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ENRIQUECENDO WORD EMBEDDINGS DA LÍNGUA PORTUGUESA
COM INFORMAÇÕES VISUAIS

RESUMO

Essa dissertação foca no enriquecimento de word embeddings pré-treinados na
língua Portuguesa com o uso de informações visuais. Essas informações foram extraídas
de imagens retratando certos termos do vocabulário e embeddings visuais "imaginadas"
para termos sem dados de imagem. Essas embeddings enriquecidas foram testadas con-
tra seus modelos textuais originais em tarefas comuns de PLN, sendo elas: relação entre
palavras, predição de analogias, reconhecimento de entidades nomeadas e similaridade de
sentenças. Essas tarefas foram utilizadas para descobrir se o enriquecimento tem impacto
sobre a performance dos embeddings nas tarefas em questão. Os resultados demonstram
um aumento de desempenho para algumas tarefas, o que indica que o enriquecimento com
dados visuais é útil para tarefas de PLN baseadas em word embeddings.

Palavras-Chave: word embeddings, multimodal, português, geociências, reconhecimento
de entidades nomeadas, similaridade de sentenças, relacionamento de palavras.



ENRICHING PORTUGUESE WORD EMBEDDINGS WITH VISUAL
INFORMATION

ABSTRACT

This dissertation focuses on the enrichment of existing Portuguese word embed-
dings with visual information in the form of visual embeddings. This information was ex-
tracted from images portraying given vocabulary terms and imagined visual embeddings
learned for terms with not image data. These enriched embeddings were tested against
their text-only counterparts in common NLP tasks, namely: word relatedness, analogy pre-
diction, named entity recognition, and sentence similarity. These tasks were used to as-
certain whether the enrichment has an impact on the embedding’s performance the above
mentioned tasks. The results show an increase in performance for several tasks, which indi-
cates that visual information fusion for word embeddings can be useful for word embedding
based NLP tasks.

Keywords: word embeddings, multimodal, portuguese, geosciences, named entity recog-
nition, sentence similarity, word relatedness.
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1. INTRODUCTION

Language modelling technologies have been dominated by semantic embedding
models ever since Mikolov et al. (2013b) and Mikolov et al.’s (2013a) [30, 31] popularization
of Word Embeddings, a concept which revolutionized the field of Natural Language Process-
ing (NLP). The architecture presented by the authors, Word2Vec, has been used as basis for
many works across the spectrum of NLP tasks, as attested by nearly 45,000 citations when
accounting both of the aforementioned papers (as recorded by Google Scholar), mainly be-
cause of the fact that training this architecture only requires raw text, and no human-made
annotation (the main obstacle in training machine learning models).

Many architectures based on the original intuition behind Word2Vec have become
popular since 2013. The most prevalent, besides the original Word2Vec, are fastText [18]
and GloVe [36]. An evolution upon the concept, taking into account the current context of
a word, not just an amalgamation of all contexts with which it was trained, was introduced
by Peters et al. (2018) [37], with their ELMO architecture, and popularized by Devlin et
al.’s (2019) [14] BERT architecture. These Contextual Embeddings, as they are sometimes
referred to, have taken off and are currently the bleeding edge technology in the field of
semantic embeddings with the immense GPT-3 model, from OpenAI1, achieving state-of-
the-art results in multiple NLP tasks [5].

All of the mentioned embedding architectures have at least one model trained on
Portuguese language corpora. The Núcleo Interinstitucional de Linguística Computacional
(NILC), from the Universidade de São Paulo (USP), for example, has several Word2Vec,
fastText and GloVe models for the Portuguese language available within their Word Em-
bedding repository2. The Allen Institute for AI maintains an ELMO model repository which
includes a Portuguese language model3. BERTimbau[44], a Portuguese language BERT
model, was recently developed and added to the Hugging Face4 library. These models, and
others, have been used to advance the state-of-the-art in several Portuguese language NLP
tasks [40, 26, 16].

Beyond these efforts to further enhance the usage of text in the training of word
embedding models, be it Portuguese language text or otherwise, an effort to enrich these
embeddings with other modes of information also arose. The most studied modes of infor-
mation used to enhance Word Embeddings are the visual mode (composed of images and
video), and the audio mode (composed of sounds, spoken language, music, etc.). These
efforts spurred the creation of multimodal embedding fusion architectures, used to join em-
beddings of disparate modes into a single embedding representing all fused knowledge. An

1https://openai.com/
2http://www.nilc.icmc.usp.br/embeddings
3https://allennlp.org/elmo
4https://huggingface.co/

https://openai.com/
http://www.nilc.icmc.usp.br/embeddings
https://allennlp.org/elmo
https://huggingface.co/
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example of this is the concatenation based architecture of Bruni et al. (2014) [6], which ar-
rived at promising results after proposing that multiple embeddings of different modes could
be concatenated, resulting in a higher-dimensional space, for them to be enhanced for better
use in NLP tasks.

It is also important to note that this dissertation is inserted within the context of the
"Geologia Digital: Busca digital de dados geocientíficos heterogêneos" (Digital Geology:
Digital search of heterogeneous geoscientific data) project. This project, a result of Petro-
bras’ partnership with the Universidade Federal do Rio Grande do Sul (UFRGS) and the
Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), has as a central objective
the research and development of Information Retrieval technology for internal usage within
Petrobras’ large and heterogeneous databases. This is where Word Embeddings come in,
as several studies posit that they are more fit for use in industry than more computationally
intensive Contextual Embeddings [38, 4], and they can be used to expand search terms
through semantic similarity and relatedness. This approach to the problem also inspired the
study into the possibility of the enrichment of Word Embeddings with visual data previously
mentioned, which might enable the development of tools that take advantage of the images
being processed by the Visual Data sub-teams within the Geologia Digital project for use
with textual data.

The goal of this work is to study the possibility of usage of visual data to enrich tex-
tual data within word embeddings for use within NLP tasks in the Portuguese language. The
main hypothesis presented herein is that fusing textual information with visual information
will enhance results for traditionally text-only tasks. To test it, experiments in four NLP tasks
were performed. Of these four tasks, two had test corpora for both a generic news domain
and a specific geosciences domain, while the other two only had test corpora for a generic
news domain. This is because of the nascent nature of data digitalization and organization
within Petrobras, which is just beginning their efforts into creating proper test corpora for
their domains of interest.

This dissertation contributes to the literature and Petrobras’ aims by developing
an intrinsic NLP test corpus for the geociensces domain and enhancing an already exist-
ing extrinsic NLP test corpus for the same domain. It further tests several generic news
domain and specific geosciences domain word embedding models on appropriate domain
test corpora, both with and without visual information enrichment, thus confirming that visual
enrichment of word embeddings is a viable strategy even for text-only tasks.

The remaining chapters of this dissertation are arranged in the following manner:
Chapter 2 presents a systematic review into multimodality within semantic embeddings;
Chapter 3 presents the tools, resources and methods used to develop the multimodal em-
beddings studied in this work; Chapter 4 presents the testing methodology for the embedding
models; Chapter 5 presents the results achieved for the tests; and Chapter 6 presents the
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conclusions reached with this study, discusses the results, and deliberates on the possibili-
ties for future work.
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2. SYSTEMATIC REVIEW OF MULTIMODAL EMBEDDINGS

A systematic review was performed in order to appropriately ground this research in
the state-of-the-art for multimodal semantic embeddings, and take full advantage of already
developed tools and methodologies. This review focused on the creation of multimodal
embeddings with a bias toward the textual and visual modalities.

This chapter is structured around the literature review, and presents its aspects in
the following manner: the objective, which guided the construction of the review; the search
plan, which guided the search for existing studies, and its results; and the review questions,
the major focuses of the review, and their answers.

2.1 The Objective and Research Questions

The objective of this literature revision is to systematically review and analyse the
current state of the use of multimodality in the creation of semantically significant embed-
dings such as Word2Vec [31], Flair Embeddings [2], ELMO Embeddings [37] and BERT [14].
Given that the planned application of the multimodality for this work will be in textual-visual
fusion, other modalities are understood to be less important to the review process.

This objective is meant to explicit a focus on the textual modality, as the preliminary
objective of this work is the creation of semantic embeddings. It is to be noted that the
review has a bias toward the visual modality, but does not completely discard other possible
modalities, such as user data and audio, that may prove to increase semantic significance.

With the above objective as a guiding directive, five research questions were asked:

1. To what tasks are these embeddings mainly applied?

2. How were the embeddings constructed?

3. How were they evaluated?

4. What resources were used in the creation of the embeddings?

5. To what extent has multimodality been implemented in the creation of semantic em-
beddings? Has any implementation been successful?

These questions then guided the creation of the Search Plan, described in Section
2.2. Additionally, the answers to the research questions are presented in Section 2.3.
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2.2 The Search Plan

The search plan includes the delineation of the search terms, of the databases
that will be searched, and of the eligibility criteria. Additionally, the search terms must be
translated into search strings compatible with each database’s advanced search function.

Firstly, the search terms were created. These sprang from two main search terms:
multimodal and embeddings. From these, synonyms and certain suitably related terms were
added to the search terms, as presented below. Note that both the original terms and the
new terms were used during the searches.

• Terms related to "Multimodal":

– Modality;

• Terms related to "Embeddings":

– Distributional Semantics;

– Language Model;

– Word Space;

– Semantic Vector Space;

Secondly, the databases to be searched were defined, and their respective search
strings were developed. The chosen databases were ACM Digital Library 1, IEEE Digital
Library 2, and SCOPUS 3. These were chosen as they are the biggest Computer Science
related repositories available through PUCRS’s bought licenses, and have the most robust
search functions. Table 2.1 presents the search strings used for each database.

Lastly, the eligibility criteria were developed. These are composed of two sub-
classes of criteria: the Inclusion Criteria, which must be met in order for a work to be included
in the review; and the Exclusion Criteria, none of which can be met if a work is to be included
in the review. The criteria are presented below.

1https://dl.acm.org/
2https://ieeexplore.ieee.org
3https://www.scopus.com/

https://dl.acm.org/
https://ieeexplore.ieee.org
https://www.scopus.com/
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Database Search String

ACM Digital Library
recordAbstract: (+(multimodal modality)

+("distributional semantics" embedding "language model"
"word space" "semantic vector space"))

SCOPUS

ABS((multimodal OR modality)
AND (distributional AND semantics

OR embedding
OR language AND model

OR word AND space
OR semantic AND vector AND space))

IEEE Digital Library

(("Abstract":"multimodal" OR "Abstract":"modality")
AND ("Abstract":"’distributional semantics’"

OR "Abstract":"embedding"
OR "Abstract":"’language model’"

OR "Abstract":"’word space’"
OR "Abstract":"’semantic vector space’"))

Table 2.1 – Search Strings used for database searches.

• Inclusion Criteria:

– Publication was an academic, peer-reviewed study;

– Publication was a study pertaining to the field of Natural Language Processing;

– Publication was a study making use of multimodal semantically significant em-
beddings;

• Exclusion Criteria:

– Publication in a language other than English or Portuguese;

– Publication’s full text neither made freely available by the author nor accessible
via the licenses at PUCRS’s disposal;

– Publication published before 2015;

These criteria were chosen to ensure that the works reviewed are recent, on topic
and present reliable information, and ensure that the works are accessible to the reviewer.
This final step of the search plan ended with the manual screening of the abstract of each of
the works collected during the database search according to these criteria, and resulted in
the review corpus.

The search plan resulted in the recovery of 250 works through the automated
database search, and reduced to 111 works after the manual screening. These were then
fully read and analyzed by the author of this dissertation.
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2.3 Answering the Research Questions

This section presents the answers to the research questions as found by reading
the review corpus collected during the systematic review. It is believed that the corpus
is complete enough to provide an adequate picture of the current state-of-the-art in this
research field, as well as provide a foundation from which this work will achieve its final goal.

To what tasks are these embeddings mainly applied?

Multimodal semantic embeddings see extensive use in video related tasks, such
as video captioning [21], video understanding and video event recognition [19, 22], video
hyperlinking [25], and video recommendation [19]. This is not unexpected, as video is
an inherently multimodal medium, usually combining the visual and audio modalities. It
is also common to consider the textual modality in video, through either video descriptions
or speech transcription. It is thus common to see works proposing ways to better embed
these data modalities and attempt to make their interaction and fusion more effective.

The use of multimodal embeddings for recommendation extended beyond video.
Works used it for fashion recommendation [24, 23], product recommendation [32], and music
recommendation [34].

These embeddings have also been used to provide information to machine learn-
ing models performing prediction tasks. The use of multimodal embeddings for such tasks,
which are usually treated unimodally, has resulted in better results for certain domains.
Some of these are social media popularity prediction [9, 46], and data classification pre-
diction [29].

Semantic embeddings have also seen recent use in network embeddings. This
task consists of the learning of low-dimensional vector representations for network nodes
while preserving their structural information, and is mainly implemented so that off-the-shelf
machine learning models become easily able to use this network information in downstream
tasks [27]. A few approaches have begun to use the content information of content-rich
network nodes to inform the embedding process, alongside a node networks’ structural in-
formation. Structural and content information form the two main information modalities of
these works [27, 47].

Finally, multimodal embeddings are also used in multimedia information retrieval.
Several works focus on cross-modal retrieval [20, 17, 45]. Information retrieval is considered
one of the more important multimodal tasks, given the glut of multimedia data available on
the internet from which specific data must be retrieved.
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How were the embeddings constructed?

The literature reveals two main ways in which multimodal embeddings are con-
structed: individually and simultaneously. That is, either learning is performed individually
(an embedding is learned for each modality, and then these are fused) [11], or simultane-
ously (all modalities are learned at the same time in the same space). Henceforth, the former
method will be referred to as Post-Learning Fusion, while the latter method will be referred
to as Simultaneous Learning.

Post-learning fusion is divided into two further methods: early fusion and late fu-
sion. Early fusion is performed at the representation level, and three methods of early fusion
were found in the literature: feature concatenation, auto-encoder fusion, and cross-modal
mapping. Feature concatenation is performed through the concatenation of all single modal-
ity fusion embedding vector pairs (that is, a textual feature vector representing a concept will
be concatenated with a visual feature vector representing that same context) into a single,
longer, multimodal feature vector [22, 19]. Auto-encoder fusion is performed through the use
of auto-encoders fed with pre-trained single modality embeddings, thus generating a single
feature vector which can then be extracted from the auto-encoder’s last hidden layer [43].
Cross-modal mapping is performed through the learning of a certain amount of pre-mapped
multimodal inputs and predicting those that do not have examples in both modalities [11].
Late fusion is performed at the level of prediction scores, and it is performed through an
averaging of single modality predictions [22].

Lazaridous et al. (2015) [28] introduced the first instance found during the review
of simultaneous learning semantic embedding model, based on Mikolov et al.’s (2013) [31]
skip-gram architecture. They extended Mikolov et al.’s (2013) models to present relevant
visual feature vectors alongside textual data during training for a subset of target words.
This model has been shown to further propagate visual information to representations of
words which were not trained with visual features.

How were they evaluated?

Most of the literature consisted of using multimodality to improve the performance of
downstream tasks, such as those presented in answering the first research question, To what
tasks are these embeddings mainly applied?. As such, the evaluation of the embeddings
was extrinsic. That is, the evaluation metric was whether or not its addition to the systems
performing the downstream task affected their performance.

Lazaridou et al. (2015) [28] were the only ones to perform intrinsic tests, using
general semantic benchmarks such as concept relatedness (also known as semantic relat-
edness) [6] or semantic similarity. These are usually used to evaluate word embeddings, but
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multimodal embeddings were shown by Lazaridou et al. (2015) to outperform word embed-
dings on these tasks.

What resources were used in the creation of the embeddings?

Traditional textual feature vector building architectures, such as Word2Vec [31] and
FastText [18], were often used when extracting textual features from text corpora [45, 19, 9].
Though these features were usually created with direct use of the aforementioned word
embedding architectures, some authors chose to develop their own word embedding archi-
tectures, based on the traditional ones.

Visual features were extracted differently depending on whether the visual knowl-
edge was presented in the form of images or video. Papers working with images used a va-
riety of neural networks which learn features from annotated images, such as Convolutional
Neural Networks [17, 33] and auto-encoders [45]. Papers working with videos often cut the
video into parts, and used specialized neural networks to better capture action flow [8, 22],
which may not be taken into consideration when dealing with images. Videos themselves are
also inherently multimodal, and the audio modality was usually added as input information
to the neural network being used for learning in each work.

Also, when working with social networks, user data was often used as additional
information when creating the embedding. User history was often used to cluster items that
possess similar user bases [19, 46].

To what extent has multimodality been implemented in the creation of semantic em-
beddings? Has any been successful?

The use of multimodal semantic embeddings has become more widespread in the
last few years. This can be clearly seen in Figure 2.1, which shows a graph of all works
found using the same search strings as the systematic review in the ACM Digital Library, the
IEEE Digital Library and SCOPUS by year, from 2000 until 2019.

Several of the reviewed papers achieved state-of-the-art results for their respective
tasks using multimodal embeddings [21, 22, 20]. Several of these even claimed to be the
first to employ multimodality in their respective tasks [24].

This increase in interest is often attributed to the recent, rapid advancement of
neural network technologies [21], and the rapid growth of multimedia data available through
the internet [20, 17].



25

Figure 2.1 – Papers Related to Multimodal Semantic Embeddings by Year

2.4 Influence of the Research Questions on the Direction of the Dissertation

The three research questions that most influenced the direction of the dissertation
were the following: "How were the embeddings constructed?"; "How were the they evalu-
ated?"; and "What resources were used in the creation of the embeddings?". The other two
questions served another purpose, having helped to establish the rising importance and the
many uses of multimodal embedding technology, which helped to establish the reasoning
behind the pursuit of this topic in this dissertation.

"How were the embeddings constructed?" was the question that helped inform the
possible fusion architectures that would be used for the dissertation. Specifically, two post-
learning architectures were chosen: Concatenation and Auto-encoding, examples of which
were used in the work of Guo et al. (2019) [19] and Silberer et al. (2014) [43], respec-
tively. For the dissertation, both of these architectures were reinforced with Collel et al.’s
(2017) Imagined Embedding cross-modal mapping neural network [11] in order to broaden
the limited visual embedding vocabulary at hand.

How were the they evaluated?" was the question that eventually led to the idea of
using the multimodal embeddings for common NLP tasks, in order to see if it was possible to
improve the effectiveness of Word Embeddings without having to rely on more computation
intensive architectures, such as Contextual Embeddings. The answer to this question drew
mostly from the work of Lazaridou et al. (2015) [28], who evaluated multimodal embeddings
on the word relatedness and sentence similarity tasks.
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"What resources were used in the creation of the embeddings?" was the question
that enabled the beginning of the resource gathering process that led to the creation of new
resources or finding of already developed resources for the Portuguese language that would
enable the successful training and testing of the proposed architectures. It also informed
what could and could not be done within the time-frame of the dissertation and the Geologia
Digital project.

The last two questions establish that multimodality has been a rising interest over
the past few decades, as the internet matures, and additionally expound on the kinds of
tasks these architectures might be used for, beyond the common NLP tasks explored within
this dissertation. This sets a clear path forward for future work on this area.

These and other papers representative of the literature found during the systematic
review are presented in a Tables 2.2 and 2.3. These briefly answer the research questions
for each listed paper.
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Reference Application Methodology Evaluation Resources

Guo et al. (2016) [21] Video Captioning
Word Embeddings are fused
with visual features extracted

from CNN using LSTM

Extrinsic, using BLUE,
METEOR, and CIDEr on

Youtube2Text video description
corpus

Built their
own, except

for evaluation
corpora

Guo et al. (2019) [19]
Video

Recommendation

DeepWalk user data,
Word Embeddings for user

click history and text, CNNs for
Video and Audio features fused

in a Batch Norm layer

Extrinsic, using the ICME 2019
Short Video Understanding and

Reccomendation Challenge
dataset

Word2Vec,
FastText,
ResNet,

DeepWalk

Wang et al. (2019) [45] Cross-modal IR
Word Embeddings and CNN
visual features fused using
Batch-based Triplet Loss

Extrinsic, Cross-modal IR with
Flickr8k, Flickr30k, and

Microsoft-COCO

Word2Vec,
ResNet

Collell et al. (2017) [11]
Multimodal

embedding generation

Word Embeddings and visual
features extracted from CNNs
learned, mapped where both

exist for same concept,
predicted from available

data otherwise

Intrinsic, semantic relatedness
with the MEN and Wordsim353,

semantic similarity through
Sem-Sim, Simlex999,

Wordsim353 and SimVerb-3500,
visual similarity through VisSim

ImageNet,
GloVe,

MatConvNet

Lazaridou et al. (2015) [28]
Multimodal

embedding generation

Visual features are introduced
during training of skip-gram

word embedding model.

Intrinsic, semantic relatedness
with the MEN, semantic similarity
through Sem-Sim, Simlex999, and

visual similarity through VisSim

Built their
own, except

for evaluation
corpora

Table 2.2 – Details on some of the more relevant papers found during the review.
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Reference Application Methodology Evaluation Resources

Zhang et al. (2018) [46] Popularity Prediction

Attention mechanisms are used
to learn attended embeddings

for both visual and textual
modalities, then another

attention mechanism is used
to judge the importance of
each for individual users

Extrinsic, using a social image
dataset they built from images
present in the Flickr datatset

VGGNet

Habibian et al. (2017) [22] Event Recognition

Features for audio, visual,
motion and textual information

are separately trained and
are then fused using their

Video2vec fusion technique

Extrinsic, using zero-shot or
few-shot event recognition in

the TRECVID Multimedia
Event Detection corpus, and

the Columbia Consumer
Video collection

VideoStory46k,
Google Inception,

ImageNet

Han et al. (2017) [24]
Fashion

Recommendation

Textual and visual features
are associated in a joint

representation space

Extrinsic, using several
fill-in-the-blank and
prediction datasets

Built their own

Oramas et al. (2017) [34]
Music

Recommendation

Text and audio features were
extracted, then combined

via late fusion

Extrinsic, using
recommendation tests based on

the Echo Next Taste Profile
Subset and the Million Song

Dataset

Word2Vec,
librosa

Table 2.3 – Details on some of the more relevant papers found during the review, continued.
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3. DEVELOPING THE MULTIMODAL EMBEDDINGS

Two kinds of resources are needed to create post-learning fusion multimodal em-
bedding models: unimodal embeddings in the desired modalities and a fusion architecture.
In this work, the unimodal embeddings will encompass the textual and visual modes, both
of which will then be fused using different architectures to form several multimodal embed-
ding models. This work will develop models using generic corpora (corpora extracted from
news sources, fiction literature, and various websites across the internet), and geosciences
corpora (geosciences related theses, journals and bulletins). These extra, domain specific
models based on geosciences corpora were created during the course of the Geologia Dig-
ital project, and will be used to test the efficacy of the presented multimodal embedding
architectures on domain-specific corpora, as opposed to generic domain corpora.

The greatest challenge to be overcome, regardless of corpora domain, is the dis-
parity between available textual and visual information. The abundance of text knowledge
often overshadows visual knowledge. Some of the works presented in Chapter 2 postulate
solutions to this problem, and these architectures will be used, for the first time, to create
multimodal embeddings for the Portuguese language.

This chapter will explore both the process of acquiring and developing unimodal
embeddings (textual and visual) in the generic and geosciences domains, and the architec-
tures used to fuse the unimodal embeddings into multimodal embedding models.

3.1 Unimodal Embeddings

The planned experiments will require textual and visual embeddings in both the
generic and the geosciences domains. For textual embeddings, four corpora were acquired:
two generic and two focused on the geosciences domain. For visual embeddings, two cor-
pora were acquired: one generic and one in the geosciences domain, though unfortunately
the geociences corpus proved to not be robust enough for use in the creation of multimodal
embeddings.

3.1.1 Textual Embeddings

All textual embeddings used in this work are word embeddings based on either
the Word2Vec [31] or fastText [18] architectures. The reason for this choice was the need
for multimodal solutions for these specific architectures in the Geologia Digital project, as
they would be best suited for deployment within existing architecture in Petrobras’ systems.
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Their choice of architecture was rooted in the fact that contextualized models, such as BERT
or ELMO, significantly increase computational requirements for both training and inference
when compared to non-contextual models, such as Word2Vec and fastText [38, 4]. This
makes contextual embeddings less appealing in industrial scenarios, since, as per Polgnano
et al (2020) [38], it is yet unclear whether the accuracy increase delivered by contextual
embedding is worth the performance issues associated with them.

The generic embeddings used for this work are NILC’s word embeddings1 [26] and
BBP corpus word embeddings2 [40]. Three versions of NILC’s embeddings were used: the
100 feature word2vec version and the 100 and 300 feature fastText versions. These three
were deemed to be adequate for studying the effect of different parameters when adding
multimodality to textual models. Only the 300 feature fastText version of BBP was used,
as it was the only one readily available for download. This final BBP model was chosen
as a means to study how different text embedding training corpora within the same domain
affected multimodal fusion.

Two new geosciences domain embeddings were developed during the course of
this study as part of a collaboration with experts from Petrobras’ CENPES research nucleus
through the Geologia Digital project: PetroVec and PetroVec-Hybrid3. These models were
thoroughly tested using both intrinsic and extrinsic tasks, and the results were compiled
into an article published in the Computers in Industry journal4 [16]. These are the current
state-of-the-art models for the Portuguese language in the Geosciences domain.

Table 3.1 has details for each of the generic and geosciences embeddings pre-
sented in this section.

3.1.2 Visual Embeddings

The visual embeddings were somewhat harder to acquire. No pre-trained Por-
tuguese term paired visual embeddings were found, nor were there any image-term pair
datasets like ImageNet [13] available. This meant that either translation or development of
a new dataset would be required for the acquisition of visual embeddings, both generic and
geociences domain specific.

The generic visual embedding, henceforth referred to as ImageNet embedding, is
derived from Collell et al.’s (2017) [11] work, as they made their original visual embeddings
created using ImageNet freely available5. The individual embeddings were paired with En-
glish language terms from the English language WordNet, however, and so needed to be

1http://www.nilc.icmc.usp.br/embeddings
2https://github.com/jneto04/ner-pt
3https://github.com/Petroles/Petrovec
4https://www.sciencedirect.com/science/article/abs/pii/S0166361520305819
5https://liir.cs.kuleuven.be/software_pages/imagined_representation_aaai.php

http://www.nilc.icmc.usp.br/embeddings
https://github.com/jneto04/ner-pt
https://github.com/Petroles/Petrovec
https://www.sciencedirect.com/science/article/abs/pii/S0166361520305819
https://liir.cs.kuleuven.be/software_pages/imagined_representation_aaai.php
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Table 3.1 – Corpora and token totals for each of the text corpora used for training text em-
bedding models.

