
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

DANIELA KUINCHTNER

SOLVING A MARKOV DECISION PROCESS
MULTIDIMENSIONAL PROBLEM WITH TENSOR

DECOMPOSITION

Porto Alegre
2021

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

SOLVING A MARKOV DECISION
PROCESS MULTIDIMENSIONAL

PROBLEM WITH TENSOR
DECOMPOSITION

DANIELA KUINCHTNER

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Afonso Henrique Correa de Sales

Porto Alegre
2021

DANIELA KUINCHTNER

SOLVING A MARKOV DECISION PROCESS
MULTIDIMENSIONAL PROBLEM WITH TENSOR

DECOMPOSITION

This Master Thesis has been submitted in
partial fulfillment of the requirements for the
degree of Master in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on March 5th, 2021.

COMMITTEE MEMBERS:

Profa. Dra. Karina Valdivia Delgado (USP)

Prof. Dr. Fernando Luis Dotti (PPGCC/PUCRS)

Prof. Dr. Afonso Henrique Correa de Sales (PPGCC/PUCRS - Advisor)

Dedico este trabalho aos meus pais Nadira e Élio.

Somos quem podemos ser, sonhos que pode-
mos ter.
Humberto Gessinger

ACKNOWLEDGMENTS

Primeiramente, quero agradecer à Deus por me dar força, energias positivas e
persistência em toda a minha jornada.

Ao meu orientador, Afonso Sales, e ao meu coorientador, Felipe Meneguzzi, muito
obrigada por todo o conhecimento fundamental desta pesquisa, tanto para a minha for-
mação acadêmica, quanto para a minha formação pessoal.

Agradeço aos meus pais, Nadira e Élio, por todo o apoio emocional e financeiro
que me deram, vocês significam tudo para mim. Saibam que os amo e os admiro muito.

Agradeço aos meus amigos, Anielle Lisboa, Laura Tomaz, Karina Kohl, Gabriel
Paludo e Cássio Trindade, por todo incentivo e ajuda que foram de grande importância
nesses dois anos. Ficarão no meu coração para sempre.

E agradeço à CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Su-
perior) pela oportunidade de uma bolsa de estudos para a realização do Mestrado.

SOLUCIONANDO UM PROBLEMA MULTIDIMENSIONAL DE
PROCESSO DE DECISÃO DE MARKOV UTILIZANDO DECOMPOSIÇÃO

DE TENSORES

RESUMO

Processo de Decisão de Markov (MDP) é um modelo usado para planejamento de
tomada de decisão de agentes em ambientes estocásticos e completamente observáveis.
Embora, muita pesquisa se concentra na solução de problemas de MDPs atômicos em for-
mas tabulares ou MDPs com representações fatoradas, nenhuma se baseia em métodos
de decomposição de tensores. Resolver MDPs usando álgebra tensorial oferece a pers-
pectiva de alavancar avanços em cálculos baseados em tensor para aumentar a eficiência
de solucionadores de MDP. Nesta pesquisa, primeiro, é formalizado problemas multidimen-
sionais de MDP usando álgebra tensorial. Segundo, é desenvolvido um solucionador de
MDP usando o método de decomposição de tensor CANDECOMP-PARAFAC para compactar
as matrizes de transição de estados. O solucionador utiliza os algoritmos de iteração de
valor e iteração de política para computar a solução de forma compacta. Então, os algorit-
mos compactos são avaliados de forma empírica em comparação com métodos tabulares.
Como resultados, é mostrado que a abordagem tensorial pode computar problemas maio-
res usando substancialmente menos memória, abrindo novas possibilidades para métodos
baseadas em tensores para o planejamento estocástico.

Palavras-Chave: inteligência artificial, decomposição CANDECOMP-PARAFAC, processo de
decisão de markov, álgebra tensorial, decomposição de tensores.

SOLVING A MARKOV DECISION PROCESS MULTIDIMENSIONAL
PROBLEM WITH TENSOR DECOMPOSITION

ABSTRACT

Markov Decision Process (MDP) is a model used for planning decision-making of
agents in stochastic and completely observable environments. Although much research
is focused on solving atomic MDP problems in tabular forms or MDP problems with fac-
tored representations, none is based on tensor decomposition methods. Solving MDPs
using tensor algebra offers the prospect of leveraging advances in tensor-based calcula-
tions to increase MDP solvers’ efficiency. In this research, first, we formalize MDP mul-
tidimensional problems using tensor algebra. Second, we develop an MDP solver using
the CANDECOMP-PARAFAC tensor decomposition method to compact state transition ma-
trices. The solver uses the value iteration and policy iteration algorithms to compute the
solution compactly. Then, we empirically evaluate the compact algorithms compared to tab-
ular methods. As a result, we show that the tensor approach can compute larger problems
using substantially less memory, opening up new possibilities for tensor-based methods for
stochastic planning.

Keywords: artificial intelligence, CANDECOMP-PARAFAC decomposition, Markov decision
process, tensor algebra, tensor decomposition.

LIST OF FIGURES

2.1 Agents interact with environments through sensors and actuators. Adapted
from Russel and Norvig (37, Ch. 2, p. 35). 29

2.2 Schematic representation of an MDP. At every stage, the agent takes action
and observes the resulting state s’ (or st+1). Adapted from Oliehoek and
Amato (32, Ch. 2, p. 12). 32

2.3 A GRIDWORLD 3×3 environment that presents the agent with a sequential
decision problem. And an illustration of the transition model of the environ-
ment. Adapted from Russel and Norvig (37, Ch. 17, p. 646). 32

2.4 Fibers of a three-dimensional tensor. (a) First dimension: column; (b) Sec-
ond dimension: row; (c) Third dimension: tube. Adapted from Kolda and
Bader (26). 38

2.5 Slices of a three-dimensional tensor. (a) First dimension: horizontal slices;
(b) Second dimension: lateral slices; (c) Third dimension: frontal slices.
Adapted from Kolda and Bader (26). 38

2.6 The CANDECOMP-PARAFAC decomposition representation. 39

3.1 A two-dimensional 4×3 GRIDWORLD example. 42

3.2 State transition matrix of actions North, South, West , and East illustration. . 43

3.3 Third-order tensor components representation. 46

3.4 Illustration of tensor components of actions North, South, West , and East . . 51

3.5 Example of a Cartesian plane for a two-dimensional 4×3 GRIDWORLD. 52

3.6 Utilities computed by CP-MDP-VI. And policy extracted from the utilities. . . . 53

3.7 A three-dimensional 4×3×2 GRIDWORLD example. 60

3.8 Transition models of actions North, South, West , East , Forward , and Backward
illustration. 61

3.9 Example of a Cartesian plane for a three-dimensional 4×3×2 GRIDWORLD. 64

3.10 Illustration of tensor components of actions North, South, West , East , Forward ,
and Backward . 65

4.1 Runtime (in seconds) of CP-MDP-VI and CP-MDP-PI methods against the
tabular value iteration (TABULAR-VI) and policy iteration (TABULAR-PI) algo-
rithms of 2, 3, 5, 7, and 9 dimensions. 69

4.2 CP-MDP runtime to compute large grid sizes using the compact value and
policy iteration. 70

4.3 Runtime comparison between tabular and compact algorithms on a loga-
rithmic scale. 70

4.4 Memory (in MB) of CP-MDP-VI and CP-MDP-PI methods against the tab-
ular value iteration (TABULAR-VI) and policy iteration (TABULAR-PI) algo-
rithms of 2, 3, 5, 7, and 9 dimensions. 72

4.5 CP-MDP necessary memory to compute large grid sizes using the compact
value and policy iteration. 73

4.6 Memory comparison between tabular and compact algorithms on a logarith-
mic scale. 73

B.1 Runtime of CP-MDP-VI and CP-MDP-PI methods against TABULAR-VI and
TABULAR-PI algorithms of 2, 3, 5, 7, and 9 dimensions on a logarithmic scale. 85

B.2 CP-MDP-VI and CP-MDP-PI runtime to compute large grid sizes on a log-
arithmic scale. 85

B.3 Memory requirements of CP-MDP-VI and CP-MDP-PI methods against TABULAR-
VI and TABULAR-PI algorithms of 2, 3, 5, 7, and 9 dimensions on a logarith-
mic scale. 86

B.4 CP-MDP-VI and CP-MDP-PI memory requirements to compute large grid
sizes on a logarithmic scale. 86

LIST OF TABLES

2.1 PEAS description of task environments. Adapted from Russel and Norvig (37,
Ch. 2, ps. 40,42). 30

2.2 State transition matrix of actions North, South, West, and East for the 3×3
grid example. 33

3.1 Tensor components of actions North, South, West , and East for each state s. 48

3.2 Representation of a transition model matrix. 50

3.3 An example of a transition model matrix of four actions. 50

3.4 State transition matrices of actions North, South, West, and East for the
4×3 grid example. 56

3.5 Computational cost comparison to generate state transition matrices (tabu-
lar) and tensor components (CP-MDP). 56

3.6 Computational cost comparison between TABULAR-VI and CP-MDP-VI al-
gorithms. 58

3.7 Computational cost comparison between TABULAR-PI and CP-MDP-PI al-
gorithms. 59

3.8 Computational cost comparison between CP-MDP-VI and CP-MDP-PI al-
gorithms. 59

3.9 Example of a transition model matrix of six actions. 61

4.1 Experimental setup for each execution: “#”: number of each configuration;
“|S|”: number of states; “|T |”: number of terminals; “|O|”: number of obsta-
cles; “|D|”: number of dimensions; and “|A|”: number of actions. 68

4.2 Average of runtime improvement comparison between (i) CP-MDP-VI and
TABULAR-VI, (ii) CP-MDP-PI and TABULAR-PI, and (iii) CP-MDP-VI and CP-
MDP-PI. 71

4.3 Average of memory usage improvement comparison between (i) CP-MDP-
VI and TABULAR-VI, (ii) CP-MDP-PI and TABULAR-PI, and (iii) CP-MDP-VI
and CP-MDP-PI. 74

A.1 Number of states of each dimension. 83

C.1 Runtime improvement of each grid size. 88

C.2 Memory improvement of each grid size. 89

LIST OF ALGORITHMS

2.1 Value iteration algorithm for calculating utilities of states. Adapted from Rus-
sel and Norvig (37, Ch. 17, p. 653). 34

2.2 The policy iteration algorithm for calculating an optimal policy. Adapted from
Russel and Norvig (37, Ch. 17, p. 653). 35

3.1 Transition model matrix generator . 49

3.2 Tensor components generator . 51

3.3 Successor state s′ of state s generator . 52

3.4 CP-MDP-VI, a compact value iteration algorithm for calculating state utilities. 53

3.5 CP-MDP-PI, a compact policy iteration algorithm for calculating an optimal
policy. 54

LIST OF ACRONYMS

MDP – Markov Decision Process

DBN – Dynamic Bayesian Network

CP – CANDECOMP-PARAFAC, or Canonical Polyadic Decomposition with Parallel Factors

CP-MDP – CANDECOMP-PARAFAC Markov Decision Process

AI – Artificial Intelligence

SVD – Singular Value Decomposition

PCA – Principal Component Analysis

CP-MDP-VI – compact value iteration using CANDECOMP-PARAFAC

CP-MDP-PI – compact policy iteration using CANDECOMP-PARAFAC

TABULAR-VI – tabular value iteration algorithm

TABULAR-PI – tabular policy iteration algorithm

MPI – Modified Policy Iteration

SPI – Structured Policy Iteration

KKT – Karush-Kuhn-Tucker

LIST OF SYMBOLS

M – MDP . 31

S – state space . 31

A – action space . 31

P(s′|s, a) – transition probability function . 31

R – reward function . 31

γ – discount factor . 31

V – utility function . 33

π – policy . 33

π∗ – optimal policy . 33

δ – the maximum change in the utility of any state in an iteration 34

ε – maximum error allowed in the utility of any state . 34

D – dimensions set . 41

L – limits set . 43

S ′(a) – successor states of action a . 44

Cs
(a)[s] – compressed tensor components of states s . 47

Cs
(a)[s

′] – compressed tensor components of successor states s′ 47

Cs
(a)[p] – compressed tensor components of probabilities p . 47

CONTENTS

1 INTRODUCTION . 27

2 BACKGROUND . 29

2.1 DECISION THEORY . 29

2.1.1 MARKOV DECISION PROCESS . 31

2.1.2 FACTORED MARKOV DECISION PROCESS . 36

2.2 TENSOR ALGEBRA . 36

2.3 TENSOR DECOMPOSITION . 37

3 TENSOR-BASED MDP DECOMPOSITION . 41

3.1 TENSOR ALGEBRA FORMALIZATION . 41

3.2 CP-MDP REPRESENTATION . 45

3.3 CP-MDP ALGORITHMS . 49

3.3.1 TRANSITION MODEL MATRIX GENERATOR . 49

3.3.2 TENSOR COMPONENTS GENERATOR . 50

3.3.3 CP-MDP-VI . 53

3.3.4 CP-MDP-PI . 54

3.4 COMPLEXITY AND COMPUTATIONAL COST ANALYSIS 54

3.4.1 PRECOMPUTATION . 55

3.4.2 COMPUTATION . 57

3.5 THREE-DIMENSIONAL GRIDWORLD EXAMPLE . 59

4 EXPERIMENTS . 67

4.1 MDP SCENARIO . 67

4.2 EXPERIMENTAL SETUP . 67

4.3 RUNTIME ANALYSIS . 68

4.4 MEMORY ANALYSIS . 72

5 RELATED WORK . 75

6 CONCLUSION . 77

APPENDIX A – Grid Configuration . 83

APPENDIX B – Logarithmic Scale . 85

APPENDIX C – Runtime and Memory Improvement . 87

27

1. INTRODUCTION

Decision theory is concerned with the reasoning underlying an agent’s choice,
and it provides a framework for an agent’s decisions made under uncertainty. These de-
cisions occur when payoffs from actions are not immediate but instead result from several
actions taken in sequence (37, Ch. 1, p. 10). The work of Richard Bellman (5) formal-
izes a class of sequential decision problems called Markov decision process (MDP), which
is an elegant mathematical formalism to model stochastic domains. Sequential planning
applications, where uncertainty is crucial to account in the process, such as autonomous
robots (11; 7; 24; 29), machine maintenance (1; 31; 15), medical diagnosis (40; 21; 6),
satellite image analysis (45; 38), and refinery controller systems (23; 44) are real-world
problem examples. Such complexities are better captured by stochastic formalisms, like
MDPs, because nontrivial problems have multiple dimensions/features and involve many
state variables.

The solution to an MDP problem, given a stochastic state transition system, is an
optimal policy that defines every state’s optimal action in the domain. Most approaches that
solve such problems using tabular representations, as Value Iteration and Policy Iteration
algorithms (43, Ch. 4), require a large number of mathematical operations and substantial
memory. Such tabular approaches, while mathematically sound, have limited applicability
because of the curse of dimensionality, when the required computational resources scale
exponentially with the number of state variables (2).

By contrast, large MDPs can be modeled compactly if their structure is exploited
in the representation (16) because interactions between states are fairly sparse. Sub-
sequent research developed methods to factorize the transition model, such as Factored
MDPs (8; 16; 14), where the goal to factorize a problem is to decompose it into smaller
objects. Factored MDPs produce compact representations of complex, uncertain systems
allowing an exponential reduction in representation complexity. Such factored approaches
represent states as factored states with internal structure and the state transition matrices
as dynamic Bayesian networks (DBNs).

Increasing computing capacity has enabled tensor-based approaches to decom-
pose multidimensional problems, leading to several applications in signal processing, com-
puter vision, data mining, neuroscience, and machine learning (26; 41). The term multidi-
mensional is related to problems with several features. Assuming that a stochastic state
transition system results from a result of a tensor product, we represent MDP stochastic
state transition matrices using tensor decomposition methods to compress them reduce the
computational cost by improving solver runtime and memory usage of monolithic MDPs.

However, methods to solve factored DBN-based representations do not leverage
advances in tensor decomposition methods to represent large monolithic/atomic MDPs. So,

28

in this research, aiming to improve MDP solvers’ efficiency, we develop an efficient tensor
representation for n-dimensional problems. We characterize our method by a small number
of components representing the state transition matrices, enabling solvers to scale up and
mitigate the curse of dimensionality. We call the resulting approach CP-MDP, addressing
the challenges of (i) reducing the necessary memory and the computational cost required
by tabular methods to compute the solution, and (ii) leveraging advances in tensor process-
ing to further increase solver efficiency of MDP solvers by representing the state transi-
tion matrices as tensor components. Our main contributions are (i) a formalization of MDP
multidimensional problems using tensor algebra, (ii) an implementation of a GRIDWORLD

problem using the CANDECOMP-PARAFAC (10) decomposition method, (iii) implementation
of compact value iteration and policy iteration algorithms, and (iv) a runtime, memory, and
complexity analysis of CP-MDP method compared to tabular approaches.

This work is organized into six chapters. First, in Chapter 2, we provide background
about decision theory, single-agent Markov Decision Process, factored Markov Decision
Process, followed by tensor algebra and tensor decomposition. Second, in Chapter 3, we
detail our proposed method. Then, we show the experimental results of our approach and
compare the results to tabular approaches in Chapter 4. In Chapter 5, we contrast our
approach to related work that has been developed for similar purposes. Finally, in Chapter 6,
we show the contributions, limitations, and future work of this research.

29

2. BACKGROUND

This chapter provides the required background to understand the remaining of this
dissertation. To show the fundamental basis of this research, in Section 2.1, we address the
basic concepts of rational agents, actions, and environments. Followed by Section 2.1.1,
in which we describe the MDP framework for sequential decision making and stochastic
environments, we provide an example of a GRIDWORLD problem and the algorithms usually
used to solve MDP problems: value and policy iteration. However, these algorithms use
tabular computation, and the required memory and processing grow exponentially with the
number of states of the problem. So, in Section 2.1.2, we address an existing method to
compact the problem to reduce computational cost: a factored representation. This method
illustrates large state transition matrices into compact ones using a DBN approach. However,
to leverage advances in tensor processing, we use a tensor decomposition approach, called
CANDECOMP-PARAFAC, as we show its concepts in Section 2.3. We show the core idea of
tensor decomposition in Section 2.2, where we illustrate tensor operations, such as tensor
product.

