
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

GUILHERME KRZISCH

BOUNDED MONITOR-PLACEMENT IN NORMATIVE ENVIRONMENTS

Porto Alegre

2018

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

COMPUTER SCIENCE GRADUATE PROGRAM

BOUNDED
MONITOR-PLACEMENT IN

NORMATIVE ENVIRONMENTS

GUILHERME KRZISCH

Thesis submitted to the Pontifical Catholic
University of Rio Grande do Sul in partial
fullfillment of the requirements for the
degree of Master in Computer Science.

Advisor: Prof. Felipe Meneguzzi

Porto Alegre
2018

Guilherme Krzisch

Bounded Monitor-Placement in Normative Environments

This Thesis has been submitted in partial fulfillment

of the requirements for the degree of Master of

Computer Science, of the Graduate Program in

Computer Science, School of Technology of the

Pontifícia Universidade Católica do Rio Grande do

Sul.

Sanctioned on March 16, 2018.

COMMITTEE MEMBERS:

Prof. Dr. Duncan Dubugras Ruiz (PPGCC/PUCRS)

Prof. Dr. Ingrid Nunes (UFRGS)

Prof. Dr. Felipe Meneguzzi (PPGCC/PUCRS - Advisor)

POSICIONAMENTO DE MONITORES EM UM SISTEMA NORMATIVO

RESUMO

Normas podem ser usadas em sistemas multi-agentes para controlar o comporta-
mento de agentes autônomos. Uma entidade autoritativa pode aplicar sanções em agentes
que não estão seguindo as normas, com o objetivo de garantir que a sociedade se com-
porte de uma maneira desejada; isso requer a detecção de violações de normas com um
mecanismo de monitoramento. A maioria das abordagens existentes para garantir o cumpri-
mento de normas assume que o sistema pode ser totalmente observável; isso geralmente
não é possível em ambientes reais. Nossa principal contribuição para endereçar esse pro-
blema é a formalização do problema de alocação de monitores em um sistema normativo
multi-agente sob restrições orçamentárias. Mais especificamente, nós consideramos um
sistema contendo (1) um conjunto de monitores possíveis que podem determinar o estado
de porções de um domínio; (2) custos para a alocação desses monitores; e (3) um con-
junto de normas que, se violadas, resultam em uma sanção. Nós procuramos identificar a
combinação de monitores que maximiza a utilidade do sistema, comparando soluções apro-
ximadas para o problema que usam diferentes heurísticas, e empiricamente demonstrando
sua eficiência.

Palavras-Chave: Monitoramento em sociedades de agentes, Sistemas Normativos, Orga-
nizações e Instituições.

BOUNDED MONITOR-PLACEMENT IN NORMATIVE ENVIRONMENTS

ABSTRACT

Norms can be used in multi-agent systems to regulate behavior of self-interested
agents. An authoritative entity can apply sanctions to non-compliant agents in order to
ensure society functions in some desirable way, which requires the detection of norm vi-
olations with some monitoring mechanism. The majority of existing approaches to norm
enforcement assumes that the system is fully observable; this is often not possible in real-
istic environments. Our main contribution to address this issue is the formalization of the
problem of monitor placement within a normative multi-agent system under budgetary con-
straints. More specifically we consider a system containing (1) a set of possible monitors
able to determine the state of portions of the domain; (2) costs for deploying the monitors;
and (3) a set of norms which, if violated, result in a sanction. We seek to identify which com-
bination of monitors maximizes the system’s utility, evaluating approximate solutions using
several heuristics, empirically demonstrating their efficiency.

Keywords: Monitoring agent societies, Normative systems, Organizations and institutions.

LIST OF FIGURES

Figure 3.1 – State-space graph of the simple problem . 26

Figure 5.1 – Time Efficiency of Brute-Force and Approximate Solution, with time-
out of 60 seconds . 33

Figure 5.2 – Time Efficiency of both greedy solutions, smoothed using a sample
of 100 data points and interpolated using splines . 34

Figure 5.3 – Accuracy of approximate approaches, compared to the maximum U
possible; error bars represent one standard deviation of uncertainty 35

Figure 5.4 – Accuracy of approximate approaches, compared to a brute-force so-
lution; error bars represent one standard deviation of uncertainty 36