Corpus Sources Vocabulary Token Number

NILC

LX-Corpus, Wikipedia,
GoogleNews, SuIMDB-PT,
G1, PLN-Br, Public domain

literature Lacio-web, e-books,
Mundo Estranho, CHC,

FAPESP, Digitalized
Textbooks, Folhinha,

NILC subcorpus, Para Seu
Filho Ler, SARESP

929,605 1,395,926,282

BBP BlogSet-BR, brWaC,
Portuguese Wikipedia 553,637 4,900,352,063

Petrovec

Petrobras’ Bulletin of
Geosciences and

Petroleum Production,
ANP bulletins,

ANP technical reports,
Theses and dissertations on

the Oil and Gas domain,
Proceedings of the

Rio Oil and
Gas Conference

161,842 85,725,834

Petrovec-Hybrid

All Petrovec corpora,
All publicly available

NILC texts (Roughly a quarter
of the collection)

440,692 451,021,003

translated before use with Portuguese language textual embeddings. In order to translate
the English terms, OpenWordNet-PT [35], an open Brazilian WordNet available online6, was
used. Since the codes used to refer to each term in both WordNets were the same, and
Collell et al. (2017) also shared the WordNet code for each term, about 5000 of the term-
visual embedding pairs were successfully translated into Brazilian Portuguese unigrams.
This resulted in what we believe to be the first visual embedding dataset paired with Brazil-
ian Portuguese terms, made available in this project’s GitHub page 7.

Domain specific embeddings for the geoscience domain had to be developed from
the ground up. Firstly, all unigram terms from the Petroleum Abstracts thesaurus were ex-
tracted and used in a mass image scraping effort through Google Images. These terms
include names for rocks, tools and physical structures, both natural and man-made. The
next step of this effort involved finding suitable image search links. In Google Images, every
search link is unique, and so can be reused to find the same images as the first time it was

6http://wn.mybluemix.net/
7https://github.com/bsconsoli/Enriching-Portuguese-Word-Embeddings-with-Visual-Information

http://wn.mybluemix.net/
https://github.com/bsconsoli/Enriching-Portuguese-Word-Embeddings-with-Visual-Information
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found through the usual methods of online search. A manual search was thus performed to
find the most representative image collections within search links, with two to four links being
selected per term. The first hundred images of each link were then scraped automatically,
using respectful scraping etiquette. Google Images sorts by relevance, and those too far
removed from the beginning of the list tend to off-topic subjects. Repeat images, obviously
off-topic images and non-photographic images (eg. drawings or 3D computer generated
images) were then removed during a manual sweep.

This corpus had little oversight from domain experts, despite association with the
Geologia Digital project. The breadth of expertise necessary to evaluate every term was
simply too manpower intensive, and only some classes of image, such as those pertaining
to some rocks and small tools, were able to be checked by experts, for a total of not even
100 of the over 1000 terms in the corpus.

Possibly because of this lackluster curation, or perhaps because the around 100
images found for each term were simply too few in number, this corpus was ultimately unable
to be used in training a good image classification neural network. The attempted training
resulted in poorly differentiated features unable to accurately portray the terms in such a way
that they might be useful in multimodal fusion. This, alongside preliminary word relatedness
results showing that fusions using the ImageNet embedding presented above improved both
generic and geosciences textual embeddings to a similar degree, led to a decision that the
use of this corpus for multimodal fusion was best left for future work, once the corpus had
been properly curated and extended by a discussed follow-up to the Geologia Digital project.

3.1.3 Dealing with the Information Gap

The great imbalance between visual embeddings and text embeddings becomes
clear when comparing the roughly 5000 terms of the ImageNet embedding to the textual em-
bedding vocabularies shown in Table 3.1. In order to ameliorate this problem, the "imagined
embeddings" architecture described in Collell et al. (2017) [11] was used. As exemplified in
Figure 3.1, textual embedding-visual embedding pairs are created for the terms present in
the visual embedding vocabulary, w , and used to train a feed-forward neural network. It does
this by inputting the textual embedding

−→
lx into the NN, and expecting the visual embedding

−→vx as an output, where the wx is the term being learned. Once this textual-visual translation,
f , is learned by the network, it can be extrapolated into terms without visual counterparts,
creating "Imagined" visual embeddings for the entire vocabulary represented by the textual
embedding that was translated.

In Collel et al.’s work, they developed three imagined models were trained for each
available word embedding, each trained to a different epoch (25, 50, 100). All other parame-
ters were kept the same between all training instances, as Collell et al. (2017) revealed that
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Figure 3.1 – Example of the architecture used by Collell et al. (2017). The imagined rep-
resentations are the outputs of a text-to-vision mapping, f. Image created by Collell et al.
(2017) [11]

they did not significantly affect the final prediction. All parameters are presented in Table
3.2.

Table 3.2 – Imagined Embedding neural network parameters
Parameter Value
Dropout 0.25

Learning Rate 0.1
Optimizer SGD

Loss MSE
Hidden Layers 1, 200 nodes

Activation Function TanH

Notably, the work discusses that while these imagined embeddings are valuable
aggregates to common embeddings, substituting the textual embeddings completely with
these "imagined embeddings" yields worse results. Additionally, in a follow-up paper, Collell
et al. (2018) [10] highlighted several problems with this architecture, such as the fact that
they do not fully mimic the behaviour of proper visual embeddings to the desired degree. It
remains, however, that when combined with the original textual embeddings, these "imag-
ined embeddings" do positively affect results in intrinsic tasks such as Word Relatedness.

3.2 Multimodal Fusion Techniques

Of the many fusion techniques presented in Chapter 2, the ones chosen for this
project were two examples of the early fusion architecture. Early fusion techniques seek to
create new embeddings to represent all fused modes in a single vector before beginning the
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process of using them in any downstream task. This kind of fusion was chosen because it is
the most flexible, with models developed using it able to be simply plugged into many already
existing solutions for downstream tasks without requiring modifications to the architecture. It
was deemed that this would facilitate a wider array of testing while not having been shown
to be definitively superior or inferior to other fusion strategies in the literature.

In order to perform this kind of fusion, it is helpful to ensure that all fused embed-
dings are in the same scale, so that none can overly influence the result simple because
it is presented in a larger scale than another. To do this, a mathematical process called
Standardization was performed on the embeddings, making it so all features were scaled
according to a standard deviation of 1 and had a mean of 0. Another version of these em-
beddings was created where, after standardization, they were also normalized, so that all
values fit between -1 and 1. This second version was created mostly to test the machine
learning and whether it would learn better with unbounded or bounded feature values.

The two early fusion techniques used in this work are concatenation and auto-
encoding, explained in detail below.

3.2.1 Concatenation Fusion

Concatenation fusion is a rather simple process: you concatenate one mode’s em-
beddings to the end of another mode’s embeddings. Though simple, it effectively packages
all necessary data into a single vector space by expanding the dimensionality of said space.

This fusion technique’s greatest weakness, the fact that should one embedding in a
certain mode not have a pair in another (as often happens with text-image multimodality, eg.
you have textual embeddings but not visual) you cannot create the multimodal embeddings,
is completely solved by the imagined embeddings explained in Section 3.1.

As such, the development of this embedding required the prediction of a imagined
visual embedding for each word in the vocabulary, which was then concatenated with its
originating word embedding. This resulted in multimodal embeddings with larger feature
pools with which to draw from. Figure 3.2 presents the architecture of the concatenated
fusion used for every word embedding in this work.

3.2.2 Auto-encoding Fusion

Auto-encoding fusion is performed by a Neural Network trained to predict an output
by using the output itself as an input. Once this is done, one of the hidden layers of this
network with less features than the original input is extracted to serve as an embedded
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Figure 3.2 – Simplified concatenation fusion architecture.

version of the input. This serves to both shorten the final embedding, and to fuse several
embeddings together. This fusion will, in theory, keep the most important features and fuse
less important features together to hopefully make them more impactful.

This architecture has been used to lessen the impact of the gap between textual
and visual information in the literature [43]. In this instance, whenever there was no visual
pair for the textual embedding, a zeroed vector was appended to the textual embedding
for the purposes of auto-encoding. The architecture presented below is a bit different, as
it offers a new possibility: using imagined embeddings to fill the knowledge gap and offer
complete feature vectors for auto-encoding.

As such, imagined visual embeddings were predicted from each embedding in the
each model’s vocabulary, and paired with its originating embedding. These embeddings
were then passed through an auto-encoding neural network, and the resulting Auto-encoded
vectors were used as the final multimodal embeddings. Figure 3.3 presents the architecture
of the Auto-encoded fusion used for every multimodal word embedding in this work, while
Table 3.3 presents the parameters for the auto-encoding neural network.

Table 3.3 – Auto-encoding Embedding neural network parameters.
Parameter Value

Learning Rate 0.001
Optimizer Adam

Loss MSE
Hidden Layers 4, explained in text

Activation Function ReLU in between layers
TanH as output

The hidden layers are divided into two encoding layers and two decoding layers.
The first encoding layer has the initial input node size of the concatenated textual-visual
feature vector and an output node size of the feature vector of the textual model plus half the
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Figure 3.3 – Simplified auto-encoding fusion architecture.

feature vector of the visual model. The second layer has the input node size of the previous
output, and an output the size of the feature vector of the textual embedding. The output
of this second layer is extracted and used as the Auto-encoded textual-visual embedding.
The decoder is used only during training, and its two hidden layers are the same as the
encoder’s, but in reverse order.

3.3 Multimodal Embeddings

Several different textual-visual multimodal embeddings were created using the uni-
modal embeddings and multimodal fusion techniques explained above. The model combi-
nations are presented in Table 3.4.

Note that the act of training to different epochs was simply due to a lack of time and
computational resources that would be required to train the best model for each individual
task. As such, the best performing model out of each group can be taken to best represent
the capabilities of the multimodal embedding fusion in question.
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Table 3.4 – Each text embedding model was used to train 14 multimodal models. To reiterate,
the textual models are: the BBP model, three NILC models, and the two PetroVec models.
This makes for a total of 84 multimodal models trained in total.

Model Fusion Architecture Scaling Algorithm Epochs Trained

All

Concatenation

Normalized
25
50
100

Standardized

25
50
100
150

Auto-encoding

Normalized
25
50
100

Standardized

25
50
100
150
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4. QUALITY EVALUATION STRATEGY FOR THE MULTIMODAL
EMBEDDINGS

Each multimodal embedding underwent a number of intrinsic and extrinsic tests in
order to ascertain their reliability when used in NLP tasks in the generic domain and, where
possible, the geosciences domain. This Chapter will present the tests and their set-up, while
the results will be discussed in the following chapter.

4.1 Intrinsic Tests

Intrinsic tests for semantic embeddings measure how closely the embeddings are
able to predict human use of language. This does not mean that embeddings with the
best scores in intrinsic tests will also achieve the best scores in downstream extrinsic tests,
however.

4.1.1 Word Relatedness

Word Relatedness is the intrinsic task of giving a score to how closely related two
terms are. These tasks are usually scored via Spearman correlation, which assigns a Real
number score between -1 and 1. The closer the score to -1 if the predictions are the exact
opposite of the annotation, the closer to 0 if the predictions are completely unrelated to the
annotation and the closer to 1 if the predictions line up perfectly with the annotation. The
more representative of human understanding of the terms an embedding is, the closer the
Spearman score comes to 1.

These tests should be tailored to the domain of the models being tested, as certain
words can have different meanings depending on context. Since the focus of this project is
not whether certain models do better in certain domains, the models were only tested on
their respective domains in order to ascertain whether the impact of adding visual embed-
dings would be similar in these distinct circumstances.

This task, alongside other kinds of relatedness tests, is particularly important in
the context of the Geologia Digital project, as these embeddings will be used for search
term expansion within Information Retrieval systems, and good Word Relatedness scores
are essential for models that are intended to be used in such a manner.

A custom code was written for this task, and is shared across domains. It uses the
Gensim python library to extract the Cosine distance between each word pair as a related-
ness measurement, and compares them to their respective annotated relatedness scores
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using the Spearman Correlation method. The code can be accessed in the GitHub page for
this project1.

Generic Domain

The test corpus used for generic domain word relatedness testing, MEN [6], was
translated from the English language to the Portuguese language with the help of DeepL
Translate2. The machine translations were checked individually to ensure some degree of
uniformity, but the corpora should be considered Silver standard nonetheless.

MEN is a set of English word pairs, 3000 in total, each assigned a relatedness
judgement (which ranged from 0, not at all related, to 50, incredibly related. These judge-
ments were collected via crowdsourcing using Amazon’s Mechanical Turk platform. The
words were randomly selected from a subset created by separating all those that appeared
at least 700 times in a combined ukWaC/Wackypedia corpus, and at least 50 times in the
open-sourced subset of the ESP game dataset. Before the final selection, word pair seman-
tic relatedness scores were predicted by a pre-trained embedding model to ensure that a
balanced range of relatedness levels was represented in the dataset. Table 4.1 presents a
few examples of word pairs present in the translated MEN corpus.

Table 4.1 – Four examples of word pairs from the translated MEN corpus.
Word 1 Word 2 Relatedness

rio (river) água (water) 49.0
répteis (reptiles) serpente (serpent) 45.0

banda (band) metal (metal) 27.0
recém-nascido (newborn) construção (construction) 6.0

Geosciences Domain

The test corpus for the geosciences domain, henceforth called GeoSim, was de-
veloped as part of the Geologia Digital project, and was used to test the PetroVec word
embeddings [16]. It was developed in collaboration with several industry experts, Geology
students and a PhD in Geology. Its main focus is Oil and Gas, a sub-domain of the geo-
sciences domain, and can be considered a Gold standard corpus.

GeoSim is composed of 1500 word pairs annotated in a Likert scale from 1 to 7,
which were later normalized to a number between 0 and 1 for ease of use. All words were
chosen from those present in the Portuguese version of the Petroleum Abstracts Explo-
ration and Production Thesaurus3, provided by the Petrobras team from the Geologia Digital

1https://github.com/bsconsoli/Enriching-Portuguese-Word-Embeddings-with-Visual-Information
2https://www.deepl.com/translator
3https://www.pa.utulsa.edu/products/tulsadatabase/thesaurus

https://github.com/bsconsoli/Enriching-Portuguese-Word-Embeddings-with-Visual-Information
https://www.deepl.com/translator
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project. These word pairs were picked randomly from pools of pre-made word pairs which
were themselves separated using the relationships between words present in the Petroleum
Abstracts Thesaurus. This was done to ensure a good distribution between very related,
somewhat related and dissimilar word pairs, similarly to how the MEN corpus was devel-
oped. Table 4.2 presents a few examples of word pairs present in the GeoSim corpus.

Table 4.2 – Four examples of word pairs from the translated GeoSim corpus.
Word 1 Word 2 Relatedness

zoologia (zoology) insetos (insects) 0.810
controle (control) regulamentacao (regulation) 0.714

procedimento (procedure) programa (program) 0.524
contabilidade (accounting) inferior (inferior) 0.190

4.1.2 Analogy Prediction

Hartmann et al. (2017) [26] published an analogy prediction test set, divided into
Brazilian Portuguese and European Portuguese halves, alongside their initial publication of
their NILC word embeddings. The test gives a related word pair and a single word from
which it must predict a pair analogous to the first.

The code used to run these tests was made available alongside the test set itself. It
can be found in the associated paper’s GitHub page4. It measures accuracy by counting how
many correct predictions were achieved by the model against the total number of predictions.

Used to intrinsically test the NILC embedding models, the test set is composed of
several categories of analogies, both semantic and syntactic. The first two examples in Table
4.3 are of semantic analogies, while the latter two are of syntactic analogies.

Table 4.3 – Four examples, two semantic and two syntactic, of word pairs from the Analogy
Prediction corpus, translated to English.

Analogy Example Prediction
capital city/nation Berlin/Germany Rome/?

national currency/nation Euro/Germany Real/?
singular/plural apple/apples car/?

present continuous/past simple dancing/danced falling/?

In general, Word Embedding models have more difficulty achieving high scores for
semantic analogies, and generally do much better with syntactic analogies.

4https://github.com/nathanshartmann/portuguese_word_embeddings

https://github.com/nathanshartmann/portuguese_word_embeddings
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4.2 Extrinsic Tests

Extrinsic tests measure the reliability of embeddings in helping achieve greater re-
sults in downstream tasks. A number of such tasks were chosen for this purpose, and though
the list is not exhaustive, it should serve to ascertain how multimodality can be expected to
affect the performance of these models.

4.2.1 Semantic Similarity in Short Sentences

Semantic similarity requires that a model give a numerical value to how semanti-
cally similar two sentences are, with the lower similarity extreme being that the sentences
are completely different, and the higher similarity extreme being that the sentences are para-
phrases. The ASSIN [15] sentence similarity corpus was used for this task in this work.

The code used for the tests is the same as was used by Hartmann et al. (2017) [26],
available in the publication’s GitHub page5. The architecture uses a linear regression algo-
rithm trained on two features: the cosine simirity of the TF-IDF of each sentence and the
cosine similarity between the sum of each sentence’s word embeddings.

ASSIN is a Portuguese language corpus annotated for both textual inference and
semantic similarity. It is composed of sentence pairs annotated with whether or not one
implies the other (textual inference) and how similar they are (annotated from 1, completely
different, to 5, paraphrases). Figure 4.1 presents two example pairs extracted from the
ASSIN corpus.

Figure 4.1 – Example of sentence pairs from the ASSIN corpus.

The similarity scores were used for testing the multimodal models. As previously
discussed, semantic similarity is particularly important for the Geologia Digital project.

5https://github.com/nathanshartmann/portuguese_word_embeddings

https://github.com/nathanshartmann/portuguese_word_embeddings
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4.2.2 Named Entity Recognition

Named Entity Recognition (NER) requires that, given a set of classes for named
entities, a model recognize and classify said entities within raw text, usually by use of tags.
Word embeddings can be used to parse the text input into the model, using the feature
vectors in its tagging predictions. Two annotated corpora were used to evaluate the multi-
modal embeddings: HAREM [39] for generic domain embeddings; and GeoCorpus 3.0 [16]
for geosciences domain embeddings.

The code used for the NER tests was developed by Santos et al. (2019) [40],
available in the paper’s GitHub page6. It uses an LSTM-CRF neural network architecture to
train a sequence tagger using the Flair Toolkit to perform a NER task based on the supplied
training and test corpora.

The HAREM corpora are a set of corpora produced during the HAREM workshops,
and include First HAREM, MiniHAREM and Second HAREM. This work used First HAREM,
as the training dataset, and MiniHAREM, as the testing dataset. All HAREM corpora are
annotated in the same way, and have two annotation scenarios: the selective scenario,
annotated with only the three classic NER classes (Person, Location and Organization);
and the complete scenario, annotated with a total of ten different classes of named entity,
including those which comprise the selective scenario. Figure 4.2 demonstrates an example
of the HAREM corpus.

Figure 4.2 – A snippet of a sentence from the First HAREM, to exemplify its annotation.

GeoCorpus 3.0 is a NER corpus in the Oil and Gas domain, a sub-domain of the
geosciences. More specifically, its texts are about Brazilian sedimentary basins, and it is
annotated with thirty classes of named entity, though only ten were judged to have enough
instances for use with machine learning architectures. As GeoCorpus does not have an
established baseline within the literature, as is the case with HAREM, it was tested using
10-fold cross-validation. Figure 4.3 demonstrates an example of GeoCorpus 3.0.

Figure 4.3 – A snippet of a sentence from GeoCorpus 3.0, to exemplify its annotation.

6https://github.com/jneto04/ner-pt

https://github.com/jneto04/ner-pt
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4.3 On the Construction of test sets

Two of the presented test sets, GeoSim and GeoCorpus 3.0, were a result of the
Geologia Digital project. The author of this dissertation, Bernardo Consoli, led both the effort
for the construction of GeoSim and the effort for the revision of GeoCorpus 3.0.

As previously mentioned, GeoSim was developed specifically to test the PetroVec
set of Word Embeddings, both against each other and against generic Word Embedding
models trained on News text corpora. GeoCorpus 3.0 was revised to make the corpus
overall more consistent in its annotation.

A more detailed overview of the work that was performed on these two corpora are
present in Appendixes A and B.

Additionally, machine-assisted translations were performed for the MEN corpus
which was, as mentioned above, originally constructed for the English language. It is worthy
of note that the English-Portuguese translation ran into a few unavoidable issues. The first
is the fact that some English words translate into the same term in Portuguese, but have
slightly different connotations in English. An example can be found with the words football
and soccer, both of which translate to the Portuguese word futebol , and lose meaning dis-
tinctly apparent in American English. Another issue is in words with multiple meanings, and
which have different translations depending on context. This is the case of the word crane,
which can either be a bird (translated to grou in Portuguese) or a piece of construction ma-
chinery (translated to guindaste in Portuguese), which makes the translator have to choose
one of the possible translations without appropriate context, thus losing the meaning of the
original English word. In the case of different possible translations, the words chosen by
DeepL Translate were not changed by human translators. This means that these tests will
not be perfect and will be affected by the language and culture in which they were annotated.

All of these mentioned corpora are either linked to or available for download on this
dissertation’s GitHub page7.

7https://github.com/bsconsoli/Enriching-Portuguese-Word-Embeddings-with-Visual-Information

https://github.com/bsconsoli/Enriching-Portuguese-Word-Embeddings-with-Visual-Information
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5. RESULTS

The results for the tests presented in Chapter 4 are discussed in this chapter. Each
task will be discussed separately, and the analysis for each will be presented in the same
three basic table structures.

The first table structure, the model comparison table, will present the name of the
test corpus, the scaling algorithms used for each test set (Normalized or Standardized), and
the specifics for each task. All tasks share a Model column, which gives an abbreviated
name for each Word Embedding model and an Architecture column, which gives the type of
the architecture used in the particular test, with each model being tested with three different
architectures. Any other information given pertains to the scoring of the specific test, such
as Spearman Correlation score, accuracy score or F-value.

The second table structure is the Architectures and Algorithms table. These are
paired with their respective model comparison tables and present the number of times a
particular architecture or scaling algorithm performed best for a given model. These tables
are each composed of three subtables: Overall, which contains a sum of the Architecture
scores found in the other two subtables as well as the score for each scaling algorithm; and
the Normalized and Standardized subtables present the individual Architecture scores for
each Scaling Algorithm.

Finally, the Overall table presents the sum for best performing architectures and
scaling algorithms for the task in question, providing an overview for closing analysis. It is
shaped like the Overall subtable of the Architecture and Algorithm tables. Both Architecture
and Algorithm and Overall tables are presented because the large amount of tests for each
task obfuscates important information by dent of sheer volume of data. These two tables
condense relevant information into a more readable format which is easier to both analyse
and reference.

The rest of the chapter is divided into the following sections: first, there is an anal-
ysis of the results for the Word Relatedness tests, which includes both a generic news test
corpus and a specific geosciences test corpus; then, we have the Analogy Prediction task,
which includes only a generic news test corpus, though it is divided into European Por-
tuguese and Brazilian Portuguese; after that are the analyses of the Semantic Similarity of
Sentences task, which again is composed of only the generic news corpus divided into Eu-
ropean and Brazilian Portuguese tracks; the last task to be presented is the Named Entity
Recognition task, which is composed of a generic news corpus, divided into two tracks with
different categories, and a geosciences domain corpus.
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5.1 Word Relatedness

Two word relatedness tests were performed using the multimodal models: MEN, for
the generic news domain; and GeoSim, for the specific geosciences domain. The BBP and
NILC models were tested using the MEN test set, while all PetroVec and PetroVec-Hybrid
models were tested using the GeoSim test set.

5.1.1 MEN

The MEN test set was used to test BBP and NILC models, given that it is a generic
domain dataset. The test set is presented in Section 4.1.1, but to reiterate, it is a collection
of 3000 word pairs annotated with a relatedness score from 50 (most related) to 0 (least
related). The objective of the semantic models is to score each word pair in order to rank
them from most related to least related. The closer to the original ranking the model gets,
the higher its Spearman Correlation, the chosen method for scoring these kinds of tests. As
explained in Section 3.3, only the best results for each model will be considered during this
analysis. The complete results for this test set are available in Appendix D.

Table 5.1 – The best Spearman Correlation results for each multimodal model and the results
for their text-only counterparts for the MEN test set.

MEN
Normalized Standardized

Model Architecture Correlation Model Architecture Correlation

BBPFT300
Text-Only 0.607

BBPFT300
Text-Only 0.610

Concatenated 0.622 Concatenated 0.648
Auto-encoded 0.624 Auto-encoded 0.649

NILCFT100
Text-Only 0.588

NILCFT100
Text-Only 0.615

Concatenated 0.626 Concatenated 0.648
Auto-encoded 0.623 Auto-encoded 0.649

NILCW2V100
Text-Only 0.489

NILCW2V100
Text-Only 0.493

Concatenated 0.530 Concatenated 0.518
Auto-encoded 0.528 Auto-encoded 0.528

NILCFT300
Text-Only 0.567

NILCFT300
Text-Only 0.570

Concatenated 0.595 Concatenated 0.586
Auto-encoded 0.601 Auto-encoded 0.597

As can be seen in Table 5.1, the best results were achieved by both Concatenated
and Auto-encoded versions of the Standardized BBP and NILC 100-dimensional fastText
architectures, all of which have a Spearman Correlation of about 65 percentage points. This
is a 3.5 percentage point increase from the best text-only model, the NILC 100-dimensional
fastText model.
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Furthermore, Table 5.2 presents the architectures and algorithms in terms of how
many times each had the best performance when used in the tested models. This table
shows that the best overall architecture is the Auto-encoded architecture, which only per-
forms worse than the Concatenated architecture twice. It should be said, however, that the
better performance is measured in fractions of percentage points, and only once (in the
NILCW2V100 architecture) does the Auto-encoded architecture perform better by 1 or more
percentage points. The two times that the Concatenated architecture performed better, it
was similarly by fractions of a percentage point. This means that both architectures can
be expected to perform similarly, with a slight advantage to the Auto-encoded architecture,
within the realm of term relatedness.

Table 5.2 also shows that Standardization is the better scaling algorithm when it
comes to this test. On average, Standardized models perform 1 percentage point better
than Normalized models, with the largest performance improvement being 2.6 percentage
points in favor of the Standardized model. Notably, while this is not presented in these tables,
Normalization was also shown to negatively impacts the performance of Text-Only models,
when compared to their non-scaled counterparts, while Standardization did not noticeably
impact performance in Text-Only models.

Table 5.2 – The "No. of best results" column represents the number of times each architec-
ture and scaling algorithm had the best results in a model. The Overall subtable presents
a conglomeration of all results, while the Normalized and Standardized subtables present
separated results for their respective scaling algorithms.