2.1 Decision Theory

Decision theory, which combines probability theory (22) with utility theory, provides
a formal and complete framework for decisions made under uncertainty by rational/intelligent
agents. An agent perceives its environment through sensors and acts upon that environment
through actuators, as illustrated in Figure 2.1. For example, a robotic agent has cameras
and infrared range finders for sensors and various motors for actuators (37, Ch. 2, p. 34).

?

Percepts

Actions
Actuators

Agent

E
n
viro

n
m
e
n
t

Sensors

Figure 2.1: Agents interact with environments through sensors and actuators. Adapted from
Russel and Norvig (37, Ch. 2, p. 35).

30

The concept of rationality is applied to a wide variety of agents operating in any
imaginable environment (37, Ch. 2, p. 34). The fundamental idea of decision theory is that
an agent is rational if it chooses the action that yields the highest expected utility, averaged
over all the possible outcomes of the action to maximize its performance measure. This is
called the principle of maximum expected utility (MEU). In this context, expected means the
average, or statistical mean of the outcomes, weighted by the probability of the outcome.

The states of the environment an agent inhabits can have different definitions, such
as monolithic and factored state representations. The first method, monolithic or atomic
state representation, relates to where each state of the environment is indivisible and has
no internal structure (37, Ch. 2, p. 57). The second representation, factored state represen-
tation, splits up each state into a fixed set of variables or attributes, each of which can have
a value. While two different atomic states have nothing in common, two different factored
states can share some attributes (37, Ch. 2, p. 58).

In designing an agent, we must specify the task environment, which is the overall
problem description. The task environment is composed of four main properties: (i) the
performance measure, (ii) the environment, (iii) the agent’s actuators, and (iv) sensors for
a given problem. We call this description PEAS, for Performance, Environment, Actuators,
and Sensors (37, Ch. 2, p. 40). Table 2.1 illustrates the settings of six problem examples.

Table 2.1: PEAS description of task environments. Adapted from Russel and Norvig (37,
Ch. 2, ps. 40,42).

Agent type Performance Measure Environment Actuators Sensors

Automated taxi driver
Safe, fast, legal,
comfortable trip,
maximize profits

Roads, other traffic,
pedestrians, customers

Steering, accelerator,
brake, signal, horn,

display

Cameras, sonar,
speedometer, GPS,

odometer, accelerometer,
engine sensors, keyboard

Medical diagnosis system Healthy patient,
reduced costs

Patient, hospital,
staff

Display of questions,
tests, diagnoses,

treatments, referrals

Keyboard entry of symptoms,
findings, patient’s answers

Satellite image analysis system Correct image
categorization

Downlink from
orbiting satellite

Display of scene
categorization Color pixel arrays

Part-picking robot Percentage of parts
in correct bins

Conveyor belt with
parts; bins Jointed arm and hand Camera, joint angle

sensors

Refinery controller Purity, yield,
safety Refinery, operators Valves, pumps,

heaters, displays
Temperature, pressure,

chemical sensors

Interactive English tutor Student’s score
on test

Set of students,
testing agency

Display of exercises,
suggestions, corrections Keyboard entry

As the examples show, the range of task environments that might arise in Artificial
Intelligence (AI) is vast. We can, however, identify a fairly small number of dimensions for
task environments, such as: (i) fully or partially observable; (ii) deterministic or stochastic;
and (iii) discrete or continuous.

First, if an agent’s sensors give it access to the complete state of the environment
at each point in time, the task environment is (i) fully observable. Fully observable environ-
ments are convenient because the agent does not need to maintain any internal state to
keep track of the world. An environment might be partially observable because of noisy and
inaccurate sensors or because parts of the state are simply missing from the sensor data.

31

Second, if the next state of the environment is completely determined by the current
state and the action executed by the agent, then we say the environment is (ii) determinis-
tic; otherwise, it is stochastic when uncertainty about outcomes is quantified in terms of
probabilities. Finally, the (iii) discrete and continuous distinction applies to the state of the
environment, to the way time is handled, and to the perceptions and actions of the agent.
If the environment has a finite number of distinct states, the problem has a discrete set of
perceptions and actions. Unlike continuous-state and continuous-time problems, where the
states and actions sweep through a range of continuous values over time.

These are examples of properties that define the environment complexities and
determine the appropriate agent design and the applicability for implementation (37, Ch. 1,
ps. 42-44). Such complexities of planning in the real world are better captured by stochastic
formalisms, such as Markov Decision Processes, described in the following section.

2.1.1 Markov Decision Process

A Markov Decision Process (MDP) is a framework to model sequential decision
problems for fully observable and stochastic environments with a Markovian transition model.
An agent transitions through an MDP by sequential decision-making, i.e., the agent makes
a series of decisions, generating a history of states in the process. MDPs have been widely
used to model reinforcement learning problems, where the agent goal is to maximize the
expected reward over a sequence of actions (37, Ch. 17, p. 647).

An MDP is formally defined as a tupleM = 〈S,A,P,R, γ〉 (34), where:

• S is the state space;

• A is the action space;

• P is a transition probability function P(s′ | s, a);

• R is a reward function; and

• γ ∈ [0..1] is a discount factor.

States in MDPs are treated as monolithic representations (37, Ch. 2, p. 58), and the
state transitions and decision making in MDPs are characterized by (i) a stochastic transition
system, which determines the probabilities to which state the decision-making agent reaches
after taking action, and (ii) the Markov property, which dictates every transition between
states depends exclusively on the last visited state, rather than the history of states before
that (43, Ch. 3, p. 49).

More specifically, at each time step t the agent interacts with the environment by
taking an action at ∈ A in state st ∈ S. As a consequence, the agent receives a reward rt+1

32

(also known as r’) ∈ R and reaches a new state st+1 (also known as s’) ∈ S with probability
P(st+1|st , at) given the transition probability function (43, Ch. 3, p. 48). The discount factor
γ is a multiplicative term that determines how much to discount the value of future decisions
compared to an equivalent decision at the current time, in other words, it describes the
preference of an agent for current rewards over future rewards (37). A γ value close to 0
leads to “myopic” evaluation, i.e., future decisions hold no value. Whereas a γ value close to
1 leads to a “far-sighted” evaluation. Figure 2.2 illustrates the agent-environment interaction
in an MDP.

s’

a

s s’, r

Figure 2.2: Schematic representation of an MDP. At every stage, the agent takes action and
observes the resulting state s’ (or st+1). Adapted from Oliehoek and Amato (32, Ch. 2, p.
12).

Figure 2.3 shows a GRIDWORLD representation of a simple MDP, where the inter-
action with the environment terminates when the agent reaches one of the terminal states,
marked by +100 or –100 rewards. The agent actions in a given state, in this example, are
North, South, West, and East, where the expected outcome occurs with a probability of 0.8.
Still, with a probability of 0.1, the agent moves at right angles to the intended state, and with
a probability of 0.0, the agent moves in the opposite direction, illustrated by Figure 2.3b.
A collision with a wall (the shaded square and the limits of the environment) results in no
movement (37, Ch. 17, p. 645-646).

Term.
+100

Term.
-100

(a) GRIDWORLD

0.8

0.0

0.10.1

(b) Transition model illus-
tration

Figure 2.3: A GRIDWORLD 3×3 environment that presents the agent with a sequential deci-
sion problem. And an illustration of the transition model of the environment. Adapted from
Russel and Norvig (37, Ch. 17, p. 646).

A transition model describes the stochastic outcome of each action in each state,
denoted by P(st+1|st , at), to determine the probability of reaching state st+1 if action a is

33

taken in state s. The transition model of Figure 2.3b is given by a large state transition
matrix containing probabilities, composing four 9 × 9 matrices, one for each action (North,
South, West, and East), as we show in Table 2.2.

Table 2.2: State transition matrix of actions North, South, West, and East for the 3×3 grid
example.

0.9 0.1 0. 0. 0. 0. 0. 0. 0.
0.1 0.8 0.1 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
0.8 0. 0. 0.2 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.8 0. 0. 0.1 0.1 0.
0. 0. 0. 0. 0. 0. 0.1 0.8 0.1
0. 0. 0. 0. 0. 0.8 0. 0.1 0.1

(a) North

0.1 0.1 0. 0.8 0. 0. 0. 0. 0.
0.1 0.8 0.1 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.2 0. 0. 0.8 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.9 0.1 0.
0. 0. 0. 0. 0. 0. 0.1 0.8 0.1
0. 0. 0. 0. 0. 0. 0. 0.1 0.9

(b) South

0.9 0. 0. 0.1 0. 0. 0. 0. 0.
0.8 0.2 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
0.1 0. 0. 0.8 0. 0. 0.1 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.1 0. 0. 0.9 0. 0.
0. 0. 0. 0. 0. 0. 0.8 0.2 0.
0. 0. 0. 0. 0. 0.1 0. 0.8 0.1

(c) West

0.1 0.8 0. 0.1 0. 0. 0. 0. 0.
0. 0.2 0.8 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.

0.1 0. 0. 0.8 0. 0. 0.1 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.1 0. 0. 0.1 0.8 0.
0. 0. 0. 0. 0. 0. 0. 0.2 0.8
0. 0. 0. 0. 0. 0.1 0. 0. 0.9

(d) East

To complete the environment’s definition, we must specify the utility function for the
agent (37, Ch. 17, p.646). A utility function V(s) is how the agent’s preferences are captured,
assigning a single number to express the desirability of a state (37, Ch. 16, p.621). Because
the decision problem is sequential, the utility function depends on a sequence of states (an
environment history) rather than on a single state, i.e., in each state s, the agent receives a
reward R(s), which may be positive or negative (37, Ch. 17, p.646). An agent behaves in
an environment by following a policy that maps states to actions. A policy is a function that
maps states to actions for the MDP that defines the optimal (or maximum expected utility)
action for every state in the domain. After taking action at a given state, an immediate reward
is given to the agent as feedback from the environment (43, Ch. 1, p. 6). A policy with the
highest expected reward or the expected reward equal to the last generated policy is called
the optimal policy. It maximizes the reward an agent receives over the long run. (π∗), i.e.,
the optimal solution (43, Ch. 3, p. 62). Most algorithms to solve MDPs seek to find a policy
that assigns an (optimal) action choice for each agent at each state (17).

Value Iteration and Policy Iteration are common dynamic programming algorithms
to solve MDPs (17). The basic idea of value iteration is to compute each state’s utility and

34

then use the state utilities to select an optimal action in each state (4). The utility of a state
is the immediate reward for this state plus the expected discounted utility of neighboring
states, assuming the agent chooses the optimal action, i.e., the utility is an expected value
of any stochastic transition by multiplying the value of each outcome by its probability. It is
estimated by a value function (V), and it returns a value computed based on the amount of
reward an agent might expect from future rewards for each state. The Bellman Equation (5),
after Richard Bellman, formalizes this model in Equation 2.1.

V(s) = R(s) + γ max
a∈A(s)

∑
s′
P(s′ | s, a)V(s′) (2.1)

The Bellman equation is the basis of the value iteration algorithm for solving MDPs
(37, Ch. 17, p. 652). Value iteration (Algorithm 2.1) propagates information through the state
space iteratively through local updates until it converges to the optimal value, from which the
optimal policy is extracted.

Algorithm 2.1: Value iteration algorithm for calculating utilities of states. Adapted from Russel
and Norvig (37, Ch. 17, p. 653).

inputs: an MDP with states s ∈ S, actions a ∈ A(s), transition model P(s′|s, a), rewards
r ∈ R(s), and discount γ;
ε: maximum error allowed in the utility of any state.

local variables:
V and V ′: vectors of utilities for states in S, initially zero;
δ: the maximum change in the utility of any state in an iteration.

1: procedure VALUEITERATION(mdp, ε) returns a utility function
2: repeat
3: V ← V ′; δ ← 0
4: for each state s in S do

5: V ′[s]← R(s) + γ max
a∈A(s)

∑
s′
P(s′|s, a) • V[s′]

6: if |V ′[s]− V[s]| > δ then δ ← |V ′[s]− V[s]|
7: until δ < ε (1 - γ)/γ
8: return V

Unlike value iteration, policy iteration alternates in two steps: policy evaluation and
policy improvement (Algorithm 2.2). Policy evaluation is the process of computing the value
function Vπ for a policy π. The algorithms for policy evaluation and finding optimal value
function are highly similar except for a max operation. Whereas policy improvement is the
process of generating a new policy, such that Vπ′(s) ≥ Vπ(s), by acting greedily to π (43,
Ch. 4). The algorithm terminates when the policy improvement step yields no change in
the policy. At this point, the policy is a solution to the Bellman equation, and π must be an
optimal policy (37, Ch. 17, p. 656).

35

Algorithm 2.2: The policy iteration algorithm for calculating an optimal policy. Adapted from
Russel and Norvig (37, Ch. 17, p. 653).

inputs: an MDP with states s ∈ S, actions a ∈ A(s), transition model P(s′|s, a)

local variables:
V: a vector of utilities for states in S, initially zero;
π: a policy vector indexed by state, initially random.

1: procedure POLICY-ITERATION(mdp) returns a policy
2: repeat
3: V ← Policy-Evaluation(π,V, mdp)
4: unchanged? ← true
5: for each state s in S do

6: if max
a∈A(s)

∑
s′
P(s′|s, a) • V[s′] >

∑
s′
P(s′|s, π[s]) • V[s′] then

7: π[s]← arg max
a∈A(s)

∑
s′
P(s′|s, a) • V[s′]

8: unchanged? ← false
9: until unchanged?

10: return π

Summing up, in value iteration, the algorithm starts with a random value function.
Then it finds a new and improved value function using the Bellman operator in an iterative
process until it reaches the optimal value function. Basically, value iteration is composed of
two steps: (i) finding an optimal value function and (ii) one policy extraction. And in policy
iteration, the algorithm starts with a random policy; then, it finds the value function of that
policy using the Bellman operator. This process is called the policy evaluation step. Then, it
finds a new and improved policy based on the previous value function. In this process, which
is called policy improvement step, each policy is guaranteed to be a strict improvement over
the previous one (unless it is already optimal). So, policy iteration is divided into two steps (i)
policy evaluation and (ii) policy improvement, and the two are repeated iteratively until policy
converges.

Dynamic programming algorithms, such as Value and Policy Iteration, are of limited
applicability because of the curse of dimensionality (number of states often grows exponen-
tially with the number of state variables) (43, Ch. 4, p. 87). However, these algorithms are
considered computationally viable ways of solving large stochastic problems in a reason-
able time compared to other programming methods, such as linear programming algorithms,
which become impractical at a much smaller number of states (43, Ch. 4, p. 87).

36

2.1.2 Factored Markov Decision Process

In this section, we briefly introduce Factored MDPs, a method to represent large
MDPs in a compact representation using factored state representations instead of monolithic
ones. The idea of representing a large MDP using a factored model is first proposed by
Boutilier et al. (8), where the state in an assignment to multiple state variables and to a
transition function that compactly specifies the probabilistic dependence of variables in the
next state on a subset of variables in the current state.

Factored MDP allows us to represent complex, uncertain dynamic systems com-
pactly by exploiting problem-specific structure (17). The benefit of using such a representa-
tion is the state transition model can be compactly represented using one of several meth-
ods, the most common being a Dynamic Bayesian Network (DBN). A DBN is a directed
acyclic graph with two layers: one layer represents the current state’s variables, and the
other layer represents the next state (14). This technique allows a compact representation
of the transition model by exploiting the fact that a variable’s transition often depends only
on a small number of other variables (16). Factored MDPs often allow for an exponential
reduction in representation complexity and can model quite substantial real-world problems.

2.2 Tensor Algebra

In the second half of the 19th century, Leopold Kronecker, a German mathemati-
cian, proposed a new tensor-based operation, a generalization of matrices where more than
two dimensions are represented. This extension of Multilinear Algebra, called Tensor Alge-
bra, was represented by an operator called the Kronecker product or tensor product (12).
Since then, many researchers use Kronecker’s product to represent operations on multidi-
mensional structures. However, not until the late 1960s did computer scientists pay attention
to Kronecker extensions to Tensor Algebra. Related work, such as Bellman (3) is one of the
first studies concerning Kronecker’s product applied to Computer Science.

Tensors are generalizations of matrices to higher dimensions; therefore, we repre-
sent tensors as multidimensional arrays (26). An Nth-order tensor is an element of a tensor
product of N vector spaces, each of which has its coordinate system. The order of a ten-
sor is the number of dimensions. A first-order tensor is a vector that contains one index,
a second-order tensor is a matrix that contains two indexes, and tensors of order three or
higher are called higher-order tensors, where a third-order tensor has three indexes (26).
Tensor algebra contemplates tensor-based operations, being one of them the tensor prod-
uct, also known as Kronecker product (3). We show an example of the tensor product of two
matrices A⊗ B and the resulting tensor C in Equation 2.2 .

37

A =

(
a00 a01

a10 a11

)
B =

 b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

 (2.2)

C =

(
a00B a01B
a10B a11B

)
(2.3)

C =

a00b00 a00b01 a00b02 a00b03 a01b00 a01b01 a01b02 a01b03

a00b10 a00b11 a00b12 a00b13 a01b10 a01b11 a01b12 a01b13

a00b20 a00b21 a00b22 a00b23 a01b20 a01b21 a01b22 a01b23

a10b00 a10b01 a10b02 a10b03 a11b00 a11b01 a11b02 a11b03

a10b10 a10b11 a10b12 a10b13 a11b10 a11b11 a11b12 a11b13

a10b20 a10b21 a10b22 a10b23 a11b20 a11b21 a11b22 a11b23

In general, to define the tensor product of two matrices with A dimensions (ρ1×ω1)

and B dimensions (ρ2 × ω2), a convenient observation is the resulting matrix of the tensor
product: (ρ1ρ2 × ω1ω2) dimensions. Which can be considered as composed of ρ1ω1 blocks,
the dimensions of A, each with dimensions (ρ2ω2), the dimensions of B.

