of the variable. The nodes lbracket_token and
rbracket_token are the array bracket characters []. The expr_or_braced_init_list will
contain the size of the array as a literal expression (a constant number) or an identifier ex-
pression (a variable containing the size).

Figure 6.1 – Array node tree for array[size].

If the programmer enters a 2D array array[dim1][dim2], the tree needs to be
navigated recursively. The first postfix expression will contain the first array. In Figure 6.2,
the bracket tokens appear inside the first postfix expression too, which has 4 child nodes. We
can extract the array data using a recursive method. Listing 6.3 shows a simplified version
of the parsing method. In lines 4 to 7 we declare variables representing what the nodes
are. Then, we call the method recursively on the postfix expression in line 10. We then
check whether the node is a literal or identifier expression and add it to the sizes array in
lines 12 to 19. When the recursion finds an expression that does not have 4 children nodes,
the recursion ends. There are more checks in the actual code to ensure that each of the 4
children nodes has the types we expect.

The array sizes resulting from the code in Listing 6.3 is later used to generate a
DSPARLIB SenderReceiver. This will be described in Section 6.3.6. The programmer must
be careful on specifying code with this syntax. When using the array as an input, the user
cannot deallocate it inside the stages. SPAR-distributed generates code that deallocates
the array automatically when the item finishes its processing. However, it is possible to
deallocate the array and then allocate a new one if necessary. If the programmer wants to
deallocate the array manually, he must set the size variable to 0 as well. This way, SPAR-
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distributed will not attempt to deallocate the array. However, this is not necessary. It is safer
let SPAR-distributed to manage the memory allocation.

Figure 6.2 – 2D Array node tree for array[dim1][dim2].

1 void parse_array(cincle ::node *expression , std::vector <Declsize_info
>& sizes) {

2 if (expression- >childs_n != 4) return;
3
4 auto postfix = expression- >node_down [0];
5 auto lbracket = expression- >node_down [1];
6 auto between_braces = expression- >node_down [2];
7 auto rbracket = expression- >node_down [3];
8
9 // recurse

10 parse_array(postfix , sizes);
11
12 auto integer_literal = return_node_onlyleft_down(between_braces ,

NODE_TYPE_integer_literal);
13 if (integer_literal != NULL)
14 sizes.push_back(integer_literal);
15 else {
16 auto identifier = return_node_onlyleft_down(between_braces ,

NODE_TYPE_identifier);
17 if (identifier != NULL)
18 sizes.push_back(identifier);
19 }
20 }

Listing 6.3 – Parsing arrays.
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6.2 Transformation rules

We do not changed the transformation rules already designed for SPAR-multicore.
SPAR-distributed generates the same patterns as SPAR-multicore. However, FastFlow has
a flexible API in which Emitters and Collectors of a Farm pattern can be removed. This is
useful when there are many Farms (stages with spar::Replicate) connected in sequence
on a Pipeline. At the moment being, DSPARLIB does not allow removing Emitters and
Collectors. Therefore, we addressed it during the code generation. Section 6.3 explains how
we dealt with this limitation. Since it is related to the data serizalization, this concerns more
at the level of DSPARLIB and it will not require changes on the pattern-based transformation
rules.

Recalling Rule 1 in Equation 6.1, which was introduced in Section 3.2. This is an
annotation schema that has a ToStream region with a sequential code block, represented
by �0, and one replicated stage, represented by [[S0, Rn]]. This rule generates a Farm
without a Collector, which is supported by FastFlow and not by DSPARLIB due to the API
differences.

[[T0]]{�0, [[S0, Rn]]{�1}} ⇒ farm(E(�0), W (�1)) (6.1)

If the stage S0 has an output annotation, represented by Oi , SPAR-multicore will
auto-generate a Collector stage, which can be seen in Rule 2 in Equation 6.2 represented
by C(Ψ). The auto-generated Collector C(Ψ) has a specific purpose: make the Farm result
available outside the ToStream region.

[[T0]]{�0, [[S0, Oi , Rn]]{�1}} ⇒ farm(E(�0), W (�1), C(Ψ)) (6.2)

For SPAR-distributed, we also auto-generate another type of stage: a “placeholder”
stage. A placeholder stage is a stage that receives a value and immediately emits the same
value to the next stage. A placeholder Collector is a Collector that does nothing. If a new
rule was necessary, it could be similar to the Equation 6.3. In this equation, Θ is an auto-
generated placeholder Collector, different from an auto-generated Collector stage Ψ. In the
future, DSPARLIB-distributed could implement support for farm(E , W ), where these rules will
no longer needed. Therefore, the auto-generated placeholder stage is an implementation
detail.

farm(E(�0), W (�1)) ⇒ farm(E(�0), W (�1), C(Θ)) (6.3)
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We demonstrate how the auto-generated placeholders are used in more complex
scenarios in Equation 6.4, where the annotation schema is transformed into a Pipeline with 3
stages and a Farm in the end. Because the last stage S4 is replicated with the Rn annotation,
S4 must become a worker stage in a Farm pattern, due to Definition D2 in Table 3.1. SPAR

uses the previous non-replicated stage S3 as an Emitter. The last stage S4 also the Oi

annotation, therefore it needs a further auto-generated Collector C(Ψ) to collect the results.

[[T0]]{�0, [[S1, Oi ]]{�1}, [[S2, Oi ]]{�2}, [[S3, Oi ]]{�3}, [[S4, Oi , Rn]]{�4}}
⇓

pipe(�0,�1,�2, farm(E(�3), W (�4), C(Ψ)))
(6.4)

Equation 6.5 presents a Pipeline with multiple Farms. In this case, all Farms in the
middle of the Pipeline need Emitter and Collector placeholders Θ while the last Farm needs
an auto-generated Collector Ψ. The last replicated stage S6 uses S5 as Emitter since it is
not replicated, and a generated C(Ψ) to collect the results.

[[T0]]{�0, [[S1, Oi ]]{�1}, [[S2, Oi , Rn]]{�2}, [[S3, Oi , Rn]]{�3},

[[S4, Oi , Rn]]{�4}}, [[S5, Oi ]]{�5}}, [[S6, Oi , Rn]]{�6}}

⇓

pipe(�0, farm(E(�1), W (�2), C(Θ)), farm(E(Θ), W (�3), C(Θ)),

farm(E(Θ), W (�4), C(Θ)), farm(E(�5), W (�6), C(Ψ)))

(6.5)

6.3 Code generation

While the transformation rules did not change, a significant part of the code has
been changed. This implementation is necessary to address the limitations in DSPARLIB

more easily. Additionally, this process helped studying the code and understanding the
compiler code generation internals. Differently from FastFlow API, DSPARLIB only supports
creating wrappers using the Wrapper API as explained in Section 5.5. Support for using
lambdas or functions directly is not implemented. SPAR-multicore generates stages using
function wrappers and ff_node_t wrappers. This complicates code generation because, in
some cases, a ff_node_F becomes necessary to wrap the function while Farm Workers can
receive a plain C++ function directly. In summary, the SPAR-multicore code generator uses
many FastFlow features that DSPARLIB does not support. The new SPAR-distributed code
generation is performed in the following steps:
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1. Process the transformation rules and determine pattern instances;

2. Generate C++ code to instantiate the wrappers;

3. Generate C++ code to instantiate the Farms and Pipeline stages;

4. Generate C++ code to create the Pipeline (pattern invocation);

5. Generate C++ code to synchronize process state.

The SPAR-multicore joins steps 1, 2, and 3. Initially, this was difficult to understand
since rule processing is complex. We separated the rule processing and code generation
parts to make it easier to understand and change. We will show it in the next sections. The
SPAR-distributed code generation steps are represented in Figure 6.3. In yellow we highlight
the steps executed by the SPAR compiler for all architectures and green are the steps of the
SPAR-distributed version. We will explore each of the code generation steps deeper in the
next sections.

Figure 6.3 – SPAR-distributed compiler steps and dependencies.



133

6.3.1 Processing the transformation rules and determining pattern instances

Processing the transformation rules is the most important step. All the next steps
enumerated in Section 6.3 depend on it. First, we address problems in the SPAR-multicore
where code reuse was difficult.