MEN - Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 0 Normalized 3
Concatenated 2 Standardized 9
Auto-encoded 6 - -

MEN - Normalized MEN - Standardized
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 0 Text-Only 0
Concatenated 2 Concatenated 0
Auto-encoded 2 Auto-encoded 4

5.1.2 GeoSim

The GeoSim test set was used to test PetroVec and PetroVec-Hybrid models, given
that it was created specifically for the geosciences domain. The test set is presented in
Section 4.1.1, but to reiterate, it is composed of 1500 word pairs annotated from 7 (most
related) to 1 (least related). The objective of the test is the same as the previous two: for
the model to rank the word pairs in the rankings as the human annotation. The closer to the
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original ranking the model gets, the higher its Spearman Correlation, the chosen method for
scoring these kinds of tests. As explained in Section 3.3, only the best results for each model
will be considered during this analysis. The complete results for this test set are available in
Appendix E.

Table 5.3 – The best results for each multimodal model and the results for their text-only
counterparts for the GeoSim test set.

GeoSim
Normalized Standardized

Model Architecture Correlation Model Architecture Correlation

PetroVecFT
Text-Only 0.607

PetroVecFT
Text-Only 0.609

Concatenated 0.611 Concatenated 0.615
Auto-encoded 0.621 Auto-encoded 0.642

PetroVecHybridFT
Text-Only 0.607

PetroVecHybridFT
Text-Only 0.619

Concatenated 0.629 Concatenated 0.633
Auto-encoded 0.657 Auto-encoded 0.667

PetroVecW2V
Text-Only 0.608

PetroVecW2V
Text-Only 0.611

Concatenated 0.613 Concatenated 0.613
Auto-encoded 0.621 Auto-encoded 0.629

PetroVecHybridW2V
Text-Only 0.643

PetroVecHybridW2V
Text-Only 0.648

Concatenated 0.660 Concatenated 0.655
Auto-encoded 0.667 Auto-encoded 0.664

As can be seen in Table 5.3, the best results were achieved by the Auto-encoded
architectures of the PetroVecHybridW2V and PetroVecHybridFT models, achieving results
1.9 percentage points higher than the best Text-Only architecture. Both scaling algorithms
achieved the same highest result, though the Auto-encoded algorithm achieved it with two
models while the Normalized algorithm only achieved it with one.

Table 5.4 shows that the Auto-encoded architecture performed better with every
model. They achieved, on average, results 1.7 percentage points higher than Concatenated
architectures. The Standardization scaling algorithm likewise performed better than the Nor-
malization algorithm with every model, achieving results 0.5 percentage points higher than
its counterpart.

The largest difference between a multimodal model’s score when compared to their
text-only counterpart’s was nearly 5 percentage points, in the Auto-encoded Standardized
fastText version of the PetroVec-Hybrid model. Finally, multimodal Hybrid models showed
more improvement when compared to their textual counterparts than non-hybrid models,
with Auto-encoded models improving fastText models more so than Concatenated models,
and vice-versa for Word2Vec models.

5.1.3 Word Relatedness Task Overview

Table 5.5 makes it clear that the best performing architecture for this task was the
Auto-encoded architecture, and the best performing scaling algorithm was the Standardiza-
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Table 5.4 – The "No. of best results" column represents the number of times each architec-
ture and scaling algorithm had the best results in a model. The Overall subtable presents
a conglomeration of all results, while the Normalized and Standardized subtables present
separated results for their respective scaling algorithms.

GeoSim - Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 0 Normalized 2
Concatenated 0 Standardized 10
Auto-encoded 8 - -

GeoSim - Normalized GeoSim - Standardized
Architecture No. of Best Results Architecture No. of Best Results
Text-Only 0 Text-Only 0
Concatenated 0 Concatenated 0
Auto-encoded 4 Auto-encoded 4

tion algorithm. This is consistent across both geosciences domain and generic domain tests.
Most importantly, regardless of domain, the fusion of Imagined Visual Embeddings based on
the translated ImageNet corpus with the Word Embedding models described above results
in an average increase in Correlation of 2.4 percentage points, proving that multimodality
can improve tasks which use word semantic relatedness as a basis.

Table 5.5 – The "No. of best results" column represents the number of times each architec-
ture and scaling algorithm had the best results in a model.

Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 0 Normalized 5
Concatenated 2 Standardized 19
Auto-encoded 14 - -

5.2 Analogy Prediction

As presented in Section 4.1.2, the Analogy Prediction dataset used for this test
focused on two kinds of analogies: Semantic and Syntactic. These are each divided into
a Brazilian Portuguese set and an European Portuguese set. To reiterate, the objective of
this task is to accurately predict the second word of a pair, when given an example pair and
the first word of the prediction pair (eg. Example: Berlin/Germany, Prediction: Paris/?). The
accuracy of the model is then measured in a percentage, from 0 (completely inaccurate) to
100 (completely accurate). As explained in Section 3.3, only the best results for each model
will be considered during this analysis. The complete results for this test set are available in
Appendix F.
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5.2.1 Brazilian Portuguese Test Set

As can be seen in Table 5.6, the best multimodal results were present an accuracy
that is either very similar or somewhat worse than that achieved by their Text-Only counter-
parts. Once again, Normalized Text-Only models had a tendency to severely under perform,
whereas Standardized models achieved similar results to the original, non-scaled versions
of the Text-Only models. There also is no disparity between results of the separate syn-
tactic and semantic tests, that is to day, when the multimodal fusion either enhances both,
diminishes both or doesn’t affect either. None of the models enhanced one result while
diminishing the other.

Table 5.6 – The best accuracy results for each multimodal model and the results for their
text-only counterparts for the Brazilian Portuguese Analogy Prediction test set.

ANALOGY PREDICTION TEST - BRAZILIAN PORTUGUESE
NORMALIZED STANDARDIZED

Model Architecture Syntactic Semantic Total Model Architecture Syntactic Semantic Total

BBPFT300
Textual 0.445 0.064 0.256

BBPFT300
Textual 0.447 0.064 0.257

Concatenated 0.444 0.065 0.256 Concatenated 0.441 0.063 0.254
Auto-encoded 0.395 0.053 0.225 Auto-encoded 0.382 0.047 0.216

NILCFT100
Textual 0.487 0.282 0.384

NILCFT100
Textual 0.510 0.302 0.406

Concatenated 0.481 0.280 0.380 Concatenated 0.505 0.292 0.398
Auto-encoded 0.495 0.301 0.398 Auto-encoded 0.511 0.311 0.411

NILCW2V100
Textual 0.247 0.077 0.162

NILCW2V100
Textual 0.255 0.080 0.167

Concatenated 0.247 0.075 0.161 Concatenated 0.254 0.081 0.167
Auto-encoded 0.239 0.072 0.155 Auto-encoded 0.235 0.080 0.157

NILCFT300
Textual 0.330 0.154 0.242

NILCFT300
Textual 0.332 0.158 0.245

Concatenated 0.335 0.155 0.245 Concatenated 0.331 0.157 0.244
Auto-encoded 0.285 0.142 0.214 Auto-encoded 0.299 0.143 0.221

Table 5.7, meanwhile reflects the results from the first table. It once again shows
that both the Auto-encoded and Concatenated architectures are not helpful for this task,
with neither achieving results that could be considered decisively better than their text-only
counterpart. It also further reinforces the fact that the Standardization algorithm is the most
appropriate for use with multimodal fusion.

5.2.2 European Portuguese Test Set

Table 5.8 presents a very similar picture to that of Table 5.6. The best multimodal
results once again are not much higher than the best Text-Only results, while most others
show a comparably large drop in accuracy. Once again Normalization tends to decrease
Text-Only results when compared to Standardization, and whether Concatenation or Auto-
encoding is less disruptive depends on the base text model.

Table 5.9 shows an interesting piece of information: together, the multimodal mod-
els have slightly more best results per model than the Text-Only architecture. These in-
creases were by fractions of percentage points, however, and while statistical significance
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Table 5.7 – The "No. of best results" column represents the number of times each architec-
ture and scaling algorithm had the best results in a model. The Overall subtable presents
a conglomeration of all results, while the Normalized and Standardized subtables present
separated results for their respective scaling algorithms.

BR - Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 5 Normalized 3
Concatenated 1 Standardized 9
Auto-encoded 2 - -

BR - Normalized BR - Standardized
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 2 Text-Only 3
Concatenated 1 Concatenated 0
Auto-encoded 1 Auto-encoded 1

Table 5.8 – The best accuracy results for each multimodal model and the results for their
text-only counterparts for the European Portuguese Analogy Prediction test set.

EUROPEAN PORTUGUESE
NORMALIZED STANDARDIZED

Model Modality Syntactic Semantic Total Model Modality Syntactic Semantic Total

BBPFT300
Textual 0.448 0.057 0.254

BBPFT300
Textual 0.451 0.058 0.255

Concatenated 0.448 0.058 0.254 Concatenated 0.444 0.057 0.251
Auto-encoded 0.399 0.049 0.225 Auto-encoded 0.387 0.042 0.216

NILCFT100
Textual 0.485 0.274 0.379

NILCFT100
Textual 0.509 0.293 0.401

Concatenated 0.481 0.273 0.377 Concatenated 0.505 0.284 0.394
Auto-encoded 0.493 0.291 0.392 Auto-encoded 0.509 0.298 0.403

NILCW2V100
Textual 0.243 0.072 0.158

NILCW2V100
Textual 0.252 0.074 0.163

Concatenated 0.243 0.070 0.156 Concatenated 0.250 0.075 0.163
Auto-encoded 0.235 0.067 0.151 Auto-encoded 0.231 0.074 0.152

NILCFT300
Textual 0.322 0.140 0.231

NILCFT300
Textual 0.324 0.143 0.233

Concatenated 0.327 0.139 0.233 Concatenated 0.322 0.144 0.233
Auto-encoded 0.282 0.128 0.205 Auto-encoded 0.292 0.123 0.208

Table 5.9 – The "No. of best results" column represents the number of times each architec-
ture and scaling algorithm had the best results in a model. The Overall subtable presents
a conglomeration of all results, while the Normalized and Standardized subtables present
separated results for their respective scaling algorithms.

PT - Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 3 Normalized 3
Concatenated 2 Standardized 9
Auto-encoded 2 - -

PT - Normalized PT - Standardized
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 1 Text-Only 2
Concatenated 1 Concatenated 1
Auto-encoded 1 Auto-encoded 1

tests couldn’t be adequately performed for this task because of the limited size of the set, it
is safe to say that such a meager increase is not considered relevant within the scope of this
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dissertation. Furthermore, the table helps cement the fact that the Standardization algorithm
should be expected to outperform the Normalization algorithm.

5.2.3 Analogy Prediction Task Overview

In general, the results between the two language-specific test sets were corrob-
orative. The multimodal fusion failed to improve upon Text-Only results more than a few
fractions of a percentage point, and the Normalization scaling algorithm caused a general-
ized drop in accuracy, even for Text-Only models. An interesting observation to be made
is that, in both test sets, the best overall model, for both multimodal and Text-Only models,
was NILCFT100, the 100-dimensional fastText model trained on the NILC text corpus. It
outperformed the second-best model by around 15 percentage points for both languages.

That said, the poor results presented in an overview in Table 5.10 were somewhat
expected as the image data used for the visual embeddings focused mostly on objects, while
the Analogy Prediction tests focused on abstracts such as parentage, countries and currency
for the Semantic half, and word forms for the Syntactic half. It is promising, however, that
the previously mentioned best overall model, NILCFT100, achieved the best multimodality
results when compared to their Text-Only counterpart. Perhaps with further testing, it might
be ascertained that the better the original text-embedding, the more effective the imagined
visual embedding fusion is.

Table 5.10 – The "No. of best results" column represents the number of times each archi-
tecture and scaling algorithm had the best results in a model.

Analogy Prediction - Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 8 Normalized 6
Concatenated 3 Standardized 18
Auto-encoded 4 - -

5.3 Semantic Similarity of Sentences

The ASSIN Semantic Similarity dataset is, as mentioned in Section 4.2.1, divided
into two tracks, European Portuguese and Brazilian Portuguese. The objective of the task
is to predict a number between 1 (unrelated sentences) and 5 (paraphrasing sentences)
to represent the similarity between two short sentences. The task was evaluated using
Pearson’s Correlation and Mean Standard Error (MSE), as it was during the original ASSIN
task. As explained in Section 3.3, only the best results for each model will be considered
during this analysis. The complete results for this test set are available in Appendix G.
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5.3.1 Brazilian Portuguese Test Set

As presented in Table 5.11, this task’s results only have two decimal points of pre-
cision. This is because the tests were performed with the same script used for the original
ASSIN task, and it output results as they are seen in the below tables. Of interest in this first
table is the fact that the best performing model for this test set (Auto-encoded BBPFT300)
used the Normalization scaling algorithm.

Table 5.11 – The best results for the Brazilian Portuguese track of the ASSIN task.
Brazilian Portuguese

NORMALIZED STANDARDIZED
Model Architecture Pearson MSE Model Architecture Pearson MSE

BBPFT300
Text-Only 0.56 0.52

BBPFT300
Text-Only 0.56 0.52

Concatenated 0.56 0.52 Concatenated 0.57 0.51
Auto-encoded 0.59 0.50 Auto-encoded 0.58 0.50

NILCFT100
Text-Only 0.53 0.55

NILCFT100
Text-Only 0.53 0.54

Concatenated 0.54 0.54 Concatenated 0.54 0.54
Auto-encoded 0.51 0.56 Auto-encoded 0.54 0.54

NILCW2V100
Text-Only 0.45 0.60

NILCW2V100
Text-Only 0.45 0.61

Concatenated 0.47 0.60 Concatenated 0.46 0.60
Auto-encoded 0.46 0.60 Auto-encoded 0.47 0.60

NILCFT300
Text-Only 0.49 0.58

NILCFT300
Text-Only 0.49 0.58

Concatenated 0.50 0.57 Concatenated 0.50 0.57
Auto-encoded 0.50 0.57 Auto-encoded 0.52 0.55

Table 5.12 presents results similar to those in the Word Relatedness tasks, with the
Auto-encoding architecture performing in general better than the others, and the Standard-
ization algorithm achieving better results on average.

Table 5.12 – The "No. of best results" column represents the number of times each archi-
tecture and scaling algorithm had the best results in a model. The Overall subtable presents
a conglomeration of all results, while the Normalized and Standardized subtables present
separated results for their respective scaling algorithms.

BR - Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 0 Normalized 2
Concatenated 2 Standardized 4
Auto-encoded 4 - -

BR - Normalized BR - Standardized
Architecture No. of Best Results Architecture No. of Best Results
Text-Only 0 Text-Only 0
Concatenated 2 Concatenated 0
Auto-encoded 1 Auto-encoded 3



53

5.3.2 European Portuguese Test Set

As presented in Table 5.13, the same model as before (Auto-encoded BBPFT300)
yielded the best results, though this time with the Standardization scaling algorithm rather
than the Normalization algorithm.

Table 5.13 – The best results for the European Portuguese track of the ASSIN task.
European Portuguese

NORMALIZED STANDARDIZED
Model Architecture Pearson MSE Model Architecture Pearson MSE

BBPFT300
Text-Only 0.59 0.79

BBPFT300
Text-Only 0.59 0.79

Concatenated 0.59 0.79 Concatenated 0.60 0.78
Auto-encoded 0.58 0.79 Auto-encoded 0.60 0.76

NILCFT100
Text-Only 0.52 0.88

NILCFT100
Text-Only 0.53 0.86

Concatenated 0.52 0.88 Concatenated 0.54 0.85
Auto-encoded 0.52 0.88 Auto-encoded 0.55 0.85

NILCW2V100
Text-Only 0.47 0.93

NILCW2V100
Text-Only 0.47 0.93

Concatenated 0.47 0.93 Concatenated 0.48 0.92
Auto-encoded 0.48 0.92 Auto-encoded 0.49 0.91

NILCFT300
Text-Only 0.50 0.90

NILCFT300
Text-Only 0.50 0.90

Concatenated 0.51 0.90 Concatenated 0.51 0.90
Auto-encoded 0.50 0.90 Auto-encoded 0.52 0.88

Table 5.14 shows that positive results are skewed toward the Auto-encoded archi-
tecture and the Standardization scaling algorithm. This is corroborative with what we have
already learned.

Table 5.14 – The "No. of best results" column represents the number of times each archi-
tecture and scaling algorithm had the best results in a model. The Overall subtable presents
a conglomeration of all results, while the Normalized and Standardized subtables present
separated results for their respective scaling algorithms.

PT - Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 0 Normalized 0
Concatenated 1 Standardized 8
Auto-encoded 4 - -

PT - Normalized PT - Standardized
Architecture No. of Best Results Architecture No. of Best Results
Text-Only 0 Text-Only 0
Concatenated 1 Concatenated 0
Auto-encoded 1 Auto-encoded 3
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5.3.3 Semantic Similarity Task Overview

The results found with these Semantic Similarity tests echo those found with the
Word Relatedness tests of Section 5.1. This is expected, as these tasks are similar, though
in a different scale. The tests found essentially the same results: the Auto-encoding ar-
chitecture is superior; the Standardization algorithm is better suited to multimodality; and
multimodal models outperform Text-Only models. This can all be ascertained through the
compiled information in Table 5.15

One of the more interesting findings is that Concatenated and Auto-encoded mod-
els trained on the same textual-visual corpus had similar results in these tests, though results
show that the Concatenation architecture worked better with Normalization algorithm than
the Standardization algorithm, and the opposite is true for the Auto-encoded architecture.

Table 5.15 – The "No. of best results" column represents the number of times each archi-
tecture and scaling algorithm had the best results in a model.

Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 0 Normalized 2
Concatenated 3 Standardized 12
Auto-encoded 8 - -

5.4 Named Entity Recognition

The Named Entity Recognition task requires that, as mentioned in Section 4.2.2, a
model recognize and tag a given set of classes within raw textual input. The two test sets
used for this task in this work are HAREM, a corpus built from news domain texts that will
serve as the generic test set, and GeoCorpus, a corpus built from geosciences domain texts
that will serve as the geosciences test set. As explained in Section 3.3, only the best results
for each model will be considered during this analysis. The complete results for this test set
are available in Appendix H.

5.4.1 HAREM

The HAREM test set is composed of two tracks, which will be analysed separately
at first and then as part of an overview. It was used to test the models trained on the NILC
and BBP text corpora.
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Selective Track

The Selective track is the smaller of the two, including only the five most populated
named entity categories within the test set. Table 5.16 shows that while multimodality did not
manage to improve the best F-score achieved by the best Text-Only model, Standardized
NILCFT300, it did raise another model, Standardized NILCW2V100, to tie with this score.
Otherwise, whatever increases in F-score as a result of the multimodal fusion that can be
observed are minimal at best for this task.

Table 5.16 – The best results for the Selective track of the HAREM task.
HAREM SELECTIVE

NORMALIZED STANDARDIZED
Model Architecture Precision Recall F1 Model Architecture Precision Recall F1

BBPFT300
Text-Only 0.733 0.679 0.705

BBPFT300
Text-Only 0.734 0.680 0.706

Concatenated 0.741 0.677 0.708 Concatenated 0.738 0.668 0.701
Auto-encoded 0.745 0.650 0.694 Auto-encoded 0.728 0.653 0.688

NILCFT100
Text-Only 0.737 0.671 0.702

NILCFT100
Text-Only 0.716 0.691 0.703

Concatenated 0.733 0.655 0.692 Concatenated 0.735 0.679 0.706
Auto-encoded 0.739 0.656 0.695 Auto-encoded 0.731 0.691 0.710

NILCW2V100
Text-Only 0.736 0.659 0.696

NILCW2V100
Text-Only 0.727 0.690 0.708

Concatenated 0.740 0.653 0.694 Concatenated 0.746 0.686 0.715
Auto-encoded 0.755 0.650 0.699 Auto-encoded 0.733 0.697 0.714

NILCFT300
Text-Only 0.739 0.678 0.707

NILCFT300
Text-Only 0.740 0.690 0.714

Concatenated 0.740 0.673 0.705 Concatenated 0.741 0.691 0.715
Auto-encoded 0.769 0.635 0.696 Auto-encoded 0.737 0.665 0.699

Table 5.17 shows that the Standardization algorithm is superior to the Normalization
algorithm, which once again has a tendency to worsen Text-Only results. As for the individual
architectures, the Text-Only architecture was usually matched or slightly outperformed by
the multimodal architectures, though the Concatenation architecture seems to be slightly
superior in this regard. Few of the improvements upon the base Text-Only models was
recorded to have been of over 0.5 percentage point increase, however, so it cannot be
definitely concluded that the proposed multimodal architectures helped in this task.

Table 5.17 – The "No. of best results" column represents the number of times each archi-
tecture and scaling algorithm had the best results in a model. The Overall subtable presents
a conglomeration of all results, while the Normalized and Standardized subtables present
separated results for their respective scaling algorithms.

Selective - Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 3 Normalized 2
Concatenated 3 Standardized 10
Auto-encoded 2 - -

Selective - Normalized Selective - Standardized
Architecture No. of Best Results Architecture No. of Best Results
Text-Only 2 Text-Only 1
Concatenated 1 Concatenated 2
Auto-encoded 1 Auto-encoded 1
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Total Track

The Total track is the larger of the two, including all ten named entity categories
present in the First HAREM test set. Table 5.18 shows that quite a few models tied for best
score, and F-score of about 64 percentage points. This score was a tie among Text-Only
and multimodal architectures. The Total track’s results are similar to the Selective track’s
in shape: the multimodal models did not dramatically improve F-scores when compared to
their Text-Only counterparts; many models were only worsened by multimodal fusion; and
most Standardized models performed better than Normalized models.

Table 5.18 – The best results for the Total track of the HAREM task.
HAREM TOTAL

NORMALIZED STANDARDIZED
Model Architecture Precision Recall F1 Model Architecture Precision Recall F1

BBPFT300
Text-Only 0.679 0.585 0.628

BBPFT300
Text-Only 0.685 0.602 0.641

Concatenated 0.694 0.597 0.642 Concatenated 0.675 0.586 0.627
Auto-encoded 0.689 0.573 0.626 Auto-encoded 0.678 0.571 0.619

NILCFT100
Text-Only 0.688 0.566 0.621

NILCFT100
Text-Only 0.682 0.602 0.640

Concatenated 0.691 0.580 0.631 Concatenated 0.686 0.594 0.637
Auto-encoded 0.710 0.573 0.634 Auto-encoded 0.693 0.594 0.639

NILCW2V100
Text-Only 0.687 0.579 0.628

NILCW2V100
Text-Only 0.675 0.595 0.633

Concatenated 0.674 0.569 0.617 Concatenated 0.686 0.592 0.635
Auto-encoded 0.677 0.585 0.628 Auto-encoded 0.676 0.597 0.634

NILCFT300
Text-Only 0.684 0.600 0.639

NILCFT300
Text-Only 0.667 0.599 0.631

Concatenated 0.686 0.592 0.636 Concatenated 0.680 0.606 0.641
Auto-encoded 0.712 0.577 0.637 Auto-encoded 0.690 0.591 0.637

Table 5.19 shows these traits more clearly. Roughly half the time multimodality
strictly worsens the final result for this track, and Standardized models perform better on
average. Finally, the Concatenation architecture tends to perform better than Auto-encoding
architecture overall for this track.

Table 5.19 – The "No. of best results" column represents the number of times each archi-
tecture and scaling algorithm had the best results in a model. The Overall subtable presents
a conglomeration of all results, while the Normalized and Standardized subtables present
separated results for their respective scaling algorithms.

Total - Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 4 Normalized 4
Concatenated 3 Standardized 8
Auto-encoded 1

Total - Normalized Total - Standardized
Architecture No. of Best Results Architecture No. of Best Results
Text-Only 2 Text-Only 2
Concatenated 1 Concatenated 2
Auto-encoded 1 Auto-encoded 0
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HAREM Overview

In general, there was little to no improvement seen across both HAREM tracks
when using multimodal fusion to augment embeddings. As seen in Table 5.20, when com-
bined, the multimodal architectures achieved slightly better results than Text-Only models for
roughly half of the models, while Text-Only outperformed multimodal by larger margins for
the other half of all models. The table also reinforces the superiority of the Standardization
algorithm over the Normalization algorithm.

Table 5.20 – The "No. of best results" column represents the number of times each archi-
tecture and scaling algorithm had the best results in a model.

HAREM Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 7 Normalized 6
Concatenated 6 Standardized 18
Auto-encoded 3 - -

5.4.2 GeoCorpus

GeoCorpus is a geosciences domain NER test set with 10 named entity categories.
It was used to test models trained on the PetroVec text corpora. Table 5.21 tells a different
story than the HAREM tables. Not only do the multimodal architectures generally outperform
the Text-Only models, they outperform them by upwards of 3.2 percentage points. The
highest results are generally achieved using the Concatenation architecture, the opposite
of what happened in previous tasks where multimodal architectures outperformed the Text-
Only models. This task was also the only instance where a Text-Only model that did not
perform the best out of all Text-Only models yielded a multimodal model that performed best
overall.

Table 5.21 – The best results for the GeoCorpus test set.
GEOCORPUS

NORMALIZED STANDARDIZED
Model Architecture Precision Recall F1 Model Architecture Precision Recall F1

PetroVecFT
Text-Only 0.792 0.763 0.777

PetroVecFT
Text-Only 0.827 0.811 0.818

Concatenated 0.822 0.758 0.789 Concatenated 0.860 0.841 0.850
Auto-encoded 0.808 0.780 0.794 Auto-encoded 0.820 0.830 0.825

PetroVecHybridFT
Text-Only 0.783 0.735 0.758

PetroVecHybridFT
Text-Only 0.827 0.826 0.827

Concatenated 0.836 0.795 0.815 Concatenated 0.858 0.827 0.842
Auto-encoded 0.792 0.791 0.792 Auto-encoded 0.822 0.836 0.829

PetroVecW2V
Text-Only 0.803 0.766 0.784

PetroVecW2V
Text-Only 0.817 0.810 0.813

Concatenated 0.831 0.796 0.813 Concatenated 0.841 0.799 0.819
Auto-encoded 0.800 0.760 0.780 Auto-encoded 0.825 0.817 0.821

PetroVecHybridW2V
Text-Only 0.795 0.753 0.773

PetroVecHybridW2V
Text-Only 0.814 0.808 0.811

Concatenated 0.837 0.796 0.815 Concatenated 0.851 0.827 0.838
Auto-encoded 0.780 0.772 0.776 Auto-encoded 0.818 0.829 0.823
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Table 5.22 once again reinforces the notion that the Standardization algorithm is
better than the Normalization algorithm. It also confirms that the Concatenation architecture
is on average better than the Auto-encoding architecture on average, and that multimodal
models generally achieved better results for this task.