The tensor product C = A⊗B is defined by assigning an element value aij bkl to the
position (k , l) in block (i , j), as Equation 2.4 shows. This representation of matrix elements
corresponds to a tensor product.

c[ik],[jl] = aijbkl , where i ∈ [1..α1], j [1..α2], k [1..β1] and l [1..β2] (2.4)

2.3 Tensor Decomposition

In order to determine the tensor decomposition definition, first, we address the (i)
fiber and (ii) slice definitions. (i) Fibers describe tensors as a collection of vectors. Fibers are
the higher-order analog of matrix rows and columns. A fiber is defined by fixing every index
but one. Third-order tensors have column, row, and tube fibers, denoted by x:jk , xi :k , and xij :,
respectively (26). Figure 2.4 represents the fibers of a third-order tensor. (ii) Slices represent
tensors as a collection of matrices. Slices are two-dimensional sections of a tensor, defined
by fixing all indexes but two. Third-order tensors have horizontal, lateral, and frontal slices,
denoted by Xi ::, X:j :, and X::k , respectively (26). Figure 2.5 represents the slices of a third-
order tensor.

The concepts of fibers and slices are called tensor indexing. Tensor indexing cre-
ates sub-arrays (or sub-fields) by indexing some of the given tensor indexes. Consequently,
it can operate with contracted indexes (36). The creation of sub-arrays leads to the main

38

(a) Column. (b) Row. (c) Tube.

Figure 2.4: Fibers of a three-dimensional tensor. (a) First dimension: column; (b) Second
dimension: row; (c) Third dimension: tube. Adapted from Kolda and Bader (26).

(a) Horizontal slices. (b) Lateral slices. (c) Frontal slices.

Figure 2.5: Slices of a three-dimensional tensor. (a) First dimension: horizontal slices; (b)
Second dimension: lateral slices; (c) Third dimension: frontal slices. Adapted from Kolda
and Bader (26).

idea of tensor decomposition, which is a method to extract and explain data properties.
We can consider these methods to be higher-order generalizations of matrix singular value
decomposition (SVD) and principal component analysis (PCA) (26).

Canonical Polyadic Decomposition with Parallel Factors, also known as CANDECOMP-
PARAFAC decomposition or CP decomposition (10; 19; 25) is an example of the tensor
decomposition method. Carroll and Chang (10) introduce the CANDECOMP (canonical
decomposition), and Harshman (18) introduces the PARAFAC (parallel factors). Kiers de-
scribes the use of both methods (CANDECOMP-PARAFAC)(25). CANDECOMP-PARAFAC is the
process that factorizes/decomposes a tensor into sums of individual components, providing
a parallel proportional analysis and an idea of multiple axes for analysis (26). This method
expresses a tensor as a sum of the tensor product of vectors. We illustrate a CANDECOMP-
PARAFAC decomposition of a third-order tensor X in Figure 2.6.

As we show in the third-order tensor example X ∈ NI×J×K , we can express the sum
of individual components as follows:

39

+ + +. . .
c

a1

b1

c1

a2

b2

c2

aN

bN

cN

Figure 2.6: The CANDECOMP-PARAFAC decomposition representation.

X ≈
N∑

n=1

(an ⊗ bn ⊗ cn) (2.5)

where N is a positive integer and an ∈ NI , bn ∈ NJ , and cn ∈ NK for n = 1, ..., N. Therefore,
we can describe Equation 2.5 as follows:

xijk ≈
N∑

n=1

(ainbjnckn) for i = 1, ..., I; j = 1, ..., J; k = 1, ..., K .

Therefore, aiming to reduce runtime and memory usage for MDPs solvers, the state
transition matrices of MDPs can be taught as sums of tensor components, as Figure 2.6
illustrates.

40

41

3. TENSOR-BASED MDP DECOMPOSITION

In this chapter, we introduce our tensor-based MDP decomposition. First, we in-
troduce an MDP tensor algebra formalization in Section 3.1. Each definition is followed by
an example using a two-dimensional GRIDWORLD problem. This formalization allows us
to represent multidimensional MDP problems with discrete states. Second, we introduce a
method to decompose MDP state transition matrices using CANDECOMP-PARAFAC tensor
decomposition, which we call CP-MDP. We develop the tensor decomposition method to
compress large state transition matrices into small arrays, which we call tensor components.
Third, in Section 3.3, we show four algorithms to operate in the tensor decomposition rep-
resentation. The first one computes a matrix of state transition probabilities. The second
computes the tensor components so that these tensor components can be used later by
the third and fourth algorithms: the compact value and policy iteration algorithms of our ap-
proach (CP-MDP-VI and CP-MDP-PI). Instead of performing computations over the large
matrices required by tabular representations, the CP-MDP-VI and CP-MDP-PI algorithms
compute the solution using compact arrays, consequently reducing solver computational
cost. Section 3.4 computes the computational cost to generate the state transition matrices
for the tabular representation, comparing with the computation to generate the compact ten-
sor components. Then, we compare the computational cost of actually solving the problem
using tabular value and policy iteration against CP-MDP-VI and CP-MDP-PI. Finally, in Sec-
tion 3.5, to illustrate a more complex example, we show a three-dimensional GRIDWORLD

problem with the tensor algebra formalization.

3.1 Tensor Algebra Formalization

We now provide a Markov Decision Process formalization in terms of n-dimensional
values using Tensor Algebra concepts. We use the term n-dimensional to express problems
with multiple features.

Definition 1 (Dimensions D) Let D be the set of environment dimensions, where D = {d1,
d2, d3, ... , dD} and D = |D|1 is the number of dimensions. Given the set of dimensions D, it
contains |D| dimensions d, where d ∈ [1..D]2.

For example, in Figure 3.1 we show a two-dimensional MDP problem, where D =
{X1,Y2} and |D| = 2.

1The notation adopted is |X | to define the cardinality of a set.
2The notation adopted is [i ..j] referring to a number in the range from i to j , inclusive, belonging to the set of

natural numbers.

42

Term.

+100

Term.

-100

START

Figure 3.1: A two-dimensional 4×3 GRIDWORLD example.

Definition 2 (State-space S) The state-space S is set of states of all dimensions, where
S = {s1, s2, s3, ... , sS}, such that S = |S| is the number of states. We determine the number
of states by multiplying the cardinality of each dimension, as follows:

|S| = |d1| × |d2| × |d3| × ...× |dD|. (3.1)

For example, for a two-dimensional MDP problem with cardinality equal to 4×3, the
number of resulting states is |S| = 12.

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Or, the state-space can be written as tuples, as follows:

S = {(x1, y1)s1, (x2, y1)s2, (x3, y1)s3, (x4, y1)s4, (x1, y2)s5, (x2, y2)s6,

(x3, y2)s7, (x4, y2)s8, (x1, y3)s9, (x2, y3)s10, (x3, y3)s11, (x4, y3)s12}.

Definition 3 (Actions A) Let A be the set of actions, where A = {a1, a2, a3, ... , aA} and
A = |A| is the number of actions.

For example, for a GRIDWORLD problem, assuming a Euclidean space (13), we
consider two actions for each dimension. So, for a two-dimensional problem, the resulting
number of actions is 4, where A = (2 × 2). We name these four actions as West and East
for the x-axis, and North and South for the y-axis.

Definition 4 (Obstacle states O) Let O be the set of obstacle states, where O = {o1, o2, o3,
... , oO} and O = |O| is the number of obstacle states. Therefore, O ⊂ S and O 6= T .

For example, as we illustrate in Figure 3.1, O = {6}, and |O| = 1.

Definition 5 (Terminal states T) Let T be the set of terminal states, where T = {t1, t2, t3,
... , tT } and T = |T | is the number of terminal states. Therefore, T ⊂ S and T 6= O.

For example, as we illustrate in Figure 3.1, T = {4, 8}, and |T | = 2.

43

Definition 6 (Rewards R) Let R be the set of rewards, which include real numbers, where
R = {r1, r2, r3,. . . , rR} and R = |R| is the number of rewards. |R| is the same number as the
state-space |S|.

For example, taking into account a |R| = 12, we determine a reward of −3 for
non-terminal states, and 100 or −100 for terminal states, as follows:

R = { − 3,−3,−3, 100,−3,−3,−3,−100,−3,−3,−3,−3}.

To represent the state transition probability, we formalize the state transition proba-
bility matrix in Definition 7.

Definition 7 (Probabilities of state transition P) Let P be the state transition probability
system of going from state s to s′, where Pss′ = [St+1 = s′ | St = s]. The probabilities are
defined as P = {p1, p2, p3, ... , pP}, and P = |P| is the number of state transition probabilities.
The state transition P can be specified as a matrix as we show in Equation 3.2, where |A| is
the number of actions.

|P| = |A| × |A|. (3.2)

For example, consider a 4-action MDP problem (N, S, W , and E) and probabilities
of (i) 0.8 of ending in the intended state, (ii) 0.1 of going to the right angles of the intended
state (90◦ angles), and (iii) 0.0 of going to the opposite direction of the intended state, as we
illustrate in Figure 3.2. The resulting number of probabilities is |P| = 16, as follows:

P = {0.8, 0.0, 0.1, 0.1, 0.0, 0.8, 0.1, 0.1, 0.1, 0.1, 0.8, 0.0, 0.1, 0.1, 0.0, 0.8}.

0.8

0.0

0.10.1

(a) North.

0.0

0.8

0.10.1

(b) South.

0.1

0.1

0.00.8

(c) West.

0.1

0.1

0.80.0

(d) East.

Figure 3.2: State transition matrix of actions North, South, West , and East illustration.

Definition 8 (Limits L) Let L be the set of limits to delimit the environment (collision with
walls), where L = {[αd1,Ωd1]1, [αd2,Ωd2]2, ... , [αdD ,ΩdD]L}, and L = |L| is the number of the
environment limits, where |L| = |D| is equal to the number of dimensions. We consider for
each dimension a tuple of an initial limit defined by α (the minimum value), and a final limit
defined by Ω (the maximum value).

44

This definition follows the Euclidean assumption, where it assumes any line con-
tains at least two points (13). For example, for each dimension X and Y, we define a tuple
of initial and final limits as follows, where |L| = 2:

L = {[1, 3], [1, 4]}.

To improve computational cost, in Definition 9, we propose an optimization to elim-
inate any explicit representation of zero-probability of state transition, limiting the neighbor-
hood of each state.

Definition 9 (Probabilities of state transition > 0 P(a)) Considering state transition prob-
abilities where P(s′|s, a) > 0, P(a) is the set of probabilities of non-zero state transition proba-
bilities (i.e. probabilities greater than zero), where P(a) = {p1, p2, p3, ... , pP(a)

}, and P(a) = |P(a)|
is the number of non-zero state transition probabilities. Therefore, P(a) ⊂ P. Consequently,
this definition limits the neighborhood of each state.

For example, using a two-dimensional problem with four actions, we consider only
probabilities of state transition, where P(s′|s, a) > 0. Therefore, |P(a)| = 3 for each action.

P(N) = {0.8, 0.1, 0.1};

P(S) = {0.8, 0.1, 0.1};

P(W) = {0.1, 0.1, 0.8};

P(E) = {0.1, 0.1, 0.8}.

In order to precompute a state st+1 of a current state st , given an action a, we define
the concept of successor states by Definition 10.

Definition 10 (Successor states S ′(a)) Let S ′(a) be the set of successor states (s′), given an
action (a), where S ′(a) = {s′1, s′2, s′3, ... , s′S′

(a)
}, and S′(a) = |S ′(a)| is the number of successor states

for each action (a). We define |S ′(a)| by Equation 3.3.

|S ′(a)| = |S| × |P(a)|. (3.3)

For example, considering a |P(a)| = 3 and S = 12, the following are the successors
states for each actions a, where |S ′(a)| = 36:

S ′(N) = {1′, 1′, 2′, 2′, 1′, 3′, 3′, 2′, 4′, ... , 8′, 11′, 12′};

S ′(S) = {5′, 1′, 2′, 2′, 1′, 3′, 7′, 2′, 4′, ... , 12′, 11′, 12′};

S ′(W) = {1′, 5′, 1′, 2′, 2′, 1′, 3′, 7′, 2′, ... , 8′, 12′, 11′};

S ′(E) = {1′, 5′, 2′, 2′, 2′, 3′, 3′, 7′, 4′, ... , 8′, 12′, 12′}.

45

Definition 11 (Successor states of s S ′s(a)) Let S ′s(a) be the set of successor state given a
state (s) and an action (a), where S ′s(a) = {s′1, s′2, s′3, ... , s′S′s

(a)
}, and S′s(a) = |S ′s(a)| is the number of

successor states of each state (s). We define |S ′s(a)| as the same number of state transition
probabilities greater than zero, as |S ′s(a)| = |P(a)|. Therefore, S ′s(a) ⊂ S ′(a).

For example, considering |P(a)| = 3 and S = 12, the following are the successors
states for each state given an action a, where |S ′s(a)| = 3.

S ′s1
(N) = {1′, 1′, 2′};
S ′s2

(N) = {2′, 1′, 3′};
S ′s3

(N) = {3′, 2′, 4′};
S ′s4

(N) = {4′, 4′, 4′};
S ′s5

(N) = {1′, 5′, 5′};
S ′s6

(N) = {6′, 6′, 6′};
S ′s7

(N) = {3′, 7′, 8′};
S ′s8

(N) = {8′, 8′, 8′};
S ′s9

(N) = {5′, 9′, 10′};
S ′s10

(N) = {10′, 9′, 11′};
S ′s11

(N) = {7′, 10′, 12′};
S ′s12

(N) = {8′, 11′, 12′};

S ′s1
(S) = {5′, 1′, 2′};
S ′s2

(S) = {2′, 1′, 3′};
S ′s3

(S) = {7′, 2′, 4′};
S ′s4

(S) = {4′, 4′, 4′};
S ′s5

(S) = {9′, 5′, 5′};
S ′s6

(S) = {6′, 6′, 6′};
S ′s7

(S) = {11′, 7′, 8′};
S ′s8

(S) = {8′, 8′, 8′};
S ′s9

(S) = {9′, 9′, 10′};
S ′s10

(S) = {10′, 9′, 11′};
S ′s11

(S) = {11′, 10′, 12′};
S ′s12

(S) = {12′, 11′, 12′};

S ′s1
(W) = {1′, 5′, 1};
S ′s2

(W) = {2′, 2′, 1′};
S ′s3

(W) = {3′, 7′, 2′};
S ′s4

(W) = {4′, 4′, 4′};
S ′s5

(W) = {1′, 9′, 5′};
S ′s6

(W) = {6′, 6′, 6′};
S ′s7

(W) = {3′, 11′, 7′};
S ′s8

(W) = {8′, 8′, 8′};
S ′s9

(W) = {5′, 9′, 9′};
S ′s10

(W) = {10′, 10′, 9′};
S ′s11

(W) = {7′, 11′, 10′};
S ′s12

(W) = {8′, 12′, 11′};

S ′s1
(E) = {1′, 5′, 2′};
S ′s2

(E) = {2′, 2′, 3′};
S ′s3

(E) = {3′, 7′, 4′};
S ′s4

(E) = {4′, 4′, 4′};
S ′s5

(E) = {1′, 9′, 5′};
S ′s6

(E) = {6′, 6′, 6′};
S ′s7

(E) = {3′, 11′, 8′};
S ′s8

(E) = {8′, 8′, 8′};
S ′s9

(E) = {5′, 9′, 10′};
S ′s10

(E) = {10′, 10′, 11′};
S ′s11

(E) = {7′, 11′, 12′};
S ′s12

(E) = {8′, 12′, 12′}.

Using a formalization with tensor algebra, we exploit the representation in a way
MDP becomes more compact. By creating functions that precompute the actions, obstacles,
terminals, rewards, the state transition probability matrix, and successor states of a problem,
we minimize the computational cost to solve an MDP problem.

3.2 CP-MDP Representation

We now create a compact representation of MDP state transition matrices using
tensor decomposition, which we call CP-MDP. Our method consists of decomposing MDP
state transition matrices into small tensor components using the CANDECOMP-PARAFAC de-
composition fundamental idea as the basic semantics of this work to represent a tensor as
a sum of arrays.

Definition 12 (Tensor components C(a)) Let C(a) be a tensor of components of action (a).
Each action constitutes a third-order tensor with tensor components, regardless of the prob-
lem’s number of dimensions. Each tensor component is composed of three dimensions:

46

• (1) a current state s ∈ S;

• (2) a successor state s′ ∈ S ′(a); and

• (3) a probability of state transition p ∈ P(a), where

C(a) = {[s1, s′1, p1]1, [s1, s′2, p2]2, ... , [sS, s′S′
(a)

, pP(a)
]C(a)}, and C(a) = |C(a)| is the number of tensor

components of action (a). The number of tensor components |C(a)| is a result of the number
of states |S| multiplied by the number of state transition probabilities greater than zero |P(a)|,
as we show in Equation 3.4

|C(a)| = |S| × |P(a)|. (3.4)

Figure 3.3 illustrates the definition of tensor components of action a, by represent-
ing the tensor C(a) as a sum of tensor components, as Equation 3.5 shows.

+ + + ++
2=

Figure 3.3: Third-order tensor components representation.

C(a) ≈
C∑

c=1

(sc ⊗ s′c ⊗ pc) (3.5)

Where C is a positive integer for c = 1, ..., C. Considering each dimension contains
its own index (i , j , and k), we write Equation 3.5 as:

Cijk ≈
C∑

c=1

(sic, s′jc, pkc) for i = 1, ..., |S|; j = 1, ..., |S ′|; k = 1, ..., |P(a)|.

For example, considering a 12-state and 2-dimensional MDP problem, we show a
set of tensor components for each action, as follows:

C(N) = {[1, 1′, 0.8]1, [1, 1′, 0.1]2, ... , [12, 12′, 0.1]36}, and |C(N)| = 36 tensor components;

C(S) = {[1, 5′, 0.8]1, [1, 1′, 0.1]2, ... , [12, 12′, 0.1]36}, and |C(S)| = 36 tensor components;

C(W) = {[1, 1′, 0.1]1, [1, 5′, 0.1]1, ... , [12, 11′, 0.8]36}, and |C(W)| = 36 tensor components;

C(E) = {[1, 1′, 0.1]1, [1, 5′, 0.1]1, ... , [12, 12′, 0.8]36}, and |C(E)| = 36 tensor components.

In Table 3.1, we show all tensor components of the four actions, where Table 3.1a
represents the tensor C(N), Table 3.1b the tensor C(S), Table 3.1c tensor C(W). Table 3.1d
represents the tensor C(E).