The code generator in SPAR-multicore has 2 concerns: Determining the instantia-
tion of the patterns (we will call it “rule processing”) and generating the C++ code. However,
these concerns were not obvious while reading the internals of the compiler. For the SPAR-
distributed version, we decided to refactor the code. This refactoring process enabled us to
study the code and make it easier for us to understand it.

The SPAR-multicore transformation code loops through the stages (spar::Stage
attributes) and generates C++ FastFlow code directly. Listing 6.4 presents an example of
the current SPAR-multicore pattern code generation. It determines that a Farm must be
instantiated (due to the Replicate annotation) in line 1 and immediately instantiates in line
4 it by concatenating the code to the runtime_init variable.

1 if (spar_region.Stage_list[i]. replicate.nargs == 1) {
2 // initiating a farm
3 if (ordered_flag == true) {
4 runtime_init += "ff_OFarm <" + SPAR_STREAM_NAME + std:: to_string(

spar_region.id) + "> " + STAGE_REGION_NAME + std:: to_string(
spar_region.id);

5 }
6 ...

Listing 6.4 – Example of the SPAR-multicore’s pattern instantiation code.

SPAR-distributed generates code using a different approaches. First, SPAR-distributed
performs rule processing by looping through all the stages, and builds a stage graph. The
graph tells us how stages are connected to each other. SPAR-distributed only generates
code after building the stage graph. This graph was helpful during development because it
provided a simpler view of the connections between stages. The alternative is to generate
code directly, but it was harder to understand as a beginner to the SPAR internals.

Each node in the stage graph is represented by a struct called DSparStage, shown
in Listing 6.5. This struct stores the ID of the stage attribute (spar:Stage), type, replication
expression (for instance: spar::Replicate(5)), wrappers (name of the dspar::Wrapper

generated structs) and the relationship of this stage to other stages. If the stage is an Emitter
or Collector of a Farm pattern, we store the IDs in the fields emitter_of and collector_-

of. If the stage has a spar::Replicate attribute, it becomes a Farm Worker. If the stage
is a Farm Worker, the emitter and collector fields store IDs of the Emitter and Collector
stages, of which this Worker stage is part of. Furthermore, if the stage is a Farm Worker, we
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also set the type field as TYPE_FARM. Therefore, the connections between Farm components
are stored bi-directionally. We also store flags to control whether the Emitter is the ToStream

stage (emitter_is_tostream) or whether the Collector of this stage will be the last stage of
the whole Pipeline (collector_is_last_stage).

1 #define TYPE_STAGE 1
2 #define TYPE_FARM 2
3
4 struct DSparStage {
5 int id;
6 int type; //1 - stage , 2 - farm
7 std:: string replicas;
8 std:: string wrapper_name;
9 std:: string emitter_wrapper;

10 std:: string collector_wrapper;
11 int emitter_of;
12 int collector_of;
13 int emitter;
14 int collector;
15 bool emitter_is_tostream;
16 bool collector_is_last_stage;
17 };

Listing 6.5 – DSparStage struct.

To process the rules, fist we initialize the stages. The initialization is done by the
get_stages function shown in Listing 6.6. This initialization only sets the IDs of the stages
in line 6. The other values are filled with default values that will be changed during rule
processing. Each stage found in the annotated C++ code becomes an item in the vector
dspar_stages. The ToStream_Info parameter in line 1 is generated in a previous stage of
the SPAR compiler before actually invoking the architecture-specific transformations (SPAR-
distributed or SPAR-multicore).

1 std::vector <DSparStage > get_stages(ToStream_Info spar_region) {
2 std::vector <DSparStage > dspar_stages;
3 for (unsigned long int i = 0; i < spar_region.nStages; ++i) {
4 DSparStage s;
5 s.id = i;
6 s.type = -1;
7 s.replicas = "";
8 s.wrapper_name = "NOT_DETERMINED ";
9 s.emitter_of = -1;

10 s.collector_of = -1;
11 s.emitter = -1;
12 s.collector = -1;
13 dspar_stages.push_back(s);
14 }
15 }

Listing 6.6 – DSParStage vector instantiation.
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The rest of the code in the get_stages function is responsible for processing the
rules. The code is too big to show in this document, therefore, we only present a small
fraction of it in Listing 6.7. It demonstrates how the DSparStage values are handled. We
iterate over the stages of a spar::ToStream region in line 4. Then we check in line 5 whether
the stage is the Worker of a Farm. In line 10, we set the emitter_is_tostream field as true

because it is the first annotated block of the stream parallelism region and it is replicated.
This field is named emitter_is_tostream because the code between the spar::ToStream

annotation and the first spar::Stage annotation becomes the Emitter of a Farm pattern
when the first stage is replicated.

1 for (int i = 0; i < spar_region.nStages; ++i) {
2 auto stage = spar_region.Stage_list[i];
3 auto &s = dspar_stages[i];
4 if (i == 0 && spar_region.nStages > 1) {
5 if (stage.replicate.nargs == 1) { //is a farm(E,W, C)
6 s.type = TYPE_FARM;
7 s.replicas = stage.replicate.decl_list [0];
8 s.wrapper_name = STAGE_REGION_NAME + std:: to_string(spar_region.id

) + std:: to_string(stage.id);
9 s.emitter_wrapper = TOSTREAM_REGION_NAME + std:: to_string(

spar_region.id);
10 s.emitter_is_tostream = true;
11 }
12 else { //is a stage
13 s.type = TYPE_STAGE;
14 s.wrapper_name = STAGE_REGION_NAME + std:: to_string(spar_region.id

) + std:: to_string(stage.id);
15 }
16 ...
17 }
18 ...
19 }

Listing 6.7 – Part of the rule processing code.

6.3.2 Generating C++ code to instantiate the wrappers

Before we instantiate the patterns, we need to instantiate the wrappers. Although
we have not explained how the sequential code is moved to the wrappers yet, this process
has already happened at this stage. The process of moving sequential code to wrappers
will be explained later. Each wrapper has a name, and in this step, we just instantiate them.
Listing 6.8 presents the code needed for implementing the wrapper instantiation. We iterate
over the stages and generate the code.

1 for (auto stage: dspar_stages) {
2 auto name = stage.wrapper_name;
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3 runtime_init += name + " " +name + "_wrapper ;\n";
4 }

Listing 6.8 – Wrapper code instantiation.

6.3.3 Generating C++ code to instantiate the Farms and Pipeline Stages

After processing the rules and instantiating the wrappers, we can generate the
Farm pattern and the Pipeline stages. We present a fraction of this code in Listing 6.9.
In this example, we iterate over the stages and check whether the element is a Farm or a
stage. In line 12, we check if the annotated stage block is not being used as a Collector or
an Emitter of another Farm. If this is the case, we do not generate a Pipeline stage, because
it will be part of a Farm pattern. For the Farm case in line 4, a Farm is always generated.
We also check whether the stage has the ToStream block as an Emitter in line 8. In the
actual code (not shown here), we also check whether we need to generate the placeholder
stages. We also set flags such as whether the Farm is ordered, the scheduling algorithm
(round-robin or on-demand), and the number of Worker replicas.

This strategy also removes code repetition. In the SPAR-multicore, the code that
configures the Farm instance (ordering, scheduling, and replicas) is repeated in many parts.
In SPAR-distributed this code is in a single place. In the future, these changes can be
incorporated in SPAR-multicore too.

1 for (size_t i = 0; i < dspar_stages.size(); i++) {
2 auto stage = dspar_stages[i];
3
4 if (stage.type == TYPE_FARM) {
5 std:: string farm_instance = "auto " + stage.wrapper_name + "_call

= dspar:: MakeFarm (\n\t";
6
7 //add emitter
8 if (stage.emitter_is_tostream) {
9 farm_instance += stage.emitter_wrapper + "_wrapper , " +

serializer + ", \n\t";
10 } else { ...
11 ...
12 } else if (stage.type == TYPE_STAGE && stage.collector_of == -1 &&

stage.emitter_of == -1) {
13 ...
14 }
15 ...
16 }

Listing 6.9 – C++ code generation for pattern instances.
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6.3.4 Generating C++ code to create the Pipeline (pattern invocation)

After instantiating the Farms and Stages, we create the Pipeline object. The code
in the SPAR-multicore detects whether there is only a single Farm (where there is no need
for a Pipeline) or if a Pipeline is necessary. Moreover, SPAR-multicore uses a FastFlow
feature called “freezing” to reuse threads when possible. In DSPARLIB, there is no “freezing”
feature, and there is no overhead of using a Pipeline object even when having only a single
Farm pattern. Therefore, we simply add the stages to the Pipeline. Listing 6.10 shows the
code. An important corner case is when the first stage is not the Emitter of a Farm stage,
for instance, a pipe(stage, farm(E , W , C)). In this case, the Emitter is the ToStream block as
can be seen in line 6.