Table 5.22 – The "No. of best results" column represents the number of times each archi-
tecture and scaling algorithm had the best results in a model. The Overall subtable presents
a conglomeration of all results, while the Normalized and Standardized subtables present
separated results for their respective scaling algorithms.

GeoCorpus - Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 0 Normalized 0
Concatenated 6 Standardized 12
Auto-encoded 2

GeoCorpus - Normalized GeoCorpus - Standardized
Architecture No. of Best Results Architecture No. of Best Results
Text-Only 0 Text-Only 0
Concatenated 3 Concatenated 3
Auto-encoded 1 Auto-encoded 1

5.4.3 Named Entity Recognition Task Overview

The HAREM and GeoCorpus tests produced different results. Whereas models for
both HAREM tracks showed very little improvement as a result of multimodality, the GeoCor-
pus models’ performance was substantially enhanced. Some similarities between the two
is that the Concatenation architecture achieved better results on average, and that the best
scaling algorithm was Standardization.

A possible explanation for this is that the Imagined Visual Embeddings do not have
much of an impact in larger vocabulary such as those of the NILC and BBP text corpora
trained models, whereas using the smaller PetroVec corpora trained models results in better
embeddings overall. This is somewhat mirrored in the Word Relatedness test, the only other
test where both domains were represented. Though both generic and geosciences test cor-
pora saw an increase in correlation as a result of the multimodal fusion, the increases in the
geosciences test were more pronounced, with the largest text-only to multimodal increase
within the same model being almost twice the same for the generic test set.

Though more work must go into discovering the reason of the disparity between the
HAREM and GeoCorpus results, the results presented in Table 5.23 represent the overall
findings of this study: multimodality can improve upon Text-Only results for the NER task;
the Concatenation architecture is better suited for NER; and the Standardization scaling
algorithm continues to result in superior scores for this task.
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Table 5.23 – The "No. of best results" column represents the number of times each archi-
tecture and scaling algorithm had the best results in a model.

Overall
Architecture No. of Best Results Scaling Algorithm No. of Best Results
Text-Only 7 Normalized 6
Concatenated 12 Standardized 30
Auto-encoded 5
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6. DISCUSSION AND CONCLUSIONS

This dissertation presented the results of a study into the usefulness of visual data
when used in conjunction with textual data for NLP tasks in a general news domain and a
specific geosciences domain. It involved the development of corpora and word embedding
architectures which were then put through a test battery for multimodal Word Embedding
models which included the following tasks: Word Relatedness, Sentence Similarity, Anal-
ogy Prediction and Named Entity Recognition. These results revealed some aspects of
textual-visual multimodal fusion for Word Embeddings within NLP tasks for the Portuguese
language, a field in which it is most common to study purely textual Word Embedding mod-
els.

The dissertation takes inspiration from the works of Bruni et al. (2014) [6], and
their concatenation based multimodal fusion architecture; Silberer et al. (2014) [43], and
their auto-encoding multimodal fusion architecture; and Collell et al. (2017) [11], and their
Imagined Embeddings cross-modal mapping neural network, for visual vocabulary expan-
sion. It takes a different tack from previous work by exploring the possibility of use of this
technology beyond the English language, using resources for the Portuguese language, and
also by exploring its use in specific knowledge domains, such as the geosciences domain
presented within this work.

The testing performed in this dissertation further adds to the literature by empirically
showing that multimodal fusion can improve Portuguese Language Word Embeddings in the
tasks presented above, with the exception of Analogy Prediction for which the results were in
favor of Text-Only models in the experimental settings presented herein. The Word Related-
ness and Sentence Similarity tasks corroborate each other’s results in expected ways, given
that the tasks are essentially connected. The Named Entity recognition task, on the other
hand, presented some contradictory results between its test sets, and its overall results do
not entirely match the findings of the other tasks.

The Word Relatedness and Sentence Similarity tasks in particular were the largest
focus for the Geologia Digital project. The project was interested in word embedding-based
term expansion for information retrieval architectures, and this study shows that the addition
of Imagined Visual Embeddings in the form of a multimodal fusion with Word Embeddings
results in semantic distances that more closely correlate to human intuition, which can be
helpful to a information search engine. Furthermore, tests showed that even though the
images used as a base for the Imagined Embeddings did not belong to the geosciences
domain, they still provided a substantial enhancement to the PetroVec embeddings.

The Analogy Prediction test was another test of interest to the project, though there
was no geosciences domain corpus with which to test the PetroVec embeddings. As men-
tioned before, the poor results obtained for this task were expected, though it is hard to say
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whether or not usage with PetroVec’s more focused vocabulary would not elicit better results
in this area, as may have been the case for the Named Entity Recognition tests.

The NER tests themselves provided some interestingly mixed results. While the
multimodality did not seem to offer much value to models working on the HAREM test cor-
pora, the fused models did quite well on the GeoCorpus test set. In both tasks with both
generic and geosciences test corpora available, the PetroVec models seemed to enhance
results more, comparatively, on their respective tests. This points to a specific quality in the
corpus which allows it to better integrate with the Imagined Visual Embeddings, such as the
possibility that a more focused corpus results in better imagined embeddings. Regardless,
the matter warrants further research in future work.

Another notable characteristic to be discussed in the results is the fact that the
Auto-encoding architecture showed itself to be superior to the Concatenation architecture
in both the Word Relatedness and the Sentence Similarity tasks, but inferior in the NER
task. Further study is required to explain this, though it surely pertains to the details of
how each neural network learns their respective tasks, and which of the input embedding’s
characteristics they value most.

Some limitations encountered during the research and development for this dis-
sertation was a lack of training and testing resources for the Portuguese language in both
the general news and geosciences domains. This meant that several resources had to be
translated from English, collected and annotated from the ground up, and revised for use
in the project. This also resulted in less testing within the geosciences domain than might
otherwise be desirable, as two tasks only had appropriate Portuguese language tests for the
general news domain. Another limitation of this work was the difficulty in providing statis-
tical significance testing. While the difference between some results is great enough that
it could safely be assumed that they are significant, confirmation for these and the closer
results would help ground the study. This aspect was not added to this documentation since
the complexity of the task demanded time that was not available, and we plan to tackle this
issue in a future continuation of this research.

Additionally, it must be added that the use of traditional static word embedding
models rather than contextualized models was deliberate. The reason was the need for
multimodal solutions for these specific architectures in the Geologia Digital project. The
choice of architecture was rooted in the fact that contextualized models, such as BERT
or ELMO, significantly increase computational requirements for both training and inference
when compared to non-contextual models, such as Word2Vec and fastText [38, 4]. This
makes contextual embeddings less appealing in industrial scenarios, since, as per Polignano
et al. (2020) [38], it is yet unclear whether the accuracy increase delivered by contextual
embedding is worth the performance issues associated with them.

As for future work, an interesting avenue would be to branch off to Contextual Em-
beddings such as BERT. The Geologia Digital project has, in the past month, begun to
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experiment with such Contextual Embeddings for the geosciences domain, and a complete
comparative evaluation against Word Embeddings will be possible as soon as these new em-
beddings are completed. Other techniques will have to be used as far as multimodal fusion
is concerned, such as the contextual fusion proposed in EViLBERT [7], which takes complex
images and full sentence descriptions as input, rather than simple image/word pairs. These
paths of research are interesting possibilities for future work in the geosciences domain and
for the Portuguese Language itself. Such research would also be able to tackle the question
of which kind of embedding, Contextual or Static, excels in this context.

Another future work would involve an analysis of tasks which attempt to use text to
aid in visual tasks, such as object detection/recognition. This would require that the images
in question came with an accompanying text which might be analyzed. There could also be
tests in inherently multimodal tasks, such as text-image pairing or text-image retrieval.

It must be noted that the work performed for this dissertation and summarised
above would not have been possible without first building a knowledge base about multi-
modal semantic models and their use in different domains so that the author could real-
istically complete the proposed study. As part of this knowledge base building effort, the
author was involved in the research for several academic papers on the field of semantic
embeddings. In chronological order, they were: Multidomain Contextual Embeddings for
Named Entity Recognition, published in the Proceedings of the IberLEF 2019 workshop
by Santos et al. (2019) [42], which studied the use of contextual embeddings in the NER
task for several non-standard domains such as the Legal and Medical domains; Word Em-
bedding Evaluation in Downstream Tasks and Semantic Analogies, published in the
Proceedings of the LREC 2020 conference by Santos et al. (2020) [41], which studied the
use of different training corpora in word embedding models and made a new training corpus
freely available; Embeddings for Named Entity Recognition in Geoscience Portuguese
Literature, published in the Proceedings of the LREC 2020 conference by Consoli et al.
(2020) [12], which was focused on the development of appropriate test corpora for a num-
ber of NLP tasks in the geosciences domain; Portuguese Word Embeddings for the Oil
and Gas Industry: development and evaluation, published in the Computers in Industry
journal by Gomes et al. (2021) [16] which explored the use of domain-specific embeddings
against general domain embeddings when it comes to the oil and gas sub-domain of the
geosciences domain.
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APPENDIX A – GEOSIM

Intrinsic testing is an important method of evaluation for Word Embedding based
semantic models. These kinds of tests best serve their purpose if they were created with the
model’s use domain in mind, which means that already-existing tests for the generic news
domain are not appropriate for evaluating models which focus on the geosciences, such
as the PetroVec models of the Geologia Digital project. This prompted the development of
a new Word Relatedness intrinsic test specifically build with the likely use scenario of the
PetroVec models in mind.

A.1 Related Work

The development methodology for this test corpus was inspired by the work of
Aguirre et al. (2009) [1] and Bruni et al. (2014) [6]. Aguirre et al. (2009) used the annotations
of a handful of experts in the form of a 1 (least similar) to 7 (most similar) Likert scale
to compose their corpus, which had a about 500 total annotated pairs. These pairs were
divided into two tracks, as half of the pairs were annotated for similarity and the other half
for relatedness.

Bruni et al. (2014), on the other hand, chose to eschew the similarity test alto-
gether, citing that the relatedness test was more relevant to the testing of Word Embeddings,
given the inherent nature of semantic vector spaces. To annotate their corpus, they used
the Amazon’s crowdsourcing tool, Mechanical Turk1, to gather the results of 50 pair to pair
comparisons for each pair, with the pair whose words are most related to each other gaining
one point per comparison (eg. if the pair "Cat - Tiger" were compared to "car - lake", the
first would receive one point and the latter no points, and the both would each be compared
to 49 independent pairs to round out the 50 total comparisons). The most similar pairs had
scores closest to 50, while the least similar pairs had scores closes to 0.

A.2 Development Methodology

The word pairs for GeoSim were generated from the words within Petroleum Ab-
stract’s Exploration and Production Controlled Vocabulary Thesaurus2. The relations be-
tween words recorded in the thesaurus were used to balance pairs into three categories:
strong relationships (categorized as hypernym or hyponym); weak relationships (catego-

1https://www.mturk.com/
2https://www.pa.utulsa.edu/products/tulsadatabase/thesaurus

https://www.mturk.com/
https://www.pa.utulsa.edu/products/tulsadatabase/thesaurus
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rized as other); and not related (no relationship between the words). These categories were
created to ensure that the chosen corpus would have a plethora of strong and weak re-
lationships to use as part of model testing, rather than the almost certainly purely weak
relationships that would be present in a a truly random pair corpus.

Each pair was then annotated with the aid of a 1 (least similar) to 7 (most similar)
Likert scale, the same as was used for Aguirre et al. (2009), by three experts in the Geo-
sciences field affiliated with the Geologia Digital project. This resulted in a list of 1500 word
pairs, each annotated with three scores. The scores were then averaged, achieving the final
score of the corpus for each word pair.
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APPENDIX B – GEOCORPUS 3.0

GeoCorpus is an evaluation corpus for the Portuguese language that collects sev-
eral scientific works in the field of Geology. This corpus, originally developed by Daniela
Amaral [3], contains works whose theme is geological entities (GE) related to the Brazilian
Sedimentary Basin subdomain. The collected texts are essentially theses, dissertations,
articles and bulletins from Petrobras’ geosciences publications. They were recovered and
selected from the geological terms of the Chronostratigraphic table, which contains names
of sedimentary rocks, names of Brazilian sedimentary basins, the terms related to Tectonics,
Sedimentation and Magmatism and stratigraphic units.

In this report, the changes that were made to this corpus in order to improve it will
be presented and discussed.

B.1 Modifications

The corpus contained several problems that had a negative impact on machine
learning experiments carried out with it. Below are the modifications made.

B.1.1 Removing empty categories

Description: There were some categories in GeoCorpus with an empty identifier.

Example: <EM CATEG=" ">quartzo</EM>

Solution: The empty categories were removed from the corpus in order to standardize
them. It is important to note that this change does not impact the annotation.

B.1.2 Removal of nested categories

Description: Some annotated terms contained nested categories.

Example: <EM CATEG="EstruturaSedimentar"><EM CATEG="baciaSedimentar">Bacia
do Paraná </EM></EM>
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Solution: In these cases, only the more specialized category was removed, leaving only
the more generic of the two.

B.1.3 Correction of category annotation

Description: Some entities have been categorized into more than one class.

Example: <EM CATEG="ERA">Neoarqueano</EM> ...
<EM CATEG="PERIODO">Neoarqueano</EM>

Solution: In these cases the annotation was redone. We sent the identified cases to an
expert, who assigned the correct class to the entity.

B.1.4 Removing duplicate lines

Description: There were some repeated lines in GeoCorpus.

Example: Lines 766 and 776 were the same, containing the same sentence: "Grãos de
silicato de zircônio incrustados em rochas metamórficas do grupo Warrawoona na Austrália
ocidental foram datados em até 4 , 4 bilhões de anos , indicando que por essa época uma
crosta estava se consolidando."

Solution: Identical lines have been removed from GeoCorpus, since repetitions tend to
hinder machine learning. Altogether, 73 lines were removed, containing a total of 51 enti-
ties.

B.1.5 Correction of improperly broken lines

Description: There was an improper line break pattern in GeoCorpus. In some
sentences with a comma or opening parentheses, there was a new line segmenting the sen-
tence into two parts.

Solution: As not all lines with parentheses or commas had the incorrect line break, the
phrases that presented this break were corrected manually.
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B.1.6 Other category removal

Description: There was a category called ’others’ in GeoCorpus, with 737 entities.

Solution: All entities in this category were passed on to an expert, and recategorized into
more specific categories, for entities that did not fit into the existing categories, new cate-
gories were created indicated by the expert. This was deemed necessary because the class
’others’ was very wide only hindered automatic classification.

B.1.7 Standardization of categories

Description: There was no pattern in the name of the corpus categories, some
were all capitalized, others in lowercase, and those with compound words alternated.

Solution: All categories are named with the Camel Case standard.

B.1.8 Entities without annotation

Description: 2913 entities in GeoCorpus that should be annotated and were not
were identified. These entities were annotated one or more times in the corpus, but in cer-
tain instances were not annotated.

Example:
Sentence 1: ... de <EM CATEG="sedimentaresSiliciclasticas">quartzo</EM>.
Sentence 2: ... em adição a outros minerais detríticos como o quartzo. In this example, the
’quartzo’ entity appears categorized in the first sentence, but in the second, it is not.

Solution: All entities that should be categorized were categorized using a script. It was
possible to use a script because the words that were not categorized had no problem of
context or double meaning, which would make them appear at one time categorized and at
another time not.
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B.2 Analysis of GeoCorpus

After modifying the corpus in an attempt to obtain a better result, an analysis was
performed on the entities of the modified corpus, together with an analysis on the entities
of the unmodified corpus, for comparison purposes. With that, we want to compare and
contrast the two versions of GeoCorpus.

In the original Geocorpus we had a sum of 6126 registered entities, divided into
20 classes, with the necessary modifications made, the impact we had on the number of
categories and classes is observed. In the modified Geocorpus, we have a total of 8954
registered entities, an increase of 2828 entities, divided into 30 classes, an increase of 10
classes. These numbers are presented in Table B.1.

The number of unique entities of the new GeoCorpus was also analyzed. With this
table, we can see that within the 8954 total entities noted, there are a total of 1229 distinct
entities, a number well below the total number of entities, which demonstrates that there are
many repetitions of the same entities, something that we have to take into account. These
numbers are presented in Table B.2.
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Table B.1 – Comparison GeoCorpus: Original version x GeoCorpus: Revised version
Class #Instances(Original) #Instances(Revised)

Time
age 796 799
eon 288 256
era 326 414
epoch 650 687
period 637 714

Rocks
metamorphics 197 378
magmatics 222 582
siliciclasticSedimentary 741 1102
carbonateSedimentary 240 355
chemicalSedimentary 5 12
organicSedimentary 22 22

Constituents and Properties of Rocks
sedimentaryRockConstituent 0 112
mineral 0 212
fossils 0 132
sedimentaryStructure 0 86
geologicalStructure 0 78

Site
basinsGeologicalContext 262 663
sedimentationEnvironment 0 146
bentonic 13 27
planktonic 44 112
oilField 0 6

Elements of Stratigraphy
sedimentaryBasin 243 552
stratigraphicUnit 578 764
geotectonicUnit 0 28
stratigraphy 0 247
formation 18 0

Others
petroleumSystem 0 93
basinStructure 40 0
geomorphology 0 54
granulometry 67 129
chemicalElement 0 26
methodologicalProcedure 0 166
other 737 0
Sum 6126 8954
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Table B.2 – Unique Entities by class, organized into superclasses - Revised Version
Class #Unique Instances

Time
age 84
epoch 74
period 62
era 47
eon 20

Rocks
metamorphics 59
magmatics 58
siliciclasticSedimentary 160
carbonateSedimentary 77
chemicalSedimentary 4
organicSedimentary 1

Constituents and Properties of Rocks
sedimentaryRockConstituent 24
mineral 6
fossils 29
sedimentaryStructure 28
sedimentaryBasin 83
geologicalStructure 19

Site
sedimentationEnvironment 32
basinsGeologicalContext 121
bentonic 4
planktonic 9
oilField 2

Elements of Stratigraphy
stratigraphicUnit 153
geotectonicUnit 8
stratigraphy 29

Others
geomorphology 6
chemicalElement 3
granulometry 13
methodologicalProcedure 4
petroleumSystem 10
Sum 1229
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APPENDIX C – READING THE FULL RESULTS

The results presented in the following appendices are organized by fusion architec-
ture, scaling algorithm and model. Multimodal models are compared with text-only models
used to build their imagined visual embeddings, as was the case in the main body of this
dissertation.

Additionally, each result will be highlight using the following colors: dark yellow rep-
resenting text-only result; green representing multimodal result that is at least 1 percentage
point higher than the paired text-only result; light yellow representing a multimodal result
that is less than 1 percentage point lower or higher than the paired text-only result; and red
representing a multimodal result that is at least 1 percentage point lower than the text-only
paired result.
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APPENDIX D – MEN FULL RESULTS

Table D.1 – Complete results for the MEN dataset.
Concatenated Models

Normalized Standardized
Model Spearman Model Spearman

BBPFT300-NORM 0.607 BBPFT300-STDZ 0.610
BBPFT-NORM_25 0.620 BBPFT-STDZ_25 0.640
BBPFT-NORM_50 0.621 BBPFT-STDZ_50 0.648
BBPFT-NORM_100 0.622 BBPFT-STDZ_100 0.643

BBPFT-STDZ_150 0.642
NILCFT100-NORM 0.588 NILCFT100-STDZ 0.615
NILCFT100-NORM_25 0.611 NILCFT100-STDZ_25 0.646
NILCFT100-NORM_50 0.620 NILCFT100-STDZ_50 0.648
NILCFT100-NORM_100 0.626 NILCFT100-STDZ_100 0.643

NILCFT100-STDZ_150 0.642
NILCW2V100-NORM 0.489 NILCW2V100-STDZ 0.493
NILCW2V100-NORM_25 0.502 NILCW2V100-STDZ_25 0.513
NILCW2V100-NORM_50 0.516 NILCW2V100-STDZ_50 0.518
NILCW2V100-NORM_100 0.530 NILCW2V100-STDZ_100 0.514

NILCW2V100-STDZ_150 0.517
NILCFT300-NORM 0.567 NILCFT300-STDZ 0.570
NILCFT300-NORM_25 0.580 NILCFT300-STDZ_25 0.583
NILCFT300-NORM_50 0.588 NILCFT300-STDZ_50 0.588
NILCFT300-NORM_100 0.595 NILCFT300-STDZ_100 0.583

NILCFT300-STDZ_150 0.586
Auto-encoded Models

Normalized Standardized
Model Spearman Model Spearman

BBPFT300-NORM 0.607 BBPFT300-STDZ 0.610
BBPFT-NORM_25_AE 0.604 BBPFT-STDZ_25_AE 0.636
BBPFT-NORM_50_AE 0.580 BBPFT-STDZ_50_AE 0.649
BBPFT-NORM_100_AE 0.624 BBPFT-STDZ_100_AE 0.641

BBPFT-STDZ_150_AE 0.642
NILCFT100-NORM 0.588 NILCFT100-STDZ 0.615
NILCFT100-NORM_25_AE 0.621 NILCFT100-STDZ_25_AE 0.644
NILCFT100-NORM_50_AE 0.620 NILCFT100-STDZ_50_AE 0.649
NILCFT100-NORM_100_AE 0.623 NILCFT100-STDZ_100_AE 0.640

NILCFT100-STDZ_150_AE 0.638
NILCW2V100-NORM 0.489 NILCW2V100-STDZ 0.493
NILCW2V100-NORM_25_AE 0.506 NILCW2V100-STDZ_25_AE 0.527
NILCW2V100-NORM_50_AE 0.528 NILCW2V100-STDZ_50_AE 0.528
NILCW2V100-NORM_100_AE 0.527 NILCW2V100-STDZ_100_AE 0.518

NILCW2V100-STDZ_150_AE 0.521
NILCFT300-NORM 0.567 NILCFT300-STDZ 0.570
NILCFT300-NORM_25_AE 0.584 NILCFT300-STDZ_25_AE 0.597
NILCFT300-NORM_50_AE 0.571 NILCFT300-STDZ_50_AE 0.576
NILCFT300-NORM_100_AE 0.601 NILCFT300-STDZ_100_AE 0.585

NILCFT300-STDZ_150_AE 0.574
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APPENDIX E – GEOSIM FULL RESULTS

Table E.1 – Full results table for the GeoSim testset.
Concatenated Models

Normalized Standardized
Model Spearman Model Spearman

PetroVecFT 0.607 PetroVecFT 0.609
PetroVecFT-25 0.606 PetroVecFT-25 0.613
PetroVecFT-50 0.607 PetroVecFT-50 0.613
PetroVecFT-100 0.611 PetroVecFT-100 0.615

PetroVecFT-150 0.605
PetroVecHybridFT 0.607 PetroVecHybridFT 0.619
PetroVecHybridFT-25 0.605 PetroVecHybridFT-25 0.633
PetroVecHybridFT-50 0.621 PetroVecHybridFT-50 0.632
PetroVecHybridFT-100 0.629 PetroVecHybridFT-100 0.627

PetroVecHybridFT-150 0.626
PetroVecW2V 0.608 PetroVecW2V 0.611
PetroVecW2V-25 0.611 PetroVecW2V-25 0.613
PetroVecW2V-50 0.610 PetroVecW2V-50 0.613
PetroVecW2V-100 0.613 PetroVecW2V-100 0.612

PetroVecW2V-150 0.610
PetroVecHybridW2V 0.643 PetroVecHybridW2V 0.648
PetroVecHybridW2V-25 0.652 PetroVecHybridW2V-25 0.651
PetroVecHybridW2V-50 0.658 PetroVecHybridW2V-50 0.652
PetroVecHybridW2V-100 0.660 PetroVecHybridW2V-100 0.652

PetroVecHybridW2V-150 0.655
Auto-encoded Models

Normalized Standardized
Model Spearman Model Spearman

PetroVecFT 0.607 PetroVecFT 0.609
PetroVecFT-25 0.621 PetroVecFT-25 0.642
PetroVecFT-50 0.619 PetroVecFT-50 0.636
PetroVecFT-100 0.582 PetroVecFT-100 0.637

PetroVecFT-150 0.629
PetroVecHybridFT 0.607 PetroVecHybridFT 0.619
PetroVecHybridFT-25 0.643 PetroVecHybridFT-25 0.667
PetroVecHybridFT-50 0.657 PetroVecHybridFT-50 0.655
PetroVecHybridFT-100 0.652 PetroVecHybridFT-100 0.646

PetroVecHybridFT-150 0.652
PetroVecW2V 0.608 PetroVecW2V 0.611
PetroVecW2V-25 0.617 PetroVecW2V-25 0.629
PetroVecW2V-50 0.621 PetroVecW2V-50 0.626
PetroVecW2V-100 0.619 PetroVecW2V-100 0.629

PetroVecW2V-150 0.628
PetroVecHybridW2V 0.643 PetroVecHybridW2V 0.648
PetroVecHybridW2V-25 0.664 PetroVecHybridW2V-25 0.664
PetroVecHybridW2V-50 PetroVecHybridW2V-50 0.656
PetroVecHybridW2V-100 0.667 PetroVecHybridW2V-100 0.652

PetroVecHybridW2V-150 0.662
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APPENDIX F – ANALOGY PREDICTION FULL RESULTS

Table F.1 – Results for Concatenated models in the Analogies dataset.
BRAZILIAN PORTUGUESE

NORMALIZED STANDARDIZED
Model Syntactic Semantic Total Model Syntactic Semantic Total

BBPFT 0.445 0.064 0.256 BBPFT 0.447 0.064 0.257
BBPFT_25 0.443 0.064 0.255 BBPFT_25 0.441 0.063 0.254
BBPFT_50 0.444 0.065 0.256 BBPFT_50 0.436 0.065 0.251
BBPFT_100 0.443 0.065 0.255 BBPFT_100 0.410 0.057 0.235

BBPFT_150 0.391 0.066 0.230
NILCFT100 0.487 0.282 0.384 NILCFT100 0.510 0.302 0.406
NILCFT100_25 0.481 0.280 0.380 NILCFT100_25 0.505 0.292 0.398
NILCFT100_50 0.479 0.275 0.377 NILCFT100_50 0.505 0.278 0.391
NILCFT100_100 0.477 0.272 0.374 NILCFT100_100 0.447 0.256 0.351