47

Definition 13 (Tensor components of state s Cs
(a)) Let Cs

(a) be the set of tensor components
given an action (a) for each state (s), where CsS

(aA) = {[sS, s′1, p1]1, [sS, s′2, p2]2, ... , [sS, s′S′S
(a)

, pP(a)
]C′s

(a)
},

and Cs
(a) = |Cs

(a)| is the number of tensor components for each state (s) and for each action (a).
We define |Cs

(a)| as the same number of Definition 9 as |Cs
(a)| = |P(a)|. Therefore, Cs

(a) ⊂ C(a).

For example, for the 24-state of |P (a)| = 3, we consider three tensor components
for each state, as we show in Table 3.1.

By following the tensor indexing definition (see Section 2.3), we create sub-arrays
by fixating indexes to be able to operate with each dimension of the tensor. We compress
each dimension of the tensor Cs

(a) as (i) the first dimension being the states s, (ii) the second
one the successor states s′, and (iii) the third the state transition probabilities p. We illustrate
each tensor indexing as follows:

• (i) Compressed set s: Cs1
(a1)[s] = {s1, s1, ... , s1} ... CsS

(aA)[s] = {sS, sS, ... , sS}.

• (ii) Compressed set s′: Cs1
(a1)[s

′] = {s′1, s′2, ... , s′S′1
(a)
} ... CsS

(aA)[s
′] = {s′1, s′2, ... , s′S′S

(a)
}.

• (iii) Compressed set p: Cs1
(a1)[p] = {p1, p2, ... , pP(a)

} ... CsS
(aA)[p] = {p1, p2, ... , pP(a)

}.

For example, to illustrate the compressed tensor indexes, we show each com-
pressed set as follows:

(i) States s:
Cs1

(N)[s] = {1, 1, 1};
...

Cs12
(N)[s] = {12, 12, 12};
Cs1

(S)[s] = {1, 1, 1};
...

Cs12
(S) [s] = {12, 12, 12};
Cs1

(W)[s] = {1, 1, 1};
...

Cs12
(W)[s] = {12, 12, 12};
Cs1

(E)[s] = {1, 1, 1};
...

Cs12
(E)[s] = {12, 12, 12}.

(ii) Successor states s′:
Cs1

(N)[s
′] = {1′, 1′, 2′};

...
Cs12

(N)[s
′] = {8′, 11′, 12′};

Cs1
(S)[s

′] = {5′, 1′, 2′};
...

Cs12
(S) [s

′] = {12′, 11′, 12′};
Cs1

(W)[s
′] = {1′, 5′, 1′};

...
Cs12

(W)[s
′] = {8′, 12′, 11′};

Cs1
(E)[s

′] = {1′, 5′, 2′};
...

Cs12
(E)[s

′] = {8′, 12′, 12′}.

(iii) Probabilities p:
Cs1

(N)[p] = {0.8, 0.1, 0.1};
...

Cs12
(N)[p] = {0.8, 0.1, 0.1};
Cs1

(S)[p] = {0.8, 0.1, 0.1};
...

Cs12
(S) [p] = {0.8, 0.1, 0.1};
Cs1

(W)[p] = {0.1, 0.1, 0.8};
...

Cs12
(W)[p] = {0.1, 0.1, 0.8};
Cs1

(E)[p] = {0.1, 0.1, 0.8};
...

Cs12
(E)[p] = {0.1, 0.1, 0.8}.

Using the CP-MDP compact representation of the state transition matrices, we rep-
resent large arrays with fewer elements than the total size. CP-MDP creates small tensor
components instead of large tabular representations to solve an MDP, reducing the compu-
tational cost to generate monolithic MDPs.

48

Table 3.1: Tensor components of actions North, South, West , and East for each state s.

s1 s2 s3 s4

s1

[1, 1′, 0.8]1
[1, 1′, 0.1]2
[1, 2′, 0.1]3

[2, 2′, 0.8]4
[2, 1′, 0.1]5
[2, 3′, 0.1]6

[3, 3′, 0.8]7
[3, 2′, 0.1]8
[3, 4′, 0.1]9

[4, 4′, 0.8]10

[4, 4′, 0.1]11

[4, 4′, 0.1]12

s2

[5, 1′, 0.8]13

[5, 5′, 0.1]14

[5, 5′, 0.1]15

[6, 6′, 0.8]16

[6, 6′, 0.1]17

[6, 6′, 0.1]18

[7, 3′, 0.8]19

[7, 7′, 0.1]20

[7, 8′, 0.1]21

[8, 8′, 0.8]22

[8, 8′, 0.1]23

[8, 8′, 0.1]24

s3

[9, 5′, 0.8]25

[9, 9′, 0.1]26

[9, 10′, 0.1]27

[10, 10′, 0.8]28

[10, 9′, 0.1]29

[10, 11′, 0.1]30

[11, 7′, 0.8]31

[11, 10′, 0.1]32

[11, 12′, 0.1]33

[12, 8′, 0.8]34

[12, 11′, 0.1]35

[12, 12′, 0.1]36

(a) North.

s1 s2 s3 s4

s1

[1, 5′, 0.8]1
[1, 1′, 0.1]2
[1, 2′, 0.1]3

[2, 2′, 0.8]4
[2, 1′, 0.1]5
[2, 3′, 0.1]6

[3, 7′, 0.8]7
[3, 2′, 0.1]8
[3, 4′, 0.1]9

[4, 4′, 0.8]10

[4, 4′, 0.1]11

[4, 4′, 0.1]12

s2

[5, 9′, 0.8]13

[5, 5′, 0.1]14

[5, 5′, 0.1]15

[6, 6′, 0.8]16

[6, 6′, 0.1]17

[6, 6′, 0.1]18

[7, 11′, 0.8]19

[7, 7′, 0.1]20

[7, 8′, 0.1]21

[8, 8′, 0.8]22

[8, 8′, 0.1]23

[8, 8′, 0.1]24

s3

[9, 9′, 0.8]25

[9, 9′, 0.1]26

[9, 10′, 0.1]27

[10, 10′, 0.8]28

[10, 9′, 0.1]29

[10, 11′, 0.1]30

[11, 11′, 0.8]31

[11, 10′, 0.1]32

[11, 12′, 0.1]33

[12, 12′, 0.8]34

[12, 11′, 0.1]35

[12, 12′, 0.1]36

(b) South.

s1 s2 s3 s4

s1

[1, 1′, 0.1]1
[1, 5′, 0.1]2
[1, 1′, 0.8]3

[2, 2′, 0.1]4
[2, 2′, 0.1]5
[2, 1′, 0.8]6

[3, 3′, 0.1]7
[3, 7′, 0.1]8
[3, 2′, 0.8]9

[4, 4′, 0.1]10

[4, 4′, 0.1]11

[4, 4′, 0.8]12

s2

[5, 1′, 0.1]13

[5, 9′, 0.1]14

[5, 5′, 0.8]15

[6, 6′, 0.1]16

[6, 6′, 0.1]17

[6, 6′, 0.8]18

[7, 3′, 0.1]19

[7, 11′, 0.1]20

[7, 7′, 0.8]21

[8, 8′, 0.1]22

[8, 8′, 0.1]23

[8, 8′, 0.8]24

s3

[9, 5′, 0.1]25

[9, 9′, 0.1]26

[9, 9′, 0.8]27

[10, 10′, 0.1]28

[10, 10′, 0.1]29

[10, 9′, 0.8]30

[11, 7′, 0.1]31

[11, 11′, 0.1]32

[11, 10′, 0.8]33

[12, 8′, 0.1]34

[12, 12′, 0.1]35

[12, 11′, 0.8]36

(c) West.

s1 s2 s3 s4

s1

[1, 1′, 0.1]1
[1, 5′, 0.1]2
[1, 2′, 0.8]3

[2, 2′, 0.1]4
[2, 2′, 0.1]5
[2, 3′, 0.8]6

[3, 3′, 0.1]7
[3, 7′, 0.1]8
[3, 4′, 0.8]9

[4, 4′, 0.1]10

[4, 4′, 0.1]11

[4, 4′, 0.8]12

s2

[5, 1′, 0.1]13

[5, 9′, 0.1]14

[5, 5′, 0.8]15

[6, 6′, 0.1]16

[6, 6′, 0.1]17

[6, 6′, 0.8]18

[7, 3′, 0.1]19

[7, 11′, 0.1]20

[7, 8′, 0.8]21

[8, 8′, 0.1]22

[8, 8′, 0.1]23

[8, 8′, 0.8]24

s3

[9, 5′, 0.1]25

[9, 9′, 0.1]26

[9, 10′, 0.8]27

[10, 10′, 0.1]28

[10, 10′, 0.1]29

[10, 11′, 0.8]30

[11, 7′, 0.1]31

[11, 11′, 0.1]32

[11, 12′, 0.8]33

[12, 8′, 0.1]34

[12, 12′, 0.1]35

[12, 12′, 0.8]36

(d) East

49

3.3 CP-MDP Algorithms

This section develops an efficient algorithm to compute the transition model matrix
(see Definition 7) in Section 3.3.1. In Section 3.3.2, we develop the algorithm to compute
tensor components (see Definition 12). Then, in Sections 3.3.3 and 3.3.4, we develop the
compact value iteration and policy iteration and show how they compute the solution using
the tensor components.

3.3.1 Transition Model Matrix Generator

Concerning Definition 7, which is the state transition probabilities P, we create
an algorithm to compute the environment’s transition models. Algorithm 3.1 consists of
composing a matrix of size |A × A| with probabilities of state transition. We consider three
main probabilities:

• probability_intended_angle: probability of transitioning towards the intended state;

• probability_opposite_angle: probability of state transition to the opposite state; and

• probability_right_angle: probability of going to a 90◦ angle of the intended state.

Algorithm 3.1: Transition model matrix generator

inputs: actions a ∈ A.

local variables: TM: a matrix |A × A| to illustrate the transition model;
probability_intended_angle: the probability of transitioning to the intended state;
probability_opposite_angle: the probability of state transition to the opposite direction;
probability_right_angle: the probability of going to right angles of the intended state;
a_opposite: opposite action/direction.

1: procedure GENERATETM(mdp) returns a Transition Model Matrix
2: for each action a in A do
3: for each action a′ in A do
4: if a == a′ then
5: TM[a, a′] = probability_intended_angle
6: else if a′ == a_opposite then
7: TM[a, a′] = probability_opposite_angle
8: else
9: TM[a, a′] = probability_right_angle

10: return TM

50

Table 3.2 shows the representation of the resulting matrix. For example, consider-
ing a 4-action problem, in Table 3.3, we illustrate the 16 probabilities in matrix form, which
are the stochastic probabilities of taking action a in a given state s.

Table 3.2: Representation of a transition model matrix.

a′1 a′2 a′3 ... a′A
a1 p11 p12 p13 ... p1A

a2 p21 p22 p23 ... p2A

a3 p31 p32 p33 ... p3A

...
aA pA1 pA2 pA3 ... pAA

Table 3.3: An example of a transition model matrix of four actions.

North South West East

North 0.8 0.0 0.1 0.1
South 0.0 0.8 0.1 0.1
West 0.1 0.1 0.8 0.0
East 0.1 0.1 0.0 0.8

3.3.2 Tensor Components Generator

To compute all tensor components, we develop an algorithm to generate compact
state transition matrices, as we modeled in our formalization (see Definition 12). Algo-
rithm 3.2 consists of composing the set of components C(a) at each iteration with a set of
values [s, s′, p], where s is the current state, s′ is the target state, and p is the probability of
state transition.

Iterating through each action a ∈ A, each state s ∈ S and considering only proba-
bilities where P(s′|s, a) > 0, the successor state s′ ∈ S ′s(a) is computed by the function succs

(Algorithm 3.3). Then, we analyze if the resulting successor state s′ 6∈ O or s′ ∈ O. If not,
the set C(a) receives the tuple with its respective state s, successor state s′, and the prob-
ability of state transition p, or if so, the set C(a) receives the successor state as being the
same state s. The resulting set C(a) is a tensor of components of action a, which enables
a compact representation of the state transition matrices. Figure 3.4 illustrates the tensors
of action North, South, West , and East to demonstrate the idea of tensor components that
Algorithm 3.2 generates.

51

Algorithm 3.2: Tensor components generator

inputs: states S, obstacles O

local variables: C(a) tensor containing tensor components of action a.

1: procedure GENERATETENSORCOMPONENTS(mdp) returns a tensor of components
2: for each state a in A do
3: for each state s in S do
4: for each state a′ in A, where P(s′|s, a) > 0 do
5: s′ = succs

6: if s’ 6∈ O then
7: C(a) ← C(a) ∪ [s, s′, p]
8: else
9: C(a) ← C(a) ∪ [s, s, p]

10: return C(a)

12

12+ ++

(a) North.

12

122 + ++

(b) South.

2

12

11+ ++

(c) West.

2

12

12+ ++

(d) East.

Figure 3.4: Illustration of tensor components of actions North, South, West , and East .

52

Algorithm 3.3 consists of iterating all dimensions of a given state s to generate
its respective successor state s′. We are assuming a Euclidean space where actions are
operations to increase or decrease each dimension’s numeric value. In Figure 3.5b we
illustrate a Cartesian plane idea to a 4× 3 grid (Figure 3.5a), where actions West and East
belong to the x-axis, i.e., to the first dimension, and actions North and South belong to
the y-axis, i.e., to the second dimension. Actions North and West are negative directions
because, in the Cartesian plane, we shift the state to smaller numbers. And South and East
are positive directions because, in the Cartesian plane, we shift the state to larger numbers.

(a) MDP.

N-

W- E+

S+

(b) Cartesian plane.

Figure 3.5: Example of a Cartesian plane for a two-dimensional 4×3 GRIDWORLD.

Algorithm 3.3: Successor state s′ of state s generator

inputs: states s ∈ S, actions a ∈ A, initial limit α ∈ L and final limit Ω ∈ L.

local variables: s′: successor state of state s.

1: procedure succs(mdp) returns a successor state of s
2: for each dim in state s do
3: if dim is equal to action axis then
4: if action a is a negative direction then
5: if s[dim] 6∈ α then
6: s’← s[dim]− 1
7: else
8: s’← s[dim]
9: else

10: if s[dim] 6∈ Ω then
11: s’← s[dim] + 1
12: else
13: s’← s[dim]
14: else
15: s’← s[dim]
16: return s’

53

3.3.3 CP-MDP-VI

The compact Value Iteration algorithm, which we call CP-MDP-VI, computes an op-
timal policy by iterating through each tensor component instead of the large state transition
matrices in tabular value iteration algorithms. At each iteration, the algorithm chooses an
optimal action (or maximum expected utility) based on the inner product between the com-
pressed set of tensor components (Cs

(a)[p]) and a vector of utilities (V[s′]) of the same size,
when the solution converges, i.e., when the result yields no change in the utilities, the policy
is extracted.

Algorithm 3.4: CP-MDP-VI, a compact value iteration algorithm for calculating state utilities.

inputs: an MDP with states s ∈ S, actions a ∈ A(s), rewards r ∈ R(s), and discount γ;
Cs

(a): tensor of components of state s;
ε: maximum error allowed in the utility of any state.

local variables:
V and V ′: vectors of utilities for states in S, initially zero;
δ: the maximum change in the utility of any state in an iteration.

1: procedure VALUEITERATION(mdp, ε) returns a utility function
2: repeat
3: V ← V ′; δ ← 0
4: for each state s in S do

5: V ′[s]← R(s) + γ max
a∈A(s)

(Cs
(a)[p] • V[s′])

6: if |V ′[s]− V[s]| > δ then δ ← |V ′[s]− V[s]|
7: until δ < ε (1 - γ)/γ
8: return V

For example, for a 4× 3 GRIDWORLD problem, where |A| = 4 (North, South, West,
and East), Figure 3.6a illustrates the vector of maximum expected utilities of each state. And
in Figure 3.6b, we illustrate the optimal policy extracted from the utilities.

77.21

81.43 68.35

85.18 89.40 93.15

47.38

100.0

-100.0

69.5673.46

-3.0

(a) Utilities.

N

N N

E E E

W

Term.

+100

Term.

-100

WW

(b) Policy.

Figure 3.6: Utilities computed by CP-MDP-VI. And policy extracted from the utilities.

54

3.3.4 CP-MDP-PI

Policy iteration (20) is an optimal policy construction algorithm that produces exact
policies and value functions. Unlike tabular policy iteration algorithms, the CP-MDP-PI (Al-
gorithm 3.5) computes a policy by a dot product between a set of probabilities (Cs

(a)[p]) and a
vector of utilities (V[s′]).

Algorithm 3.5: CP-MDP-PI, a compact policy iteration algorithm for calculating an optimal
policy.

inputs: an MDP with states s ∈ S, actions a ∈ A(s);
C(a): tensor of components;
Cs

(a): tensor of components of state s.

local variables:
V: a vector of utilities for states in S, initially zero;
π: a policy vector indexed by state, initially random.

1: procedure POLICY-ITERATION(mdp) returns a policy
2: repeat
3: V ← Policy-Evaluation(π,V, mdp)
4: unchanged? ← true
5: for each state s in S do

6: if max
a∈A(s)

(Cs
(a)[p] • V[s′]) > (Cs

(a)[p] • V[s′]) then

7: π[s]← arg max
a∈A(s)

(Cs
(a)[p] • V[s′])

8: unchanged? ← false
9: until unchanged?

10: return π

The algorithm begins with an arbitrary policy and repeatedly alternates between an
evaluation phase (Line 6) to evaluate the current policy and an improvement phase (Line
7) to improve the policy. This continues until no local policy improvement is possible. The
optimal policy generated by CP-MDP-PI for a 4×3 grid is the same as CP-MDP-VI previously
mentioned because the value functions of both CP-MDP algorithms are identical to each
other.

3.4 Complexity and Computational Cost Analysis

This section analyzes computational cost (number of multiplications) and the com-
plexity of the CP-MDP and tabular approaches. In Section 3.4.1, we show the computational
cost to generate the transition state probabilities both for tabular and compact approaches.
And in Section 3.4.2, we show the computational cost to compute the solution.

