
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

ELIÃ RAFAEL DE LIMA BATISTA

ENHANCING EARLY SCHEDULING IN PARALLEL STATE MACHINE
REPLICATION

Porto Alegre

2020

1

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

ENHANCING EARLY
SCHEDULING IN PARALLEL

STATE MACHINE REPLICATION

ELIÃ RAFAEL DE LIMA BATISTA

This Dissertation has been submitted
in partial fulfillment of the requirements
for the degree of Master of Computer
Science, of the Graduate Program in
Computer Science, School of Technology
of the Pontifical Catholic University of Rio
Grande do Sul.

Advisor: Prof. Fernando Luis Dotti
Co-Advisor: Prof. Fernando Pedone

Porto Alegre
2020

Eliã Rafael de Lima Batista

Enhancing Early Scheduling in Parallel State Machine Replication

This Dissertation has been submitted in partial
fulfillment of the requirements for the degree of
Master of Computer Science, of the Graduate
Program in Computer Science, School of Tech-
nology of the Pontifical Catholic University of Rio
Grande do Sul.

Sanctioned on March 18, 2020.

COMMITTEE MEMBERS:

Prof. Dr. Andrey Elisio Monteiro Brito (Universidade Federal de Campina Grande)

Prof. Dr. Luiz Gustavo Leão Fernandes (PPGCC/PUCRS)

Prof. Dr. Fernando Luis Dotti (PPGCC/PUCRS - Advisor)

Prof. Dr. Fernando Pedone (University of Lugano/Switzerland - Co-Advisor)

“ Have you ever traveled to where snow is
made, seen the vault where hail is stockpiled,

The arsenals of hail and snow that I keep
in readiness for times of trouble

and battle and war?
Can you find your way to where lightning is

launched, or to the place
from which the wind blows?

Who do you suppose carves canyons for the
downpours of rain, and charts

the route of thunderstorms ?
That bring water to unvisited fields, deserts

no one ever lays eyes on,
Drenching the useless wastelands so they’re

carpeted with wildflowers and grass?
And who do you think is the father

of rain and dew, the mother
of ice and frost?

You don’t for a minute imagine
these marvels just happen, do you? ”

(The Message, Job 38, 22-30)

ACKNOWLEDGMENTS

First and foremost, praises and thanks to God, the Creator, for His unconditional
blessings upon me.

I would like to express my deep gratitude to my wife Larissa, for her support, com-
prehension and continuous encouragement throughout such intense two years of my mas-
ter’s degree. She was, as always, essential and has done the impossible to allow me to
focus on my studies and to carry out this work. Also to my parents, who guided me wisely
to the path of Truth, where I still ride today. For their love, prayers, caring, and sacrifices
for educating and preparing me for my future. To my family and friends, which have shown
great support.

I am extremely grateful to my advisor Prof. F. Dotti, for giving me the opportunity
to collaborate and for providing invaluable guidance throughout this research. His vision,
sincerity and motivation have deeply inspired me. He taught me the methodology to carry
out the research and to present the results as clearly as possible. It was a great privilege
and honor to work and study under his guidance.

I would also like to thank my co-advisor Prof. F. Pedone, for the continuous support
and related research, for his patience, motivation, and immense knowledge. His guidance
and collaboration were essential to my research and writing of this dissertation. I extend this
gratitude to Prof. E. Alchieri, who also contributed with valuable knowledge and advice, and
to Prof. L. Gustavo, who evaluated my researching plan and progress since the beginning,
providing important feedback.

I also want to thank the Pontifical Catholic University of Rio Grande do Sul and its
faculty for its commitment to the quality and excellence of teaching.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior - Brasil (CAPES) - Finance Code 001.

APRIMORANDO EARLY SCHEDULING EM REPLICAÇÃO MÁQUINA DE
ESTADOS

RESUMO

Replicação Máquina de Estados é uma abordagem bem difundida cujo objetivo é
fornecer tolerância a falhas em sistemas distribuídos. Baseia-se na ideia de que réplicas de-
vem executar operações de forma determinística e, portanto, sequencial. No entanto, para
se beneficiar de arquiteturas multi-core, técnicas têm sido propostas para permitir execução
paralela. Elas se baseiam no fato de que operações independentes (que não compartilham
nem alteram estado compartilhado) podem executar em paralelo.

Early Scheduling (escalonamento antecipado) é uma técnica promissora que abre
mão de concorrência em troca de rápidas decisões de escalonamento. Nela, requisições
são agrupadas em classes, e um sub-conjunto de threads é atribuído a cada classe, respei-
tando dependências entre requisições. Early Scheduling apresentou ganhos significativos
de performance em replicação máquina de estados, apesar das restrições impostas pelas
definições de classes e mapeamentos para threads.

Neste trabalho avaliamos os impactos causados por tais restrições. A partir dos
resultados observados, propomos e implementamos melhorias, apresentamos os resulta-
dos e comparamos com outras abordagens clássicas. Nossa contribuição se dá no uso de
técnicas de sincronização alternativas, como adaptações de espera ocupada e aplicação
de conceitos de work-stealing (roubo de trabalho) ao algoritmo original.

Palavras-Chave: Escalonamento antecipado. Replicação Máquina de Estados. Roubo de
trabalho. Espera ocupada.

ENHANCING EARLY SCHEDULING IN PARALLEL STATE MACHINE
REPLICATION

ABSTRACT

State machine replication is a well-established approach to provide fault tolerance.
One of its key assumptions is that replicas must execute operations deterministically and
thus serially. However, to benefit from multi-core servers, some techniques were built to allow
concurrent execution of operations in state machine replication. Invariably, such techniques
are based on the fact that independent operations (which do not share common state or do
not update shared state) can execute in parallel.

Early Scheduling is a promising technique that trades concurrency for expeditious
scheduling decisions. In this technique, requests are grouped in classes and a fixed subset
of threads is assigned to each class, respecting request dependencies. Early scheduling has
been shown to provide significant performance improvements in state machine replication.
Although early scheduling shows performance gains, it restricts concurrency according to
the class definitions and class-to-threads mapping.

We evaluate the impact of these restrictions imposed by the early scheduling tech-
nique. Out of the observations, we propose and implement improvements to the basic tech-
nique, present their results and compare the resulting system to more classic approaches.
Our main contribution concern the use of alternative synchronization techniques, such as
busy-wait adaptations and application of work-stealing techniques within the former Early
Scheduling algorithm.

Keywords: Early Scheduling. State Machine Replication. Work-Stealing. Busy-Wait.

LIST OF FIGURES

Figure 4.1 – Request classes definition with 2 shards. 36

Figure 5.1 – Request classes definition with 4 and 8 shards 42

Figure 5.2 – Metrics and throughput in 10 seconds (left) and an entire execution
(right), balanced workload, low conflicts, 2 shards (4 threads), and light op-
erations. 46

Figure 5.3 – Results for 2 shards, 4 threads, light costs, with balanced workloads
(top) and skewed workloads (bottom). 47

Figure 5.4 – Results for 8 shards, 16 threads, light costs, with balanced workloads
(left) and skewed workloads (right). 48

Figure 5.5 – Results for 4 shards, 8 threads, different operation costs, with bal-
anced workloads. 49

Figure 7.1 – Results for single shard, light costs (top) and moderate costs (bottom). 68

Figure 7.2 – Work-stealing algorithms comparison: single shard, light costs (top)
and moderate costs (bottom). 70

Figure 7.3 – Results for single shard, balanced workloads, light costs (top) and
moderate costs (bottom). 71

Figure 7.4 – Results for 1% global requests, balanced workload (top) and skewed
workload (bottom). 72

Figure 7.5 – Results for 15% global requests, balanced workload (top) and skewed
workload (bottom). 73

LIST OF TABLES

Table 4.1 – A possible mapping of 4 threads in Figure 4.1 37

Table 5.1 – Threads to classes mappings for 4 shards and 8 threads 43

Table 5.2 – Threads to classes mappings for 8 shards and 16 threads 43

LIST OF ALGORITHMS

1 General Early Scheduling Definitions used in Algorithms. 38
2 Early Scheduler. 38
3 Worker Threads for Early Scheduling. 39
4 General Busy-Wait Early Scheduling Definitions. 51
5 Worker Threads For Busy-Wait Early Scheduling. 52
6 General Work-Stealing Definitions. 55
7 Work-Stealing Scheduler. 55
8 Work-Stealing Algorithm For Each Worker Thread t . 56
9 General Semi-Blocked Work-Stealing Definitions. 59
10 Scheduler For Stealing while Synchronizing. 59
11 Worker Thread t for Semi-Blocked Work-Stealing . 60
12 General Barrier-free Work-Stealing Definitions. 62
13 Worker Thread for Barrier-free Synchronization . 63
14 The Steal Procedures for Optimistic Work-Stealing . 65

CONTENTS

1 INTRODUCTION . 23

1.1 CONTRIBUTIONS . 24

1.2 ORGANIZATION . 25

2 BACKGROUND . 27

2.1 SYSTEM MODEL . 27

2.2 CONSISTENCY . 27

2.3 REQUEST INDEPENDENCE . 28

3 RELATED WORK . 29

3.1 SCHEDULING . 29

3.2 STATE MACHINE REPLICATION . 30

3.3 WORK-STEALING . 31

4 EARLY SCHEDULING . 35

4.1 REQUEST CLASSES . 35

4.2 CLASSES, THREADS AND EXECUTION MODEL . 36

4.2.1 EXECUTION MODEL . 36

4.2.2 CLASS TO THREADS MAPPING . 36

4.3 ALGORITHMS . 37

5 EARLY SCHEDULING ANALYSIS . 41

5.1 ENVIRONMENT . 41

5.2 APPLICATION . 41

5.2.1 CLASS MAPPINGS . 42

5.2.2 CLASS-TO-TREADS MAPPINGS . 42

5.3 METRICS . 43

5.4 WORKLOADS . 44

5.5 RESULTS . 45

6 EARLY SCHEDULING ENHANCEMENTS . 51

6.1 BUSY-WAIT SYNCHRONIZATION . 51

6.1.1 SAFETY AND LIVENESS . 53

6.2 WORK-STEALING . 53

6.2.1 STEALING WHEN QUEUES ARE EMPTY . 54

6.2.2 STEALING WHILE SYNCHRONIZING . 58

7 ENHANCEMENTS EVALUATION . 67

7.1 EXPERIMENTS CONFIGURATIONS . 67

7.2 SINGLE-SHARD . 67

7.2.1 BUSY-WAIT RESULTS . 68

7.2.2 WORK-STEALING RESULTS . 69

7.2.3 BUSY-WAIT VS. WORK-STEALING . 71

7.3 MULTI-SHARD . 72

8 CONCLUSIONS . 75

8.1 FUTURE WORK . 75

REFERENCES . 77

23

1. INTRODUCTION

The state machine replication (SMR) architecture is a common approach to pro-
vide fault tolerance to distributed asynchronous systems [31, 38]. The main idea is: server
replicas execute client requests deterministically, in the same order. Consequently, replicas
transition through the same sequence of states and produce the same sequence of outputs.
An SMR can tolerate a configurable number of faulty replicas. Thus, application designers
can focus on the inherent complexity of the application, while abstracting the difficulty of
handling replica failures [20]. This approach has been successfully used in many contexts
(e.g., [12, 21, 16]).

The natural SMR system model suggests a sequential architecture of server pro-
cesses [38]. This approach, however, leads to poor system performance and low through-
put, since increasing the number of replicas do not increase scalability, it only increases
fault tolerance capacity. Out of this limitation, together with the proliferation of multi-core
architectures, academia has turned to new approaches of SMR. Such approaches put aside
the natural sequential paradigm and move on to applying parallelism concepts, either in the
execution or control level.

A large number of techniques have been proposed in the literature to allow multi-
threaded execution of requests at replicas (e.g., [22, 28, 29, 34]). Techniques that introduce
concurrency in SMR are built on the observation that independent requests can execute
concurrently while conflicting requests must be serialized and executed in the same order
by the replicas.

Two requests conflict if they access common state and at least one of them up-
dates the state, otherwise the requests are independent. Executing conflicting requests
concurrently may result in inconsistent states across replicas. Hence, an important aspect
in the design of parallel state machine replication (P-SMR) is how to schedule requests for
execution on worker threads.

From the discussion above, the main correctness requirements is that conflicting
requests must be serialized and executed in the same order across replicas. Regarding
this aspect, the authors in [4] introduce a classification of scheduling approaches to Parallel
SMR. Among the proposed classes, we studied solutions which fall in two of such classes:

• Late Scheduling: requests are scheduled for execution after they are ordered across
replicas. Besides the aforementioned requirement on conflicting requests, there are
no further restrictions on scheduling.

• Early Scheduling: part of the scheduling decisions are made before requests are or-
dered. After requests are ordered, their scheduling must respect these restrictions.

24

Since late scheduling has fewer restrictions, it allows more concurrency than early
scheduling. However, the cost of tracking dependencies among requests in late scheduling
may outweigh its gains in concurrency.

In CBASE [30], for example, each replica has a directed dependency graph that
stores not-yet-executed requests and the order in which conflicting requests must be exe-
cuted. A scheduler at the replica delivers requests in order and includes them in the depen-
dency graph. Worker threads remove requests from the graph and execute them respecting
their dependencies. Therefore, scheduler and worker threads contend for access to the
shared graph. Not only is the graph a potential point of contention (i.e., scheduler and
workers share the graph), but also graph updates introduce overhead. This is particularly
problematic if the cost of request execution is low.

By restricting concurrency, scheduling can be done more efficiently. Consider a
service based on the typical readers-and-writers concurrency model. A simple approach is
to allow reads (i.e., requests that do not modify the state) to be scheduled on any worker
thread, and write requests to be scheduled on all worker threads. To execute a write, all
worker threads must coordinate (e.g., using barriers) to ensure that no request is ongoing
and only one worker executes the write request.

This scheme is more restrictive than the one using the dependency graph because
it does not allow concurrent writes, even if they are independent. However, previous research
has shown that early scheduling can outperform late scheduling by a large margin, especially
in workloads dominated by read requests [33, 34].

1.1 CONTRIBUTIONS

Although early scheduling shows performance gains, it can be improved to over-
come its restrictions. In this work we describe the study, evaluation and enhancement of
early scheduling in P-SMR, presenting the following contributions:

a. We have conducted a set of experiments with the early scheduling technique, with
different configurations and workloads. In special, we evaluated the impact on thread
behavior due to the imposed scheduling restrictions, analyzing levels of thread idleness
and work distribution.

b. We propose enhancements to the basic early scheduling technique to overcome its
restrictions, based on the observations from the experiments.

c. We have fully implemented the proposed enhancements and conducted a set of ex-
periments to evaluate its performance.