NILCFT100_150 0.415 0.221 0.318
NILCW2V100 0.247 0.077 0.162 NILCW2V100 0.255 0.080 0.167
NILCW2V100_25 0.247 0.075 0.161 NILCW2V100_25 0.254 0.081 0.167
NILCW2V100_50 0.239 0.072 0.156 NILCW2V100_50 0.245 0.077 0.161
NILCW2V100_100 0.234 0.072 0.153 NILCW2V100_100 0.227 0.073 0.150

NILCW2V100_150 0.206 0.074 0.140
NILCFT300 0.330 0.154 0.242 NILCFT300 0.332 0.158 0.245
NILCFT300_25 0.335 0.155 0.245 NILCFT300_25 0.331 0.157 0.244
NILCFT300_50 0.330 0.153 0.241 NILCFT300_50 0.330 0.159 0.244
NILCFT300_100 0.330 0.156 0.243 NILCFT300_100 0.324 0.157 0.240

NILCFT300_150 0.323 0.161 0.242
EUROPEAN PORTUGUESE

NORMALIZED STANDARDIZED
Model Syntactic Semantic Total Model Syntactic Semantic Total

BBPFT 0.448 0.057 0.254 BBPFT 0.451 0.058 0.255
BBPFT_25 0.447 0.058 0.253 BBPFT_25 0.444 0.057 0.251
BBPFT_50 0.448 0.058 0.254 BBPFT_50 0.439 0.059 0.250
BBPFT_100 0.447 0.058 0.253 BBPFT_100 0.412 0.051 0.232

BBPFT_150 0.393 0.057 0.226
NILCFT100 0.485 0.274 0.379 NILCFT100 0.509 0.293 0.401
NILCFT100_25 0.481 0.273 0.377 NILCFT100_25 0.505 0.284 0.394
NILCFT100_50 0.479 0.267 0.372 NILCFT100_50 0.504 0.270 0.387
NILCFT100_100 0.476 0.263 0.369 NILCFT100_100 0.446 0.242 0.343

NILCFT100_150 0.415 0.213 0.314
NILCW2V100 0.243 0.072 0.158 NILCW2V100 0.252 0.074 0.163
NILCW2V100_25 0.243 0.070 0.156 NILCW2V100_25 0.250 0.075 0.163
NILCW2V100_50 0.234 0.069 0.152 NILCW2V100_50 0.241 0.073 0.157
NILCW2V100_100 0.231 0.067 0.149 NILCW2V100_100 0.224 0.069 0.146

NILCW2V100_150 0.203 0.066 0.134
NILCFT300 0.322 0.140 0.231 NILCFT300 0.324 0.143 0.233
NILCFT300_25 0.327 0.139 0.233 NILCFT300_25 0.323 0.143 0.233
NILCFT300_50 0.323 0.137 0.230 NILCFT300_50 0.322 0.144 0.233
NILCFT300_100 0.322 0.141 0.231 NILCFT300_100 0.317 0.141 0.229

NILCFT300_150 0.316 0.145 0.230
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Table F.2 – Results for Auto-encoded models in the Analogies dataset.
PORTUGUÊS BRASILEIRO

NORMALIZED STANDARDIZED
Model Syntactic Semantic Total Model Syntactic Semantic Total

BBPFT 0.445 0.064 0.256 BBPFT 0.447 0.064 0.257
BBPFT_25 0.391 0.054 0.224 BBPFT_25 0.382 0.047 0.216
BBPFT_50 0.395 0.053 0.225 BBPFT_50 0.377 0.048 0.214
BBPFT_100 0.392 0.058 0.226 BBPFT_100 0.359 0.049 0.205

BBPFT_150 0.351 0.052 0.203
NILCFT100 0.487 0.282 0.384 NILCFT100 0.510 0.302 0.406
NILCFT100_25 0.495 0.301 0.398 NILCFT100_25 0.511 0.311 0.411
NILCFT100_50 0.491 0.290 0.390 NILCFT100_50 0.504 0.301 0.402
NILCFT100_100 0.486 0.288 0.387 NILCFT100_100 0.434 0.279 0.356

NILCFT100_150 0.405 0.241 0.323
NILCW2V100 0.247 0.077 0.162 NILCW2V100 0.255 0.080 0.167
NILCW2V100_25 0.239 0.072 0.155 NILCW2V100_25 0.235 0.080 0.157
NILCW2V100_50 0.229 0.071 0.150 NILCW2V100_50 0.216 0.070 0.143
NILCW2V100_100 0.235 0.072 0.153 NILCW2V100_100 0.188 0.069 0.129

NILCW2V100_150 0.171 0.065 0.118
NILCFT300 0.330 0.154 0.242 NILCFT300 0.332 0.158 0.245
NILCFT300_25 0.285 0.142 0.214 NILCFT300_25 0.299 0.143 0.221
NILCFT300_50 0.283 0.138 0.210 NILCFT300_50 0.293 0.144 0.219
NILCFT300_100 0.283 0.141 0.212 NILCFT300_100 0.294 0.132 0.213

NILCFT300_150 0.282 0.139 0.210
PORTUGUÊS EUROPEU

NORMALIZED STANDARDIZED
Model Syntactic Semantic Total Model Syntactic Semantic Total

BBPFT 0.448 0.057 0.254 BBPFT 0.451 0.058 0.255
BBPFT_25 0.394 0.049 0.223 BBPFT_25 0.387 0.042 0.216
BBPFT_50 0.399 0.049 0.225 BBPFT_50 0.382 0.045 0.214
BBPFT_100 0.395 0.050 0.224 BBPFT_100 0.363 0.044 0.204

BBPFT_150 0.355 0.048 0.202
NILCFT100 0.485 0.274 0.379 NILCFT100 0.509 0.293 0.401
NILCFT100_25 0.493 0.291 0.392 NILCFT100_25 0.509 0.298 0.403
NILCFT100_50 0.490 0.279 0.384 NILCFT100_50 0.502 0.291 0.396
NILCFT100_100 0.485 0.277 0.381 NILCFT100_100 0.432 0.259 0.346

NILCFT100_150 0.404 0.226 0.315
NILCW2V100 0.243 0.072 0.158 NILCW2V100 0.252 0.074 0.163
NILCW2V100_25 0.235 0.067 0.151 NILCW2V100_25 0.231 0.074 0.152
NILCW2V100_50 0.225 0.067 0.146 NILCW2V100_50 0.211 0.064 0.137
NILCW2V100_100 0.230 0.067 0.148 NILCW2V100_100 0.185 0.064 0.125

NILCW2V100_150 0.168 0.059 0.113
NILCFT300 0.322 0.140 0.231 NILCFT300 0.324 0.143 0.233
NILCFT300_25 0.282 0.128 0.205 NILCFT300_25 0.292 0.123 0.208
NILCFT300_50 0.276 0.126 0.201 NILCFT300_50 0.287 0.125 0.206
NILCFT300_100 0.276 0.126 0.201 NILCFT300_100 0.289 0.119 0.204

NILCFT300_150 0.277 0.121 0.199
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APPENDIX G – ASSIN FULL RESULTS

Table G.1 – The complete results for the Brazilian Portuguese ASSIN track.
Concatenated Models

NORMALIZED STANDARDIZED
Model Pearson MSE Model Pearson MSE

BBPFT 0.56 0.52 BBPFT 0.56 0.52
BBPFT_25 0.56 0.52 BBPFT_25 0.57 0.52
BBPFT_50 0.56 0.52 BBPFT_50 0.56 0.52
BBPFT_100 0.56 0.52 BBPFT_100 0.57 0.51

BBPFT_150 0.57 0.52
NILCFT100 0.53 0.55 NILCFT100 0.53 0.54
NILCFT100_25 0.54 0.54 NILCFT100_25 0.54 0.54
NILCFT100_50 0.54 0.54 NILCFT100_50 0.54 0.54
NILCFT100_100 0.53 0.54 NILCFT100_100 0.54 0.54

NILCFT100_150 0.53 0.55
NILCW2V100 0.45 0.60 NILCW2V100 0.45 0.61
NILCW2V100_25 0.47 0.60 NILCW2V100_25 0.45 0.60
NILCW2V100_50 0.46 0.60 NILCW2V100_50 0.45 0.60
NILCW2V100_100 0.46 0.60 NILCW2V100_100 0.46 0.60

NILCW2V100_150 0.46 0.60
NILCFT300 0.49 0.58 NILCFT300 0.49 0.58
NILCFT300_25 0.50 0.57 NILCFT300_25 0.50 0.57
NILCFT300_50 0.50 0.57 NILCFT300_50 0.49 0.57
NILCFT300_100 0.50 0.57 NILCFT300_100 0.50 0.57

NILCFT300_150 0.49 0.57
Auto-encoded Models

NORMALIZED STANDARDIZED
Model Pearson MSE Model Pearson MSE

BBPFT 0.56 0.52 BBPFT 0.56 0.52
BBPFT_25 0.58 0.50 BBPFT_25 0.58 0.50
BBPFT_50 0.57 0.51 BBPFT_50 0.57 0.51
BBPFT_100 0.59 0.50 BBPFT_100 0.58 0.50

BBPFT_150 0.58 0.50
NILCFT100 0.53 0.55 NILCFT100 0.53 0.54
NILCFT100_25 0.51 0.56 NILCFT100_25 0.54 0.54
NILCFT100_50 0.51 0.56 NILCFT100_50 0.52 0.55
NILCFT100_100 0.51 0.56 NILCFT100_100 0.53 0.55

NILCFT100_150 0.53 0.55
NILCW2V100 0.45 0.60 NILCW2V100 0.45 0.61
NILCW2V100_25 0.46 0.60 NILCW2V100_25 0.46 0.60
NILCW2V100_50 0.46 0.60 NILCW2V100_50 0.46 0.60
NILCW2V100_100 0.46 0.60 NILCW2V100_100 0.46 0.60

NILCW2V100_150 0.47 0.60
NILCFT300 0.49 0.58 NILCFT300 0.49 0.58
NILCFT300_25 0.50 0.57 NILCFT300_25 0.52 0.56
NILCFT300_50 0.50 0.57 NILCFT300_50 0.52 0.56
NILCFT300_100 0.50 0.57 NILCFT300_100 0.52 0.56

NILCFT300_150 0.52 0.55
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Table G.2 – The complete results for the European Portuguese ASSIN track.
Concatenated Models

NORMALIZED STANDARDIZED
Model Pearson MSE Model Pearson MSE

BBPFT 0.59 0.79 BBPFT 0.59 0.79
BBPFT_25 0.59 0.79 BBPFT_25 0.59 0.78
BBPFT_50 0.59 0.79 BBPFT_50 0.59 0.79
BBPFT_100 0.59 0.79 BBPFT_100 0.60 0.78

BBPFT_150 0.59 0.79
NILCFT100 0.52 0.88 NILCFT100 0.53 0.86
NILCFT100_25 0.52 0.88 NILCFT100_25 0.53 0.86
NILCFT100_50 0.52 0.88 NILCFT100_50 0.53 0.86
NILCFT100_100 0.52 0.88 NILCFT100_100 0.54 0.85

NILCFT100_150 0.53 0.86
NILCW2V100 0.47 0.93 NILCW2V100 0.47 0.93
NILCW2V100_25 0.47 0.93 NILCW2V100_25 0.48 0.93
NILCW2V100_50 0.46 0.94 NILCW2V100_50 0.48 0.93
NILCW2V100_100 0.47 0.94 NILCW2V100_100 0.48 0.92

NILCW2V100_150 0.48 0.92
NILCFT300 0.50 0.90 NILCFT300 0.50 0.90
NILCFT300_25 0.51 0.90 NILCFT300_25 0.51 0.90
NILCFT300_50 0.51 0.90 NILCFT300_50 0.51 0.90
NILCFT300_100 0.51 0.90 NILCFT300_100 0.51 0.90

NILCFT300_150 0.51 0.90
Auto-encoded Models

NORMALIZED STANDARDIZED
Model Pearson MSE Model Pearson MSE

BBPFT 0.59 0.79 BBPFT 0.59 0.79
BBPFT_25 0.56 0.81 BBPFT_25 0.60 0.76
BBPFT_50 0.57 0.80 BBPFT_50 0.60 0.77
BBPFT_100 0.58 0.79 BBPFT_100 0.60 0.77

BBPFT_150 0.60 0.77
NILCFT100 0.52 0.88 NILCFT100 0.53 0.86
NILCFT100_25 0.52 0.88 NILCFT100_25 0.55 0.85
NILCFT100_50 0.52 0.88 NILCFT100_50 0.53 0.86
NILCFT100_100 0.51 0.88 NILCFT100_100 0.54 0.85

NILCFT100_150 0.54 0.86
NILCW2V100 0.47 0.93 NILCW2V100 0.47 0.93
NILCW2V100_25 0.47 0.93 NILCW2V100_25 0.49 0.91
NILCW2V100_50 0.48 0.92 NILCW2V100_50 0.49 0.91
NILCW2V100_100 0.47 0.93 NILCW2V100_100 0.49 0.91

NILCW2V100_150 0.49 0.91
NILCFT300 0.50 0.90 NILCFT300 0.50 0.90
NILCFT300_25 0.50 0.90 NILCFT300_25 0.49 0.90
NILCFT300_50 0.49 0.90 NILCFT300_50 0.52 0.88
NILCFT300_100 0.50 0.91 NILCFT300_100 0.50 0.89

NILCFT300_150 0.51 0.88
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APPENDIX H – NER FULL RESULTS

Table H.1 – The results of the BBP300 and NILCFT100 concatenated models of the Selec-
tive HAREM Track.

Concatenated Models - HAREM SELECTIVE
NORMALIZED STANDARDIZED

Model Category Precision Recall F1 Model Category Precision Recall F1
LOC 0.717 0.704 0.711 LOC 0.714 0.703 0.709
ORG 0.617 0.573 0.594 ORG 0.626 0.570 0.597
PER 0.754 0.634 0.688 PER 0.762 0.635 0.693
TMP 0.866 0.856 0.861 TMP 0.868 0.853 0.860
VAL 0.783 0.718 0.749 VAL 0.755 0.736 0.745

BBPFT300

Total 0.733 0.679 0.705

BBPFT300

Total 0.734 0.680 0.706
LOC 0.701 0.692 0.697 LOC 0.709 0.669 0.688
ORG 0.608 0.559 0.583 ORG 0.632 0.549 0.587
PER 0.773 0.630 0.694 PER 0.766 0.619 0.685
TMP 0.889 0.856 0.872 TMP 0.862 0.845 0.853
VAL 0.780 0.730 0.754 VAL 0.778 0.742 0.760

BBPFT_25

Total 0.734 0.673 0.702

BBPFT_25

Total 0.738 0.661 0.697
LOC 0.711 0.707 0.709 LOC 0.708 0.684 0.696
ORG 0.630 0.563 0.595 ORG 0.635 0.538 0.583
PER 0.777 0.631 0.696 PER 0.765 0.634 0.693
TMP 0.874 0.859 0.866 TMP 0.860 0.848 0.854
VAL 0.783 0.718 0.749 VAL 0.785 0.739 0.762

BBPFT_50

Total 0.741 0.677 0.708

BBPFT_50

Total 0.738 0.668 0.701
LOC 0.708 0.698 0.703 LOC 0.706 0.660 0.682
ORG 0.636 0.582 0.608 ORG 0.623 0.540 0.578
PER 0.774 0.641 0.701 PER 0.752 0.596 0.665
TMP 0.853 0.856 0.855 TMP 0.888 0.853 0.870
VAL 0.777 0.715 0.744 VAL 0.779 0.736 0.757

BBPFT_100

Total 0.737 0.681 0.708

BBPFT_100

Total 0.735 0.651 0.690
LOC 0.714 0.679 0.696
ORG 0.629 0.517 0.567
PER 0.749 0.600 0.667
TMP 0.892 0.859 0.875
VAL 0.770 0.727 0.748

BBPFT_150

Total 0.738 0.653 0.693
LOC 0.720 0.692 0.706 LOC 0.702 0.734 0.718
ORG 0.632 0.566 0.597 ORG 0.612 0.570 0.590
PER 0.786 0.650 0.711 PER 0.767 0.669 0.715
TMP 0.841 0.836 0.839 TMP 0.825 0.836 0.830
VAL 0.725 0.672 0.698 VAL 0.692 0.690 0.691

NILCFT100

Total 0.737 0.671 0.702

NILCFT100

Total 0.716 0.691 0.703
LOC 0.722 0.679 0.700 LOC 0.717 0.710 0.714
ORG 0.618 0.545 0.579 ORG 0.632 0.552 0.590
PER 0.780 0.630 0.697 PER 0.761 0.637 0.694
TMP 0.806 0.797 0.801 TMP 0.841 0.839 0.840
VAL 0.715 0.653 0.683 VAL 0.771 0.745 0.758

NILCFT100_25

Total 0.727 0.651 0.687

NILCFT100_25

Total 0.735 0.679 0.706
LOC 0.715 0.663 0.688 LOC 0.724 0.684 0.703
ORG 0.624 0.538 0.578 ORG 0.592 0.534 0.562
PER 0.776 0.621 0.690 PER 0.756 0.637 0.692
TMP 0.816 0.816 0.816 TMP 0.858 0.856 0.857
VAL 0.747 0.669 0.706 VAL 0.761 0.752 0.756

NILCFT100_50

Total 0.731 0.646 0.686

NILCFT100_50

Total 0.729 0.670 0.698
LOC 0.718 0.681 0.699 LOC 0.704 0.691 0.697
ORG 0.637 0.545 0.588 ORG 0.580 0.492 0.532
PER 0.761 0.615 0.680 PER 0.759 0.632 0.690
TMP 0.831 0.819 0.825 TMP 0.865 0.853 0.859
VAL 0.758 0.699 0.727 VAL 0.734 0.736 0.735

NILCFT100_100

Total 0.733 0.655 0.692

NILCFT100_100

Total 0.720 0.661 0.689
LOC 0.719 0.691 0.705
ORG 0.607 0.520 0.560
PER 0.777 0.647 0.706
TMP 0.838 0.833 0.836
VAL 0.748 0.736 0.742

NILCFT100_150

Total 0.733 0.668 0.699
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Table H.2 – The results of the NILCW2V100 and NILCFT300 concatenated models of the
Selective HAREM Track.

Concatenated Models - HAREM SELECTIVE
NORMALIZED STANDARDIZED

Model Category Precision Recall F1 Model Category Precision Recall F1
LOC 0.709 0.701 0.705 LOC 0.715 0.713 0.714
ORG 0.661 0.543 0.596 ORG 0.610 0.571 0.590
PER 0.746 0.605 0.669 PER 0.769 0.668 0.715
TMP 0.831 0.831 0.831 TMP 0.826 0.842 0.834
VAL 0.798 0.703 0.747 VAL 0.748 0.730 0.739

NILCW2V100

Total 0.736 0.659 0.696

NILCW2V100

Total 0.727 0.690 0.708
LOC 0.722 0.683 0.702 LOC 0.740 0.702 0.720
ORG 0.670 0.559 0.610 ORG 0.628 0.545 0.584
PER 0.755 0.607 0.673 PER 0.760 0.663 0.708
TMP 0.826 0.816 0.821 TMP 0.863 0.850 0.856
VAL 0.770 0.678 0.721 VAL 0.784 0.767 0.775

NILCW2V100_25

Total 0.740 0.653 0.694

NILCW2V100_25

Total 0.746 0.686 0.715
LOC 0.719 0.688 0.703 LOC 0.725 0.703 0.714
ORG 0.628 0.515 0.566 ORG 0.636 0.568 0.600
PER 0.735 0.590 0.654 PER 0.787 0.665 0.721
TMP 0.816 0.825 0.820 TMP 0.836 0.836 0.836
VAL 0.778 0.709 0.742 VAL 0.756 0.721 0.738

NILCW2V100_50

Total 0.727 0.645 0.684

NILCW2V100_50

Total 0.743 0.684 0.712
LOC 0.712 0.675 0.693 LOC 0.721 0.665 0.692
ORG 0.617 0.517 0.562 ORG 0.585 0.497 0.538
PER 0.749 0.611 0.673 PER 0.750 0.634 0.687
TMP 0.855 0.819 0.837 TMP 0.844 0.842 0.843
VAL 0.754 0.669 0.709 VAL 0.767 0.736 0.751

NILCW2V100_100

Total 0.728 0.643 0.683

NILCW2V100_100

Total 0.726 0.653 0.687
LOC 0.708 0.687 0.697
ORG 0.587 0.499 0.540
PER 0.768 0.641 0.699
TMP 0.839 0.825 0.832
VAL 0.750 0.709 0.729

NILCW2V100_150

Total 0.724 0.657 0.688
LOC 0.726 0.710 0.718 LOC 0.728 0.710 0.719
ORG 0.639 0.556 0.594 ORG 0.628 0.556 0.589
PER 0.767 0.645 0.700 PER 0.754 0.663 0.705
TMP 0.841 0.819 0.830 TMP 0.872 0.845 0.858
VAL 0.760 0.736 0.748 VAL 0.776 0.767 0.772

NILCFT300

Total 0.739 0.678 0.707

NILCFT300

Total 0.740 0.690 0.714
LOC 0.719 0.700 0.709 LOC 0.718 0.692 0.705
ORG 0.626 0.552 0.587 ORG 0.619 0.554 0.585
PER 0.758 0.615 0.679 PER 0.762 0.670 0.713
TMP 0.864 0.842 0.853 TMP 0.878 0.856 0.867
VAL 0.790 0.727 0.757 VAL 0.779 0.755 0.766

NILCFT300_25

Total 0.738 0.668 0.701

NILCFT300_25

Total 0.739 0.686 0.711
LOC 0.725 0.703 0.714 LOC 0.729 0.703 0.716
ORG 0.626 0.570 0.597 ORG 0.630 0.570 0.598
PER 0.770 0.618 0.685 PER 0.755 0.664 0.707
TMP 0.867 0.850 0.859 TMP 0.875 0.850 0.863
VAL 0.767 0.718 0.742 VAL 0.777 0.761 0.769

NILCFT300_50

Total 0.740 0.673 0.705

NILCFT300_50

Total 0.741 0.691 0.715
LOC 0.722 0.683 0.702 LOC 0.731 0.700 0.715
ORG 0.618 0.549 0.581 ORG 0.619 0.554 0.585
PER 0.763 0.628 0.689 PER 0.750 0.652 0.698
TMP 0.872 0.831 0.851 TMP 0.855 0.853 0.854
VAL 0.775 0.730 0.752 VAL 0.799 0.779 0.789

NILCFT300_100

Total 0.738 0.664 0.699

NILCFT300_100

Total 0.739 0.685 0.711
LOC 0.717 0.683 0.700
ORG 0.616 0.549 0.580
PER 0.754 0.646 0.696
TMP 0.852 0.845 0.848
VAL 0.787 0.782 0.785

NILCFT300_150

Total 0.734 0.677 0.704
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Table H.3 – The results of the BBP300 and NILCFT100 auto-encoded models of the Selec-
tive HAREM Track.

Auto-encoded - HAREM SELECTIVE
NORMALIZED STANDARDIZED

Model Category Precision Recall F1 Model Category Precision Recall F1
LOC 0.717 0.704 0.711 LOC 0.714 0.703 0.709
ORG 0.617 0.573 0.594 ORG 0.626 0.570 0.597
PER 0.754 0.634 0.688 PER 0.762 0.635 0.693
TMP 0.866 0.856 0.861 TMP 0.868 0.853 0.860
VAL 0.783 0.718 0.749 VAL 0.755 0.736 0.745

BBPFT300

Total 0.733 0.679 0.705

BBPFT300

Total 0.734 0.680 0.706
LOC 0.713 0.695 0.704 LOC 0.716 0.690 0.703
ORG 0.624 0.561 0.591 ORG 0.605 0.559 0.581
PER 0.757 0.558 0.642 PER 0.753 0.554 0.638
TMP 0.903 0.870 0.886 TMP 0.852 0.859 0.855
VAL 0.761 0.693 0.726 VAL 0.772 0.748 0.760

BBPFT_25

Total 0.737 0.651 0.691

BBPFT_25

Total 0.728 0.653 0.688
LOC 0.701 0.694 0.697 LOC 0.698 0.688 0.693
ORG 0.655 0.536 0.590 ORG 0.608 0.536 0.570
PER 0.772 0.561 0.650 PER 0.764 0.582 0.661
TMP 0.867 0.864 0.866 TMP 0.870 0.853 0.862
VAL 0.809 0.727 0.766 VAL 0.766 0.733 0.749

BBPFT_50

Total 0.745 0.650 0.694

BBPFT_50

Total 0.727 0.654 0.688
LOC 0.705 0.700 0.702 LOC 0.708 0.684 0.696
ORG 0.619 0.536 0.575 ORG 0.631 0.526 0.574
PER 0.738 0.532 0.618 PER 0.729 0.543 0.622
TMP 0.863 0.839 0.851 TMP 0.854 0.859 0.856
VAL 0.783 0.730 0.756 VAL 0.775 0.752 0.763

BBPFT_100

Total 0.727 0.641 0.681

BBPFT_100

Total 0.728 0.642 0.682
LOC 0.715 0.671 0.692
ORG 0.592 0.534 0.562
PER 0.745 0.574 0.648
TMP 0.849 0.856 0.852
VAL 0.755 0.748 0.752

BBPFT_150

Total 0.722 0.648 0.683
LOC 0.720 0.692 0.706 LOC 0.702 0.734 0.718
ORG 0.632 0.566 0.597 ORG 0.612 0.570 0.590
PER 0.786 0.650 0.711 PER 0.767 0.669 0.715
TMP 0.841 0.836 0.839 TMP 0.825 0.836 0.830
VAL 0.725 0.672 0.698 VAL 0.692 0.690 0.691

NILCFT100

Total 0.737 0.671 0.702

NILCFT100

Total 0.716 0.691 0.703
LOC 0.725 0.670 0.696 LOC 0.701 0.716 0.709
ORG 0.650 0.515 0.575 ORG 0.610 0.552 0.580
PER 0.803 0.624 0.702 PER 0.791 0.667 0.723
TMP 0.831 0.819 0.825 TMP 0.852 0.864 0.858
VAL 0.759 0.684 0.719 VAL 0.738 0.742 0.740

NILCFT100_25

Total 0.750 0.647 0.694

NILCFT100_25

Total 0.731 0.691 0.710
LOC 0.713 0.683 0.698 LOC 0.699 0.718 0.709
ORG 0.619 0.510 0.559 ORG 0.620 0.564 0.591
PER 0.789 0.640 0.706 PER 0.797 0.663 0.724
TMP 0.839 0.842 0.841 TMP 0.814 0.831 0.822
VAL 0.766 0.681 0.721 VAL 0.746 0.730 0.738

NILCFT100_50

Total 0.739 0.656 0.695

NILCFT100_50

Total 0.729 0.688 0.708
LOC 0.721 0.665 0.692 LOC 0.692 0.714 0.703
ORG 0.642 0.482 0.550 ORG 0.611 0.534 0.570
PER 0.791 0.618 0.694 PER 0.776 0.640 0.701
TMP 0.822 0.811 0.817 TMP 0.832 0.825 0.828
VAL 0.729 0.660 0.692 VAL 0.726 0.690 0.708

NILCFT100_100

Total 0.741 0.633 0.683

NILCFT100_100

Total 0.720 0.669 0.694
LOC 0.690 0.714 0.702
ORG 0.617 0.536 0.574
PER 0.783 0.642 0.706
TMP 0.817 0.848 0.832
VAL 0.742 0.724 0.733

NILCFT100_150

Total 0.723 0.676 0.699
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Table H.4 – The results of the NILCW2V100 and NILCFT300 auto-encoded models of the
Selective HAREM Track.