1 std:: string pipeName = "_pipeline" + std:: to_string(spar_region.id);
2 runtime_call += "\n\n";
3 runtime_call += "\ tPipeline _pipeline" + std:: to_string(spar_region.

id) + ";\n";
4
5 if (dspar_stages [0]. type == TYPE_STAGE && dspar_stages [0]. emitter_of

!= -1) {
6 runtime_call += "\t" + pipeName + ".Add(&" + TOSTREAM_REGION_NAME

+ std:: to_string(spar_region.id) + "_call);\n";
7 }
8
9 for (size_t i = 0; i < dspar_stages.size(); i++) {

10 auto stage = dspar_stages[i];
11 bool isFarm = stage.type == TYPE_FARM;
12 bool isStage = stage.type == TYPE_STAGE && stage.collector_of ==

-1 && stage.emitter_of == -1;
13 if (isFarm || isStage) {
14 runtime_call += "\t" + pipeName + ".Add(&" + stage.

wrapper_name + "_call);\n";
15 }
16 }

Listing 6.10 – C++ code generation for the Pipeline pattern.

The code generation process until this point is mostly based on the SPAR-multicore.
However, there are specific problems in the SPAR-distributed that will be addressed in the
next sections.

6.3.5 Result synchronization

When running an MPI program, there are parts of code that will execute in all
processes and other parts of code that only runs in a specific processes. This is know as
SPMD (Single Program Multiple Data). In our case, all code before the [[spar::ToStream]]
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will run in all processes. This means that, when the code reaches the stream parallelism
region, the state of the program in all processes should be the same. However, after the
stream finishes, the result is only available in the Collector process. This is not the case for
the SPAR-multicore since it is a single process with multple threads.

After the stream processing region, the state of the application has to be the same
in all processes. The programmer can use the spar::Output in the spar::ToStream block
to inform which variables are available after the streaming block. Listing 6.11 presents the
use of this annotation in line 2, where the modifications to the out variable is available after
the stream finishes. Consequently, we need to synchronize the state of the variables in
the spar::Output of all processes. In SPAR-distributed, the process state synchronization
can be done with a straightforward messages exchanging in MPI. The Collector sends the
values of the variables to all other processes in the stream. Other processes wait for this
synchronization to continue the execution. All processes have the same result after when
the synchronization finishes.

1 int out = 0;
2 [[spar::ToStream , spar::Input(out), spar:: Output(out)]]
3 while (1) {
4 int i = 0;
5 int j = 0;
6 [[spar::Stage , spar::Input(j), spar:: Output(i)]] {
7 i = compute(j);
8 j++;
9 }

10 ..
11 [[spar::Stage , spar::Input(i, out)]] {
12 out ++;
13 }
14 }
15 std::cout << out << std::endl;

Listing 6.11 – ToStream with Output annotation.

6.3.6 Generating data serialization operators and handling memory allocations

In SPAR-multicore and SPAR-distributed, all the variables in the spar::Input are
aggregated into a single data structure to become the stream item. Consider the example
in Listing 6.11. All the variables in spar::Input annotations (out, i, and j) are put into a
single structure as exemplified in Listing 6.12. A single SenderReceiver is generated for
the struct. In Listing 6.12, we also added the fields arr and arrSize for completeness.
Sending the struct fields is quite trivial while handling arrays is more complicated. This
section describes how we handle C-style dynamically-allocated arrays.
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1 struct progname_spar0{
2 int out;
3 int i;
4 int k;
5 char* arr;
6 int arrSize;
7 bool __spar_should_deallocate;
8 }

Listing 6.12 – Example of the generated struct.

To serialize progname_spar0 in Listing 6.12, we generate the SenderReceiver in
Listing 6.13. Notice that we check for a __spar_should_deallocate flag in line 7, which
is a flag that enables or disables automatic memory deallocation of arrays. The flag is set
true when the data is received in line 19. After processing an item, the array is deallocated
automatically only if the flag is set to true in line 8.

However, the Emitter does not set the deallocation flag as true. SPAR-distributed
cannot automatically deallocate memory of arrays created in the Emitter. It might have been
allocated with the malloc function (if the program uses C-style allocation) or with a custom
memory allocator. Deleting data allocated with malloc using the delete operator may cause
crashes in the program, therefore, we let the user handle the memory deallocation after the
ToStream region.

1 class serializer_for_progname_spar0: public SenderReceiver <
progname_spar0 >{

2 public:
3 void Send(MPISender& sender ,MessageHeader& msg , progname_spar0& data)

override {
4 sender.SendTo(msg ,data);
5 if(data.arrSize > 0) {
6 sender.SendTo(msg ,data.arr ,data.arrSize);
7 if(data.__spar_should_deallocate) {
8 delete [] data.arr;
9 }

10 }
11 };
12 progname_spar0 Receive(MPIReceiver& receiver ,MessageHeader& msg)

override {
13 progname_spar0 data;
14 receiver.Receive(msg , &data);
15 if(data.arrSize > 0) {
16 data.arr = new unsigned char [data.arrSize ];
17 receiver.Receive(msg ,data.arr ,data.arrSize);
18 }
19 data.__spar_should_deallocate = true;
20 }
21 }

Listing 6.13 – Example of the generated serializer.
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When an array is received by another process, we allocate the memory using the
new operator, as can be seen on line 16 of Listing 6.13. After receiving the data, we pass the
data to the spar::Stage. The user can modify this array in-place or reallocate another array,
or even delete it using the appropriate delete operator. If the user deletes it for whatever
reason (it is not needed), then the user must set the arrSize to 0, which avoids a double-free
error. The stage that received the data will also send the modified data to another process.
After the data is sent, we deallocate the array in line 7.

We always set the __spar_should_deallocate on the receiving side. This is be-
cause SPAR-distributed allocated the arrays and we consider that SPAR-distributed owns
the allocation intead of the programmer’s code. In the case of multi-dimensional arrays,
SPAR-distributed generates code that handles memory allocation and deallocation for all di-
mensions. The __spar_should_deallocate flag is only used by SPAR-distributed to control
memory deallocations automatically. The application programmer cannot set this flag.

The first version of the serialization generator used to sent each field of the struct

separately, resulting in 5 MPI_Send calls for the struct in Listing 6.12. For programs that
need to exchange millions of stream items, the overhead becomes significant. We will
present a discussion about the performance of serializers in Section 6.5.

6.3.7 Data serialization for C++ STL types

The SPAR language is based on C++. Therefore, it is important to support sending
and receiving STL types such as std::vector. However, there are many STL types and
we have not supported all of them in this work. For now, we support only std::vector and
std::array. Support for more types can be implemented in DSPARLIB as needed. In this
section, we briefly describe how std::vector is supported.

For std::vector, the user does not need to inform the size of the vector with the
new spar::Input(arr[size]) syntax. This is because std::vector already has a size
property, so DSPARLIB can use it. The user can also send and receive nested std::vector

such as std::vector<std::vector<std::vector<T>>>. An example is presented in Listing
6.14. In line 3 a new 2D vector is created, and it can be passed to the spar:Input without
using the new array syntax.

1 [[spar:: ToStream ]] while (1) {
2 std::vector <std::vector <int >> vec = get2DVector ();
3 [[spar::Stage , spar::Input(vec), spar:: Replicate (10)]] {
4 compute(vec)
5 }
6 }

Listing 6.14 – Sending C++ STL types in SPAR.
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To support serialization of STL types in DSPARLIB, we add new methods to MPI-

Sender and MPIReceiver. Listing 6.15 shows how we implemented the sender. We omit the
receiver implementation for brevity.