55

3.4.1 Precomputation

We begin by computing the computational cost to generate state transition matrices
for tabular representations, taking into account that a transition model system for tabular
approaches requires multiplications equal to O(|A|× |S|2). The resulting computational cost
is exponential in the number of states. In Equation 3.6, we illustrate the computational cost
required to compute state transition matrices for tabular approaches.

A∏
i=1

ai ×
S∏

j=1

sj ×
S∏

k=1

sk (3.6)

For example, considering a 4×3 GRIDWORLD problem, where |S| = 12 and |A| = 4,
we show the required number of multiplications in the following, and in Table 3.4 we illustrate
the state transition matrices of actions North, South, West , and East .

4∏
i=1

ai ×
12∏
j=1

sj ×
12∏

k=1

sk = 576 multiplications,

With regard to compare a larger example, we now consider a 100×100 GRIDWORLD,
where |S| = 10, 000 and |A| = 4. Therefore:

4∏
i=1

ai ×
10,000∏

j=1

sj ×
10,000∏

k=1

sk = 400,000,000 multiplications.

Now, we define the computational cost of CP-MDP to generate compact state tran-
sition matrices (Algorithm 3.2), which we call tensor components, by Equation 3.7, and its
respective complexity of O(|A|× |C(a)|×3), where 3 is a constant to represent the third-order
tensor C(a).

A∏
i=1

ai ×
C(ai)∏
j=1

cj ×
3∏

k=1

k . (3.7)

In order to illustrate an example, we consider a two-dimensional GRIDWORLD ex-
ample of size 4× 3, where the computational cost is:

4∏
i=1

ai ×
36∏
j=1

cj ×
3∏

k=1

k = 432 multiplications.

To show a larger example, now we consider a 100 × 100 GRIDWORLD, where
|S| = 10, 000 and |A| = 4. Therefore:

4∏
i=1

ai ×
30,000∏

j=1

sj ×
3∏

k=1

k = 360,000 multiplications.

56

Table 3.4: State transition matrices of actions North, South, West, and East for the 4×3 grid
example.

0.9 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.1 0.8 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.1 0.8 0.1 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.8 0. 0. 0. 0.2 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.8 0. 0. 0. 0.1 0.1 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.8 0. 0. 0. 0.1 0.1 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.1 0.8 0.1 0.
0. 0. 0. 0. 0. 0. 0.8 0. 0. 0.1 0. 0.1
0. 0. 0. 0. 0. 0. 0. 0.8 0. 0. 0.1 0.1

(a) North

0.1 0.1 0. 0. 0.8 0. 0. 0. 0. 0. 0. 0.
0.1 0.8 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.1 0.8 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.2 0. 0. 0. 0.8 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.1 0.1 0. 0. 0.8 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.9 0.1 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.1 0.8 0.1 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.1 0.8 0.1
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.1 0.9

(b) South

0.9 0. 0. 0. 0.1 0. 0. 0. 0. 0. 0. 0.
0.8 0.2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.8 0.1 0. 0. 0. 0.1 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.1 0. 0. 0. 0.8 0. 0. 0. 0.1 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.1 0. 0. 0. 0.8 0. 0. 0. 0.1 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.1 0. 0. 0. 0.9 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.8 0.2 0. 0.
0. 0. 0. 0. 0. 0. 0.1 0. 0. 0.8 0.1 0.
0. 0. 0. 0. 0. 0. 0. 0.1 0. 0. 0.8 0.1

(c) West

0.1 0.8 0. 0. 0.1 0. 0. 0. 0. 0. 0. 0.
0. 0.2 0.8 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.1 0.8 0. 0. 0.1 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0.1 0. 0. 0. 0.8 0. 0. 0. 0.1 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.1 0. 0. 0. 0. 0.8 0. 0. 0.1 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.1 0. 0. 0. 0.1 0.8 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.2 0.8 0.
0. 0. 0. 0. 0. 0. 0.1 0. 0. 0. 0.1 0.8
0. 0. 0. 0. 0. 0. 0. 0.1 0. 0. 0. 0.9

(d) East

To compare Equation 3.6, which generates tabular state transition matrices, against
Equation 3.7, which computes tensor components for the CP-MDP method, in Table 3.5 we
show a comparison of 2 and 3-dimensional grids between the tabular approach and our
compact model.

Table 3.5: Computational cost comparison to generate state transition matrices (tabular) and
tensor components (CP-MDP).

Grid size Tabular CP-MDP Complexity reduction

4× 3 576 432 25.00%
50× 50 25,000,000 90,000 99.64%

100× 100 400,000,000 360,000 99.91%
1000× 1000 4,000,000,000,000 36,000,000 99.99%

4× 3× 2 3,456 2,160 37.50%
50× 50× 5 937,500,000 1,125,000 99.88%

100× 100× 10 60,000,000,000 9,000,000 99.99%
1000× 1000× 100 6E+16 9,000,000,000 99.99%

57

3.4.2 Computation

In this section, we analyze the computational cost to compute an MDP solution us-
ing (i) tabular value iteration and (ii) tabular policy iteration algorithms (Algorithm 2.1 and 2.2)
and using (iii) CP-MDP-VI and (iv) CP-MDP-PI compact algorithms (Algorithms 3.4 and 3.5).

(i) We begin analyzing the value iteration algorithm in tabular form, which we call
TABULAR-VI. Each iteration of value iteration requires O(|A| × |S|2) computation time, and
the number of iterations is polynomial in |S| (30). Equation 3.8 shows the resulting compu-
tational cost of TABULAR-VI.

A∏
i=1

ai ×
S∏

j=1

sj ×
S∏

k=1

sk . (3.8)

For example, considering the same 4×3 GRIDWORLD problem previously addressed,
where |S| = 12 and |A| = 4, the required number of multiplications for TABULAR-VI is equal
to:

4∏
i=1

ai ×
12∏
j=1

sj ×
12∏

k=1

sk = 576 multiplications.

(ii) And the tabular policy iteration, which we call TABULAR-PI, requires roughly
O(|S|3) computations for each evaluation step, and requires O(|A| × |S|2) for each improve-
ment step (30), resulting in a complexity of O(|S|3 + |A| × |S|2). Therefore, Equation 3.9
shows the computational cost of TABULAR-PI.

S∏
i=1

si ×
S∏

j=1

sj ×
S∏

k=1

sk +
A∏

l=1

al ×
S∏

m=1

sm ×
S∏

n=1

sn. (3.9)

Policy Iteration converges quadratically and in practice tends to do so in relatively
few iterations compared to value iteration (34). For example, TABULAR-PI computational
cost for an example with |S| = 12 and |A| = 4 is:

12∏
i=1

si ×
12∏
j=1

sj ×
12∏

k=1

sk +
4∏

l=1

al ×
12∏

m=1

sm ×
12∏

n=1

sn = 2,304 multiplications.

(iii) Now, we address the CP-MDP-VI computational cost, which requires a number
of multiplications equal to:

S∏
i=1

si ×
Cs

(a)∏
j=1

cj ×
A∏

k=1

ak , (3.10)

we arrive at the complexity of O(|S| × |Cs
(a)| × |A|), where |Cs

(a)| is the number of tensor com-
ponents for each state s.

58

For example, for an MDP problem where |S| = 12, |Cs
(a)| = 3, and |A| = 4, we show

the required number of multiplications to solve this problem, as follows:

12∏
i=1

ai ×
3∏

j=1

cj ×
4∏

k=1

ak = 144 multiplications.

(iv) By contrast, CP-MDP-PI requires a number of multiplications equal to Equa-
tion 3.11, which results in a O(|S| × |Cs

(a)|2 + |S| × |Cs
(a)| × |A|) complexity.

S∏
i=1

si ×
Cs

(a)∏
j=1

cj ×
Cs

(a)∏
k=1

ck +
S∏

l=1

sl ×
Cs

(a)∏
m=1

cm ×
A∏

n=1

an. (3.11)

To illustrate the computational cost of CP-MDP-PI, we compute the same example
(|S = 12|, |Cs

(a)| = 3 and |A| = 4) using this algorithm.

12∏
i=1

si ×
3∏

j=1

cj ×
3∏

k=1

ck +
12∏
l=1

sl ×
3∏

m=1

cm ×
4∏

n=1

an = 252 multiplications.

To compare Equation 3.8 that computes the solution using tabular value iteration
(TABULAR-VI), with Equation 3.10, which uses the compact value iteration (CP-MDP-VI),
in Table 3.6 we show a computational cost comparison of 2 and 3-dimensional grids. And
in Table 3.7, we show a computational cost comparison, using several grid sizes, between
Equation 3.9 that solves problems using tabular policy iteration (TABULAR-PI), with Equa-
tion 3.11, which uses CP-MDP-PI, the compact policy iteration algorithm.

Table 3.6: Computational cost comparison between TABULAR-VI and CP-MDP-VI algo-
rithms.

Grid size TABULAR-VI CP-MDP-VI Complexity reduction

4× 3 576 144 75.00%
50× 50 25,000,000 30,000 99.88%

100× 100 400,000,000 120,000 99.97%
1000× 1000 4,000,000,000,000 12,000,000 99.99%

4× 3× 2 3,456 720 79.17%
50× 50× 5 937,500,000 375,000 99.96%

100× 100× 10 60,000,000,000 3,000,000 99.99%
1000× 1000× 100 6E+16 3,000,000,000 99.99%

59

Table 3.7: Computational cost comparison between TABULAR-PI and CP-MDP-PI algo-
rithms.

Grid size TABULAR-PI CP-MDP-PI Complexity reduction

4× 3 2,304 252 89,06%
50× 50 15,650,000,000 52,500 99.99%

100× 100 1,000,400,000,000 210,000 99.99%
1000× 1000 1E+18 21,000,000 99.99%

4× 3× 2 17,280 1,320 92.36%
50× 50× 5 1,954,062,500,000 687,500 99.99%

100× 100× 10 1,00006E+15 5,500,000 99.99%
1000× 1000× 100 1E+24 5,500,000,000 99.99%

Consequently, CP-MDP-VI and CP-MDP-PI require much less computation and
substantially less memory than traditional tabular methods. So now, in Table 3.8, we show a
comparison between the compact algorithms: CP-MDP-VI and CP-MDP-PI.

Table 3.8: Computational cost comparison between CP-MDP-VI and CP-MDP-PI algo-
rithms.

Grid size CP-MDP-VI CP-MDP-PI Complexity reduction

4× 3 576 252 42,86%
50× 50 25,000,000 52,500 42,86%

100× 100 400,000,000 210,000 42,86%
1000× 1000 4,000,000,000,000 21,000,000 42,86%

4× 3× 2 3,456 1,320 45,45%
50× 50× 5 937,500,000 687,500 45,45%

100× 100× 10 60,000,000,000 5,500,000 45,45%
1000× 1000× 100 6E+16 5,500,000,000 45,45%

3.5 Three-dimensional GRIDWORLD Example

To show a more complex example, in this section, we illustrate a 3-dimensional
GRIDWORLD MDP example using the tensor algebra formalization and the CP-MDP repre-
sentation. In Figure 3.7 we show a three-dimensional MDP problem, where D = {X1, Y2, Z3}
and |D| = 3 (see Definition 1).

60

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

2

3

4

(a) MDP.

2

3

4

(b) Tensor.

Figure 3.7: A three-dimensional 4×3×2 GRIDWORLD example.

Each dimension comprises a set of states, and the resulting number of states is
|S| = (4× 3× 2) = 24 states (Definition 2), as follows:

S = {(x1, y1, z1)s1, (x1, y1, z2)s2, (x2, y1, z1)s3, (x2, y1, z2)s4,

(x3, y1, z1)s5, (x3, y1, z2)s6, (x4, y1, z1)s7, (x4, y1, z2)s8,

(x1, y2, z1)s9, (x1, y2, z2)s10, (x2, y2, z1)s11, (x2, y2, z2)s12,

(x3, y2, z1)s13, (x3, y2, z2)s14, (x4, y2, z1)s15, (x4, y2, z2)s16,

(x1, y3, z1)s17, (x1, y3, z2)s18, (x2, y3, z1)s19, (x2, y3, z2)s20,

(x3, y3, z1)s21, (x3, y3, z2)s22, (x4, y3, z1)s23, (x4, y3, z2)s24}.

For the three-dimensional problem, the resulting number of actions isA = (2×3) = 6
(Definition 3). We name these six actions as West and East for the x-axis, North and South
for the y-axis, and Forward and Backward for the z-axis.

We now define an obstacle set (Definition 4), a terminal set (Definition 5), and a
reward set (Definition 6). For example, O = {4, 7, 20}, where |O| = 3, and T = {5, 15, 17},
where |T | = 3. Taking into account a |R| = 24, we determine a reward of −4 for non-terminal
states, and 100 or −100 for terminal states:

R = { − 4,−4,−4,−4, 100,−4,−4,−4,−4,−4,−4,−4,

− 4,−100,−4, 100,−4,−4,−4,−4,−4,−4,−4,−4}.

Concerning the Definition 7, we consider a 0.6 probability of ending in the intended
state, 0.1 of going to the right angles (90◦ angles) of the intended state, and 0.0 of going to
the opposite state, as we show in Figure 3.8. The resulting number of probabilities is given

61

by |P| = (6× 6) = 36, as follows:

P = {0.6, 0.0, 0.1, 0.1, 0.1, 0.1, 0.0, 0.6, 0.1, 0.1, 0.1, 0.1,

0.1, 0.1, 0.6, 0.0, 0.1, 0.1, 0.1, 0.1, 0.0, 0.6, 0.1, 0.1,

0.1, 0.1, 0.1, 0.1, 0.6, 0.0, 0.1, 0.1, 0.1, 0.1, 0.0, 0.6}.

0.6

0.0

0.1

0.1

0.1

0.1

(a) North.

0.0

0.6

0.1

0.1

0.1

0.1

(b) South.

0.1

0.1

0.0

0.1

0.6

0.1

(c) West.

0.1

0.1

0.6

0.1

0.0

0.1

(d) East.

0.1

0.1

0.1

0.6

0.1

0.0

(e) Forward.

0.1

0.1

0.1

0.0

0.1

0.6

(f) Backward.

Figure 3.8: Transition models of actions North, South, West , East , Forward , and Backward
illustration.

Table 3.9 illustrates the 36 probabilities in matrix form: the stochastic probability of
taking action a in a given state s.

Table 3.9: Example of a transition model matrix of six actions.

P =

North South West East Forward Backward

North 0.6 0.0 0.1 0.1 0.1 0.1
South 0.0 0.6 0.1 0.1 0.1 0.1
West 0.1 0.1 0.6 0.0 0.1 0.1
East 0.1 0.1 0.0 0.6 0.1 0.1

Forward 0.1 0.1 0.1 0.1 0.6 0.0
Backward 0.1 0.1 0.1 0.1 0.0 0.6

62

The environment limits of this example are L = {[1, 3]1, [1, 4]2, [1, 2]3}, and |L| = 3,
where each component is a tuple of initial and final limits (Definition 8). The initial limit and
final limit of dimension X are α(1) and Ω(3), respectively, of dimension Y are α(1) and Ω(4),
and of dimension Z are α(1) and Ω(2).

Considering only probabilities of state transition where P(s′|s, a) > 0 (Definition 9),
|P(a)| = 5 for each action, as follows:

P(N) = {0.6, 0.1, 0.1, 0.1, 0.1};

P(S) = {0.6, 0.1, 0.1, 0.1, 0.1};

P(W) = {0.1, 0.1, 0.6, 0.1, 0.1};

P(E) = {0.1, 0.1, 0.6, 0.1, 0.1};

P(F) = {0.1, 0.1, 0.1, 0.1, 0.6};

P(B) = {0.1, 0.1, 0.1, 0.1, 0.6}.

As |P(a)| = 5 and S = 24, the following are the successors states for each action a,
where |S ′(a)| = 120 (Definition 10).

S ′(N) = {1′, 1′, 5′, 1′, 2′, 2′, 2′, 6′, 1′, 3′, 3′, 3′, 3′, 2′, 3′, ... , 24′, 24′, 23′, 24′, 13′};

S ′(S) = {1′, 5′, 1′, 2′, 14′, 2′, 6′, 1′, 3′, 15′, 3′, 3′, 2′, 3′, 4′, ... , 24′, 24′, 24′, 23′, 24′};

S ′(W) = {1′, 13′, 1′, 1′, 2′, 2′, 14′, 2′, 1′, 3′, 3′, 15′, 3′, 2′, 3′, ... , 12′, 24′, 24′, 23′, 24′};

S ′(E) = {1′, 13′, 5′, 1′, 2′, 2′, 14′, 6′, 1′, 3′, 3′, 15′, 3′, 2′, 3′, ... , 12′, 24′, 24′, 23′, 24′};

S ′(F) = {1′, 13′, 1′, 5′, 1′, 2′, 14′, 2′, 6′, 1′, 3′, 15′, 3′, 3′, 2′, ... , 12′, 24′, 24′, 24′, 23′};

S ′(B) = {1′, 13′, 1′, 5′, 2′, 2′, 14′, 2′, 6′, 3′, 3′, 15′, 3′, 3′, 3′, ... , 12′, 24′, 24′, 24′, 24′}.

As |P(a)| = 5, the following are the successors states for each state given an action
a, where |S ′s(a)| = 5 (Definition 11).

S ′s1
(N) = {1′, 1′, 5′, 1′, 2′};
S ′s2

(N) = {2′, 2′, 6′, 1′, 3′};
S ′s3

(N) = {3′, 3′, 3′, 2′, 3′};
. . .

S ′s24
(N) = {24′, 24′, 23′, 24′, 13′};
S ′s1

(S) = {1′, 5′, 1′, 2′, 14′};
S ′s2

(S) = {2′, 6′, 1′, 3′, 15′};
S ′s3

(S) = {3′, 3′, 2′, 3′, 4′};
. . .

S ′s24
(S) = {24′, 24′, 24′, 23′, 24′};

S ′s1
(W) = {1′, 13′, 1′, 1′, 2′};
S ′s2

(W) = {2′, 14′, 2′, 1′, 3′};
S ′s3

(W) = {3′, 15′, 3′, 2′, 3′};
. . .