Auto-encoded - HAREM SELECTIVE
NORMALIZED STANDARDIZED

Model Category Precision Recall F1 Model Category Precision Recall F1
LOC 0.709 0.701 0.705 LOC 0.715 0.713 0.714
ORG 0.661 0.543 0.596 ORG 0.610 0.571 0.590
PER 0.746 0.605 0.669 PER 0.769 0.668 0.715
TMP 0.831 0.831 0.831 TMP 0.826 0.842 0.834
VAL 0.798 0.703 0.747 VAL 0.748 0.730 0.739

NILCW2V100

Total 0.736 0.659 0.696

NILCW2V100

Total 0.727 0.690 0.708
LOC 0.746 0.683 0.713 LOC 0.722 0.698 0.710
ORG 0.654 0.503 0.568 ORG 0.606 0.543 0.573
PER 0.760 0.611 0.678 PER 0.773 0.662 0.713
TMP 0.883 0.831 0.856 TMP 0.833 0.833 0.833
VAL 0.774 0.724 0.748 VAL 0.744 0.730 0.737

NILCW2V100_25

Total 0.755 0.650 0.699

NILCW2V100_25

Total 0.731 0.678 0.703
LOC 0.718 0.696 0.707 LOC 0.702 0.726 0.714
ORG 0.637 0.499 0.560 ORG 0.596 0.547 0.570
PER 0.765 0.624 0.687 PER 0.794 0.688 0.737
TMP 0.848 0.833 0.841 TMP 0.864 0.842 0.853
VAL 0.784 0.690 0.734 VAL 0.763 0.748 0.755

NILCW2V100_50

Total 0.741 0.653 0.695

NILCW2V100_50

Total 0.733 0.697 0.714
LOC 0.723 0.679 0.701 LOC 0.711 0.703 0.707
ORG 0.628 0.494 0.553 ORG 0.614 0.564 0.588
PER 0.783 0.620 0.692 PER 0.772 0.663 0.713
TMP 0.874 0.825 0.849 TMP 0.851 0.842 0.847
VAL 0.762 0.727 0.744 VAL 0.756 0.733 0.745

NILCW2V100_100

Total 0.746 0.650 0.695

NILCW2V100_100

Total 0.731 0.685 0.707
LOC 0.721 0.713 0.717
ORG 0.613 0.536 0.572
PER 0.785 0.658 0.716
TMP 0.845 0.816 0.831
VAL 0.745 0.733 0.739

NILCW2V100_150

Total 0.736 0.678 0.706
LOC 0.726 0.710 0.718 LOC 0.728 0.710 0.719
ORG 0.639 0.556 0.594 ORG 0.628 0.556 0.589
PER 0.767 0.645 0.700 PER 0.754 0.663 0.705
TMP 0.841 0.819 0.830 TMP 0.872 0.845 0.858
VAL 0.760 0.736 0.748 VAL 0.776 0.767 0.772

NILCFT300

Total 0.739 0.678 0.707

NILCFT300

Total 0.740 0.690 0.714
LOC 0.728 0.662 0.693 LOC 0.719 0.687 0.702
ORG 0.645 0.536 0.586 ORG 0.598 0.517 0.554
PER 0.782 0.581 0.667 PER 0.734 0.592 0.655
TMP 0.869 0.822 0.845 TMP 0.866 0.842 0.854
VAL 0.766 0.712 0.738 VAL 0.752 0.736 0.744

NILCFT300_25

Total 0.749 0.640 0.690

NILCFT300_25

Total 0.723 0.651 0.686
LOC 0.753 0.649 0.697 LOC 0.716 0.687 0.701
ORG 0.663 0.492 0.565 ORG 0.612 0.534 0.571
PER 0.808 0.607 0.693 PER 0.785 0.616 0.691
TMP 0.861 0.825 0.843 TMP 0.863 0.839 0.851
VAL 0.773 0.712 0.741 VAL 0.747 0.770 0.758

NILCFT300_50

Total 0.769 0.635 0.696

NILCFT300_50

Total 0.737 0.665 0.699
LOC 0.714 0.681 0.697 LOC 0.712 0.690 0.701
ORG 0.668 0.485 0.562 ORG 0.607 0.517 0.558
PER 0.791 0.542 0.643 PER 0.770 0.626 0.691
TMP 0.850 0.848 0.849 TMP 0.849 0.845 0.847
VAL 0.773 0.712 0.741 VAL 0.755 0.773 0.764

NILCFT300_100

Total 0.751 0.627 0.683

NILCFT300_100

Total 0.731 0.666 0.697
LOC 0.719 0.703 0.711
ORG 0.607 0.547 0.575
PER 0.773 0.625 0.691
TMP 0.837 0.828 0.832
VAL 0.751 0.748 0.750

NILCFT300_150

Total 0.730 0.671 0.699
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Table H.5 – The results of the BBP300 concatenated model for the Total HAREM Track.
Concatenated Models - HAREM TOTAL

NORMALIZED STANDARDIZED
Model Category Precision Recall F1 Model Category Precision Recall F1

ABS 0.285 0.188 0.226 ABS 0.286 0.193 0.230
ACO 0.225 0.180 0.200 ACO 0.152 0.140 0.146
COI 0.396 0.130 0.195 COI 0.493 0.210 0.294
LOC 0.703 0.696 0.699 LOC 0.708 0.703 0.706
OBR 0.302 0.138 0.190 OBR 0.309 0.112 0.164
ORG 0.612 0.579 0.595 ORG 0.616 0.568 0.591
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.757 0.636 0.691 PER 0.766 0.677 0.718
TMP 0.851 0.856 0.854 TMP 0.841 0.850 0.846
VAL 0.747 0.696 0.721 VAL 0.754 0.770 0.762

BBPFT300

Total 0.679 0.585 0.628

BBPFT300

Total 0.685 0.602 0.641
ABS 0.296 0.198 0.237 ABS 0.242 0.157 0.191
ACO 0.200 0.120 0.150 ACO 0.158 0.120 0.136
COI 0.382 0.130 0.194 COI 0.362 0.154 0.217
LOC 0.699 0.698 0.699 LOC 0.696 0.689 0.693
OBR 0.295 0.122 0.173 OBR 0.227 0.080 0.118
ORG 0.628 0.579 0.602 ORG 0.623 0.564 0.592
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.754 0.648 0.697 PER 0.746 0.651 0.695
TMP 0.870 0.848 0.858 TMP 0.843 0.862 0.852
VAL 0.757 0.709 0.732 VAL 0.764 0.755 0.759

BBPFT_25

Total 0.685 0.587 0.632

BBPFT_25

Total 0.675 0.586 0.627
ABS 0.310 0.223 0.260 ABS 0.267 0.178 0.213
ACO 0.237 0.180 0.205 ACO 0.105 0.080 0.091
COI 0.396 0.130 0.195 COI 0.373 0.136 0.199
LOC 0.714 0.709 0.712 LOC 0.698 0.679 0.688
OBR 0.333 0.138 0.196 OBR 0.238 0.080 0.120
ORG 0.627 0.593 0.609 ORG 0.594 0.540 0.566
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.782 0.654 0.713 PER 0.740 0.645 0.689
TMP 0.850 0.848 0.849 TMP 0.849 0.856 0.852
VAL 0.766 0.715 0.740 VAL 0.752 0.736 0.744

BBPFT_50

Total 0.694 0.597 0.642

BBPFT_50

Total 0.670 0.575 0.619
ABS 0.292 0.178 0.221 ABS 0.242 0.162 0.195
ACO 0.233 0.140 0.175 ACO 0.118 0.080 0.095
COI 0.465 0.124 0.195 COI 0.359 0.142 0.204
LOC 0.705 0.710 0.708 LOC 0.705 0.687 0.696
OBR 0.380 0.186 0.250 OBR 0.259 0.080 0.122
ORG 0.633 0.571 0.601 ORG 0.618 0.550 0.582
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.744 0.639 0.687 PER 0.758 0.648 0.699
TMP 0.840 0.845 0.842 TMP 0.840 0.845 0.842
VAL 0.757 0.715 0.735 VAL 0.759 0.755 0.757

BBPFT_100

Total 0.688 0.589 0.635

BBPFT_100

Total 0.680 0.580 0.626
ABS 0.275 0.183 0.220
ACO 0.217 0.200 0.208
COI 0.438 0.130 0.200
LOC 0.701 0.689 0.695
OBR 0.216 0.058 0.092
ORG 0.605 0.550 0.576
OTR 0.000 0.000 0.000
PER 0.746 0.642 0.690
TMP 0.835 0.842 0.838
VAL 0.747 0.752 0.749

BBPFT_150

Total 0.677 0.579 0.624
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Table H.6 – The results of the NILCFT100 concatenated model for the Total HAREM Track.
Concatenated Models - HAREM TOTAL

NORMALIZED STANDARDIZED
Model Category Precision Recall F1 Model Category Precision Recall F1

ABS 0.272 0.127 0.173 ABS 0.214 0.152 0.178
ACO 0.391 0.180 0.247 ACO 0.324 0.220 0.262
COI 0.487 0.117 0.189 COI 0.448 0.161 0.236
LOC 0.708 0.690 0.699 LOC 0.710 0.725 0.717
OBR 0.241 0.069 0.107 OBR 0.203 0.069 0.103
ORG 0.627 0.573 0.599 ORG 0.617 0.587 0.602
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.759 0.641 0.695 PER 0.770 0.685 0.725
TMP 0.806 0.811 0.809 TMP 0.846 0.853 0.850
VAL 0.694 0.641 0.667 VAL 0.718 0.718 0.718

NILCFT100

Total 0.688 0.566 0.621

NILCFT100

Total 0.682 0.602 0.640
ABS 0.287 0.168 0.212 ABS 0.197 0.147 0.169
ACO 0.208 0.100 0.135 ACO 0.300 0.180 0.225
COI 0.578 0.161 0.251 COI 0.460 0.142 0.217
LOC 0.703 0.675 0.689 LOC 0.730 0.710 0.720
OBR 0.241 0.069 0.107 OBR 0.273 0.080 0.124
ORG 0.596 0.557 0.576 ORG 0.607 0.570 0.588
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.763 0.665 0.711 PER 0.760 0.673 0.714
TMP 0.857 0.831 0.844 TMP 0.813 0.825 0.819
VAL 0.737 0.696 0.716 VAL 0.766 0.773 0.770

NILCFT100_25

Total 0.688 0.576 0.627

NILCFT100_25

Total 0.686 0.594 0.637
ABS 0.301 0.188 0.231 ABS 0.204 0.147 0.171
ACO 0.185 0.100 0.130 ACO 0.194 0.120 0.148
COI 0.485 0.099 0.164 COI 0.489 0.142 0.220
LOC 0.716 0.702 0.709 LOC 0.712 0.718 0.715
OBR 0.373 0.117 0.178 OBR 0.244 0.058 0.094
ORG 0.609 0.557 0.582 ORG 0.598 0.540 0.567
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.766 0.662 0.710 PER 0.764 0.674 0.716
TMP 0.835 0.814 0.824 TMP 0.864 0.859 0.861
VAL 0.725 0.687 0.706 VAL 0.733 0.742 0.738

NILCFT100_50

Total 0.691 0.580 0.631

NILCFT100_50

Total 0.685 0.590 0.634
ABS 0.221 0.147 0.177 ABS 0.263 0.183 0.216
ACO 0.273 0.120 0.167 ACO 0.276 0.160 0.203
COI 0.500 0.111 0.182 COI 0.489 0.142 0.220
LOC 0.730 0.675 0.701 LOC 0.703 0.696 0.699
OBR 0.351 0.106 0.163 OBR 0.255 0.064 0.102
ORG 0.560 0.580 0.570 ORG 0.605 0.513 0.555
OTR 0.250 0.071 0.111 OTR 0.000 0.000 0.000
PER 0.754 0.629 0.686 PER 0.745 0.654 0.697
TMP 0.861 0.822 0.841 TMP 0.867 0.864 0.866
VAL 0.733 0.706 0.719 VAL 0.725 0.752 0.738

NILCFT100_100

Total 0.680 0.570 0.620

NILCFT100_100

Total 0.684 0.581 0.628
ABS 0.248 0.178 0.207
ACO 0.412 0.140 0.209
COI 0.346 0.111 0.168
LOC 0.709 0.691 0.700
OBR 0.213 0.053 0.085
ORG 0.573 0.503 0.536
OTR 0.000 0.000 0.000
PER 0.743 0.651 0.694
TMP 0.839 0.842 0.841
VAL 0.734 0.745 0.740

NILCFT100_150

Total 0.675 0.571 0.619
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Table H.7 – The results of the NILCW2V100 concatenated model for the Total HAREM Track.
Concatenated Models - HAREM TOTAL

NORMALIZED STANDARDIZED
Model Category Precision Recall F1 Model Category Precision Recall F1

ABS 0.287 0.168 0.212 ABS 0.216 0.152 0.179
ACO 0.294 0.200 0.238 ACO 0.172 0.100 0.127
COI 0.465 0.124 0.195 COI 0.349 0.179 0.237
LOC 0.715 0.713 0.714 LOC 0.730 0.721 0.725
OBR 0.397 0.122 0.187 OBR 0.255 0.075 0.115
ORG 0.609 0.557 0.582 ORG 0.592 0.573 0.582
OTR 0.333 0.071 0.118 OTR 0.000 0.000 0.000
PER 0.746 0.637 0.687 PER 0.749 0.672 0.708
TMP 0.829 0.819 0.824 TMP 0.846 0.839 0.843
VAL 0.732 0.678 0.704 VAL 0.726 0.730 0.728

NILCW2V100

Total 0.687 0.579 0.628

NILCW2V100

Total 0.675 0.595 0.633
ABS 0.216 0.137 0.168 ABS 0.260 0.173 0.207
ACO 0.222 0.160 0.186 ACO 0.189 0.140 0.161
COI 0.378 0.105 0.164 COI 0.448 0.161 0.236
LOC 0.707 0.681 0.693 LOC 0.723 0.696 0.709
OBR 0.351 0.138 0.199 OBR 0.317 0.101 0.153
ORG 0.587 0.566 0.576 ORG 0.605 0.584 0.594
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.738 0.626 0.678 PER 0.751 0.662 0.704
TMP 0.840 0.816 0.828 TMP 0.867 0.850 0.859
VAL 0.762 0.696 0.728 VAL 0.735 0.724 0.730

NILCW2V100_25

Total 0.672 0.569 0.616

NILCW2V100_25

Total 0.686 0.592 0.635
ABS 0.235 0.142 0.177 ABS 0.264 0.173 0.209
ACO 0.237 0.180 0.205 ACO 0.350 0.140 0.200
COI 0.333 0.099 0.152 COI 0.431 0.154 0.227
LOC 0.705 0.685 0.695 LOC 0.719 0.692 0.705
OBR 0.358 0.128 0.188 OBR 0.365 0.101 0.158
ORG 0.593 0.570 0.581 ORG 0.584 0.550 0.567
OTR 0.250 0.071 0.111 OTR 0.250 0.071 0.111
PER 0.745 0.634 0.685 PER 0.747 0.680 0.712
TMP 0.833 0.805 0.819 TMP 0.836 0.848 0.842
VAL 0.747 0.672 0.708 VAL 0.752 0.752 0.752

NILCW2V100_50

Total 0.674 0.569 0.617

NILCW2V100_50

Total 0.685 0.592 0.635
ABS 0.205 0.137 0.164 ABS 0.212 0.157 0.181
ACO 0.125 0.080 0.098 ACO 0.188 0.120 0.146
COI 0.340 0.099 0.153 COI 0.426 0.161 0.233
LOC 0.747 0.675 0.709 LOC 0.721 0.709 0.715
OBR 0.319 0.080 0.128 OBR 0.212 0.058 0.092
ORG 0.594 0.513 0.551 ORG 0.611 0.549 0.578
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.732 0.626 0.675 PER 0.757 0.650 0.699
TMP 0.851 0.825 0.838 TMP 0.832 0.850 0.841
VAL 0.760 0.641 0.696 VAL 0.737 0.730 0.733

NILCW2V100_100

Total 0.684 0.550 0.610

NILCW2V100_100

Total 0.680 0.583 0.628
ABS 0.248 0.183 0.211
ACO 0.220 0.180 0.198
COI 0.339 0.130 0.188
LOC 0.708 0.689 0.698
OBR 0.296 0.085 0.132
ORG 0.602 0.570 0.585
OTR 0.000 0.000 0.000
PER 0.741 0.645 0.689
TMP 0.868 0.856 0.862
VAL 0.745 0.755 0.750

NILCW2V100_150

Total 0.675 0.586 0.628
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Table H.8 – The results of the NILCFT300 concatenated model for the Total HAREM Track.
Concatenated Models - HAREM TOTAL

NORMALIZED STANDARDIZED
Model Category Precision Recall F1 Model Category Precision Recall F1

ABS 0.241 0.193 0.214 ABS 0.235 0.198 0.215
ACO 0.282 0.220 0.247 ACO 0.180 0.180 0.180
COI 0.418 0.142 0.212 COI 0.333 0.161 0.217
LOC 0.717 0.734 0.725 LOC 0.723 0.721 0.722
OBR 0.333 0.117 0.173 OBR 0.238 0.080 0.120
ORG 0.616 0.579 0.597 ORG 0.597 0.577 0.587
OTR 0.200 0.071 0.105 OTR 0.000 0.000 0.000
PER 0.761 0.651 0.702 PER 0.748 0.663 0.703
TMP 0.858 0.833 0.845 TMP 0.832 0.842 0.837
VAL 0.745 0.745 0.745 VAL 0.746 0.748 0.747

NILCFT300

Total 0.684 0.600 0.639

NILCFT300

Total 0.667 0.599 0.631
ABS 0.245 0.173 0.202 ABS 0.263 0.203 0.229
ACO 0.313 0.200 0.244 ACO 0.220 0.180 0.198
COI 0.358 0.148 0.210 COI 0.354 0.173 0.232
LOC 0.711 0.723 0.717 LOC 0.727 0.718 0.723
OBR 0.232 0.069 0.107 OBR 0.258 0.090 0.134
ORG 0.621 0.566 0.592 ORG 0.607 0.579 0.593
OTR 0.333 0.071 0.118 OTR 0.333 0.143 0.200
PER 0.753 0.647 0.696 PER 0.747 0.675 0.709
TMP 0.883 0.853 0.868 TMP 0.844 0.853 0.848
VAL 0.752 0.733 0.742 VAL 0.771 0.764 0.767

NILCFT300_25

Total 0.686 0.592 0.636

NILCFT300_25

Total 0.680 0.606 0.641
ABS 0.219 0.162 0.187 ABS 0.284 0.223 0.250
ACO 0.317 0.260 0.286 ACO 0.303 0.200 0.241
COI 0.323 0.130 0.185 COI 0.288 0.142 0.190
LOC 0.726 0.691 0.708 LOC 0.709 0.697 0.703
OBR 0.242 0.080 0.120 OBR 0.253 0.101 0.145
ORG 0.605 0.573 0.589 ORG 0.597 0.568 0.582
OTR 0.250 0.071 0.111 OTR 0.286 0.143 0.191
PER 0.754 0.651 0.699 PER 0.747 0.662 0.702
TMP 0.867 0.845 0.856 TMP 0.860 0.864 0.862
VAL 0.741 0.727 0.734 VAL 0.733 0.718 0.726

NILCFT300_50

Total 0.679 0.585 0.629

NILCFT300_50

Total 0.670 0.594 0.630
ABS 0.248 0.168 0.200 ABS 0.226 0.183 0.202
ACO 0.290 0.180 0.222 ACO 0.167 0.140 0.152
COI 0.422 0.117 0.184 COI 0.338 0.154 0.212
LOC 0.712 0.703 0.708 LOC 0.722 0.722 0.722
OBR 0.260 0.101 0.146 OBR 0.226 0.075 0.112
ORG 0.608 0.564 0.586 ORG 0.590 0.543 0.566
OTR 0.167 0.071 0.100 OTR 0.000 0.000 0.000
PER 0.757 0.630 0.688 PER 0.748 0.667 0.705
TMP 0.868 0.856 0.862 TMP 0.861 0.842 0.851
VAL 0.757 0.736 0.747 VAL 0.748 0.739 0.744

NILCFT300_100

Total 0.686 0.583 0.630

NILCFT300_100

Total 0.671 0.592 0.629
ABS 0.240 0.178 0.204
ACO 0.244 0.220 0.232
COI 0.300 0.130 0.181
LOC 0.716 0.715 0.715
OBR 0.139 0.053 0.077
ORG 0.611 0.557 0.583
OTR 0.111 0.071 0.087
PER 0.742 0.661 0.699
TMP 0.856 0.856 0.856
VAL 0.721 0.715 0.718

NILCFT300_150

Total 0.667 0.589 0.626
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Table H.9 – The results of the BBP300 auto-encoded model for the Total HAREM Track.
Auto-encoded Models - HAREM TOTAL

NORMALIZED STANDARDIZED
Model Category Precision Recall F1 Model Category Precision Recall F1

ABS 0.285 0.188 0.226 ABS 0.286 0.193 0.230
ACO 0.225 0.180 0.200 ACO 0.152 0.140 0.146
COI 0.396 0.130 0.195 COI 0.493 0.210 0.294
LOC 0.703 0.696 0.699 LOC 0.708 0.703 0.706
OBR 0.302 0.138 0.190 OBR 0.309 0.112 0.164
ORG 0.612 0.579 0.595 ORG 0.616 0.568 0.591
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.757 0.636 0.691 PER 0.766 0.677 0.718
TMP 0.851 0.856 0.854 TMP 0.841 0.850 0.846
VAL 0.747 0.696 0.721 VAL 0.754 0.770 0.762

BBPFT300

Total 0.679 0.585 0.628

BBPFT300

Total 0.685 0.602 0.641
ABS 0.295 0.208 0.244 ABS 0.232 0.183 0.205
ACO 0.345 0.200 0.253 ACO 0.174 0.160 0.167
COI 0.400 0.086 0.142 COI 0.392 0.124 0.188
LOC 0.692 0.687 0.689 LOC 0.690 0.673 0.682
OBR 0.406 0.207 0.275 OBR 0.279 0.090 0.137
ORG 0.599 0.556 0.576 ORG 0.600 0.550 0.574
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.727 0.572 0.641 PER 0.752 0.581 0.656
TMP 0.899 0.853 0.875 TMP 0.864 0.859 0.861
VAL 0.762 0.696 0.728 VAL 0.749 0.733 0.741

BBPFT_25

Total 0.678 0.567 0.617

BBPFT_25

Total 0.668 0.562 0.611
ABS 0.300 0.198 0.239 ABS 0.253 0.188 0.216
ACO 0.276 0.160 0.203 ACO 0.243 0.180 0.207
COI 0.412 0.086 0.143 COI 0.345 0.124 0.182
LOC 0.710 0.707 0.708 LOC 0.708 0.679 0.693
OBR 0.376 0.186 0.249 OBR 0.313 0.112 0.165
ORG 0.613 0.547 0.578 ORG 0.589 0.556 0.572
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.748 0.583 0.656 PER 0.736 0.580 0.648
TMP 0.853 0.850 0.852 TMP 0.849 0.856 0.852
VAL 0.787 0.724 0.754 VAL 0.746 0.721 0.733

BBPFT_50

Total 0.689 0.573 0.626

BBPFT_50

Total 0.669 0.565 0.612
ABS 0.329 0.228 0.270 ABS 0.285 0.198 0.234
ACO 0.333 0.160 0.216 ACO 0.233 0.200 0.215
COI 0.317 0.080 0.128 COI 0.408 0.124 0.190
LOC 0.701 0.695 0.698 LOC 0.687 0.682 0.684
OBR 0.414 0.191 0.262 OBR 0.319 0.122 0.177
ORG 0.584 0.568 0.576 ORG 0.608 0.561 0.584
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.748 0.569 0.646 PER 0.763 0.583 0.661
TMP 0.849 0.845 0.847 TMP 0.849 0.859 0.854
VAL 0.739 0.693 0.715 VAL 0.771 0.742 0.756

BBPFT_100

Total 0.675 0.568 0.617

BBPFT_100

Total 0.678 0.571 0.619
ABS 0.275 0.208 0.237
ACO 0.191 0.180 0.186
COI 0.385 0.124 0.187
LOC 0.719 0.683 0.700
OBR 0.200 0.075 0.109
ORG 0.598 0.536 0.566
OTR 0.000 0.000 0.000
PER 0.733 0.578 0.647
TMP 0.883 0.870 0.876
VAL 0.748 0.745 0.747

BBPFT_150

Total 0.674 0.565 0.615
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Table H.10 – The results of the NILCFT100 auto-encoded model for the Total HAREM Track.
Auto-encoded Models - HAREM TOTAL

NORMALIZED STANDARDIZED
Model Category Precision Recall F1 Model Category Precision Recall F1

ABS 0.272 0.127 0.173 ABS 0.214 0.152 0.178
ACO 0.391 0.180 0.247 ACO 0.324 0.220 0.262
COI 0.487 0.117 0.189 COI 0.448 0.161 0.236
LOC 0.708 0.690 0.699 LOC 0.710 0.725 0.717
OBR 0.241 0.069 0.107 OBR 0.203 0.069 0.103
ORG 0.627 0.573 0.599 ORG 0.617 0.587 0.602
OTR 0.000 0.000 0.000 OTR 0.000 0.000 0.000
PER 0.759 0.641 0.695 PER 0.770 0.685 0.725
TMP 0.806 0.811 0.809 TMP 0.846 0.853 0.850
VAL 0.694 0.641 0.667 VAL 0.718 0.718 0.718

NILCFT100

Total 0.688 0.566 0.621

NILCFT100

Total 0.682 0.602 0.640
ABS 0.299 0.147 0.197 ABS 0.227 0.173 0.196
ACO 0.429 0.180 0.254 ACO 0.270 0.200 0.230
COI 0.706 0.074 0.134 COI 0.510 0.154 0.237
LOC 0.729 0.689 0.708 LOC 0.709 0.722 0.715
OBR 0.432 0.186 0.260 OBR 0.245 0.064 0.101
ORG 0.624 0.520 0.567 ORG 0.607 0.566 0.586
OTR 0.000 0.000 0.000 OTR 0.143 0.071 0.095
PER 0.758 0.650 0.700 PER 0.767 0.670 0.716
TMP 0.858 0.833 0.845 TMP 0.837 0.842 0.839
VAL 0.750 0.699 0.724 VAL 0.734 0.745 0.740

NILCFT100_25

Total 0.710 0.573 0.634

NILCFT100_25

Total 0.682 0.597 0.637
ABS 0.299 0.147 0.197 ABS 0.260 0.173 0.207
ACO 0.409 0.180 0.250 ACO 0.235 0.160 0.191
COI 0.619 0.080 0.142 COI 0.658 0.154 0.250
LOC 0.711 0.681 0.695 LOC 0.686 0.715 0.700
OBR 0.404 0.112 0.175 OBR 0.288 0.090 0.138
ORG 0.589 0.526 0.556 ORG 0.601 0.557 0.578
OTR 0.333 0.071 0.118 OTR 0.250 0.071 0.111
PER 0.785 0.661 0.717 PER 0.775 0.663 0.715
TMP 0.808 0.819 0.814 TMP 0.843 0.850 0.847
VAL 0.755 0.699 0.726 VAL 0.755 0.755 0.755

NILCFT100_50

Total 0.701 0.569 0.628

NILCFT100_50

Total 0.686 0.595 0.637
ABS 0.300 0.107 0.157 ABS 0.270 0.188 0.222
ACO 0.242 0.160 0.193 ACO 0.167 0.180 0.173
COI 0.632 0.074 0.133 COI 0.571 0.124 0.203
LOC 0.703 0.681 0.692 LOC 0.705 0.721 0.713
OBR 0.341 0.080 0.129 OBR 0.333 0.080 0.129
ORG 0.610 0.520 0.561 ORG 0.598 0.550 0.573
OTR 0.500 0.071 0.125 OTR 0.167 0.071 0.100
PER 0.789 0.640 0.706 PER 0.766 0.663 0.711
TMP 0.863 0.822 0.842 TMP 0.857 0.845 0.851
VAL 0.743 0.709 0.725 VAL 0.726 0.724 0.725

NILCFT100_100

Total 0.709 0.560 0.626

NILCFT100_100

Total 0.683 0.591 0.634
ABS 0.228 0.157 0.186
ACO 0.346 0.180 0.237
COI 0.537 0.136 0.217
LOC 0.712 0.704 0.708
OBR 0.327 0.085 0.135
ORG 0.617 0.573 0.594
OTR 0.250 0.071 0.111
PER 0.770 0.678 0.721
TMP 0.863 0.853 0.858
VAL 0.713 0.724 0.718

NILCFT100_150

Total 0.693 0.594 0.639
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Table H.11 – The results of the NILCW2V100 auto-encoded model for the Total HAREM
Track.

