
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

TÚLIO LIMA BASÉGIO

DECENTRALISED ALLOCATION OF STRUCTURED TASKS IN HETEROGENEOUS AGENT
TEAMS

Porto Alegre

2018

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

GRADUATE PROGRAM ON COMPUTER SCIENCE

DECENTRALISED
ALLOCATION OF

STRUCTURED TASKS IN
HETEROGENEOUS AGENT

TEAMS

TÚLIO LIMA BASÉGIO

This Thesis has been submitted in

partial fulfillment of the requirements

for the degree of Doctor of Computer

Science, of the Graduate Program in

Computer Science, School of Technology

of the Pontifícia Universidade Católica

do Rio Grande do Sul.

Advisor: Prof. Dr. Rafael Heitor Bordini

Porto Alegre
2018

Túlio Lima Baségio

Decentralised allocation of structured tasks in
heterogeneous agent teams

This Thesis has been submitted in partial
fulfillment of the requirements for the degree of
Doctor of Computer Science, of the Graduate
Program in Computer Science, School of
Technology of the Pontifícia Universidade
Católica do Rio Grande do Sul.

Sanctioned on August 24, 2018

Committee Members:

Prof. Dr. Luís Alvaro de Lima Silva (UFSM)

Prof. Dra. Diana Francisca Adamatti (FURG)

Prof. Dra. Renata Vieira (PPGCC/PUCRS)

Prof. Dr. Rafael Heitor Bordini (PPGCC/PUCRS – Advisor)

“Attitude is a little thing that makes a big

difference.”

(Winston Churchill)

ACKNOWLEDGMENTS

First I would like to express my deepest gratitude to my advisor, Dr. Rafael

Heitor Bordini, for his support, guidance and belief in me. I would like to thank you

people from the SMART research group who share the lab with me while I was doing

the PhD. I would like to thank the Instituto Federal do Rio Grande do Sul (IFRS) for

supporting and partially funding my academic research. Lastly, I would like to thank my

friends, family, and especially, my amazing wife, for believing in me and supporting me

even in the most challenging times.

DECENTRALISED ALLOCATION OF STRUCTURED TASKS IN

HETEROGENEOUS AGENT TEAMS

RESUMO

Sistemas multiagentes permitem o desenvolvimento de soluções flexíveis e ro-

bustas e têm sido utilizados há vários anos na academia e na indústria para projetar

e implementar sistemas distribuídos complexos em vários domínios. No entanto, ainda

há desafios no desenvolvimento de estratégias apropriadas para que times de agentes

operem de maneira eficiente. Um aspecto crítico é a coordenação entre os agentes, que,

apesar dos esforços dos pesquisadores, ainda hoje é um desafio. Agentes precisam se co-

ordenar para alcançar objetivos que não conseguem realizar sozinhos, devido à falta de

conhecimento sobre o mundo ou por qualquer outro motivo, como recursos limitados ou

distância espacial. Na robótica, sistemas com múltiplos robôs também carecem de com-

plexos métodos de coordenação, sem os quais se torna impossível construir verdadeiros

times de robôs. Existem diferentes abordagens propostas para a coordenação em siste-

mas multiagentes e em sistemas multi-robôs, dentre as quais muitas lidam diretamente

com o problema de alocação de tarefas. De fato, a alocação de tarefas é uma importante

área de pesquisa quando se lida com o problema de coordenar grupos de agentes ou

robôs. Além disso, cenários do mundo real geralmente requerem o uso de entidades he-

terogêneas e a execução de tarefas com estruturas e complexidades diferentes. Assim, é

necessário desenvolver métodos que permitam projetar e implantar aspectos relaciona-

dos a alocação de tarefas tornando os sistemas cada vez mais eficientes. Considerando

essa necessidade, apresentamos um mecanismo decentralizado para a alocação de dife-

rentes tipos de tarefas entre múltiplos agentes heterogêneos que desempenham papéis

e executam tarefas de acordo com suas capacidades. A avaliação do nosso mecanismo

de alocação de tarefas foi realizada através de várias simulações. Também avaliamos

nosso mecanismo em uma simulação com tarefas relacionadas ao cenário de busca e

resgate em desastres naturais por inundação, onde vários robôs autônomos podem ser

empregados para apoiar a equipe de resgate. Os resultados mostram que o mecanismo

proposto fornece alocações próximas ao resultado ótimo.

Palavras-Chave: sistemas multiagentes, sistemas multi-robôs, coordenação, alocação

de tarefas.

DECENTRALISED ALLOCATION OF STRUCTURED TASKS IN

HETEROGENEOUS AGENT TEAMS

ABSTRACT

Multi-agent systems allow the development of flexible and robust solutions and

have been used for several years in academia and industry to design and implement

complex distributed systems in various domains. However, there are many challenges in

developing appropriate strategies for multi-agent teams so that they operate efficiently.

One critical aspect is the coordination between agents, which despite much research

effort is still a challenge. Agents need to coordinate to achieve goals that, for whatever

reason, cannot be accomplished alone, due to the lack of knowledge about the world or

for any other reason, such as limited resources and spatial distance. In robotics, sys-

tems with multiple robots also require complex coordination methods, without which it

is impossible to build real robotic teams. There are many approaches proposed in the

literature for MAS and multi-robot system coordination, many of them directly related

to task allocation problems. In fact, task allocation is an important research area in

dealing with the problem of coordinating a group of agents or robots. Besides that, real-

world scenarios usually require the use of heterogeneous entities and the execution of

tasks with different structures and complexities. Thus, it is necessary to develop further

methods to support the design and implementation of aspects related to task allocation.

Taking that into account, we present a decentralised task allocation mechanism consid-

ering different types of tasks for heterogeneous agent teams where agents play different

roles and carry out tasks according to their own capabilities. We have run several experi-

ments in order to evaluate the proposed mechanism. We also evaluate our task allocation

mechanism in a simulation with tasks related to the search and rescue scenario in natu-

ral disaster by flooding where multiple autonomous robots can be employed to support

human rescuers. The results show that the proposed mechanism provides near-optimal

allocations.

Keywords: multi-agent system, multi-robot system, coordination, task allocation.

LIST OF FIGURES

Figure 2.1 – Abstract view of the relationship of an agent with the environment. 31

Figure 2.2 – Generic BDI architecture - adapted from [Woo13] 33

Figure 2.3 – JaCaMo architecture overview [BBH+13]. 43

Figure 2.4 – Procedural Reasoning System (PRS) 44

Figure 2.5 – Jason reasoning cycle [BHW07]. 45

Figure 2.6 – CArtAgO A&A meta-model [RPV11] 47

Figure 2.7 – Example of artifact defined in CArtAgO. 48

Figure 3.1 – Types of tasks considered in this thesis. 52

Figure 4.1 – Overview of the Task Allocation Process. 62

Figure 4.2 – Example of robots and their capabilities. 63

Figure 4.3 – Example of roles the their required capabilities. 64

Figure 4.4 – Example of tasks and their required roles. 64

Figure 4.5 – Example of task definition. 68

Figure 5.1 – Performance results varying the number of agents. 87

Figure 5.2 – Performance results varying the number of agents and agents ca-

pabilities. 88

Figure 5.3 – Performance results varying the number of subtasks. 89

Figure 5.4 – Performance results varying the number of subtasks and agents

capabilities. 90

Figure 5.5 – Performance results varying the number of subtasks for each type

of task. 91

Figure 5.6 – Performance results varying the limit of subtasks the agents can

take. 92

Figure 5.7 – Performance results varying the utility range. 93

Figure 5.8 – Overview of the simulator interactions. 101

Figure 5.9 – Number of bid messages by simulation. 113

Figure 5.10 – Amount of battery spent by simulation. 113

LIST OF TABLES

Table 4.1 – Example of Candidate Subtasks List 78

Table 5.1 – Settings used in the simulations. 86

Table 5.2 – Simulations with the number of tasks greater than the total capacity

of agents. 94

Table 5.3 – Performance results varying the number of subtasks 95

Table 5.4 – Average number of bids and time to complete the allocation 95

Table 5.5 – Performance results varying the number of agents 96

Table 5.6 – Average number of bids and time to complete allocation 96

Table 5.7 – Performance results varying the number of agents/tasks 97

Table 5.8 – Average number of bids and time to complete allocation 97

Table 5.9 – Performance results varying the number of tasks 98

Table 5.10 – Average number of bids and time to complete allocation 98

Table 5.11 – Performance results varying the number of agents 99

Table 5.12 – Average number of bids and time to complete allocation 99

Table 5.13 – Performance results varying the number of subtasks 112

Table 6.1 – Characteristics of the approaches. 124

LIST OF ACRONYMS

A&A – Agents and Artifacts

AI – Artificial Intelligence

BDI – Belief-Desire-Intention

CDM – Centre for Disaster Management

CM – Compound for Many

CN – Compound for Exactly N

DCOP – Distributed Constraint Optimization Problems

DEC-POMDPS – Decentralised POMDPs

DS – Decomposable Simple Task

EA – Entirely Allocated

EIS – Environment Interface Standard

GLPK – GNU Linear Programming Kit

ICBAA – Iterative Consensus-Based Auction Algorithm

MAPC – Multi-Agent Programming Contest

MAS – Multi-Agent Systems

MASSIM – Multi-Agent Programming Simulation platform

MATA – Multi-Agent Task Allocation

MCTS – Monte Carlo Tree Search

MDP – Markov Decision Process

NA – Completely Unallocated

PA – Partially Allocated

POMDPS – Partially Observable MDPs

PRS – Procedural Reasoning System

RBTA – Role-based Task Allocation

SSIA – Sequential Single-Item Auction Algorithm

TAA – Task Allocation Algorithm

UAV – Unmanned Aerial Vehicle

UGV – Unmanned Ground Vehicle

USV – Unmanned Surface Vehicle

CONTENTS

1 INTRODUCTION 25

1.1 MOTIVATION . 27

1.2 OBJECTIVES . 28

1.3 THESIS ORGANISATION . 28

2 BACKGROUND 31

2.1 INTELLIGENT AGENTS AND MULTIAGENT SYSTEMS 31

2.2 COORDINATION IN MULTIAGENT SYSTEMS 34

2.3 MULTI-AGENT TASK ALLOCATION . 36

2.3.1 CONSTRAINT . 36

2.3.2 UTILITY . 37

2.3.3 TASKS . 38

2.3.4 MULTI-ROBOT TASK ALLOCATION 38

2.3.5 EXAMPLES OF APPROACHES USED FOR TASK ALLOCATION . . . 39

2.4 MULTI-AGENT PROGRAMMING . 41

2.4.1 JACAMO . 42

2.4.2 JASON . 44

2.4.3 CARTAGO . 46

2.4.4 MOISE . 48

3 MULTI-AGENT TASK ALLOCATION PROBLEM 51

3.1 TYPE OF TASKS . 51

3.2 SCENARIO EXAMPLE - RESCUE IN FLOOD DISASTERS 52

3.2.1 TASKS AND ROBOTS IN FLOOD SCENARIOS 53

3.2.2 ALLOCATION OF TASKS IN FLOOD SCENARIOS 56

3.3 MULTI-AGENT TASK ALLOCATION PROBLEM 57

4 DECENTRALISED TASK ALLOCATION 61

4.1 OVERVIEW OF THE ALLOCATION PROCESS 61

4.2 DECENTRALISED TASK ALLOCATION . 65

4.2.1 ROLES AND TASKS DEFINITION . 66

4.2.2 ALGORITHMS FOR THE TASK ALLOCATION PROCESS 69

4.2.3 SELECTING THE BEST SUBTASKS USING A KNAPSACK ALGO-

RITHM . 78

4.2.4 DETERMINING THE END OF THE ALLOCATION PROCESS 79

4.2.5 COPING WITH PARTIALLY ALLOCATED TASKS 81

5 EVALUATION 85

5.1 COMPARISON WITH THE OPTIMAL SOLUTION 85

5.1.1 EVALUATION MEASURES . 85

5.1.2 SIMULATION SETTINGS . 86

5.1.3 VARYING THE NUMBER OF AGENTS (SETTING 1) 87

5.1.4 VARYING THE NUMBER OF SUBTASKS (SETTING 2) 88

5.1.5 SIMULATIONS FOR EACH TYPE OF TASK INDIVIDUALLY 90

5.1.6 VARYING THE TASK LIMIT (SETTING 3) 91

5.1.7 VARYING THE UTILITY RANGE (SETTING 4) 92

5.1.8 COPING WITH PARTIALLY ALLOCATED TASKS (SETTING 5) 93

5.2 COMPARISON WITH SSIA AND ICBAA . 94

5.2.1 EVALUATION MEASURES . 94

5.2.2 VARYING THE NUMBER OF SUBTASKS 95

5.2.3 VARYING THE NUMBER OF AGENTS 95

5.3 COMPARISON WITH TAA AND RBTA . 96

5.3.1 EVALUATION MEASURES . 97

5.3.2 COMPARISON WITH TAA . 97

5.3.3 COMPARISON WITH RBTA . 98

5.3.4 DISCUSSION . 99

5.4 EVALUATION IN THE FLOODING DISASTER SCENARIO 100

5.4.1 SIMULATOR . 100

5.4.2 USING THE SIMULATOR . 108

5.4.3 EVALUATION MEASURES . 110

5.4.4 VARYING THE NUMBER OF SUBTASKS 110

6 RELATED WORK 115

6.1 ALLOCATION OF TASKS PERCEIVED OR PROVIDED AT RUNTIME 115

6.2 ALLOCATING AN INITIAL SET OF TASKS 118

6.3 SUMMARY OF THE CHARACTERISTICS OF THE APPROACHES 122

7 CONCLUSION 127

7.1 SUMMARY OF RESULTS . 128

7.2 FUTURE WORK . 128

REFERENCES 131

25

1. INTRODUCTION

Multi-agent systems (MASs) have been used for many years in academia and

industry to design and implement complex systems in different areas such as manufac-

turing, process control, telecommunication systems, air traffic control, among others

[LMP03]. A MAS consists mainly of entities called software agents, which act in an envi-

ronment and interact with each other to solve a problem. Russel and Norvig in [RN09]

define an agent as "anything that can be viewed as perceiving its environment through

sensors and acting upon that environment through actuators". Based on these defini-

tions, it is possible to highlight some essential characteristics of a software agent, such

as autonomy, intelligence and acting in an environment. Considering these individual

characteristics, MASs allow the development of flexible and robust solutions. However,

it is necessary to coordinate the agents so that the system executes efficiently [Par14].

In fact, coordination is an essential aspect of MASs [VSL+10]. In [HS99], Huhns

and coauthors define coordination as "a property of a system of agents performing some

activity in a shared environment". According to Wooldridge in [Woo09], coordinating

means "managing interdependencies between agents’ activities" to achieve a goal. In

practical terms, to coordinate means managing the execution of the activities to avoid

that, for example, agents interfere with/impact negatively on the achievement of the

objectives of other agents. Coordination is related to the social skills of agents, where

agents communicate not only to share data, but communicate at the knowledge level

(which would be the ability to communicate their beliefs, goals, and plans to another

agent) [BHW07]. With coordination, agents can achieve joint objectives and plans that

otherwise might not be possible, thus increasing the problem-solving capacity of a MAS;

it is also possible to ensure that agents coherently and efficiently perform their tasks,

synchronising their actions and interactions with other agents [BBO+02, HS99].

Multi-agent environments can be cooperative or competitive [RN09]. In cooper-

ative environments, agents usually have joint goals and plans, where there are actions

defined for each agent [RN09]. In this case, the agents form a kind of team to achieve

the goals. In competitive environments, there is no commitment to a joint plan, since

agents maintain competition with each other [RN09]. Both cooperation and competition

are related to the agents’ ability to communicate [HS99, BBO+02, YJC13].

Coordination is an important aspect also in the Robotics research area. Nowa-

days, much of the research in the robotics area has discussed solutions related to the use

of multi-robot systems [PGCM+13, YJC13]. Although a system based on a single robot

can perform a series of tasks, other tasks can only be executed by multiple robots, for

example because of inherent physical distribution.

The Agents paradigm has been applied for several years in the area of robotics

[BA95, FRD98, DC98, ILS07, WdS08]. In fact, it is possible to make associations between

26

the characteristics of an individual agent and a robot as well as between the character-

istics of an MAS and those of a multi-robot system, which allows the use of concepts and

techniques from the area of agents to manipulate and control robots in simple systems

and systems composed of multiple robots. Associations are also possible between the

challenges of the two areas: according to [YJC13], one of the challenges in developing

multi-robot systems is precisely the design of coordination strategies in such a way that

robots perform their operations efficiently.

Yan and co-authors suggest that creating coordination strategies that enable

agents to perform tasks efficiently is not a trivial task [YJC13]. Without such strategies,

the use of multi-robot systems in complex scenarios such as rescue operations after a

natural disaster becomes limited or even unfeasible. More generally, the same applies

to multi-agent systems.

Also, there are new lines of research in MASs, such as open systems, which

add even more complexity to coordination aspects, since in open systems it may be

necessary to coordinate heterogeneous agents [BBO+02] into a group of dynamically

changing agents. The need to coordinate heterogeneous entities is also a challenge in

multi-robot systems since they can be composed of robots with different types of mobility,

sensors, physical and computational capabilities.

In the recent literature, there are various approaches proposed for the coor-

dination of agents in MASs [DS08, XLL12, YWN10] as well as multi-robot systems

[SUIM10, CSVJRC14, Hui10]. Regardless of the characteristics of the proposed coor-

dination approach, an important aspect considered in coordination problems is task al-

location [LCS13, Cor14, FUMP13, LTL+15, LCS15a, SGSTS15, SWWA14, YJC13].

There are several features that should be considered by a mechanism for allo-

cating tasks to multiple robots or agents so that it can be used in real-world scenarios. In

fact, the literature mentions different characteristics of allocation mechanisms, such as

decentralised decision making, the possibility of using heterogeneous entities (agents or

robots with different physical and computational capacities, e.g., different sensors and

types of mobility), the impact of individual variability to assign specific roles to individual

entities, the definition and allocation of different types of tasks, among others.

However, available solutions consider only a small set of desirable features in

the allocation mechanisms. Although many real-world scenarios, such as disaster res-

cue, for example, typically require the use of heterogeneous robots and the execution of

tasks with different complexities and structures, most of the solutions in the literature

only deal with the allocation of one type of task, mainly atomic tasks. The approaches

that deal with more complex tasks usually focus on one type of constraint only, and the

ones that deal with more features commonly have high computational cost. Using the

solutions available in an integrated way is not always possible due to the different as-

sumptions and architectural requirements used by different authors.

27

The main contribution of our work is a decentralised mechanism for the allo-

cation of different types of tasks to heterogeneous agent teams, considering that they

can play different roles during a mission and carry out tasks according to their own ca-

pabilities, which is particularly important for applications in multi-robot systems. The

proposed mechanism was initially inspired by [LCS15a], but it is significantly different

since we are working with different types of tasks, considering the use of roles, and

verification of constraints related to the heterogeneity of robots.

Some of the ideas presented in this thesis first appeared in [BB17], but here we

provide details about the method and algorithms, we provide new results from the com-

parison with optimal solutions, and we introduce a comparison with other decentralised

approaches. We also detail the way in which we determine the end of the allocation

process.

In this thesis, we use a flood disaster scenario throughout the text to exemplify

our approach. Flooding disasters are typically very dynamic and have complex tasks to

be executed [SKV+12]. In fact, it was the typical tasks in flooding rescue that inspired

us to work on a task allocation mechanism that could address different types of tasks.

During a rescue phase in a flooding disaster, teams are called into action to work on tasks

such as locating and rescuing victims [MTN+08]. Such teams are typically organised by

a hierarchy model [RHI+15], with individuals playing different roles during a mission.

The execution of tasks during the rescue stage poses many risks to the teams. Using

robots in a coordinated way to help the team may minimise such risks. In our running

example, the term agent refers to the main control software of an individual robot, so

we use both terms interchangeably.

1.1 Motivation

There is extensive research that deals with coordination aspects related to the

allocation of tasks in MASs or multi-robot systems. In fact, researchers have been mak-

ing significant progress proposing techniques, approaches, applications, platforms, and

frameworks for the allocation of tasks to multiple entities, whether software agents or

robots.

However, there are still many issues that deserve the attention of the scientific

community to develop entities capable of allocating tasks in a distributed and dynamic

way while achieving efficient solutions in complex real world environments. This view is

corroborated by researchers such as Yan and coauthors [YJC13], who indicate that sev-

eral problems related to multi-robot coordination have not yet been fully solved, among

them problems related to task allocation.

28

Besides, several scenarios and applications would benefit from a more efficient

task allocation solution. Also, there are scenarios where centralised solutions may not

be appropriate because they represent a single point of failure for the entire system, and

suffer from the communication overhead required during the allocation process. In this

way, decentralised solutions for the allocation of tasks are desirable.

Also, scenarios closer to the real world require the execution of more complex

tasks where, for example, a task can be composed of subtasks. Most of the solutions

found in the literature deal only with the allocation of atomic tasks (simple), and those

that deal with more complex tasks, for the most part, focus only on one type of task and

one type of constraint.

1.2 Objectives

The main objective of this thesis is to develop a decentralised mechanism for the

allocation of different types of tasks in systems with multiple and heterogeneous agents

that can play different roles. To accomplish this objective, we defined the following

specific objectives:

• Design a decentralised mechanism for allocating different types of tasks in systems

with multiple and heterogeneous agents that can play different roles;

• Implement the mechanism by integrating it with a MAS development platform (Ja-

CaMo);

• Evaluate the proposed mechanism against the optimal solution and other solutions

appearing in the literature;

• Design and implement a simulation environment to evaluate the impact of the

mechanism on the execution of tasks.

• Evaluate the impact of the proposed mechanism and compare it with other solutions

on the execution of tasks in the simulation environment.

1.3 Thesis Organisation

The thesis is organised as follows: Chapter 2 provides a theoretical background

about the main concepts addressed in this work. More specifically, we present concepts

about intelligent agents and multi-agent systems, cooperation and coordination in multi-

agent systems, task allocation, and programming multi-agent systems. In Chapter 3,

we describe the type of tasks considered in this thesis, provide a scenario example, as

29

well as we formalise our task allocation problem. Chapter 4 introduces the proposed

mechanism for allocating tasks among multiple and heterogeneous agents. Chapter 5

presents the experiments performed to evaluate our mechanism by comparing it with

the optimal solution and other decentralised approaches. In Chapter 6 we present the

work most closely related to this thesis. Finally, this thesis concludes in Chapter 7, with

a summary of our contributions and discussion of future work.

30

31

2. BACKGROUND

This chapter presents a brief review of important concepts for a better under-

standing of this work. More specifically, we introduce concepts about intelligent agents

and MASs, cooperation and coordination in multi-agent systems, task allocation and

multi-agent programming. As mentioned in Chapter 1, it is possible to make associa-

tions between the characteristics of a MAS and those of a multi-robot system, which

allows the use of concepts and techniques in the area of agents to manipulate and con-

trol robots in systems composed of multiple robots. Thus, throughout this thesis, we

present concepts focusing on both agents and robots because we understand that both

contribute to the research.

2.1 Intelligent Agents and Multiagent Systems

Russel and Norvig define an agent (whether it is a software or not) as "anything

that can be considered capable of perceiving its environment by means of sensors and of

acting on that environment by means of actuators" [RN09]. In [Woo09] the following def-

inition for an agent is provided: "An agent is a computer system that is situated in some

environment and that is capable of autonomous action in this environment in order to

meet its delegated objectives" [Woo09]. Figure 2.1 presents an abstract representation

of these definitions, in which an agent perceives the environment and acts on it.

percept

(sensor input)

agent environment

act

(action ouput)

Figure 2.1 – Abstract view of the relationship of an agent with the environment.

Based on these definitions, it is possible to highlight some essential character-

istics of a software agent, such as autonomy, intelligence and acting in an environment.

Concerning intelligence, in [WJ95] the authors define a list of characteristics that an

32

agent must present to be considered intelligent. Such characteristics are used by agents

to achieve their goals. The following are considered characteristics of an intelligent

agent, according to [WJ95]:

• Reactivity: refers to the agent’s ability to perceive and react to changes in the en-

vironment to satisfy its objectives. It means that when changes in the environment

prevent the agent from continuing to execute a plan, the agent must react to that

change and choose an alternative course of action.

• Proactivity: agents exhibit goal-oriented behaviour and take the initiative of ac-

tions. Thus, it is expected that when an agent has a goal, it proactively try to

achieve that goal.

• Social skills: ability to communicate and interact with other agents. This is a

desirable characteristic, for example, for the agents to cooperate and to coordinate

their actions.

These characteristics are valuable when we think in a decentralised task alloca-

tion mechanism. For example, when an agent perceives new tasks in the environment,

it can proactively communicate with other agents which may react trying to allocate the

tasks they would like to perform. Social skills are also crucial since the agents need to

communicate to negotiate during the allocation.

Agents can be defined based on different architectural patterns. An architecture

widely used for modelling agents is called Belief-Desire-Intention (BDI) [BIP88, RG95].

According to [Woo13], the BDI architecture aims to represent practical reasoning, more

precisely the process of deciding which are the relevant goals and how the agent will

achieve them. The basis of the BDI architecture are beliefs, which represent the agent’s

knowledge about the environment in which it acts, its desires, which are goals that the

agent would like to achieve, and the intentions that are the goals that the agent decided

in fact achieve. Figure 2.2 shows a generic BDI architecture.

The belief revision function receives input from the sensors and based on the

current beliefs in the beliefs base it defines if the beliefs must be updated. The generate

options function uses the current beliefs and intentions of the agent to determine new

options (desires) to the agent. These options represent possible courses of actions for

the agent. The process of determining the intentions of the agent based on the current

beliefs, desires and intentions is performed by the filter function. Finally, an action

selection function determines which intention should be performed as an action. This

process represents how the practical reasoning works in a BDI agent.

When several intelligent agents act in a shared environment and interact with

each other, it is said that there is a Multiagent System (MAS). According to Wooldridge

33

�������

����	�
�

��������

���
�	

������

������	

��	���	

�������
�	

	��	
��

�����

���
�

�����

Figure 2.2 – Generic BDI architecture - adapted from [Woo13]

in [Woo09], "Multiagent systems are systems composed of multiple interacting comput-

ing elements, known as agents". According to Bordini and coauthors in [BHW07], the

possibility of sharing the environment among several agents in a MAS makes the system

as a whole more complex, since the actions of an agent can influence the perceptions

and actions of other agents.

Russell and Norvig in [RN09] present a set of characteristics that help define

the complexity of an environment in a MAS:

• Fully observable or partially observable: fully observable is the environment

where the agent can at any time obtain complete, accurate and up-to-date informa-

tion about the environment. Most real environments are partially observable.

• Deterministic or stochastic: if for any action in the environment there is no

uncertainty about its result and there is a single guaranteed effect, then the envi-

ronment is deterministic. Otherwise, the environment is said stochastic.

• Static or dynamic: if the environment is changed only by the agent’s actions, then

it is static. If other agents and processes can change it, it is said to be dynamic.

The real world is typically dynamic.

34

• Discrete or continuous: if there is a fixed and finite number of actions and per-

ceptions in the environment, it is discrete. Otherwise, the environment is said to

be continuous.

According to the authors, more complex environments are those partially ob-

servable, nondeterministic, dynamic and continuous [RN09]. In a MAS, agents can be

part of one or more organisations or eventually work individually (which is not typical).

An agent in an organisation may be related to its peers or other agents in an authori-

ty/hierarchy structure [BHW07]. Agents in an organisation tend to cooperate to achieve

organisational goals that would not be possible individually, either because of lack of

capacity or knowledge [Woo13, DP13].

Multi-agent systems (MASs) can be applied to design and implement complex

systems in different areas such as manufacturing, process control, telecommunication

systems, air traffic control, among others [LMP03]. Regardless domain, an essential

property of agents operating in a shared environment is coordination, especially when

agents act cooperatively [HS99]. Next, we provide an overview of the process of coordi-

nating a group of agents.

2.2 Coordination in Multiagent Systems

In cooperative environments, agents typically have joint goals and plans [RN09],

and in such cases, agents form a kind of team to achieve a common goal. In situations

where agents need to cooperate, interaction is usually required to achieve the objectives

and increase the overall utility of the system [YJC13]. Cooperation is an essential aspect

because sometimes a single agent does not have sufficient capacity, resources or infor-

mation to solve a problem individually [Woo09]. As agents must act autonomously, they

must also be able to coordinate their activities by cooperating with each other dynami-

cally.

According to Wooldridge in [Woo09], coordinating means "managing interde-

pendencies between agents’ activities" to achieve a goal. These interdependencies are

related to the interaction between activities. Two activities can interact whether, for

example, they try to use the same resource at the same time, or whether one activity

depends on the completion of another [Woo09]. In practical terms, to coordinate means

managing the execution of the activities to avoid that, for example, agents interfere with-

/impact negatively on the achievement of the objectives of other agents. Coordination

techniques can be used to decrease or rid a system of conflicts.

In the recent literature, there are a variety of solutions proposed for the coordi-

nation of agents in a MAS. The available approaches can usually be classified according

to the type of solution offered (whether centralised or decentralised), by the kind of

35

agents (or robots) considered (whether homogeneous or heterogeneous), by the type of

coordination strategy used, among others.