25

d. We compared our techniques to the former early scheduling approach, to a sequential
approach and to a late scheduling algorithm.

1.2 ORGANIZATION

This dissertation continues as follows. Chapter 2 introduces the system model and
consistency criteria. Chapter 3 surveys related work. Chapter 4 introduces early schedul-
ing. Chapter 5 evaluates early scheduling and presents a detailed analysis of restrictions
imposed. Chapter 6 presents and discusses possible enhancements. Chapter 7 reports our
experimental evaluation, with the basic model and enhancements. Chapter 8 concludes the
work.

26

27

2. BACKGROUND

2.1 SYSTEM MODEL

We assume a distributed system composed of interconnected processes which
communicate by exchanging messages. There is an unbounded set of client processes and
a bounded set of replica processes. The system is asynchronous: there is no bound on
message delays and on relative process speeds. We assume the crash failure model and
exclude arbitrary behavior (e.g., no Byzantine failures). A process is correct if it does not
fail, or faulty otherwise. There are up to f faulty replicas, out of 2f + 1 replicas.

Processes have access to an atomic broadcast communication abstraction, de-
fined by primitives broadcast(m) and deliver (m), where m is a message. Atomic broadcast
ensures the following properties [18, 23]1:

• Validity : If a correct process broadcasts a message m, then it eventually delivers m.

• Uniform Agreement : If a process delivers a message m, then all correct processes
eventually deliver m.

• Uniform Integrity : For any message m, every process delivers m at most once, and
only if m was previously broadcast by a process.

• Uniform Total Order : If both processes p and q deliver messages m and m′, then p
delivers m before m′, if and only if q delivers m before m′.

2.2 CONSISTENCY

Our consistency criterion is linearizability. A linearizable execution satisfies the
following requirements [26]:

a. It respects the real-time ordering of operations across all clients. There exists a real-
time order among any two operations if one operation finishes at a client before the
other operation starts at a client.

b. It respects the semantics of the operations as defined in their sequential execution.

1Atomic broadcast needs additional synchrony assumptions to be implemented [14, 20]. These assump-
tions are not explicitly used by the protocols proposed in this work.

28

2.3 REQUEST INDEPENDENCE

To keep strong consistency, instead of sequentially executing requests, it has been
observed that it suffices for a replica to execute sequentially only requests that access the
same variables and one of the requests modifies the shared variables (conflicting or depen-
dent requests). The other requests (independent requests) can be executed concurrently
without violating consistency [38].

The notion of request interdependency is application-specific. Recently, several
replication models have exploited request dependencies to parallelize the execution on repli-
cas. More formally, request conflict can be defined as follows. Let R be the set of requests
available in a service (i.e., all the requests that a client can issue). A request can be any
deterministic computation involving objects that are part of the application state.

We denote the sets of application objects that replicas read and write when execut-
ing a request r as r ’s readset and writeset, or RS(r) and WS(r), respectively.

Definition 1. The conflict relation #R ⊆ R × R among requests is defined as

(ri , rj) ∈ #R iff

 RS(ri) ∩WS(rj) 6= ∅ ∨
WS(ri) ∩ RS(rj) 6= ∅ ∨
WS(ri) ∩WS(rj) 6= ∅


Requests ri and rj conflict if (ri , rj) ∈ #R. We refer to pairs of requests not in #R

as non-conflicting or independent. Consequently, if two requests are independent (i.e., they
do not share any objects or only read shared objects), then the requests can be executed
concurrently at replicas (e.g., by different worker threads at each replica).

29

3. RELATED WORK

3.1 SCHEDULING

The scheduling research field has been active for several decades, with a large
number of contributions. According to [32], one classification of scheduling algorithms re-
gards a priori knowledge of the complete instance (i.e., set of tasks to schedule). With
offline algorithms scheduling decisions are made based on the knowledge of the entire in-
put instance that is to be scheduled. On the other hand, with online algorithms scheduling
decisions are taken while tasks arrive. Regarding information about processing times, three
main cases can be observed:

• Deterministic: when processing times are known a priori;

• Stochastic: when processing times can be assumed from known distributions;

• Unknown: when nothing can be assumed about the processing time of a task. Several
algorithms of interest fall in this category, where processing times become known only
when processing has completed.

Another criterion of classification is whether the scheduling is real-time or not. The
primary concern of real-time scheduling is to meet hard deadline application constraints,
which must be clearly stated, while non-real-time scheduling has no such constraints. Ac-
cording to these general aspects, the scheduling problem that we are addressing can be
classified as online, without processing times information and non-realtime. A significant
number of scheduling problems in the literature fall in this class. Among these, a further
important aspect considered in the literature is whether tasks depend on each other, which
restricts scheduling to respect such dependencies.

The scheduling of tasks with dependencies assuming a directed acyclic graph
(DAG) topology is frequently considered in the literature. We can find early discussions
on how to process tasks with such dependencies in several application areas. The schedul-
ing of dependent computational tasks has been considered in different settings such as
networks of workstations and clusters. More recently, with the proliferation of multicore ar-
chitectures, it is also relevant in the scheduling of a DAG of interdependent tasks on such
architectures (e.g., [36, 37, 42]).

However, the perspective taken in this work, as well as in several approaches to
P-SMR, differs. The aim in this class of contributions is not only to parallelize the execu-
tion of requests, given their independence is known, but it includes the detection of their
dependencies. The rate of incoming requests may vary according to the SMR application,

30

possibly achieving tens to hundreds of thousands of requests per second as reported in
our experiments. As throughput increases, the overhead to manage dependencies gains in
importance and may become a bottleneck in the system.

3.2 STATE MACHINE REPLICATION

In [4], a classification of approaches to Parallel SMR is introduced with the following
classes:

• Pipelined SMR is a technique whereby replicas implement staging to enhance through-
put. Replicas are organized in a series of modules connected through shared totally
ordered message queues. Although staging improves the system throughput, there is
always only one thread sequentially executing requests.

• Late Scheduling proposes that requests delivered at replicas be evaluated for con-
flict and scheduled concurrently for execution whenever they are independent from
the ones under execution or pending. In CBASE [30], a parallel SMR is proposed
where replicas are augmented with a deterministic scheduler. Based on application
semantics, the scheduler serializes the execution of conflicting requests according to
the delivery order and dispatches non-conflicting requests to be processed in parallel
by a pool of worker threads. Since the scheduling decision is taken at the replica,
before execution, the scheme has been dubbed late scheduling.

• Early Scheduling emerges from the observation that the overhead needed to keep
command dependency information in late scheduling can be significant. Early schedul-
ing (e.g., [5, 6]) trades concurrency for expeditious decisions at replicas. With appli-
cation semantics, requests are grouped in classes and subsets of threads are as-
signed to implement classes. Threads to classes assignment is performed a priori.
Since classes can conflict, requests from conflicting classes are serialized by involving
threads from those different classes that synchronize to execute conflicting requests
implemented by a thread level execution model. With this scheme, when requests
arrive, the scheduler simply schedules them according to the mode (sequential or con-
current) to the set of pre-assigned threads. The complexity of dependency detection
and according scheduling is thus bounded. In Chapter 4 we dive into more details
about this technique.

• Static Scheduling is a more strict idea of Early Scheduling. It completely eliminates
scheduling decisions at replicas. In [33] the authors adopt this approach. Clients map
requests to different multicast groups based on request information which is application
specific. Non-conflicting requests can be sent to distinct groups, while conflicting ones

31

are sent to the same group(s). At the replica side, each worker thread is associated
to a multicast group and processes requests as they arrive. When a request arrives
through more than one group, associated threads synchronize to execute, imposing an
order on all involved threads (multicast groups).

Although the scheduling classification above encompasses several existing pro-
posals to P-SMR, there are approaches to concurrent request execution in SMR-like archi-
tectures that do not fall into any of the identified categories. We call here SMR-like those
architectures that depart from the principle of request independency and introduce additional
cooperation among replicas, beyond the basic assumption of request ordering.

Rex [22] and CRANE [17] add complexity to the execution phase by introducing
consensus about replicas synchronization events to solve non-determinism due to concur-
rency. Rex uses an execute-agree-follow strategy. A primary replica logs dependencies
among requests during execution, based on shared variables locked by each request. This
creates a trace of dependencies which is proposed for agreement with other follower repli-
cas. After agreement replicas replay the execution restricted to the trace of the first executing
server. CRANE [17] solves non-determinism with the input determinism of Paxos and the ex-
ecution determinism of deterministic multi-threading [35]. CRANE implements an additional
underlying consensus on synchronization events such that replicas see the same sequence
of calls to synchronization primitives.

Eve [29] and Storyboard [28] use optimistic approaches that may lead to additional
overhead in case replicas do not agree on the result. In Eve, this is done with optimistic
execution and comparing results (consensus). If replicas diverge, roll-back and conservative
re-execution is performed. With Storyboard, replicas have (a priori) forecasts of sequences
of locks needed by requests. When execution deviates from expected, replicas have to
establish a deterministic execution.

3.3 WORK-STEALING

The concept of work-stealing emerges within the context of parallel applications,
which in turn come from the historical migration to multi-core architectures. Since the tradi-
tional approach of mono-processor systems has reached a certain technological limit, given
that the traditional techniques of increasing the number of transistors, or clock frequency,
cannot raise the performance threshold of single-core processors much further.

As a result, academia and the computer industry have accepted that the perfor-
mance enhancement of future processors will be achieved on a large scale by increasing
the number of processors (or cores) rather than trying to increase the performance of a
single processor [41].

32

As such, parallel programming grows and brings with it greater concerns and chal-
lenges for programmers. It is relevant now to keep in mind more concepts inherent in par-
allelism, such as: process competition, concurrent data access control, the dependency
between processes. Flow control of simultaneous executions, creation of new processes
(threads) and their life cycle, among others, are also to be considered.

With the increase of concurrent threads in the same program, their allocation must
also be considered. A good work balance must be ensured between threads and this is
intrinsically linked to how they receive work to be executed. The process responsible for
performing such task is called scheduler.

In parallel MIMD-style architectures, a scheduling algorithm must ensure that a suf-
ficient number of concurrent threads are active to keep processors busy. Also, it should be
concerned about keeping this number of threads not too high so as not to exceed mem-
ory limits. At the same time, it should also consider keeping related threads on the same
processor, if possible, to minimize communication efforts between them.

According to [11], two scheduling paradigms have been consolidated in dealing
with the scheduling problem of multithreaded systems: work-sharing and work-stealing. In
work-sharing, when a process generates new threads, the scheduling algorithm attempts
to migrate these threads to other processors, seeking to distribute the work among under-
utilized processors. In work-stealing, on the other hand, underused processors take the
initiative to steal work from busy ones. Thus, thread migration occurs less frequently with
work-stealing, since if processors keep busy, no threads are migrated by the work-stealing
algorithm, but threads will always be migrated by a work-sharing algorithm.

The first ideas related to the concept of work-stealing can be attributed to [13] in
parallel executions of functional programs. Moreover, it can be related to the implementation
of Multilisp [24], which is an extension of the Lisp language with additional operators and
semantics to handle parallel executions.

However, the first scheduler implemented with a randomized work-stealing algo-
rithm for dependency multi-threaded applications was proposed by Blumofe and Leiserson
in [11]. In this work, the authors prove the existence of optimal worst-case limits in rela-
tion to the expected execution time, space required and total communication cost. They
have shown that the work-stealing technique has lower communication costs than the work-
sharing approach.

They proposed an algorithm where each processor has a kind of double row (or
deck) of threads. This deck has two ends: upper and lower. Threads can be inserted at the
lower end and can be removed from both ends. A processor treats its own deck as a stack,
inserting and removing threads from the lower end. Other processes, when stealing threads
from decks that do not belong to them, do so from the top end. The authors proposed that
the processor will work on its own tasks as long as possible. But it will steal work from a
randomly chosen processor when its deck is empty.

33

Many variants of this algorithm were presented in the literature. In [39], for exam-
ple, the authors present a threshold-based queueing model of shared-memory multiproces-
sor scheduling. Queueing model results in discrete state space and continuous-time Markov
process. The large and complex state space is decomposed by assuming processor states
stochastically independent and identical. It is approximate for finite number of processors,
so compared with simulation. The general form allows modeling of degradation in system
performance due to task migration. Even when migration costs are large, and contention
compounds these costs by degrading system performance, task migration may still be ben-
eficial. Threshold policies prevent processor thrashing: instability when tasks passed back
and forth and most of system time spent on migration.

In [19] the authors argued that work-sharing outperforms work-stealing at light to
moderate system loads, while work-stealing outperforms work-sharing at high loads, if the
costs of task transfer under the two strategies are comparable. However, they argued that
costs are likely to be greater under work-stealing, making work-sharing preferable. This is
because work-stealing policies must transfer tasks which have already started to execute,
while work-sharing policies can transfer prior to beginning execution.

In the context of affinity scheduling, the authors in [1] presented a work-stealing
algorithm that uses locality information, and thus outperforms the standard work-stealing
algorithm on benchmarks. Each process maintains a queue of pointers to threads that have
affinity for it, and attempts to steal these first. They also bounded the number of cache
misses for the work-stealing algorithm, using a “potential function” argument.

More theoretical results are presented from different perspectives, such as space
bounds, strict multi-threaded computations, and stability. Work-stealing has also been inves-
tigated in a variety of other contexts. Among them, applications to thread scheduling, such
as list scheduling [40], Fork–Join parallel programming [3], false sharing [15] and parallel
batched data structures [2]. In [10] the authors improved the space bounds of Blumofe and
Leiserson’s algorithm for a global shared-memory multiprocessor system. In [8] it is shown
that the work-stealing algorithm is stable even under a very unbalanced distribution of loads.

34

35

4. EARLY SCHEDULING

Several approaches to P-SMR resort to application semantics to parallelize inde-
pendent requests. While this allows concurrency, it introduces scheduling overhead to de-
cide which requests are independent and which thread should execute each request. The
early scheduling approach [5, 6] proposes a way to classify requests in request classes and
a fast scheduling algorithm based on classes.

4.1 REQUEST CLASSES

The notion of request classes was introduced in [5] to denote application knowl-
edge. Consider a service with a set R of possible requests. Each class has a descriptor and
conflict information, as defined next.

Definition 2. Let R be the set of requests available in a service (same as considered in
request conflicts). Let C = {c1, c2, ..., cnc} be the set of class descriptors, where nc is the
number of classes.

We define request classes as R = C → P(C) × P(R),1 that is, any class in C
may conflict with any subset of classes in C, and is associated to a subset of requests in
R. A conflict among classes happens when any two requests from those classes conflict,
according to the conflict definition #R from Chapter 2. Moreover, we introduce the restriction
that a non-empty non-overlapping subset of requests from R is associated to each class.