S ′s24
(W) = {12′, 24′, 24′, 23′, 24′};
S ′s1

(E) = {1′, 13′, 5′, 1′, 2′};
S ′s2

(E) = {2′, 14′, 6′, 1′, 3′};
S ′s3

(E) = {3′, 15′, 3′, 2′, 3′};
. . .

S ′s24
(E) = {12′, 24′, 24′, 23′, 24′};

S ′s1
(F) = {1′, 13′, 1′, 5′, 1′};
S ′s2

(F) = {2′, 14′, 2′, 6′, 1′};
S ′s3

(F) = {3′, 15′, 3′, 3′, 2′};
. . .

S ′s24
(F) = {12′, 24′, 24′, 24′, 23′};
S ′s1

(B) = {1′, 13′, 1′, 5′, 2′};
S ′s2

(B) = {2′, 14′, 2′, 6′, 3′};
S ′s3

(B) = {3′, 15′, 3′, 3′, 3′};
. . .

S ′s24
(B) = {12′, 24′, 24′, 24′, 24′}.

63

For the C(a) tensor (Definition 12), we compute a set of tensor components for each
action, as follows:

• C(N) = {[s1, s′1, p1]1, [s1, s′1, p2]2, ... , [s24, s′24, p5]120}, and |C(N)| = 120 tensor components;

• C(S) = {[s1, s′5, p1]1, [s1, s′1, p2]2, ... , [s24, s′24, p5]120}, and |C(S)| = 120 tensor components;

• C(W)= {[s1, s′1, p1]1, [s1, s′5, p2]1, ... , [s24, s′24, p5]120}, and |C(W)|= 120 tensor components;

• C(E) = {[s1, s′1, p1]1, [s1, s′5, p2]1, ... , [s24, s′24, p5]120}, and |C(E)| = 120 tensor components;

• C(F) = {[s1, s′1, p1]1, [s1, s′5, p2]1, ... , [s24, s′23, p5]120}, and |C(F)| = 120 tensor components;

• C(B) = {[s1, s′1, p1]1, [s1, s′5, p2]1, ... , [s24, s′24, p5]120}, and |C(B)| = 120 tensor components.

As previously mentioned, |P(a)| = 5, so we consider five tensor components for
each state and for each action (Definition 13), as follows:

• Cs1
(N) = {[1, 1, 0.6]1, [1, 1, 0.1]2, [1, 5, 0.1]3, [1, 1, 0.1]4, [1, 2, 0.1]5}

...

• Cs24
(N) = {[24, 12, 0.6]1, [24, 20, 0.1]2, [24, 24, 0.1]3, [24, 23, 0.1]4, [24, 24, 0.1]5}

• Cs1
(S) = {[1, 13, 0.6]1, [1, 1, 0.1]2, [1, 5, 0.1]3, [1, 1, 0.1]4, [1, 2, 0.1]5}

...

• Cs24
(S) = {[24, 24, 0.6]1, [24, 20, 0.1]2, [24, 24, 0.1]3, [24, 23, 0.1]4, [24, 24, 0.1]5}

• Cs1
(W) = {[1, 1, 0.1]1, [1, 13, 0.1]2, [1, 1, 0.6]3, [1, 1, 0.1]4, [1, 2, 0.1]5}

...

• Cs24
(W) = {[24, 12, 0.1]1, [24, 24, 0.1]2, [24, 20, 0.6]3, [24, 23, 0.1]4, [24, 24, 0.1]5}

• Cs1
(E) = {[1, 1, 0.1]1, [1, 13, 0.1]2, [1, 5, 0.6]3, [1, 1, 0.1]4, [1, 2, 0.1]5}

...

• Cs24
(E) = {[24, 12, 0.1]1, [24, 24, 0.1]2, [24, 24, 0.6]3, [24, 23, 0.1]4, [24, 24, 0.1]5}

• Cs1
(F) = {[1, 1, 0.1]1, [1, 13, 0.1]2, [1, 1, 0.1]3, [1, 5, 0.1]4, [1, 1, 0.6]5}

...

• Cs24
(F) = {[24, 12, 0.1]1, [24, 24, 0.1]2, [24, 20, 0.1]3, [24, 24, 0.1]4, [24, 23, 0.6]5}

• Cs1
(B) = {[1, 1, 0.1]1, [1, 13, 0.1]2, [1, 1, 0.1]3, [1, 5, 0.1]4, [1, 2, 0.6]5}

...

• Cs24
(B) = {[24, 12, 0.1]1, [24, 24, 0.1]2, [24, 20, 0.1]3, [24, 24, 0.1]4, [24, 24, 0.6]5}.

64

In Figure 3.9b we illustrate the Cartesian plane idea to a 4×3×2 grid (Figure 3.9a),
where actions West and East belong to the x-axis (first dimension), actions North and South
belong to the y-axis (second dimension), and actions Forward and Backward belong to the
z-axis (third dimension). Actions North, West , and Forward are negative directions because,
in the Cartesian plane, we shift the state to smaller numbers. And actions South, East , and
Backward are positive directions because, in the Cartesian plane, we shift the state to larger
numbers.

(a) MDP.

N-

W- E+

S+

F-

B+

(b) Cartesian plane.

Figure 3.9: Example of a Cartesian plane for a three-dimensional 4×3×2 GRIDWORLD.

Finally, to demonstrate the idea of tensor components generated by Algorithm 3.2,
we illustrate the tensors of action North, South, West , East , Forward , and Backward in
Figure 3.10.

65

24

24+ ++

(a) North.

2

24

24+ ++

(b) South.

2

24

24+ ++

(c) West.

24

242 + ++

(d) East.

2

24

12+ ++

(e) Forward.

2

24

24+ ++

(f) Backward.

Figure 3.10: Illustration of tensor components of actions North, South, West , East , Forward ,
and Backward .

66

67

4. EXPERIMENTS

In this chapter, we report the experiments using the CP-MDP compact method.
First, we address the problem we solve in Section 4.1. Then, in Section 4.2, we introduce
the experimental setup and the tabular implementation we compare against the CP-MDP

method. Finally, in Sections 4.3 and 4.4, we report the runtime and memory usage results
of solving a GRIDWORLD problem using tabular approaches in comparison to CP-MDP-VI
and CP-MDP-PI algorithms.

4.1 MDP Scenario

We evaluate our approach using standard GRIDWORLD single-agent MDP prob-
lems, which are classic navigation problems in artificial intelligence. The grid cells corre-
spond to the states of the environment, and the grid size is defined by the number of states
S. We determine the number of actions that an agent can perform by 2 × |D|, i.e., we
consider two actions for each Cartesian plane. Obstacles O are states an agent has no
access to. The interaction with the environment terminates when the agent reaches one of
the terminal states T . For example, for a two-dimensional grid, the environment is defined
by x×y states, and the agent actions in a given state are North and South in the x-axis, and
in the y-axis are West and East. For a three-dimensional grid, the environment is defined by
x × y × z states, and the actions are Forward and Backward in the z-axis, and so on.

4.2 Experimental Setup

We now detail the execution setup we use for the experiments. We evaluate the
Python implementation of our approach1 using an Intel(R) Xeon(R) CPU @ 2.30GHz with
13 GB RAM from a Python 3.6.9 Google Colaboratory notebook2.We compare our results
against a standard tabular implementation of value iteration and policy iteration algorithms
in Python pymdptoolbox3.

The plotted values consist of the average of 6 executions of the GRIDWORLD prob-
lem for each grid size configuration. We use a discount factor of γ = 0.9 and maxIter =
1, 000. We define non-terminal states with a -3 reward. The grid contains randomly placed
obstacles and terminal states, where half of the terminal states set receives additive +100
rewards, and the other half receives discounted -100 rewards. Table 4.1 shows the number

1Available at: https://github.com/danielakuinchtner/cp-mdp
2https://colab.research.google.com/
3https://pypi.org/project/pymdptoolbox/

68

of actions A, states S, obstacles O, and terminals T we consider for each test environment
(#). For example, for a 2D test with 4 actions, we use 6 terminals and 50 obstacles to solve a
4,900-state problem, where the total number of states are divided into two dimensions (e.g.,
70× 70 = 4, 900). We describe the distribution of states into dimensions in Appendix A.

Table 4.1: Experimental setup for each execution: “#”: number of each configuration; “|S|”:
number of states; “|T |”: number of terminals; “|O|”: number of obstacles; “|D|”: number of
dimensions; and “|A|”: number of actions.

Number of States |S| |T | |O|

1) 4,900 4,000 3,125 2,048 3,888 6 50
2) 10,000 8,000 7,000 5,184 5,832 8 100
3) 14,400 12,500 10,000 9,216 8,748 10 200
4) 19,600 18,750 12,500 10,368 9,216 12 300
5) 22,500 24,000 19,200 18,432 17,496 14 400
6) 90,000 60,000 100,000 78,125 82,944 16 500
7) 250,000 125,000 200,000 233,280 196,008 18 600
8) 640,000 512,000 600,000 605,052 491,520 20 700
9) 1,000,000 1,000,000 1,200,000 823,543 800,000 22 800

|D| 2 3 5 7 9
|A| 4 6 10 14 18

4.3 Runtime Analysis

In this section, we show a comparison of runtime to solve the GRIDWORLD problem
between the (i) TABULAR-VI and CP-MDP-VI, (ii) TABULAR-PI and CP-MDP-PI, and (iii)
CP-MDP-VI and CP-MDP-PI algorithms.

Figure 4.1 shows the runtime in seconds to solve the GRIDWORLD problem using
tabular value iteration (TABULAR-VI) and tabular policy iteration (TABULAR-PI) algorithms,
and using the compact value iteration (CP-MDP-VI) and compact policy iteration (CP-MDP-
PI) algorithms for problems with 2, 3, 5, 7 and 9 dimensions. While CP-MDP does not sig-
nificantly outperform tabular methods for smaller problems (up to 5,000 states), it achieves
a runtime improvement between 60% and 80% in most larger cases. For a two-dimensional
19,600-state problem, CP-MDP-VI achieves a runtime improvement of 82.45% compared
to TABULAR-VI, as the number of dimensions increases, the runtime improvement between
the two algorithms decreases in an average of 8.55%. And CP-MDP-PI achieves 68.99%
runtime improvement compared to TABULAR-PI for 10,000-state and 14,400-state problems,
as the number of dimensions increases, the improvement reduces to an average of 9.95%.

69

In all cases, CP-MDP-PI is substantially less efficient than CP-MDP-VI, taking an average
of runtime 5 times longer than the compact value iteration, either TABULAR-PI compared to
TABULAR-VI for a lower number of dimensions. And TABULAR-PI is unable to solve larger
problems, e.g., tests with 18,750, 19,600, 12,500, 10,368, and 9,216, states compared to
TABULAR-VI. To show results without a limit of visualization, in Appendix B (Figure B.1), we
show the results of Figure 4.1 on a logarithmic scale.

20
48

 (7
D)

31
25

 (5
D)

38
88

 (9
D)

40
00

 (3
D)

49
00

 (2
D)

51
84

 (7
D)

58
32

 (9
D)

70
00

 (5
D)

80
00

 (3
D)

87
48

 (9
D)

92
16

 (7
D)

10
00

0
(2

D)

10
00

0
(5

D)

12
50

0
(3

D)

14
40

0
(2

D)

18
75

0
(3

D)

19
60

0
(2

D)

12
50

0
(5

D)

10
36

8
(7

D)

92
16

 (9
D)

number of states

0

20

40

60

80

100

ru
nt

im
e

(s
ec

on
ds

)

2, 3, 5, 7 and 9-D grids
CP-MDP-VI
CP-MDP-PI
Tabular-VI
Tabular-PI

Figure 4.1: Runtime (in seconds) of CP-MDP-VI and CP-MDP-PI methods against the tab-
ular value iteration (TABULAR-VI) and policy iteration (TABULAR-PI) algorithms of 2, 3, 5, 7,
and 9 dimensions.

Figure 4.2 shows runtime results for tests performed only by the CP-MDP-VI and
CP-MDP-PI algorithms, due to memory limitations to compute the solution for these grid
sizes using tabular approaches. In some cases, problems with more than 250,000 states,
CP-MDP-PI takes longer than 4 hours, so we interrupted the execution, and problems with
more than 600,000 states, CP-MDP-PI is unable to run due to memory limitations, as well.
To show results without a limit of visualization, in Appendix B (Figure B.2), we show the
results of Figure 4.2 on a logarithmic scale.

In Figure 4.3, we show all runs performed by tabular and CP-MDP algorithms on
a logarithmic scale. Comparing the four algorithms, CP-MDP-VI is the approach that out-
performs the remaining algorithms since it can solve larger problems and in a more efficient
way.

70

17
49

6
(9

D)
18

43
2

(7
D)

19
20

0
(5

D)
22

50
0

(2
D)

24
00

0
(3

D)
60

00
0

(3
D)

78
12

5
(7

D)
82

94
4

(9
D)

90
00

0
(2

D)
10

00
00

 (5
D)

12
50

00
 (3

D)
19

66
08

 (9
D)

20
00

00
 (5

D)
23

32
80

 (7
D)

25
00

00
 (2

D)
49

15
20

 (9
D)

51
20

00
 (3

D)
60

00
00

 (5
D)

60
50

52
 (7

D)
64

00
00

 (2
D)

80
00

00
 (9

D)
82

35
43

 (7
D)

10
00

00
0

(2
D)

10
00

00
0

(3
D)

12
00

00
0

(5
D)

number of states

0

500

1000

1500

2000

2500

3000
ru

nt
im

e
(s

ec
on

ds
)

2, 3, 5, 7 and 9-D grids
CP-MDP-VI
CP-MDP-PI

Figure 4.2: CP-MDP runtime to compute large grid sizes using the compact value and policy
iteration.

20
48

 (7
D)

31
25

 (5
D)

38
88

 (9
D)

40
00

 (3
D)

49
00

 (2
D)

51
84

 (7
D)

58
32

 (9
D)

70
00

 (5
D)

80
00

 (3
D)

87
48

 (9
D)

92
16

 (7
D)

10
00

0
(2

D)
10

00
0

(5
D)

12
50

0
(3

D)
14

40
0

(2
D)

18
75

0
(3

D)
19

60
0

(2
D)

12
50

0
(5

D)
10

36
8

(7
D)

92
16

 (9
D)

17
49

6
(9

D)
18

43
2

(7
D)

19
20

0
(5

D)
22

50
0

(2
D)

24
00

0
(3

D)
60

00
0

(3
D)

78
12

5
(7

D)
82

94
4

(9
D)

90
00

0
(2

D)
10

00
00

 (5
D)

12
50

00
 (3

D)
19

66
08

 (9
D)

20
00

00
 (5

D)
23

32
80

 (7
D)

25
00

00
 (2

D)
49

15
20

 (9
D)

51
20

00
 (3

D)
60

00
00

 (5
D)

60
50

52
 (7

D)
64

00
00

 (2
D)

80
00

00
 (9

D)
82

35
43

 (7
D)

10
00

00
0

(2
D)

10
00

00
0

(3
D)

12
00

00
0

(5
D)

number of states

100

101

102

103

ru
nt

im
e

(s
ec

on
ds

)

2, 3, 5, 7 and 9-D grids
CP-MDP-VI
CP-MDP-PI
Tabular-VI
Tabular-PI

Figure 4.3: Runtime comparison between tabular and compact algorithms on a logarithmic
scale.

71

Finally, in Table 4.2 we show a runtime improvement average between (i) CP-MDP-
VI and TABULAR-VI, (ii) CP-MDP-PI and TABULAR-PI, and (iii) CP-MDP-VI and CP-MDP-
PI. The table consists of an average of five sizes of grids, which we describe each size in
Table 4.1 previously mentioned. For more details, we describe each test with its respective
runtime improvement in Appendix C (Table C.1). About the first comparison, (i) CP-MDP-VI
does not significantly exceed the tabular form runtime for runs of an average of 3,592 states.
However, as the number of states grows, the average runtime improves from 7.94% up to
64.21%. Whereas, TABULAR-VI is not able to solve problems with an average of 20,326 up
to 964,709 states, and TABULAR-PI from 14,087 up to 964,709 states. Consequently, we are
not able to compare the improvement against the CP-MDP compact methods. In the second
comparison, (ii) CP-MDP-PI is substantially slower than the TABULAR-PI for small problems.
However, for larger problems with 7,203 up to 10,973 states, CP-MDP-PI starts to overcome
the tabular form. Finally, (iii) the comparison between the two CP-MDP compact algorithms
shows that CP-MDP-VI maintains a pattern of time improvement compared to CP-MDP-PI
for small and larger problems.

CP-MDP-VI CP-MDP-PI CP-MDP-VI
States x x x

TABULAR-VI TABULAR-PI CP-MDP-PI

1) 3,592 7.94% -114.22% 50.59%
2) 7,203 38.07% 18.51% 45.65%

3) 10,973 55.53% 45.30% 46.66%
4) 14,087 64.21% - 47.34%
5) 20,326 - - 48.81%
6) 82,214 - - 45.78%
7) 200,858 - - 42.87%
8) 569,714 - - -
9) 964,709 - - -

Table 4.2: Average of runtime improvement comparison between (i) CP-MDP-VI and
TABULAR-VI, (ii) CP-MDP-PI and TABULAR-PI, and (iii) CP-MDP-VI and CP-MDP-PI.

The standard deviation of time between runs is small; that is why we performed only
6 executions. For example, the standard deviation for tests between 4,900 to 18,750 states
varies from 0.81 to 1.96. For larger problems (24,000 to 1,000,000 states), the dispersion
ranges from 4.10 to 51.68, which is almost insignificant for larger tests that take more than
2,000 seconds to run.

72

4.4 Memory Analysis

In this section, we show a comparison of memory usage to solve the GRIDWORLD

problem between (i) TABULAR-VI and CP-MDP-VI, (ii) TABULAR-PI and CP-MDP-PI, and
(iii) CP-MDP-VI and CP-MDP-PI. As we show in Figure 4.4, the memory requirements
for the CP-MDP method are substantially lower than tabular ones, ranging from 131.54 to
246.31 MB. The TABULAR-VI and TABULAR-PI methods require much more memory than
CP-MDP algorithms to the extent that we cannot run problems with more than 19,600 states
using tabular forms. For a 19,600-state test, TABULAR-VI uses 12.45 GB and TABULAR-PI
uses more memory than our set limit of 13 GB, whereas both CP-MDP-VI and CP-MDP-
PI compute the solution using 151.33 MB and 149.66 MB, respectively. Consequently, the
memory improvement of CP-MDP is more than 90% in all cases with more than 5,000 states
than tabular value and policy iteration. To show results without a limit of visualization, in
Appendix B (Figure B.3), we show the results of Figure 4.4 on a logarithmic scale.