1 template <typename T>
2 void SendTo(const MessageHeader &header , std::vector <T> &vector) {
3 SendTo(header , vector.size());
4 if (vector.size() > 0) {
5 SendTo(header , vector.data(), vector.size());
6 }
7 }
8 template <typename T>
9 void SendTo(const MessageHeader &header , std::vector <std::vector <T>>

&vectors) {
10 std::vector <size_t > sizes;
11 for (auto &vec : vectors) {
12 sizes.push_back(vec.size());
13 }
14 SendTo(header , sizes);
15 for (auto &vec : vectors) {
16 if (vec.size() > 0) {
17 SendTo(header , vec.data(), vec.size());
18 }
19 }
20 }

Listing 6.15 – Sending C++ std::vector.

Sending std::vector<T> is straightforward. First, we send the size, and if the
array is not empty, we send the data in lines 3 to 5 of Listing 6.15. The receiver will also
first receive the size, and if the size is larger than 0, it receives the array. However, sending
nested std::vector<std::vector<T>> is more difficult. The naïve method just sends each
one of the inner vectors individually, which causes a problem. The number of individual MPI
messages is almost twice the number of arrays. For instance, if the user has a 1000x30 2D
nested vector structure, DSPARLIB would send 1 message for the outer vector size, 1000
messages for each inner array size, and more 1000 messages to send each array. Instead,
DSPARLIB sends 2 messages for the array sizes (line 14), and 1000 messages for each
array (line 15). We reduced the number of messages from 2001 to 1002.

For 3D-nested vectors, we just call the 2D-nested vector SendTo function repeat-
edly without further optimizations. Since 3D-nested vectors may be less common, a more
optimized implementation can be developed later. For std::array, sending and receiving is
similar. The size of the array is present in the template argument, therefore, it is available at
compile time. The function in Listing 6.16 shows how to capture the size template argument.
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1 template <typename T, size_t I>
2 void SendTo(const MessageHeader &header , std::array <T, I> &array){
3 SendTo(header , array.data(), I);
4 }

Listing 6.16 – Sending C++ std::array.

This strategy allows to evolve serialization in DSPARLIB and SPAR-distributed sep-
arately. Syntactical extensions can be developed for SPAR-distributed without requiring
changes to DSPARLIB. Meanwhile, serialization can be improved by updating DSPARLIB

without changing the compiler. Another strategy to support all STL types is to use libraries
like Cereal [GV17]. However, this was not implemented in DSPARLIB.

6.3.8 Generating sequential wrapper classes

We generate a DSPARLIB Wrapper for each annotated stage. Depending on the
position of the stage, we generate a wrapper with different input and output types. We
perform the following steps:

• The ToStream block is moved to an Wrapper<Nothing, TOut> stage.

• If the last stage is annotated with Output and has Replicate, then we move the se-
quential code to a Wrapper<TIn, TOut> and also automatically generate a Collector to
get the results. This is because the stage is replicated and by definition D2 in Table
3.1, it must be a Farm Worker. By definition D0, it requires an auto-generated block to
gather its results.

• If the last stage is annotated with Output and is not replicated, then we move the
sequential code to a Wrapper<TIn, Nothing>

• If the last stage has no Output annotation and is not marked to be used as a Collector
by the rule processing code described in Section 6.3.1, we move the sequential code
to a Wrapper<TIn, TOut>.

• If the last stage has no output and is marked to be used as a Collector, we move the
sequential code to a Wrapper<TIn, Nothing>.

• For all other cases, we move the sequential code to a Wrapper<TIn, TOut>.

To generate the code for Emitter Wrapper<Nothing, TOut> wrappers, we iterate
over the variables needed by the spar::Input annotation and add them as struct fields
as shown in the Listing 6.17. The Produce method is the code before the first spar::Stage
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annotation. The variables passed to the spar::Input annotation in line 1 become struct
fields in line 7 to 9.

1 [[spar::ToStream , spar::Input(hInfile , blockSize , bytesLeft)]]
2 while (bytesLeft > 0) {
3 ...
4 }
5 // Becomes:
6 struct pbzip_spar_ToStream_spar0: Wrapper <Nothing ,

pbzip_spar_struct_spar0 > {
7 int hInfile;
8 int blockSize;
9 OFF_T bytesLeft;

10 void Produce () override {
11 while (bytesLeft > 0) {
12 ...
13 }
14 }
15 };

Listing 6.17 – Input annotation and struct fields. This example was taken from the code
generated on PBZIP2 application.

In Listing 6.18 we generate code to emit stream data items by instantiating the data
struct in line 1 and filling the memory space of the struct with 0 in line 2. This is necessary
to prevent memory errors when declaring array size variables which were not initialized. An
uninitialized value will contain whatever is in memory, which is likely an invalid value. Filling
the memory with 0 also causes arrays sizes to be 0. The SenderReceiver will not send them
if the sizes are not set after the memset.

1 pbzip_spar_struct_spar0 stream_spar;
2 memset (& stream_spar ,0,sizeof(pbzip_spar_struct_spar0));
3 stream_spar.__spar_should_deallocate = false;
4 stream_spar.CompressedData = CompressedData;
5 stream_spar.outSize = outSize;
6 stream_spar.FileData = FileData;
7 stream_spar.inSize = inSize;
8 Emit (stream_spar);

Listing 6.18 – Setting the stream item fields in the auto-generated stage. This example was
taken from the code generated on PBZIP2 application.

The auto-generated Collector is generated in the same way as the SPAR-multicore.
When the Collector receives data, it copies the values to its fields. These fields are similar
to the Emitter fields shown in Listing 6.18 based on the spar::Output annotation instead
of spar::Input. We generate a Collector Wrapper<TIn, Nothing> if it is the last stage of
the Pipeline or a Wrapper<TIn, TOut> in all other cases. In Listing 6.19, an example of a
generated Wrapper is presented.
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1 struct pbzip_spar_Stage_spar00: Wrapper < pbzip_spar_struct_spar0 ,
pbzip_spar_struct_spar0 > {

2 void Process(pbzip_spar_struct_spar0 & pbzip_spar_Input_spar)
override {

3 {
4 pbzip_spar_Input_spar.outSize = (int)(( pbzip_spar_Input_spar.

inSize *1.01) +600);
5 pbzip_spar_Input_spar.CompressedData = new char [

pbzip_spar_Input_spar.outSize ];
6 ...
7 }
8 Emit (pbzip_spar_Input_spar);
9 }

10 }

Listing 6.19 – Generated stage pattern example. Example taken from generated code for
PBZIP2 application.

This concludes the code generation section. A complete description of every minor
change made to the SPAR-distributed compiler is not feasible. Our description gives an
overall idea of the changes and implementations.

6.4 Compiler flags

Currently, SPAR-multicore has compiler flags that allow the programmer to cus-
tomize the runtime behavior of the program. Some of these flags are specific to features
supported by FastFlow. We attempt to reuse the same flags in SPAR-distributed whenever
possible. In this section, we briefly describe compiler flags supported by SPAR-distributed.

• -spar_cluster: Enables code generation for DSPARLIB instead of FastFlow.

• -spar_process_allocation_dynamic: Enables dynamic process allocation. This en-
ables the program to run using the process described in Section 5.4. Instead of pass-
ing all processes in the command line with -np NUMBER_OF_PROCESSES, DSPARLIB will
spawn the necessary number of processes automatically. If this flag is not used, the
program will abort with an error message when the number of processes passed in the
-np flag is not sufficient.

• -spar_blocking: This option has no effect when used together with -spar_cluster.

• -spar_ordered: All Collectors of generated Farm patterns process items in the order
they were produced. Supported by both SPAR-multicore and SPAR-distributed ver-
sions.
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• -spar_ondemand: Enables the on-demand scheduler. The on-demand scheduler for
DSPARLIB is currently enabled only for communication between Emitters and Workers.
Messages sent from a Collector to another Emitter still uses round-robin scheduling.
This flag is supported by both SPAR-multicore and SPAR-distributed versions.