Example. Consider a service partitioned in 2 shards where requests can be classified as
read-only and read-write, per shard and globally. Different shards can be read and written
independently. Read operations in a shard do not conflict. Writes conflict with reads and
writes. Global writes conflict with any global or local operation. Global reads do not conflict
with reads, global or local.

We model this application with the following classes. Read class CR1 in partition 1
conflicts with the write class CW1 on the same partition and with the global write class CWg.
The read class CR2 in partition 2 conflicts with the write class CW2 on the same partition
and with the global write class CWg. The class CWg also conflicts with itself, with the write
classes and with the overall reading class CRg. Writing classes CW1 and CW2 also conflict
with themselves and with the overall reading class CRg. Class CRg also conflict with itself.
This is denoted in Figure 4.1, where classes are nodes and conflicts are edges.

To understand why class CRg is conflicting with itself, please refer to [6] where it is
shown that such configuration generates more concurrency than if this class did not conflict
with itself.

1We denote the power set of set S as P(S).

36

Figure 4.1 – Request classes definition with 2 shards.

4.2 CLASSES, THREADS AND EXECUTION MODEL

Central to the idea of early scheduling is that the scheduling algorithm avoids the
late scheduling overhead, i.e., it does not have to evaluate every other pending request
to decide how to schedule a new incoming one. It suffices to know the request’s class
to associate an appropriate worker thread. Thus, the scheduling overhead is bounded,
independently of the population of pending requests.

4.2.1 EXECUTION MODEL

To accomplish such a straightforward scheduling algorithm, early scheduling adopts
a replica execution model that will synchronize requests from conflicting classes. A replica
will have one scheduler thread and n worker threads. Each worker thread has a separate
input FIFO queue. The scheduler receives each request r totally ordered from consensus
and decides to which worker thread(s) to associate.

a. If scheduled to one worker only, r can be processed concurrently with other requests.

b. If scheduled to more than one worker thread, then r depends on preceding requests
assigned to these workers. Therefore, all workers involved in r must synchronize before
one worker among these executes r .

4.2.2 CLASS TO THREADS MAPPING

With this execution model, the following class-to-thread-mapping rules must be ap-
plied to ensure linearizable executions:

i. Every class is associated with at least one worker thread, to ensure that requests are
eventually executed.

37

ii. If a class is self-conflicting, it is sequential. Each request is scheduled to all threads of
the class and processed as described in the previous section.

iii. If two classes conflict, at least one of them must be sequential. The previous require-
ment may help decide which one.

iv. For conflicting classes c1, sequential, and c2, concurrent, the set of workers associated
to c2 must be included in the set of workers associated to c1. This requirement ensures
that requests in c2 are serialized w.r.t. c1’s.

v. For conflicting sequential classes c1 and c2, it suffices that c1 and c2 have at least
one worker in common. The common worker ensures that requests in the classes are
serialized.

These rules result in several possible class-to-threads mappings. This mapping
problem was modeled as an optimization problem that must satisfy the previous rules and is
optimized for the following conditions [6]: minimize threads in sequential classes and max-
imize threads in concurrent classes, assign threads to concurrent classes in proportion to
their relative weight (i.e., the number of requests expected for these classes), and minimize
unnecessary synchronization among sequential classes. A mapping is defined as follows.

Definition 3. CtoT = C → {Seq, Conc} × P(T) where: C is the set of class names;
{Seq, Conc} is the sequential or concurrent synchronization mode of a class; and P(T) the
possible subsets of T = {t0, .., tn−1}, n is the number of worker threads at a replica.

Example. Following our example from Figure 4.1, considering 4 worker threads available, a
possible mapping following the rules above is depicted in Table 4.1.

Table 4.1 – A possible mapping of 4 threads in Figure 4.1
C = {seq, conc} × P ({t0, t1, t2, t3})

CR1= conc {t0, t2, }
CR2= conc { t1, t3}
CW1= seq {t0, t2, }
CW2= seq { t1, t3}
CRg= seq {t0, t3}
CWg= seq {t0, t1, t2, t3}

4.3 ALGORITHMS

With a CtoT , Algorithms 2 and 3 present the execution model for the scheduler
and worker threads, respectively. Algorithm 1 presents some general definitions used by
both algorithms, as well as by some of the algorithms described in Chapter 6. Whenever

38

a request is delivered by the atomic broadcast protocol, the scheduler (Algorithm 2) as-
signs it to one or more worker threads. If a class is sequential, then all threads associated
with the class receive the request to synchronize the execution (lines 3–4). Otherwise, re-
quests are associated to a unique thread (line 6), following a round-robin policy (function
PickInRoundRobin).

Algorithm 1 General Early Scheduling Definitions used in Algorithms.
1: constants: // knowledge provided for the scheduler
2: R = {...} // the set of all possible requests
3: C = {c1, ..., cnc} // the set of classes, constant
4: T = {t0, ..., tnt−1} // the set of threads, constant
5: RC = C → (P(C)× P(R)) // for each class, the conflicting classes and requests it groups
6: access functions:
7: RC(c).conflicts : subset of classes conflicting with c
8: RC(c).requests : subset of requests in c
9: CtoT = C → ({Seq, Conc} × P(T)) // the mode and the threads of a class

10: access functions:
11: CtoT (c).threads : subset of threads // associated with class c in CtoT
12: CtoT (c).nThreads : cardinality of subset of threads // number of threads implementing class c
13: CtoT (c).mode : Seq or Conc // mode of class c
14: PickInRoundRobin(CtoT (req.class).threads) // chooses next thread in round-robin
15: type:
16: Request = [r , c] such that: r ∈ R ∧ c ∈ C ∧ r ∈ RC(c).requests
17: access functions:
18: req.class : for req ∈ Request , its class
19: shared variables:
20: ∀t ∈ T
21: t .queue← ∅ // one input queue per worker thread
22: access functions:
23: t .queue.fifoPut() and t .queue.fifoGet(): FIFO produce in and consume from t .queue respectively
24: barrier [C] // one barrier per request class
25: access function:
26: ∀c ∈ C, barrier [c].arrive(): thread signals arrival to class’ c barrier

Mutual exclusion while accessing above shared variables is assumed.

Algorithm 2 Early Scheduler.
1: on deliver(Request: req):
2: if CtoT (req.class).mode = Seq then // if execution is sequential
3: ∀t ∈ CtoT (req.class).threads // for each conflicting thread
4: t .queue.fifoPut(req) // synchronize to execute request
5: else // else assign request to one thread of the class, in round-robin
6: PickInRoundRobin(CtoT (req.class).threads).queue.fifoPut(req)

Each worker thread, as presented in Algorithm 3, takes one request at a time from
its queue in FIFO order (line 4) and then proceeds depending on the synchronization mode
of the class.

If the class is sequential, then the thread synchronizes with the other threads in the
class using barriers before the request is executed (lines 6–12). In the case of a sequential
class, only one thread executes the request. If the class is concurrent, then the thread simply
executes the request (line 14).

39

Algorithm 3 Worker Threads for Early Scheduling.
1: constant:
2: myId ∈ {0, ..., n − 1} // thisThread’s id , out of n threads
3: while true do
4: req ← thisThread .queue.fifoGet() // wait until a request is available
5: if CtoT (req.class).mode = Seq then // sequential execution:
6: if myId = min(CtoT (req.class).threads) then // smallest id:
7: barrier [req.class].await() // wait for signal
8: exec(req) // execute request
9: barrier [req.class].await() // resume workers

10: else
11: barrier [req.class].await() // signal worker
12: barrier [req.class].await() // wait execution
13: else // concurrent execution:
14: exec(req) // execute the request

Safety and liveness are argued in [6], where it is shown that these algorithms gen-
erate linearizable executions and that every request is eventually executed.

40

41

5. EARLY SCHEDULING ANALYSIS

Early scheduling restricts concurrency to allow fast scheduling decisions. This
chapter evaluates early scheduling by analyzing the results from a set of experiments to un-
derstand how these restrictions affect thread utilization and load balancing. A more detailed
presentation of these experiments of early scheduling in parallel state machine replication
can be found at [7].

5.1 ENVIRONMENT

The experiments were conducted using seven computational nodes connected by
a local-area network (cluster). Three server nodes implement BFT-SMaRt replicas, one per
node. BFT-SMaRt [9] is a well-established library to develop SMR. It can be configured to
use optimized protocols to tolerate both crash and byzantine failures. In our experiments,
however, we consider only crash failures. BFT-SMaRt was implemented in JAVA program-
ming language and uses an atomic broadcast protocol that executes a series of consensus
instances to ordering sets of requests.

Each server node has the following configuration: AMD Opteron® Processor 6366
HE @ 2271.490Mhz, 32 physical cores (64 logical cores through the use of hyper-threading);
126GB RAM; Linux Ubuntu 4.15.0 operating system, 64 bits; Java Virtual Machine and
OpenJDK version 11.0.3; OpenJDK 64-Bit Server VM.

Four client nodes were configured to run client processes. Each client node has
the following configuration: Intel® Xeon® L5420 @ 2.50GHz processor with 8 physical cores;
8GB RAM; Linux Ubuntu 4.15.0 operating system, 64 bits; Java Virtual Machine and Open-
JDK version 11.0.3; OpenJDK 64-Bit Server VM.

5.2 APPLICATION

The experiments were performed using a linked list application. The application
was implemented to support separate data shards, that is, each replica has an internal
partitioned state. There are requests to read from the list and to write in the list, accessing
either a single shard or all shards. A read operation checks whether an element is in one
shard or in all shards, and a write operation includes an element in one shard or in all shards.
Duplicated elements are not included in some shard, i.e., the write operation checks if some
element already is in some shard before inclusion.

42

We conducted experiments with 2, 4 and 8 shards, in a system with 6, 10 and 18
request classes, respectively. In a deployment with n shards, there are n local (i.e., single-
shard) reads classes, n local writes classes, one global (i.e., all shards) read class, and one
global write class. Each replica was configured to run t worker threads, where each shard
is assigned two threads (the read and write classes of each shard are mapped to the same
two threads), and consequently, t = 2n.

5.2.1 CLASS MAPPINGS

Three types of class mappings were analyzed. The first is as presented in the
example of Chapter 4, with 6 request classes.

The other two have 10 and 18 classes, respectively, and increased number of par-
titions, as shown in Figures 5.1(a) and 5.1(b). They respect the same conflict structure
between read and write classes, as in the first mapping example of Figure 4.1. Local reads
class CRx conflicts with global writes class CWg and with local writes class CWx , where x is
the partition number. Local writes class CWx conflicts with itself, local reads class CRx , global
writes class CWg and global reads class CRg. Global reads class CRg conflicts with global
writes class CWg and with any local writes class CWx . Global writes class CWg conflicts with
itself and any other class.

(a) 4 Shards (b) 8 Shards

Figure 5.1 – Request classes definition with 4 and 8 shards

5.2.2 CLASS-TO-TREADS MAPPINGS

Each replica was configured to run t worker threads, according to the class-to-
threads mapping. In Tables 4.1 (from the example of Chapter 4), 5.1 and 5.2 we present

43

Table 5.1 – Threads to classes mappings for 4 shards and 8 threads
C = {seq, conc} × P ({t0, t1, t2, t3, t4, t5, t6, t7})

CR1= conc { t2, t4 }
CR2= conc {t0, t6 }
CR3= conc { t3, t5 }
CR4= conc { t1, t7}
CW1= seq { t2, t4 }
CW2= seq {t0, t6 }
CW3= seq { t3, t5 }
CW4= seq { t1, t7}
CRg = seq {t0, t4, t6, t7}
CWg = seq {t0, t1, t2, t3, t4, t5, t6, t7}

Table 5.2 – Threads to classes mappings for 8 shards and 16 threads
C = {seq, conc} × P ({t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10 , t11 , t12 , t13, t14, t15})

CR1= conc {t0, t1 }
CR2= conc { t2, t3 }
CR3= conc { t4, t5 }
CR4= conc { t6, t7 }
CR5= conc { t8, t9 }
CR6= conc { t10 , t11 }
CR7= conc { t12, t13 }
CR8= conc { t14, t15}
CW1= seq {t0, t1 }
CW2= seq { t2, t3 }
CW3= seq { t4, t5 }
CW4= seq { t6, t7 }
CW5= seq { t8, t9 }
CW6= seq { t10, t11 }
CW7= seq { t12, t13 }
CW8= seq { t14 , t15}
CRg = seq {t0, t2, t4, t6, t8, t10, t12, t14 }
CWg = seq {t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13 , t14 , t15}

each class-to-threads mapping used in the experiments, with t equal to 4, 8 and 16 threads,
respectively.

5.3 METRICS

In order to evaluate the early scheduling performance with respect to its restrictions,
we considered three distinct metrics:

a. Synchronization idleness. This metric represents the average wait time for a thread to
synchronize with all other threads in the same class before executing a synchronizing
request. It is obtained as follows:

i High precision system nano-time is collected right before the first barrier await
instruction, at lines 7 and 11 in Algorithm 3.

ii In the thread responsible for executing the request, a second system time is col-
lected right after the first barrier await instruction, before the exec instruction of
line 8 in Algorithm 3.

iii In waiting threads, the second measure of system time is collected after the sec-
ond barrier await instruction of line 12 in Algorithm 3.

iv The amount of waiting time (difference between the two instants of time collected
as described above) is stored per second for each thread.

44

b. Queue idleness. This metric represents the average time that a thread waits for new
requests in its queue. It is obtained as follows:

i High precision system nano-time is collected right before the fifoGet instruction,
at line 4 in Algorithm 3, which blocks the thread until a new request is available.

ii The second system time is taken right after line 4 in Algorithm 3.

iii The waiting time (difference between the two instants of time collected as de-
scribed above) is stored per second for each thread.

c. Queue size. This metric represents the average size of a thread’s queue. It is obtained
by counting how many requests were returned by the fifoGet instruction, line 4 in Al-
gorithm 3. In the implementation, this instruction actually returns a batch of requests
available at the scheduler, in the same order as scheduled. The amount of requests is
stored per second for each thread.

5.4 WORKLOADS

On the client side, we configured each node to run 10, 40 or 50 processes, accord-
ing to the number of shards (2, 4 and 8, respectively), sending requests to servers with a
mixed workload of read and write operations. Each client process sends batches of 50 op-
erations per request, without any interval between each request. This configuration results
in performance near its peak.

Several executions were performed submitting the application to different work-
loads, ranging the percentages of reads, writes, local and global operations. The percentage
of writes and global operations ranged from low to high levels due to observation that as the
level of conflicts increase, it directly affects the metrics that we are monitoring, especially
thread synchronization idleness.