Examples of centralised coordination approaches are presented in [DS08, BBT02,

VDBSLM10, SSFS12]. Centralised approaches have the disadvantage of having a point

of failure that compromises the whole system, which does not occur in decentralised

approaches. Examples of decentralised approaches are presented in [dCFS13, Hui10].

In [dCFS13], for example, an approach is proposed for autonomous and cooperative ve-

hicles to negotiate their speeds to pass through the crossing safely, avoiding collisions.

Similarly, [Hui10] considers the need for negotiation to avoid collisions in multi-agent

moving environments, also in a decentralised manner.

According to [YWN10], considering agent heterogeneity is a challenging issue

in coordinating SMAs. In [WGL14] a solution is presented that aims to improve the

coordination efficiency in rescue scenarios with heterogeneous agents. The approach

proposed by the authors focuses on the partitioning of the search region for the alloca-

tion of agents in different positions. A partitioning algorithm divides the map into some

partitions based on the number of agents and buildings, and then each agent assigns a

partition to itself.

Different coordination strategies are also available in the literature. One of

these strategies is based on consensus algorithms. [CFNM15], for example, deals with

the problem of coordinating the movements of a set of aerial robots employing a decen-

tralised algorithm based on the consensus theory, where agents exchange information

between them and each agent generates its own trajectory, obtaining the desired forma-

tion in a coordinated way.

[YWN10] presents a biological systems approach that allows distributed agents

to arrive at a group decision (or global consensus) using what they call "implicit lead-

ership." The authors extend a distributed consensus algorithm to deal with cases where

agents may have varying degrees of information. The proposed approach is based on

local rules that allow agents to reach consensus. In [CGP15], the focus is on vehicle

formation control in the presence of communication delays and a consensus algorithm is

also used.

Another coordination strategy is called leader-follower. In [CSVJRC14] is pre-

sented a decentralised solution for coordination of aerial vehicles using the leader-

follower strategy. The leader is the only one who knows the desired trajectory. The leader

communicates its position to the first follower, which communicate to the next follower

and so on. Another approach to formation control using the leader-follower strategy is

found in [AAT13], where the authors use an air vehicle as a leader and land vehicles as

followers. The aerial vehicle follows a predefined path, and the ground vehicles must

make a formation (square) around the position of the aerial vehicle. In [ZCMZ13] the

focus is on the pursuit of fugitives by a group of robots, where the formation change

36

is performed using a leader-follower strategy. In this work, the evolution of formation

of the followers occurs with the movement variation of the fugitives using "Markovian

Partially Observable Decentralized Decision Processes".

A coordination strategy different from those presented above is proposed in

[SUIM10]. In this paper, the authors combine implicit coordination with belief sharing.

Coordination is said to be implicit since the utilities of the robots for a task are not

shared, but calculated locally. Robots initially share their beliefs with others and then

use predictive models to calculate locally the utilities of each robot based on the beliefs

received. The approach is applied to a team of robots in a football scenario. The focus of

the work presented in [ZL14] are situations where humans work alongside robots to per-

form tasks, where long hours of work can cause fatigue in humans. The authors integrate

a model that considers human fatigue in a mixed coordination framework (robot-human)

to predict team performance.

Regardless of the coordination approach, one important aspect considered in

coordination problems is the allocation of tasks [YJC13]. Task allocation is an important

research area when dealing with the problem of coordinating groups of autonomous

entities [SGSTS15, SWWA14, LTL+15]. In fact, several authors consider task allocation

as an essential part of the coordination problems of multiple robots or agents [LCS13,

FUMP13, Cor14, LCS15a]. For example, the work presented in [NS14] focuses on the

use of ontologies for the allocation of tasks, aiming to coordinate the work between

a team of autonomous agents. [ZMY+14] presents a distributed solution to the task

allocation problem among multiple robots considering the workload balancing between

them. More details about task allocation are provided in the next section.

2.3 Multi-Agent Task Allocation

Task allocation among multiple robots and more generally among multiple agents

consists of identifying which agents should perform which tasks in order to achieve co-

operatively as many global goals as possible and in the best possible way. Previous to the

definition of our Multi-Agent Task Allocation (MATA) problem, it is important to review

some relevant concepts for the allocation process (such as task, constraint, and utility)

and in particular how they are treated in this work.

2.3.1 Constraint

A constraint restricts the possibilities of allocation, reducing, consequently, the

number of possible solutions but also making allocation more complex given one must

37

ensure that any candidate solution satisfies all constraints. Constraints may be related

to tasks, agent’s capacity, capabilities of the agents, among others.

Task constraints, for example, may indicate that some subset of the tasks must

be carried out concurrently [KSD13], or by a single robot. For example, consider a

company which uses autonomous robots to perform tasks such as buy and delivery items.

The company needs to buy an item in a location A and also needs to deliver another item

in a location B which is very close to location A. In this case, it is quite possible that

the company will impose a constraint that both tasks should be performed by the same

robot. Capacity constraints may limit how many tasks a robot can allocate at a time.

This constraint may be related, for example, to the amount of energy (fuel) available to

a robot. So, for the example above, a robot may not be able to take those tasks because

it does not have enough energy (capacity) to perform both tasks. Capability constraints

may restrict some robots from performing specific tasks. For example, consider a task

for which the robot needs to go to a location and take a picture. If a robot does not have

a camera, it is not capable of performing that task.

2.3.2 Utility

According to Korsah and coauthors in [KSD13], task allocation solutions aim to

find the allocation of tasks that optimise some objective and, for that, it is necessary to

determine what should be optimised. Many mechanisms have the objective of maximis-

ing or minimise the utility value.

A utility is a value that expresses how much a task contributes to the robot’s

objectives when executed by it. The utility for each task is quantified through a function

which can combine several factors (e.g., the quality with which a particular robot is likely

to accomplish that task, how quickly that is likely to be done, and so forth) [GM04]. The

global team utility can be quantified as a combination of the individual utilities.

The utility values must be scalable and possible to be compared with so that one

can establish the best tasks for each robot and the best robot for each task. For example,

if a robot r1 estimates utility values 10 and 20 for the tasks t1 and t2 respectively, the

utilities can be compared and the robot r1 may have the preference for task t2 instead

of t1 since it has a higher utility (if the objective is to maximise its utility). In the other

hand, if a robot r2 estimates 30 as the utility value for t2, it will probably have preference

over r1 on allocating the task t2.

To calculate the utility value of a task, relevant aspects of the robot, of the envi-

ronment, and the actual task requirements should be taken into consideration [GM04].

In many cases, the utility calculation can be carried out independently for each task. In

other cases, it may be necessary to consider other tasks previously allocated to the agent

for the utility calculation [KSD13]. In this work, we assume that only the robot itself is

38

able to determine its utility for a given task accurately; there is no way to compute in a

centralised way the utility functions for all the robots, hence the importance of a decen-

tralised approach to task allocation. Note that, as will be specified in the Section 3.3, in

this thesis the robots are allocated to subtasks and not directly to tasks, so the utility is

calculated to the subtasks.

2.3.3 Tasks

Agents in a MAS can help in the accomplishment of tasks, and for this, it is

necessary to specify what tasks are required to reach the global objectives of the system

[Woo09]. According to Gerkey and Matarić in [GM04], each task is defined to solve

part of the problem/goal of the system and may have different characteristics and vary

regarding complexity.

Although many real-world scenarios typically require the execution of tasks with

different complexities and structures, most of the task allocation solutions in the liter-

ature assume that tasks are independent atomic units. A task is atomic if it cannot be

decomposed into subtasks, that is, it can only be carried out by a single agent [Zlo06].

Examples of solutions considering only atomic tasks can be found in [GA13, LMB+13,

SP13, GSW+14, SGSTS14, CsTPcP14, LZK15, TMS15, SGSTS15]. In general, a task is

considered atomic or not, depending on the level of the domain model being used. A task

can also be defined as non-atomic. Non-atomic tasks are not tasks composed of subtasks.

Non-atomic are tasks that can be partially executed, at different times and by different

robots, until they are completed [FGC14, SZB16, WLL+16, IF16, MVDB17].

A task can also be defined as a compound task, that is, a task that can be decom-

posed into a set of atomic subtasks. Examples of solutions considering tasks composed

by subtasks can be found in [DMC14, AHG17, MSG+17, LZ03]. For [Zlo06] a compound

task can be decomposed into a set of atomic or compound subtasks where each subtask

can be allocated to a different agent.

According to [Zlo06] a task can also be defined as a decomposable simple task,

that is, a task that can be decomposed into a set of atomic subtasks or other decompos-

able simple tasks as long as the different decomposed parts cannot be carried out by

more than one agent. In Section 3.1 we describe the type of tasks considered in this

thesis.

2.3.4 Multi-Robot Task Allocation

The most basic task allocation problem addressed in the robotics and also in the

agents literature is the one-to-one assignment [LCS15a]. This task allocation problem

39

can be defined as a set of nr robots R = {r1, . . . , rnr
} and a set of nt tasks T = {t1, . . . , tnt

}
with nr = nt, where each task tj may be allocated to at most one robot (equation 2.1),

and each robot ri can perform at most one task (equation 2.2). Considering a binary

variable fij indicating whether tj is assigned to ri, and uij as the utility value associated

for the allocation of tj to ri, the objective is to find an allocation that maximises the sum

of utilities of the agents, i.e., the total utility (equation 2.3). The optimisation problem

above can be stated as follows:

nr∑

i=1

fij = 1 ∀j = 1, . . . , nt. (2.1)

nt∑

j=1

fij = 1 ∀i = 1, . . . , nr. (2.2)

Objective:

max
nr∑

i=1

nt∑

j=1

uij.fij (2.3)

In this thesis, we extend the basic problem in some aspects. First of all, we con-

sider that each robot has a maximum number of tasks that can allocate to itself rather

than only one. This constraint may be related, for example, to the amount of energy

(fuel) available to a robot thus limiting the number of tasks it can be assigned. It means

that we account for not only the number of allocated tasks but also that tasks can occupy

different proportions within the limit of tasks that an agent can allocate. Also, the basic

problem assumes that tasks are independent atomic units. We here consider that tasks

can be composed of subtasks, with different restrictions on how the subtasks are as-

signed to different robots. Our approach also considers robots with different capabilities

which may restrict some robots from performing specific tasks. Since our approach can

be used more generally than only in multi-robotics, we often use the term agent instead

of robot.

2.3.5 Examples of approaches used for Task Allocation

The approaches for task allocation range from solutions using market-based

approaches, DCOP approaches, centralised and decentralised solutions, among others.

Some of these approaches will be briefly described below. Surveys about task allocation

can be found in [JM13, LHK13, Jia16].

40

Centralised and decentralised task allocation: an important aspect when work-

ing with task allocation is to decide whether the approach used will be centralised

or decentralised. In a centralised approach, a single point is responsible for allocat-

ing tasks between agents, while in a decentralised approach the agents can commu-

nicate and decide between them the best allocation of tasks. Some examples of cen-

tralised approaches can be found in [DMC14, FGC14]. Examples of decentralised ap-

proaches can be found in [SGSTS15, LCS15a, SP13]. Generally, centralised approaches

perform faster than decentralised approaches [GM04, WMC15] and may obtain bet-

ter results because they have all the information about all agents [TMS15]. A disad-

vantage of centralised approaches is to have a single point of failure for the system

[SGSTS15, SWWA14, WMC15]. Another drawback of centralised approaches is a pos-

sible communication overload [GM04, SGSTS15, WMC15, TMS15, SWWA14], mainly in

the central entity, since agents need to communicate all information about themselves

and the environment to this central entity [SGSTS15, TMS15]. Such overloading oc-

curs, especially in large-scale systems [TMS15]. Distributed approaches can be used

to overcome these limitations [TMS15]. However, in real networks may occur inconsis-

tencies that lead to allocation conflicts [WMC15], partly reducing the advantages over

centralised approaches to the communication problem.

Allocation of tasks based on auctions: allocation of tasks through auctions are based

on the idea of an agent acting as auctioneer (offering the other agents one or more tasks

that need to be performed), while the other agents make offers for the tasks of their in-

terest. The agent that makes the highest bid for each task is chosen to execute it [SD15].

According to [WMC15], the fact of having a central controller to define the winner of a

task has the disadvantage that all agents need to communicate directly to a single point

(auctioneer). Another possibility are the combinatorial auctions. These are auctions

where agents make offers for sets of tasks rather than for a simple task. [SGSTS14]

presents a framework for task allocation based on this type of auction. According to

[LMB+13], combinatorial auctions offer a good resulting allocation, but they become

computationally costly as the number of tasks increases. [CBH09] presents a distributed

algorithm called Consensus-Based Bundle Algorithm (CBBA), which combines auctions-

based approaches and consensus-based algorithms. In the algorithm proposed by the

authors, similar tasks are grouped to form bundles of tasks.

Task allocation based on DCOPs: task allocation problems can also be represented as

Distributed Constraint Optimization Problems - DCOP. A DCOP is represented by a set

of agents, a set of variables, a set of domains for the variables, and a set of constraints

[YZF14]. Each variable is controlled by an agent, and each agent can control multi-

ple variables [YZF14]. According to [SD15], the constraints can be temporal, spatial,

41

among others. Different DCOPs approaches are found in the literature. In [SFOT05], for

example, a task allocation algorithm called LADCOP (Low-communication Approximate

DCOP) is proposed, which requires little communication and is based on token passing.

[RPF+10] presents a solution for coalition formation considering spatial and temporal

constraints.

2.4 Multi-agent programming

Traditional programming was not designed to deal with autonomy issues, which

is required when working with agents [BD13]. Shoham initially identified this partic-

ularity in [Sho93], introducing an agent-oriented programming language. Since then,

different agent-oriented programming languages have been proposed, such as Jason

[BHW07], JACK [BRHL99], 2APL [Das08], GOAL [HBHM01], ALOO [Ric14] and SARL

[RGG14].

Some studies present comparisons between the Jason language and other agent-

oriented languages or compare it with languages of different paradigms. A comparison of

performance between the languages Jason, 2APL and GOAL are shown in [BHH+10], in-

dicating better performance of the Jason language in comparison to the others. [CHB13]

presents a comparison between Jason and two actor-oriented languages, Erlang and

Scala. The comparison was made regarding the execution time, memory consumption

and use of the cores of the processors. According to the authors, although Jason repre-

sents a so-called "heavy" paradigm, its scalability and performance were close to those

presented by actor-oriented languages. In [CZHB13] three actor-oriented languages

(Erlang, Akka and ActorFoundry) and three agent-oriented languages (Jason, 2APL and

GOAL) were compared. Concerning agent-oriented languages, in general, the Jason lan-

guage obtained the best results.

Agent-oriented programming languages initially focused on the programming

of individual agents, leaving aside aspects related to the environment as well as social

aspects [BD13]. The abstraction of these aspects together with the abstraction related

to agent-oriented programming itself makes agent-oriented programming more powerful

and useful for solving complex problems.

In this direction, [BD13] presents characteristics that platforms oriented to the

programming of systems with multiple agents should consider:

• Long-term goals and reaction to events: agents must be alert to changes in

the environment, responding to them appropriately without neglecting long-term

goals.

42

• Courses of action depend on circumstances: an event can trigger different

courses of action depending on the circumstances, i.e. depending on the informa-

tion the agent has about himself, other agents and the environment, a course of

action or other can be performed. Thus, it should be possible to specify different

courses of action for the same event.

• Choosing the course of action only when it is close to acting: courses of ac-

tion selected at an early stage may not be more interesting or even valid when they

are performed due to possible changes in the environment, hence the importance

of this feature.

• Plans failures: Plans may fail during execution. There must be a mechanism to

deal with these failures.

• Rational behaviour: agents must behave rationally. When an agent has a goal,

it should be able to reason about how to achieve it and only give it up if there is

evidence that he can no longer be achieved or there is no more motivation for it.

• Social skills - communication and organisation: agents need to interact to co-

operate and coordinate their actions. Besides, agents can be part of an organisation

that regulates their joint activities.

• Code change at runtime: platforms should allow code change during execution.

That includes changes in the plan library and eventually changes in the social struc-

ture and norms in an agent organisation.

Some MAS development platforms that present levels of abstraction beyond

agent orientation are JaCaMo [BBH+13], Jadex [BPL05], Magentix2 [SGFEB13] and

TAEMS [Dec96]. JaCaMo was chosen for the development of the mechanism proposed in

this work since it presents the necessary characteristics for its development, besides to

use the language Jason that, as previously seen, performs well against other languages

oriented to agents. The mentioned characteristics are presented in the next section.

2.4.1 JaCaMo

JaCaMo [BBH+13] is a platform for programming MASs that integrates three

solutions: the agent-oriented programming language Jason [BHW07], providing sup-

port for agent development; CArtAgO [RVO07] which provides abstraction required for

environment-level programming; and Moise [HSB07], which allows working at the or-

ganisation level. Figure 2.3 gives an overview of the dimensions of the JaCaMo platform.

The Jason language, which is used for coding the agents’ dimension, is based on

the BDI architecture, which allows developing agents based on the concepts of beliefs,

43

desires and intentions. Jason-encoded agents are capable, among other things, of com-

municating, interacting and reacting to events according to the plans available to the

agent.

Figure 2.3 – JaCaMo architecture overview [BBH+13].

Through Moise, an organisation can be defined in terms of groups, roles, social

plans and norms. It is also possible to determine the sequence in which the goals must

be executed and also define the goals that need to be performed in parallel, besides

allowing to specify the obligations and permissions for the roles assumed by the agents.

CArtAgO is used for environment level programming. In CArtAgO the environ-

ment or parts of the environment can be represented by entities called artifacts. Artifacts

store information that is accessed by agents through observable properties. Agents can

generate updates to the values of observable properties using the operations provided

by the artifacts themselves. Artifacts may be distributed on different nodes of a network.

The features presented by the solutions that make up the JaCaMo platform make

it appropriate for the development of the mechanism proposed in this work. In fact, the

Jason language is used for the coding of the agents, including the algorithms for the

allocation of tasks. CArtAgO artifacts are used to communicate roles and the tasks that

need to be performed.

44

In order to improve understanding, some of the mentioned aspects will be pre-

sented in the next sections through an example called Building-a-House described in

[BBH+13]. In the example, an agent named Giacomo wants to build a house and for that

Giacomo needs to hire contractors to perform different tasks during the building pro-

cess. In the example, the contracting of the services is carried out by means of a simple

auction-based mechanism. Service providers only bid on the tasks they can perform,

and the best offer for each task (lowest cost) is the winner. After the auction, the service

providers begin the execution of the tasks, where a coordination mechanism is used to

guarantee the execution of the tasks in a coherent way. In the example, six agents are

defined, five of them representing the service companies, plus Giacomo agent.

2.4.2 Jason

The Jason language is based on the BDI architecture, which allows developing

agents based on the concepts of beliefs, desires and intentions. Jason is an extension of

the AgentSpeak language introduced by Rao [RG95]. According to Rao [RG95], AgentS-

peak language can be viewed as a textual language of Procedural Reasoning System

(PRS). PRS is an architecture that explicitly incorporates the belief-desire-intention (BDI)

architecture. The PRS, represented in Figure 2.4, was originally developed by Georgeff

and Lansky [PGL86].

�������
���	

������

������� �	��	���	�

�	�����������	���
�	��� �����	
������

Figure 2.4 – Procedural Reasoning System (PRS)

In Jason, such as in PRS, an agent has a set of beliefs, a set of desires, a set of

intentions and a set of plans (plan library). As mentioned earlier, beliefs represent the

agent’s knowledge about the environment, the desires are goals that the agent would

like to achieve, and intentions are the goals that the agent decided in fact achieve. Each

plan has: a goal, which is the postcondition of the plan, i.e. the objectives it achieves;

45

a context, which represents the precondition of the plan, i.e. the things that when be-

came true in the environment will trigger the execution of that plan and; a body, which

represents the course of actions to achieve the goal. The interpreter (Figure 2.4) de-

termines the agent’s reasoning cycle of an agent, i.e. considering perceptions from the

environment, beliefs, desires and intentions of an agent it reasons about how to achieve

the agent’s goals. Figure 2.5 represents the Jason reasoning cycle.

Figure 2.5 – Jason reasoning cycle [BHW07].

.

In the Building-a-House example, Jason is used to define the initial goals, be-

liefs, plans, and rules for each of the agents. Listing 2.1 shows part of the Giacomo

agent code. Agent Giacomo has an initial goal of building a house (!have_a_house).

The plan +!have_a_house has two subgoals !contract and !execute. The first one is for

contracting the companies service and the second one for the managing the building

itself. The +!contract plan also has two subgoals: !create_auction_artifacts which cre-

ates the auction artifacts for the services (tasks) that agent Giacomo needs to hire; and

!wait_for_bids which makes the agent wait some time for the companies to bid on the

tasks before processing the winners. In other words, the agent starts running by cre-

ating the auctions for tasks that need to be performed and then wait for bids from the

companies.

46

✞ ☎

1 !have_a_house.

3 +!have_a_house

4 <- !contract;

5 !execute.

7 +!contract

8 <- !create_auction_artifacts;

9 !wait_for_bids.

11 +!wait_for_bids

12 <- .wait(5000);

13 !show_winners.

14 ...
✝ ✆

Listing 2.1 – Operations available in the roles artifact.

2.4.3 Cartago

CArtAgO [RVO07] is a framework that provides environment level program-

ming. CArtAgO is based on the A&A meta-model [RPV11] – see Figure 2.6. In CArtAgO

the environment can be represented through entities called artifacts (programmed in

Java language) which can be created by the agents. Artifacts store information that can

be accessed by agents through observable properties. Observable properties can be

generated when the artifact is instantiated or through operations. Agents also use the

operations to update the values of the observable properties. When an agent focus on

an artifact, the observable properties of the artifact are added as beliefs and the agent

is also able to use the operations available in the artifact. Artifacts may be distributed

on different nodes of a network.

In the Building-a-House example, CArtAgO framework is used to create an ar-

tifact to aid in the auction mechanism, as shown in Listing 2.2. In the artifact four

observable properties are defined: task, representing the description of the task; max-

Value being the maximum value to be accepted for the task; currentBid, representing the

lowest bid amount received; and currentWinner representing the current winner of the

auction for the task. These observable properties are generated when the Giacomo agent

creates instances of the artifact for each service that needs to be auctioned (Listing 2.1,

line 8, !create_auction_artifacts).

The artifact in the example provides the bid operation, through which agents

can bid on the task. When an agent performs the bid operation, the artifact verifies if

the received bid value is lesser than the currentBid value, and then updates the value

of the currentBid to the received value and also the value of the currentWinner for the

agent who provided the bid.

47

��������	

��������

�������

���	�

�����������

���	�

���

�������

	�
�

��
����

�	����	��	�

�����������

��������

��������

�������

���

����

�����

�������

	�
�

��	���

��

��
��	�

�����

Figure 2.6 – CArtAgO A&A meta-model [RPV11]

.

✞ ☎

1 public class AuctionArt extends Artifact {

3 @OPERATION public void init(String taskDs, int maxValue) {

4 // observable properties

5 defineObsProperty("task", taskDs);

6 defineObsProperty("maxValue", maxValue);

7 defineObsProperty("currentBid", maxValue);

8 defineObsProperty("currentWinner", "no_winner");

9 }

11 @OPERATION public void bid(double bidValue) {

12 ObsProperty opCurrentValue = getObsProperty("currentBid");

13 ObsProperty opCurrentWinner = getObsProperty("currentWinner");

14 if (bidValue < opCurrentValue.doubleValue()) {

15 // the bid is better than the previous

16 opCurrentValue.updateValue(bidValue);

17 opCurrentWinner.updateValue(getCurrentOpAgentId().getAgentName());

18 }

19 }

20 }
✝ ✆

Listing 2.2 – Example of artifact defined in CArtAgO.

Listing 2.3 shows part of the agent code for a company in the Building-a-House

example. The company has an initial belief my_price(300) representing the price the

company will use as bid. The initial goal of the company agent is to look for and focus on

an artifact related to the auction for a Plumbing service (!discover_art("auction_for_Plum

bing")).

48

When the agent focus in the "auction_for_Plumbing" artifact (see Figure 2.7

(A)), the observable properties of the artifact are added as beliefs, and the agent is also

able to use the operations available in the artifact. In the example, it means that the

four observable properties task, maxValue, currentBid and currentWinner are added

as beliefs in the belief base of the agent. When the observable property currentBid is

updated by some other agent (see Figure 2.7 (B)), those changes will update the beliefs

in the agents who focused on the artifact. In the example, the changes may trigger the

agent plan +currentBid(V) (Listing 2.3, line 5). The plan will be triggered whenever its

context is true, in this case only if the agent is not the current winner of the task and if

the price it can offer is lesser than the current bid value. In case the plan is triggered,

the agent will use the bid operation available on the artifact.

bid(bidValue)

task Plumbing

maxValue 500

currentBid 500

currentWinner no_winner

Artifact:

auction_for_Plumbing

��������	
���

	������������

���������������

������������������������

Belief base

focus

bid(bidValue)

task Plumbing

maxValue 500

currentBid 350

currentWinner companyB

Artifact:

auction_for_Plumbing

��������	
���

	������������

���������������

����������������	������

Belief base

bid(350)

companyA agent companyA agent companyB agent

��� ���

Figure 2.7 – Example of artifact defined in CArtAgO.

✞ ☎

1 my_price(300). // initial belief

3 !discover_art("auction_for_Plumbing").

5 +currentBid(V)[artifact_id(Art)]

6 : not i_am_winning(Art) & my_price(P) & P < V

7 <-

8 bid(P).

10 +!plumbing_installed // the organisational goal (created from an obligation)

11 <- installPlumbing.

13 ...
✝ ✆

Listing 2.3 – Operations avaialable in the roles artifact.

2.4.4 Moise

Moise [HSB07] allows to work at the organisation level, by defining groups,

roles, social plans, norms, obligations and permissions for the roles assumed by the

agents, as well as to determine if the goals must be executed in parallel or sequence.

49

In the example, Moise is used to specify the organisation defining, for example,

roles such as house_owner that is assumed by the agent Giacomo and the electrician

role that can be assumed by an agent that has the capability to provide electrical ser-

vices. In the example, the main goal of the organisation is the construction of the house

("house_built" goal), which is achieved through smaller goals, such as "walls_built",

"plumbing _installed". These goals are defined in the functional specification of the

organisation. To achieve the goals, missions such as build_walls are defined and also the

roles responsible for each mission. In the example, the electrician role is responsible for

the install_electrical_system mission. Although Moise could be a great option to work

with the organisational level, in this thesis we kept the organisation defined in a more

simplified way.

50

51

3. MULTI-AGENT TASK ALLOCATION PROBLEM

In this chapter, we first present the type of tasks considered in this thesis. Then

we describe the flooding scenario to exemplify how these type of tasks fits into a complex

scenario. Finally, we present formalisation aspects of our Multi-Agent Task Allocation

problem.

3.1 Type of Tasks

Different types of tasks can be used to address different requirements involved

in real-world scenarios, which cannot be adequately represented by only one type of

task. This is because in real-world scenarios tasks may have complex structures and

other domain-specific dependencies. In this thesis we consider the types of tasks below

which are based in [Zlo06]. Figure 3.1 represents the type of tasks considered in this

work.

Atomic task: a task is atomic if it cannot be decomposed into subtasks. It can only be

carried out by a single robot. A task is considered atomic or not, depending on the

level of the domain model being used. In this work, atomic tasks will be considered

as subtasks of both compound tasks and decomposable simple tasks.

Decomposable simple task: a task that can be decomposed into a set of atomic sub-

tasks or other decomposable simple tasks as long as the different decomposed parts

cannot be carried out by more than one robot, that is, the decomposed parts must

all be carried out by the same robot. We refer to this type as a DS task throughout

this work.

Compound task: a task that can be decomposed into a set of atomic or compound sub-

tasks, presenting only one possible decomposition at any level. We consider that

the subtasks of a compound task may be impacted by constraints, and then we

separate the compound task type into two types.

Compound for many: we consider that the subtasks here are not impacted by

constraints, that is, the subtasks can be allocated from one up to M (many)

robots, where M is the number of subtasks; in this case, we call it a CM task.

52

Compound for exactly N: when each of the subtasks needs to be allocated to a

different robot, we call it a CN task (since there are N subtasks that need

exactly N robots).

������ ���	

����������

������ ���	
�������� ���	

�� ��
�

Figure 3.1 – Types of tasks considered in this thesis.

Next section we describe the flooding scenario with tasks that could be per-

formed or supported by robots and exemplify how the type of tasks described here are

suitable for a complex scenario like that.

3.2 Scenario Example - Rescue in Flood Disasters

Disasters, whether natural or man-made, are damaging and are life-threatening

for people in impacted areas. According to the World Disaster Report released by the

International Federation of Red Cross and Red Crescent Societies [IFR15], 518 disas-

ters were reported worldwide in 2014, affecting approximately 107 million people. The

damage caused by these disasters is estimated at 99 billion USD in 2014 alone.

From 518 disasters reported in the world in 2014, 132 are related to floods

[IFR15]. There were more than 1,700 flood-related disasters in the last ten years (it

should be noted that these numbers consider different types of floods, including floods

by storms and sea waves). The number of people affected by floods in 2014 was more

than 36 million, with losses estimated at 37 billion USD.