6.5 Performance evaluation

This section evaluates the performance of handwritten DSPARLIB parallel applica-
tions (tested in Section 5.11) and the parallel applications generated by SPAR-distributed.
In these tests, we ran each application 30 times for each degree of parallelism. All tests ran
on LAD (Laboratório de Alto Desempenho) at PUCRS, in the Cerrado cluster. Each node
has 2 Intel(R)Xeon(R) CPU E5-2620 v3 @ 2.40GHz (12 cores, 24 threads) with 24GB of
RAM memory. The MPI implementation is Open MPI 1.4.5. The operating system is Ubuntu
16.04 64 bits with kernel 4.4.0-146-generic. The machines are connected via Gigabit Ether-
net and InfiniBand QDR 4x (32GBit/s). The application is compiled on GCC 9.3.0 using -O3
optimizations. OpenCV version is 2.4.13. We allocated the nodes 06 to 13 in the cluster.

Our main research goals is not to add significant performance difference when
automatically generating the parallel code. SPAR-distributed has to present performance
results close to DSPARLIB for many types of workloads: video processing (lane detection),
data compression (PBZIP2), and others (Mandelbrot and Prime Numbers). In fact, for the
specific set of applications tested in this section, we will demonstrate that the performance
difference between DSPARLIB and SPAR-distributed is negligible. For measuring purposes,
small changes to the code generated by SPAR-distributed were necessary to precisely take
the execution time only for the stream parallelism region. This is hard to do and guaran-
tee in the annotated code because we need to print the measurements just in the Collec-
tor instead of in all other processes. The Mandelbrot [Gri16], Lane Detection [GHDF17],
PBZIP2 [GDTF17] and Prime Numbers [GDTF15, Gri16] were annotated with SPar in pre-
vious works. However, small code modifications were required, which are discussed later in
Section 6.7. The DSPARLIB versions are the same ones described in Section 5.11.

In the following performance graphs, we compare the applications’ performance
with on-demand and round-robin scheduling. The vertical axis represents the throughput
of the application and the horizontal axis represents the degree of parallelism, i.e. the
number of Worker replicas for the Farm pattern. All tests use round-robin MPI node allo-
cation (–-by-slot flag on mpirun). Emitter and Collector processes have dedicated nodes
and are isolated from each other. The reader must not confuse MPI node allocation with
work scheduling. We used the round-robin node allocation strategy in all tests and on-
demand/round-robin work scheduling when specified. All graphs show the following labels:

• dsparlib-ond: Code written with DSPARLIB and uses the on-demand scheduling.
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• dsparlib-rr: Code written with DSPARLIB and uses round-robin scheduling.

• spar-ond: Code generated with SPAR-distributed and uses on-demand scheduling
with -spar_ondemand compiler flag.

• spar-rr: Code generated with SPAR-distributed and uses round-robin scheduling.

Figure 6.4 plots the Mandelbrot performance results. Using on-demand scheduling,
the performance is the same up to 52 Worker replicas. For 56 processes or more, there is
more standard deviation as shown by the error-bars. The round-robin scheduling is no so
good as on-demand, which was also observed on the DSPARLIB tests.
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Figure 6.4 – Performance comparison between DSPARLIB and SPAR-distributed versions
of the Mandelbrot Set application.

Figure 6.5 plots the PBZIP2 performance results. We compress a 512MB file at
275MB/s with 72 processes with the on-demand versions, and 250MB/s with the round-robin
versions. SPAR did not cause a significant impact on the throughput.

Figure 6.6 plots the performance results for the Lane detection application. The be-
havior of both SPAR and DSPARLIB versions is nearly identical. Since the Lane Detection
Farm Emitter only produces 1858 messages, one for each video frame, we were not con-
cerned with serialization performance. Small microsecond latency variations resulting from
more or less optimized serialization methods would not affect the result significantly for this
application, as the majority of the time is spent in computation. For more than 30 processes,
there are more standard deviation than observed in Section 5.11 because different cluster
nodes were used when executing the tests.
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Figure 6.5 – PBZIP2 application performance comparison, reading the file from a NFS and
saving to a local /tmp folder.
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Figure 6.6 – Lane detection performance comparison between DSPARLIB and SPAR.

The prime numbers application is a case where millions of messages are sent
between processes. Minor inefficiencies in serialization can add up and have a measurable
impact on performance. Figure 6.7 shows this impact. Notice that the DSPARLIB version
is faster. The graph shows only SPAR-distributed vs DSPARLIB on-demand and it rans the
tests on the same nodes as the tests in Section 5.11.

Listing 6.20 shows a fraction of the annotated code for the Prime Numbers appli-
cation. SPAR-distributed needs to serialize the fields is_prime, i, n and t passed in lines
3 and 7. In line 17, we show that SPAR-distributed generates 4 calls to SendTo. On the
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Figure 6.7 – Prime numbers performance comparison between DSPARLIB and unoptimized
SPAR-distributed version.

other hand, the DSPARLIB version calls the SendTo only once. Our hypothesis is that each
MPI_Send call incurs a small overhead.

1 // Annotated code:
2 int t = 0;
3 [[spar::ToStream , spar::Input(n, t), spar:: Output(t)]]
4 for (int i = 2; i <= n; i++) {
5 bool is_prime;
6 [[spar::Stage , spar::Input(is_prime , i),
7 spar:: Output(is_prime), spar:: Replicate(workers)]] { ... }
8 }
9 // Generated Send method:

10 void Send(MPISender & sender ,MessageHeader & msg ,
pn_spar_cluster_struct_spar0 & data) override {

11 sender.SendTo(msg ,data.is_prime);
12 sender.SendTo(msg ,data.i);
13 sender.SendTo(msg ,data.n);
14 sender.SendTo(msg ,data.t);
15 }

Listing 6.20 – Serialization for the Prime Numbers application before optimization.

We implemented an optimization in SPAR-distributed. Instead sending the struct

field by field, we send the whole generated struct at once. This is possible because structs

are contiguous blocks of memory. By sending the whole data block in one call, it reduces
the number of messages MPI_Send calls, thus reducing the overhead. Listing 6.8 shows the
optimized serialization. There is only one call to SendTo in line 3.
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1 void Send(MPISender & sender ,MessageHeader & msg ,
pn_spar_cluster_struct_spar0 & data) override {

2 sender.SendTo(msg ,data);
3 }

Listing 6.21 – Serialization for the Prime Numbers application primes after optimization.

The result of this strategy is shown in Figure 6.8. The throughput of SPAR-distributed
and DSPARLIB is the same for all degrees of parallelism. The round-robin versions perform
poorly with similar throughput between SPAR-distribtued and DSPARLIB. Our strategy im-
proved the throughput of the SPAR-distribtued version of the Prime Numbers application.
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Figure 6.8 – Prime numbers application after optimizing DSPARLIB serialization.

These experiment has shown that SPAR-distributed can achieve close performance
to the DSPARLIB handwritten codes. While there might be small overheads when compared
to handwritten MPI and DSPARLIB, the applications tested in this section, can be consid-
ered with no significant performance differences. There are still a few optimizations in the
code generation phase that can further improve the SenderReceiver performance, such as
creating smaller data structures based on the spar::Input and spar::Output annotations.

6.6 Robust use case: SPAR-distributed for the Ferret application

In the previous sections, we explained how SPAR-distributed generates code and
evaluated the performance compared to handwritten DSPARLIB versions. For these applica-
tions, we used existing annotated code with SPAR-multicore and used the new array syntax
for the spar::Input and spar::Output annotations. In these applications, the array sizes
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were readily available in the source code and they were only arrays with 1 dimension (for
instance, char*). In this section, we present a case study for the Ferret application, where
we parallelize the code using SPAR-distributed.

Ferret is part of the PARSEC benchmarks [LJW+06]. Ferret is like a search engine
that finds images by similarity. Given a query image, it returns a set of images that have
similar contents. Ferret has been annotated before with SPAR-multicore [GHDF18a]. In this
section, we describe how the application can be parallelized with SPAR-distributed showing
3 versions with different annotation schemas.

There are 6 computation phases in the Ferret computation: Load the image queries,
segment, extract, perform the query, rank, and collect the results. The Collector just prints
the results in a file. For the first test, we create a single stage that encompasses the seg-
ment, extract, query, and rank stages. Figure 6.9 represents the topology graph built by
SPAR, which is the normal form of the Farm pattern [AD99].

Load

E

Seg, extract,

query, rank

W
Collector

C

W

...

Figure 6.9 – Ferret - Normal form of the Farm pattern.