We also considered balanced and unbalanced workloads. In a balanced workload,
each shard receives a similar number of local requests. In the skewed workload, each client
process sends about 50% of its requests to only one shard (except for the experiments with
2 shards where one shard received 80%). The remaining requests are equally distributed
across the remaining shards. We carried out experiments with different request execution
costs, ranging from light, moderate to heavy costs (i.e., lists with 1K, 10K and 100K ele-
ments, respectively).

In these experiments, we represent different workloads with notation α-β-γ, where
α is the percentage of local writes (i.e., writes in a single shard); β is the percentage of global
operations (i.e., operations involving all shards); and γ is the percentage of global writes in
global operations. For example, workload 25-5-25 has 25% of local writes and 5% of global

45

operations, where 25% of the global operations are global writes. Each experiment lasts 4
minutes, where results for the first minute are discarded (system warm-up). In the remaining
three minutes, we collect data to compute average and standard deviation values for the
metrics.

5.5 RESULTS

We start by presenting the results during a single execution with 2 shards, balanced
workload with low level of conflicting requests and light operation costs to observe how the
metrics evolve during execution. Due to the high amount of data collected in a run, and to
understand how we thereafter consolidate the data, we first present only 10 seconds of a
single execution. In Figure 5.2 (left), we can see thread behavior with respect to each metric
and the system throughput, during this first short period of execution.

In this specific interval, we can observe that in the first 3 seconds there is a low
rate of synchronization idleness. That happens due to high incidence of concurrent re-
quests. This is also the reason why there is queue idleness, and low amount of requests
in the queues. Since there are few requests in the queues, threads are more prone to wait
for new ones. It incurs that system throughput is higher than in the next 7 seconds, when
more sequential requests arrive, causing the threads to spend more time in the synchroniza-
tion barriers. This increases the number of requests in the queues, decreasing the queue
idleness (i.e., threads do not need to wait due to request availability in the queues), and
decreasing the system throughput.

Based on these data, each metric was aggregated per second of execution. We
present the results of an entire experiment execution in Figure 5.2 (right).

Synchronization idleness (Figure 5.2(b)): Each thread spends different amounts of
time waiting for synchronization in the barriers. In this case of a balanced workload with light
operation costs, threads t0 and t3 are the idlest. This behavior reflects the class-to-threads
mapping (Table 4.1), where both threads are associated with a larger number of classes.
Notice that thread t3 is the most idle because it never executes synchronized requests. This
happens because t3 has the highest id (line 6 of Algorithm 3).

Queue idleness (Figure 5.2(d)): Queue idleness is inversely proportional to syn-
chronization idleness. Threads t1 and t2 now are the most idle, due to faster execution of
requests. This happens because both threads receive fewer requests, and more often need
to get more requests from the scheduler. Thus, they are more prone to find their queues
empty, resulting in waiting. Threads t0 and t3, however, do not need to wait since they
spend much time in the barriers, waiting for sequential executions. This causes their queues
to always have new requests to execute.

46

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

Sy
nc

hr
on

iz
at

io
n

id
le

 ti
m

e
(m

s)

Execution time (seconds)

t0 t1 t2 t3

(a) Synchronization idleness

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

 0 20 40 60 80 100 120 140 160 180

Sy
nc

hr
on

iz
at

io
n

id
le

 ti
m

e
(m

s)

Execution time (seconds)

t0 t1 t2 t3

(b) Synchronization idleness

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

Q
ue

ue
 id

le
 ti

m
e

(m
s)

Execution time (seconds)

t0 t1 t2 t3

(c) Queue idleness

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

 0 20 40 60 80 100 120 140 160 180

Q
ue

ue
 id

le
 ti

m
e

(m
s)

Execution time (seconds)

t0 t1 t2 t3

(d) Queue idleness

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

Q
ue

ue
 s

iz
e

(k
op

s)

Execution time (seconds)

t0 t1 t2 t3

(e) Queue size

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180

 0 20 40 60 80 100 120 140 160 180

Q
ue

ue
 s

iz
e

(k
op

s)

Execution time (seconds)

t0 t1 t2 t3

(f) Queue size

 10

 15

 20

 25

 30

 0 2 4 6 8 10

Th
ro

ug
hp

ut
 (k

op
s)

Execution time (seconds)

Throughput

(g) Throughput

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

Th
ro

ug
hp

ut
 (k

op
s)

Execution time (seconds)

Throughput

(h) Throughput

Figure 5.2 – Metrics and throughput in 10 seconds (left) and an entire execution (right),
balanced workload, low conflicts, 2 shards (4 threads), and light operations.

Queue size (Figure 5.2(f)): We can see how thread idleness impacts their accumu-
lated work. As threads t0 and t3 are more often idly waiting for synchronization, the size
of their queues keeps increasing during the execution. On the other hand, queue sizes of
threads t1 and t2 are lower and more constant.

Figure 5.3 presents the consolidated results for a system with 2 shards, considering
different workloads composed of light operations. We vary both the percentage of conflicts
and request distribution among the shards.

Synchronization idleness (Figure 5.3(a)): We can observe in this experiment that
idleness increases together with conflict percentage. Moreover, according to the classes
to threads mappings (Table 4.1), thread t0 continued to be less idle than others (lowest id
is always responsible for executing requests). Thread t3 is the most idle in the majority

47

 0

 500

 1000

 1500

 2000

t0 t1 t2 t3Av
g

sy
nc

hr
on

iz
at

io
n

id
le

 ti
m

e
(m

s/
se

c)

Working Thread

0-0-0
1-0-0

25-0-0
75-0-0

1-1-1
25-5-25

75-10-75

(a) Avg synchronization idleness

 0

 500

 1000

 1500

 2000

t0 t1 t2 t3

Av
g

qu
eu

e
id

le
 ti

m
e

(m
s/

se
c)

Working Thread

0-0-0
1-0-0

25-0-0
75-0-0

1-1-1
25-5-25

75-10-75

(b) Avg queue idleness

 0

 100

 200

 300

 400

 500

 600

t0 t1 t2 t3

Av
g

qu
eu

e
si

ze
 (k

op
s)

Working Thread

0-0-0
1-0-0

25-0-0
75-0-0

1-1-1
25-5-25

75-10-75

(c) Avg queue size

 0

 500

 1000

 1500

 2000

t0 t1 t2 t3Av
g

sy
nc

hr
on

iz
at

io
n

id
le

 ti
m

e
(m

s/
se

c)

Working Thread

0-0-0
1-0-0

25-0-0
75-0-0

1-1-1
25-5-25

75-10-75

(d) Avg synchronization idleness

 0

 500

 1000

 1500

 2000

 2500

 3000

t0 t1 t2 t3
Av

g
qu

eu
e

id
le

 ti
m

e
(m

s/
se

c)
Working Thread

0-0-0
1-0-0

25-0-0
75-0-0

1-1-1
25-5-25

75-10-75

(e) Avg queue idleness

 0

 100

 200

 300

 400

 500

 600

t0 t1 t2 t3

Av
g

qu
eu

e
si

ze
 (k

op
s)

Working Thread

0-0-0
1-0-0

25-0-0
75-0-0

1-1-1
25-5-25

75-10-75

(f) Avg queue size

Figure 5.3 – Results for 2 shards, 4 threads, light costs, with balanced workloads (top) and
skewed workloads (bottom).

of workloads. However, for workloads with a high degree of conflicts (25-5-25 and 75-10-
75), t0 executes most of the requests while the others remain almost all time only waiting for
synchronizations. Notice that for workload 0-0-0 (only reads, which are concurrent requests)
there is no synchronization idleness.

Queue idleness (Figure 5.3(b)): In general, the amount of queue idleness decrease
with more conflicting workloads due to increasing synchronization idleness. While the per-
centage of conflicts in a workload gets higher, all threads spend more time in the synchro-
nization barriers and. Consequently, more time is available for them to receive new requests
in their queues, decreasing the time needed to wait for new requests.

Queue size (Figure 5.3(c)): This experiment shows that the difference between
queue sizes among threads in the same workload increases in some cases, especially in
cases with intermediary levels of conflict in the workload. This happens again because of the
static classes to threads mappings. Notice the particular case of threads t1 and t2, which
are associated with less amount of request classes and have, on average, fewer requests in
their queues than the other two threads.

Skewed workloads: Figures 5.3(d), 5.3(e) and 5.3(f) present the results for same
conflict percentages and shards/threads configurations but for skewed workloads. In this
case, most of the requests are addressed to shard 1. This experiment shows that average
thread idleness continues in high levels for most cases. It is, however, important to note the
increasing in queue sizes variation and differences for most cases, where threads t0 and t2
accumulate more requests in their queues since they belong to the overloaded partition.

We can also observe high levels of standard deviation in some of the analyzed
workloads. This happens because, depending on the demand from clients, in some mea-
surement intervals the threads execute more sequential than concurrent requests, and vice-

48

 0

 500

 1000

 1500

 2000

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15Av
g

sy
nc

hr
on

iz
at

io
n

id
le

 ti
m

e
(m

s/
se

c)

Working Thread

0-0-0
1-0-0

25-0-0
1-1-1

25-5-25

(a) Avg synchronization idleness

 0

 500

 1000

 1500

 2000

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15Av
g

sy
nc

hr
on

iz
at

io
n

id
le

 ti
m

e
(m

s/
se

c)

Working Thread

0-0-0
1-0-0

25-0-0
1-1-1

25-5-25

(b) Avg synchronization idleness

 0

 500

 1000

 1500

 2000

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

Av
g

qu
eu

e
id

le
 ti

m
e

(m
s/

se
c)

Working Thread

0-0-0
1-0-0

25-0-0
1-1-1

25-5-25

(c) Avg queue idleness

 0

 500

 1000

 1500

 2000

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

Av
g

qu
eu

e
id

le
 ti

m
e

(m
s/

se
c)

Working Thread

0-0-0
1-0-0

25-0-0
1-1-1

25-5-25

(d) Avg queue idleness

 0

 5

 10

 15

 20

 25

 30

 35

 40

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

Av
g

qu
eu

e
si

ze
 (k

op
s)

Working Thread

0-0-0
1-0-0

25-0-0
1-1-1

25-5-25

(e) Avg queue size

 0

 5

 10

 15

 20

 25

 30

 35

 40

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15
Av

g
qu

eu
e

si
ze

 (k
op

s)

Working Thread

0-0-0
1-0-0

25-0-0
1-1-1

25-5-25

(f) Avg queue size

Figure 5.4 – Results for 8 shards, 16 threads, light costs, with balanced workloads (left) and
skewed workloads (right).

versa. Moreover, the synchronizations demanded to execute a sequential request is not
needed for concurrent ones. This unbalance between sequential and concurrent requests
execution leads to high variance.

Impact of the number of shards in the system: Figure 5.4 present the results for a
system configured with 8 shards, considering balanced and skewed workloads where shard
1 received more requests. For better presentation, we exclude workloads 75-0-0 and 75-10-
75 since they are the ones with most conflicting requests and always presented the same
behavior with high levels of idleness.

In general, synchronization idleness again presented high levels for most work-
loads, and queue idleness increases for skewed workloads. It is also important to note that
queue sizes suffer from more variation and differences in quantity among threads in the
skewed workloads scenario. This behavior can be observed in Figure 5.4(f) where threads
t0 and t1, associated to shard 1 (Table 5.2), receive more requests than all other threads.
Consequently, their queues contain more requests to execute.

In this specific scenario with 8 shards and skewed workloads (Figure 5.4, right),
we can observe how the static mappings of classes to threads affect performance. In these
scenarios, thread t1 frequently has a larger amount of accumulated requests waiting for ex-
ecution in its queue (Figure 5.4(f)). However, at the same time and for most of the workloads

49

considered, t1 together with almost all threads also present high idleness levels (Figure
5.4(b)).

Based on these results we can observe that a better distribution of work among
the threads has the potential to improve system performance. For example, threads in idle
states can receive requests originally designated, by the static mapping, to other overloaded
threads. The main challenge is that this redistribution must respect all the conflict depen-
dencies.

Impact of different execution costs (Figure 5.5): The final set of experiments studies
how operation costs affect threads behavior, considering a system with 4 shards and 8
threads. We aggregated metrics averages of all threads, then we could range operation cost
for all considered workloads.

Operation costs affect threads idleness since they spend more time executing heav-
ier requests and, consequently, are less prone to become idle. Light operations incur in
faster request execution, thus allowing threads to have more sequential requests to execute,
increasing the amount of barrier synchronization.

 0

 200

 400

 600

 800

 1000

 1200

Light Moderate HeavyAv
g

sy
nc

hr
on

iz
at

io
n

id
le

 ti
m

e
(m

s/
se

c)

Operation Costs

0-0-0
1-0-0

25-0-0
75-0-0

1-1-1
25-5-25

75-10-75

(a) Avg synchronization idleness

 0

 500

 1000

 1500

 2000

Light Moderate Heavy

Av
g

qu
eu

e
id

le
 ti

m
e

(m
s/

se
c)

Operation Costs

0-0-0
1-0-0

25-0-0
75-0-0

1-1-1
25-5-25

75-10-75

(b) Avg queue idleness

 0

 20

 40

 60

 80

 100

 120

Light Moderate Heavy

Av
g

qu
eu

e
si

ze
 (k

op
s)

Operation Costs

0-0-0
1-0-0

25-0-0
75-0-0

1-1-1
25-5-25

75-10-75

(c) Avg queue size

Figure 5.5 – Results for 4 shards, 8 threads, different operation costs, with balanced work-
loads.

Figure 5.5(a) shows that thread synchronization idleness decreases slightly with
higher operation costs. For queue idleness, we can observe the same phenomenon (Fig-
ure 5.5(b)). Finally, the queue size is smaller for higher operation costs (Figure 5.5(c)). This
happens because servers need more time to process requests and send replies to clients.
Consequently, clients remain most of the time blocked waiting for replies and few requests
are issued in the system.

50

51

6. EARLY SCHEDULING ENHANCEMENTS

The Early Scheduling technique performs well for several workloads when com-
pared to late scheduling. However, the experiments reported in Chapter 5 let us observe
that threads may be idle (in some waiting point) while other threads have work to be done in
their queues.

Out of these observations, we now present our proposed enhancements for the
early scheduling technique. We investigated two approaches:

1. Synchronization Mechanisms: We propose an adaptation of the original early schedul-
ing algorithm where the synchronization barriers (an expensive resource) were re-
placed by an alternative synchronization method. The new strategy keeps threads
active, avoiding switching to system level, blocking, and thread re-scheduling. Assum-
ing processors are available to the different worker threads, we evaluate the use of a
busy-wait approach to thread synchronization.