In addition to damage to properties, flooding has the potential to put people’s

lives at risk [Cou07]. Depending on the area where the flood occurs, the risks can be

considered major or minor. In sparsely populated or unpopulated areas, for example,

flooding offers low risks to people’s lives. In large populated areas, such as urban cen-

tres, the risks are greatest [Cou07]. Human activities such as devastation, mining and

industrialisation, in general, contribute to the occurrence of floods [SKV+12].

Disasters, regardless of type, are treated in four stages [MTN+08]: Prepared-

ness, Prevention, Rescue and Recovery. The tasks performed in the phases of Prepared-

ness and Prevention (phases prior to the disaster) refer to the prevention and reduction

53

of risks and the efforts to be prepared for the possible occurrence of a disaster. The Res-

cue and Recovery phases happen during and after the event. The Rescue phase includes

tasks such as searching and rescuing victims, among others [MTN+08]. The Rescue

phase is also called the Response phase by some authors, as in [RHI+15]. The Recovery

phase is intended to reduce the damage and long-term life risks caused by the event

[MTN+08].

When a flooding disaster occurs, teams are called into action to assist in the

rescue and recovery phases. According to [RHI+15], these teams are usually organised

by following a command hierarchy model, with individuals playing different roles during

a mission.

One of the first and foremost tasks to be carried out in a disaster situation is

to obtain an overview of the affected region (situational awareness) in order to identify

where help is needed and to define resource allocation [MTN+08]. The execution of this

task, such as many others that need to be carried out, involves several risks since in

a disaster there is a lot of uncertainty regarding the conditions of the environment. In

fact, in a disaster environment, there is uncertainty about the infrastructure and logistics

situation, resource availability, equipment operation and whether information remains

valid (which may change over time) [FRR+15].

One way to reduce the risk to people involved in rescue tasks is to use robots.

For example, unmanned aerial vehicles (UAVs) can be used to obtain an overview of an

area affected by a disaster, helping to identify where aid is needed and the best way to

reach the victims, thus reducing the risk to other individuals. Next, we present tasks that

could be performed or assisted by robots in flood situations. Then we discuss the aspects

that need to be considered for the allocation of these tasks to teams of heterogeneous

and autonomous robots working in flood situations.

3.2.1 Tasks and Robots in Flood Scenarios

According to Murphy, there are several tasks that could be executed or aided

by robots during flood disasters [Mur14], including the ones presented next (1 to 9). In

addition to the tasks suggested by Murphy, Scerri [SKV+12] adds the task "Collection of

data and water samples" (10) also described below.

1. Awareness, recognition and mapping: robots can be used to obtain an overview

of the region affected by the disaster. The collected information can be useful to

identify the extent and impact of the flood, discovering the state of streets, bridges,

among others;

54

2. Search: robots can be used to assist in the search for people in danger or missing

people. For this task, robots must have the ability to detect people, either through

sensors or images;

3. Delivery items: in some situations the rescue of victims can be delayed, either

because there are a large number of victims to be rescued or because the victims

are in places that are difficult to reach. In these situations, robots can be used to

deliver supplies, medicines, lifejackets, and other life support items to victims in

hard-to-reach regions;

4. Provide logistical support: robots could also carry equipment and supplies;

5. Risk monitoring for rescue teams: there are situations where, for example, a

team of rescuers may be in a flooded area rescuing a victim using a boat. If there

are water currents, debris, tree branches, among others, those things expose the

rescue team to risks. In this sense, robots can be used to monitor the water and

warn a rescue team of any wreckage that is heading toward the team;

6. Network signal propagation: if it is necessary to maintain a communication net-

work between different points (or regions), robots can act as repeaters, extending

the range of the network communication;

7. Analysis of dams: robots can be used to obtain images of dams, helping to check

for signs of rupture or overflow;

8. Rescue: robots can be used to aid in the rescue of victims;

9. On-site medical evaluation and intervention: it is often difficult or even impos-

sible for medical staff to reach out to the victims. In this case, robots could be used

to perform visual inspections or even telemedicine. According to [Mur14], this is

one of the biggest challenges regarding the use of robots in disasters.

10. Collection of data and water samples: robots can be used to collect data on

temperature, oxygen level among other possible measurements at the site, as well

as collect samples of water for more detailed analysis, since flooded areas may be

contaminated and thus put the health of the local population at risk.

Due to the characteristics of this type of disaster, the mentioned tasks could be

performed or supported by autonomous robots with different types of locomotion such as

Unmanned Surface Vehicles (USVs), Unmanned Aerial Vehicles (UAVs) and Unmanned

Ground Vehicles (UGVs). Next, we make some considerations about each of these types

of robot.

55

• USVs: these are vehicles that move over water. They can be used to obtain images

from a different angle and different locations that a UAV cannot access, and can

be used to identify victims. USVs can also be used to collect water samples or

perform other measurements (they may have sensors capable of measuring water

temperature, for example). Thus, different tasks could be performed by the USVs,

such as mapping, searching, data collection and network signal propagation. It

should be noted that in order to perform any task, one must take into account the

physical and computational capabilities of the robots.

• UAVs: these are vehicles that operate in the air. Due to their type of locomotion,

they can be used to obtain aerial images, identify victims, deliver items to isolated

victims and monitor risks to the teams. Thus, UAVs would have the ability to per-

form the tasks such as mapping, searching, item distribution, risk monitoring, and

network signal propagation.

• UGVs: these are land vehicles. Due to their type of locomotion, they can be used

for tasks in locations near flooded areas, or in portions of lands isolated by floods.

Vehicles of this type can, for example, assist in the transport of items or even obtain

images from an angle different from the other types of vehicles. Thus, UGVs could

be used to perform tasks such as mapping, distribution of items and network signal

propagation.

According to [Cra17], small UAVs have already been used in some flood disas-

ters or disasters that have had associated flooding, such as the floods in Thailand in

2011, Hurricane Haiyan in the Philippines in 2013 and floods in Serbia in the Balkan re-

gion in 2014. In these cases, a small number of manually controlled UAVs were used to

obtain an overview of the affected areas, as well as carrying out search tasks for missing

people.

The use of robots can mitigate the risks faced by the teams working in the

Rescue phase, but adds other complexities to the process. To cover a large area, for

example, a large number of robots may be required, which may make manual control

impractical, since at least the same amount of operators as robots would be required.

Other important aspects that must be considered are: which is the best robot to perform

each task; how many tasks each robot can perform with the amount of energy available;

what is the minimum distance that the controller should be from the robot (so as not

to put the controller at risk), among other complicating aspects. Considering these

aspects, the use of autonomous robots acting in a coordinated and cooperative way,

allocating the tasks among themselves in order to be able to execute them properly,

could be considered an appropriate solution for these scenarios.

56

3.2.2 Allocation of tasks in flood scenarios

Task allocation is the process of deciding which robots should perform which

tasks. However, the allocation process may be impacted by constraints imposed by the

domain problem. In this section we give an example of such constraints in the domain of

the flood disaster scenario.

As mentioned earlier, during a rescue phase in a flooding disaster, teams with

individuals performing different roles are called into action to work on various tasks.

These individuals are usually part of an organisation responsible for managing the tasks

that need to be performed during the rescue phase.

The capabilities of individuals define which roles each one can play and those

roles constraints the tasks that individuals can perform. In the same way, we may have

robots with different capabilities which allow the robots to play some roles and not oth-

ers. The robots may only carry out tasks according to the roles they can play.

Also, each robot has a maximum number of subtasks that can allocate to itself.

In the flooding scenario this constraint may be related to the amount of energy (fuel)

available to a robot.

Regarding the Rescue tasks described above, we exemplify next how they can

be defined according to the types of tasks presented in Section 3.1.

As we mentioned earlier, depending on the area where the flood occurs, the

risks to people’s lives can be considered major or minor and that can impact how the

tasks are defined by the organisation. For example, in tasks related to the mapping

of areas, robots can be used to obtain images of a region. Let’s consider that during a

flood, the organisation wants to know the situation of a dam that is a few kilometres from

the city, to verify if there is a possibility of rupture of the dam. Thus, the organisation

wants images of the dam and some specific locations around it. Then, for example, the

organisation would create a task for each of the locations for which it needs images

(including the dam).

However, the organisation may decide that it is not worth sending more than

one robot to get these images, as other tasks need to be performed in more populated

areas where more robots will be needed. In other words, the organisation wants all these

tasks allocated to the same robot. That fits in the DS type of task described in Section

3.1, where a task is composed of subtasks that need to be performed by the same robot.

In this case there would be a mapping task with several subtasks, each referring to one

of the locations that the organisation wants to obtain images.

Now consider that the organisation wants to map an area by getting images of

five locations. Then the organisation would create a task for each of the locations for

which it needs images. In this case, the organization may decide that it does not need

57

to restrict the allocation of these tasks to only one robot, which could be allocated by

one or more robots and that robots should decide the best allocation considering all the

other tasks. That fits in the CM type of task described in Section 3.1, where a task

is composed of subtasks that can be allocated from one up to M (many) robots, where

M is the number of subtasks. In this case there would be a mapping task with several

subtasks, each referring to one of the locations that the organisation wants to obtain

images. The examples above are also applied to other tasks in flood scenarios such as

search, delivery items, sample water, among others.

Let’s now consider the task of network signal propagation. Consider that the

organization wants to maintain communication network between different areas. In this

case robots can act as signal repeaters, extending the range of communication. The

organization has stated that to maintain this communication, it will be necessary to have

repeaters in six locations. In this case, to maintain the communication channel it is not

possible for only one robot to play the role of repeater, because repeaters are required

in different locations at the same time. In other words, the organisation needs each of

these tasks being necessarily allocated by a different robot. That fits in the CN type of

task described in Section 3.1, where a task is composed of N subtasks that need to be

allocated to exactly N different robots. In this case there would be a task with several

subtasks, each referring to one of the locations that the organisation need a robot acting

as reapeater.

3.3 Multi-agent Task Allocation Problem

In this section, we formally state our Multi-Agent Task Allocation optimisation

problem. We assume that there are nr available robots R = {r1, . . . , rnr
}, nt tasks T =

{t1, . . . , tnt
}, and nst subtasks ST = {st1, . . . , stnst

} where each subtask stk belongs to

exactly one task tj. Each task tj has one or more subtasks from ST , and we use Nj for

the specific number of subtasks that the jth task has. Furthermore, we use the binary

variable pjk indicating whether stk belongs to tj to formalise the constraints above, as

follows:

nt∑

j=1

pjk = 1 ∀k = 1, ..., nst. (3.1)

nst∑

k=1

pjk >= 1 ∀j = 1, ..., nt. (3.2)

Each subtask stk may be allocated to at most one robot, and each robot ri can

perform at most Li subtasks (the task limit for robot ri). We assume that a task tj ∈ T

is considered allocated only if all of its subtasks were allocated to robots following the

58

constraints described in this section. Let fik be a binary variable indicating whether stk

is assigned to ri, and let uik ∈ R be the utility value associated for the allocation of stk to

ri.

nr∑

i=1

fik ≤ 1 ∀k = 1, . . . , nst. (3.3)

nst∑

k=1

fik ≤ Li ∀i = 1, . . . , nr. (3.4)

Let us consider further that there are nq types of tasks Q = {q1, . . . , qnq
} and

that each task tj from T is associated with exactly one type of task from Q. The binary

variable wjq indicates whether tj is of type qn.

nq∑

q=1

wjq = 1 ∀j = 1, ..., nt. (3.5)

Each type of task q ∈ Q has a minimum and maximum (minq, maxq) number of

subtasks that a robot must take on when allocating to itself subtasks of a single task of

type q. We use minj and maxj for the minimum and the maximum number of subtasks

that a robot must take when allocating subtasks of task tj.

Note that with the min and max constraints we can represent all task types

DS, CN , and CM as described earlier. For example, a robot trying to allocate a DS

task must take all of the Nj subtasks, i.e. it must take a minimum of Nj and a maximum

of Nj subtasks since the type DS requires the allocation of all subtasks to exactly one

robot. Similarly, a robot trying to allocate a CN task with Nj subtasks must take only one

subtask, i.e. it must take a minimum and a maximum of one subtask. A robot trying to

allocate a CM task with Nj subtasks must take a minimum of one and a maximum of Nj

subtasks. Equations (3.6) and (3.7) state, for each task, the constraints on the number

of subtasks a robot must allocate to itself based on the type of that task.

nst∑

k=1

fik.pjk ≥ minj ∀j s.t. tj ∈ T ; i = 1, . . . , nr. (3.6)

nst∑

k=1

fik.pjk ≤ maxj ∀j s.t. tj ∈ T ; i = 1, . . . , nr. (3.7)

59

In addition, there are also constraints related to the roles the robots may play

in the organisation according to their capabilities. Assume that there are nc capabilities

C = {c1, . . . , cnc
} and ne roles E = {e1, . . . , ene

}.
Each role e is associated with the capabilities a robot must have in order for it to

be able to play that role. Each robot ri has a set of capabilities, which determine the set

of roles it is able to play. Each subtask stk is associated with a set of roles a robot must

be able to play in order to execute it. We use the following binary variables to formalise

the constraints above: gyx indicates whether role ey requires capability cx; hky indicates

whether subtask stk requires role ey; vix indicates whether robot ri has capability cx and;

ziy indicates whether robot ri is able to play role ey.

nc∑

x=1

gyx ≤ nc ∀y = 1, ..., ne. (3.8)

ne∑

y=1

hky ≤ ne ∀k = 1, ..., nst. (3.9)

nc∑

x=1

vix ≤ nc ∀i = 1, ..., nr. (3.10)

ne∑

y=1

ziy ≤ ne ∀i = 1, ..., nr. (3.11)

nc∑

x=1

gyx.vix.ziy =
nc∑

x=1

gyx.ziy ∀i = 1, ..., nr; y = 1, . . . , ne. (3.12)

ne∑

y=1

hky.ziy.fik =
ne∑

y=1

hky.fik ∀i = 1, ..., nr; k = 1, . . . , nst. (3.13)

Finally, the objective of our multi-agent task allocation problem is to find an al-

location that maximises the sum of utilities of the agents while satisfying all the above

constraints. The idea is that the process of maximising the sum of individual utilities

simultaneously improves the global utility [DZKS06]. The objective function of our opti-

misation problem can be stated as follows:

Objective:

max
{fik}

nr∑

i=1

nst∑

k=1

uik.fik (3.14)

60

61

4. DECENTRALISED TASK ALLOCATION

In this chapter we define the design of our decentralised task allocation mech-

anism, a domain-independent task allocation solution for multi-agent systems and de-

scribe our implementation of the mechanism in the JaCaMo MAS development platform.

Our decentralised mechanism allows the allocation of different types of tasks to hetero-

geneous robot teams, considering that these robots may play different roles and they

carry out tasks according to the roles they can play and their load capacities. We first

provide a general view of the allocation process, focusing on the main elements of the

proposed mechanism and then we provide details about the design and implementation.

Some of the ideas presented here first appeared in [BB17]. In [CKB+18] we briefly de-

scribe our attempt to use our decentralised approach in the Multi-Agent Programming

Contest in 2017. Our initial experiments were promising, but the integration was started

late in development and it was not possible to complete and testing in a timely manner

for the contest.

4.1 Overview of the Allocation Process

The main elements considered in the proposed mechanism are presented in

Figure 4.1. Initially, we consider the existence of an organisation that is responsible for

announcing the tasks (with their corresponding subtasks) that need to be carried out by

the agents in a given mission. As mentioned before, we use the term agent to refer to

the main control software of an individual robot of any kind. The tasks provided by the

organisation are published on a blackboard that can be viewed by all the agents avail-

able for the mission. The organisation is also responsible for publishing the roles that

agents may play in the organisation. Finally, the environment is the place where agents

carry out the tasks. Blackboard is a widely known architecture (see [Hay85] and [RB07])

which works as a globally accessible space and can be used, for example, for sharing

information among agents [RB07]. Note that we could use any other way to provide nec-

essary information to the agents. For example, in [BMZB18] we propose an architecture

for supporting the decentralised allocation of tasks built on the idea of having communi-

cation and coordination in a multi-agent system through a private blockchain.

Regarding the process itself, it is initially considered that an organisation has

a set of agents to carry out a mission and that these agents are waiting for the tasks

they will be asked to carry out (the agents start executing without having any assigned

task). When necessary, the organisation publishes a set of tasks with their subtasks

on the blackboard to which all agents have access. By identifying the new set of tasks

62

����������	�
��������	
���

���������	

� 	� ���� ���

����	����

���	�������������	
���

��������������

������
����
	� 	
��

Figure 4.1 – Overview of the Task Allocation Process.

available, the agents begin the allocation process based on the mechanism we describe

in this chapter. Information about the roles required by the organisation is also published

on the blackboard.

Simply put, each agent initially identifies the roles available in the organisation

and based on its capabilities it checks which roles it can possibly play in the organisation.

The agent then identifies on the blackboard the subtasks it can carry out based on the

roles it can play (each subtask is associated to a role which an agent must be able to

play to perform that subtask). The agents then exchange bids for the subtasks they want

to be allocated to (subtasks with the highest utilities for themselves). When an agent

receives a bid that improves its bid for a subtask it wanted to allocate to itself, the agent

withdraws that subtask from the list of its allocated subtasks and checks which subtask

it will bid for in order to replace the subtask it withdrew. These steps are repeated until

the robots agree on the overall allocation. It is important to mention that our mechanism

allows for all the subtasks to be bid on asynchronously. When the agents finish the

allocation process, the agents with allocated subtasks start to carry them out.

Note that at the end of the allocation process, there might be agents without any

allocated subtask as well as subtasks that could not be allocated to any suitable/available

agent. Such results depend on the constraints indicated and the features of available

agents. For example, if the organisation announces tasks with more subtasks than the

total limit (capacity) of all the agents together, clearly some subtasks will not be allo-

cated. On the other hand, if the total limit of the agents together is higher than the

number of subtasks to be allocated, there may be agents without any subtask allocated.

Also, the available agents may not be able to play the roles required to carry out some

subtasks, so those subtasks will not be allocated to any agent. If an agent is not able

to play any of the roles required by the subtasks, it will not be able to allocate any of

them. Furthermore, constraints related to the number of robots required for subtasks of

certain types of tasks may also lead to incomplete allocations, i.e. tasks in which at least

one subtask was not allocated to any agent.

63

Next, we exemplify our allocation process using the flooding disaster scenario.

As discussed in Section 3.2.1, there are several tasks that can be performed or assisted

by robots during flooding disasters. One of the key tasks to be accomplished is to obtain

situational awareness of the affected region, which involves mapping the affected areas.

In such a task, robots are asked to obtain images of specific areas. Let us consider, in

this example, that to accomplish the subtasks related to this task a robot needs to have

flight capability and a camera to obtain the images from the area. Note that it would be

possible to have the same task for a robot with sailing capability to get images from a

different perspective. Also, robots could be used to deliver supplies to victims who are

waiting for rescue. To perform the subtasks related to this task a robot needs to have load

capability. Another task in flood disasters is the collection of water samples for analysis.

To perform the subtasks related to this task, in our example the robot must have water

navigation capability and be able to collect water samples. In this example, we will focus

on these specific tasks. Note that, for the sake of simplicity, the information about tasks,

roles, capabilities, and robots described below are deliberately kept at a rather high

level.

Regarding the process itself, consider that the organisation needs to work on

a flooding disaster by performing the above tasks: mapping areas, delivery items and

collecting water samples for analysis. The organisation has three robots available to

carry out a mission: one USV (Unmanned Surface Vehicle) and two UAVs (Unmanned

Aerial Vehicle), which we will call respectively USV 1, UAV 1, and UAV 2. The robots start

executing without having any assigned tasks. USV 1 has water navigation capability1 and

resources to collect water samples, while UAV 1 and UAV 2 have flying capabilities and

cameras to take pictures. UAV 1 also has a loader. Figure 4.2 represents the information

each robot has about itself.

USV1 capabilities([sail,sampler])

UAV1 capabilities([fly,camera,loader])

UAV2 capabilities([fly,camera])

Figure 4.2 – Example of robots and their capabilities.

1In order to make the presentation shorter, we will use the term sail to mean any form of water naviga-

tion capability.

64

In the organisation, there are three possible roles to be played: collector, deliverer

and mapper. In order to play the collector role, robots must have the capability to navi-

gate on water and resources to collect water samples. For the deliverer role, the robot

must have the capability to fly and a loader to carry items. Finally, for the mapper role,

a robot must have the capability to fly and must have a camera to take pictures. The

organisation publishes information about the roles on the blackboard to which all robots

have access. Figure 4.3 represents the information about the roles.

Roles

collector([sail,sampler])

deliverer([fly,loader])

mapper([fly,camera])

Figure 4.3 – Example of roles the their required capabilities.

Following our example scenario, the organisation publishes on the blackboard

three tasks with their subtasks. Task task1 and task2 with three subtasks each, and a

task task3 with two subtasks as available in Figure 4.4. The predicate representing each

of the subtasks is composed of (and in this particular order): the subtask identifier, the

action related to that subtask, the role required for a robot to perform that subtask, and

the region where the task is to be performed. Note that as in the task task3, we can have

a task with subtasks requiring different roles to be performed. Thus the role is at the

subtask level and not at the task level.

Tasks task1
subtask1(collectWater, collector, regionA1)

subtask2(collectWater, collector, regionA2)

subtask3(collectWater, collector, regionA3)

task2
subtask4(takeImage, mapper, regionB1)

subtask5(takeImage, mapper, regionB2)

subtask6(takeImage, mapper, regionB3)

task3
subtask7(deliveryBox, deliverer, regionC1)

subtask8(takeImage, mapper, regionC2)

Figure 4.4 – Example of tasks and their required roles.

65

By perceiving the new set of tasks available, the robots begin the allocation

process based on our mechanism. First, each robot will identify which roles it can play

in the organisation. USV 1 identifies it can play the collector role while UAV 1 identifies it

can play the deliverer and mapper roles, and UAV 2 identifies it can play only the mapper

role. Each robot is now able to identify the subtasks it can try to allocate based on the

roles it can play. USV 1 realises it can bid the three subtasks of task1 since it is able to

play the role collector. UAV 1 and UAV 2 realise they can bid for the subtasks of task2

and for the subtask subtask8 of task3. Also, UAV 1 can also bid for the subtask7 of task3

since it can also play the role of deliverer.

The robots then following our mechanism start biding for the subtasks they

prefer, each one respecting the amount of subtasks it can allocate, which in this scenario

may be related to the amount of energy (fuel) available to a robot. The process follows

until all the robots agree on the allocated subtasks and the allocation process finishes

after that (the way the end of the allocation process is determined is presented in section

4.2.4). The robots then can start the execution of the allocated subtasks, following their

own plans and using the resources they have. Note that at any time the organisation

may need to add new tasks or even new tasks might be discovered by the robots while

executing the current tasks.

4.2 Decentralised Task Allocation

Our work aims at providing a decentralised solution for task allocation in envi-

ronments with heterogeneous robots that are capable of carrying out various different

tasks. We assume that an agent can have different capabilities. The capabilities of an

agent can be related to its type of locomotion (e.g., the possibility of sailing or flying) or

even to the resources available to the agent (i.e., the robot’s payload such as cameras,

sensors, etc.). An agent may play one or more roles. The roles are defined by the organi-

sation the agents belong to, and each role is related to a set of capabilities that an agent

needs to have in order to play that role. The organisation is also responsible for stating

the tasks that are required for a given mission.

Remember that we are working with the type of tasks described in section 3.1:

DS tasks, where all the subtasks need to be allocated to the same agent; CN tasks, where

each subtask needs to be allocated to a different agent; CM tasks, where the subtasks

can be allocated to different agents. The proposed mechanism allows us to work with

those different type of tasks through the definition of the minimum and the maximum

number of subtasks a robot must take from each type.

We also assume that each agent has a maximum number of subtasks that can

allocate to itself. This constraint may be related, for example, to the amount of energy

66

(fuel) available to a robot. This may vary among robots as well as it may vary while

the tasks are being carried out. The task allocation is based on utility values, and we

consider that each agent is capable of calculating its own utility value for each task.

As mentioned in the Section 2.3.2, the utility is a value that expresses how much a

task contributes to the robot’s objectives when executed by it. The utility function is

dependent on the domain we are working, and the utility value can be quantified by

combining several factors such as the energy spent to complete a task, distances, loads,

among others. Furthermore, our approach assumes reliable communication. Next, we

present aspects related to the definition of roles and tasks and how we use them in

our task allocation mechanism. Then we continue with the presentation of the core

algorithms of our mechanism.

4.2.1 Roles and Tasks Definition

The roles and tasks are defined by the organisation and announced on a black-

board. In this section, we describe our artifacts for announcing the roles and the tasks.

Role definition: in our multi-agent task allocation problem a role is related to a set of

capabilities an agent must have in order to play that role. For instance, there could be a

role mapper requiring agents with the following capabilities to play the role:

role(mapper, [fly, camera]).

In Listing 4.1 we show the roles artifact for sharing information about roles. The roles

artifact has two operations announceRoleCapability and removeRoleCapability which are

used to announce and remove the capabilities for a role. The operation announceRoleCapability

receives two parameters as input, the role description and a capability description for

that role and generate an observable property for that input. For instance, for themapper

role mentioned above, the operation announceRoleCapability would be executed twice:

announceRoleCapability(mapper, f ly)

announceRoleCapability(mapper, camera)

The information defined in the observable properties generated by the opera-

tions will appear as beliefs for the agents who focus on the roles artifact as follow:

roleCapability(mapper, f ly)

roleCapability(mapper, camera)

In the same way, the operation removeRoleCapability would be executed twice

for removing all the information about the mapper role, or only once if only one of the

capabilities is no more required for that role.

67

✞ ☎

1 ...

2 @OPERATION void announceRoleCapability(String role, String capability){

3 try {

4 defineObsProperty("roleCapability",role, capability);

5 } catch (Exception ex){failed("role_announce_failed");}

6 }

9 @OPERATION void removeRoleCapability(String role, String capability){

10 try {

11 removeObsPropertyByTemplate("roleCapability",role, capability);

12 } catch (Exception ex){failed("role_remove_failed");}

13 }

14 ...
✝ ✆

Listing 4.1 – Operations avaialable in the roles artifact.

Task definition: tasks are also announced by the organisation through an artifact.

Before explaining how the tasks are announced through the artifact, let us first

explain how the tasks are defined using the example from Figure 4.5. Let us consider

that the organisation needs agents to collect water for analyses in three different loca-

tions and decided to create a task with three subtasks for that. Also, consider that the

organisation defines that the three subtasks can be executed by only one agent or at

most three agents (see Figure 4.5.A). The information for each subtask in Figure 4.5.A

is presented in this order: the action that needs to be performed, the role required to

execute the subtask and a list of values (in brackets) which are related to the domain

and are additionally needed to calculate the utility for the subtask.

The infomation available in Figure 4.5(A) can be mapped for the one presented

in Figure 4.5(B). Every time the organisation wants to announce new tasks we call this

new set of tasks as a job and give it an id (jobId). Suppose the organisation is going to

announce at the same time the three tasks available in Figure 4.4. All the tasks would

have the same jobId. The task and each of the subtasks also receive an identifier. Based

on the MinAgents and MaxAgents values of the new task, in this example, the task is

mapped for the type of task CM.

Thus each task has the following parameters that must be determined when a

task will be announced through the artifact: jobId, taskId, taskType, [subtaskList].

jobId: is an identifier for the set of tasks which were announced together;

taskId: is the task identifier;

taskType: is the type of the task;

subtaskList: the list of subtasks for that task

68

Each subtask in the subtaskList also has a number of parameters: subtaskId,

taskAction, role and [subtaskParams].

subtaskId: is an identifier for the subtask;

taskAction: is the action that must be performed;

role: is the role needed to perform that subtask;

paramsSubtask: the number of parameters here depends on the domain the task

bellows. Values in this parameter can be related to, for instance, distance, ex-

ecution time, weight and others. These values should be the ones necessary to

calculate the utilities for the subtasks.

Based on the information available in Figure 4.5(B) the organisation announce

the subtasks using the operations available in the Blackboard artifact (Listing 4.2). The

operation announceSubtask is used to announce the information necessary for the alloca-

tion process as shown in Figure 4.5(C). The operation announceSubtaskParam is used to

announce information necessary to calculate the utility values for the subtasks as shown

in Figure 4.5(D).

New task

MinAgents: 1

MaxAgents: 3

� collectWater, collector, [Lat=25.65, Lon=2.41]

� collectWater, collector, [Lat=25.75, Lon=2.41]

� collectWater, collector, [Lat=25.85, Lon=2.41]

jobId: job1

taskId: task1

type: CM

subtasks:

� subtask1, collectWater, collector, [Lat=25.65, Lon=2.41]

� Subtask2, collectWater, collector, [Lat=25.75, Lon=2.41]

� Subtask3, collectWater, collector, [Lat=25.85, Lon=2.41]

announceSubtask(subtask1, task1, job1, CM, collector, collectWater)

announceSubtask(subtask2, task1, job1, CM, collector, collectWater)

announceSubtask(subtask3, task1, job1, CM, collector, collectWater)

announceSubtaskParam(subtask1, task1, job1, subtaskLat, 25.65)

announceSubtaskParam(subtask1, task1, job1, subtaskLon, 2.41)

announceSubtaskParam(subtask2, task1, job1, subtaskLat, 25.75)

announceSubtaskParam(subtask2, task1, job1, subtaskLon, 2.41)

announceSubtaskParam(subtask3, task1, job1, subtaskLat, 25.85)

announceSubtaskParam(subtask3, task1, job1, subtaskLon, 2.41)

���

���

���

���

Figure 4.5 – Example of task definition.