The Farm instantiation already provides challenging serialization problems on Fer-
ret. We need to send the image RGB and HSV data from the Emitter to the Farm stage
along with the file name. The user also needs to deserialize the data. In Listing 6.22 shows
the spar::Stage annotation for the replicated stage in the Farm. The following explains how
serialization is done for each variable:

• name: Since it is a C-style null-terminated string, we get the length using strnlen up to
2048 characters and we add 1 to the length for the null terminator character.

• rgb and hsv: We read Ferret’s source code to find their sizes. The functions provided
by Ferret’s CASS framework (Content-Aware Search System) do not return the sizes
for these arrays.
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1 struct all_data *ret;
2 ...
3 ret = file_helper(m_path);
4
5 size_t name_len = strnlen(ret- >first.load.name , 2048);
6 char *name = ret- >first.load.name;
7 name_len += 1;
8
9 int width = ret- >first.load.width;

10 int height = ret- >first.load.height;
11 int hsv_size = DEFAULT_SIZE * DEFAULT_SIZE * CHAN;
12 int rgb_size = DEFAULT_SIZE * DEFAULT_SIZE * CHAN;
13 unsigned char *hsv = ret- >first.load.HSV;
14 unsigned char *rgb = ret- >first.load.RGB;
15
16 cass_list_entry_t *cass_result = NULL;
17 cass_size_t result_size = 0;
18
19 [[spar::Stage ,
20 spar::Input(name[name_len], name_len ,
21 width , height ,
22 hsv[hsv_size], hsv_size ,
23 rgb[rgb_size], rgb_size),
24 spar:: Output(name[name_len], name_len ,
25 cass_result[result_size], result_size),
26 spar:: Replicate(NTHREAD)]]
27 {
28 struct all_data ret2;
29 ret2.first.load.name = name;
30 ret2.first.load.width = width;
31 ret2.first.load.height = height;
32 ret2.first.load.HSV = hsv;
33 ret2.first.load.RGB = rgb;
34
35 ret2.second.seg.name = ret2.first.load.name;
36 ret2.second.seg.width = ret2.first.load.width;
37 ret2.second.seg.height = ret2.first.load.height;
38 ret2.second.seg.HSV = ret2.first.load.HSV;
39
40 //segment , extract , query , rank.
41
42 cass_result = ret2.first.rank.result.u.list.data;
43 result_size = ret2.first.rank.result.u.list.len;
44 }

Listing 6.22 – Annotated stage with SPAR-distributed for Ferret.

It is not straightforward to serialize Ferret’s data structures. The array size informa-
tion is only found inside the .c source code. Even if SPAR-distributed performed sophisti-
cated analysis on the structs to find the sizes of the arrays, the .c files might not be available
(for instance, having access to the header files and shared/static libraries instead of .c files).

We can construct a more complex topology by breaking the Ferret computation
into a sequence of stages. Figure 6.9 depicts this topology. The green Collector and Emitter
nodes (C and E) are placeholder nodes. Since the serialization code is complex, we will
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show only the serialization for the query stage. The code is in Listing 6.23. The following
explains how serialization is done for each value:

• extract_dataset: is the result of the extract stage, which type is cass_dataset_t.
There are 2 array pointers vec and vecset. The cass_dataset_t has size information
for both pointers.

• result_lists_2d: is a 2D array. However, the data structure in Ferret is a nested list.
Each inner list might have different sizes. We need to allocate memory based on the
list with the largest size. We explain the data structure in more detail later.
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Figure 6.10 – Ferret - Pìpeline of Farms.

The problem of serializing Ferret data structures is due to non-contiguous data
and nested data structures. The stage represented in Listing 6.23 performs a query in the
Ferret database system. The result can be a list of results or a “list of lists”, which is like a
2-dimensional list.

1 [[spar::Stage ,
2 spar::Input(
3 extract_dataset , extract_dataset_vec[extract_dataset_vec_size],

extract_dataset_vec_size ,extract_dataset_vecset[
extract_dataset_vecset_size], extract_dataset_vecset_size),

4 spar:: Output(
5 extract_dataset , extract_dataset_vec[extract_dataset_vec_size],

extract_dataset_vec_size , extract_dataset_vecset[
extract_dataset_vecset_size], extract_dataset_vecset_size ,
result_lists_2d_inc , result_lists_2d_len ,

6 result_lists_2d[result_lists_2d_size],result_lists_2d_size ,
7 result_lists_2d_raw_data[result_lists_2d_size ][

result_lists_2d_maxlist_size], result_lists_2d_maxlist_size
8 ),
9 spar:: Replicate(NTHREAD)]] {

10 // deserialize data:
11 struct all_data ret2;
12 ret2.extract.ds = extract_dataset;
13 ret2.extract.ds.vec = extract_dataset_vec;
14 ret2.extract.ds.vecset = extract_dataset_vecset;
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15
16 // perform query
17
18 // serialize the data:
19 auto lists = ret2.second.vec.result.u.lists;
20 result_lists_2d = lists.data;
21 result_lists_2d_inc = lists.inc;
22 result_lists_2d_len = lists.len;
23 result_lists_2d_size = lists.size;
24 result_lists_2d_maxlist_size = 0;
25 for (cass_size_t i = 0; i< result_lists_2d_size; i++) {
26 if (result_lists_2d[i].size > result_lists_2d_maxlist_size) {
27 result_lists_2d_maxlist_size = result_lists_2d[i].size;
28 }
29 }
30 result_lists_2d_raw_data = new cass_list_entry_t *[

result_lists_2d_size ];
31 for (cass_size_t i = 0; i< result_lists_2d_size; i++) {
32 result_lists_2d_raw_data[i] = new cass_list_entry_t[

result_lists_2d_maxlist_size ];
33 for (cass_size_t j = 0; j < result_lists_2d_maxlist_size; j++) {
34 result_lists_2d_raw_data[i][j] = result_lists_2d[i].data[j];
35 }
36 }
37 }

Listing 6.23 – Complex serialization in SPAR-distributed for Ferret.

This 2D list is not represented as a multidimensional C array. Instead, each level
of these lists is represented by the struct shown in Listing 6.24. The cass_result_t lists

field type is defined as ARRAY_TYPE(cass_list_t). Listing 6.24 also shows the expansion of
the ARRAY_TYPE macro.

The nested lists can have different sizes. In SPAR-distributed, we need to transform
this structure into a simpler cass_list_entry_t ** pointer, which is done in the end of
Listing 6.23. Since the new array syntax does not support sending individual sizes for each
of the lists, we need to find the largest list size, then allocate and send lists of that size.
This approach can be inefficient if one of the lists is much larger than the rest. Fortunately,
deserializing is much simpler, consisting of simply instantiating the result and looping through
the result_lists_2d_raw_data, and then assigning the struct fields. The code is shown
in Listing 6.25.

1 typedef struct {
2 uint32_t flags;
3 union {
4 bitmap_t bitmap;
5 cass_list_t list;
6 ARRAY_TYPE(bitmap_t) bitmaps;
7 ARRAY_TYPE(cass_list_t) lists;
8 } u;
9 } cass_result_t;

10
11 //This is the macro expansion of the cass_result_t lists field:
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12 typedef struct {
13 uint32_t flags;
14 union {
15 bitmap_t bitmap;
16 cass_list_t list;
17 ARRAY_TYPE(bitmap_t) bitmaps;
18 struct {
19 cass_size_t inc;
20 cass_size_t size;
21 cass_size_t len;
22 struct {
23 cass_size_t inc;
24 cass_size_t size;
25 cass_size_t len;
26 cass_list_entry_t *data;
27 } * data;
28 } * lists;
29 } u;
30 } cass_result_t;

Listing 6.24 – Ferret cass_result_t struct.

1 struct all_data ret2;
2 ret2.second.vec.result.u.list = result_list;
3 ret2.second.vec.result.u.list.data = result_list_data;
4 for (cass_size_t i = 0; i< result_lists_2d_size; i++) {
5 result_lists_2d[i].data = result_lists_2d_raw_data[i];
6 }
7 ret2.second.vec.result.flags = CASS_RESULT_LISTS |

CASS_RESULT_USERMEM;
8 ret2.second.vec.result.u.lists.data = result_lists_2d;
9 ret2.second.vec.result.u.lists.size = result_lists_2d_size;

10 ret2.second.vec.result.u.lists.inc = result_lists_2d_inc;
11 ret2.second.vec.result.u.lists.len = result_lists_2d_len;
12 ret2.second.vec.ds = &extract_dataset;
13 ret2.second.vec.ds- >vec = extract_dataset_vec;
14 ret2.second.vec.ds- >vecset = extract_dataset_vecset;

Listing 6.25 – Deserialization of Ferret query result.