2. Work-Stealing: We also propose a more complex implementation of the original early
scheduling algorithm augmented with work-stealing techniques. In the context of early-
scheduling, work-stealing is not trivial since the stealer threads have to enforce order-
ing in the place of the stolen ones, according to the classes and conflict definitions.
Such restrictions introduce additional overhead to validate steal conditions and coordi-
nate stealer threads.

6.1 BUSY-WAIT SYNCHRONIZATION

The busy-wait approach was based on the observation that barrier structures are a
very expensive system resource that we want to avoid. We hypothesize that a large amount
of the total thread synchronization idleness observed in experiments of Chapter 5 are re-
lated to system calls. As a result of increasing worker threads, there will be much more of
such calls while threads are synchronizing using barriers. This phenomenon was already
observed in [6].

Algorithm 4 General Busy-Wait Early Scheduling Definitions.
1: // extends definitions in Algorithm 1
2: shared variables:
3: mark [c1, ..., cnc][2]← [0, ..., 0][0, 0] // one atomic integer request class, per cycle
4: access functions:
5: mark [c][cycle].get() // atomically read and return value
6: mark [c][cycle].set() // atomically return and set the value, respectively
7: mark [c][cycle].incGet() // atomically increment and return value

52

Therefore, we propose an adaptation of the original early scheduling worker thread
execution model, as presented in Algorithm 5. This approach uses an array of atomic in-
tegers to synchronize threads, called mark , defined in Algorithm 4. The idea is that each
thread involved in the execution of a request in class C must atomically increment a counter
associated to C. The last thread to increment is responsible for executing the request and
reset the counter. Other threads will wait until the counter resets.

Algorithm 5 Worker Threads For Busy-Wait Early Scheduling.
1: constant:
2: myId ← id ∈ {0, ..., n − 1} // thisThread’s id , out of n threads
3: variables:
4: cycles[c1, ..., cnc]← [0, ..., 0] // an array of cycles, one per request class
5: while true do
6: req ← thisThread .queue.fifoGet() // wait until a request is available
7: if CtoT (req.class).mode = Seq then // sequential execution
8: cycles[req.class] = 1− cycles[req.class] // current synchronization cycle for req’s class
9: if mark [req.class][cycles[req.class]].incGet() = CtoT (req.class).nThreads then // signal arrival

10: exec(req) // if was the last to arrive, execute request
11: mark [req.class][cycles[req.class]].set(0) // signal execution is done
12: else
13: while mark [req.class][cycles[req.class]].get() 6= 0 do // wait in loop for request execution
14:
15: else // concurrent execution:
16: exec(req) // execute the request

However, a simple array of atomic integers per class is not sufficient to guarantee
progress. To understand why, suppose 2 threads, t1 and t2, are associated by the mapping
to synchronize requests of class c1. Consider a scenario where two requests of the same
class c1 are contiguously assigned to threads t1 and t2. Then, the following execution steps
can take place: thread t1 and t2 pick the first request of class c1 for execution. From this
point, both verify it is a sequential request and increment the atomic counter associated to
class c1.

Suppose thread t1 was the last to increment and thus becomes responsible for
execution, but is preempted before execution is done. Then, as thread t2 is not responsible
for executing, it will wait in the loop, but suppose it is preempted before checking if the
counter has value 0. Then, thread t1 re-assumes and finishes execution of the first request,
sets the counter to zero and continues to pick the second request of the same class c1 from
its queue. It then increments the atomic counter again, for the same class. Now it was the
first thread to increment, and it does not become responsible for execution. At this point,
both threads t1 and t2 are waiting for someone to reset the counter to zero (since t2 missed
the reset related to the first request), which will never happen.

Therefore we introduce cycles per class, as presented in Algorithm 5. Threads
belonging to a class are either in cycle 0 or 1 for that class, and each time a request from
that class is executed, threads switch cycle to execute a new request. When all threads
belonging to the class have entered the same cycle, then the request can be executed. This

53

prevents the situation above discussed, since the new cycle has a new variable to control
the number of threads joined. Only two cycles are needed because the request in the new
cycle will only execute when no thread is in the former one.

No modification in the scheduler algorithm is needed for this approach. However, it
is not common sense to assume an available processor for each worker thread. Moreover,
it is not recommended to hold an expensive system resource consuming all power it can get
by doing nothing. Therefore, a better utilization of such useless processing could be more
profitable, as for example stealing work.

6.1.1 SAFETY AND LIVENESS

Safety: the barrier in the original Early Scheduling worker thread (Algorithm 3) en-
sures that all involved threads synchronize to execute the sequential request and do not
advance before finishing its execution. The barrier is substituted here. The sequential re-
quest is executed when all involved threads reached the request in their input queues since
the atomic variable is only incremented once by each thread and only the last thread to
increment executes the request. After executing, the thread signals the other ones to stop
waiting. Thus, the mechanism keeps the same barrier properties during request execution:
one thread executes and all other ones (a) have arrived to the request in their queues and
(b) wait for the request to finish before proceeding.

Liveness: for a given class, all its threads initiate in cycle 0 and deterministically
switch to the next when a sequential request is processed. Since all threads have the same
requests of their class in the input queue, eventually all will switch to the next cycle and
complete the number of threads to execute the request. Moreover, since all threads have
the same order of common requests, they will not build cycles while synchronizing to execute
different requests. Thus, the synchronization mechanism does not block.

6.2 WORK-STEALING

The idea of adapting the early scheduling algorithm to support work-stealing tech-
niques emerged from the results observed in Section 5.5 of Chapter 5. These results re-
ported the co-existence of thread idleness and unbalanced work. We could relieve this
phenomenon by enabling some threads to steal work from overloaded ones while waiting
both for new requests or in the synchronization process.

To achieve such an adaptation, we must fulfill some conditions to ensure correct-
ness while stealing. Work-stealing cannot violate the order of conflicting requests. However,

54

requests from a thread v (from now on called victim) could be stolen and executed concur-
rently by thread s (from now on called stealer) without compromising correctness if requests
under execution by v and s are independent. Therefore, to keep safety we have to argue for
order preservation. To complement, we have to argue that work-stealing mechanisms will
not cause deadlock.

To describe the work-stealing strategies developed we define the following 5 main
characteristics, which may be instantiated for each different algorithm:

• Stealing condition: defines conditions necessary to enable a stealer s to steal from a
victim v , both in the state of the threads as well as the workload. These conditions
alone are not sufficient and work with the other characteristics.

• Stealing points: defines the exact points of the original early scheduling algorithm
where threads will proceed to stealing mechanisms;

• Who is stolen: defines which threads are victims of stealing, and on which order;

• Number of occurrences of steal: related to the above, defines how many times a stealer
will try to steal work from other threads;

• How much work is stolen: defines how much work will be stolen.

6.2.1 STEALING WHEN QUEUES ARE EMPTY

Out of the observation from experiments of Chapter 5, threads can become idle
while waiting for new requests in their queues. Hence, the first and most simple idea is to
steal work from other threads while waiting for the arrival of new requests. In this approach,
the stealing conditions and properties are instantiated as follows:

• Stealing condition: only concurrent requests can be stolen. The victim must not be
executing a sequential request, neither have a sequential request in its queue;

• Stealing points: the stealer must be waiting for new requests in its own execution
queue;

• Who is stolen: all threads, except the stealer itself, will be victims of stealing. They will
be chosen by their id , starting from the smallest. If a thread can not be stolen, next id
will be tried;

• Number of occurrences of steal: a stealer will repeatedly attempt to steal until new
requests arrive at its own execution queue.

55

• How much work is stolen: all concurrent requests present in the victim’s queue.

Algorithms 7 and 8 show the early scheduling based execution model of the work-
stealing adaptation. Algorithm 6 shows some general definitions used by both work-stealing
algorithms.

Algorithm 6 General Work-Stealing Definitions.
1: // extends definitions in Algorithm 1
2: shared variables: // assumed consistent under concurrent manipulation
3: ∀t ∈ T
4: readyQueue← ∅ // a separate queue with requests ready for execution
5: execQueue← ∅ // separate queue with requests under execution
6: readyFlag ← 0 // atomic flag: 1 if there is a seq req in readyQueue; 0 otherwise
7: execFlag ← 0 // atomic flag: 1 if there is a seq req in execQueue; 0 otherwise
8: marker [t0, ..., tn−1]← [0, ..., 0] // atomic array: 1 at entry s if thread s stole from t and not finished yet

Algorithm 7 Work-Stealing Scheduler.
1: on deliver(Request: req):
2: if CtoT (req.class).mode = Seq then // if execution is sequential
3: ∀t ∈ CtoT (req.class).threads // for each conflicting thread
4: atomic:
5: t .readyQueue.fifoPut(req) // synchronize to exec req
6: t .readyFlag ← 1 // signal there is a sequential request in t ’s readyQueue
7: else // else assign req to one thread in round-robin
8: PickInRoundRobin(CtoT (req.class).threads).readyQueue.fifoPut(req)

The scheduler (Algorithm 7) inserts requests in a new separate queue of requests
ready for execution, called readyQueue (lines 5 and 8). It also updates a flag in each
thread (line 6) when assigning them with sequential requests. This flag holds the infor-
mation whether there is a sequential request in the readyQueue of thread t (the need for a
new queue will be explained next).

We can see in Algorithms 6 and 8 that each worker thread t is augmented with two
separate queues: readyQueue and execQueue. The readyQueue holds requests assigned
by the scheduler but not yet transferred to the execQueue. The execQueue holds requests
under execution by thread t . Each thread has an array of atomic flags (called marker)
indicating the stealing relations among threads. If a victim thread v has value 1 at entry s, it
means that stealer thread s has stolen work from v and has not finished the execution yet,
otherwise the value is 0. Hence, when thread v is about to execute sequential requests, it
needs to verify these flags to find whether it was stolen and needs to wait for the stealer to
finish (Algorithm 8, lines 15–16).

A stealing attempt will take place if a stealer s finds its queue empty. It calls method
Steal() which atomically verifies the stealing conditions for each possible victim v , except
itself. If the conditions are satisfied, it atomically steals all requests from v ’s readyQueue
and sets the marker of thread v indicating that it has been stolen. Then, it executes the
stolen requests. Once finished, it signals victim v and stops the loop, trying its own queue
again.

56

Algorithm 8 Work-Stealing Algorithm For Each Worker Thread t .
1: constant:
2: thisThread ∈ T // the current thread

3: Worker-Thread t is as follows:
4: while true do
5: atomic:

// thisThread . is implicit if not stated otherwise.
6: execQueue← readyQueue // transfers all requests from readyQueue to execQueue
7: execFlag ← readyFlag // update flag which may indicates execution of a sequential req
8: readyQueue← ∅ // clear readyQueue
9: readyFlag ← 0 // signal there is no sequential requests in readyQueue

10: endAtomic
11: if execQueue 6= ∅ then // if there is something to execute:
12: while req ← execQueue.fifoGet() do
13: if CtoT (req.class).mode = Seq then
14: if thisThread = min(CtoT (req.class).threads) then
15: for all s ∈ T \ {thisThread} do // verify if some stealer thread stole from me
16: wait until marker [s] = 0 // atomically reads marker. Wait until is 0
17: barrier [req.class].await()
18: exec(req)
19: barrier [req.class].await()
20: else
21: barrier [req.class].await()
22: barrier [req.class].await()
23: else
24: exec(req)
25: else // no requests available. Will try to steal
26: Steal(thisThread)

27: procedure Steal(s ∈ T) // s is the stealer thread
28: for all v ∈ (T \ {s}) do for all victim threads, starting from id 0, except the stealer
29: atomic:
30: if v .readyFlag = 0 ∧ // only steals concurrent requests
31: v .execFlag = 0 ∧ // if victim not executing sequential requests
32: v .readyQueue 6= ∅ then // there is something to steal
33: s.execQueue← v .readyQueue // steal all requests from victim’s readyQueue
34: v .readyQueue← ∅ // clear victim’s readyQueue
35: v .marker [s]← 1 // signal s stolen from v
36: endAtomic
37: if s.execQueue 6= ∅ then // steal succeeded, execute
38: for all req in s.execQueue do
39: exec(req) // execute all stolen requests
40: v .marker [s]← 0 // atomically signal finished execution
41: break for all // steals and executes once, then tries it’s own again

6.2.1.1 Safety Discussion - Order Preservation

We have to argue that Algorithms 7 and 8 preserve the order of conflicting requests.
Said differently, they can only commute independent requests.

The algorithms impose conditions on the contents of readyQueue and execQueue
using readyFlag and execFlag that mark if the respective queues have conflicting requests.
Notice that queues and flags are accessed in the same atomic blocks. This ensures that the
flags are consistent with the respective queue’s contents.

57

The steal procedure states that both readyFlag and execFlag of the victim have to
be 0, that is, both queues have only concurrent requests, to allow the steal to take place.
When this happens, the victim continues execution while the stealer starts processing the
stolen requests. From this point, we have two possibilities: either the stealer thread or
the victim finishes processing its execQueue first. The first case is simple: independent
requests where finished concurrently by the stealer under the conditions imposed and the
victim proceeds to process normally. In the second case the victim will process new incoming
requests draining its readyQueue again. If the new incoming requests are again concurrent,
then they can be processed concurrently with the stealer. Otherwise, to process a conflicting
request the stealer has to finish first. This is ensured in line 16 of Algorithm 8, stating that
the victim will wait for all stealers to finish before proceeding to the conflicting request. The
stealer s, when finishing processing will signal on the specific victims v marker (v .marker [s]).

The above ensures that no conflicting requests are commuted, either by prevent-
ing steal to take place or by having the victim await stealers to finish before processing a
conflicting request enqueued after the stolen ones - which are the only cases possible.

6.2.1.2 Liveness Discussion - No Deadlock

By construction, we can observe in Algorithm 8 that, once a thread s steals from
v , s unconditionally processes the whole contents of its execQueue. Also, we observe that
a victim, when processing its execQueue, either proceeds independently or it awaits stealer
threads to finish. Since stealer threads unconditionally process their contents, eventually
the victim will proceed to process its execQueue. Also, notice that if the victim is awaiting
for a stealer s1 to finish it is because its ready flag is set (there is a conflicting request) and
thus it will not become a victim of another stealer s2. This ensures that once a victim has
a conflicting request to process, eventually all current stealers will have finished their stolen
works and that no new steal attempt will succeed. Therefore the victim is ensured to make
progress.