20
48

 (7
D)

31
25

 (5
D)

38
88

 (9
D)

40
00

 (3
D)

49
00

 (2
D)

51
84

 (7
D)

58
32

 (9
D)

70
00

 (5
D)

80
00

 (3
D)

87
48

 (9
D)

92
16

 (7
D)

10
00

0
(2

D)

10
00

0
(5

D)

12
50

0
(3

D)

14
40

0
(2

D)

18
75

0
(3

D)

19
60

0
(2

D)

12
50

0
(5

D)

10
36

8
(7

D)

92
16

 (9
D)

number of states

0

1000

2000

3000

4000

5000

m
em

or
y

(M
B)

2, 3, 5, 7 and 9-D grids
CP-MDP-VI
CP-MDP-PI
Tabular-VI
Tabular-PI

Figure 4.4: Memory (in MB) of CP-MDP-VI and CP-MDP-PI methods against the tabular
value iteration (TABULAR-VI) and policy iteration (TABULAR-PI) algorithms of 2, 3, 5, 7, and
9 dimensions.

Due to memory limitations to compute using tabular algorithms, Figure 4.5 shows
memory results for tests performed only by the CP-MDP methods. In some cases, CP-MDP-
PI cannot compute due to memory limitations, and in some cases, the algorithm takes more
than 4 hours to compute the solution, as we previously stated. To show results without a

73

limit of visualization, in Appendix B (Figure B.4), we show the results of Figure 4.5 on a
logarithmic scale.

17
49

6
(9

D)
18

43
2

(7
D)

19
20

0
(5

D)
22

50
0

(2
D)

24
00

0
(3

D)
60

00
0

(3
D)

78
12

5
(7

D)
82

94
4

(9
D)

90
00

0
(2

D)
10

00
00

 (5
D)

12
50

00
 (3

D)
19

66
08

 (9
D)

20
00

00
 (5

D)
23

32
80

 (7
D)

25
00

00
 (2

D)
49

15
20

 (9
D)

51
20

00
 (3

D)
60

00
00

 (5
D)

60
50

52
 (7

D)
64

00
00

 (2
D)

80
00

00
 (9

D)
82

35
43

 (7
D)

10
00

00
0

(2
D)

10
00

00
0

(3
D)

12
00

00
0

(5
D)

number of states

0

1000

2000

3000

4000

5000

m
em

or
y

(M
B)

2, 3, 5, 7 and 9-D grids
CP-MDP-VI
CP-MDP-PI

Figure 4.5: CP-MDP necessary memory to compute large grid sizes using the compact value
and policy iteration.

20
48

 (7
D)

31
25

 (5
D)

38
88

 (9
D)

40
00

 (3
D)

49
00

 (2
D)

51
84

 (7
D)

58
32

 (9
D)

70
00

 (5
D)

80
00

 (3
D)

87
48

 (9
D)

92
16

 (7
D)

10
00

0
(2

D)
10

00
0

(5
D)

12
50

0
(3

D)
14

40
0

(2
D)

18
75

0
(3

D)
19

60
0

(2
D)

12
50

0
(5

D)
10

36
8

(7
D)

92
16

 (9
D)

17
49

6
(9

D)
18

43
2

(7
D)

19
20

0
(5

D)
22

50
0

(2
D)

24
00

0
(3

D)
60

00
0

(3
D)

78
12

5
(7

D)
82

94
4

(9
D)

90
00

0
(2

D)
10

00
00

 (5
D)

12
50

00
 (3

D)
19

66
08

 (9
D)

20
00

00
 (5

D)
23

32
80

 (7
D)

25
00

00
 (2

D)
49

15
20

 (9
D)

51
20

00
 (3

D)
60

00
00

 (5
D)

60
50

52
 (7

D)
64

00
00

 (2
D)

80
00

00
 (9

D)
82

35
43

 (7
D)

10
00

00
0

(2
D)

10
00

00
0

(3
D)

12
00

00
0

(5
D)

number of states

103

104

m
em

or
y

(M
B)

2, 3, 5, 7 and 9-D grids

CP-MDP-VI
CP-MDP-PI
Tabular-VI
Tabular-PI

Figure 4.6: Memory comparison between tabular and compact algorithms on a logarithmic
scale.

74

Now, on a logarithmic scale we show all runs performed by tabular algorithms and
CP-MDP compact ones. The dispersion distance between tabular and compact methods
is surprisingly large. However, the memory usage between CP-MDP-VI and CP-MDP-
PI is quite similar. For example, CP-MDP-VI computes the solution of a 200,000-state
5-dimensional problem in 392.95 seconds using 758.86 MB, whereas, CP-MDP-PI takes
750.95 seconds using 971.28 MB. This pattern behavior is also valid for TABULAR-VI and
TABULAR-PI. For example, for a 10,000-state 5-dimensional problem TABULAR-VI in 30.49
seconds uses 8,135.09 GB, whereas TABULAR-PI uses 9,744.13 GB in 40.42 seconds.

The number of dimensions affects memory usage, as well as runtime. For exam-
ple, for a 1,000,000-state problem distributed into 2 dimensions takes 2140.34 seconds to
compute using 1455.18 GB with CP-MDP-VI, whereas a 1,000,000-state problem distributed
into 3 dimensions takes 3097.55 seconds to run using 1818.77 GB.

Finally, in Table 4.3 we show an average of memory usage improvement between
(i) CP-MDP-VI and TABULAR-VI, (ii) CP-MDP-PI and TABULAR-PI, and (iii) CP-MDP-VI and
CP-MDP-PI. We detail each test with its respective memory usage improvement in Ap-
pendix C. About the first comparison, (i) CP-MDP-VI significantly overcomes TABULAR-VI
memory usage for all comparable runs. In the second comparison, (ii) CP-MDP-PI is also
substantially faster than the TABULAR-PI for all problems. Finally, (iii) the comparison be-
tween the two CP-MDP compact algorithms shows the improvement of using CP-MDP-VI
is merely bigger than CP-MDP-PI. In Appendix C (Table C.2), we show a detailed table
containing all memory usage improvements for each grid size.

CP-MDP-VI CP-MDP-PI CP-MDP-VI
States x x x

TABULAR-VI TABULAR-PI CP-MDP-PI

1) 3,592 84.76% 86.92% 4.21%
2) 7,203 95.76% 96.35% 5.54%

3) 10,973 98.04% 98.25% 9.37%
4) 14,087 98.53% - 6.86%
5) 20,326 - - 2.43%
6) 82,214 - - 5.47%
7) 200,858 - - 2.67%
8) 569,714 - - -
9) 964,709 - - -

Table 4.3: Average of memory usage improvement comparison between (i) CP-MDP-VI and
TABULAR-VI, (ii) CP-MDP-PI and TABULAR-PI, and (iii) CP-MDP-VI and CP-MDP-PI.

75

5. RELATED WORK

This chapter addresses state-of-art papers for the factored MDP field: (i) Boutilier
et al. (9), and (ii) Guestrin et al. (16). Then, we describe a work that uses a tensor decom-
position method called KKT.

(i) The first work of Boutilier et al. (9) uses dynamic Bayesian networks to represent
stochastic actions in an MDP, together with a decision-tree representation of rewards. Based
on this representation, the authors develop versions of standard dynamic programming al-
gorithms: Modified Policy Iteration (MPI) (35) and Structured Policy Iteration (SPI) (8), which
directly manipulate decision tree representations of policies and value functions. They per-
form tests using manufacturing problems with up to 1.8 million states. In the largest of these
problems, MPI is unable to run to completion due to memory limitations, but SPI solves the
problem in one-third of the time required by MPI.

(ii) The second work of Guestrin et al. (16) develops a DBN approach that presents
two approximate solution algorithms, which exploit structure in factored MDPs. Both algo-
rithms use an approximate value function represented as a linear combination of basis func-
tions, where each basis function involves only a small subset of the domain variables. One
algorithm uses approximate linear programming, and the second uses approximate dynamic
programming (value and policy iteration). A central element of these algorithms is a novel
linear program decomposition technique, which reduces an exponentially large problem to a
provably equivalent, polynomial-sized one. The work provides experimental results on sys-
tem administrator (SysAdmin) problems with over 1040 states, demonstrating a promising
indication of the approach’s scalability and exponential gains in computation time.

In general, these papers’ methods and algorithms prove that decomposing the rep-
resentation into smaller subsets (a factored representation) allows an exponential reduction
in the representation size of structured MDPs. However, these works are based on factored
state representations that use DBN-based approaches. In contrast, our research is focused
on monolithic ones leveraging advances in tensor decomposition methods to increase MDPs
solvers’ efficiency. In our approach, instead of using dynamic Bayesian networks to rep-
resent state transition matrices, we provide a formalization of multidimensional monolithic
MDPs using tensor algebra. In our formalization, we represent the state transition matrices
by CANDECOMP-PARAFAC decomposition. Moreover, our approach focuses on grid prob-
lems, and the state-of-art of DBN approaches uses different kinds of problems, like system
administrator problems and manufacturing problems.

To show a related work of MDPs addressing tensor decomposition, the research
that comes closest to our proposal is Smart’s dissertation (42). His work is based on an
unpublished formalization that is not available online. The author focuses on developing
an MDP tensor decomposition algorithm and analyzes its computational performance and

76

the optimality of its resultant solutions for obtaining optimal MDP policies. The author men-
tions a couple of tensor decomposition methods, such as CANDECOMP-PARAFAC (10) and
Tucker decomposition (46). But, he concludes (erroneously) these methods are not viable
candidates for MDP decomposition because they are not clear enough to transform an MDP
problem to a CANDECOMP-PARAFAC or Tucker decomposition. Still, our work proves it oth-
erwise for CANDECOMP-PARAFAC. So, he uses Karush-Kuhn-Tucker (KKT) (27), a method
to determine constraint qualifications for local optimality. However, the procedure does not
appear to generalize well to MDPs without exact tensor decomposition components. In other
words, the required optimization problem does not have a sufficient number of degrees of
freedom to generate decomposition sub-problems, which reconstruct the state transition and
reward matrices of the MDP. For tests, the author uses a small number of states, and the
memory impact of the KKT method appears to be worse than the standard method.

Unlike Smart’s work, we prove CANDECOMP-PARAFAC decomposition is a valid
candidate to represent MDP transition matrices, and we show the CP-MDP method performs
better than tabular algorithms for solver runtime and memory usage.

77

6. CONCLUSION

In this dissertation, we developed the CP-MDP, a tensor decomposition method that
uses the CANDECOMP-PARAFAC decomposition to solve an MDP multidimensional problem
using value iteration and policy iteration algorithms. To our knowledge, our work is the first
one employing CANDECOMP-PARAFAC tensor decomposition to solve MDPs. Our empirical
analysis shows CP-MDP-VI method solves more efficiently than CP-MDP-PI and tabular
methods in both runtime and memory. First CP-MDP-VI achieves runtime improvements of
up to 80% in the best cases than tabular approaches. Second, both CP-MDP-VI and CP-
MDP-PI require substantially less memory to compute these solutions, decreasing memory
usage by more than 90% for large multidimensional problems. The available memory is the
bottleneck to carry out tests with many states for tabular approaches. Nevertheless, memory
usage improvements for compact algorithms are the leading results in this research since
we proved that by construction, the value function is identical to the tabular approaches. In
other words, the policies of CP-MDP-VI and CP-MDP-PI are guaranteed to be optimal, much
like the equivalent tabular methods.

Our main contributions are: (i) a formalization of MDPs multidimensional prob-
lems using tensor algebra, (ii) a novel implementation of a GRIDWORLD problem using the
CANDECOMP-PARAFAC decomposition method, (iii) a compact value iteration (CP-MDP-VI)
algorithm, (iv) a compact policy iteration (CP-MDP-PI) algorithm, (v) a runtime, memory and
complexity analysis of both CP-MDP methods compared to tabular approaches, and as re-
sult of this research, (vi) we published a paper at the Mexican International Conference on
Artificial Intelligence (MICAI) (28).

To leverage advances in GPU computation libraries, we tried several different ways
to parallelize our approach to run on GPUs with Tensorflow1, Pytorch2 and Numba3. How-
ever, the runtime did not improve in any of these libraries. Such negative result seems to
stem from the communication overhead between CPU and GPU, as our methods rely on
multiplications between small tensor components.

As future work, we intend to use other tensor decomposition methods, such as
Tensor-Train Decomposition (33) and Tucker Decomposition (46) to perform the state tran-
sition matrices decomposition, aiming to improve runtime on GPUs. We also intend to gen-
eralize the CP-MDP implementation to solve several types of problems already described
in RDDL (39), aiming to compare our approach against the state-of-art of factored MDPs
solvers for different problems.

1https://www.tensorflow.org/
2https://pytorch.org/
3https://numba.pydata.org/

78

79

REFERENCES

[1] Amari, S. V.; McLaughlin, L.; Pham, H. “Cost-effective condition-based maintenance
using Markov decision processes”. In: Proceedings of the Annual Reliability and
Maintainability Symposium, 2006, pp. 464–469.

[2] Bellman, R. “Dynamic Programming”. Dover Publications, Inc., 1957, 365p.

[3] Bellman, R. “Introduction to Matrix Analysis”. McGraw-Hill, 1960, 426p.

[4] Bellman, R. “Some applications of the theory of dynamic programming - a review”,
Operational Research, vol. 2–3, Apr 1954, pp. 275–288.

[5] Bellman, R. “A Markovian decision process”, Journal of Mathematics and Mechanics,
vol. 6–5, Apr 1957, pp. 679–684.

[6] Berhili, K.; Koulali, M.-A.; Berrehili, Y. “IIoT-based prognostic health management
using a Markov decision process approach”. In: Proceedings of the 5th Ubiquitous
Networking, 2020, pp. 146–157.

[7] Boger, J.; Hoey, J.; Poupart, P.; Boutilier, C.; Fernie, G.; Mihailidis, A. “A planning
system based on Markov decision processes to guide people with dementia through
activities of daily living”, IEEE Transactions on Information Technology in Biomedicine,
vol. 10–2, Apr 2006, pp. 323–333.

[8] Boutilier, C.; Dearden, R.; Goldszmidt, M. “Exploiting structure in policy construction”.
In: Proceedings of the 14th International Joint Conference on Artificial Intelligence,
1995, pp. 1104–1111.

[9] Boutilier, C.; Dearden, R.; Goldszmidt, M. “Stochastic dynamic programming with
factored representations”, Artificial Intelligence, vol. 121–1, Aug 2000, pp. 49–107.

[10] Carroll, J. D.; Chang, J.-J. “Analysis of individual differences in multidimensional scaling
via an n-way generalization of eckart-young decomposition”, Psychometrika, vol. 35,
Sep 1970, pp. 283–319.

[11] Cassandra, A. R.; Kaelbling, L. P.; Kurien, J. A. “Acting under uncertainty:
discrete bayesian models for mobile-robot navigation”. In: Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems, 1996, pp. 963–972.

[12] Davio, M. “Kronecker products and shuffle algebra”, IEEE Transactions on Computers,
vol. 30–2, Feb 1981, pp. 116–125.

[13] De Risi, V. “The development of euclidean axiomatics”, Archive for History of Exact
Sciences, vol. 70–6, Feb 2016, pp. 591–676.

80

[14] Delgado, K. V.; Sanner, S.; de Barros, L. N.; Cozman, F. G. “Efficient solutions to
factored MDPs with imprecise transition probabilities”. In: Proceedings of the 19th
International Conference on International Conference on Automated Planning and
Scheduling, 2009, pp. 98–105.

[15] Durazo-Cardenas, I.; Starr, A.; Turner, C. J.; Tiwari, A.; Kirkwood, L.; Bevilacqua, M.;
Tsourdos, A.; Shehab, E.; Baguley, P.; Xu, Y.; Emmanouilidis, C. “An autonomous
system for maintenance scheduling data-rich complex infrastructure: Fusing the
railways’ condition, planning and cost”, Transportation Research Part C: Emerging
Technologies, vol. 89, Apr 2018, pp. 234–253.

[16] Guestrin, C.; Koller, D.; Parr, R.; Venkataraman, S. “Efficient solution algorithms for
factored MDPs”, Journal of Artificial Intelligence Research, vol. 19–1, Oct 2003, pp.
399–468.

[17] Guestrin, C. E. “Planning under uncertainty in complex structured environments”, Ph.d.
thesis, Stanford University, 2003, 370p.

[18] Harshman, R. A. “Foundations of the parafac procedure: Models and conditions for an
explanatory multi-modal factor analysis”, UCLA Working Papers in Phonetics, vol. 16,
Dec 1970, pp. 1–84.

[19] Harshman, R. A. “Parafac2: Mathematical and technical notes”, UCLA Working Papers
in Phonetics, vol. 22, Mar 1972, pp. 30–44.

[20] Howard, R. A. “Dynamic Programming and Markov Processes”. MIT Press, 1960,
136p.

[21] Iantovics, L. B. “Agent-based medical diagnosis systems”, Computing and Informatics,
vol. 27, Jan 2008, pp. 593–625.

[22] Jaynes, E. T. “Probability Theory: The Logic of Science”. Cambridge University Press,
2003, 753p.

[23] Joly, M.; Moro, L.; Pinto, J. M. “Planning and scheduling for petroleum refineries using
mathematical programming”, Brazilian Journal of Chemical Engineering, vol. 19, Jun
2002, pp. 207–228.

[24] Jónsson, A. K.; Morris, P. H.; Muscettola, N.; Rajan, K.; Smith, B. “Planning in
interplanetary space: Theory and practice”. In: Proceedings of the 5th International
Conference on Artificial Intelligence Planning Systems, 2000, pp. 177–186.

[25] Kiers, H. A. L. “A three-step algorithm for CANDECOMP/PARAFAC analysis of large
data sets with multicollinearity”, Journal of Chemometrics, vol. 12, May 1998, pp. 155–
171.