69

✞ ☎

1 ...

2 @OPERATION void announceSubtask(String subTaskDescr, String TaskDescr, String job

, String TaskType, String taskAction, String roleDescr){

3 try {

4 Literal lsubTaskDescr = createLiteral(subTaskDescr);

5 Literal lTaskDescr = createLiteral(TaskDescr);

6 Literal lJob = createLiteral(job);

7 Literal lTaskType = createLiteral(TaskType);

8 Literal ltaskAction = createLiteral(taskAction);

9 Literal lroleDescr = createLiteral(roleDescr);

10 this.defineObsProperty("subTask", lsubTaskDescr, lTaskDescr, lJob, lTaskType,

ltaskAction, lroleDescr);

11 } catch (Exception ex){}

12 }

14 @OPERATION void announceSubtaskParam(String info, String subTask, String task,

String job, String infoDescr){

15 try {

16 Literal lsubTask = createLiteral(subTask);

17 Literal lTask = createLiteral(task);

18 Literal lJob = createLiteral(job);

19 Literal linfoDescr = createLiteral(infoDescr);

20 this.defineObsProperty(info, lsubTask, lTask, lJob, linfoDescr);

21 } catch (Exception ex){}

22 }

23 ...
✝ ✆

Listing 4.2 – Operations avaialable in the tasks artifact.

4.2.2 Algorithms for the Task Allocation Process

The proposed task allocation mechanism is based on algorithms that are ex-

ecuted by each agent in the organisation, characterising a decentralised solution. A

general view of algorithms that constitute the core of the proposed mechanism is pre-

sented below. Note that during a mission new roles can be added or the existing roles

can be updated regarding the required capabilities or a role can even be deleted from

the roles list. Also, new tasks can be added during a mission. When the agents perceive

a new set of tasks, they begin the allocation process by initially running the Algorithm 1.

Starting the allocation process (Algorithm 1)

The initial algorithm is Algorithm 1 which receives as input two parameters: the

list of tasks to be carried out by the agents as currently available on the blackboard; and

the current list of roles within the organisation.

70

In a new allocation process, the first step for an agent is to identify the roles

it can play based on the current list of roles available in the organisation (line 5 shows

the call to the Algorithm 2 which takes care of that). Next, the agent selects only the

tasks that are compatible with the roles that it can play (line 6 shows the call to the

respective function in Algorithm 3). Knowing the tasks that the agent can perform, it

calls Algorithm 4 (line 7), which updates for each task the minimum and the maximum

number of subtasks that a robot must take according to the type of the task. Line 8

shows the call to the function responsible for calculating the utilities for the possible

subtasks. The utility function is dependent on the domain the agents are working on and

can combine several factors.

Finally, it calls Algorithm 5 (line 9), which starts the bidding process for the

tasks that can be allocated to that agent. The first time the Algorithm 5 is called, the

input parameter allocatedSubtasks is empty.

Algorithm 1

startAllocation(blackboardTasks,organisationRoles)

1: allocatedSubtasks = ∅;
2: candidates = ∅;
3: taskList← blackboardTasks;

4: roleList← organisationRoles;

5: possibleRoles← getPossibleRoles(roleList);
6: possibleTasks← getPossibleTasks(taskList, possibleRoles);
7: possibleTasks← getMinMaxTaskType(possibleTasks);
8: calculateUtilities(possibleTasks);
9: taskAllocation(possibleTasks, allocatedSubtasks);

Identifying the possible roles (Algorithm 2)

The purpose of this algorithm is to identify the roles the agent can play based

on its own capabilities and on the current list of roles available in the organisation.

Algorithm 2 receives as input the list of all roles currently defined within the

organisation with the required capabilities a robot must have to play each of the roles.

The algorithm goes through the roleList received as input and for each role in that list it

checks if the agent has all the required capabilities. Each role the agent is able to play is

added to the list of possibleRoles which is the output from the algorithm. The identifica-

tion of the possible roles is performed whenever new tasks are perceived by the agents

because we consider that in some scenarios it may be possible that the roles may change

during the mission.

71

Algorithm 2

getPossibleRoles(rolesList)

1: Let agentCapabilities be the list of agent’s capabilities;

2: possibleRoles = ∅;
3: for all role rk in rolesList do

4: validRole← true

5: for all capabilityRequired in rk do

6: if capabilityRequired not in agentCapabilities then

7: validRole← false

8: end if

9: end for

10: if validRole = true then

11: possibleRoles.add(rk)
12: end if

13: end for

14: return possibleRoles

Identifying the possible tasks (Algorithm 3)

This algorithm is used by the agent to identify the subtasks it can carry out

based on the roles it can play (each subtask is associated to a role which an agent must

be able to play to perform that subtask).

Algorithm 3 receives as input the list of all blackboard tasks that need to be car-

ried out as well as the list of the roles the agent is able to play within the organisation.

The algorithm goes through each task and for each task it goes through each subtask

identifying if that subtask could possibly be allocated to the agent, i.e. if the agent is

able to play the role associated to that subtask. The output of this algorithm is a list of

tasks in which each subtask is updated with respect to whether or not it can be allocated

by the agent.

Algorithm 3

getPossibleTasks(blackboardTaskList, possibleRoles)

1: taskList← blackboardTaskList;

2: for all task tj in taskList do

3: for all subtask stk in tj do

4: if stk.role in possibleRoles then

5: stk.possible← true;

6: else

7: stk.possible← false;

8: end if

9: end for

10: end for

11: return taskList

72

Update min/max subtasks by task type (Algorithm 4)

The purpose of this algorithm is to update the minimum and the maximum num-

ber of subtasks that a robot must take from each task according to the type of the task.

Algorithm 4 receives as input the list of all tasks the agent can execute. It goes

through each task and updates the minimum and the maximum number of subtasks that

a robot must take from that task. Minimum and maximum values are based on the type

of the task, and we assume they are defined a priori to the execution of the mechanism.

We consider that minimum and maximum values can be expressed with a number or with

the letter N to represent all subtasks.

The algorithm goes through each task tj from the list of possibleTasks perform-

ing the following: first, based on the type of the task tj, the algorithm identifies the

minimum and the maximum number of subtasks that a robot must take from that type

of task (lines 2 to 3). The number of subtasks that task tj has is identified as Nj (line 4).

Next, the minimum and the maximum values for the task tj are identified from line 5 to

line 14. If the minType for the type of task is the letter N then the minimum number of

subtasks of tj is Nj, i.e. the agent must take all the subtasks of tj. Otherwise, minType

is a number representing the minimum number of tasks should be taken.

Also, if the maxType for the type of task is the letter N then the maximum num-

ber of subtasks of tj is Nj, i.e. the agent can take all the subtasks of tj. Otherwise,

maxType is a number representing the maximum number of tasks could be taken. The

output from this algorithm is the list of possibleTasks updated with the minimum and the

maximum number of subtasks that a robot must take from each of the tasks.

Algorithm 4

getMinMaxTaskType(possibleTasks)

1: for all task tj in possibleTasks do

2: minType← taskTypes.getMin(tj.type);
3: maxType← taskTypes.getMax(tj.type);
4: Nj ← tj.subTasks.count

5: if minType = N then

6: tj.minSubTask ← Nj;

7: else

8: tj.minSubTask ← minType;

9: end if

10: if maxType = N then

11: tj.maxSubTask ← Nj;

12: else

13: tj.maxSubTask ← maxType;

14: end if

15: end for

16: return possibleTasks

73

Performing the task allocation (Algorithm 5)

Algorithm 5 receives as input the list of tasks that can be allocated (possibleTasks)

to agent ri (which is running the algorithm), and the list of subtasks already allocated in

the current allocation process (allocatedSubtasks) – empty the first time the algorithm is

called.

Initially, the algorithm checks if the agent still has the capacity to allocated more

subtasks by comparing if the current load for the allocated subtasks (currentLoad) so far

is lower than its load capacity (loadCapacity – the task limit). If so, it begins the analysis

of all possible tasks in order to identify the tasks that can still be allocated (lines 5 to

13). We use l′i to refer to the difference between loadCapacity and currentLoad.

The analysis starts by identifying the list of candidate subtasks, which is based

on the minimum and the maximum number of subtasks the agent can take from each

task (line 5 shows the call to the Algorithm 6 which takes care of that). The algorithm

follows by filtering the list of candidate tasks using the Algorithm 7 (called at line 6).

The algorithm then uses the filtered candidates list (filteredCandidates) and the current

load capacity of the agent (l′) as input to select the best candidates, i.e. the candi-

date subtasks that the agent choose to allocate (line 7 shows the call to the respective

function). The getBestCandidates is a version of an algorithm for the Knapsack problem

(more detail in Section 4.2.3). The getBestCandidates function returns a list with the best

candidates subtasks selected for allocation.

Algorithm 5

taskAllocation(possibleTasks, allocatedSubtasks)

1: Let loadCapacity be the agent’s max load to allocate new concurrent subtasks;

2: currentLoad← allocatedSubtasks.load;

3: l′ ← loadCapacity − currentLoad;

4: if l′ > 0 then
5: candidates← getCandidates(possibleTasks, l′);
6: filteredCandidates← filterCandidates(candidates, l′);

7: bestCandidates← getBestCandidates(filteredCandidates, l′);
8: allocatedSubtasks← allocatedSubtasks ∪ bestCandidates;

9: calculateBids(bestCandidates);
10: for all subtask stk in bestCandidates do

11: bidList← bidList ∪ [stk.id, stk.bid, agentId];
12: updateSubtaskOwner(stk.id, stk.bid, agentId);
13: end for

14: communicateBids(bidList) //to all other agents;

15: end if

The best candidates are then added to the list of allocated subtasks (line 8).

Next, the algorithm calculates the bids for the subtasks in the bestCandidates list (line 9

shows the call to the Algorithm 8). Next, the identifier and bid values for each subtask

74

stk in bestCandidates as well as the identifier of the agent are added to the list of bids

bidList (line 10 to 13). Note that the list of bids has bids only for the best subtasks se-

lected in this iteration of Algorithm 5. In the same loop the algorithm updates locally the

owner and the winner bid value for each subtask. Finally, the agent communicates the

list of bids bidList to all other agents (line 14).

Getting the candidate subtasks (Algorithm 6)

This algorithm is used to identify the list of candidate subtasks based on the

minimum and the maximum number of subtasks the agent can take from each task. The

algorithm receives as input the list of tasks the agent is able to execute (possibleTasks)

and the current load capacity of the agent (l′). For each task tj in possibleTasks, the

algorithm identifies the number of subtasks the agent can/must select as candidates for

allocation. In order to get this value, the algorithm first identifies the minimum load

required for the task (line 4). Then, it checks if the agent has the capacity to select

the minimum load of subtasks required by task tj (line 5). After that, based on the

maximum number of subtasks that the agent can allocate from task tj and the ones

already allocated, the algorithm verifies if there are still subtasks of task tj that can be

allocated (line 9).

Next, the algorithm selects as candidates the nToAlloc best subtasks from task

tj limited to the current load capacity l′ (line 12). The choice of candidates is carried

out based on the utility of each subtask of that task. After analysing each task, the al-

gorithm adds the subtasks selected as candidates to the list of candidate subtasks (line

15). Finally, the output of the algorithm is a list with the subtasks of each task selected

as candidates (line 17).

Filtering the candidate subtasks (Algorithm 7)

The idea is to filter the number of subtasks that will be used in the next step of

the Algorithm 5 based on the load of the subtasks.

The algorithm receives as input two parameters: the list of candidate subtasks

(candidates) and the current load capacity of the agent (l′). The first step is to identify

the distinct loads available in the subtasks from the candidates list (line 2 shows the call

to the function which takes care of that). Then, the algorithm goes through each distinct

load (line 3 to 16) performing the following: first it adds to the loadCapabilities list all

the subtasks from candidates list which have the load li being processed in the iteration

and then sorts that list from highest to lowest based on utility values (line 4 to line 5).

Then while the loadCapabilities list is not empty and while the sum of the loads

(loadTotal) for the subtasks added to the filteredCandidates list is lesser than the current

75

Algorithm 6

getCandidates(possibleTasks, l′)

1: candidates = ∅;
2: for all task tj in possibleTasks do

3: candidatesT = ∅;
4: taskMinLoad← getMinLoad(tj);
5: if l′ >= taskMinLoad then

6: minT ← tj.minSubTask;

7: maxT ← tj.maxSubTask;

8: nAllocatedT ← allocatedSubtasks.countSubtasksFrom(tj);
9: if maxT > nAllocatedT then

10: toAllocT ← maxT − nAllocatedT ;

11: nToAlloc← min[l′, toAllocT];
12: candidatesT ← getTaskCandidates(tj.subTasks, nToAlloc, l

′);
13: end if

14: end if

15: candidates← candidates ∪ candidatesT ;

16: end for

17: return candidates

load capacity l′, the algorithm goes through the loadCapabilities list performing the fol-

lowing: for each subtask stk in loadCapabilities, it calculates the bid for the subtask and

then verifies if the bid is higher than the current bid winner. If so, it adds the subtask to

the filteredCandidates list and sums the load value of that subtask to loadTotal. Then the

first subtask is removed from the loadCapabilities list, and the steps are repeated. The

output for this algorithm is a list of subtasks filtered from the candidates list.

The filtered candidates list (filteredCandidates) are then used by the Algorithm

5 to select the best candidates, i.e. the candidate subtasks that the agent choose to

allocate (function called at line 7 of Algorithm 5). The getBestCandidates function is a

version of an algorithm for the Knapsack problem (more detail in Section 4.2.3), which

returns a list with the best candidates subtasks selected for allocation.

Calculate bids (Algorithm 8)

The purpose of this algorithm is to calculate the bid values for the subtasks that

the agent is trying to allocate.

The input for this algorithm is the list of the subtasks that were selected for allo-

cation (bestCandidates). The algorithm goes through each subtask stk in the bestCandidates

list performing the following: first the algorithm identifies the next best subtask for the

subtask stk – subtaskNext (line 2). The next best subtask is the one that would be se-

lected if the agent was not possible to select stk. The subtasks in the allocatedSubtasks

list are not eligible to be the next best subtask since they are currently allocated to the

agent.

76

Next, the algorithm identifies the utility value and the current winner bid for the

subtaskNext (line 3 to 4). Then the algorithm calculates the bid value for the stk subtask

to be sent to the other agents. This calculation was inspired by the bid calculation

formula introduced in [LCS15a]. The bid for a subtask is its utility value minus the

amount that would be lost if the next best subtask were taken instead. Line 5 refers to

the calculation of the bid for the subtask stk.

Algorithm 7

filterCandidates(candidates, l′)

1: filteredCandidates = ∅;
2: loads← selectDistinctLoads(candidates)
3: for all load li in loads do

4: loadCandidates← getCandidatesWithLoad(candidates, li);
5: loadCandidates.sortByUtility;

6: loadTotal = 0
7: while loadTotal ≤ l′ and loadCandidates 6= ∅ do
8: stk ← loadCandidates.getF irstSubtask;

9: stk.bid← calculateBid(stk);
10: if stk.bid > currentWinnerBid(stk) then
11: filteredCandidates.add(stk);
12: loadTotal ← loadTotal + li;

13: end if

14: loadCandidates.removeF irstSubtask;

15: end while

16: end for

17: return filteredCandidates;

Algorithm 8

calculateBids(bestCandidates)

1: for all subtask stk in bestCandidates do

2: subtaskNext← getNextBestSubtask(stk);
3: utilityNext← getUtility(subtaskNext);
4: winnerBidNext← getCurrentWinnerBid(subtaskNext);
5: stk.bid = stk.utility − (utilityNext− winnerBidNext) + 1;
6: end for

Processing the received bids (Algorithm 9)

Each agent processes the bids received from other agents by executing Algo-

rithm 9. This algorithm is only triggered when the Algorithm 5 is not running in the

agent. It means that while Algorithm 5 is running the agent may receive bids from one

or more agents before start processing the bids. The bidsQueue input is the list of bids

received from other agents.

When the agent starts processing the bids it goes through each list of bids re-

ceived from other agents (bidList) available in the bidsQueue list performing the follow-

77

ing: for each bid in the bidList it checks if the received bid is greater than the current

winner bid value for the subtask and, if so, it updates the owner and winner bid value

for that subtask (line 6 to line 7). Note that the bids are processed in the order they

were received. Next, if the bid is related to a subtask the agent allocated to itself, then

the agent has to remove that subtask from its allocated subtasks (line 8 to line 9). After

the bids in bidList were processed, the algorithm calls Algorithm 11 to update locally the

status of the agent who sent the bids in the bidList (line 15).

After processing all the bidList in bidsQueue the algorithm verifies if the agent

still has available load to allocate other subtasks. If so, it calls Algorithm 5 in order to

try to allocate others subtasks.

Algorithms 5 and 9 are repeated until the agents agree on the allocation, that is,

until the self-allocated subtasks do not undergo any further modifications. Section 4.2.4

provides more details about how is determined the end of the allocation process.

Algorithm 9

processBids(bidsQueue)

1: if bidsQueue 6= ∅ then
2: for all bidList in bidsQueue do

3: agentId← bidList.agentId;

4: agentLostBid← false;

5: for all bid in bidList do

6: if bid.value > subtask.bidV alue then

7: updateSubtaskOwner(bid.subtask, bid.value, agentId);
8: if bid.subtask in allocatedSubtasks then

9: allocatedSubtasks.remove(subtask)
10: end if

11: else

12: agentLostBid← true;

13: end if

14: end for

15: updateAgentStatus(agentId, agentLostBid);
16: end for

17: end if

18: Let loadCapacity be the agent’s max load to allocate new concurrent subtasks;

19: currentLoad← allocatedSubtasks.load;

20: if (loadCapacity − currentLoad) > 0 then
21: allocatedSubtasks← getCurrentAllocatedSubtasks();
22: possibleTasks← getCurrentPossibleTasks();
23: taskAllocation(possibleTasks, allocatedSubtasks);
24: end if

78

4.2.3 Selecting the Best Subtasks Using a Knapsack Algorithm

In Algorithm 5, we call the getBestCandidates function (line 7) for selecting the

best subtasks for allocation to an agent from its candidates list. Our getBestCandidates

function is an algorithm for the Knapsack problem. In this section, we explain the basic

idea behind it.

The basic Knapsack problem consists in placing items with different weights and

values inside a knapsack, trying to maximise the total value of the items in the knapsack

while respecting the maximum weight it can take. Analogous to the Knapsack problem,

the agent’s load capacity for subtasks corresponds to the weight limit of the knapsack;

the amount of load that a subtask will occupy in the agent’s load capacity corresponds

to the weight of an item; and the utility value of a subtask corresponds to the value of an

item (see Table 4.1).

In order to explain the use of the knapsack algorithm in this paper, let us con-

sider an agent that has 20 as load capacity to allocate subtasks. Consider also the task

samples available in Table 4.1. Recall that for a decomposable simple task (such as DS1

and DS2 in Table 4.1), the agent must take all or none of its subtasks. Task DS1, for

example, has three subtasks that must all be taken by the same agent. To deal with this

type of task while selecting the best subtasks, we consider those three subtasks as one,

summing up the utility values of each subtask, and also summing up the load of each

subtask, that is, their weight. Thus, the task DS1 would be considered as a task with

the load equal to 15 (it would occupy fifteen load space of the agent’s load capacity) and

with a total utility value of 14 (the sum of the utilities of the individual subtasks).

Since the subtasks from CN and CM type of tasks can be independently allo-

cated, they are individually considered here. Thus, each subtask will occupy only its

load in the agent’s load capacity, and its utility value will also be considered individually.

Table 4.1 – Example of Candidate Subtasks List
Task DS1 DS2 CN1 CM1

Subtask (item) st1 st2 st3 st4 st5 st6 st7 st8 st9 st10

Load (weight) 4 5 6 12 5 2 10 6 4 5

Utility (value) 4 3 7 8 3 6 7 8 1 6

At each iteration of Algorithm 5, the agent runs the knapsack algorithm (called

on line 7) to select the best subtasks from the list of candidate subtasks up to its limit.

That is, the algorithm should select subtasks such that the sum of their utilities is max-

imised while respecting the limit of subtasks the agent can take on at any given time.

Although it seems prohibitive to solve knapsack problems repeatedly and for

each agent, it should be noted that the previous steps of Algorithm 5 ensure that only a

79

typically small selection of tasks take part in this step of the overall allocation process,

and an agent typically have small task limits. In other words, even if a large number of

subtasks is available, the process will filter the subtasks that will be sent to the getBest-

Candidates function (which calls our Knapsack algorithm) and only a relatively small

number of tasks will be considered for a small task limit.

4.2.4 Determining the End of the Allocation Process

In decentralised task allocation mechanisms, where agents place bids for the

tasks they want to allocate, one of the problem to solve is for each agent to know when

the other agents finished sending bids, hence determining that task allocation process is

complete.

Some solutions to this problem, such as in [LCS15a], use the following approach

to determine the end of the allocation process. At each iteration the agents send their list

of bids for all tasks they wish to allocate, that is, if an agent wishes to allocate five tasks,

a message with five bids is sent to the other agents at each iteration, even though there

has been no change in the allocated tasks. Sending messages with the same content is

used to control the end of the allocation process, that is, when the bids of all agents are

the same for a number of iterations, it means that the task allocation has ended. Due

to this feature, at each iteration a large number of messages with size proportional to

the number of tasks each agent is allocating to itself is sent to all other agents. This

can impact the communication infrastructure and unnecessarily waste resources, which

can be crucial in a solution for real-world environments. [CBH09] also uses a similar

approach.

Below, we describe our approach to identify the end of the allocation process. In

our approach, each agent internally stores the winner for each subtask and its bid value

in a list (the SubtaskWinner list). Each agent also keeps an agent status list with each

agent participating in the allocation process (AgentBidStatus list). Consider an agent ai

and its SubtaskWinner and AgentBidStatus lists.

When an agent ai receives bids from another agent aj for the first time, it will

add that agent to the AgentBidStatus list, and in subsequent bids from that same agent

aj, ai will update the value associated with aj (see Algorithm 11). In our approach,

when an agent ai processes the list of bids received from each of the other agents, it

adds/updates to that agent one of the following values in the AgentBidStatus list:

• false – set this value when agent aj won all the subtasks for which it has bid. It

means that the agent does not need to send further bids for now. The update in the

AgentBidStatus list is performed by calling Algorithm 11 on line 15 of Algorithm 9;

80

• true – set this value to indicate that agent ai needs to wait for another bid from that

agent aj. This value is set in the following cases:

– when aj does not win all of the subtasks for which it has placed bids, that is,

at least one of the subtasks has already received a higher bid from another

agent. For example, if agent ai is processing a bid list with bids for three

subtasks, and it realises that the agent aj only won two of them, it means that

aj will need to send further bids. The update in the AgentBidStatus list is also

performed by calling Algorithm 11 on line 15 of Algorithm 9;

– when aj is outbid by another agent, i.e., when it loses one of its allocated

subtasks. It means that aj will need to send further bids. That can be checked

when agent ai is processing bids from other agents and then update the Agent-

BidStatus list through Algorithm 10 called on line 7 of Algorithm 9, which calls

Algorithm 11;

– when ai allocates a subtask to itself that outbids aj. It means that aj will need

to send further bids. This update is done when ai calls Algorithm 10 on line 12

of Algorithm 5, , which calls Algorithm 11;

When an agent is outbid, it will always try to select another subtask to bid for.

However, when that agent is not able to select another subtask, it will send a done

message. When agent ai receives a done message from an agent aj, agent ai will set its

value for aj as false in its AgentBidStatus list, meaning that aj does not need to send

another bid for now. That value may change if that agent is later outbid on another

subtask.

Regardless of the value set in the AgentBidStatus list, each subtask a bidding

agent wins will be associated to it in SubtaskWinner list. Also, when agent ai allocates a

subtask to itself, it will be associated with that subtask in the SubtaskWinner list.

In order to control the end of the whole allocation process, we do as follows.

When an agent has no more bids to process, it will check internally if the number of

agents in the AgentBidStatus list is equal to the number of agents considered in the

allocation process and if the values for all the agents is false, which means all agents

sent their bids or done messages, and subtasks were allocated in accordance with the

bids. These steps are performed by all the agents in the allocation process.

In summary, at the beginning of the allocation process, each agent will send a

bid list for all subtasks that it wishes to allocate. Next, only the agents that were outbid

will send bids for other subtasks again, but only for the newly selected subtasks. If the

agent is not able to select another subtask, it will send a done message. That reduces the

number and size of messages each agent needs to send to other agents, and still allows

a precise procedure to check for termination. Our approach, however, has a higher

storage cost, since it stores the winner of each subtask and the status of each agent

81

related to the bids they sent. Furthermore, like most other auction-based approaches,

our approach assumes reliable communication among agents.

Algorithm 10

updateSubtaskOwner(subtask, bidV alue, agentId)

1: if (subtask.owner 6= null) and (subtask.owner 6= agentId) then
2: updateAgentStatus(subtask.owner, true);
3: end if

4: subtask.owner ← agentId;

5: subtask.winnerBid← bidV alue;

Algorithm 11

updateAgentStatus(agentId, status)

1: if agentId in AgentBidStatus then

2: AgentBidStatus.update(agentId, status);
3: else

4: AgentBidStatus.add(agentId, status);
5: end if

4.2.5 Coping with Partially Allocated Tasks

The algorithms previously described produced good results in the performed

experiments, especially when the total capacity of the agents was greater than or equal

to the total number of subtasks that need to be allocated. However, when the number

of subtasks is greater than the total capacity of the agents, the final allocation of the

algorithms can result in tasks not completely allocated, that is, tasks in which at least one

subtask was not allocated to any agent. The algorithms can result in tasks not completely

allocated also when none of the agents have the capability required to perform one of

the subtasks of a task.

For example, if a task is composed of four subtasks, the allocation process may

result in three subtasks allocated while one of them is not. This situation can occur be-

cause the agents always try to allocate the subtasks with higher utility values. Thus, if

some subtasks of a compound task have higher utilities they probably will be allocated

while the ones with lower values may end up not allocated. This may result in a com-

pound task partially allocated, which should not be allowed. Thus, in order to avoid tasks

not completely allocated, at the end of the allocation process previously described, it is

necessary to perform a few more steps which are performed by Algorithm 12.

82

Handling partial allocated tasks(Algorithm 12)

First, the algorithm identifies the tasks that are not completely allocated, that

is, the tasks in which at least one of their subtasks was not allocated to any agent (line

2 shows the call to the Algorithm 13 responsible for this process). Knowing which tasks

are partially allocated, each agent checks whether it has any of their subtasks in its

allocation list, and then removes those subtasks from its allocation (line 3 refers to this

function in Algorithm 14).

After this step, there may be some completely unallocated tasks. Since the

agents have removed previously allocated subtasks, they may now have space for new

allocations. So we run our allocation process again, but one task at a time, that is, we

run the process to fully allocate one task, then move on to the next task until all tasks

have been allocated. The idea of allocating one task at a time is due to the fact that

the preferences of each agent tend to be the same as those that resulted in partially

allocated tasks.

The order in which the tasks will be allocated is relevant since the preference

order for the allocation may be different for the agents and may impact the quality of

the final allocation. Thus, the agents need to reach an agreement on the order in which

the tasks will go through this stage of the allocation process. Thus, in this work, we use

a social-choice algorithm based on voting to achieve such an agreement; in particular,

we use Borda count as the voting method to decide the order in which the tasks will be

allocated.

Algorithm 12

handlePartialAllocatedTasks

1: taskList← getTasks();
2: partialTasks← identifyPartialAllocated(taskList);
3: removePartialTasks(partialTasks);
4: preferenceList← generatPreferenceOrder(partialTasks);
5: sendPreferenceList(PreferenceList);

In Borda count, each voter submits a full preference ordering on the candidates.

Each place in the ordered list provides points to the candidates. The first candidate

receives n − 1 points, the next receives n − 2, and so on (where n is the number of

candidates). The function generatePreferenceOrder in line 4 represents the function re-

sponsible for generating the preference ordering list. The global ordering is determined

by the sum of points from all the voters [Con10]. Simply put, in our use of Borda count

the agents submit their order of preference to all other agents (this is represented in line

5).

83

Identifying partially allocated tasks(Algorithm 13)

The algorithm receives as input a list with all the tasks being allocated (taskList).

For each task in taskList the algorithm goes through each subtask verifying if the sub-

task was allocated to some agent. If some subtask was not allocated to any agent the

task is set as partial (line 4 to 8). After verifying all the subtasks the algorithm checks

if the task is set as partial and then add that task to the partialTasks list (line 9 to 11).

It means that the task was not completely allocated. The output from this algorithm is a

list of tasks that were not completed allocated.