A stealing cycle among threads is possible but does not deadlock. Suppose t1 has
empty readyQueue and tries to steal from t2 which is executing from its execQueue and has
items in readyQueue. t1 becomes stealer and t2 victim. Now suppose that t2 finishes its
execQueue, finds its readyQueue empty, tries to steal from t1. t1 is processing stolen work
from t2 but in the meanwhile its readyQueue is populated. t2 steals from t1. We have a steal-
ing cycle. Both threads nonetheless will make progress since by construction the stolen
work is independent and therefore unconditionally processed. While non-conflicting com-
mands are issued, threads can freely steal from each other as stealers are idle (depending
on the workload, this process may cause threads just to switch work, in other cases better
balancing could be achieved). When a conflicting command is issued to a thread, it cannot
become a victim anymore and will process its queue on its own.

58

6.2.2 STEALING WHILE SYNCHRONIZING

Although the approach presented before introduces the concept of stealing work
from possibly overloaded threads, it is restricted to the situation where there are no requests
available for standard execution. The next step is to extend the algorithm to afford stealing
also while waiting for synchronizing execution.

In order to increase the possibility of successful stealing attempts, and based on
the results of Chapter 5 which have shown the high levels of thread idleness during synchro-
nization, we need to provide a way for threads to steal also when idle for synchronization of
sequential requests.

6.2.2.1 Semi-blocked synchronization

To provide stealing during synchronization process, it is necessary to replace the
first barrier blocking step from the basic early scheduling approach (lines 17 and 21 of Algo-
rithm 8), for a non-blocking synchronization mechanism.

We can use atomic variables to synchronize threads. Using an array of atomic inte-
gers per class, we can provide a way for threads to record an arrival at the point of execution
of a sequential request for a specific class, without being blocked, by simply increment the
atomic variable, as a counter. Such a strategy allows us to identify the last thread to arrive
and orientate it to execution, while previous threads are orientated to stealing procedures,
until the execution is done. After the executor thread finishes execution, it signals the other
threads and proceeds to the barrier, waiting for synchronization before proceeding to stan-
dard execution. The stealers keep checking if the execution finished, and once it does,
proceed to the barrier to wait for synchronization.

Using this strategy, we implemented a new version of the work-stealing algorithm.
However, it was necessary to provide stronger conditions to ensure correctness and lineariz-
ability, as described next.

• Stealing points: the stealer must be waiting for new requests in its own execution
queue; or waiting for synchronization of a sequential request - this second point is
introduced in this algorithm;

• Stealing condition: depends on the stealing point. The same conditions of the previous
work-stealing algorithm are kept if the stealer is waiting for new requests. For the
second stealing point: while synchronizing for request of class C1, stealer thread s can
not steal requests from any class C2, from any victim thread v , if C1 and C2 conflict.
This prevents the stealer thread do commute order of conflicting requests.

• Who is stolen: same as previous work-stealing algorithm;

59

• Number of occurrences of steal: a stealer will repeatedly attempt to steal until either:
1) new requests arrive to its own execution queue, in case when it proceeded to steal
because its queue was empty; or 2) the sequential request execution is done, in case
it proceeded to steal when waiting for synchronization of a sequential request.

• How much work is stolen: same as previous work-stealing algorithm.

Algorithms 10 and 11 show the adapted execution model of semi-blocked work-
stealing. We called it semi-blocked because it still has a blocking step. Algorithm 9 shows
some general definitions used by the semi-blocked work-stealing algorithms.

Algorithm 9 General Semi-Blocked Work-Stealing Definitions.
1: // extends definitions in Algorithm 6
2: shared variables: // consistent under concurrent manipulation
3: ∀t ∈ T
4: readyClasses[C]← [0, ..., 0] // 1 at entry c means t .readyQueue contains req of class c. 0 otherwise
5: syncMark [c1, ..., cnc]← [0, ..., 0] // one atomic integer request class
6: access functions:
7: syncMark [c].get() // atomically read and return value
8: syncMark [c].set() // atomically return and set the value, respectively
9: syncMark [c].incGet() // atomically increment and returns value

Algorithm 10 Scheduler For Stealing while Synchronizing.
1: on deliver(Request: req):
2: if CtoT (req.class).mode = Seq then
3: ∀t ∈ CtoT (req.class).threads
4: atomic:
5: t .readyQueue.fifoPut(req)
6: t .readyFlag ← 1
7: t .readyClasses[req.class]← 1 // signal t ’s readyQueue now contains req’s class
8: endAtomic
9: else

10: PickInRoundRobin(CtoT (req.class).threads).readyQueue.fifoPut(req)
11: t .readyClasses[req.class]← 1 // signal t ’s readyQueue now contains req’s class

Algorithm 10 extends the functionality of Algorithm 7 by controlling a new structure
in each thread called readyClasses. This structure is an array indexed by request classes to
represent the classes of requests present in the readyQueue. After assigning any request
r from class c to thread t , the scheduler updates the position in t .readyClasses indexed
by the respective request class c. The value 1 at entry c in t .readyClasses means that
t .readyQueue contains a request of class c. Value 0 means that no request of class c is
present in t .readyQueue.

The Algorithm 11 is the worker thread that extends functionality of Algorithm 8.
It accesses a shared array (called syncMark) of atomic counters, one for each class, as
well as the same barriers array, one for each class, as the previous algorithm. Whenever a
sequential request is about to be executed, all threads signal arrival at the execution point

60

Algorithm 11 Worker Thread t for Semi-Blocked Work-Stealing
1: constant:
2: thisTh ∈ T // the current thread

3: Worker-Thread t is as follows:
4: while true do
5: atomic:
6: execQueue← readyQueue
7: execFlag ← readyFlag
8: readyQueue← ∅
9: readyFlag ← 0

10: readyClasses ← [0, ..., 0] // clear readyClasses when transfering requests to execQueue
11: endAtomic
12: if execQueue 6= ∅ then
13: while req ← execQueue.fifoGet() do
14: if CtoT (req.class).mode = Seq then
15: for all s ∈ T \ {thisTh} do
16: wait until marker [s] = 0
17: if syncMark [req.class].incGet() = CtoT (req.class).nThreads then // signal arrival
18: exec(req) // last thread to arrive executes
19: syncMark [req.class].set(0) // signal execution is done
20: barrier [req.class].await() // synchronizes after execution
21: else
22: while syncMark [req.class].get() 6= 0 do // while execution not finished
23: Steal(thisTh, req.class) // attempt to steal, informing current class
24: barrier [req.class].await() // synchronizes after execution
25: else
26: exec(req)
27: else
28: Steal(thisTh, null) // attempt to steal, informing no class

29: procedure Steal(s ∈ T , c ∈ C) // s is the stealer thread, c is null or the class of seq req being executed
30: for all v ∈ (T \ s) do
31: atomic:
32: if v .readyFlag = 0 ∧
33: v .execFlag = 0 ∧
34: (c = null ∨ // no class was informed, or
35: NoConflict(v , c)) ∧ // no conflict with class c
36: v .readyQueue 6= ∅ then
37: s.execQueue← v .readyQueue
38: v .readyQueue← ∅
39: v .marker [s]← 1
40: v .readyClasses ← ∅ // if steal succeeds, clear victim’s readyClasses
41: endAtomic
42: if s.execQueue 6= ∅ then // if steal succeeded
43: for all req in s.execQueue do
44: exec(req)
45: v .marker [s]← 0 // atomically signal finished execution
46: break for all // steals and executes once, then tries it’s own queue; or verifies mark

47: procedure NoConflict(v ∈ T , c1 ∈ C) // v is the victim thread, c1 is the class of seq req being executed
48: for all c2 ∈ RC(c1).conflicts do // for each class c2 conflicting with c1:
49: if v .readyClasses[c2] = 1 then // if it is present in v .readyQueue, then:
50: return false // return false
51: return true // if no conflicting class is included in v .readyQueue, return true

of the respective request class. The last thread to arrive is responsible for executing the
request. Other threads are free to attempt stealing while the executor has not finished yet.

61

The Steal() procedure implements the same stealing algorithm presented in Al-
gorithm 8, yet augmented with a new restriction. If parameter c, which is the class of the
request being synchronized for execution, is informed (value not null), the stealer s attempt-
ing to steal from victim v is not allowed to steal requests from any class that may conflict
with c. This is ensured with the NoConflict procedure that checks the conflicts of the request
classes. In the case of any conflicting class, steal does not succeed. If the steal succeeds,
s must atomically clear v .readyClasses.

Safety Discussion - Order Preservation

We argue that Algorithms 10 and 11 preserve the order of conflicting requests.
As in the first work-stealing execution model (Algorithms 7 and 8) they can only commute
independent requests. The new algorithms impose the same conditions on the contents of
readyQueue and execQueue using the same flags. Hence, they also ensure that the flags
are consistent with the respective queue’s contents.

The first stealing point is handled as the previous algorithm and will not be dis-
cussed. For the second stealing point, the work stolen cannot conflict with the stealer’s
ongoing synchronization class. As this strategy supports non-blocking arrival at the execu-
tion point, there are two possibilities: all threads, except the last to arrive, enter the stealing
block (line 22), and the last thread enters the execution block (line 18). From this point, one
thread executes the sequential request, and other threads perform steal attempts. When
stealer s attempts to steal from victim v , and s is waiting for execution of a request of class
c1, the steal can not succeed if v .readyQueue contains class c2 that conflicts with c1. To
ensure that, the stealer atomically verifies the values of v .readyClasses with respect to c1,
aborting the steal if it finds a conflict. This ensures that no conflicting requests are commuted
by preventing the steal in face of a conflict.

Both execution flows stop at the blocking step (method await) at lines 20 and 24 of
Algorithm 11, ensuring no conflicting request is commuted.

Liveness Discussion - No Deadlock

We argue by stealing points. The first point, when the stealer’s readyQueue is
empty, was argued in the previous algorithms. We have to discuss the second stealing
point.

Recall that due to the stealing conditions, only victim’s concurrent requests, when
the victim is processing concurrent requests, can be stolen and processed by a stealer.
From the victim’s point of view, the order is not violated due to the nature of its requests.
The stealing conditions prevent a stealer from stealing requests that conflict with the request
it is currently awaiting for synchronization (second stealing point). In such case it cannot

62

steal because it cannot tell the right order among them, this has to be enforced by the early
scheduling execution model.

Therefore, the same arguments as in the previous algorithm apply: a stealer exe-
cutes unconditionally; eventually all stealers of a victim finish; if the victim has concurrent
requests in its readyQueue it continues processing (and possibly being victimized by other
stealers); if the victim has a sequential requests, stealers cease to steal, finish their current
stolen works, and the victim synchronizes for the sequential request as stated in the early
scheduling execution model.

6.2.2.2 Barrier-free synchronization

Although the previous approach improves stealing, it is still restricted with a last
barrier blocking step (lines 20 and 24 of Algorithm 11). To further enhance this approach,
we extended the algorithm to eliminate all barrier structures, reaching the same baseline of
concurrency control as the busy-wait algorithm.

In order to eliminate all the barriers we must rely only on atomic variables to syn-
chronize threads. Instead of having arrays of barriers per class, we could augment the cur-
rent array of atomic counter of threads per class. We have already discussed in Section 6.1
that a simple array is not sufficient to ensure progress, and thus we need a bi-dimensional
array (a matrix) to introduce cycles per class.

Algorithm 12 General Barrier-free Work-Stealing Definitions.
1: // extends definitions in Algorithm 9
2: shared variables:
3: syncMark [c1, ..., cnc][2]← [0, ..., 0][0, 0] // one atomic integer per class, per cycle
4: access functions:
5: syncMark [c][cycle].get() // atomically read and returns value
6: syncMark [c][cycle].set() // atomically return and set the value, respectively
7: syncMark [c][cycle].incGet() // atomically increment and returns value

To implement work-stealing with this strategy, no further conditions and properties
other than those from the previous version are needed. The scheduler does not need any
additional modification too. Hence, the scheduler algorithm is the same as the previous
version.

Algorithm 13 shows the adapted worker thread with barrier-free synchronization.
As we can see, this approach is quite similar to the busy-wait strategy. It replaces the usage
of barriers by a matrix (defined in Algorithm 12) of atomic integers per request class per
cycle to synchronize threads. Each thread involved in the execution of a request in class C
must atomically increment a counter associated to C, in its respective cycle. The last thread
to increment is responsible for executing the request and reset the counter. Other threads
will perform stealing attempts until execution is done. The same method Steal() described
for Algorithm 11 works also in this case.

63

Algorithm 13 Worker Thread for Barrier-free Synchronization
1: // Inherits functionality from Algorithm 11
2: variables:
3: cycles[c1, ..., cnc]← [0, ..., 0] // an array of cycles, one per request class
4: Worker-Thread t is as follows:
5: while true do
6: atomic:
7: execQueue← readyQueue
8: execFlag ← readyFlag
9: readyQueue← ∅

10: readyFlag ← 0
11: readyClasses ← ∅
12: endAtomic
13: if execQueue 6= ∅ then
14: while req ← execQueue.fifoGet() do
15: if CtoT (req.class).mode = Seq then
16: for all s ∈ T \ {thisTh} do
17: wait until marker [s] = 0
18: cycles[req.class] = 1− cycles[req.class] // current synchronization cycle for req’s class
19: if syncMark [req.class][cycles[req.class]].incGet() = CtoT (req.class).nThreads then
20: exec(req) // last thread to arrive executes
21: syncMark [req.class][cycles[req.class]].set(0) // signal execution is done
22: else
23: while syncMark [req.class][cycles[req.class]].get() 6= 0 do // while exec not finished
24: Steal(thisTh, req.class) // attempt to steal, informing current class
25: else
26: exec(req)
27: else
28: Steal(thisTh, null) // attempt to steal, informing no class

Safety and Liveness

In this work-stealing version, both the scheduler algorithm and stealing procedure
do not change. Hence, they still consistent as explained before. However, we argue that
the changes in the worker thread algorithm do not invalidate its previous consistency. The
atomic flags matrix used to coordinate the synchronization process was already discussed
in Section 6.1. Removing the barriers structure does not affect execution flows. The new
mechanism with atomic flags to control synchronization ensures the same execution flow
since the arrival at execution point is corresponding to atomically increment the counter of
the respective class and cycle. As it is atomic, only one thread is the last one to increment
and thus responsible for execution. All other threads become free to steal. After execu-
tion, resetting the counter, in its respective class and cycle, ensures all stealer threads will
continue to standard execution, as well as the victim thread.