In the first Farm example, it was not so difficult to find the memory allocation size
required inside the source code of Ferret. However, for the query result, finding the sizes
was significantly harder. We had to look deeper in the .c source code of the libraries to find
the sizes. Due to the difficulty of serializing the query result, we can merge the query and
rank stages. The topology shown in Figure 6.11 avoids many serialization issues, because
all Ferret data structures that need to be done are simple pointers and sizes.

If the user must separate the query and rank, then another option to avoid most of
the serialization complexity is to use std::vector. Listing 6.26 shows the same serialization
performed in Listing 6.23, but simpler.
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Figure 6.11 – Ferret - Pipeline of Farms, merging the query and rank operators.

We evaluate the performance of each topology. We do not have pure MPI or
DSPARLIB versions of Ferret. We only compare the different topologies themselves gen-
erated by SPAR-distributed. The scheduling is on-demand and the MPI process allocation
strategy is round-robin (roundrobin-ec-isolate). Figure 6.12 plots the performance results.
The farm line refers to the Farm topology represented in Figure 6.9. The pipe-farm(4) line
refers to the topology where all stages have separated Farms as shown in Figure 6.10. The
pipe-farm(3) line refers to the topology where the query and rank stages are joined as
shown in Figure 6.11. Finally, pipe-farm-stl(4) is the same topology as Figure 6.10, which
uses std::vector to serialize data.
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Figure 6.12 – Ferret Benchmark, using the input-native dataset.

The normal form of the Farm topology achieved the best result, scaling well up to 48
processes. For all implementations tested in Section 5.11, we avoid using hyper-threading
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by specifying how many processes can be allocated in each node. However, the parallelism
level is set per replicated stage (Farm). There are 4 Farm patterns in pipe-farm(4), where
we need 4 times more processes. For instance, At 72 processes, pipe-farm(4) needs 288
processes for all the Workers and 8 processes for Emitters and Collectors that placeholders.
Therefore, the cluster nodes end up being oversubscribed. They have more processes
running than there are logical cores available in all nodes. Furthermore, it is difficult to map
complex pipelines into MPI machine files as explained in Section 5.10.

1 [[spar::Stage ,
2 spar::Input(
3 extract_dataset , extract_dataset_vec , extract_dataset_vecset),
4 spar:: Output(
5 extract_dataset , extract_dataset_vec , extract_dataset_vecset ,
6 result_lists , result_lists_data , result_lists_2d_data),
7 spar:: Replicate(NTHREAD)]] {
8 // deserialize data:
9 struct all_data ret2;

10 ret2.extract.ds = extract_dataset;
11 ret2.extract.ds.vec = extract_dataset_vec.data();
12 ret2.extract.ds.vecset = extract_dataset_vecset.data();
13 // perform query
14 // serialize
15 result_lists = ret2.second.vec.result.u.lists;
16 result_lists_data = std::vector <cass_list_t >( result_lists.data ,

result_lists.data + result_lists.size);
17 for (auto list: result_lists_data) {
18 result_lists_2d_data.push_back(
19 std::vector <cass_list_entry_t >(list.data , list.data + list.size

));
20 }
21 }

Listing 6.26 – Making serialization easier with C++ std::vector.

Moreover, there is more communication needed for 288 processes (216 processes
for pipe-farm(3)), which may cause performance penalities. DSPARLIB does not use on-
demand scheduling between Workers and Collectors. The Workers simply send their results
to the Collector. This can also contribute for poor performance in both pipe-farm(4) and
pipe-farm(3) since not all of the computation graph is using on-demand scheduling. Load
balancing issues can also incur as some stages might run faster than others and load may
vary on each stream data item.

Using std::vector for serialization in pipe-farm-stl(4) caused no significant per-
formance difference compared to pipe-farm(4). The strategy in pipe-farm(4) involves
copying the array. In practice, the pipe-farm-stl(4) also copies the array because the
std::vector constructor used in Listing 6.26 copies the data as well. Therefore, the over-
head of both operations is similar.
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6.7 Programmability analysis

In this section, we discuss the programmability of SPAR-distributed compared to
DSPARLIB and pure MPI versions. Table 6.7 tabulates the number of source lines of code
for each program without considering comments. Before measuring the lines of code, we
deleted all empty lines and comments and applied automatic code formatting with clang-tidy.
The Serial/Original version refers to versions written to run in a single thread. In the case of
PBZIP, the original PBZIP program can run in multiple threads, but not distributed.

Table 6.1 – SLOC for 4 applications
Mandelbrot Lane Detection PBZIP2 Primes Ferret

Serial/Original 42 114 1388 35 242
MPI On-Demand 147 302 1880 329 N/A
MPI Round-Robin 97 297 N/A 324 N/A
DSPARLIB 161 264 1746 83 N/A
SPAR-multicore 45 117 1909 43 349
SPAR-distributed 45 141 1911 43 376

For the Mandelbrot application, both SPAR-multicore and SPAR-distributed ver-
sions have the same annotations. Notice that the DSPARLIB requires more lines of code
than MPI. DSPARLIB has more lines because every stage wrapper is a class and each
stage requires more code intrusion. In DSPARLIB, changing from round-robin to on-demand
is just a single method call. If we analyze the benefits of DSPARLIB purely by source lines
of code, there is no visual benefit for the Mandelbrot application. However, the MPI code ex-
poses many details such as scheduling and serialization via MPI sends and receives, while
in DSPARLIB it is hidden.

For the Lane Detection program, there is a significant difference between SPAR-
multicore and SPAR-distributed due to the problems mentioned in Section 6.8. We need to
add code that ensures the files are opened and closed by the correct processes. When we
compare DSPARLIB and the MPI versions, DSPARLIB uses fewer lines of code.

The original PBZIP version is 1388 lines of code. The SPAR-multicore and SPAR-
distributed versions have approximately the same number of lines of code. Their differences
are due to the new array syntax. The MPI version is very different and uses a master-slave
model to distribute the data and computation. The DSPARLIB version is derived from a
previous version parallelized with FastFlow.

The prime numbers MPI program is 35 lines for the serial version. For the MPI
versions, the code is much longer because there are more features such as command-line
parsing. Both SPAR-multicore and SPAR-distributed use the same code with 43 lines.
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Ferret does not have an MPI or DSPARLIB version. Due to that, we only measured
the original, SPAR-distributed, and SPAR-multicore versions. Ferret uses more lines of code
in the SPAR-distributed version due to serialization issues explained in Section 6.6.

6.8 Limitations

Although we have demonstrated that SPAR-distributed is effective in parallelizing
stream processing programs, this section elaborates on the limitations of SPAR-distributed.
These limitations need a significant effort to be resolved.

In MPI, all processes need to call MPI_Init(int* argc, char*** argv). Since
MPI-2 does not require the arguments to be valid, the user can pass NULL to them. SPAR-
distributed passes NULL to these arguments when using static process allocation. However,
with dynamic process allocation, we need to call MPI_spawn with the same argc and argv as
the program was initialized.

1
2 void start() {
3 [[spar:: ToStream ]] {
4 ...
5 [[spar::Stage , spar::Input(x)]] {
6 ...
7 }
8 }
9 }

10
11 int main(int argc , char** argv) {
12 start();
13 }

Listing 6.27 – SPAR-distributed process spawning problem.

Consider the code in Listing 6.27, and assume the code is compiled with the -spar_

process_allocation_dynamic flag. The code poses a problem. The [[spar::ToStream]]

does not have access to the argc and argv. There is no portable way to get the argc and
argv outside the main function, consequently, SPAR-distributed will fail when compiling the
program if the code does not have the argc and argv variables in the current scope. The
code in Listing 6.27 can be solved by passing the argc and argv variables to the start

function.