Algorithm 13

identifyPartiallyAllocated(taskList)

1: partialTasks = ∅;
2: for all task tj in taskList do

3: partialTj = false;

4: for all subtask stk in tj do

5: if stk.owner = null then

6: partialTj = true;

7: end if

8: end for

9: if partialTj = true then

10: partialTasks = partialTasks ∪ tj;

11: end if

12: end for

13: return partialTasks

Removing partially allocated tasks(Algorithm 14)

The algorithm receives as input the list with the tasks that were not completely

allocated (partialTasks). For each task in partialTasks the algorithm goes through each

subtask performing the following: since the subtask will no more be allocated to any

agent, the algorithm first updates the owner and the winner bid values for the subtask

(line3). Then it checks if the subtask is in the list of allocated subtasks (allocatedSubtasks)

and then remove the subtask from that list.

Processing agents’ preferences(Algorithm 15)

The algorithm receives as input the preference lists (voting) received from the

other agents. These preference lists can have different tasks and different lengths for

each agent, because some subtasks may not be possible to be executed by some agents

due to the roles required by the subtask. All tasks not included in the list by an agent

are assumed to be equally least preferred by that agent.

84

Algorithm 14

removePartialTasks(partialTasks)

1: for all task tj in partialTasks do

2: for all subtask stk in tj do

3: updateSubtaskOwner(stk, null, null);
4: if stk in allocatedSubtasks then

5: allocatedSubtasks.remove(stk);
6: end if

7: end for

8: end for

Based on the voting lists received, each agent individually calculate the global

ordering for the allocation process (line 3 shows the call to the function computePreferences

which takes care of that). The tasks will be allocated in that computed ordering. For

each task being processed the algorithm first verifies if the agent has capacity to allo-

cate more subtasks (line 6). The agent then start providing bids on the subtasks of that

task and, after receiving the bids, the winner for each subtask is known. The allocation

is performed by running Algorithm 5 (line 9).

After this process, the agent checks whether the task has been completely allo-

cated or not. If it is fully allocated, the agent maintains its allocated subtasks, otherwise

they are considered not allocated (line 13 calls the Algorithm 14 which takes care of

that).

Then the agents start bidding on the subtasks of the next task in the global

ordering previously defined and this is repeated until all tasks have been processed. At

the end of this process, there may still be tasks that were not allocated. This may happen

because the agents have no space to allocate more subtasks or do not have the capability

required to perform one of the subtasks of a task.

Algorithm 15

processPreferences(preferenceLists)

1: Let loadCapacity be the agent’s max load to allocate new concurrent subtasks;

2: allocatedSubtasks = ∅;
3: tasksOrder ← computePreferences(preferenceLists);
4: for all task tj in tasksOrder do

5: currentLoad← allocatedSubtasks.load;

6: if (loadCapacity − currentLoad) > 0 then
7: allocatedSubtasks← getCurrentAllocatedSubtasks();
8: possibleTasks← getCurrentPossibleTasks(tj);
9: taskAllocation(tj, allocatedSubtasks);
10: end if

11: partialTask ← identifyPartialAllocated(tj);
12: if (partialTask 6= ∅) then
13: removePartialTasks(partialTasks);
14: end if

15: end for

85

5. EVALUATION

This chapter presents the evaluation of the proposed mechanism. First, we

compare the performance of our mechanism with the optimal solution. We use the

GLPK (GNU Linear Programming Kit) [Mak16] to obtain (centralised) optimal solutions

for comparison with our results. We also compare the performance of our mechanism

with other solutions. First, we compared with the Iterative Consensus-Based Auction

Algorithm – ICBAA [CBH09] and the Sequential Single-Item Auction algorithm – SSIA

[KKT10]. Then we compare our mechanism with two other task allocation approaches

that handle only one of the types of tasks in our approach, more specifically atomic tasks:

a task allocation algorithm (we call it TAA) used in [GKZ17] and a role-based task al-

location (we call it RBTA) available in [GA15]. Finally, we present the impact of our

task allocation approach in the execution of tasks in a complex scenario like the flood-

ing disaster scenario, first describing some features of the simulator for the evaluation,

and then we present the results of the evaluation. All experiments were conducted on a

computer with the following specification: Intel(R) Core(TM) i5-2520M, 2.50GHz, 4 GB

of memory, Windows 8 64-bit operating system, and Java 8.

5.1 Comparison with the optimal solution

In this section, we present a comparison of the performance results of our mech-

anism with the optimal solutions obtained using GLPK [Mak16].

5.1.1 Evaluation Measures

In this section, we describe the evaluation metrics used to analyse the perfor-

mance of our mechanism with the optimal solution.

• Performance: by performance we mean the overall utility obtained by all the

agents to take on all the subtasks that they can, i.e. the sum of the utilities ob-

tained by the individual agents;

• Coefficient of variation: the coefficient of variation (standard deviation divided

by the mean) was used as a measure of dispersion (i.e., the amount of variability

relative to the mean). The lower the coefficient of variation, the more homogeneous

the data, that is, the dispersion in the data is smaller;

86

• Number of bid messages: the number of bid messages sent by our mechanism

is also measured to assess the impact of the different variations on the network

traffic;

– Average number of bid messages per subtask: it is the average number of

bid messages provided by the agents for each of the subtasks;

– Average number of bid messages by agent: it is the average number of bid

messages placed by each agent during the allocation process;

5.1.2 Simulation settings

The simulations were run by varying a single parameter at each setting (Table

5.1). In all simulations, the subtasks of different types of task (CN, CM, DS) were uni-

formly distributed. Also, for each agent, we randomly selected the utility values for each

subtask from the utility range in the respective setting. For settings 1 to 4, we ran sim-

ulations with the total capacity of the agents greater than or equal to the total number

of subtasks. The results for each variation in these simulations were averaged over one

hundred iterations each.

There were also simulations where we considered agents with capabilities to

play any role and thus able to carry out any task, and there were also simulations where

we varied the number of capabilities from 1 to 4 for each agent. In that case, some

agents may not be able to play some roles, thus limiting the tasks they are able to carry

out. For setting 5, the simulations were run with more subtasks than the total capacity

of the agents. Thus, after the first part of task allocation, we may have tasks partially

allocated and others completely unallocated, which the agents will try to allocate again,

using the approach described above. The average results for these simulations were

calculated from twenty iterations for each variation.

Table 5.1 – Settings used in the simulations.

Setting Varying Agents Subtasks Limit Utility range

1 agents
5, 10, 15, 20,

25, 30, 35
24 5 1-6

2 subtasks 10 15,30,45,60 7 1-15

3 limit 5 24
6, 8, 10, 12,

14, 16, 20, 24
1-6

4 utility 10 42 6
1-6, 1-12,

1-24, 1-48

5 subtasks 3 21, 28, 35 6 1-6

87

5.1.3 Varying the Number of Agents (Setting 1)

In order to understand the impact of varying the number of agents, these simu-

lations were performed using the values shown in Setting 1 of Table 5.1. For comparison

with the optimal results, the simulations were run with 5, 10, 15, 20, 25, 30, and 35

agents, with 5 as the limit on the number of tasks to be allocated to each agent. The

number of subtasks available to be allocated in these simulations was 24 (including sub-

tasks of CN, CM, and DS task types). For each agent, we randomly selected the utility

values from a range of 1 to 6 for each subtask.

First, we performed simulations considering agents with capabilities to play any

role, that is, the agents are able to carry out any task. Figure 5.1 shows the results of

these simulations. Figure 5.1.a shows that the performance of the proposed solution

improves and is closer to the optimal solution (100%) as we increase the number of

agents.

��� ���

���

���

�	�

�
�

���

����

 �� � �� � �� �

�
�
��
�
��

�
�
	�

����

������������

��

��

��

��

�

 �� � �� � �� �

�
�
�
��
�	
��
�
��
�
��
�
�
��
�
��
�
�

����

���������������� ������������

�

�

�

�

 �� � �� � �� �

�
��
��

�

�
�
�

����

���� �!"�� ���� ������#

Figure 5.1 – Performance results varying the number of agents.

Besides, the coefficient of variation indicates that the consistency of the results

obtained by both solutions is good and basically the same, with the results of the optimal

solution being a little more stable when compared to the results of the proposed solution

5.1.b). However, this difference becomes smaller for larger agent teams. Regarding the

number of bid messages, Figure 5.1.c shows that the average number of bid messages

placed by an agent remains stable for the larger number of agents while the average

88

number of bid messages by subtask increases since more agents are bidding for the

same subtasks. Note that a bid message may contain bids for more than one subtask.

Then we ran simulations by randomly assigning from 1 to 4 capabilities to each

agent. Thus, some agents may not be able to play some roles, limiting the tasks they are

able to carry out. Figure 5.2 shows the results of these simulations. Although the results

when we consider agents capable of playing any role are somewhat better, Figure 5.2.a

shows that the performance of the proposed solution is also close to the optimal solution

and also better for the higher number of agents. The coefficient of variation between

both solutions is basically the same 5.2.b), again with the difference becoming smaller

for larger agent teams. Regarding the number of bid messages, Figure 5.2.c shows that

the average number of bid messages placed by an agent decreases slightly for a larger

number of agents and the average number of bid messages by subtask also increases

slightly but not so much as when agents are able to play any role. These results are

somewhat different from those in Figure 5.1.c because although there are more agents

bidding for the same subtasks, here the agents were not able to bid on all subtasks.

��� ���

���

�

�

�

	

� �� �� �� �� � �

�
��
��

�
��
�
	
�
�

	����

���������� ������������

�	�

���

�
�

���

����

� �� �� �� �� � �

�
��
�
��

�
�
��

	����

�������� ��!

��

��

��

	�

�

� �� �� �� �� � �

�
�
�
��
��
��
�
��
�
��
�
�
��
�
��
�
�

	����

����"�#�� #��� � �������� ��!

Figure 5.2 – Performance results varying the number of agents and agents capabilities.

5.1.4 Varying the Number of Subtasks (Setting 2)

The simulations varying the number of subtasks were performed using the val-

ues available in Setting 2 of Table 5.1. The simulations were run with 15, 30, 45, and 60

89

subtasks to be allocated to 10 agents, each one with a task limit of 7. In these simula-

tions, we uniformly distributed subtasks of CN, CM, and DS task types. The utility values

for each subtask were randomly selected from a range of 1 to 15.

First simulations considered agents with capabilities to play any role. Fig-

ure 5.3.a shows that although the performance has decreased somewhat with more

subtasks, it is still close to the optimal solution. Even though the difference between

the coefficients of variation of both solutions increases with more subtasks, it is still

relatively small (Figure 5.3.b). The average number of bid messages that each agent

provides increases with more subtasks while the average number of bid messages per

subtask decreases (Figure 5.3.c). The results in Figure 5.3.c are because the agents have

more subtasks to bid. For example, if there are fewer subtasks and an agent is outbid

by another agent, it may not be able to bid another subtask because of bids that other

agents have already provided to the subtasks, thereby reducing the number of bids each

agent provides. When more subtasks are available, and an agent is outbid by another

agent, it has more subtasks to be able to bid and then the average number of bid mes-

sages that each agent provides increases. Also, with more subtasks, the agents may bid

on different subtasks then reducing the average number of bid messages per subtask.

��� ���

���

���

�	�

�
�

���

����

� �� � ��

�
�
��
�
��

�
�
	�

������

������������

��

��

��

��

�

� �� � ��

�
�
�
��
�	
��
�
�
�
��
�
�
��
�
�
�
�

������

���������������� ������������

�

�

�

�

� �� � ��

�
��
��

�
��
�
�
�
�

������

���� �!"�� ���� ������#

Figure 5.3 – Performance results varying the number of subtasks.

Then, for the next simulations, we randomly assign from 1 to 4 capabilities to

each agent. Figure 5.4 shows the results with similar performance to those achieved

when we considered agents with capabilities to play any role. Figure 5.4.a shows the

results close to the optimal solution, although it has decreased with more subtasks.

90

The average number of bid messages that each agent provides here also increases with

more subtasks while the average number of bid messages per subtask decreases (Fig-

ure 5.3.c). However, the average number of bid messages per subtask is lower here

because, in addition to having more subtasks to provide bids, the agents were not able

to bid on all subtasks due to their capabilities.

��� ���

���

���

�	�

�
�

���

����

� �� � ��

�
�
��
�
��

�
�
	�

������

������������

��

��

��

��

�

� �� � ��

�
�
�
��
�	
��
�
�
�
��
�
�
��
�
�
�
�

������

���������������� ������������

�

�

�

�

� �� � ��

�
��
��

�
��
�
�
�
�

������

���� �!"�� ���� ������#

Figure 5.4 – Performance results varying the number of subtasks and agents capabilities.

5.1.5 Simulations for each Type of Task Individually

The above results show that the performance of the proposed mechanism de-

creases somewhat with the increase in the number of subtasks. However, since CN, CM,

and DS types of tasks were uniformly distributed in the simulations, it is not clear the

contribution of each type of task in the results. For this reason, we also ran simulations

for each type of task individually.

For each type of task we ran simulations with 12, 24, 36, and 48 subtasks. The

number of agents was kept 10 with 6 as the limit on the number of tasks to be allocated

to each agent. For each agent we randomly selected the utility values from a range of

1 to 15 for each subtask. The results were averaged over one hundred simulations for

each different number of subtasks.

Figure 5.5.a shows that both type of tasks, when increased, have an impact

on the performance of our mechanism. However, we can see that although CM and

91

DS tasks had decreased somewhat, the CN type had more impact when the number of

subtasks was increased. The DS type had more regular results for the different amounts

of subtasks, having better performance for the greater number of tasks compared with

the other types.

Regarding the number of bids required to complete the allocation, Figures 5.5.b

and 5.5.c show the average number of bid messages placed for each subtask and the

average number of bid messages placed by each individual agent. As we can see in

Figure 5.5, the CN type of task required the highest average number of bid messages to

complete the allocation for the different numbers of subtasks, while the DS type required

fewer bid messages than the others.

��� ���

���

���

�	�

�
�

���

����

� � �� �

�
�
��
�
��

�
�
	�

������

�� �� ��

�

�

�

� � �� �

�
��
��

�
��
�
�
�
��
��
�
�
��
�

������

�� �� ��

�

�

�

� � �� �

�
��
��

�
��
�
�
�
��
�
�
�
�
�

������

�� �� ��

Figure 5.5 – Performance results varying the number of subtasks for each type of task.

5.1.6 Varying the Task Limit (Setting 3)

This section shows the performance results when we varied the limit of subtasks

the agents can take using the values of Setting 3 in Table 5.1. In the simulations, the

agents were set up with limits from 6 to 24. The number of agents and subtasks were

kept 5 and 24, respectively, in all the simulations. The utility values were randomly

selected from a range of 1 to 6.

Figure 5.6.a shows that the performance of our approach increased when agents

are able to carry out more subtasks (higher agent limits). For the variation in the number

92

of subtasks that the agents can take, the coefficients of variation of our proposed solution

and the optimal solution are very close to each other. Regarding the bids, the average

number of bid messages remains stable, that is, the limit of subtasks an agent can take

does not impact the number of exchanged bid messages.

���

���

���

���

����

� � �� �� �	 �� �� �	

�
�
��
�
��

�
�
	�

�����������

����������
��� ���

���

��

��

	�

��

��

� � �� �� �	 �� �� �	

�
�
�
��
�	
��
�
��
�
��
�
�
��
�
��
�
�

�����������

��������������
����������

�

�

	

�

�

� � �� �� �	 �� �� �	

�
��
��

�
��
�
�
�
�

�����������

������� �� �����������!

Figure 5.6 – Performance results varying the limit of subtasks the agents can take.

5.1.7 Varying the Utility Range (Setting 4)

In order to evaluate the impact of different ranges of utilities, we ran simulations

with the utilities varying from 1 up to 6, 12, 24, and 48. The utility values for each

subtask were randomly selected from each of those ranges. The number of agents and

subtasks were kept 10 and 42 respectively.

Figure 5.7.a shows that the performance of our approach is better with broader

utility ranges, although it is very close to the optimal solution for all available ranges.

For the variation of the utility ranges, the coefficients of variation of the pro-

posed solution and the optimal solution are very close to each other. Regarding the bids,

the average number of bid messages remains almost stable, that is, the utility ranges

have a small impact on the number of exchanged bid messages.

93

��� ���

���

���

�	�

�
�

���

����

� � � �

�
�
��
�
��

�
�
	�

����������������

������������

��

�

��

��

�

� � � �

�
�
�
��
�	
��
�
��
�
��
�
�
��
�
��
�
�

����������������

���������������� ������������

�

�

�

� � � �

�
��
��

�
��
�
�
�
�

����������������

������� �� �����������!

Figure 5.7 – Performance results varying the utility range.

5.1.8 Coping with Partially Allocated Tasks (Setting 5)

Previous simulations were performed considering that the total capacity of the

agents is greater than or equal to the total number of subtasks that need to be allocated.

The next simulations we report were run with the number of subtasks greater

than the total capacity of the agents. Thus, at the end of the allocation, we may have

tasks partially allocated and others completely unallocated, which the agents will try to

allocate again using the mechanism we proposed for this. For these simulations, the

number of agents was 3 and the number of subtasks to be allocated was 21, 28, and 35.

We used 5 as the limit on the number of tasks each agent can take which means that the

agents are able to take up to 15 tasks during the allocation process.

Table 5.2 shows reasonable performance results on reallocating partially allo-

cated tasks, where PA is the number of partially allocated tasks, NA is the number of

completely unallocated tasks, and EA is the number of entirely allocated tasks (i.e., all

subtasks were allocated). The average results were calculated from twenty iterations for

each variation.

94

Table 5.2 – Simulations with the number of tasks greater than the total capacity of

agents.

Tasks Subtasks Phase

1

PA NA EA Phase

2

PA NA EA

9 21 3 1 5 0 3 6

12 28 5 4 3 0 6 6

15 35 6 5 4 0 10 5

5.2 Comparison with SSIA and ICBAA

In this section, we compare the performance of our mechanism with ICBAA [CBH09]

and SSIA [KKT10]. The simulations were run by varying the number of subtasks to be

allocated and also varying the number of agents. The results for each variation of simu-

lation parameters were averaged over fifty repetitions each.

5.2.1 Evaluation Measures

In this section, we describe the evaluation metrics used to analyse the perfor-

mance of our mechanism with the ICBAA and the SSIA solutions.

• Performance: as mentioned before, here performance is the overall utility ob-

tained by all the agents to take on all the subtasks that they can;

• Coefficient of variation: the coefficient of variation was used as a measure of

dispersion;

• Number of bid messages: the average number of bid messages sent during the

allocation process is also measured to assess the impact of the different solutions

on the network traffic;

• Computing time: refers to the time taken to complete the allocation process.

We also statistically analysed the results of the experiments through paired

t-tests. The t-Student test (or t-test only) is a hypothesis test that allows us to ver-

ify whether the data of a sample produces evidence that supports a hypothesis or not

[BM03, Mey70].

The t-test for paired samples tests the difference between the means of two

dependent populations, that is, the paired t-test is useful for analysing the same set of

data submitted to two different conditions. For example, one can compare the results

of two algorithms when applied to the same data set. Note that our simulations for all

approaches were performed for the same problem instances.

95

5.2.2 Varying the Number of Subtasks

The simulations were run varying the number of subtasks from 17 up to 68

subtasks to be allocated to 10 agents. Table 5.3 shows the results of the simulations for

the three algorithms, where the Utility represents the average utility obtained by the

solutions during the simulations. Our algorithm is the one with higher utility values for

all simulations when compared with the others. For all algorithms, the coefficients of

variation are very low, indicating that the dispersion of the results is very small.

Table 5.4 shows the average number of bid messages that agents place during

the execution and the time taken to complete the allocation process. Our algorithm is

the one requiring fewer bid messages in all configurations.

In order to statistically analyse the results, we performed paired t-tests to deter-

mine that a significant difference does exist between the results from our solution and

the results from ICBAA and SSIA algorithms. We statistically analysed the utility values

obtained and also the number of bid messages by setting the significance level α = 0.05.

The t-tests showed that the differences were both statistically significant with p-values

lesser than 0.05.

Table 5.3 – Performance results varying the number of subtasks

ICBAA SSIA Our approach

Subtasks Utility Coef. Var Utility Coef. Var Utility Coef. Var

17 301 3,76% 306 3,38% 311 2,94%

34 608 2,00% 618 2,08% 625 1,85%

51 920 1,83% 931 1,49% 939 1,54%

68 1232 1,31% 1238 1,27% 1249 1,17%

Table 5.4 – Average number of bids and time to complete the allocation

ICBAA SSIA Our approach

Subtasks Bid messages Time(sec) Bid messages Time(sec) Bid messages Time(sec)

17 208 10 35 4 26 3

34 401 25 55 5 37 4

51 501 56 72 9 43 5

68 689 122 91 10 50 7

5.2.3 Varying the Number of Agents

For these simulations, we varied the number of agents from 5 to 25 agents

trying to allocate 68 subtasks. Since ICBAA requires a large number of bid messages

96

to complete the allocation (see Table 5.4), which could not be acceptable for real-world

scenarios, here we decide to focus only in the comparison with SSIA.

Table 5.5 shows the results from the simulations for our mechanism and SSIA

algorithm. Our algorithm performs better (higher utility values) than SSIA algorithm

for the different number of agents. The coefficients of variation for both algorithms are

basically the same. Table 5.6 shows the average number of bid messages that agents

place during the execution and the time taken to complete the allocation process. Our

algorithm requires fewer bid messages in all configurations.

We also statistically analyse the results our solution and the results from SSIA

(utility values and number of bid messages) by performing paired t-tests setting the sig-

nificance level α = 0.05. The paired t-test showed that the differences were statistically

significant with p-values less than 0.05.

Table 5.5 – Performance results varying the number of agents

SSIA Our approach

Agents Utilty Coef. Var Utility Coef. Var

5 1117 2,45% 1129 2,24%

10 1218 1,49% 1230 1,41%

25 1300 0,78% 1307 0,65%

Table 5.6 – Average number of bids and time to complete allocation

SSIA Our approach

Agents Bid messages Time(sec) Bid messages Time(sec)

5 73 9 36 6

10 90 10 53 8

25 126 14 100 17

5.3 Comparison with TAA and RBTA

In this section, we compare the performance of our mechanism with the task

assignment approaches used in two frameworks: a task assignment algorithm (we call

it TAA) used in [GKZ17] and a role-based task assignment (we call it RBTA) introduced

in [GA15]. Both approaches deal only with part of the task structures we deal with,

more specifically atomic tasks. Our idea is to compare the performance of approaches

developed for specific types of tasks with the performance of our mechanism, which is

broader, given that we are not aware of other algorithms that deal with the same types of

tasks as in our approach. The results for each variation of simulation parameters below

were averaged over fifty repetitions each.

97

5.3.1 Evaluation Measures

In this simulations analyse the performance of our mechanism using the same

evaluation metrics used in the previous section: performance, coefficient of variation,

number of bid messages and computing time. We also statistically analysed the results

of the experiments through paired t-tests.

5.3.2 Comparison with TAA

In this approach the number of agents and the number of tasks must be the

same, each agent can allocate only one task, and the agents are homogeneous. Thus,

these simulations were run with 5, 10, and 15 agents and tasks. Table 5.7 shows the

results of the simulations for the algorithms, where Utility represents the average utility

of the simulations. Our algorithm has higher utility values in all simulations when com-

pared with TAA. The coefficients of variation indicate that the dispersion of the results is

small and similar between both solutions.

Table 5.7 – Performance results varying the number of agents/tasks

TAA Our approach

Agents/Tasks Utilty Coef. Var Utility Coef. Var

5 23 10,59% 25 8,83%

10 53 5,80% 56 3,57%

15 83 3,61% 87 2,10%

Table 5.8 shows the average number of bid messages that agents place during

the execution and the time taken to complete the allocation process. Our algorithm

requires fewer bid messages in all configurations and perform faster than TAA.

We performed paired t-tests to analyse the results statistically. We analysed the

utility values obtained and also the number of bid messages by setting the significance

level α = 0.05. The t-tests showed that the differences were both statistically significant

with p-values less than 0.05.

Table 5.8 – Average number of bids and time to complete allocation

TAA Our approach

Agents/Tasks Bid messages Time(sec) Bid messages Time(sec)

5 15 6 8 2

10 55 7 19 2

15 120 8 30 3

98

5.3.3 Comparison with RBTA

In the RBTA approach, each agent can allocate more than one task (restricted

to a certain limit). Also, the agents may have different capabilities that limit the tasks

they can allocate. Thus, the simulations were run by varying the number of tasks to be

allocated and also varying the number of agents.

First, the simulations were run with 40, 50, and 60 tasks to be allocated to 10

agents. Table 5.9 shows the results of the simulations for the algorithms. Our algorithm

obtained higher utility values for all simulations, especially when the number of tasks

was increased. The coefficients of variation indicate that the dispersion of the results

is small and similar between both solutions. Table 5.10 shows the average number of

bid messages that agents place during the execution and the time taken to complete the

allocation process. The RBTA approach required a much larger number of bid messages

in all configurations.

Table 5.9 – Performance results varying the number of tasks

RBTA Our approach

Tasks Utilty Coef. Var Utility Coef. Var

40 218 6,50% 219 5,68%

50 280 3,29% 282 2,47%

60 333 3,78% 340 3,25%

Table 5.10 – Average number of bids and time to complete allocation

RBTA Our approach

Tasks Bid messages Time(sec) Bid messages Time(sec)

40 284 11 60 5

50 409 12 94 6

60 531 14 158 12

Then we run the simulations by varying the number of agents (10, 12, 15, and

18 agents) to allocate 60 tasks. Table 5.11 shows the results from the simulations for

our mechanism and the RBTA algorithm. Our algorithm performs better (higher utility

values) than RBTA for the different numbers of agents, except for the simulation with 18

agents, which had the same results. The coefficients of variation for both algorithms are

basically the same. Table 5.12 shows the average number of bid messages that agents

place during the execution and the time taken to complete the allocation process. Again,

the RBTA approach required a much larger number of bid messages.

For both variations (agents and tasks) we statistically analyse the results of

our solution and the results from RBTA (utility values and number of bid messages) by

99

Table 5.11 – Performance results varying the number of agents

RBTA Our approach

Agents Utilty Coef. Var Utility Coef. Var

10 333 3,78% 340 3,25%

12 338 3,80% 340 2,95%

15 334 4,68% 337 3,49%

18 338 4,51% 338 3,14%

Table 5.12 – Average number of bids and time to complete allocation

RBTA Our approach

Agents Bid messages Time(sec) Bid messages Time(sec)

10 531 14 158 10

12 537 13 126 10

15 542 14 110 9

18 608 14 113 11

performing paired t-tests setting the significance level α = 0.05. The paired t-test showed

that the differences were statistically significant with p-values less than 0.05, except

for the simulation with 18 agents (see Table 5.11) which had no statistical difference

between the results.

5.3.4 Discussion

We have empirically evaluated our approach by comparing its results with the

optimal solution and the results from other four approaches. Our simulation results

show that our approach provides near-optimal solutions in all simulation variations (set-

tings 1 to 4 in Table 5.1). In fact, the results are close to the optimal solution when

the task types were simulated individually (see Figure 5.5), although even together the

results were clearly close to the optimal solution. The coefficient of variation from all

settings indicates that the consistency of the results obtained is reasonably close to the

centralised optimal solution.

Regarding the comparison with SSIA and ICBAA algorithms, the results show

that our approach performs better than these two algorithms. Also, there is a significant

difference in the number of bid messages that were required, especially when compared

to ICBAA. The number of bid messages sent by ICBAA shows that it tends not to be suit-

able for real-world scenarios. Although SSIA requires fewer bid messages than ICBAA,

it still sent on average 40% more bid messages than our approach, going up to over 70%

in some cases, and that can also be considered an important difference for applications

to real-world scenarios. The results show that our approach also performs better than

the TAA and RBTA algorithms. Again, there is a significant difference in the number of

bid messages that were required by TAA and RBTA when compared with our approach.

100

Although our approach showed good performance in the experiments we carried

out, we evaluate only the performance of the task allocation itself, but we do not measure

the impact of the task allocation results in the execution of the tasks. Thus, the next

section presents such evaluation in a complex scenario as the flooding disaster scenario.

5.4 Evaluation in the Flooding Disaster scenario

In the last sections, we presented the evaluation of our task allocation mecha-

nism regarding global team utility, the number of bid messages and the time taken to

complete the allocation. In this section, we evaluate the impact of the task allocation

results in the execution of the tasks in a complex scenario like the flooding disaster sce-

nario. First, we describe some features of the simulator used for this evaluation, and

then we present the results of the evaluation.

5.4.1 Simulator

We extended the Simulation platform for the Multi-Agent Programming Contest

(MASSim) 1 to work on a flooding disaster scenario. MASSim is a simulation server used

in the Multi-Agent Programming Contest. The communication between agents and the

MASSim server is performed through the EISMASSim, which is based on the [Environ-

ment Interface Standard]2(EIS).

In MASSim the agents connect to the server, receive percepts and send their

actions, which are executed by the simulator (see Figure 5.8). The simulation is divided

into discrete steps, and each agent can execute at most one action per step. If an agent

does not submit an action before a configured timeout, the simulator considers the agent

had no action to perform at that step.