6.2.2.3 Choosing Victims

The above strategy to victim selection can be improved. When attempting to steal,
all free threads choose the same victim (the one with the smallest id), possibly resulting in
contention. A better approach would be each thread to choose a different victim. Two such

64

strategies were implemented within this version of work-stealing. In both approaches the
"Who is stolen" property was changed as described next.

a. Random work-stealing: whenever a thread is free to steal, it will randomly choose
a thread to perform a stealing attempt. A simple modification in the steal procedure
method was needed to implement this strategy;

b. Smart work-stealing: whenever a stealer s is free to steal, it will cyclically choose a
victim v such that v .id = s.id + 1 to perform a stealing attempt. By cyclically we mean
that when s.id = nThreads − 1 then it will choose victim v where v .id = 0. Another
simple modification in the steal procedure was needed to implement this strategy.

The random work-stealing did not show performance gains. The smart approach,
however, succeeded. Hence, in the next enhanced algorithm, we kept this strategy.

6.2.2.4 Optimistic work-stealing

We have seen so far, in this Chapter, a series of algorithms being incrementally
improved with different synchronization strategies to provide better work distribution and
balancing. However, the last presented algorithm, despite being wait-free while synchroniz-
ing, still has a high level of contention. When increasing the number of threads, the overhead
imposed by atomic mechanisms used to provide mutual exclusion when accessing shared
state (e.g. queues and synchronization controllers) can slow down system performance.
This circumstance becomes evident in the experiments presented in the next Chapter, in
section 7.2.2.1.

The next step of enhancement is to improve the strategy when accessing shared
state to verify stealing conditions. In [25] the authors present a study of different well-
established approaches of parallel algorithms. One of these approaches is called optimistic
synchronization, in which, while searching for some condition in shared state, thread t does
not acquire mutual exclusion objects (e. g. locks). If the condition is satisfied, then it does,
and reevaluates the condition before committing execution. This strategy resorts to the idea
that reevaluation succeeds most of the times, therefore called optimistic. It avoids overhead
and contention by decreasing usage of mutual exclusion objects while accessing (testing)
shared state only to successful situations.

Based on this concept, we implemented a version of a work-stealing algorithm
that verifies stealing conditions without acquiring mutual exclusion mechanisms. Notice that
such mechanisms are implicit in the atomic blocks in algorithms presented so far. The mu-
tual exclusion is w.r.t. the victim’s structures (queues, flags, syncMark , readyClasses) be-
cause they are subject to different stealers. Each stealer manipulates its own structures
(execQueue).

65

Algorithm 14 The Steal Procedures for Optimistic Work-Stealing
1: // Inherits functionality from Algorithm 13
2: procedure Steal(s ∈ T , c ∈ C)
3: for all i ∈ [0, ..., T .length] do // one attempt for each thread
4: v ← smartPickVictim(s) // choose victim using smart approach
5: if Validation(c, v) then // evaluate conditions without lock
6: atomic: // lock () - if steal conditions satisfied, lock
7: if Validation(c, v) then // reevaluate conditions
8: s.execQueue← v .readyQueue
9: v .readyQueue← ∅

10: v .marker [s]← 1
11: v .readyClasses ← ∅
12: endAtomic // unlock () after committing steal
13: if s.execQueue 6= ∅ then // execute stolen commands
14: for all req in s.execQueue do
15: exec(req)
16: v .marker [s]← 0
17: break for all // stops stealing for now
18: else
19: endAtomic // unlock () - if reevaluation fails, try next victim

// if unlocked evaluation (line 5) fails, try next victim

20: procedure Validation(c ∈ C, v ∈ T) // performs validation of stealing conditions w.r.t class c and victim v
21: return v .readyFlag = 0 ∧
22: v .execFlag = 0 ∧
23: (c = null ∨
24: NoConflict(v , c)) ∧
25: v .readyQueue 6= ∅

The optimistic work-stealing ensures the same conditions and properties as the
previous versions. The scheduler does not need any additional modification. Hence, the
scheduler algorithm is the same. The basic worker thread execution model does not need
any additional modification too. Therefore, we present only the steal procedures.

As we can see in the Algorithm 14, the stealing algorithm chooses a victim using
the smart approach (function smartPickVictim). Moreover, it verifies the stealing conditions
(method Validation) twice. First, without acquiring mutual exclusion. If the validation suc-
ceeds, it acquires mutual exclusion and re-executes validation. If it now fails, it releases
mutual exclusion without stealing, otherwise, it commits the steal and then releases mutual
exclusion, proceeding normally as before.

Safety and Liveness

As stated above, the previous scheduler and worker thread algorithms do not
change in this version. The only change presented here is in the process of validation of
stealing conditions. The validation itself does not change. The stealing procedure execution
flow has only been augmented with a pre-validation step which is executed without mutual
exclusion. Yet, the real validation will take place if the former succeed, and it will be consis-

66

tently executed inside a mutual exclusion atomic block, ensuring the same consistency as
the previous stealing procedure.

67

7. ENHANCEMENTS EVALUATION

We have fully implemented all algorithms described in the previous Chapter on top
of the early scheduling implementation, which was built with JAVA programming language
and the BFT-SMaRt state machine replication library. Now we present its evaluation.

7.1 EXPERIMENTS CONFIGURATIONS

We used the same environment, application, operation costs and workload distri-
butions as described in experiments of Chapter 5. Configurations such as the number of
server and client processes, system warm-up and duration of execution were also the same.
We used equivalent class-to-threads mappings augmented to support a larger number of
threads, in some cases, to provide a higher level of concurrency and opportunities to steal.

Our work-stealing technique ensures consistency by stating that only concurrent
requests can be stolen, and no requests under execution by victims are conflicting with re-
quests being stolen. Therefore not only the ratio of concurrent vs. conflicting requests mat-
ters, but also their distribution along the workload. Regarding this aspect, we experimented
both uniform and exponential distribution of concurrent and sequential requests. The ex-
ponential distribution is frequently found in several phenomena such as the distribution of
network packets over time, interval between requests, and others [27].

In the second case, we configured the clients to generate conflicting requests ex-
ponentially distributed among concurrent ones. We took care of keeping the same ratio
between concurrent and sequential requests as in the uniform distribution. The exponential
distribution generates larger chunks of concurrent requests in the workload, increasing the
probability for the stealing conditions to happen. We adopted the second distribution for the
purpose of measurements.

7.2 SINGLE-SHARD

We start by presenting the results for a single-sharded application experiment. In
this case, client processes issue requests to the only one shard that the application in service
replicas supports. We vary the percentage of conflicting requests (i.e. writes), operation
costs and number of threads.

68

7.2.1 BUSY-WAIT RESULTS

Figure 7.1 presents the results of the busy-wait approach. As we can see, this
approach shows, with 8 to 12 threads, a performance slightly better than the original early
scheduling algorithm when the percentage of conflicts is low with light costs (Figure 7.1(a)).
This happens because, with low levels of conflicts, there is much more concurrent execution
with early scheduling, and thus much less barrier synchronization.

However, as the level of conflicts increases, we have seen in experiments of Chap-
ter 5 that the level of idleness in the original early scheduling also increases. That happens
due to higher rates of system calls caused by the blocking methods of the barriers used to
synchronize threads. This phenomenon becomes evident as the busy-wait approach shows
its gain, for there is no system calls to block threads, for the synchronization mechanism
keeps threads active while waiting in a loop. As we can see in Figures 7.1(b) and 7.1(c),
the throughput of the busy-wait approach reaches levels at about four times higher than the
original early scheduling. Our busy-wait approach reaches 150k operations executed per
second with 8 threads and 15% of writes. The sequential version reaches about 50k op-
s/sec. The late scheduling reaches about 25k ops/sec, and the early scheduling reaches at
most about 55k ops/sec with 2 threads and 15% of writes. With 30% of writes, busy-wait
reaches 100k ops/sec, while sequential, late and early scheduling reaches 52, 15 and 50k
ops/sec, respectively.

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

(a) 1% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

(b) 15% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

(c) 30% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

(d) 1% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

(e) 15% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

(f) 30% writes

Figure 7.1 – Results for single shard, light costs (top) and moderate costs (bottom).

We can also observe the impact of the operation costs in the early scheduling orig-
inal approach. In Figure 7.1(d), even with a low level of conflicting requests, this approach
can reach at most 110k ops/sec with 10 to 16 threads, when processing moderate costs op-

69

erations. On the other hand, the busy-wait reaches levels of 220k ops/sec with 40 threads.
The same behavior was also observed with heavy operation costs, which we omit to avoid
being repetitive. When increasing the percentage of conflicting requests, in this scenario,
the performance falls for all approaches, yet the busy-wait sustains at least two times more
throughput than other ones.

7.2.2 WORK-STEALING RESULTS

Although the busy-wait strategy shows performance gains, as we already stated,
it is not recommended to assume an available processor for each worker thread. To hold
a processing resource consuming all its capacity while waiting in a loop without doing any
profitable work is not advised. Therefore we presented the work-stealing strategy, to demand
stealing attempts for those misused processors, and we now evaluate such strategy.

7.2.2.1 Work-Stealing Algorithms Evolution

In Section 6.2 of Chapter 6 we have seen an evolution of work-stealing approaches.
Each version was enhanced to afford more stealing capacity for worker threads, and thus
possibly enhance the system performance.

In Figure 7.2 we can observe the comparison of each version of work-stealing and
the original early scheduling approach. We represent each algorithm as follows:

• Early: the original early scheduling approach;

• WS Queue: the first work-stealing implementation, in which the steal takes place only
when threads do not have work in their own queues;

• WS Semi-b: the second work-stealing implementation, where threads steal when wait-
ing for synchronization too, yet proceeding to barrier synchronization when both exe-
cution or steal is done;

• WS Non-b: the barrier-free work-stealing approach. In this version there are no more
barriers, synchronization is held by atomic variables;

• WS Opt: the final incremental work-stealing approach, where the stealing conditions
are verified a-priori outside mutual exclusion, yet reevaluated inside it;

The incremental characteristic of each version can be seen in the results. Our two
first versions, WS Queue and WS Semi-b, do not show performance gains when compared
to early scheduling. Despite in some cases (2 and 4 threads in Figure 7.2(a)) they have

70

a throughput higher than early scheduling, in general, the three strategies present similar
throughput. This result is expected, once the stealing opportunities are very small in the first
version, considering that we experimented a configuration with high demand from clients,
causing the queues to not be frequently empty. The second version, in turn, still has the
expensive barrier synchronization.

 0
 50

 100
 150
 200
 250
 300
 350
 400

2 4 8 16 32 40

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Early
WS Queue

WS Semi-b
WS Non-b

WS Opt

(a) 1% writes

 0
 50

 100
 150
 200
 250
 300
 350
 400

2 4 8 16 32 40

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Early
WS Queue

WS Semi-b
WS Non-b

WS Opt

(b) 15% writes

 0
 50

 100
 150
 200
 250
 300
 350
 400

2 4 8 16 32 40

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Early
WS Queue

WS Semi-b
WS Non-b

WS Opt

(c) 1% writes

 0
 50

 100
 150
 200
 250
 300
 350
 400

2 4 8 16 32 40

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Early
WS Queue

WS Semi-b
WS Non-b

WS Opt

(d) 15% writes

Figure 7.2 – Work-stealing algorithms comparison: single shard, light costs (top) and mod-
erate costs (bottom).

The third work-stealing implementation (WS Non-b), in turn, presents good im-
provements when compared to the early scheduling technique. Removing the overhead
caused by the barriers, and the contention decreased by the smart stealing strategy, it shows
good results and improved the overall system performance. Finally, the optimistic (WS Opt)
version surpassed all other approaches, showing a gain of more than twice the throughput
of any other version, in some cases. This result was also expected, once the final version
includes all improvements that were incrementally aggregated to each version. Moreover,
there is a huge gain obtained when decreasing overhead by cutting usage of mutual exclu-
sion objects while accessing shared state.

As the optimistic version has shown the best performance among all work-stealing
strategies implemented, from now on we present only results of this version, when referring
to work-stealing results.

71

7.2.3 BUSY-WAIT VS. WORK-STEALING

Here we compare the busy-wait with the final work-stealing approach that we im-
plemented. As depicted in Figure 7.3, we found that both approaches present similar perfor-
mances, statistically speaking.

Although the work-stealing mechanism affords the possibility of a better work dis-
tribution among threads, it introduces additional overhead, which ends up by restricting its
performance gains. The busy-wait approach, in turn, does not introduce overhead to man-
age complex relations of stealing requests among threads, neither make use of expensive
resources to deal with synchronization and mutual exclusion. On the contrary, it relies on
simple atomic variables, which are architecture native structures, much cheaper than the
structures used in work-stealing. This leads the busy-wait approach to present, in most
cases considered, a performance slightly better than the work-stealing approach.

However, when limited resources are available, one would consider that a busy-
wait approach is not well suitable, once it is very prone to demand high processing efforts
without doing any profitable work. The work-stealing is also prone to such drawback, yet on
a smaller scale, for it has much more potential to process useful information when underuti-
lized threads succeed in stealing work from overloaded ones.

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

Work-Stealing

(a) 1% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

Work-Stealing

(b) 15% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

Work-Stealing

(c) 30% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

Work-Stealing

(d) 1% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

Work-Stealing

(e) 15% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 10 12 16 32 40 48 56

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Worker threads

Seq
Late

Early
Busy-Wait

Work-Stealing

(f) 30% writes

Figure 7.3 – Results for single shard, balanced workloads, light costs (top) and moderate
costs (bottom).

Both work-stealing and busy-wait strategies reach throughput levels close to 250k
ops/sec, in this single-sharded scenario, with 12 and 16 threads, light costs and low per-
centage of writes (Figure 7.3(a)). The behavior observed for the busy-wait approach, is also
observed in work-stealing. As the level of conflicts increases, the work-stealing approach

72

shows its gain, reaching levels at about four times higher than the original early and late
scheduling algorithms (e.g. Figure 7.3(b)).

7.3 MULTI-SHARD

In this section, we present results of multi-sharded application experiments. In
this case, client processes randomly choose a shard to issue requests at replicas. We
considered balanced and skewed workloads, with the same distributions of requests among
shards as described in the experiments of Chapter 5.

We also considered different numbers of shards, percentage of conflicting requests
(i.e. writes) and percentage of global (i.e. multi-shard) operations. We fixed the number of
threads to 32, and operation costs to light, based on the results from previous experiments
where these configurations show the best performance.

Figures 7.4 and 7.5 present results for 2, 4 and 8 shards, with 1% and 15% of
global operations issued by the clients.

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(a) 5% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(b) 25% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(c) 50% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(d) 5% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(e) 25% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(f) 50% writes

Figure 7.4 – Results for 1% global requests, balanced workload (top) and skewed workload
(bottom).