CONTENTS

1 INTRODUCTION . 15

2 BACKGROUND . 17

2.1 LOGIC LANGUAGE . 17

2.2 PLANNING . 18

2.3 NORMS . 19

2.4 NORM MONITORING AND RELATED WORK . 20

3 BOUNDED MONITOR-PLACEMENT PROBLEM . 23

3.1 NORM . 23

3.2 MONITOR AND MONITOR PLACEMENT . 24

3.3 PROBLEM . 25

3.4 SCENARIO . 25

3.4.1 DRINK-DRIVING DOMAIN . 25

3.4.2 PLANNING PROBLEM . 26

3.4.3 BOUNDED-MONITOR PLACEMENT PROBLEM . 27

4 SOLUTION . 29

4.1 BRUTE-FORCE . 29

4.2 MAPPING FROM NORMS TO MONITORS . 30

4.3 NAIVE APPROXIMATE SOLUTION . 30

4.4 GREEDY SOLUTION . 31

4.4.1 NORM INDEPENDENCE HEURISTIC . 31

4.4.2 ADD AND UPDATE HEURISTIC . 32

5 EXPERIMENTS AND RESULTS . 33

6 CONCLUSION AND FUTURE WORK . 37

REFERENCES . 39

15

1. INTRODUCTION

Multi-agent systems are a powerful scalable technique to develop complex com-
puter systems; they can be composed of both software and human agents. In an open
multi-agent system, where agents can be designed by different entities and can enter and
leave the system at any time, they cannot be assumed to share goals, e.g. in an e-commerce
system where each user can have the goal of buying the same limited product [VdHW08]. In
order for the system to obtain desirable outcomes in relation to some goals (e.g. preventing
resource deadlock, avoiding destructive actions of an agent into the work of another agent),
it requires a coordination mechanism, and behavior regulating norms [Dig99] are often used
to perform this coordination.

Norms define expected behaviors of agents in a society and they often have an as-
sociated punishment if a violation occurs. While regimented norms — completely preventing
an agent from violating a norm, which can be undesirable in some contexts — are widely
used, a substantial body of work has shown the advantages of using approaches based on
enforcement [BVDTV06, GCRASV09, Ld+02, SS07]. Norm enforcement can be performed
either by some organization or by other autonomous agents in the system [SC11]. Such
approaches require a mechanism that monitors for norm compliance or violation and ap-
plies sanctions when appropriate, as behavior is no longer hard constrained and agents can
continue to act with autonomy.

Approaches to norm enforcement often assume that all actions performed by an
agent are observable. Such an assumption is, however, clearly unrealistic. For example, if
there is a norm stating that agents cannot drive unless sober, in order to be able to detect all
violations the organization needs to deploy monitors in all roads of the environment. Thus,
even when physically possible, this is too costly for the organization; instead, it can decide
to monitor only major roads or only at rush hours.

Our main contribution to address this issue is the formalization of the bounded
monitor-placement problem, which allows the modeling of a monitoring problem in an orga-
nization under budgetary constraints. This problem uses the concept of monitors and how
they should be deployed within a system, assuming that such deployments have a cost, so
as to monitor the most important norms. With this approach, a designer needs to define how
monitors can observe properties in the world, and how this relates to the existing norms.

Previous work on norm monitoring has modeled the problem in terms of how norms
should be modified so as to be monitorable [ADL14], whether related states can be observed
which may indicate upcoming norm violations [ABDL15] and norm monitoring in an environ-
ment with partial action observability [CS17].

Our approach builds on ideas from the planning literature, and in Chapter 2, we
introduce the necessary concepts from this domain, and formalize the notion of a norm, re-

16

viewing and discussing related work. Chapter 3 introduces monitors and formally describes
the problem we are addressing, situating the problem within a motivating domain. In Chap-
ter 4 we develop solutions to the problem, presenting results based on a set of experiments
in Chapter 5. We conclude in Chapter 6, indicating directions for future work.

17

2. BACKGROUND

In this chapter we introduce concepts from first-order language, which is used as
a base both to formalize the environment as a state-transition system using planning and
to formalize norms that are applicable to this system. In this way we can leverage the
existing dataset of domains and problems of the planning literature as well as have a model
to abstract the real world.

2.1 Logic Language

First, we introduce the basic components of this language in the following defini-
tions. These definitions comprise a first-order language L containing an infinite set of sym-
bols for constants (c, c1, c2, c3, ...), variables (x , x1, x2, x3, ...), functions (f , f1, f2, f3, ...) and
predicates (p, p1, p2, p3, ...).