Our flooding disaster scenario consists of a number of agents, which can move

through flooded regions over the map of a realistic city, either by water or air. The

purpose of the agents is to perform as many tasks as possible and in the best possible

way. The agents perform tasks by executing actions in the environment through the

simulator. The tasks are provided by an organisation (CDM) which is also an agent

connected in the simulator.

In each simulation, the CDM will provide a set of tasks to perform. Tasks differ

by their type and actions that need to be performed in the environment. Agents are

initially positioned near to the CDM station, and tasks will be distributed on the map.

During the execution of the tasks, the agents can discover other tasks to be executed.

1https://multiagentcontest.org/2016/
2https://github.com/eishub/

101

For each simulation, there are many configurations that may be defined. Most of

the configurations in the MASSim simulator are performed through json files. Figure 5.8

presents the main configurations that are loaded by the simulator when the simulation

starts. Next, we describe the actions that agents may perform during the simulations as

well as the initial configurations.

�������

�	
�	������
�������

������������
�����

�
��������������	�

��	������	

��	���

�����

����

��������	���	���

Figure 5.8 – Overview of the simulator interactions.

Basic Configuration

There are many parameters available in the basic configuration of the MASSim.

Listing 5.1 provides a snippet of the json file with the basic configuration. We describe

here some of the parameters which are necessary for our simulations:
✞ ☎

1 ...

2 {

3 "steps" : 500,

4 "map" : "paris",

5 "minLon" : 2.26,

6 "maxLon" : 2.41,

7 "minLat" : 48.82,

8 "maxLat" : 48.90,

9 "gotoCost" : 10,

10 }

11 "agentTimeout" : 4000,

12 "entities" : [{"drone" : 6}, {"car" : 0}, {"boat" : 4}, {"cdm" : 1}]

13 ...
✝ ✆

Listing 5.1 – A snippet of the basic configuration file

Where:

102

• steps: defines the number of steps of the simulation;

• map: refers to the map of the city used during the simulation;

• min/max Lon/Lat: the area of the map where the simulation will happen;

• gotoCost: the amount of battery spent on each goto action performed by an agent;

• agentTimeout: the time the simulation wait for the agents to send their actions

before processing received actions and moving to the next step of the simulation;

• entities: defines the number of agents per type (see entity Type);

Organisation Roles

Here we describe how we define the roles available in the organisation in the

json file loaded by the simulator. This configuration is part of our extension to the MAS-

Sim. Listing 5.2 provides a snippet of the json file with the definition of the organisation

roles. Each role can be defined by a description (such as "collector" in the example) and

the list of capabilities an agent must have to play that role.

✞ ☎

1 {

2 ...

3 "collector" : {

4 "capabilities" : ["sail","collector"]

5 },

6 "mapper" : {

7 "capabilities" : ["fly","camera"]

8 },

9 ...

10 }
✝ ✆

Listing 5.2 – A snippet of the organisation roles configuration file

Agent Type

We describe here how we define the type of agents that will be available during

the simulation. This configuration is similar to the one available in the MASSim but with

the addition of the victimLoad parameter. Listing 5.3 provides a snippet of the json file

with the definition of the agent types.

Where the first information is the description of the type, and the following parameters

are:

• speed: the speed at which the agent moves in the environment;

103

✞ ☎

1 {

2 ...

3 "boat" : {

4 "speed" : 3,

5 "load" : 550,

6 "victimLoad" : 2,

7 "battery" : 800,

8 "roads" : ["water"]

9 },

10 "drone" : {

11 "speed" : 5,

12 "load" : 100,

13 "victimLoad" : 1,

14 "battery" : 400,

15 "roads" : ["air"]

16 }

17 ...

18 }
✝ ✆

Listing 5.3 – A snippet of the agent types configuration file

• load: how much volume the agent may carry;

• victimLoad: how much victims the agent may carry;

• battery: the agent’s amount of battery;

• roads: which roads the agent can navigate.

Agents

Here we describe how the agents are defined for the simulations. This config-

uration was added as part of our extension to the MASSim. The current version of the

extended simulator loads a json file with information about the agents and their capabil-

ities. This json file can be manually created or generated by the simulator.

Generation of agent data: the generation of agent data is performed through

a java code added to the simulator. The generation code requires that the organisation

roles be defined a priori since they are used to generate the data. Also, the number

of agents per type (defined in the basic configuration) is used as input. The code uses

the capabilities required by the organisation roles to randomly attribute capabilities for

the agents. Listing 5.4 provides a snippet of the json file generated with the agents’

definitions.

The first information is the description of the agent, and the following parame-

ters are:

• capabilities: the list of capabilities available for that agent;

104

✞ ☎

1 {

2 ...

3 "agentA1": {

4 "capabilities": [

5 "router",

6 "sail",

7 "collector"

8],

9 "entityName": "agentA1",

10 "entityType": "boat"

11 },

12 "agentA2": {

13 "capabilities": [

14 "sail",

15 "camera"

16],

17 "entityName": "agentA2",

18 "entityType": "boat"

19 },

20 ...

21 }
✝ ✆

Listing 5.4 – A snippet of the agents configuration file

• entityName: the name of the entity (used to map agents to an entity in the simu-

lator);

• entityType: indicates the type of the agent (see Agent type described above);

Tasks

The tasks that need to be performed during the simulation are also loaded by

the extended simulator through a json file. This json file can be manually created or gen-

erated by the simulator. Here we describe how the tasks with their subtasks are defined

for the simulations. This configuration was also added as part of our extension to the

MASSim.

Generation of task data: the generation of task data is performed through

a java code added to the simulator. Each of the flooding tasks has a (configurable)

probability of being generated. Tasks are generated with a random number of subtasks,

limited by a minimum and a maximum number of subtasks also configurable. It is also

random the task type definition (DS, CM, CN). Besides, it is possible to set a maximum

distance that the subtasks of the same task can be in the simulation. Subtasks also have

a probability of having an associated victim. Having an associated victim means that

when the agent performs the action related to the subtask, it will receive the perception

105

of a victim on the spot. The generation of task data is divided into two parts: the initial

tasks and the step tasks. Initial tasks is the set of tasks that will be announced at the

beginning of the simulation. The step tasks are the ones that will be announced during

the steps of the simulation.

Listing 5.5 provides a snippet of the json file generated with the initial tasks. In

the example, there is a task "sampleWaterJ1T1" with two subtasks: "sampleWaterJ1T1S1"

and "sampleWaterJ1T1S2".
✞ ☎

1 {

2 ...

3 "sampleWaterJ1T1S1": {

4 "jobid": "job1",

5 "tasktype": "ds",

6 "subtaskaction": "sampleWater",

7 "roleid": "collector",

8 "subtaskid": "sampleWaterJ1T1S1",

9 "location": {

10 "lon": 2.37115,

11 "lat": 48.88306

12 },

13 "victim": 0,

14 "taskid": "sampleWaterJ1T1"

15 },

16 "sampleWaterJ1T1S2": {

17 "jobid": "job1",

18 "tasktype": "ds",

19 "subtaskaction": "sampleWater",

20 "roleid": "collector",

21 "subtaskid": "sampleWaterJ1T1S2",

22 "location": {

23 "lon": 2.3719,

24 "lat": 48.88535

25 },

26 "victim": 0,

27 "taskid": "sampleWaterJ1T1"

28 },

29 ...

30 }
✝ ✆

Listing 5.5 – A snippet of the initial tasks file

The first information is the description of the subtask (such as "sampleWa-

terJ1T1S1"), and the following parameters are:

• jobid: is an identifier for the set of tasks which were announced together;

• tasktype: is the type of the task to which the subtask belongs. It can be one of the

task types described in section 3.1;

• subtaskaction: is the action that needs to be performed by the agent in the envi-

ronment;

106

• roleid: is the organisation role that an agent must be able to play to perform that

subtask;

• subtaskid: is an identifier for the subtask;

• location: is the location in the map where the subtask is to be executed. It is

composed by the latitude and longitude of the subtask;

• victim: indicates if the subtask has a victim associated with it;

• taskid: is an identifier for the task to which the subtask belongs.

Listing 5.6 provides a snippet of the json file generated with the step tasks. The

difference for the initial tasks is that in this case the tasks are grouped by the step which

they need to be announced. In the example, there are two steps of the simulation were

tasks will be announced: step 23 and step 37. In step 37, for instance, there is a task

"mappingJ8T1" with two subtasks: "mappingJ8T1S1" and "mappingJ8T1S2".

Actions

During the simulation, at each step, an agent may perform only one action. The

actions are always executed by the simulator (no fail occurs). Next, we describe the

actions the agents may perform in our flooding scenario. The first nine actions were

defined in our scenario, and the last five actions were reused from the original MASSim.

• take_picture: used to take a picture from some location. When an agent executes

this action it will receive a perception that is has a picture;

• communicate_picture: used to send a picture to the CDM. The agent needs to be

in the CDM location.

• sample_water: used to collect water samples at some location. When an agent

performs this action it will receive a perception that is has a sample of water;

• drop_sample: used to deliver a sample of water at the CDM. The agent needs to

be in the CDM location;

• pickup_box: action used to get a box in the CDM. The agent needs to be in the

CDM location;

• drop_box: action used to deliver a box at the current agent’s location;

• rescue_victim: used to rescue a victim in the current agent’s location;

• delivery_victim: used to delivery the victim at CDM;

107

✞ ☎

1 ...

2 {

3 "23": {

4 "mappingJ2T1S1": {

5 "jobid": "job2",

6 "tasktype": "ds",

7 "subtaskaction": "mapping",

8 "roleid": "mapper",

9 "subtaskid": "mappingJ2T1S1",

10 "location": {"lon": 2.34049, "lat": 48.87968},

11 "taskid": "mappingJ2T1"

12 }

13 },

14 "37": {

15 "mappingJ8T1S1": {

16 "jobid": "job8",

17 "tasktype": "tcl",

18 "subtaskaction": "mapping",

19 "roleid": "mapper",

20 "subtaskid": "mappingJ8T1S1",

21 "location": {"lon": 2.3858,"lat": 48.86534},

22 "taskid": "mappingJ8T1"

23 },

24 "mappingJ8T1S2": {

25 "jobid": "job8",

26 "tasktype": "tcl",

27 "subtaskaction": "mapping",

28 "roleid": "mapper",

29 "subtaskid": "mappingJ8T1S2",

30 "location": {"lon": 2.38186,"lat": 48.86843},

31 "taskid": "mappingJ8T1"

32 }

33 }

34 ...
✝ ✆

Listing 5.6 – A snippet of the step tasks file

• route_net: used to extend the range of the network communication through the

propagation of network signal;

• goto: used to move an agent to a destination. Each time this action is called, it

consumes the amount of battery as defined in the basic configuration. The param-

eters are the latitude and the longitude of the agent’s desired destination. If no

parameters are used, the agent wants to follow the current route (if it exists).

• charge: used to charge the agent’s battery. The agent needs to be at the CDM

location for charging.

• continue & skip: follows the current agent’s route or does nothing if the agent

has no route;

108

• abort: clears the current agent’s route (if it exists);

• noAction: this action is considered when an agent did not send an action in time.

Percepts

The simulator sends percepts with information about the current simulation.

There are two type of percepts: Initial percepts and Step percepts.

Initial percepts: This percept contains the information the agents need to begin the

simulation, and they will not change during the simulation. The initial percepts include

information about the simulation, such as the name of the map used and its bounds, the

number of simulation steps and others. These percepts contain also details about the

type of agents, such as speed, load, victim load, and battery. Note that each agent will

receive only the information about its type.

For our scenario, we added to the initial percepts a set of tasks which are loaded

from the initial tasks json file. We also added the organisation roles which are loaded

from a json file. Since the organisation (CDM) is responsible for announcing the tasks

and roles, this initial percept will be available only for the organisation. Each agent will

also receive in the initial percepts the information about its capabilities and the organi-

sation location.

Step percepts: In the step percepts, the information is related to the simulation state

before the simulator moves to the next step of the simulation. Each agent receives

information about itself such as its current battery charge, used capacities, position and

others. If the agent is in the same location as the CDM, CDM will be listed as a percept.

The result for the last action executed by an agent is also available.

For our scenario, when an agent takes a picture in the same position as a vic-

tim, it will receive a percept about that victim. Also, as available in the steps task file,

tasks are added to the step percepts. Again, since the organisation is responsible for

announcing the tasks, this percepts will be available only for the organisation.

5.4.2 Using the Simulator

In this section, we provide a brief overview of how we use the simulator. First,

we mention how we integrate our agents developed in JaCaMo platform with the simu-

lator. Next, we describe the agents’ behaviour for executing the allocated subtasks.

109

Agent environment artifact

To act and receive perceptions from the simulator we used the solution used in

[CPK+18] and [CKB+18]. The solution uses a CArtAgO artefact called EISArtifact, which

is responsible for register the agents, receive (filter) the perceptions into observable

properties, and send actions to the simulator. Each agent has it own EISArtifact artifact.

At every step of a simulation new perceptions are received, and to deal with them, the

artefacts filter any useful perception into an observable property by adding/updating/re-

moving them in the artefact’s observable properties [CPK+18].

Task Execution

To evaluate the impact of the task allocation on the execution of subtasks, we

encode the expected behaviour of the agents regarding the execution of subtasks. When

an agent has new subtasks allocated, it starts the task execution phase, which is rep-

resented by Algorithm 16 at a rather high level. Algorithm 16 was developed in Jason,

except where noted below. Note that new subtasks may be allocated by the agent even

though the agent is performing other tasks. Thus, when new subtasks are allocated,

the first step performed by Algorithm 16 is to stop the current execution of actions,

which is defined on line 1. If the agent was already running Algorithm 16, it will per-

cept that in the while loop at line 8 and then will stop that execution of actions. Next,

based on the new subtasks, the current subtasks, and the current list of actions not

yet performed, the algorithm defines the order (route) in which the subtasks must be

performed (that is performed in by calling function defineSubtaskRoute at line 4). The

function defineSubtaskRoute is an algorithm for the salesman problem developed in Java.

Next, the algorithm estimates the battery needed to perform the subtasks in the defined

route. This is necessary to reserve battery for the allocated subtasks and avoid that the

allocation process of allocating more subtasks than the agent would be able to carry

out. Since new subtasks were allocated the current order in which the actions would be

executed are not valid anymore. Thus, the algorithm deletes the actions that were not

executed until now (line 6). Next, knowing the order in which the subtasks will be exe-

cuted, the algorithm determines the actions that need to be performed and the order of

execution of those actions (line 7 call the function responsible for that). In the sequence,

the algorithm starts the execution of the actions (line 8 to 13).

110

Algorithm 16

taskExecution(newSubtasks)

1: stopActionExecution← true;

2: currentSubtasks← getCurrentSubtasks;

3: actionOrderList← getCurrentActionOrderList

4: subtasksOrder ← defineSubtaskRoute(newSubtasks, currentSubtasks, actionOrderList);
5: estimateBattery(subtasksOrder)
6: deletePendingActions;

7: actionOrderList← defineActionsOrder(subtasksOrder);
8: while stopActionExecution 6= true and actionOrderList 6= ∅ do
9: actioni ← actionOrderList.getF irstAction;

10: executeAction(actioni);
11: updateReservedBattery;

12: actionOrderList.removeF irstAction;

13: end while

5.4.3 Evaluation Measures

In this section, we describe the evaluation metrics used to analyse the perfor-

mance of our mechanism with the ICBAA and the SSIA solutions in the flooding scenario.

• Performance: as mentioned before, here performance is the overall utility ob-

tained by all the agents to take on all the subtasks that they can;

• Number of bid messages: the average number of bid messages sent during the

allocation process is also measured to assess the impact of the different solutions

on the network traffic;

• Battery amount: refers to the total amount of battery the agents spent to perform

the subtasks.

5.4.4 Varying the Number of Subtasks

The simulations were run varying the number of subtasks from 17 up to 68

subtasks to be allocated to 10 agents. For these simulations, we defined the 10 agents

with different capabilities as specified in Listing 5.7. There are also five different type of

agents (entityType): two type of boats and three type of drones. Both boats have battery

level at 2400 and speed 3 and 4, respectively for boat and boat2. All drones have battery

level at 900 and speed 5, 7 and 9, respectively for the drone, drone2 and drone3. There

were also five organisation roles defined in the organisation: collector, mapper, rescuer,

router and deliverer. Each of the agents was able to play one or more of the organisation

roles.

111

✞ ☎

1 {

2 "agentA1": {

3 "capabilities": ["router","sail","collector"],

4 "entityName": "agentA1",

5 "entityType": "boat2"

6 },

7 "agentA2": {

8 "capabilities": ["router", "sail", "collector"],

9 "entityName": "agentA2",

10 "entityType": "boat"

11 },

12 "agentA3": {

13 "capabilities": ["sail", "collector"],

14 "entityName": "agentA3",

15 "entityType": "boat"

16 },

17 "agentA4": {

18 "capabilities": ["router", "sail"],

19 "entityName": "agentA4",

20 "entityType": "boat"

21 },

22 "agentA5": {

23 "capabilities": ["fly", "load_box", "load_victim", "camera"],

24 "entityName": "agentA5",

25 "entityType": "drone"

26 },

27 "agentA6": {

28 "capabilities": ["fly", "load_box", "load_victim", "camera"],

29 "entityName": "agentA6",

30 "entityType": "drone"

31 },

32 "agentA7": {

33 "capabilities": ["fly", "load_box", "load_victim", "camera"],

34 "entityName": "agentA7",

35 "entityType": "drone2"

36 },

37 "agentA8": {

38 "capabilities": ["fly", "load_victim", "camera"],

39 "entityName": "agentA8",

40 "entityType": "drone3"

41 },

42 "agentA9": {

43 "capabilities": ["fly", "camera", "load_box"],

44 "entityName": "agentA9",

45 "entityType": "drone3"

46 },

47 "agentA10": {

48 "capabilities": ["fly", "camera", "load_victim"],

49 "entityName": "agentA10",

50 "entityType": "drone2"

51 }

52 }
✝ ✆

Listing 5.7 – A snippet of the agent types configuration file

112

Table 5.13 shows the average results of the simulations for both algorithms.

In these simulations, our objective was to minimise the amount of battery spent by the

agents during the mission, thus the utility values were related to the distances to each

task. Our algorithm is the one with lower average utility, bid and battery values for the

simulations in comparison with SSIA.

Figure 5.9 shows the number of bid messages that agents place during the

execution to complete the allocation process. Simulations 1 to 10 are simulations with

17 subtasks, 11 to 20 with 34 subtasks, 21 to 30 with 51 subtasks, and 31 to 40 with 68

subtasks. Except by one simulation with 17 subtasks, our algorithm requires fewer bid

messages in all configurations, especially when the number of subtasks increases.

To evaluate the impact of the task allocation on the execution of subtasks we

also measured the total amount of battery the agents spent to perform the subtasks.

Figure 5.10 shows the amount of battery spent by the agents during the execution of

the subtasks. Except by two simulations with 17 subtasks where both results were equal,

the agents spent less battery with the allocation results of our algorithm. The difference

was up to 43% in some simulations with the average of 17%. The results show that a

small difference in the task allocation can significantly impact the results of the task

execution.

In order to statistically analyse the results, we performed paired t-tests to de-

termine that a significant difference does exist between the results from our solution

and the results from the SSIA algorithm. We statistically analysed the utility values, the

number of bid messages and the battery values obtained by setting the significance level

α = 0.05. The t-tests showed that the differences were both statistically significant with

p-values lesser than 0.05.

Table 5.13 – Performance results varying the number of subtasks
Our approach SSIA

Subtasks Utility Bids Battery Utility Bids Battery

17 101,9 22,6 568 103,6 45,1 667

34 226,3 49,5 1161 234,5 78,5 1393

51 349,7 51,3 1638 358,3 127,7 1945

68 500,1 71,5 2200 506 282,4 2524

Final Remarks

In this chapter, we have empirically evaluated our approach by comparing its

results with the optimal solution and the results from other approaches. Our simulation

results show that our approach provides near-optimal solutions in all simulation vari-

ations. Regarding the comparison with SSIA, ICBAA, TAA and RBTA algorithms, the

113

�

��

���

���

���

� �� �� ��

���	
����
� ����

Figure 5.9 – Number of bid messages by simulation.

�

���

����

����

����

����

����

� �� �� ��

���	
����
� ����

Figure 5.10 – Amount of battery spent by simulation.

results show that our approach performs better than these algorithms. We evaluated the

impact of the task allocation results in the execution of the tasks in a complex scenario

like the flooding disaster scenario by comparing results from our algorithm with the re-

sults from the SSIA algorithm. In all simulations, there was a significant difference in

the number of bid messages that were required, and that can be considered an essential

difference in some real-world scenarios.

In real-world scenarios, such as flooding disasters, robots may be damaged

while executing their allocated tasks, and it may be necessary to reallocate the tasks

that were assigned to the failed robot. In some other approaches, identifying the tasks

that were allocated to the failed robots can be a challenge. Since at the end of our al-

location process each robot knows which robot was responsible for which tasks, in our

approach the available robots can easily identify the tasks that were assigned to the

failed robot and therefore need to be reallocated.

114

Although our approach showed good performance in the experiments we car-

ried out, there are real-world scenarios where other approaches in the literature might

be more appropriate. For example, in some scenarios agents should be prepared to co-

operate and collaborate without pre-coordination, that is, agents are being developed

by different organisations and should interact with other agents in the absence of prior

knowledge, agreements, and possibly not sharing the same communication protocols

and world models [ALS17, SKKR10].

In [MS16], for instance, learning agents must coordinate with other agents to

complete a cooperative task, identifying the teammates’ strategies and also the tasks to

be completed, which is achieved by observing the actions of other agents.

[ALS17] and [SKKR10] provide more details about the problem of collaboration

without pre-coordination. [ALS17] also refers to research related to multi-agent inter-

action without prior coordination, such as [HLZT+17, LV17], while [SKKR10] creates a

challenge to the AI community to develop research related to ad hoc agent teams.

115

6. RELATED WORK

There is vast literature related to task allocation in multi-agent or multi-robot

systems. Some such work aims at allocating an initial set of tasks to a set of robots, while

others focus on the allocation of tasks that arise during the execution (for instance, tasks

perceived in the environment or even made available by some type of organisation).

Accordingly, we split this section into these two main types of related work.

6.1 Allocation of Tasks Perceived or Provided at Runtime

The work by [MSRJ11] introduces a distributed algorithm for task allocation

where new tasks can appear, and the set of agents can change at any time. The allo-

cation is performed by forming coalitions, with the objective of finding coalitions which

maximise the global utility. The algorithm considers that coalitions are not overlapping,

i.e., each agent is allocated to one coalition at a time. The algorithm does not consider

constraints between tasks and subtasks.

In the work by [COBT17], task allocation is addressed through distributed plan-

ning in each robot using Monte Carlo Tree Search (MCTS). In the scenario they use, the

tasks are single item orders that robots need to gather and deliver, where items can have

different costs and are distributed in a warehouse. New tasks can be requested at any

given time, but the robots have a limited capacity to store items before delivering them.

The solution does not consider tasks with constraints and subtasks. Also, they assume

that the distribution of the orders is known, which allows them to model the probabilities

of tasks appearing at each location.

[KP13] introduce a dynamic task allocation approach where the tasks are grouped

based on their distributional information, and then agents are allocated to the groups of

tasks instead of tasks directly. The task space is reduced to the same number of agents,

and then each subgroup is associated with one of the agents. The solution uses a cen-

tralised mediator that coordinates agents through task subgrouping and the allocation

of agents to groups through a cost permutation process. Only the decision-making is

distributed, with each agent communicating its decisions directly to the mediator. The

approach differs from our since there is a central mediator responsible for the allocation,

while we are interested in a distributed solution.

[LJGM06] put forward a mathematical model for dynamic task allocation using

emergent coordination. In emergent coordination, the robots use only local sensing,

and there is little or no direct communication between robots. In the proposal, based

on repeated local observations, the robots estimate the state of the environment and

choose (based on probabilities given by transition functions) the task to execute. In

116

that approach, the robots are equally capable of performing any task, and can only be

allocated to a single task at a time.

[CMKJ09] propose a decentralised solution for planning agent schedules using

a Markov game formulation for tasks with hard deadlines. Each agent is allocated to

perform a sequence of tasks. Tasks are discovered during the mission execution, but it

is assumed that the task deadlines are always known. All the agents can be allocated

to any task (i.e., agents are homogeneous) and have the same costs to perform a given

task. The solution does not consider subtasks, only tasks as atomic units.

[CsTPcP14] propose the allocation of new tasks to groups of heterogeneous

robots. When new tasks arise, the allocation is initially performed by a centralised algo-

rithm which distributes the tasks to the groups of robots. That approach considers that

only one new task should be allocated to a group at a time and that all new tasks need to

be allocated. Then the tasks are allocated within each group in a decentralised manner

using an auction-based algorithm, and each robot can allocate only one task.

In [GKZ17] a task allocation approach is used in the context of a forest fires

fighting scenario, where the tasks (fire spots) are known a priori and provided to the

algorithm. The approach uses an auction-based algorithm to allocate the tasks to the

agents (UAVs). Assumes that the number of agents is the same as the number of tasks

and that agent is able to allocate only one task. The approach does not consider hetero-

geneous agents.

[US13] consider the allocation of tasks that can be divided into subtasks. The

agents are organised in a hierarchical structure composed of manager agents and worker

agents (the latter appear only at the bottom level of the hierarchy) which are those that

have the resources to execute the tasks. When the first manager in the hierarchy re-

ceives a new task for allocation, it divides the task into subtasks and allocates them to

the managers directly connected to it in the hierarchy. Each of those managers divides

the subtasks into smaller subtasks, and the process is repeated until the subtasks reach

the worker agents. The worker agents form a team when they are allocated to perform

the subtasks of the same task, and each worker can participate in only one team at a

time.

In the work by [GA15], a solution for allocating new tasks discovered by robots

during their missions is put forward. The authors only consider atomic tasks. In that

work, each task has a specification of the minimum requirements for its execution and

robots can play different roles, and each role is based on types of tasks that could be

carried out by robots playing that role. The paper focuses on disaster scenarios and pro-

poses the use of heterogeneous robots, in which the robot with the best computational

resources plays the role of the coordinator and, consequently, becomes responsible for

the coordination of the task allocation process [GA15]. Thus, it could be said of that ap-

117

proach that there is still a single point of failure within each team, so it is not precisely

a decentralised solution like ours.

A decentralised solution for task allocation in multi-robot systems that considers

robot resources is presented in [LZK15]. There are scattered consumers in the environ-

ment who order services by creating an auction in which robots offer their services

through bids. The task is allocated to the provider who can execute it in a shorter time.

Each robot tries to allocate one task at a time, and the task is executed in the order in

which it was allocated. Thus, the time to execute the new task is added to the time of

the other tasks already in the robot execution list.

[TMS15] propose a distributed solution for the reallocation of tasks in order

to maximise the number of allocated tasks. The solution focuses on search and rescue

scenarios, considering heterogeneous vehicles and tasks with deadlines to start their

execution. An algorithm is proposed for the exchange of tasks which aims to increase

the number of allocated tasks, even if some of the tasks need to wait a long time to be

executed. The basic idea is to ’move’ the tasks in the agents’ schedules and also change

tasks between the agents in order to create spaces for the inclusion of new tasks. In that

approach, each vehicle has a limit of tasks that it can perform and each task is allocated

to only one vehicle.

[SZB16] proposes an approach for allocating tasks in disaster environments.

When an agent finds a task in the environment, it becomes the coordinator for that task,

and it shares the information with other agents. A task requires agents with certain work

efficiency to complete it in the deadline. Thus agents can be able to partially execute a

task, which can be performed by more than one agent at a time. The agents share their

work efficiency with the coordinator which chose the agents to perform the task. After

allocating one task, the coordinator tries to allocate the next one if any. Tasks also have

a different urgent degree.

In [WLL+16] the robots move by the environment and try to allocate each new

task they find by using the proposed market-based task allocation algorithm. The ap-

proach considers urgency of the time in the task evaluation function. Each robot can

allocate at most one task.

[ZMC16] proposes a distributed task allocation method for allocation of atomic

tasks to multiple heterogeneous vehicles in a search and rescue scenario. The algorithm

iterates between three phases: task inclusion phase, and a consensus and task removal

phase. Agents can allocate a maximum number of tasks. Temporal constraints are con-

sidered.

In the work by [CYYS16], an auction-based approach considering multiple con-

straints is proposed. To deal with multiple constraints, the approach computes the cost

in four layers (one for each constraint). The auction algorithm is based on the Sequential

118

Single-Item Auction algorithm. Here only one task is allocated at a time, but the agents

can have more tasks allocated according to their capacities.

[AHG17] proposes a decentralised coalition formation approach for allocating

tasks with different priorities. When a new task appears the agent near the task be-

comes the initiator, which is responsible for creating the coalition by contracting other

agents who have the resources to complete that task. Tasks have a deadline and a list of

subtasks. Each subtask has a resource need to be performed. One task is allocated at

time and each agent can allocate at most one task.

Another approach for allocating tasks with different priorities is introduced in

[MVDB17]. The idea is to allocate responders to different locations during incidents.

There is a limit on the number of responders that can be allocated to a location. Each

responder can also be allocated to a limited number of locations. The approach is cen-

tralised and does not consider the heterogeneity of the responders.