In this case, SPAR-distributed could attempt to find the main function and save
the arguments in a global variable. After, DSPARLIB could use during process spawning.
However, the compiler may have been run in a source file without a main function. In Linux, it
is possible to register a function in the ".init_array" section of the ELF binary, which runs
before the main function and get the argc and argv arguments in this function. However, our
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tentative to use it resulted in segmentation fault errors. Since there is no portable way to get
these arguments outside main, this problem is left unsolved. For now, we assume there are
argc and argv variables in the scope of the ToStream block. If not, then the code will fail in
the compilation. We believe this problem can be solved but requires more effort.

Another problem is opening and closing files from different processes as well as
managing file handles. We had this problem in the Lane Detection application. In Listing
6.28, the open function is executed in all all processes if not properly managed. If all pro-
cesses are running in an NFS (network file system), every process will have access to the
same files. This might be a problem. In this example, we open the file and let the Collector
stage write data to the file. However, all processes will attempt to close the file as well.

1 FILE file;
2 int main(int argc , char** argv) {
3 file = open (...); /*Opens file in all processes */
4 [[spar:: ToStream ]] {
5 ...
6 [[spar::Stage , spar::Input(x), spar:: Output(x), spar:: Replicate ()

]] {
7 ...
8 }
9 [[spar::Stage , spar::Input(x)]] {

10 write(file , ...);
11 }
12 }
13 close(file);
14 }

Listing 6.28 – Opening and closing files.

In the Lane Detection program, the file is a cv::VideoWriter object. The destructor
will attempt to write data to the file before closing it. Since all processes opened the file, every
process will also write data to this file. In an NFS, it is the same file. Some video players
(like VLC) can still reproduce the desired result even with unnecessary data, but this might
cause problems for other file types.

1 VideoWriter result;
2 int main(int argc , char** argv) {
3 result.open(" result.avi", ...);
4 [[spar:: ToStream ]] {
5 [[spar::Stage , spar::Input(x), spar:: Output(image), spar::

Replicate ()]] { ... }
6 [[spar::Stage , spar::Input(image)]] {
7 result.write(image);
8 }
9 }

10 }

Listing 6.29 – Opening and closing files, OpenCV example.
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To circumvent this problem, we currently keep track of which frame is being received
and open the file on the first frame. The workaround is shown in Listing 6.30. The destructor
of the object only writes data to the file if the file is opened. However, only the Collector will
open the file and no extra invalid data will be written to the file. Currently, there is no way
to express this kind of “local resource” in SPAR-distributed. Since the goal of this work is
to add support for distributed computing in SPAR without changing the abstraction level as
much as possible, this problem is also not solved. In these cases, the programmer must be
aware of the distributed environment where the program will be executed.

1 VideoWriter result;
2 int frame = 0;
3 int main(int argc , char** argv) {
4
5 [[spar:: ToStream ]] {
6 ...
7 [[spar::Stage , spar::Input(x), spar:: Output(image), spar::

Replicate ()]] {
8 ...
9 }

10 [[spar::Stage , spar::Input(image)]] {
11 if (frame == 0) {
12 result.open(" result.avi", ...);
13 }
14 result.write(image);
15 frame ++;
16 }
17 }
18 }

Listing 6.30 – Workaround for opening and closing files in multiple processes.

6.9 Final remarks

In this chapter, we introduced the distributed version of SPAR. We have success-
fully generated DSPARLIB code for real-world applications and tested the performance. We
have shown that the same SPAR language can be used for different architectures such as
shared and distributed-memory architectures.

Although there are some limitations to SPAR-distributed, especially when working
with files as described in Section 6.8, we consider that the goals have been achieved. Many
programs have been implemented with SPAR-distributed and complex applications such as
PBZIP2 only required the user to specify array sizes using the new spar::Input(arr[size])

syntax. It is possible to implement support for more C++ STL types later if needed.

SPAR-distributed present minimal performance differences for the tested work-
loads with respect to the handwritten DSPARLIB. Furthermore, we demonstrated in Section
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6.6 that SPAR-distributed also works for more robust pipeline compositions. The perfor-
mance degradation were observed when pipelines are complex due to performance issues
in DSPARLIB regarding load balancing between sequences of Farm patterns. Future works
can improve performance experiments as well as implement better load balancing for com-
plex pipeline compositions.
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7. CONCLUSION

In this work, we tackled the problem of providing distributed stream parallelism ex-
ploitation with higher-level programming abstractions. This topic is especially relevant as
demands for stream processing grew in the last decade. Parallel programming abstrac-
tions for stream parallelism can improve productivity with small performance penalties for
multicore machines when designing them properly [GDTF15, Gri16, GHDF18a, GHDF17].
However, such benefits for distributed-memory architectures are not clearly addressed by
the state-of-the-art parallel programming abstractions such as MPI.

We introduced DSPARLIB, a new skeleton-based library for distributed structured
stream parallelism. DSPARLIB can run in clusters with Open MPI installed. It offers higher-
level and reusable pattern-based abstractions to increase developer’s productivity compared
to MPI. We demonstrated that it efficiently implements communication, serialization, and
work scheduling abstractions, which enables application programmers to scale their stream
processing applications with less effort compared to common MPI implementations. It is
worth mentioning that serialization is often not flexible enough or even not studied in state-
of-the-art libraries. DSPARLIB allows efficient zero-copy serialization using simpler program-
ming abstractions. Also, DSPARLIB extensible features will allow the implementation of fu-
ture improvements for performance optimizations and new abstractions.

Higher-level stream parallelism abstractions were successfully addressed for distri-
buted-memory architectures by extending SPAR’s language and compiler roles. By us-
ing DSPARLIB as the runtime, the SPAR’s compiler source-to-source transformation rules
did not require a redesign. We were able to preserve the easy of use SPAR’s language
syntax and semantic that has been proven to be productive on shared-memory architec-
tures. SPAR compiler was able to generate parallel code automatically without perfor-
mance penalties compared to handwritten DSPARLIB stream programs. Thanks to all these
achievements, SPAR has become a valuable option to application programmers and the first
annotation-based language for expressing stream parallelism in C++ programs with sup-
port to distributed-memory architectures, avoiding significant sequential code refactoring to
enable parallel execution on clusters.

Our work can be further improved in different ways. The following items present
opportunities for continuous advancing this research area:

• Runtime support for hybrid parallelism exploitation: DSPARLIB currently supports
distributed-memory only. We believe there is potential for more performance when us-
ing a hybrid approach, avoiding communication and serialization costs when possible.
Any work towards hybrid support must keep the level of abstraction currently offered
by DSPARLIB. We believe SPAR can reap the benefits of this research without signifi-
cant changes to the compiler if the abstractions are left unchanged. Furthermore, the
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support to hybrid shared, distributed, or heterogeneous (GPUs - Graphics Processing
Units, TPUs - Tensor Processing Units or FPGAS - Field-Programmable Gate Array)
architectures is interesting for programmers efficiently exploit the available parallelism.

• Fault-tolerance and delivery guarantees: Robust applications need to be fault-tolerant.
This is especially true in distributed environments, where there is more opportunity for
hardware and software failures. While Open MPI has some fault-tolerance mecha-
nisms, it does not guarantee delivery of messages. However, this is an important fea-
ture, especially in the context of big-data stream processing. We believe future works
in this area turn DSPARLIB more reliable.

• Autonomic computing research: MPI allows dynamic processes creation at runtime,
opening the door for autonomic computing research in DSPARLIB. There is ongoing
research on autonomic computing for SPAR [VGS+18] focused on shared-memory ar-
chitectures. Future works can explore autonomic computing for distributed-memory
architectures with DSPARLIB and SPAR.

• Language and runtime support for windowing parallel patterns: Future works can
investigate whether it is possible to create annotations for windowing patterns [DMM17]
in SPAR. This would require substantial research effort in language design and runtime
support. Such annotations need to maintain the same level of abstraction currently
found in SPAR while targeting different parallel architectures, which may be quite chal-
lenging.

• Data-parallel patterns and arbitrary nesting: DSPARLIB currently supports nesting
only Farm patterns inside a Pipeline. Some computations are better expressed as a
data-parallel computation using patterns such as Map and Reduce. Support for data-
parallel patterns would make DSPARLIB a more robust library. Future works can also
implement support for arbitrary nesting of these patterns in DSPARLIB.
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