As we can see, varying the number of shards does not have much impact on se-
quential and late scheduling. The same is not observed for early scheduling. Actually, it
occurs the opposite: the higher number of shards, the higher concurrency of operations
among shards, thus better the performance. The same occurs for busy-wait and work-
stealing approaches. However, in the high conflicting balanced workload scenario (Figures
7.4(b), 7.4(c), 7.5(b) and 7.5(c)) our approaches show far better results than other ones. That
happens due to the advantage of increasing both the conflicting requests and the number

73

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(a) 5% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(b) 25% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(c) 50% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(d) 5% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(e) 25% writes

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8

Av
g

th
ro

ug
hp

ut
 (k

op
s/

se
c)

Shards

Seq
Late

Early
Busy-Wait

Work-Stealing

(f) 50% writes

Figure 7.5 – Results for 15% global requests, balanced workload (top) and skewed workload
(bottom).

of shards. Increasing conflicts is not beneficial for the early scheduling approach (high con-
tention and overhead caused by the barriers). But it is for our approaches, for the busy-wait
does not suffer the effects of barrier overhead. Work-stealing benefits from higher opportu-
nities of steal, either due to high level of conflicting requests and higher number of shards,
for there are more opportunities of stealing concurrent requests from other shards.

Skewed workloads impact more the early scheduling and our approaches than late
and sequential. However, the work-stealing approach is less impacted in more concurrent
scenarios. Consider Figures 7.4(a) and 7.4(d), with 8 shards, we can see that the busy-wait
approach falls from about 240k ops/sec in the balanced scenario to 160k ops/sec in skewed
one. This represents a loss of 44% in throughput. The work-stealing approach falls from
160k ops/sec to about 150k ops/sec, representing only 7% of loss. Similar phenomenon
occurs in Figures 7.5(a) and 7.5(d) for the case with 15% of global requests. This happens
because work-stealing can minimize the skewed effect. Stealing work causes a better distri-
bution of requests among threads in scenarios where the stealing conditions provide enough
stealing capacity.

74

75

8. CONCLUSIONS

The sub-field of State Machine Replication architectures has been studied for sev-
eral years in the academy, for it has great relevance in the field of distributed systems.
Many efforts, as related throughout this dissertation, were done in this context to provide en-
hancements to SMR. Regarding parallel SMR, there are a vast number of methods to scale
throughput using different approaches of scheduling decisions that allow concurrency while
assuring replica consistency. Consequently, the computer industry has integrated such re-
search results in many contexts, as already mentioned before. Given this context, the aim
of our work here was to contribute with more research in this area and to the design and
construction of dependable systems, especially high-throughput P-SMR. We exploited sce-
narios where scheduling techniques could lead to poor resource utilization. We investigated
how to apply well established concurrent techniques, e.g. work-stealing, that could both
reduce processor idleness and improve load balance, consequently improving system per-
formance.

Although many works have proposed different approaches to P-SMR, we could not
find any previous research integrating work-stealing concepts within P-SMR architectures. In
this work we introduced this alternative, shedding some light in this not yet addressed aspect
in the P-SMR literature, suggesting the study and application of work-stealing concepts in
P-SMR. To do so, we extended an existing P-SMR approach to deal with work-stealing
techniques. We presented our results, opening up new opportunities for further studies on
the subject with the potential to generate new results to scalable reliable systems.

We investigated the early scheduling technique in more detail, and conducted stud-
ies on how to enhance its current execution model, with different strategies. The busy-wait
approach, for example, is a quite simple approach that emerged while we were studying the
integration of early scheduling and work-stealing. It came from the endeavor of observing
how the overhead caused by the work-stealing consistency assurances could impact system
performance. We found that simply removing the barriers was enough, in many scenarios,
to overcome early scheduling restrictions and to provide considerable performance gains.
Since that finding, we parallelized our research with both strategies and discussed their
results.

8.1 FUTURE WORK

As stated above, this study opens up new opportunities for further research and
improvements using the techniques here presented and discussed. We could extend the
Algorithm 13, for example, to provide more stealing opportunities. This could be achieved

76

by updating the execFlag in advance, while executing its own requests, enabling the thread
to become victim as soon as there is no more sequential requests in its execQueue.

Morevoer, in the future, we aim to deepen research with other scheduling ap-
proaches, investigating whether work-stealing techniques could be applied and succeeded
with considerable performance gains. We intend to continue the research to review the state
of the art and deepen the studies on existing protocols and implementations available. More
specifically, with different scheduling techniques, we want to analyze those protocols from
the resource utilization and load balance perspectives. Then, we will focus our efforts to
understand how work-stealing could contribute in each specific case.

With early scheduling we experimented the possible integration of work-stealing to
parallel scheduling at the replicas level. However, we also intend to conduct studies and
experiments to verify if, due to design choices or other aspects, available implementations
of scheduling techniques could restrict concurrency levels due to poor resource utilization
and work distribution. Therefore, we aim to introduce a generalization study, from which
we expect to understand how a generic approach of work-stealing could be conceived as a
framework. Such framework would be suitable to any P-SMR scheduling technique which
implements a minimum set of common characteristics, such as dependency tracking and
intra-replica scheduling. From the studies and experience gained in this work and future
research, a generalized work-stealing algorithm would be conceived, targeted at supporting
highest possible portability through a generic integration interface.

77

REFERENCES

[1] Acar, U. A.; Blelloch, G. E.; Blumofe, R. D. “The data locality of work stealing”.
In: Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and
Architectures, 2000, pp. 1–12.

[2] Agrawal, K.; Fineman, J. T.; Lu, K.; Sheridan, B.; Sukha, J.; Utterback, R. “Provably
good scheduling for parallel programs that use data structures through implicit
batching”. In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms
and Architectures, 2014, pp. 84–95.

[3] Agrawal, K.; Leiserson, C. E.; Sukha, J. “Helper locks for fork-join parallel
programming”. In: Proceedings of the 15th ACM Symposium on Principles and Practice
of Parallel Programming, 2010, pp. 245–256.

[4] Alchieri, E.; Dotti, F.; Marandi, P.; Mendizabal, O.; Pedone, F. “Boosting state machine
replication with concurrent execution”. In: Proceedings of the Eighth Latin-American
Symposium on Dependable Computing, 2018, pp. 77–86.

[5] Alchieri, E.; Dotti, F.; Mendizabal, O. M.; Pedone, F. “Reconfiguring parallel state
machine replication”. In: Proceedings of the IEEE 36th Symposium on Reliable
Distributed Systems, 2017, pp. 104–113.

[6] Alchieri, E.; Dotti, F.; Pedone, F. “Early scheduling in parallel state machine replication”.
In: Proceedings of the ACM Symposium on Cloud Computing, 2018, pp. 82–94.

[7] Batista, E.; Alchieri, E.; Dotti, F.; Pedone, F. “Resource utilization analysis of early
scheduling in parallel state machine replication”. In: Proceedings of the 9th Latin-
American Symposium on Dependable Computing, 2019, pp. 1–10.

[8] Berenbrink, P.; Friedetzky, T.; Goldberg, L. A. “The natural work-stealing algorithm is
stable”. In: Proceedings of the IEEE International Conference on Cluster Computing,
2001, pp. 178–187.

[9] Bessani, A.; Sousa, J.; Alchieri, E. E. P. “State machine replication for the masses with
BFT-SMART”. In: Proceedings of the 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, 2014, pp. 355–362.

[10] Blelloch, G. E.; Gibbons, P. B.; Matias, Y. “Provably efficient scheduling for languages
with fine-grained parallelism”. In: Proceedings of the Seventh Annual ACM Symposium
on Parallel Algorithms and Architectures, 1995, pp. 1–12.

78

[11] Blumofe, R. D.; Leiserson, C. E. “Scheduling multithreaded computations by work
stealing”. In: Proceedings 35th Annual Symposium on Foundations of Computer
Science, 1994, pp. 356–368.

[12] Burrows, M. “The chubby lock service for loosely-coupled distributed systems”. In:
Proceedings of the 7th Symposium on Operating Systems Design and Implementation,
2006, pp. 335–350.

[13] Burton, F. W.; Sleep, M. R. “Executing functional programs on a virtual tree
of processors”. In: Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, 1981, pp. 187–194.

[14] Chandra, T. D.; Toueg, S. “Unreliable failure detectors for reliable distributed systems”,
Journal of the ACM, vol. 43–2, Mar. 1996, pp. 225–267.

[15] Cole, R.; Ramachandran, V. “Analysis of randomized work stealing with false sharing”.
In: Proceedings of the IEEE 27th International Symposium on Parallel and Distributed
Processing, 2013, pp. 985–998.

[16] Corbett, J. C.; Dean, J.; Epstein, M.; Fikes, A.; Frost, C.; Furman, J. J.; Ghemawat,
S.; Gubarev, A.; Heiser, C.; Hochschild, P.; Hsieh, W.; Kanthak, S.; Kogan, E.; Li, H.;
Lloyd, A.; Melnik, S.; Mwaura, D.; Nagle, D.; Quinlan, S.; Rao, R.; Rolig, L.; Saito,
Y.; Szymaniak, M.; Taylor, C.; Wang, R.; Woodford, D. “Spanner: Google’s globally-
distributed database”. In: Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, 2012, pp. 251–264.

[17] Cui, H.; Gu, R.; Liu, C.; Chen, T.; Yang, J. “Paxos made transparent”. In: Proceedings
of the 25th Symposium on Operating Systems Principles, 2015, pp. 105–120.

[18] Défago, X.; Schiper, A.; Urbán, P. “Total order broadcast and multicast algorithms:
Taxonomy and survey”, ACM Computing Surveys, vol. 36–4, Dec. 2004, pp. 372–421.

[19] Eager, D. L.; Lazowska, E. D.; Zahorjan, J. “A comparison of receiver-initiated and
sender-initiated adaptive load sharing (extended abstract)”. In: Proceedings of the ACM
Conference on Measurement and Modeling of Computer Systems, 1985, pp. 1–3.

[20] Fischer, M. J.; Lynch, N. A.; Paterson, M. S. “Impossibility of distributed consensus with
one faulty process”, Journal of the ACM, vol. 32–2, Apr. 1985, pp. 374–382.

[21] Glendenning, L.; Beschastnikh, I.; Krishnamurthy, A.; Anderson, T. “Scalable
consistency in scatter”. In: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, 2011, pp. 15–28.

[22] Guo, Z.; Hong, C.; Yang, M.; Zhou, D.; Zhou, L.; Zhuang, L. “Rex: Replication at the
speed of multi-core”. In: Proceedings of the 9th European Conference on Computer
Systems, 2014, pp. 1–14.

79

[23] Hadzilacos, V.; Toueg, S. “Fault-tolerant broadcasts and related problems”. In:
Distributed Systems, Mullender, S. (Editor), New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1993, pp. 97–145.

[24] Halstead, Jr., R. H. “Implementation of multilisp: Lisp on a multiprocessor”. In:
Proceedings of the ACM Symposium on LISP and Functional Programming, 1984, pp.
9–17.

[25] Herlihy, M.; Shavit, N. “The Art of Multiprocessor Programming, Revised Reprint”. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012, 536p.

[26] Herlihy, M.; Wing, J. M. “Linearizability: A correctness condition for concurrent objects”,
ACM Transactions on Programing Languages and Systems, vol. 12–3, Jul. 1990, pp.
463–492.

[27] Jain, R. “The Art Of Computer Systems Performance Analysis: Techniques For
Experimental Measurement, Simulation, And Modeling”. Noida, Uttar Pradesh, India:
Wiley India Pvt. Limited, 2008, 685p.

[28] Kapitza, R.; Schunter, M.; Cachin, C.; Stengel, K.; Distler, T. “Storyboard: Optimistic
deterministic multithreading”. In: Proceedings of the Sixth International Conference on
Hot Topics in System Dependability, 2010, pp. 1–8.

[29] Kapritsos, M.; Wang, Y.; Quema, V.; Clement, A.; Alvisi, L.; Dahlin, M. “All about Eve:
Execute-verify replication for multi-core servers”. In: Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation, 2012, pp. 237–250.

[30] Kotla, R.; Dahlin, M. “High throughput byzantine fault tolerance”. In: Proceedings of the
International Conference on Dependable Systems and Networks, 2004, pp. 575–584.

[31] Lamport, L. “Time, clocks, and the ordering of events in a distributed system”,
Communications of the ACM, vol. 21–7, Jul. 1978, pp. 558–565.

[32] Leung, J.; Kelly, L.; Anderson, J. H. “Handbook of Scheduling: Algorithms, Models, and
Performance Analysis”. Boca Raton, FL, USA: CRC Press, Inc., 2004, 1224p.

[33] Marandi, P. J.; Bezerra, C. E.; Pedone, F. “Rethinking state-machine replication for
parallelism”. In: Proceedings of the IEEE 34th International Conference on Distributed
Computing Systems, 2014, pp. 368–377.

[34] Mendizabal, O. M.; Moura, R. S. T. D.; Dotti, F. L.; Pedone, F. “Efficient and
deterministic scheduling for parallel state machine replication”. In: Proceedings of the
IEEE International Parallel and Distributed Processing Symposium, 2017, pp. 748–
757.

80

[35] Olszewski, M.; Ansel, J.; Amarasinghe, S. “Kendo: efficient deterministic multithreading
in software”, ACM Sigplan Notices, vol. 44–3, Mar 2009, pp. 97–108.

[36] Perez, J. M.; Badia, R. M.; Labarta, J. “A dependency-aware task-based programming
environment for multi-core architectures”. In: Proceedings of the IEEE International
Conference on Cluster Computing, 2008, pp. 142–151.

[37] Rossbach, C. J.; Currey, J.; Silberstein, M.; Ray, B.; Witchel, E. “Ptask: Operating
system abstractions to manage gpus as compute devices”. In: Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, 2011, pp. 233–248.

[38] Schneider, F. B. “Implementing fault-tolerant services using the state machine
approach: A tutorial”, ACM Computing Surveys, vol. 22–4, Dec. 1990, pp. 299–319.

[39] Squillante, M. S.; Nelson, R. D. “Analysis of task migration in shared-memory
multiprocessor scheduling”. In: Proceedings of the ACM Conference on Measurement
and Modeling of Computer Systems, 1991, pp. 143–155.

[40] Tchiboukdjian, M.; Gast, N.; Trystram, D. “Decentralized list scheduling”, Annals of
Operations Research, vol. 207, Aug 2013, pp. 237–259.

[41] Yang, J.; He, Q. “Scheduling parallel computations by work stealing: A survey”,
International Journal of Parallel Programming volume, vol. 46–2, Apr 2018, pp. 173–
197.

[42] Yao, X.; Geng, P.; Du, X. “A task scheduling algorithm for multi-core processors”. In:
Proceedings of the International Conference on Parallel and Distributed Computing,
Applications and Technologies, 2013, pp. 259–264.