An auction-based task allocation approach is presented in [IF16]. The idea is to

form coalitions with heterogeneous robots to complete the tasks. The allocation works

in two steps. First, when the task is announced, and the robot provides bids. The winner

becomes the leader for that task. Next, the leader analyses the task and creates an

auction for it according to the effort needed to complete the task. Each task always needs

more than one robot to be completed forming a coalition. Each robot can participate in

only a coalition at a time.

6.2 Allocating an Initial Set of Tasks

In the work by [SP13], a distributed solution for task allocation to a set of het-

erogeneous robots is presented in which robots’ capabilities are considered. Unlike our

approach, the solution presented in [SP13] requires that only one task is allocated to

each robot and that each task is allocated to one robot only.

In [GSW+14], the authors propose a decentralised mechanism for task allocation

along with an architecture that focuses on exploring disaster scenarios. Task allocation

follows a simple approach based on an auction, where any robot can carry out any task.

Each robot can be allocated to more than one task.

A decentralised solution for task allocation among multiple robots based on com-

binatorial auctions has been introduced by [SGSTS14]. According to the authors, the so-

lution cannot avoid the computational overload characteristic of combinatorial auctions.

The use of combinatorial auctions means that the robots provide bids for a combination

of tasks rather than individually for each task. At the end of the allocation process, each

task must be allocated to exactly one robot, and all tasks must be allocated. The solution

considers heterogeneous vehicles with different load capacities.

119

[SGSTS15] presents a decentralised algorithm for allocating tasks to a set of

robots. The solution first relaxes the problem, so that it can be solved optimally or with

some approximation through techniques such as linear programming [SGSTS15]. In this

step, a maximum consensus-based algorithm is used. The algorithm then converts the

found solution back to the original domain.

In [LMB+13] an algorithm is presented to allocate tasks, with each task being

allocated to only one robot. The solution proposes the simultaneous execution of auc-

tions. Agents use policies computed through individual Markovian decision processes

to calculate the bids for each task. Many approaches for task allocation are based on

Markov Decision Processes (MDPs). When it is not possible to have a global view of

the environment, Partially Observable MDPs (POMDPs) can be used, which allows each

agent to make decisions based only on their observations [LMB+13]. In the case of dis-

tributed multi-agent systems, decentralised POMDPs (Dec-POMDPs) are used. However,

Dec-POMDPs are known to be intractable in general settings [BZI00].

The solutions presented by [SP13], [GSW+14], [SGSTS14], and [LMB+13], fo-

cus specifically on atomic tasks, unlike the approach put forward in this thesis, which

comprises other types of tasks as well.

Luo et al. present a similar set of algorithms that focus on different aspects of

the task allocation process [LCS13, LCS15b, LCS15a]. In the work by [LCS13], the au-

thors describe a distributed algorithm for the allocation of tasks with deadline to multiple

robots. It is considered that all tasks have the same duration, represented by exactly one

unit of time. The robots’ batteries limit the amount of time available to perform tasks

and, consequently, the number of tasks that can be allocated to each agent. The solution

works for a number of tasks less than or equal to the sum of the limit of tasks the robots

can take. In that approach, any robot can be allocated to any task, and the tasks are

independent of each other. The work by [LCS15b] proposes an extension where tasks

with different durations are considered. The work presented by [LCS15a] served as an

initial inspiration for the mechanism proposed here, although we have departed in many

ways from the limitations of that work. The authors present a distributed algorithm fo-

cusing on the allocation of groups of tasks. The constraints are in the number of total

tasks that a robot can carry out in the mission as well as in the number of tasks carried

out by each group. It is assumed that any robot can be allocated to any task. Unlike our

work, that work does not consider the allocation of different types of tasks at the same

time, aspects related to capabilities of robots, the use of roles associated with tasks is

not considered either. We have also changed the way to check for termination of the

allocation process as well as changed the bid messages so that our approach requires

the exchange of significantly fewer messages.

[FGC14] propose a centralised approach for the allocation of tasks to robots,

where the ordering of execution of the allocated tasks is also defined for each robot.

120

Tasks are considered independent of each other and are classified as atomic or non-

atomic tasks. Non-atomic tasks are tasks that can be partially executed, at different

times and by different robots, until they are completed. The solution considers that not

all robots are able to perform all tasks and that time constraints may prevent all tasks

from being executed.

Further, [DMC14] introduce a centralised approach for task allocation that needs

to be carried out in parallel, forming temporary coalitions of robots. It considers hetero-

geneous robots with different capabilities, and each task is divided into a set of subtasks

that need a set of capacities to be carried out. Each robot can be allocated only two

subtasks at the same time: the subtask being currently carried out and the next subtask

to be carried out.

The iterative consensus-based auction algorithm [CBH09]. ICBAA is the execu-

tion of the CBAA algorithm iteratively until all the tasks are allocated. CBAA is a single-

assignment approach that uses parallel single item auctions, where each agent allocates

at most one task. Running CBAA iteratively allow each agent to allocate more tasks.

CBAA running iteratively has been used for comparison with new proposed approaches

such as in [DMCB11b, IS17, TSM17, DMCB11a].

The approach in [MNG16] considers the allocation of tasks with precedence

constraints by iterating over a version of the sequential single-item auction algorithm.

At each iteration, a batch of tasks is allocated, more specifically, a batch of tasks that

have no precedence other than the tasks already allocated in previous iterations. That

is performed by assigning a numerical priority to the tasks in a precomputation step.

Tasks without precedence tasks receive high-priority values and so on. The solution

allows each agent to be allocated to only one task.

In [Ma16] is proposed an auction algorithm for the allocation of resources. The

subsidiaries of a company, represented by agents, submit bids and the resources are

allocated in proportion to their bids. The approach considers that the capacity of each

agent allows it to allocate resources according to the amount of capacity spent to allocate

each resource. Unlike our proposal, the proposed solution is centralised, and it does

not consider heterogeneous agents. Another method for the allocation of resources is

presented in [ZML18]. Agents try to allocate parts of the resources they want to use,

that is, the resources can be allocated in proportion to the bid of the agents. At each

iteration, a single agent is randomly chosen to update its best bid. The proposed solution

does consider heterogeneous agents.

In sequential single-item auction algorithm [KKT10], the tasks are allocated in

multiple rounds. All the tasks are known at the beginning of auctions, and the auction-

eer offers all unallocated tasks to the agents. Each agent bids on only one task in each

round. The auctioneer determines as the winner only the best bid at each round, i.e.

only one task is allocated at each iteration. Due to the efficiency and simplicity of SSIA,

121

the approach has been used as the basis for several proposals to deal with heteroge-

neous agents, task precedence constraints, temporal constraints, task reallocation, task

allocation with multiple constraints, and so on [MNG16, HP13, WHJ15, NG15, CYYS16,

NMG16]. For the same reason, this approach is also often used for comparison with new

approaches such as in [LZK15, CNC13, LZK14, SSPO15].

[IS17] presents a decentralised task allocation algorithm based on the Hungar-

ian approach. The solution works for the one-to-one allocation, that is, each agent allo-

cates only one task, and each task is allocated to one agent. The solution only works with

atomic tasks, and it does not consider heterogeneous agents. [ZLZ+16] also propose an

algorithm based on the Hungarian approach, but to solve the many to many (M–M) al-

location problem, where one task can be allocated to many different agents, and one

agent can allocate many tasks. However, here the proposed solution is centralised. The

solution only works with atomic tasks, and it does not consider heterogeneous agents.

[MSG+17] proposes a coalition formation algorithm for the allocation of tasks to

robots in natural disasters. For each task, the solution forms a coalition. Each task has

a set of subtasks, and the number of agents in the coalition is the same as the number

of subtasks. Each agent is allocated to only one subtask. The solution considers agents’

capabilities when forming the coalitions and allocating subtasks to the agents. Unlike

our proposal, the proposed solution is centralised.

[dMNdMM16] propose a decentralised algorithm for the allocation of tasks in a

swarm of robots. Agents are distributed between the available tasks, and they are always

allocated to one task at a time. There are more agents than tasks, and thus many agents

are allocated to perform the same task. The approach does not consider heterogeneous

agents.

[LLX15] proposes a method to multi-robot task allocation where each robot can

allocate multiple tasks. The number of tasks is driven by the capacity of each agent and

the amount of capacity needed for each task. Tasks have priority and deadline to be com-

pleted. There is a manager responsible for sends the task information to the robots. Each

robot computes its own plans and shares it with the manager. The manager allocates the

tasks based on the received plans. Heterogeneous robots are not considered.

[LSM14] presents a market-based task allocation algorithm where the price of

the items is raised by the merchant, instead of by the bidders as in an auction algorithm.

The approach only deal with atomic tasks, heterogeneous agents are not considered, and

each agent is able to allocate at most one task.

[DMCB15] proposes a distributed algorithm for the allocation of tasks to hetero-

geneous robots in a healthcare facility. The idea is based on providing bids in parallel

with the execution of a task. While a robot is performing a task, it provides bids to an-

other task. Only when the execution of a task finishes, the agent is allocated to the next

122

task. In other words, each agent is able to allocate at most one task at a time. Agents

are heterogeneous, and tasks are atomic.

[FMPU16] presents a gossip-based algorithm for allocation of tasks in a decen-

tralised way. The algorithm starts from an unfeasible solution, and at each iteration, a

node solves a Local-Integer Linear Programming problem. The node is randomly cho-

sen at each iteration. Each agent can allocate up to M tasks and can perform any task

(homogeneous agents). Deal only with atomic tasks.

[RM16] presents a centralised approach for allocation of tasks through coalition

formation. The solution forms a coalition of robots to each task, i.e. every task needs to

be executed by multiple robots. Each robot is allowed to participate in one coalition at a

time. The robots are heterogeneous, and the tasks require different capabilities.

6.3 Summary of the characteristics of the approaches

Regarding the allocation of tasks perceived or provided at runtime, most of the

work mentioned above propose decentralised approaches. Also, most of them consider

only the allocation of atomic tasks or non-atomic tasks, that is, tasks which can be par-

tially executed by different agents. Only [AHG17] and [US13] considers compound tasks,

that is, tasks with subtasks. Most of the described research deals with heterogeneous

entities (agents or robots) considering at least some aspect related to their physical capa-

bilities, except [KP13], [CMKJ09], [LJGM06], [WLL+16], and [MVDB17] which consider

homogeneous agents. The agents’ capacities also vary between approaches. Many of

them consider that each agent can allocate only one task. In others, the agents are able

to allocate up to a certain number of tasks (for instance, five tasks). Only [CYYS16] con-

siders that the capacity of each agent allows it to allocate tasks according to the amount

of capacity spent to perform each of the tasks. For example, one task can occupy 5% of

the agent’s capacity, another can occupy 15%, and so on. However, in some of the ap-

proaches where agents have the capacity to allocate more than one task such as [GA15],

[CYYS16], and [LZK15], the approach restricts to one the number of tasks offered at a

time, which also reduces the complexity of the allocation process. Regarding the use of

roles in the system, [GA15] defines the leader role within each group of robots, while

[US13] use managers and workers in a hierarchical structure. Only [MSRJ11] considers

new robots can be added during the process, but the variation in resource availability is

not taken into consideration. The approach presented in [GA15] makes considerations

on that aspect. Only the approaches proposed in [TMS15], [ZMC16] and [GA15] con-

sider that, at the end of the allocation process, tasks may not have been allocated, either

by temporal constraints as described in [TMS15] and [ZMC16], or because there is no

robot capable of performing the task as in [GA15]. Some of them consider tasks with

priorities, such as [GA15, MVDB17, SZB16, WLL+16, AHG17].

123

Regarding the allocation of an initial set of tasks, most of the approaches men-

tioned above propose decentralised solutions and consider a set of tasks being allo-

cated at a time. Also, most of them consider only the allocation of atomic tasks or

non-atomic tasks. Only [LCS13], [LCS15a], [LCS15b], [MSG+17] and [DMC14] con-

sider compound tasks, that is, tasks with subtasks. Some of the described research

deals with heterogeneous entities considering at least some aspect related to their phys-

ical capabilities, but most of them consider homogeneous agents. The agents’ capac-

ities also vary between approaches. Some of them consider that each agent can al-

locate only one task while some consider agents capable of allocating up to a certain

number of tasks. Other approaches consider that the capacity of each agent allows

it to allocate tasks according to the amount of capacity spent to perform each of the

tasks. None of the approaches considers the use of roles. Few approaches also con-

sider tasks with priorities, such as [LLX15, DMCB15, MNG16] and some other, such

as [LLX15, MNG16, FGC14, LCS15b, LCS13] consider temporal constraints. Only the

approaches proposed in [FGC14, ZML18, DMC14, LSM14, DMCB15] consider that, at

the end of the allocation process, tasks may not have been allocated. Unlike our solu-

tion, none of the approaches which consider compound tasks perform some control over

whether the tasks were not completely allocated, that is, if there is a task in which at

least one subtask was not allocated to any agent.

Table 6.1 presents a summary of the characteristics of the approaches presented

in this chapter. The “Availability” column refers to whether tasks are delivered as an ini-

tial set of tasks (Initial) or whether they arrive during the mission being perceived or

provided (Arrive). Column "Dec." indicates whether the approach is decentralised or

not. "Type of task" column indicates what type of task the approach deals with. "Task

at time" column indicates whether the task allocation process receives only one task at

a time for allocation (one) or if it receives multiple tasks at a time (many). "Agent’s ca-

pacity" column refers to the capability of the agents considered in the approach. If each

agent is able to allocate only one task (one), if each agent are able to allocate up to a cer-

tain number of tasks (n tasks), or if the capacity of each agent allows it to allocate tasks

according to the amount of capacity spent to perform each of the tasks (amount). Col-

umn "Heterog. Agents" indicates whether or not the approach considers heterogeneous

agents, that is, the approach considers at least some aspect related to the agent’s capa-

bilities, which may impact on the tasks the agents can allocate. Column "Roles" indicates

whether or not the approach considers that agents may play different roles. "Tasks not

allocated" column indicates whether the approach allows unallocated tasks at the end of

the allocation process, either because the agents do not have the required capabilities to

perform all the tasks or because there are more tasks than the agents’ capacities. "Tem-

poral constraint" column indicates whether the approach considers tasks with temporal

constraints. "Task Priority" column indicates whether the approach considers tasks with

different priorities.

1
2
4Table 6.1 – Characteristics of the approaches.

Approach Availability Dec.
Type of

task

Tasks at

a time

Agent’s

capacity

Heterog.

agents
Roles

Tasks not

allocated

Temporal

constraint

Task

priority

[CYYS16] arrive
√

atomic one amount
√ √

[GA15] arrive
√

atomic one n tasks
√ √ √ √

[LZK15] arrive
√

atomic one no limit
√ √

[AHG17] arrive
√

compound one one
√ √ √

[SZB16] arrive
√

non-atomic many one
√ √ √

[WLL+16] arrive
√

non-atomic one one
√

[MSRJ11] arrive
√

non-atomic many one
√

[KP13] arrive atomic many n tasks

[LJGM06] arrive
√

atomic many one

[CMKJ09] arrive
√

atomic many one
√ √

[COBT17] arrive
√

atomic many n tasks
√ √

[IF16] arrive
√

non-atomic one one
√

[CsTPcP14] arrive mixed atomic many one
√

[MVDB17] arrive non-atomic many n tasks
√ √

[ZMC16] arrive
√

atomic many n tasks
√ √ √

[TMS15] arrive
√

atomic many n tasks
√ √ √

[US13] arrive
√

compound many one
√ √ √

[LLX15] initial
√

atomic many amount
√ √

[MNG16] initial
√

atomic many one
√ √

[ZML18] initial
√

non-atomic many amount
√

[FGC14] initial atomic non-atomic many amount
√ √ √

[MSG+17] initial compound many one
√

[DMC14] initial compound many one
√ √

[Ma16] initial non-atomic many amount

[ZLZ+16] initial non-atomic many n tasks

1
2
5

Table 6.1 continued from previous page

Approach Availability Dec.
Type of

task

Tasks at

a time

Agent’s

capacity

Heterog.

agents
Roles

Tasks not

allocated

Temporal

constraint

Task

priority

[RM16] initial non-atomic many one
√

[LMB+13] initial
√

atomic many n tasks

[SGSTS14] initial
√

atomic many n tasks
√

[SGSTS15] initial
√

atomic many n tasks
√

[FMPU16] initial
√

atomic many n tasks

[SP13] initial
√

atomic many one
√

[GKZ17] initial
√

atomic many one

[IS17] initial
√

atomic many one

[LSM14] initial
√

atomic many one
√

[DMCB15] initial
√

atomic many one
√ √ √

[GSW+14] initial
√

atomic one n tasks

[LCS15b] initial
√

compound many amount
√

[LCS13] initial
√

compound many n tasks
√

[LCS15a] initial
√

compound many n tasks
√

[dMNdMM16] initial
√

non-atomic many one

Our approach
initial

arrive

√
compound many amount

√ √ √

126

127

7. CONCLUSION

In this thesis, we described a decentralised mechanism for the allocation of

different types of tasks to heterogeneous agent teams, considering that they can play

different roles and carry out tasks according to their own capabilities. Task allocation

is an important and challenging aspect considered in coordination problems in multi-

agent systems. A process to allocate tasks efficiently is crucial in many domains, es-

pecially if we consider that different tasks can be performed by agents with different

capabilities. Efficiently allocating tasks among multiple agents with multiple constraints

requires solving a challenging optimisation problem. In chapter 3 we formally state the

Multi-Agent Task Allocation optimisation problem addressed in this thesis.

As described in Chapter 6, even though there are several approaches proposed

for the allocation of tasks in both MASs and multi-robot systems, there is still much to

be done in this area, since the available solutions only include a subset of characteristics

required to allocate tasks in many domains efficiently. The complexity in dealing with

different characteristics in an allocation mechanism was perceived during the literature

review, where it was found that the approaches are characterised by dealing with one

or few characteristics. Approaches that deal with more characteristics, usually consider

rather restrictive premises or have high computational cost.

The main objective of the proposed mechanism is to find an assignment that

maximises the sum of the utilities obtained by each agent individually while satisfying all

constraints. This is based on the idea that the process of maximising individual utilities

simultaneously improves the global utility. The agents agree on the allocation of tasks

by exchanging messages with bid values for the tasks they intend to execute.

The proposed mechanism deals with the allocation of a set of tasks being made

available at the same time. The mechanism considers decomposable simple tasks, for

which all the subtasks need to be allocated to the same agent, compound tasks where

each subtask needs to be allocated to a different agent and compound tasks where sub-

tasks can be allocated to any agent. Also, the proposed mechanism supports the alloca-

tion of atomic tasks by creating a compound task with all the atomic tasks. The proposed

mechanism allows us to use all those types of tasks and also to express other constraints

through the definition minimum and maximum values for the number of subtasks an

agent can take from a task type.

Regarding the agents, our approach deals with heterogeneous agents, i.e. agents

with different capabilities and resources. The capabilities constraint the roles the agents

are able to play, which are necessary for the execution of certain tasks. Also, each agent

in the proposed solution has a limit on the number of subtasks that it can allocate to

itself, and this limit may be different for individual agents. We consider that the capacity

of each agent allows it to allocate subtasks according to the capacity required to perform

each of the subtasks. Thus, each agent needs to select the best tasks to allocate based on

its capacity and on the capacities required for each task, which is itself a combinatorial

optimisation problem. We have solved it with the knapsack approach.

When the total capacity of the agents is greater than or equal to the total ca-

pacity number of subtasks that need to be allocated, the base algorithms yield very good

results. When the capacities necessary to perform the subtasks is greater than the to-

128

tal capacity of the agents, our approach performs extra steps in order to identify tasks

which are not entirely allocated, and then we use a social-choice algorithm based on vot-

ing followed by our allocation algorithms to allocate at least some of those outstanding

tasks entirely.

We also described our approach to identify the end of the allocation process,

which is important in a decentralised mechanism where each agent needs to identify

when the other agents finished sending bids. Our approach reduces the number of bid

messages each agent needs to send to other agents, and still allows a precise procedure

to check for termination.

7.1 Summary of Results

The results of the proposed mechanism were compared with the optimal solu-

tions obtained with GLPK. We also compare the performance of our mechanism with

other solutions: ICBAA, SSIA, TAA, and RBTA. We also evaluate the impact of our task

allocation approach in the execution of tasks in a complex scenario like the flooding

disaster scenario.

Our results show that our approach provides near-optimal solutions when com-

pared with results obtained with GLPK. Regarding the comparison with ICBAA, SSIA,

TAA, and RBTA algorithms, the results show that our approach performs better than

these algorithms. Also, there is a significant difference in the number of bid messages

that were required during the allocation process. Our approach required a much smaller

number of bids in comparison with the other approaches, which can be considered an

important aspect for applications in real-world scenarios.

For the evaluation in the flooding disaster scenario, we described the features

of the simulator we extended for evaluating our approach. The scenario consists of a

number of agents, which can move through flooded regions over the map of a realistic

city and execute some actions to complete the tasks, such as take_picture, sample_water,

pickup_box, rescue_victim and others. We compared the performance of our mechanism

with the SSIA algorithm.

The results show that our approach performs better in the flooding scenario.

Again, our approach required a much smaller number of bids, which can be considered

an essential aspect for this scenario. The results show that even a small difference in the

task allocation results can significantly impact the results of the task execution.

7.2 Future Work

Future work aims to consider aspects such as task prioritising, temporal con-

straints and task precedence constraints. We also intend to evaluate the approach with

real agents as mentioned earlier or on ROS-based simulations that are currently being

developed.

Also, in real-world scenarios, such as flooding disasters, robots may be damaged

while executing their allocated tasks, and it may be necessary to reallocate the tasks

129

that were assigned to the failed robot. Although in our approach identifying the tasks

that were allocated to the failed robots is facilitated by the fact that at the end of our

allocation process each robot knows which robot was responsible for which tasks, we

need to define strategies and the best way to reallocate the tasks.

During the allocation process, in decentralised approaches, there are often com-

munication requirements, as participants need to share information. Maintaining data

integrity, resilience, and security in data access are some of the important features of

this type of solution. In that direction, we plan to integrate and evaluate the architec-

ture we propose in [BMZB18] for supporting the dynamic and decentralised allocation

of tasks built on the idea of having communication and coordination in a multi-agent

system through a private blockchain.

130

131

REFERENCES

[AAT13] Aghaeeyan, A.; Abdollahi, F.; Talebi, H. A. “Robust cooperative control in

the presence of obstacles”. In: Proceedings of the Iranian Conference on

Electrical Engineering, 2013, pp. 1–6.

[AHG17] Ayari, E.; Hadouaj, S.; Ghedira, K. “A dynamic decentralised coalition

formation approach for task allocation under tasks priority constraints”.

In: Proceedings of the International Conference on Advanced Robotics,

2017, pp. 250–255.

[ALS17] Albrecht, S. V.; Liemhetcharat, S.; Stone, P. “Special issue on multiagent

interaction without prior coordination: guest editorial”, Autonomous

Agents and Multi-Agent Systems, vol. 31-4, Jul 2017, pp. 765–766.

[BA95] Balch, T.; Arkin, R. C. “Communication in reactive multiagent robotic

systems”, Autonomous Robots, vol. 1-1, Feb 1995, pp. 27–52.

[BB17] Basegio, T. L.; Bordini, R. H. “An algorithm for allocating structured

tasks in multi-robot scenarios”. In: Proceedings of the KES International

Conference on Agent and Multi-Agent Systems, 2017, pp. 99–109.

[BBH+13] Boissier, O.; Bordini, R. H.; Hübner, J. F.; Ricci, A.; Santi, A. “Multi-agent

oriented programming with jacamo”, Science of Computer Programming,

vol. 78-6, Jun 2013, pp. 747–761.

[BBO+02] Brazier, F.; Brazier, F. M. T.; Overeinder, B.; Wijngaards, N.; Mobach, D.;

Overeinder, B. J.; Wijngaards, N. J. E. “Supporting life cycle coordination

in open agent systems”. In: Proceedings of the Multi-agent Systems

Problem Spaces Workshop, 2002, pp. 4.

[BBT02] Bennewitz, M.; Burgard, W.; Thrun, S. “Finding and optimizing solvable

priority schemes for decoupled path planning techniques for teams of

mobile robots”, Robotics and Autonomous Systems, vol. 41-2/3, Nov

2002, pp. 89–99.

[BD13] Bordini, R. H.; Dix, J. “Programming multiagent systems”. MIT Press,

2013, chap. 13, pp. 587–639.

[BHH+10] Behrens, T.; Hindriks, K.; Hübner, J.; Behrens, T.; Hindriks, K.; Hübner,

J.; Dastani, M. “Putting apl platforms to the test: agent similarity

and execution performance”, Technical report, Clausthal University of

Technology, 2010, 23p.

[BHW07] Bordini, R. H.; Hübner, J. F.; Wooldridge, M. “Programming multi-agent

systems in agentspeak using jason”. John Wiley & Sons, 2007, 292p.

[BIP88] Bratman, M. E.; Israel, D. J.; Pollack, M. E. “Plans and resource-bounded

practical reasoning”, Computational Intelligence, vol. 4-4, Sep 1988, pp.

349–355.

132

[BM03] Bussab, W. d. O.; Moretin, P. A. “Estatística básica”. Saraiva, 2003, 526p.

[BMZB18] Basegio, T. L.; Michelin, R. A.; Zorzo, A. F.; Bordini, R. H. “A decentralised

approach to task allocation using blockchain”. In: Proceedings of the

International Workshop on Engineering Multi-Agent Systems, 2018, pp.

75–91.

[BPL05] Braubach, L.; Pokahr, A.; Lamersdorf, W. “Jadex: A bdi-agent system

combining middleware and reasoning”. In: Software Agent-Based

Applications, Platforms and Development Kits, Birkhäuser Basel, 2005,

chap. 7, pp. 143–168.

[BRHL99] Busetta, P.; Ronnquist, R.; Hodgson, A.; Lucas, A. “Jack intelligent agents

- components for intelligent agents in java”, AgentLink, vol. 2-1, Jan 1999,

pp. 2–5.

[BZI00] Bernstein, D. S.; Zilberstein, S.; Immerman, N. “The complexity of

decentralized control of markov decision processes”. In: Proceedings of

the Conference on Uncertainty in Artificial Intelligence, 2000, pp. 32–37.

[CBH09] Choi, H.-L.; Brunet, L.; How, J. P. “Consensus-based decentralized

auctions for robust task allocation”, IEEE Transactions on Robotics, vol.

25-4, Aug 2009, pp. 912–926.

[CFNM15] Casadei, G.; Furci, M.; Naldi, R.; Marconi, L. “Quadrotors motion

coordination using consensus principle”. In: Proceedings of the American

Control Conference, 2015, pp. 3842–3847.

[CGP15] Cepeda-Gomez, R.; Perico, L. F. “Formation control of nonholonomic

vehicles under time delayed communications”, IEEE Transactions on

Automation Science and Engineering, vol. 12-3, Jul 2015, pp. 819–826.

[CHB13] Cardoso, R. C.; Hubner, J. F.; Bordini, R. H. “Benchmarking

communication in actor- and agent-based languages”. In: Proceedings of

the International Workshop on Engineering Multi-Agent Systems, 2013,

pp. 58–77.

[CKB+18] Cardoso, R. C.; Krausburg, T.; Baségio, T.; Engelmann, D. C.; Hübner,

J. F.; Bordini, R. H. “Smart-jacamo: an organization-based team for the

multi-agent programming contest”, Annals of Mathematics and Artificial

Intelligence, vol. 84-1/2, Oct 2018, pp. 75–93.

[CMKJ09] Chapman, A. C.; Micillo, R. A.; Kota, R.; Jennings, N. R. “Decentralised

dynamic task allocation: a practical game: theoretic approach”. In:

Proceedings of the International Conference on Autonomous Agents and

Multiagent Systems, 2009, pp. 915–922.

[CNC13] Cavalcante, R. C.; Noronha, T. F.; Chaimowicz, L. “Improving

combinatorial auctions for multi-robot exploration”. In: Proceedings of

the International Conference on Advanced Robotics, 2013, pp. 1–6.

133

[COBT17] Claes, D.; Oliehoek, F.; Baier, H.; Tuyls, K. “Decentralised online

planning for multi-robot warehouse commissioning”. In: Proceedings

of the International Conference on Autonomous Agents and MultiAgent

Systems, 2017, pp. 492–500.

[Con10] Conitzer, V. “Comparing multiagent systems research in combinatorial

auctions and voting”, Annals of Mathematics and Artificial Intelligence,

vol. 58-3/4, Apr 2010, pp. 239–259.

[Cor14] Correa, A. “Distributed team formation in urban disaster environments”.

In: Proceedings of the IEEE Symposium on Intelligent Agents, 2014, pp.

57–64.

[Cou07] Council, E. “Eu directive of the european parliament

and of the european council on the estimation and

management of flood risks (2007/60/eu)”. Available at:

http://ec.europa.eu/environment/water/flood_risk/index.htm, May 2017.