Auto-encoded Models - HAREM TOTAL
NORMALIZED STANDARDIZED

Model Category Precision Recall F1 Model Category Precision Recall F1
ABS 0.287 0.168 0.212 ABS 0.216 0.152 0.179
ACO 0.294 0.200 0.238 ACO 0.172 0.100 0.127
COI 0.465 0.124 0.195 COI 0.349 0.179 0.237
LOC 0.715 0.713 0.714 LOC 0.730 0.721 0.725
OBR 0.397 0.122 0.187 OBR 0.255 0.075 0.115
ORG 0.609 0.557 0.582 ORG 0.592 0.573 0.582
OTR 0.333 0.071 0.118 OTR 0.000 0.000 0.000
PER 0.746 0.637 0.687 PER 0.749 0.672 0.708
TMP 0.829 0.819 0.824 TMP 0.846 0.839 0.843
VAL 0.732 0.678 0.704 VAL 0.726 0.730 0.728

NILCW2V100

Total 0.687 0.579 0.628

NILCW2V100

Total 0.675 0.595 0.633
ABS 0.228 0.168 0.193 ABS 0.149 0.112 0.128
ACO 0.345 0.200 0.253 ACO 0.256 0.200 0.225
COI 0.375 0.093 0.149 COI 0.368 0.154 0.217
LOC 0.733 0.704 0.718 LOC 0.717 0.718 0.718
OBR 0.409 0.144 0.213 OBR 0.241 0.069 0.107
ORG 0.606 0.513 0.556 ORG 0.586 0.570 0.578
OTR 0.000 0.000 0.000 OTR 1.000 0.071 0.133
PER 0.748 0.628 0.683 PER 0.770 0.680 0.722
TMP 0.865 0.836 0.851 TMP 0.849 0.842 0.845
VAL 0.733 0.699 0.716 VAL 0.748 0.758 0.753

NILCW2V100_25

Total 0.690 0.570 0.624

NILCW2V100_25

Total 0.676 0.597 0.634
ABS 0.226 0.193 0.208 ABS 0.199 0.147 0.169
ACO 0.370 0.200 0.260 ACO 0.250 0.140 0.180
COI 0.333 0.093 0.145 COI 0.510 0.154 0.237
LOC 0.702 0.720 0.711 LOC 0.702 0.713 0.707
OBR 0.380 0.186 0.250 OBR 0.279 0.090 0.137
ORG 0.638 0.571 0.603 ORG 0.613 0.564 0.588
OTR 0.333 0.071 0.118 OTR 1.000 0.071 0.133
PER 0.750 0.621 0.680 PER 0.750 0.654 0.699
TMP 0.850 0.831 0.840 TMP 0.851 0.839 0.845
VAL 0.728 0.696 0.712 VAL 0.741 0.730 0.736

NILCW2V100_50

Total 0.677 0.585 0.628

NILCW2V100_50

Total 0.679 0.588 0.631
ABS 0.156 0.076 0.102 ABS 0.210 0.152 0.177
ACO 0.235 0.160 0.191 ACO 0.191 0.180 0.186
COI 0.421 0.049 0.088 COI 0.433 0.161 0.234
LOC 0.728 0.652 0.688 LOC 0.709 0.702 0.705
OBR 0.434 0.122 0.191 OBR 0.261 0.064 0.103
ORG 0.615 0.485 0.542 ORG 0.594 0.561 0.577
OTR 0.500 0.071 0.125 OTR 0.250 0.071 0.111
PER 0.756 0.620 0.682 PER 0.740 0.690 0.714
TMP 0.870 0.831 0.850 TMP 0.816 0.825 0.820
VAL 0.751 0.703 0.726 VAL 0.722 0.733 0.728

NILCW2V100_100

Total 0.702 0.543 0.612

NILCW2V100_100

Total 0.667 0.592 0.627
ABS 0.187 0.132 0.155
ACO 0.297 0.220 0.253
COI 0.415 0.136 0.205
LOC 0.711 0.728 0.720
OBR 0.419 0.096 0.156
ORG 0.595 0.534 0.563
OTR 0.000 0.000 0.000
PER 0.765 0.662 0.710
TMP 0.844 0.842 0.843
VAL 0.724 0.724 0.724

NILCW2V100_150

Total 0.682 0.588 0.631
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Table H.12 – The results of the NILCFT300 auto-encoded model for the Total HAREM Track.
Auto-encoded Models - HAREM TOTAL

NORMALIZED STANDARDIZED
Model Category Precision Recall F1 Model Category Precision Recall F1

ABS 0.241 0.193 0.214 ABS 0.235 0.198 0.215
ACO 0.282 0.220 0.247 ACO 0.180 0.180 0.180
COI 0.418 0.142 0.212 COI 0.333 0.161 0.217
LOC 0.717 0.734 0.725 LOC 0.723 0.721 0.722
OBR 0.333 0.117 0.173 OBR 0.238 0.080 0.120
ORG 0.616 0.579 0.597 ORG 0.597 0.577 0.587
OTR 0.200 0.071 0.105 OTR 0.000 0.000 0.000
PER 0.761 0.651 0.702 PER 0.748 0.663 0.703
TMP 0.858 0.833 0.845 TMP 0.832 0.842 0.837
VAL 0.745 0.745 0.745 VAL 0.746 0.748 0.747

NILCFT300

Total 0.684 0.600 0.639

NILCFT300

Total 0.667 0.599 0.631
ABS 0.218 0.208 0.213 ABS 0.265 0.198 0.227
ACO 0.306 0.220 0.256 ACO 0.321 0.180 0.231
COI 0.486 0.105 0.173 COI 0.333 0.142 0.199
LOC 0.730 0.698 0.714 LOC 0.720 0.702 0.711
OBR 0.388 0.165 0.231 OBR 0.349 0.122 0.181
ORG 0.625 0.543 0.581 ORG 0.584 0.529 0.555
OTR 0.333 0.071 0.118 OTR 0.250 0.071 0.111
PER 0.757 0.609 0.675 PER 0.727 0.619 0.668
TMP 0.860 0.831 0.845 TMP 0.881 0.853 0.867
VAL 0.758 0.712 0.734 VAL 0.734 0.727 0.730

NILCFT300_25

Total 0.686 0.575 0.625

NILCFT300_25

Total 0.674 0.577 0.622
ABS 0.263 0.178 0.212 ABS 0.206 0.173 0.188
ACO 0.212 0.140 0.169 ACO 0.182 0.160 0.170
COI 0.552 0.099 0.168 COI 0.316 0.111 0.164
LOC 0.744 0.671 0.706 LOC 0.728 0.710 0.719
OBR 0.420 0.154 0.226 OBR 0.280 0.075 0.118
ORG 0.638 0.515 0.570 ORG 0.597 0.552 0.574
OTR 0.500 0.071 0.125 OTR 0.500 0.071 0.125
PER 0.772 0.667 0.715 PER 0.766 0.629 0.690
TMP 0.869 0.825 0.846 TMP 0.852 0.845 0.848
VAL 0.758 0.758 0.758 VAL 0.739 0.755 0.747

NILCFT300_50

Total 0.712 0.577 0.637

NILCFT300_50

Total 0.678 0.581 0.626
ABS 0.285 0.168 0.211 ABS 0.264 0.218 0.239
ACO 0.302 0.260 0.280 ACO 0.250 0.180 0.209
COI 0.517 0.093 0.157 COI 0.371 0.142 0.205
LOC 0.726 0.673 0.699 LOC 0.727 0.704 0.715
OBR 0.255 0.069 0.109 OBR 0.323 0.112 0.166
ORG 0.622 0.526 0.570 ORG 0.633 0.545 0.586
OTR 0.333 0.071 0.118 OTR 0.200 0.071 0.105
PER 0.770 0.594 0.671 PER 0.761 0.648 0.700
TMP 0.902 0.828 0.863 TMP 0.875 0.853 0.864
VAL 0.756 0.712 0.733 VAL 0.737 0.758 0.747

NILCFT300_100

Total 0.706 0.555 0.621

NILCFT300_100

Total 0.690 0.591 0.637
ABS 0.240 0.188 0.211
ACO 0.238 0.200 0.217
COI 0.347 0.105 0.161
LOC 0.733 0.709 0.721
OBR 0.288 0.101 0.150
ORG 0.611 0.550 0.579
OTR 0.000 0.000 0.000
PER 0.757 0.641 0.694
TMP 0.851 0.839 0.845
VAL 0.749 0.752 0.750

NILCFT300_150

Total 0.684 0.585 0.631
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Table H.13 – The results of the PetroVecFT concatenated model for the GeoCorpus task.
Concatenated Models

NORMALIZED STANDARDIZED
Model Category Precision Recall F1 Model Category Precision Recall F1

baciaSedimentar 0.738 0.730 0.733 baciaSedimentar 0.816 0.835 0.824
contextoGeologicoDeBacia 0.742 0.754 0.747 contextoGeologicoDeBacia 0.796 0.825 0.810
epoca 0.832 0.724 0.774 epoca 0.870 0.772 0.818
idade 0.814 0.700 0.753 idade 0.764 0.722 0.741
magmaticas 0.768 0.805 0.786 magmaticas 0.839 0.817 0.827
metamorficas 0.821 0.739 0.776 metamorficas 0.823 0.824 0.823
periodo 0.813 0.667 0.732 periodo 0.870 0.740 0.799
sedimentaresCarbonaticas 0.794 0.835 0.814 sedimentaresCarbonaticas 0.820 0.896 0.856
sedimentaresSiliciclasticas 0.829 0.847 0.838 sedimentaresSiliciclasticas 0.845 0.847 0.846
unidadeEstratigrafica 0.767 0.795 0.780 unidadeEstratigrafica 0.817 0.870 0.843

PetroVecFT

total 0.792 0.763 0.777

PetroVecFT

total 0.827 0.811 0.818
baciaSedimentar 0.770 0.794 0.780 baciaSedimentar 0.803 0.812 0.807
contextoGeologicoDeBacia 0.810 0.599 0.664 contextoGeologicoDeBacia 0.804 0.785 0.790
epoca 0.790 0.682 0.732 epoca 0.869 0.726 0.784
idade 0.812 0.639 0.710 idade 0.834 0.736 0.779
magmaticas 0.814 0.685 0.736 magmaticas 0.819 0.817 0.813
metamorficas 0.892 0.693 0.771 metamorficas 0.843 0.788 0.808
periodo 0.827 0.663 0.736 periodo 0.843 0.745 0.789
sedimentaresCarbonaticas 0.773 0.705 0.727 sedimentaresCarbonaticas 0.803 0.818 0.809
sedimentaresSiliciclasticas 0.827 0.811 0.818 sedimentaresSiliciclasticas 0.826 0.856 0.841
unidadeEstratigrafica 0.781 0.780 0.780 unidadeEstratigrafica 0.820 0.818 0.817

PetroVecFT_25

total 0.805 0.713 0.754

PetroVecFT_25

total 0.825 0.790 0.807
baciaSedimentar 0.796 0.793 0.794 baciaSedimentar 0.851 0.817 0.833
contextoGeologicoDeBacia 0.805 0.703 0.750 contextoGeologicoDeBacia 0.816 0.810 0.813
epoca 0.837 0.724 0.775 epoca 0.913 0.807 0.857
idade 0.831 0.663 0.736 idade 0.838 0.766 0.799
magmaticas 0.815 0.756 0.782 magmaticas 0.855 0.823 0.838
metamorficas 0.839 0.778 0.807 metamorficas 0.823 0.877 0.849
periodo 0.874 0.701 0.777 periodo 0.899 0.766 0.826
sedimentaresCarbonaticas 0.795 0.819 0.807 sedimentaresCarbonaticas 0.788 0.852 0.819
sedimentaresSiliciclasticas 0.842 0.833 0.837 sedimentaresSiliciclasticas 0.861 0.889 0.874
unidadeEstratigrafica 0.791 0.805 0.798 unidadeEstratigrafica 0.783 0.838 0.807

PetroVecFT_50

total 0.822 0.758 0.789

PetroVecFT_50

total 0.843 0.824 0.833
baciaSedimentar 0.764 0.783 0.774 baciaSedimentar 0.848 0.854 0.851
contextoGeologicoDeBacia 0.813 0.744 0.775 contextoGeologicoDeBacia 0.861 0.857 0.859
epoca 0.824 0.692 0.752 epoca 0.887 0.792 0.836
idade 0.799 0.710 0.751 idade 0.835 0.729 0.778
magmaticas 0.784 0.760 0.771 magmaticas 0.824 0.824 0.823
metamorficas 0.829 0.681 0.737 metamorficas 0.901 0.872 0.886
periodo 0.816 0.656 0.723 periodo 0.867 0.783 0.822
sedimentaresCarbonaticas 0.815 0.825 0.818 sedimentaresCarbonaticas 0.834 0.868 0.851
sedimentaresSiliciclasticas 0.845 0.837 0.841 sedimentaresSiliciclasticas 0.887 0.888 0.887
unidadeEstratigrafica 0.777 0.765 0.771 unidadeEstratigrafica 0.846 0.881 0.863

PetroVecFT_100

total 0.806 0.748 0.776

PetroVecFT_100

total 0.861 0.835 0.848
baciaSedimentar 0.802 0.838 0.818
contextoGeologicoDeBacia 0.823 0.831 0.826
epoca 0.926 0.867 0.895
idade 0.795 0.763 0.779
magmaticas 0.879 0.841 0.859
metamorficas 0.846 0.832 0.838
periodo 0.896 0.814 0.852
sedimentaresCarbonaticas 0.833 0.883 0.857
sedimentaresSiliciclasticas 0.877 0.871 0.874
unidadeEstratigrafica 0.887 0.873 0.879

PetroVecFT_150

total 0.860 0.841 0.850
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Table H.14 – The results of the PetroVecHybridFT concatenated model for the GeoCorpus
task.

Concatenated Models
NORMALIZED STANDARDIZED

Model Category Precision Recall F1 Model Category Precision Recall F1
baciaSedimentar 0.728 0.749 0.738 baciaSedimentar 0.806 0.804 0.804
contextoGeologicoDeBacia 0.787 0.651 0.712 contextoGeologicoDeBacia 0.760 0.817 0.786
epoca 0.789 0.708 0.745 epoca 0.893 0.870 0.881
idade 0.807 0.718 0.758 idade 0.766 0.750 0.757
magmaticas 0.749 0.751 0.750 magmaticas 0.859 0.839 0.848
metamorficas 0.801 0.650 0.716 metamorficas 0.783 0.807 0.794
periodo 0.797 0.698 0.744 periodo 0.905 0.812 0.855
sedimentaresCarbonaticas 0.778 0.773 0.775 sedimentaresCarbonaticas 0.740 0.818 0.777
sedimentaresSiliciclasticas 0.802 0.829 0.815 sedimentaresSiliciclasticas 0.862 0.850 0.856
unidadeEstratigrafica 0.780 0.750 0.764 unidadeEstratigrafica 0.821 0.862 0.841

PetroVecHybridFT

total 0.783 0.735 0.758

PetroVecHybridFT

total 0.827 0.826 0.827
baciaSedimentar 0.736 0.741 0.738 baciaSedimentar 0.825 0.806 0.815
contextoGeologicoDeBacia 0.778 0.643 0.685 contextoGeologicoDeBacia 0.780 0.851 0.811
epoca 0.804 0.610 0.679 epoca 0.864 0.760 0.808
idade 0.775 0.677 0.721 idade 0.824 0.731 0.774
magmaticas 0.768 0.672 0.712 magmaticas 0.848 0.834 0.840
metamorficas 0.730 0.621 0.670 metamorficas 0.855 0.864 0.859
periodo 0.729 0.621 0.670 periodo 0.833 0.730 0.778
sedimentaresCarbonaticas 0.680 0.711 0.694 sedimentaresCarbonaticas 0.824 0.855 0.839
sedimentaresSiliciclasticas 0.795 0.815 0.805 sedimentaresSiliciclasticas 0.867 0.882 0.874
unidadeEstratigrafica 0.780 0.772 0.775 unidadeEstratigrafica 0.845 0.867 0.855

PetroVecHybridFT-25

total 0.778 0.699 0.734

PetroVecHybridFT_25

total 0.838 0.819 0.828
baciaSedimentar 0.727 0.729 0.728 baciaSedimentar 0.832 0.848 0.840
contextoGeologicoDeBacia 0.795 0.706 0.748 contextoGeologicoDeBacia 0.827 0.835 0.831
epoca 0.820 0.708 0.759 epoca 0.882 0.795 0.836
idade 0.824 0.707 0.760 idade 0.859 0.730 0.788
magmaticas 0.816 0.747 0.780 magmaticas 0.835 0.825 0.828
metamorficas 0.798 0.652 0.716 metamorficas 0.888 0.876 0.882
periodo 0.827 0.703 0.756 periodo 0.885 0.749 0.809
sedimentaresCarbonaticas 0.798 0.782 0.789 sedimentaresCarbonaticas 0.810 0.876 0.841
sedimentaresSiliciclasticas 0.808 0.832 0.820 sedimentaresSiliciclasticas 0.897 0.894 0.895
unidadeEstratigrafica 0.784 0.792 0.788 unidadeEstratigrafica 0.832 0.851 0.841

PetroVecHybridFT_50

total 0.800 0.744 0.771

PetroVecHybridFT_50

total 0.858 0.827 0.842
baciaSedimentar 0.772 0.760 0.765 baciaSedimentar 0.671 0.695 0.683
contextoGeologicoDeBacia 0.812 0.801 0.804 contextoGeologicoDeBacia 0.624 0.271 0.307
epoca 0.869 0.743 0.801 epoca 0.733 0.326 0.398
idade 0.838 0.717 0.770 idade 0.474 0.248 0.280
magmaticas 0.839 0.795 0.817 magmaticas 0.369 0.241 0.271
metamorficas 0.875 0.801 0.835 metamorficas 0.429 0.321 0.355
periodo 0.855 0.718 0.779 periodo 0.638 0.432 0.503
sedimentaresCarbonaticas 0.814 0.847 0.830 sedimentaresCarbonaticas 0.212 0.224 0.218
sedimentaresSiliciclasticas 0.873 0.873 0.873 sedimentaresSiliciclasticas 0.746 0.522 0.586
unidadeEstratigrafica 0.822 0.861 0.840 unidadeEstratigrafica 0.783 0.487 0.565

PetroVecHybridFT_100

total 0.836 0.795 0.815

PetroVecHybridFT_100

total 0.692 0.392 0.469
baciaSedimentar 0.798 0.796 0.797
contextoGeologicoDeBacia 0.801 0.824 0.812
epoca 0.894 0.794 0.841
idade 0.842 0.736 0.784
magmaticas 0.841 0.838 0.839
metamorficas 0.851 0.849 0.849
periodo 0.884 0.798 0.838
sedimentaresCarbonaticas 0.859 0.858 0.858
sedimentaresSiliciclasticas 0.877 0.883 0.880
unidadeEstratigrafica 0.859 0.875 0.867

PetroVecHybridFT_150

total 0.852 0.827 0.839
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Table H.15 – The results of the PetroVecW2V concatenated model for the GeoCorpus task.
Concatenated Models

NORMALIZED STANDARDIZED
Model Category Precision Recall F1 Model Category Precision Recall F1

baciaSedimentar 0.750 0.761 0.755 baciaSedimentar 0.774 0.771 0.773
contextoGeologicoDeBacia 0.785 0.768 0.776 contextoGeologicoDeBacia 0.748 0.827 0.785
epoca 0.792 0.663 0.721 epoca 0.867 0.749 0.804
idade 0.744 0.694 0.716 idade 0.832 0.723 0.773
magmaticas 0.810 0.773 0.791 magmaticas 0.808 0.841 0.824
metamorficas 0.850 0.779 0.813 metamorficas 0.830 0.837 0.832
periodo 0.839 0.666 0.741 periodo 0.843 0.751 0.794
sedimentaresCarbonaticas 0.847 0.846 0.846 sedimentaresCarbonaticas 0.796 0.846 0.820
sedimentaresSiliciclasticas 0.841 0.842 0.842 sedimentaresSiliciclasticas 0.852 0.869 0.860
unidadeEstratigrafica 0.792 0.856 0.823 unidadeEstratigrafica 0.813 0.866 0.839

PetroVecW2V

total 0.803 0.766 0.784

PetroVecW2V

total 0.817 0.810 0.813
baciaSedimentar 0.812 0.862 0.836 baciaSedimentar 0.647 0.689 0.667
contextoGeologicoDeBacia 0.781 0.765 0.770 contextoGeologicoDeBacia 0.643 0.389 0.418
epoca 0.887 0.825 0.854 epoca 0.579 0.261 0.300
idade 0.803 0.731 0.763 idade 0.338 0.304 0.320
magmaticas 0.919 0.767 0.835 magmaticas 0.386 0.335 0.358
metamorficas 0.747 0.824 0.783 metamorficas 0.381 0.334 0.354
periodo 0.858 0.772 0.809 periodo 0.562 0.463 0.504
sedimentaresCarbonaticas 0.799 0.829 0.814 sedimentaresCarbonaticas 0.393 0.357 0.374
sedimentaresSiliciclasticas 0.831 0.831 0.830 sedimentaresSiliciclasticas 0.725 0.553 0.609
unidadeEstratigrafica 0.849 0.780 0.813 unidadeEstratigrafica 0.636 0.671 0.649

PetroVecW2V_25

total 0.831 0.796 0.813

PetroVecW2V_25

total 0.635 0.451 0.508
baciaSedimentar 0.824 0.808 0.815 baciaSedimentar 0.790 0.768 0.778
contextoGeologicoDeBacia 0.806 0.734 0.768 contextoGeologicoDeBacia 0.789 0.774 0.781
epoca 0.805 0.645 0.715 epoca 0.799 0.703 0.747
idade 0.753 0.625 0.682 idade 0.799 0.648 0.714
magmaticas 0.789 0.733 0.759 magmaticas 0.845 0.755 0.797
metamorficas 0.771 0.774 0.771 metamorficas 0.788 0.727 0.754
periodo 0.879 0.664 0.756 periodo 0.849 0.682 0.756
sedimentaresCarbonaticas 0.811 0.778 0.793 sedimentaresCarbonaticas 0.832 0.845 0.837
sedimentaresSiliciclasticas 0.845 0.808 0.826 sedimentaresSiliciclasticas 0.871 0.845 0.858
unidadeEstratigrafica 0.810 0.827 0.818 unidadeEstratigrafica 0.843 0.817 0.829

PetroVecW2V_50

total 0.812 0.739 0.774

PetroVecW2V_50

total 0.824 0.759 0.790
baciaSedimentar 0.771 0.770 0.770 baciaSedimentar 0.803 0.843 0.822
contextoGeologicoDeBacia 0.793 0.822 0.806 contextoGeologicoDeBacia 0.785 0.739 0.761
epoca 0.745 0.678 0.707 epoca 0.846 0.703 0.766
idade 0.756 0.702 0.727 idade 0.801 0.640 0.709
magmaticas 0.818 0.747 0.779 magmaticas 0.773 0.775 0.770
metamorficas 0.858 0.782 0.817 metamorficas 0.786 0.757 0.767
periodo 0.862 0.646 0.738 periodo 0.888 0.715 0.792
sedimentaresCarbonaticas 0.844 0.817 0.830 sedimentaresCarbonaticas 0.801 0.826 0.813
sedimentaresSiliciclasticas 0.847 0.850 0.848 sedimentaresSiliciclasticas 0.844 0.848 0.846
unidadeEstratigrafica 0.818 0.830 0.824 unidadeEstratigrafica 0.818 0.810 0.813

PetroVecW2V_100

total 0.806 0.767 0.786

PetroVecW2V_100

total 0.816 0.767 0.790
baciaSedimentar 0.782 0.802 0.791
contextoGeologicoDeBacia 0.793 0.787 0.789
epoca 0.903 0.751 0.819
idade 0.817 0.720 0.764
magmaticas 0.857 0.796 0.825
metamorficas 0.837 0.820 0.827
periodo 0.863 0.724 0.787
sedimentaresCarbonaticas 0.829 0.880 0.854
sedimentaresSiliciclasticas 0.880 0.870 0.875
unidadeEstratigrafica 0.841 0.838 0.838

PetroVecW2V_150

total 0.841 0.799 0.819
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Table H.16 – The results of the PetroVecHybridW2V concatenated model for the GeoCorpus
task.