81

[26] Kolda, T. G.; Bader, B. W. “Tensor decompositions and applications”, Society for
Industrial and Applied Mathematics Review, vol. 51–3, Aug 2009, pp. 455–500.

[27] Kuhn, H. W.; Tucker, A. W. “Nonlinear programming”. In: Proceedings of the 2nd
Berkeley Symposium on Mathematical Statistics and Probability, 1951, pp. 481–492.

[28] Kuinchtner, D.; Meneguzzi, F.; Sales, A. “A Tensor-Based Markov Decision Process
Representation”. In: Proceedings of the 19th Mexican International Conference on
Artificial Intelligence: Advances in Soft Computing, 2020, pp. 313–324.

[29] Lamini, C.; Benhlima, S.; Elbekri, A. “Genetic algorithm based approach for
autonomous mobile robot path planning”, Procedia Computer Science, vol. 127, Mar
2018, pp. 180–189.

[30] Littman, M. L.; Dean, T. L.; Kaelbling, L. P. “On the complexity of solving Markov
decision problems”. In: Proceedings of the 11th Conference on Uncertainty in Artificial
Intelligence, 1995, pp. 394–402.

[31] Liu, Q.; Dong, M.; Chen, F. F. “Single-machine-based joint optimization of predictive
maintenance planning and production scheduling”, Robotics and Computer-Integrated
Manufacturing, vol. 51, Jun 2018, pp. 238–247.

[32] Oliehoek, F. A.; Amato, C. “A Concise Introduction to Decentralized POMDPs”. Springer
Publishing Company, Incorporated, 2016, 141p.

[33] Oseledets, I. “Tensor-train decomposition”, Society for Industrial and Applied
Mathematics Journal Scientific Computing, vol. 33, Jan 2011, pp. 2295–2317.

[34] Puterman, M. L. “Markov Decision Processes: Discrete Stochastic Dynamic
Programming”. John Wiley & Sons, Inc., 1994, 649p.

[35] Puterman, M. L.; Shin, M. C. “Modified policy iteration algorithms for discounted Markov
decision problems”, Management Science, vol. 24–11, Jul 1978, pp. 1127–1137.

[36] Rabanser, S.; Shchur, O.; Gunnemann, S. “Introduction to tensor decompositions and
their applications in machine learning”. Source: https://arxiv.org/abs/1711.10781v1,
Nov 2020.

[37] Russell, S.; Norvig, P. “Artificial Intelligence: A Modern Approach”. Prentice Hall Press,
2009, 1152p.

[38] Sahe, K. E.; Farah, I. R.; Ahmed, M. B. “Multi-agent system for detecting and analysing
changes on satellite image sequence”. In: Proceedings of the International Conference
on Industrial Technology, 2004, pp. 1579–1584.

https://arxiv.org/abs/1711.10781v1

82

[39] Sanner, S. “Relational Dynamic Influence Diagram Language (RDDL): Language
description”. Source: http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf,
Nov 2020.

[40] Schaefer, A. J.; Bailey, M. D.; Shechter, S. M.; Roberts, M. S. “Modeling Medical
Treatment Using Markov Decision Processes”. Springer US, 2004, chap. 23, pp. 593–
612.

[41] Sidiropoulos, N. D.; De Lathauwer, L.; Fu, X.; Huang, K.; Papalexakis, E. E.;
Faloutsos, C. “Tensor decomposition for signal processing and machine learning”, IEEE
Transactions on Signal Processing, vol. 65–13, Jul 2017, pp. 3551–3582.

[42] Smart, D. P. “Tensor decomposition and parallelization of Markov decision processes”,
Ph.d. thesis, Massachusetts Institute of Technology, 2016, 91p.

[43] Sutton, R. S.; Barton, A. G. “Reinforcement Learning: An Introduction”. MIT Press,
2018, 548p.

[44] Tominac, P.; Mahalec, V. “A game theoretic framework for petroleum refinery strategic
production planning”, American Institute of Chemical Engineers Journal, vol. 63, Jul
2017, pp. 2751–2763.

[45] Toomey, C.; Mark, W. “Satellite image dissemination via software agents”, IEEE Expert,
vol. 10–5, Oct 1995, pp. 44–51.

[46] Tucker, L. R. “Some mathematical notes on three-mode factor analysis”, Journal
Psychometrika, vol. 31, Sep 1966, pp. 279–311.

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

83

APPENDIX A – GRID CONFIGURATION

In Table A.1, we show how many states we consider for each dimension. We use
this configuration to run the tests for each grid size. For example, we assign a grid size of
3,125 states into 5 dimensions as: “5×5×5×5×5”.

Number of Dimensions and States

2 3 5

4,900 (70×70) 4,000 (10×20×20) 3,125 (5×5×5×5×5)
10,000 (100×100) 8,000 (20×20×20) 7,000 (5×5×5×7×8)
14,400 (120×120) 12,500 (20×25×25) 10,000 (5×5×5×8×10)
19,600 (140×140) 18,750 (25×25×30) 12,500 (5×5×5×10×10)
22,500 (150×150) 24,000 (20×30×40) 19,200 (5×6×8×8×10)
90,000 (300×300) 60,000 (30×40×50) 100,000 (10×10×10×10×10)

250,000 (500×500) 125,000 (50×50×50) 200,000 (5×10×10×20×20)
640,000 (800×800) 512,000 (80×80×80) 600,000 (10×10×15×20×20)

1,000,000 (1000×1000) 1,000,000 (100×100×100) 1,200,000 (10×15×20×20×20)

7 9

2,048 (2×2×2×4×4×4×4) 3,888 (2×2×2×2×3×3×3×3×3)
5,184 (3×3×3×3×4×4×4) 5,832 (2×2×2×3×3×3×3×3×3)
9,216 (3×3×4×4×4×4×4) 8,748 (2×2×3×3×3×3×3×3×3)

10,368 (3×3×3×4×4×4×6) 9,216 (2×2×2×2×3×3×4×4×4)
18,432 (3×4×4×4×4×4×6) 17,496 (2×3×3×3×3×3×3×3×4)
78,125 (5×5×5×5×5×5×5) 82,944 (3×3×3×3×4×4×4×4×4)

233,280 (5×6×6×6×6×6×6) 196,008 (3×4×4×4×4×4×4×4×4)
605,052 (6×6×7×7×7×7×7) 491,520 (4×4×4×4×4×4×4×5×6)
823,543 (7×7×7×7×7×7×7) 800,000 (4×4×4×4×5×5×5×5×5)

Table A.1: Number of states of each dimension.

84

85

APPENDIX B – LOGARITHMIC SCALE

20
48

 (7
D)

31
25

 (5
D)

38
88

 (9
D)

40
00

 (3
D)

49
00

 (2
D)

51
84

 (7
D)

58
32

 (9
D)

70
00

 (5
D)

80
00

 (3
D)

87
48

 (9
D)

92
16

 (7
D)

10
00

0
(2

D)

10
00

0
(5

D)

12
50

0
(3

D)

14
40

0
(2

D)

18
75

0
(3

D)

19
60

0
(2

D)

12
50

0
(5

D)

10
36

8
(7

D)

92
16

 (9
D)

number of states

100

101

102

ru
nt

im
e

(s
ec

on
ds

)

2, 3, 5, 7 and 9-D grids
CP-MDP-VI
CP-MDP-PI
Tabular-VI
Tabular-PI

Figure B.1: Runtime of CP-MDP-VI and CP-MDP-PI methods against TABULAR-VI and
TABULAR-PI algorithms of 2, 3, 5, 7, and 9 dimensions on a logarithmic scale.

17
49

6
(9

D)
18

43
2

(7
D)

19
20

0
(5

D)
22

50
0

(2
D)

24
00

0
(3

D)
60

00
0

(3
D)

78
12

5
(7

D)
82

94
4

(9
D)

90
00

0
(2

D)
10

00
00

 (5
D)

12
50

00
 (3

D)
19

66
08

 (9
D)

20
00

00
 (5

D)
23

32
80

 (7
D)

25
00

00
 (2

D)
49

15
20

 (9
D)

51
20

00
 (3

D)
60

00
00

 (5
D)

60
50

52
 (7

D)
64

00
00

 (2
D)

80
00

00
 (9

D)
82

35
43

 (7
D)

10
00

00
0

(2
D)

10
00

00
0

(3
D)

12
00

00
0

(5
D)

number of states

102

103

ru
nt

im
e

(s
ec

on
ds

)

2, 3, 5, 7 and 9-D grids
CP-MDP-VI
CP-MDP-PI

Figure B.2: CP-MDP-VI and CP-MDP-PI runtime to compute large grid sizes on a logarith-
mic scale.

86

20
48

 (7
D)

31
25

 (5
D)

38
88

 (9
D)

40
00

 (3
D)

49
00

 (2
D)

51
84

 (7
D)

58
32

 (9
D)

70
00

 (5
D)

80
00

 (3
D)

87
48

 (9
D)

92
16

 (7
D)

10
00

0
(2

D)

10
00

0
(5

D)

12
50

0
(3

D)

14
40

0
(2

D)

18
75

0
(3

D)

19
60

0
(2

D)

12
50

0
(5

D)

10
36

8
(7

D)

92
16

 (9
D)

number of states

103

104
m

em
or

y
(M

B)

2, 3, 5, 7 and 9-D grids
CP-MDP-VI
CP-MDP-PI
Tabular-VI
Tabular-PI

Figure B.3: Memory requirements of CP-MDP-VI and CP-MDP-PI methods against
TABULAR-VI and TABULAR-PI algorithms of 2, 3, 5, 7, and 9 dimensions on a logarithmic
scale.

17
49

6
(9

D)
18

43
2

(7
D)

19
20

0
(5

D)
22

50
0

(2
D)

24
00

0
(3

D)
60

00
0

(3
D)

78
12

5
(7

D)
82

94
4

(9
D)

90
00

0
(2

D)
10

00
00

 (5
D)

12
50

00
 (3

D)
19

66
08

 (9
D)

20
00

00
 (5

D)
23

32
80

 (7
D)

25
00

00
 (2

D)
49

15
20

 (9
D)

51
20

00
 (3

D)
60

00
00

 (5
D)

60
50

52
 (7

D)
64

00
00

 (2
D)

80
00

00
 (9

D)
82

35
43

 (7
D)

10
00

00
0

(2
D)

10
00

00
0

(3
D)

12
00

00
0

(5
D)

number of states

103

m
em

or
y

(M
B)

2, 3, 5, 7 and 9-D grids
CP-MDP-VI
CP-MDP-PI

Figure B.4: CP-MDP-VI and CP-MDP-PI memory requirements to compute large grid sizes
on a logarithmic scale.

87

APPENDIX C – RUNTIME AND MEMORY IMPROVEMENT

88

C
P-M

D
P-V

I
C

P-M
D

P-P
I

C
P-M

D
P-V

I
C

P-M
D

P-V
I

C
P-M

D
P-P

I
C

P-M
D

P-V
I

C
P-M

D
P-V

I
C

P-M
D

P-P
I

C
P-M

D
P-V

I
C

P-M
D

P-V
I

C
P-M

D
P-P

I
C

P-M
D

P-V
I

C
P-M

D
P-V

I
C

P-M
D

P-P
I

C
P-M

D
P-V

I
#

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
T

A
B

U
LA

R
-V

I
T

A
B

U
LA

R
-P

I
C

P-M
D

P-P
I

T
A

B
U

LA
R

-V
I

T
A

B
U

LA
R

-P
I

C
P-M

D
P-P

I
T

A
B

U
LA

R
-V

I
T

A
B

U
LA

R
-P

I
C

P-M
D

P-P
I

T
A

B
U

LA
R

-V
I

T
A

B
U

LA
R

-P
I

C
P-M

D
P-P

I
T

A
B

U
LA

R
-V

I
T

A
B

U
LA

R
-P

I
C

P-M
D

P-P
I

1)
4,900

4,000
3,125

2,048
3,888

57.57%
-25.07%

90.35%
31.07%

-42.83%
68.41%

-9.08%
-125.88%

48.07%
-37.29%

-263.53%
27.37%

-2.56%
-113.81%

18.73%

2)
10,000

8,000
7,000

5,184
5,832

76.76%
68.01%

80.90%
48.78%

34.77%
68.31%

32.42%
37.27%

32.26%
19.22%

-35.88%
31.78%

13.18%
-11.60%

14.99%

3)
14,400

12,500
10,000

9,216
8,748

72.74%
68.99%

80.15%
59.32%

73.07%
66.33%

53.43%
37.21%

44.05%
47.39%

21.34%
32.35%

44.76%
25.87%

10.40%

4)
19,600

18,750
12,500

10,368
9,216

82.45%
-

85.53%
73.49%

-
69.95%

64.11%
-

42.79%
55.28%

-
25.58%

45.70%
-

12.83%

5)
22,500

24,000
19,200

18,432
17,496

-
-

83.71%
-

-
65.30%

-
-

39.19%
-

-
37.18%

-
-

18.66%

6)
90,000

60,000
100,000

78,125
82,944

-
-

63.45%
-

-
70.81%

-
-

44.22%
-

-
28.15%

-
-

22.29%

7)
250,000

125,000
200,000

233,280
196,008

-
-

-
-

-
72.70%

-
-

47.67%
-

-
36.12%

-
-

14.97%

8)
640,000

512,000
600,000

605,052
491,520

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

9)
1,000,000

1,000,000
1,200,000

823,543
800,000

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

|D
|

2
3

5
7

9
|A
|

4
6

10
14

18

Table
C

.1:
R

untim
e

im
provem

entofeach
grid

size.

89

C
P

-M
D

P
-V

I
C

P
-M

D
P

-P
I

C
P

-M
D

P
-V

I
C

P
-M

D
P

-V
I

C
P

-M
D

P
-P

I
C

P
-M

D
P

-V
I

C
P

-M
D

P
-V

I
C

P
-M

D
P

-P
I

C
P

-M
D

P
-V

I
C

P
-M

D
P

-V
I

C
P

-M
D

P
-P

I
C

P
-M

D
P

-V
I

C
P

-M
D

P
-V

I
C

P
-M

D
P

-P
I

C
P

-M
D

P
-V

I
#

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
TA

B
U

LA
R

-V
I

TA
B

U
LA

R
-P

I
C

P
-M

D
P

-P
I

TA
B

U
LA

R
-V

I
TA

B
U

LA
R

-P
I

C
P

-M
D

P
-P

I
TA

B
U

LA
R

-V
I

TA
B

U
LA

R
-P

I
C

P
-M

D
P

-P
I

TA
B

U
LA

R
-V

I
TA

B
U

LA
R

-P
I

C
P

-M
D

P
-P

I
TA

B
U

LA
R

-V
I

TA
B

U
LA

R
-P

I
C

P
-M

D
P

-P
I

1)
4,

90
0

4,
00

0
3,

12
5

2,
04

8
3,

88
8

85
.1

6%
89

.4
1%

1.
79

%
85

.0
4%

87
.9

7%
4.

11
%

84
.6

6%
86

.4
0%

4.
61

%
76

.3
0%

77
.7

7%
5.

53
%

92
.6

6%
93

.0
3%

5.
03

%

2)
10

,0
00

8,
00

0
7,

00
0

5,
18

4
5,

83
2

95
.7

5%
97

.1
7%

-1
.2

7%
95

.6
8%

96
.5

2%
6.

03
%

96
.2

8%
96

.5
7%

9.
18

%
94

.8
7%

95
.1

7%
6.

67
%

96
.2

3%
96

.3
4%

7.
07

%

3)
14

,4
00

12
,5

00
10

,0
00

9,
21

6
8,

74
8

97
.8

6%
98

.5
7%

-0
.2

7%
98

.1
3%

98
.4

8%
7.

34
%

98
.0

3%
98

.1
5%

11
.1

9%
98

.1
3%

98
.0

4%
16

.2
4%

98
.0

4%
97

.9
9%

12
.3

5%

4)
19

,6
00

18
,7

50
12

,5
00

10
,3

68
9,

21
6

98
.7

8%
-

-1
.1

2%
98

.6
2%

-
8.

27
%

98
.6

7%
-

10
.1

9%
98

.4
1%

-
9.

00
%

98
.1

7%
-

7.
96

%

5)
22

,5
00

24
,0

00
19

,2
00

18
,4

32
17

,4
96

-
-

-0
.3

2%
-

-
10

.2
1%

-
-

12
.6

3%
-

-
-1

4.
57

%
-

-
-4

.1
9%

6)
90

,0
00

60
,0

00
10

0,
00

0
78

,1
25

82
,9

44

-
-

6.
42

%
-

-
11

.5
0%

-
-

20
.1

3%
-

-
6.

24
%

-
-

-1
6.

95
%

7)
25

0,
00

0
12

5,
00

0
20

0,
00

0
23

3,
28

0
19

6,
00

8
-

-
-

-
-

15
.6

5%
-

-
21

.8
7%

-
-

-2
3.

74
%

-
-

-3
.0

9%

8)
64

0,
00

0
51

2,
00

0
60

0,
00

0
60

5,
05

2
49

1,
52

0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

9)
1,

00
0,

00
0

1,
00

0,
00

0
1,

20
0,

00
0

82
3,

54
3

80
0,

00
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

|D
|

2
3

5
7

9
|A
|

4
6

10
14

18

Ta
bl

e
C

.2
:

M
em

or
y

im
pr

ov
em

en
to

fe
ac

h
gr

id
si

ze
.

	Introduction
	Background
	Decision Theory
	Markov Decision Process
	Factored Markov Decision Process

	Tensor Algebra
	Tensor Decomposition

	Tensor-based MDP Decomposition
	Tensor Algebra Formalization
	Cp-Mdp Representation
	Cp-Mdp Algorithms
	Transition Model Matrix Generator
	Tensor Components Generator
	Cp-Mdp-VI
	Cp-Mdp-PI

	Complexity and Computational Cost Analysis
	Precomputation
	Computation

	Three-dimensional GridWorld Example

	Experiments
	MDP Scenario
	Experimental Setup
	Runtime Analysis
	Memory Analysis

	Related Work
	Conclusion
	Appendix A – Grid Configuration
	Appendix B – Logarithmic Scale
	Appendix C – Runtime and Memory Improvement