[CPK+18] Cardoso, R. C.; Pereira, R. F.; Krzisch, G.; Magnaguagno, M. C.; Baségio,

T.; Meneguzzi, F. “Team pucrs: a decentralised multi-agent solution for

the agents in the city scenario”, International Journal of Agent-Oriented

Software Engineering, vol. 6-1, Jan 2018, pp. 3–34.

[Cra17] Crasar. “Center for robot-assisted search and rescue”. Available at: http:

//crasar.org, May 2017.

[CsTPcP14] Cao, L.; shun Tan, H.; Peng, H.; cong Pan, M. “Multiple uavs hierarchical

dynamic task allocation based on pso-fsa and decentralized auction”.

In: Proceedings of the IEEE International Conference on Robotics and

Biomimetics, 2014, pp. 2368–2373.

[CSVJRC14] Corona-Sánchez, J. J.; Vargas-Jacob, J. A.; Rodríguez-Cortés, H.

“Decentralized real time implementation of a leader-follower

coordination strategy for quadrotors”. In: Proceedings of the

International Conference on Unmanned Aircraft Systems, 2014, pp.

237–243.

[CYYS16] Cheng, Q.; Yin, D.; Yang, J.; Shen, L. “An auction-based multiple

constraints task allocation algorithm for multi-uav system”. In:

Proceedings of the International Conference on Cybernetics, Robotics

and Control, 2016, pp. 1–5.

[CZHB13] Cardoso, R. C.; Zatelli, M. R.; Hübner, J. F.; Bordini, R. H. “Towards

benchmarking actor- and agent-based programming languages”. In:

Proceedings of the International Workshop on Programming Based on

Actors, Agents and Decentralized Control, 2013, pp. 115–126.

[Das08] Dastani, M. “2apl: a practical agent programming language”,

Autonomous Agents and Multi-Agent Systems, vol. 16-3, Jun 2008, pp.

214–248.

134

[DC98] Drogoul, A.; Collinot, A. “Applying an agent-oriented methodology to

the design of artificial organizations: a case study in robotic soccer”,

Autonomous Agents and Multi-Agent Systems, vol. 1-1, Jan 1998, pp.

113–129.

[dCFS13] de Campos, G. R.; Falcone, P.; Sjöberg, J. “Autonomous cooperative

driving: a velocity-based negotiation approach for intersection crossing”.

In: Proceedings of the International IEEE Conference on Intelligent

Transportation Systems, 2013, pp. 1456–1461.

[Dec96] Decker, K. S. “TÆms: a framework for environment centered analysis &

design of coordination mechanisms”. John Wiley & Sons, 1996, chap. 16,

pp. 429–448.

[DMC14] Das, G. P.; McGinnity, T. M.; Coleman, S. A. “Simultaneous allocations of

multiple tightly-coupled multi-robot tasks to coalitions of heterogeneous

robots”. In: Proceedings of the IEEE International Conference on

Robotics and Biomimetics, 2014, pp. 1198–1204.

[DMCB11a] Das, G.; McGinnity, T.; Coleman, S.; Behera, L. “A fast distributed

auction and consensus process for allocation of prioritised tasks in multi-

robot systems”. In: Proceedings of the Irish Conference on Artificial

Intelligence and Cognitive Science, 2011, pp. 244–253.

[DMCB11b] Das, G. P.; McGinnity, T. M.; Coleman, S. A.; Behera, L. “A fast distributed

auction and consensus process using parallel task allocation and

execution”. In: Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2011, pp. 4716–4721.

[DMCB15] Das, G. P.; McGinnity, T. M.; Coleman, S. A.; Behera, L. “A distributed task

allocation algorithm for a multi-robot system in healthcare facilities”,

Journal of Intelligent & Robotic Systems, vol. 80-1, Oct 2015, pp. 33–58.

[dMNdMM16] de Mendonça, R. M.; Nedjah, N.; de Macedo Mourelle, L. “Efficient

distributed algorithm of dynamic task assignment for swarm robotics”,

Neurocomputing, vol. 172-1, Jan 2016, pp. 345–355.

[DP13] Dignum, V.; Padget, J. “Multiagent organizations”. MIT Press, 2013,

chap. 2, pp. 51–98.

[DS08] Dresner, K.; Stone, P. “A multiagent approach to autonomous intersection

management”, Journal of Artificial Intelligence Research, vol. 31-1, Mar

2008, pp. 591–656.

[DZKS06] Dias, M. B.; Zlot, R.; Kalra, N.; Stentz, A. “Market-based multirobot

coordination: a survey and analysis”, Proceedings of the IEEE, vol. 94-7,

Jul 2006, pp. 1257–1270.

[FGC14] Flushing, E. F.; Gambardella, L. M.; Caro, G. A. D. “A mathematical

programming approach to collaborative missions with heterogeneous

teams”. In: Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2014, pp. 396–403.

135

[FMPU16] Fanti, M. P.; Mangini, A. M.; Pedroncelli, G.; Ukovich, W. “Discrete

consensus for asynchronous distributed task assignment”. In:

Proceedings of the IEEE Conference on Decision and Control, 2016, pp.

251–255.

[FRD98] Friedrich, H.; Rogalla, O.; Dillmann, R. “Integrating skills into multi-

agent systems”, Journal of Intelligent Manufacturing, vol. 9-2, Mar 1998,

pp. 119–127.

[FRR+15] Fischer, J. E.; Reeves, S.; Rodden, T.; Reece, S.; Ramchurn, S. D.; Jones,

D. “Building a birds eye view: collaborative work in disaster response”.

In: Proceedings of the Annual ACM Conference on Human Factors in

Computing Systems, 2015, pp. 4103–4112.

[FUMP13] Fanti, M. P.; Ukovich, W.; Mangini, A. M.; Pedroncelli, G. “A quantized

consensus algorithm for a multi-agent assignment problem”. In:

Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics, 2013, pp. 1063–1068.

[GA13] Gunn, T.; Anderson, J. “Effective task allocation for evolving multi-

robot teams in dangerous environments”. In: Proceedings of the

International Joint Conferences on Web Intelligence and Intelligent Agent

Technologies, 2013, pp. 231–238.

[GA15] Gunn, T.; Anderson, J. “Dynamic heterogeneous team formation for

robotic urban search and rescue”, Journal of Computer and System

Sciences, vol. 81-3, May 2015, pp. 553–567.

[GKZ17] Ghamry, K. A.; Kamel, M. A.; Zhang, Y. “Multiple uavs in forest fire

fighting mission using particle swarm optimization”. In: Proceedings of

the International Conference on Unmanned Aircraft Systems, 2017, pp.

1404–1409.

[GM04] Gerkey, B. P.; Mataric, M. J. “A formal analysis and taxonomy of task

allocation in multi-robot systems”, International Journal of Robotics

Research, vol. 23-9, Sep 2004, pp. 939–954.

[GSW+14] Gernert, B.; Schildt, S.; Wolf, L.; Zeise, B.; Fritsche, P.; Wagner,

B.; Fiosins, M.; Manesh, R. S.; Muller, J. P. “An interdisciplinary

approach to autonomous team-based exploration in disaster scenarios”.

In: Proceedings of the IEEE International Symposium on Safety, Security,

and Rescue Robotics, 2014, pp. 1–8.

[Hay85] Hayes-Roth, B. “A blackboard architecture for control”, Artificial

Intelligence, vol. 26-1, Jul 1985, pp. 251–321.

[HBHM01] Hindriks, K. V.; Boer, F. S. d.; Hoek, W. v. d.; Meyer, J.-J. C.

“Agent programming with declarative goals”. In: Proceedings of the

International Workshop on Intelligent Agents, 2001, pp. 228–243.

136

[HLZT+17] Hernandez-Leal, P.; Zhan, Y.; Taylor, M. E.; Sucar, L. E.; Munoz de Cote,

E. “Efficiently detecting switches against non-stationary opponents”,

Autonomous Agents and Multi-Agent Systems, vol. 31-4, Jul 2017, pp.

767–789.

[HP13] Heap, B.; Pagnucco, M. “Repeated auctions for reallocation of tasks

with pickup and delivery upon robot failure”. In: Proceedings of the

International Conference on Principles and Practice of Multi-Agent

Systems, 2013, pp. 461–469.

[HS99] Huhns, M.; Stephens, L. M. “Multiagent systems and societies of agents”.

MIT Press, 1999, chap. 2, pp. 79–120.

[HSB07] Hübner, J. F.; Sichman, J. S.; Boissier, O. “Developing organised

multi-agent systems using the moise+ model: programming issues at

the system and agent levels”, International Journal of Agent-Oriented

Software Engineering, vol. 1-3/4, Jan 2007, pp. 370–395.

[Hui10] Hui, N. B. “Coordinated motion planning of multiple mobile robots using

potential field method”. In: Proceedings of the International Conference

on Industrial Electronics, Control Robotics, 2010, pp. 6–11.

[IF16] Irfan, M.; Farooq, A. “Auction-based task allocation scheme for dynamic

coalition formations in limited robotic swarms with heterogeneous

capabilities”. In: Proceedings of the International Conference on

Intelligent Systems Engineering, 2016, pp. 210–215.

[IFR15] IFRC. “World disasters report 2015: focus on local

actors and humanitarian action”. Available at:

http://ifrc-media.org/interactive/world-disasters-report-2015/,

November 2017.

[ILS07] Innocenti, B.; López, B.; Salvi, J. “A multi-agent architecture with

cooperative fuzzy control for a mobile robot”, Robotics and Autonomous

Systems, vol. 55-12, Dec 2007, pp. 881–891.

[IS17] Ismail, S.; Sun, L. “Decentralized hungarian-based approach for fast and

scalable task allocation”. In: Proceedings of the International Conference

on Unmanned Aircraft Systems, 2017, pp. 23–28.

[Jia16] Jiang, Y. “A survey of task allocation and load balancing in distributed

systems”, IEEE Transactions on Parallel and Distributed Systems, vol.

27-2, Feb 2016, pp. 585–599.

[JM13] Jia, X.; Meng, M. Q. H. “A survey and analysis of task allocation algorithms

in multi-robot systems”. In: Proceedings of the IEEE International

Conference on Robotics and Biomimetics, 2013, pp. 2280–2285.

[KKT10] Koenig, S.; Keskinocak, P.; Tovey, C. “Progress on agent coordination

with cooperative auctions”. In: Proceedings of the AAAI Conference on

Artificial Intelligence, 2010, pp. 1713–1717.

137

[KP13] Keshmiri, S.; Payandeh, S. “Multi-robot, dynamic task allocation: a case

study”, Intelligent Service Robotics, vol. 6-3, Mar 2013, pp. 137–154.

[KSD13] Korsah, G. A.; Stentz, A.; Dias, M. B. “A comprehensive taxonomy for

multi-robot task allocation”, International Journal of Robotics Research,

vol. 32-12, Oct 2013, pp. 1495–1512.

[LCS13] Luo, L.; Chakraborty, N.; Sycara, K. “Distributed algorithm design for

multi-robot task assignment with deadlines for tasks”. In: Proceedings

of the IEEE International Conference on Robotics and Automation, 2013,

pp. 3007–3013.

[LCS15a] Luo, L.; Chakraborty, N.; Sycara, K. “Provably-good distributed algorithm

for constrained multi-robot task assignment for grouped tasks”, IEEE

Transactions on Robotics, vol. 31-1, Feb 2015, pp. 19–30.

[LCS15b] Luo, L.; Chakraborty, N.; Sycara, K. “Distributed algorithms for

multirobot task assignment with task deadline constraints”, IEEE

Transactions on Automation Science and Engineering, vol. 12-3, Jul 2015,

pp. 876–888.

[LHK13] Lee, D.-H.; Han, J.-H.; Kim, J.-H. “Market-based multiagent framework

for balanced task allocation”. Springer Berlin Heidelberg, 2013, chap. 2,

pp. 549–559.

[LJGM06] Lerman, K.; Jones, C. V.; Galstyan, A.; Mataric, M. J. “Analysis of dynamic

task allocation in multi-robot systems”, The International Journal of

Robotics Research, vol. 25-3, Mar 2006, pp. 225–241.

[LLX15] Liu, F.; Liang, S.; Xian, X. “Multi-robot task allocation based on utility and

distributed computing and centralized determination”. In: Proceedings

of the Chinese Control and Decision Conference, 2015, pp. 3259–3264.

[LMB+13] Lozenguez, G.; Mouaddib, A. I.; Beynier, A.; Adouane, L.; Martinet, P.

“Simultaneous auctions for "rendez-vous" coordination phases in multi-

robot multi-task mission”. In: Proceedings of the International Joint

Conferences on Web Intelligence and Intelligent Agent Technologies,

2013, pp. 67–74.

[LMP03] Luck, M.; McBurney, P.; Preist, C. “Agent technology: enabling

next generation computing - a roadmap for agent based computing”.

AgentLink, 2003, 102p.

[LSM14] Liu, L.; Shell, D. A.; Michael, N. “From selfish auctioning to incentivized

marketing”, Autonomous Robots, vol. 37-4, Dec 2014, pp. 417–430.

[LTL+15] Li, G.; Tong, S.; Li, Y.; Cong, F.; Tong, Z.; Yamashita, A.; Asama, H.

“Hybrid dynamical moving task allocation methodology for distributed

multi-robot coordination system”. In: Proceedings of the IEEE

International Conference on Mechatronics and Automation, 2015, pp.

1412–1417.

138

[LV17] Liemhetcharat, S.; Veloso, M. “Allocating training instances to learning

agents for team formation”, Autonomous Agents and Multi-Agent

Systems, vol. 31-4, Jul 2017, pp. 905–940.

[LZ03] Lau, H. C.; Zhang, L. “Task allocation via multi-agent coalition formation:

taxonomy, algorithms and complexity”. In: Proceedings of the IEEE

International Conference on Tools with Artificial Intelligence, 2003, pp.

346–350.

[LZK14] Lee, D.; Zaheer, S. A.; Kim, J. “Ad hoc network-based task allocation

with resource-aware cost generation for multirobot systems”, IEEE

Transactions on Industrial Electronics, vol. 61-12, Dec 2014, pp. 6871–

6881.

[LZK15] Lee, D. H.; Zaheer, S. A.; Kim, J. H. “A resource-oriented, decentralized

auction algorithm for multirobot task allocation”, IEEE Transactions on

Automation Science and Engineering, vol. 12-4, Oct 2015, pp. 1469–

1481.

[Ma16] Ma, R. T. B. “Efficient resource allocation and consolidation with selfish

agents: an adaptive auction approach”. In: Proceedings of the IEEE

International Conference on Distributed Computing Systems, 2016, pp.

497–508.

[Mak16] Makhorin, A. “Gnu linear programming kit reference manual”. Available

at: http://www.gnu.org/software/glpk/glpk.html, April 2018.

[Mey70] Meyer, P. L. “Introductory probability and statistical applications”.

Addison Wesley, 1970, 367p.

[MNG16] McIntire, M.; Nunes, E.; Gini, M. “Iterated multi-robot auctions for

precedence-constrained task scheduling”. In: Proceedings of the

International Conference on Autonomous Agents and Multiagent

Systems, 2016, pp. 1078–1086.

[MS16] Melo, F. S.; Sardinha, A. “Ad hoc teamwork by learning teammates’ task”,

Autonomous Agents and Multi-Agent Systems, vol. 30-2, Mar 2016, pp.

175–219.

[MSG+17] Mouradian, C.; Sahoo, J.; Glitho, R. H.; Morrow, M. J.; Polakos, P. A. “A

coalition formation algorithm for multi-robot task allocation in large-scale

natural disasters”. In: Proceedings of the International Conference on

Wireless Communications and Mobile Computing, 2017, pp. 1909–1914.

[MSRJ11] Macarthur, K. S.; Stranders, R.; Ramchurn, S. D.; Jennings, N. R.

“A distributed anytime algorithm for dynamic task allocation in multi-

agent systems”. In: Proceedings of the AAAI Conference on Artificial

Intelligence, 2011, pp. 701–706.

[MTN+08] Murphy, R. R.; Tadokoro, S.; Nardi, D.; Jacoff, A.; Fiorini, P.; Choset,

H.; Erkmen, A. M. “Springer handbook of robotics”. Springer Berlin

Heidelberg, 2008, chap. 50, pp. 1151–1173.

139

[Mur14] Murphy, R. R. “Disaster robotics”. The MIT Press, 2014, 240p.

[MVDB17] Mukhopadhyay, A.; Vorobeychik, Y.; Dubey, A.; Biswas, G. “Prioritized

allocation of emergency responders based on a continuous-time incident

prediction model”. In: Proceedings of the International Conference on

Autonomous Agents and MultiAgent Systems, 2017, pp. 168–177.

[NG15] Nunes, E.; Gini, M. “Multi-robot auctions for allocation of tasks with

temporal constraints”. In: Proceedings of the AAAI Conference on

Artificial Intelligence, 2015, pp. 2110–2216.

[NMG16] Nunes, E.; McIntire, M.; Gini, M. “Decentralized allocation of tasks

with temporal and precedence constraints to a team of robots”.

In: Proceedings of the IEEE International Conference on Simulation,

Modeling, and Programming for Autonomous Robots, 2016, pp. 197–202.

[NS14] Nazar, M.; Sadik, S. “Ontology based goal and task allocation for

autonomous agents”. In: Proceedings of the International Conference on

Fuzzy Systems and Knowledge Discovery, 2014, pp. 924–929.

[Par14] Parker, J. “Coordination in large scale multi-agent systems for complex

environments”. In: Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems, 2014, pp. 1751–1752.

[PGCM+13] Pujol-Gonzalez, M.; Cerquides, J.; Meseguer, P.; Rodríguez-Aguilar, J. A.;

Tambe, M. “Engineering the decentralized coordination of uavs with

limited communication range”. In: Proceedings of the Conference of the

Spanish Association for Artificial Intelligence, 2013, pp. 199–208.

[PGL86] P. Georgeff, M.; Lansky, A. “Procedural knowledge”. In: Proceedings of

the Institute of Electrical and Electronics Engineers (Special Issue on

Knowledge Representation), 1986, pp. 1383–1398.

[RB07] Rudenko, D.; Borisov, A. “An overview of blackboard architecture

application for real tasks”. In: Scientific Proceedings of the Riga

Technical University, 2007, pp. 50–57.

[RG95] Rao, A. S.; Georgeff, M. P. “Bdi agents: from theory to practice”. In:

Proceedings of the International Conference on Multi-agent Systems,

1995, pp. 312–319.

[RGG14] Rodriguez, S.; Gaud, N.; Galland, S. “Sarl: a general-purpose

agent-oriented programming language”. In: Proceedings of the

International Joint Conferences on Web Intelligence and Intelligent

Agent Technologies, 2014, pp. 103–110.

[RHI+15] Ramchurn, S. D.; Huynh, T. D.; Ikuno, Y.; Flann, J.; Wu, F.; Moreau, L.;

Jennings, N. R.; Fischer, J. E.; Jiang, W.; Rodden, T.; Simpson, E.; Reece,

S.; Roberts, S. J. “Hac-er: a disaster response system based on human-

agent collectives”. In: Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems, 2015, pp. 533–541.

140

[Ric14] Ricci, A. “From actor event-loop to agent control-loop: impact on

programming”. In: Proceedings of the International Workshop on

Programming Based on Actors, Agents and Decentralized Control, 2014,

pp. 121–132.

[RM16] Rauniyar, A.; Muhuri, P. K. “Multi-robot coalition formation problem:

task allocation with adaptive immigrants based genetic algorithms”. In:

Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics, 2016, pp. 137–142.

[RN09] Russell, S.; Norvig, P. “Artificial intelligence: a modern approach”.

Prentice Hall Press, 2009, 1132p.

[RPF+10] Ramchurn, S. D.; Polukarov, M.; Farinelli, A.; Truong, C.; Jennings,

N. R. “Coalition formation with spatial and temporal constraints”. In:

Proceedings of the International Conference on Autonomous Agents and

Multiagent Systems, 2010, pp. 1181–1188.

[RPV11] Ricci, A.; Piunti, M.; Viroli, M. “Environment programming in multi-agent

systems: an artifact-based perspective”, Autonomous Agents and Multi-

Agent Systems, vol. 23-2, Sep 2011, pp. 158–192.

[RVO07] Ricci, A.; Viroli, M.; Omicini, A. “Cartago: a framework for prototyping

artifact-based environments in mas”. In: Proceedings of the International

Conference on Environments for Multi-agent Systems, 2007, pp. 67–86.

[SD15] Singhal, V.; Dahiya, D. “Distributed task allocation in dynamic multi-agent

system”. In: Proceedings of the International Conference on Computing,

Communication Automation, 2015, pp. 643–648.

[SFOT05] Scerri, P.; Farinelli, A.; Okamoto, S.; Tambe, M. “Allocating tasks in

extreme teams”. In: Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems, 2005, pp. 727–734.

[SGFEB13] Such, J. M.; GarcíA-Fornes, A.; Espinosa, A.; Bellver, J. “Magentix2: a

privacy-enhancing agent platform”, Engineering Applications of Artificial

Intelligence, vol. 26-1, Jan 2013, pp. 96–109.

[SGSTS14] Segui-Gasco, P.; Shin, H. S.; Tsourdos, A.; Segui, V. J. “A combinatorial

auction framework for decentralised task allocation”. In: Proceedings of

the IEEE Globecom Workshops, 2014, pp. 1445–1450.

[SGSTS15] Segui-Gasco, P.; Shin, H.-S.; Tsourdos, A.; Segui, V. J. “Decentralised

submodular multi-robot task allocation”. In: Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2015, pp.

2829–2834.

[Sho93] Shoham, Y. “Agent-oriented programming”, Artificial Intelligence, vol. 60-

1, Mar 1993, pp. 51–92.

141

[SKKR10] Stone, P.; Kaminka, G. A.; Kraus, S.; Rosenschein, J. S. “Ad hoc

autonomous agent teams: collaboration without pre-coordination”. In:

Proceedings of the AAAI Conference on Artificial Intelligence, 2010, pp.

1504–1509.

[SKV+12] Scerri, P.; Kannan, B.; Velagapudi, P.; Macarthur, K.; Stone, P.; Taylor,

M.; Dolan, J.; Farinelli, A.; Chapman, A.; Dias, B.; Kantor, G. “Flood

disaster mitigation: a real-world challenge problem for multi-agent

unmanned surface vehicles”. In: Proceedings of the Autonomous Robots

and Multirobot Systems Workshop, 2012, pp. 252–269.

[SP13] Settimi, A.; Pallottino, L. “A subgradient based algorithm for distributed

task assignment for heterogeneous mobile robots”. In: Proceedings of

the IEEE Conference on Decision and Control, 2013, pp. 3665–3670.

[SSFS12] Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N. “Conflict-based search

for optimal multi-agent path finding”. In: Proceedings of the AAAI

Conference on Artificial Intelligence, 2012, pp. 563–569.

[SSPO15] Schneider, E.; Sklar, E. I.; Parsons, S.; Ozgelen, A. T. “Auction-based

task allocation for multi-robot teams in dynamic environments”. In:

Proceedings of the Conference on Towards Autonomous Robotic Systems,

2015, pp. 246–257.

[SUIM10] Stulp, F.; Utz, H.; Isik, M.; Mayer, G. “Implicit coordination with

shared belief: a heterogeneous robot soccer team case study”, Advanced

Robotics, vol. 24-7, Apr 2010, pp. 1017–1036.

[SWWA14] Smith, D.; Wetherall, J.; Woodhead, S.; Adekunle, A. “A cluster-

based approach to consensus based distributed task allocation”. In:

Proceedings of the Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing, 2014, pp. 428–431.

[SZB16] Su, X.; Zhang, M.; Bai, Q. “Coordination for dynamic weighted task

allocation in disaster environments with time, space and communication

constraints”, Journal of Parallel and Distributed Computing, vol. 97-1,

Nov 2016, pp. 47–56.

[TMS15] Turner, J.; Meng, Q.; Schaefer, G. “Increasing allocated tasks with

a time minimization algorithm for a search and rescue scenario”. In:

Proceedings of the IEEE International Conference on Robotics and

Automation, 2015, pp. 3401–3407.

[TSM17] Talebpour, Z.; Savarè, S.; Martinoli, A. “Market-based coordination

in dynamic environments based on the hoplites framework”. In:

Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2017, pp. 1105–1112.

[US13] Urakawa, K.; Sugawara, T. “Task allocation method combining

reorganization of agent networks and resource estimation in unknown

142

environments”. In: Proceedings of the International Conference on

Innovative Computing Technology, 2013, pp. 383–388.

[VDBSLM10] Van Den Berg, J.; Snoeyink, J.; Lin, M.; Manocha, D. “Centralized path

planning for multiple robots: optimal decoupling into sequential plans”.

In: Proceedings of the Conference on Robotics: science and systems,

2010, pp. 137–144.

[VSL+10] Vilenica, A.; Sudeikat, J.; Lamersdorf, W.; Renz, W.; Braubach, L.; Pokahr,

A. “Coordination in multi-agent systems: a declarative approach using

coordination spaces”. In: Proceedings of the European Meetings on

Cybernetics and Systems Research, 2010, pp. 441–446.

[WdS08] Wang, Y.; de Silva, C. W. “A machine-learning approach to multi-robot

coordination”, Engineering Applications of Artificial Intelligence, vol. 21-

3, Apr 2008, pp. 470–484.

[WGL14] Wang, W.; Gao, X.; Liang, Z. “A dynamic strategy based on road-

partitioning model in robocup rescue simulation”. In: Proceedings of the

IEEE International Conference on Mechatronics and Automation, 2014,

pp. 1789–1794.

[WHJ15] Wei, C.; Hindriks, K. V.; Jonker, C. M. “Auction-based dynamic task

allocation for foraging with a cooperative robot team”. In: Proceedings of

the European Conference on Multi-Agent Systems, 2015, pp. 159–174.

[WJ95] Wooldridge, M.; Jennings, N. R. “Intelligent agents: theory and practice”,

The Knowledge Engineering Review, vol. 10-2, Jun 1995, pp. 115–152.

[WLL+16] Wang, Z.; Li, M.; Li, J.; Cao, J.; Wang, H. “A task allocation algorithm

based on market mechanism for multiple robot systems”. In: Proceedings

of the IEEE International Conference on Real-time Computing and

Robotics, 2016, pp. 150–155.

[WMC15] Whitbrook, A.; Meng, Q.; Chung, P. W. H. “A novel distributed scheduling

algorithm for time-critical multi-agent systems”. In: Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems,

2015, pp. 6451–6458.

[Woo09] Wooldridge, M. J. “An introduction to multiagent systems”. Wiley

Publishing, 2009, 461p.

[Woo13] Wooldridge, M. “Intelligent agents”. MIT Press, 2013, chap. 1, pp. 3–50.

[XLL12] Xu, Y.; Li, X.; Liang, H. “Adjusting organization to improve coordination

for large heterogeneous multi-agent teams”. In: Proceedings of the

International Joint Conferences on Web Intelligence and Intelligent Agent

Technologies, 2012, pp. 282–286.

[YJC13] Yan, Z.; Jouandeau, N.; Cherif, A. A. “A survey and analysis of multi-robot

coordination”, International Journal of Advanced Robotic Systems, vol.

10-12, Dec 2013, pp. 18.

143

[YWN10] Yu, C.-H.; Werfel, J.; Nagpal, R. “Collective decision-making in

multi-agent systems by implicit leadership”. In: Proceedings of the

International Conference on Autonomous Agents and Multiagent

Systems, 2010, pp. 1189–1196.

[YZF14] Yedidsion, H.; Zivan, R.; Farinelli, A. “Explorative max-sum for teams of

mobile sensing agents”. In: Proceedings of the International Conference

on Autonomous Agents and Multiagent Systems, 2014, pp. 549–556.

[ZCMZ13] Zhang, W.; Chen, X.; Ma, L.; Zhao, D. “Multi-agent pursuit with decision-

making and formation control”. In: Proceedings of the Chinese Control

Conference, 2013, pp. 7016–7022.

[ZL14] Zhang, K.; Li, X. “Human-robot team coordination that considers human

fatigue”, International Journal of Advanced Robotic Systems, vol. 11-1,

Jun 2014, pp. 9.

[Zlo06] Zlot, R. M. “An auction-based approach to complex task allocation for

multirobot teams”, Ph.D. Thesis, Robotics Institute, Carnegie Mellon

University, 2006, 187p.

[ZLZ+16] Zhu, H.; Liu, D.; Zhang, S.; Zhu, Y.; Teng, L.; Teng, S. “Solving the many

to many assignment problem by improving the kuhn-munkres algorithm

with backtracking”, Theoretical Computer Science, vol. 618-C, Mar 2016,

pp. 30–41.

[ZMC16] Zhao, W.; Meng, Q.; Chung, P. W. H. “A heuristic distributed task

allocation method for multivehicle multitask problems and its application

to search and rescue scenario”, IEEE Transactions on Cybernetics, vol.

46-4, Apr 2016, pp. 902–915.

[ZML18] Zou, S.; Ma, Z.; Liu, X. “Auction-based mechanism for dynamic and

efficient resource allocation”, IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 48-1, Jan 2018, pp. 34–49.

[ZMY+14] Zhou, J.; Mu, D.; Yang, F.; Dai, G.; Shell, D. A. “A distributed approach

to load balance for multi-robot task allocation”. In: Proceedings of the

IEEE International Conference on Mechatronics and Automation, 2014,

pp. 612–617.