Concatenated Models
NORMALIZED STANDARDIZED

Model Category Precision Recall F1 Model Category Precision Recall F1
baciaSedimentar 0.760 0.789 0.774 baciaSedimentar 0.756 0.755 0.755
contextoGeologicoDeBacia 0.800 0.749 0.774 contextoGeologicoDeBacia 0.768 0.827 0.796
epoca 0.794 0.660 0.720 epoca 0.852 0.771 0.809
idade 0.741 0.703 0.721 idade 0.806 0.744 0.773
magmaticas 0.776 0.755 0.764 magmaticas 0.788 0.846 0.815
metamorficas 0.818 0.758 0.786 metamorficas 0.781 0.784 0.782
periodo 0.863 0.641 0.735 periodo 0.853 0.735 0.790
sedimentaresCarbonaticas 0.806 0.776 0.791 sedimentaresCarbonaticas 0.847 0.840 0.843
sedimentaresSiliciclasticas 0.829 0.834 0.832 sedimentaresSiliciclasticas 0.839 0.871 0.855
unidadeEstratigrafica 0.790 0.834 0.812 unidadeEstratigrafica 0.840 0.867 0.854

PetroVecHybridW2V100

total 0.795 0.753 0.773

PetroVecHybridW2V100

total 0.814 0.808 0.811
baciaSedimentar 0.672 0.714 0.692 baciaSedimentar 0.850 0.858 0.854
contextoGeologicoDeBacia 0.677 0.676 0.668 contextoGeologicoDeBacia 0.827 0.838 0.832
epoca 0.763 0.515 0.606 epoca 0.888 0.775 0.827
idade 0.713 0.583 0.596 idade 0.821 0.739 0.778
magmaticas 0.789 0.644 0.699 magmaticas 0.823 0.834 0.828
metamorficas 0.828 0.680 0.735 metamorficas 0.859 0.876 0.867
periodo 0.851 0.564 0.677 periodo 0.881 0.716 0.790
sedimentaresCarbonaticas 0.783 0.665 0.706 sedimentaresCarbonaticas 0.848 0.875 0.861
sedimentaresSiliciclasticas 0.821 0.793 0.805 sedimentaresSiliciclasticas 0.897 0.896 0.897
unidadeEstratigrafica 0.664 0.725 0.691 unidadeEstratigrafica 0.812 0.845 0.828

PetroVecHybridW2V_25

total 0.740 0.662 0.694

PetroVecHybridW2V_25

total 0.852 0.822 0.837
baciaSedimentar 0.807 0.843 0.824 baciaSedimentar 0.815 0.811 0.813
contextoGeologicoDeBacia 0.775 0.778 0.776 contextoGeologicoDeBacia 0.799 0.830 0.814
epoca 0.836 0.697 0.760 epoca 0.892 0.774 0.829
idade 0.816 0.673 0.737 idade 0.827 0.723 0.771
magmaticas 0.836 0.788 0.811 magmaticas 0.792 0.822 0.806
metamorficas 0.762 0.801 0.778 metamorficas 0.818 0.803 0.809
periodo 0.891 0.702 0.785 periodo 0.879 0.774 0.823
sedimentaresCarbonaticas 0.804 0.829 0.815 sedimentaresCarbonaticas 0.845 0.851 0.848
sedimentaresSiliciclasticas 0.827 0.825 0.826 sedimentaresSiliciclasticas 0.865 0.876 0.870
unidadeEstratigrafica 0.805 0.846 0.824 unidadeEstratigrafica 0.831 0.866 0.848

PetroVecHybridW2V_50

total 0.817 0.776 0.796

PetroVecHybridW2V_50

total 0.836 0.815 0.826
baciaSedimentar 0.802 0.826 0.814 baciaSedimentar 0.817 0.804 0.810
contextoGeologicoDeBacia 0.811 0.811 0.810 contextoGeologicoDeBacia 0.811 0.845 0.827
epoca 0.849 0.712 0.773 epoca 0.920 0.786 0.847
idade 0.815 0.725 0.762 idade 0.834 0.724 0.775
magmaticas 0.842 0.802 0.816 magmaticas 0.811 0.829 0.819
metamorficas 0.861 0.847 0.850 metamorficas 0.822 0.797 0.808
periodo 0.915 0.707 0.796 periodo 0.874 0.780 0.824
sedimentaresCarbonaticas 0.829 0.851 0.835 sedimentaresCarbonaticas 0.844 0.856 0.850
sedimentaresSiliciclasticas 0.866 0.863 0.864 sedimentaresSiliciclasticas 0.877 0.886 0.881
unidadeEstratigrafica 0.793 0.842 0.814 unidadeEstratigrafica 0.844 0.856 0.850

PetroVecHybridW2V_100

total 0.837 0.796 0.815

PetroVecHybridW2V_100

total 0.847 0.819 0.833
baciaSedimentar 0.828 0.818 0.823
contextoGeologicoDeBacia 0.804 0.835 0.818
epoca 0.900 0.782 0.837
idade 0.829 0.748 0.786
magmaticas 0.835 0.828 0.831
metamorficas 0.809 0.816 0.812
periodo 0.879 0.769 0.820
sedimentaresCarbonaticas 0.845 0.844 0.844
sedimentaresSiliciclasticas 0.883 0.896 0.889
unidadeEstratigrafica 0.866 0.884 0.875

PetroVecHybridW2V_150

total 0.851 0.827 0.838
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Table H.17 – The results of the PetroVecFT auto-encoded model for the GeoCorpus task.
Auto-encoded Models

NORMALIZED STANDARDIZED
Model Category Precision Recall F1 Model Category Precision Recall F1

baciaSedimentar 0.738 0.730 0.733 baciaSedimentar 0.816 0.835 0.824
contextoGeologicoDeBacia 0.742 0.754 0.747 contextoGeologicoDeBacia 0.796 0.825 0.810
epoca 0.832 0.724 0.774 epoca 0.870 0.772 0.818
idade 0.814 0.700 0.753 idade 0.764 0.722 0.741
magmaticas 0.768 0.805 0.786 magmaticas 0.839 0.817 0.827
metamorficas 0.821 0.739 0.776 metamorficas 0.823 0.824 0.823
periodo 0.813 0.667 0.732 periodo 0.870 0.740 0.799
sedimentaresCarbonaticas 0.794 0.835 0.814 sedimentaresCarbonaticas 0.820 0.896 0.856
sedimentaresSiliciclasticas 0.829 0.847 0.838 sedimentaresSiliciclasticas 0.845 0.847 0.846
unidadeEstratigrafica 0.767 0.795 0.780 unidadeEstratigrafica 0.817 0.870 0.843

PetroVecFT

total 0.792 0.763 0.777

PetroVecFT

total 0.827 0.811 0.818
baciaSedimentar 0.742 0.765 0.753 baciaSedimentar 0.810 0.810 0.810
contextoGeologicoDeBacia 0.762 0.716 0.737 contextoGeologicoDeBacia 0.762 0.869 0.812
epoca 0.848 0.738 0.788 epoca 0.881 0.739 0.803
idade 0.826 0.718 0.767 idade 0.817 0.719 0.764
magmaticas 0.769 0.840 0.802 magmaticas 0.795 0.831 0.813
metamorficas 0.843 0.783 0.810 metamorficas 0.812 0.853 0.832
periodo 0.848 0.721 0.779 periodo 0.829 0.754 0.789
sedimentaresCarbonaticas 0.759 0.837 0.796 sedimentaresCarbonaticas 0.786 0.875 0.828
sedimentaresSiliciclasticas 0.819 0.839 0.828 sedimentaresSiliciclasticas 0.879 0.881 0.880
unidadeEstratigrafica 0.728 0.794 0.760 unidadeEstratigrafica 0.815 0.865 0.839

PetroVecFT_25

total 0.791 0.775 0.783

PetroVecFT_25

total 0.822 0.819 0.820
baciaSedimentar 0.796 0.843 0.819 baciaSedimentar 0.832 0.839 0.835
contextoGeologicoDeBacia 0.810 0.736 0.771 contextoGeologicoDeBacia 0.771 0.840 0.804
epoca 0.840 0.720 0.775 epoca 0.874 0.776 0.822
idade 0.767 0.751 0.757 idade 0.780 0.753 0.766
magmaticas 0.783 0.820 0.801 magmaticas 0.810 0.848 0.828
metamorficas 0.878 0.835 0.855 metamorficas 0.815 0.889 0.850
periodo 0.824 0.679 0.744 periodo 0.844 0.784 0.812
sedimentaresCarbonaticas 0.765 0.824 0.793 sedimentaresCarbonaticas 0.787 0.858 0.821
sedimentaresSiliciclasticas 0.827 0.846 0.836 sedimentaresSiliciclasticas 0.859 0.858 0.858
unidadeEstratigrafica 0.806 0.792 0.798 unidadeEstratigrafica 0.807 0.882 0.843

PetroVecFT_50

total 0.808 0.780 0.794

PetroVecFT_50

total 0.820 0.830 0.825
baciaSedimentar 0.771 0.817 0.793 baciaSedimentar 0.807 0.841 0.823
contextoGeologicoDeBacia 0.783 0.725 0.753 contextoGeologicoDeBacia 0.792 0.846 0.817
epoca 0.828 0.717 0.768 epoca 0.876 0.751 0.808
idade 0.742 0.738 0.739 idade 0.783 0.749 0.765
magmaticas 0.772 0.787 0.779 magmaticas 0.833 0.833 0.833
metamorficas 0.854 0.797 0.824 metamorficas 0.801 0.852 0.825
periodo 0.841 0.689 0.758 periodo 0.817 0.747 0.780
sedimentaresCarbonaticas 0.808 0.821 0.814 sedimentaresCarbonaticas 0.791 0.878 0.832
sedimentaresSiliciclasticas 0.832 0.840 0.836 sedimentaresSiliciclasticas 0.856 0.867 0.861
unidadeEstratigrafica 0.792 0.814 0.803 unidadeEstratigrafica 0.827 0.866 0.845

PetroVecFT_100

total 0.801 0.773 0.787

PetroVecFT_100

total 0.822 0.820 0.821
baciaSedimentar 0.817 0.845 0.830
contextoGeologicoDeBacia 0.793 0.850 0.821
epoca 0.884 0.776 0.826
idade 0.724 0.743 0.731
magmaticas 0.809 0.827 0.818
metamorficas 0.831 0.862 0.845
periodo 0.834 0.736 0.782
sedimentaresCarbonaticas 0.832 0.904 0.867
sedimentaresSiliciclasticas 0.869 0.865 0.867
unidadeEstratigrafica 0.816 0.894 0.853

PetroVecFT_150

total 0.822 0.826 0.824



100

Table H.18 – The results of the PetroVecHybridFT auto-encoded model for the GeoCorpus
task.

Auto-encoded Models
NORMALIZED STANDARDIZED

Model Category Precision Recall F1 Model Category Precision Recall F1
baciaSedimentar 0.728 0.749 0.738 baciaSedimentar 0.806 0.804 0.804
contextoGeologicoDeBacia 0.787 0.651 0.712 contextoGeologicoDeBacia 0.760 0.817 0.786
epoca 0.789 0.708 0.745 epoca 0.893 0.870 0.881
idade 0.807 0.718 0.758 idade 0.766 0.750 0.757
magmaticas 0.749 0.751 0.750 magmaticas 0.859 0.839 0.848
metamorficas 0.801 0.650 0.716 metamorficas 0.783 0.807 0.794
periodo 0.797 0.698 0.744 periodo 0.905 0.812 0.855
sedimentaresCarbonaticas 0.778 0.773 0.775 sedimentaresCarbonaticas 0.740 0.818 0.777
sedimentaresSiliciclasticas 0.802 0.829 0.815 sedimentaresSiliciclasticas 0.862 0.850 0.856
unidadeEstratigrafica 0.780 0.750 0.764 unidadeEstratigrafica 0.821 0.862 0.841

PetroVecHybridFT

total 0.783 0.735 0.758

PetroVecHybridFT

total 0.827 0.826 0.827
baciaSedimentar 0.775 0.770 0.772 baciaSedimentar 0.809 0.819 0.814
contextoGeologicoDeBacia 0.738 0.730 0.734 contextoGeologicoDeBacia 0.754 0.853 0.800
epoca 0.825 0.783 0.802 epoca 0.883 0.829 0.855
idade 0.761 0.704 0.730 idade 0.809 0.746 0.775
magmaticas 0.729 0.746 0.737 magmaticas 0.814 0.849 0.831
metamorficas 0.778 0.717 0.746 metamorficas 0.808 0.831 0.819
periodo 0.843 0.710 0.770 periodo 0.875 0.811 0.841
sedimentaresCarbonaticas 0.680 0.779 0.726 sedimentaresCarbonaticas 0.780 0.868 0.822
sedimentaresSiliciclasticas 0.816 0.815 0.816 sedimentaresSiliciclasticas 0.858 0.883 0.870
unidadeEstratigrafica 0.755 0.804 0.778 unidadeEstratigrafica 0.806 0.862 0.833

PetroVecHybridFT-25

total 0.776 0.760 0.768

PetroVecHybridFT_25

total 0.822 0.836 0.829
baciaSedimentar 0.771 0.771 0.771 baciaSedimentar 0.814 0.801 0.808
contextoGeologicoDeBacia 0.795 0.763 0.778 contextoGeologicoDeBacia 0.767 0.851 0.806
epoca 0.817 0.756 0.785 epoca 0.889 0.854 0.871
idade 0.785 0.793 0.788 idade 0.774 0.760 0.766
magmaticas 0.766 0.856 0.808 magmaticas 0.830 0.837 0.833
metamorficas 0.847 0.794 0.819 metamorficas 0.808 0.868 0.837
periodo 0.857 0.695 0.767 periodo 0.891 0.802 0.843
sedimentaresCarbonaticas 0.722 0.783 0.751 sedimentaresCarbonaticas 0.720 0.814 0.764
sedimentaresSiliciclasticas 0.817 0.856 0.836 sedimentaresSiliciclasticas 0.860 0.864 0.862
unidadeEstratigrafica 0.753 0.816 0.783 unidadeEstratigrafica 0.805 0.871 0.837

PetroVecHybridFT_50

total 0.792 0.791 0.792

PetroVecHybridFT_50

total 0.821 0.833 0.827
baciaSedimentar 0.729 0.754 0.741 baciaSedimentar 0.784 0.780 0.782
contextoGeologicoDeBacia 0.759 0.745 0.751 contextoGeologicoDeBacia 0.754 0.863 0.805
epoca 0.834 0.720 0.772 epoca 0.884 0.817 0.849
idade 0.811 0.690 0.745 idade 0.809 0.768 0.787
magmaticas 0.731 0.804 0.765 magmaticas 0.832 0.870 0.850
metamorficas 0.809 0.691 0.744 metamorficas 0.873 0.827 0.848
periodo 0.801 0.729 0.763 periodo 0.861 0.789 0.823
sedimentaresCarbonaticas 0.782 0.817 0.799 sedimentaresCarbonaticas 0.787 0.846 0.815
sedimentaresSiliciclasticas 0.823 0.863 0.842 sedimentaresSiliciclasticas 0.842 0.876 0.859
unidadeEstratigrafica 0.758 0.777 0.767 unidadeEstratigrafica 0.821 0.882 0.850

PetroVecHybridFT_100

total 0.784 0.764 0.774

PetroVecHybridFT_100

total 0.823 0.833 0.828
baciaSedimentar 0.775 0.770 0.772
contextoGeologicoDeBacia 0.727 0.849 0.783
epoca 0.899 0.823 0.859
idade 0.790 0.747 0.767
magmaticas 0.815 0.842 0.828
metamorficas 0.836 0.825 0.830
periodo 0.866 0.809 0.836
sedimentaresCarbonaticas 0.808 0.850 0.829
sedimentaresSiliciclasticas 0.851 0.876 0.863
unidadeEstratigrafica 0.816 0.871 0.843

PetroVecHybridFT_150

total 0.818 0.829 0.823
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Table H.19 – The results of the PetroVecW2V auto-encoded model for the GeoCorpus task.
Auto-encoded Models

NORMALIZED STANDARDIZED
Model Category Precision Recall F1 Model Category Precision Recall F1

baciaSedimentar 0.750 0.761 0.755 baciaSedimentar 0.774 0.771 0.773
contextoGeologicoDeBacia 0.785 0.768 0.776 contextoGeologicoDeBacia 0.748 0.827 0.785
epoca 0.792 0.663 0.721 epoca 0.867 0.749 0.804
idade 0.744 0.694 0.716 idade 0.832 0.723 0.773
magmaticas 0.810 0.773 0.791 magmaticas 0.808 0.841 0.824
metamorficas 0.850 0.779 0.813 metamorficas 0.830 0.837 0.832
periodo 0.839 0.666 0.741 periodo 0.843 0.751 0.794
sedimentaresCarbonaticas 0.847 0.846 0.846 sedimentaresCarbonaticas 0.796 0.846 0.820
sedimentaresSiliciclasticas 0.841 0.842 0.842 sedimentaresSiliciclasticas 0.852 0.869 0.860
unidadeEstratigrafica 0.792 0.856 0.823 unidadeEstratigrafica 0.813 0.866 0.839

PetroVecW2V

total 0.803 0.766 0.784

PetroVecW2V

total 0.817 0.810 0.813
baciaSedimentar 0.781 0.764 0.772 baciaSedimentar 0.818 0.794 0.805
contextoGeologicoDeBacia 0.794 0.773 0.782 contextoGeologicoDeBacia 0.757 0.847 0.799
epoca 0.810 0.644 0.717 epoca 0.839 0.753 0.793
idade 0.748 0.661 0.701 idade 0.815 0.755 0.782
magmaticas 0.777 0.781 0.779 magmaticas 0.844 0.844 0.844
metamorficas 0.771 0.782 0.775 metamorficas 0.810 0.850 0.829
periodo 0.850 0.686 0.759 periodo 0.851 0.728 0.784
sedimentaresCarbonaticas 0.811 0.850 0.830 sedimentaresCarbonaticas 0.814 0.861 0.837
sedimentaresSiliciclasticas 0.844 0.823 0.833 sedimentaresSiliciclasticas 0.876 0.891 0.883
unidadeEstratigrafica 0.784 0.851 0.816 unidadeEstratigrafica 0.814 0.845 0.829

PetroVecW2V_25

total 0.800 0.760 0.780

PetroVecW2V_25

total 0.825 0.817 0.821
baciaSedimentar 0.793 0.803 0.797 baciaSedimentar 0.791 0.800 0.795
contextoGeologicoDeBacia 0.782 0.756 0.768 contextoGeologicoDeBacia 0.751 0.831 0.788
epoca 0.791 0.625 0.698 epoca 0.873 0.747 0.805
idade 0.729 0.668 0.696 idade 0.812 0.744 0.775
magmaticas 0.770 0.757 0.764 magmaticas 0.791 0.840 0.815
metamorficas 0.765 0.769 0.765 metamorficas 0.847 0.830 0.838
periodo 0.826 0.658 0.733 periodo 0.816 0.733 0.771
sedimentaresCarbonaticas 0.809 0.845 0.827 sedimentaresCarbonaticas 0.816 0.876 0.845
sedimentaresSiliciclasticas 0.857 0.826 0.841 sedimentaresSiliciclasticas 0.869 0.878 0.873
unidadeEstratigrafica 0.790 0.860 0.823 unidadeEstratigrafica 0.811 0.873 0.841

PetroVecW2V_50

total 0.796 0.756 0.775

PetroVecW2V_50

total 0.818 0.816 0.817
baciaSedimentar 0.808 0.804 0.806 baciaSedimentar 0.817 0.832 0.824
contextoGeologicoDeBacia 0.782 0.748 0.764 contextoGeologicoDeBacia 0.768 0.831 0.798
epoca 0.808 0.562 0.660 epoca 0.869 0.745 0.802
idade 0.717 0.646 0.679 idade 0.813 0.738 0.772
magmaticas 0.767 0.776 0.771 magmaticas 0.825 0.845 0.835
metamorficas 0.760 0.769 0.764 metamorficas 0.816 0.901 0.856
periodo 0.836 0.610 0.705 periodo 0.872 0.747 0.804
sedimentaresCarbonaticas 0.789 0.806 0.797 sedimentaresCarbonaticas 0.806 0.850 0.827
sedimentaresSiliciclasticas 0.842 0.809 0.825 sedimentaresSiliciclasticas 0.871 0.880 0.875
unidadeEstratigrafica 0.786 0.847 0.815 unidadeEstratigrafica 0.797 0.863 0.829

PetroVecW2V_100

total 0.792 0.737 0.763

PetroVecW2V_100

total 0.827 0.820 0.824
baciaSedimentar 0.828 0.820 0.824
contextoGeologicoDeBacia 0.753 0.815 0.783
epoca 0.876 0.724 0.792
idade 0.840 0.715 0.771
magmaticas 0.798 0.818 0.808
metamorficas 0.770 0.820 0.794
periodo 0.857 0.744 0.796
sedimentaresCarbonaticas 0.801 0.884 0.840
sedimentaresSiliciclasticas 0.857 0.865 0.861
unidadeEstratigrafica 0.796 0.841 0.818

PetroVecW2V_150

total 0.820 0.803 0.811
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Table H.20 – The results of the PetroVecHybridW2V auto-encoded model for the GeoCorpus
task.

Auto-encoded Models
NORMALIZED STANDARDIZED

Model Category Precision Recall F1 Model Category Precision Recall F1
baciaSedimentar 0.760 0.789 0.774 baciaSedimentar 0.756 0.755 0.755
contextoGeologicoDeBacia 0.800 0.749 0.774 contextoGeologicoDeBacia 0.768 0.827 0.796
epoca 0.794 0.660 0.720 epoca 0.852 0.771 0.809
idade 0.741 0.703 0.721 idade 0.806 0.744 0.773
magmaticas 0.776 0.755 0.764 magmaticas 0.788 0.846 0.815
metamorficas 0.818 0.758 0.786 metamorficas 0.781 0.784 0.782
periodo 0.863 0.641 0.735 periodo 0.853 0.735 0.790
sedimentaresCarbonaticas 0.806 0.776 0.791 sedimentaresCarbonaticas 0.847 0.840 0.843
sedimentaresSiliciclasticas 0.829 0.834 0.832 sedimentaresSiliciclasticas 0.839 0.871 0.855
unidadeEstratigrafica 0.790 0.834 0.812 unidadeEstratigrafica 0.840 0.867 0.854

PetroVecHybridW2V

total 0.795 0.753 0.773

PetroVecHybridW2V

total 0.814 0.808 0.811
baciaSedimentar 0.796 0.777 0.786 baciaSedimentar 0.786 0.821 0.803
contextoGeologicoDeBacia 0.762 0.759 0.760 contextoGeologicoDeBacia 0.803 0.849 0.825
epoca 0.776 0.668 0.718 epoca 0.831 0.802 0.815
idade 0.751 0.638 0.689 idade 0.747 0.746 0.745
magmaticas 0.768 0.755 0.761 magmaticas 0.806 0.841 0.823
metamorficas 0.711 0.716 0.712 metamorficas 0.826 0.833 0.830
periodo 0.849 0.691 0.762 periodo 0.867 0.765 0.812
sedimentaresCarbonaticas 0.776 0.785 0.781 sedimentaresCarbonaticas 0.866 0.890 0.878
sedimentaresSiliciclasticas 0.790 0.788 0.789 sedimentaresSiliciclasticas 0.849 0.866 0.857
unidadeEstratigrafica 0.754 0.842 0.796 unidadeEstratigrafica 0.807 0.890 0.847

PetroVecHybridW2V_25

total 0.775 0.744 0.759

PetroVecHybridW2V_25

total 0.818 0.829 0.823
baciaSedimentar 0.781 0.775 0.778
contextoGeologicoDeBacia 0.774 0.856 0.812
epoca 0.873 0.789 0.829
idade 0.806 0.773 0.788
magmaticas 0.799 0.841 0.819
metamorficas 0.787 0.847 0.816
periodo 0.867 0.744 0.800
sedimentaresCarbonaticas 0.801 0.814 0.808
sedimentaresSiliciclasticas 0.867 0.877 0.872
unidadeEstratigrafica 0.807 0.875 0.839

PetroVecHybridW2V_50

total 0.820 0.821 0.820
baciaSedimentar 0.786 0.801 0.793 baciaSedimentar 0.784 0.774 0.779
contextoGeologicoDeBacia 0.756 0.776 0.766 contextoGeologicoDeBacia 0.753 0.842 0.795
epoca 0.786 0.710 0.745 epoca 0.847 0.794 0.819
idade 0.746 0.681 0.712 idade 0.786 0.769 0.776
magmaticas 0.758 0.793 0.774 magmaticas 0.797 0.872 0.833
metamorficas 0.773 0.780 0.776 metamorficas 0.813 0.859 0.835
periodo 0.817 0.711 0.760 periodo 0.857 0.768 0.809
sedimentaresCarbonaticas 0.810 0.829 0.819 sedimentaresCarbonaticas 0.825 0.857 0.841
sedimentaresSiliciclasticas 0.820 0.810 0.815 sedimentaresSiliciclasticas 0.839 0.859 0.849
unidadeEstratigrafica 0.753 0.848 0.798 unidadeEstratigrafica 0.829 0.879 0.853

PetroVecHybridW2V_100

total 0.780 0.772 0.776

PetroVecHybridW2V_100

total 0.813 0.826 0.819
baciaSedimentar 0.781 0.782 0.782
contextoGeologicoDeBacia 0.733 0.807 0.768
epoca 0.830 0.804 0.816
idade 0.805 0.731 0.766
magmaticas 0.781 0.851 0.814
metamorficas 0.797 0.852 0.822
periodo 0.862 0.766 0.811
sedimentaresCarbonaticas 0.817 0.852 0.834
sedimentaresSiliciclasticas 0.853 0.849 0.851
unidadeEstratigrafica 0.786 0.876 0.828

PetroVecHybridW2V_150

total 0.806 0.815 0.811
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