DEFINITION 1 (TERM). A term τ can be a variable; a constant; or a function f (τ1, τ2, ..., τn),
where f is a n-ary function symbol applied to n terms.

DEFINITION 2 (PREDICATE). A predicate φ, represented as p(τ1, τ2, ..., τn), is composed of
a symbol p from the predicate list and zero or more terms.

A predicate is ground if it does not contain variables, and we denote as |L| the
number of ground predicates in this language.

DEFINITION 3 (FORMULA). A first-order formula Φ is recursively defined as Φ∧Φ′ | ¬Φ | φ.

We assume the usual equivalences:

• Φ ∨ Φ′ ≡ ¬(¬Φ ∧ ¬Φ′)

• Φ→ Φ′ ≡ ¬Φ ∨ Φ′

• Φ↔ Φ′ ≡ (Φ→ Φ′) ∧ (Φ′ → Φ)

In this work we do not use quantifiers; we assume that all first-order formulas are
finite. Additionally, we assume a first-order inference mechanism, able to determine if a
given formula Φ can be inferred from another formula Φ′, represented as Φ |= Φ′. We also
assume the following notational equivalence: {Φ1,Φ2, ...,Φn} ≡ (Φ1 ∧ Φ2 ∧ ... ∧ Φn) (i.e. that
lists of formulas are implicitly conjunctions). In the following, well-formed atomic formulas
are referred as atoms.

Having this formal framework, in the following sections we introduce definitions
related to classical planning and related to norms.

18

2.2 Planning

Planning is concerned with finding courses of actions to achieve objectives, given
a known initial state. We build on classical planning, which assumes finite, fully observable
and deterministic systems, and adapt the definitions from Ghallab et al. [GNT35, Ch. 2] and
from Meneguzzi et al. [MDS15].

DEFINITION 4 (STATE). A state is a finite set of ground atoms in a first-order language L.
We use the closed-world assumption, i.e. if a state does not specify a predicate, then this
predicate does not hold in that state.

The execution of an action by an agent changes the state of the environment; an
action is an instantiation of a planning operator. These concepts are formalized as follows.

DEFINITION 5 (OPERATOR). An operator is a triple o = 〈name(o), pre(o), eff (o)〉, where
name(o) is the unique description of o. pre(o) and eff(o) are set of atoms, which represent
the planning operator’s preconditions and effects respectively.

DEFINITION 6 (ACTION). An action a is a ground instance of a planning operator, and is
applicable in state s if s |= pre(a). The result of applying action a to state s is a new state s′,
such that s′ = (s/eff−(a)) ∪ eff +(a), where eff− is the set of negated predicates and eff + is
the set of positive predicates.

We specify the dynamics of our multi-agent system in terms of a transition function
following classical planning semantics in Definition 7, and the initial and goal states of the
system in terms of planning problem instances in Definition 8.

DEFINITION 7 (PLANNING DOMAIN). A planning domain in L is a state-transition system
Σ = 〈S, A, γ〉, where S ⊆ 2|L| is a subset of all possible states; A is the set of all ground
instances of planning operators; γ(s, a) is a state-transition function defined if a ∈ A and a is
applicable to s ∈ S.

Note that S is closed under γ, i.e., given a state s ∈ S, all states reachable from
applying action a in s are also in S. Therefore, although the number of possible states in L
is equal to 2|L|, the number of reachable states is smaller.

DEFINITION 8 (PLANNING PROBLEM). A planning problem is defined as a triple P = 〈Σ, s0, g〉,
where s0 ∈ S is the initial state of the problem and g, the goal, is a set of ground predicates.

A solution for a planning problem is a sequence of actions, formalized in Defini-
tion 9.

DEFINITION 9 (PLAN). A plan π is a sequence of actions 〈a1, a2, ..., an〉 that modifies the
initial state s0 into successive states 〈s1, s2, ..., sn〉. The plan is a solution to a planning
problem if sn |= g, and it is optimal, denoted as π∗, if no other plan contains fewer actions.

19

2.3 Norms

Norms are sets of behaviors that are imposed to agents in a society. In closed
societies, when agents belong to the same organization and this organization controls the
behavior of individual agents, we have regimented norms. This type of norms does not allow
agents to perform actions that violate norms, as they are designed by the same entity with a
common interest. In contrast, in open and dynamic societies, self-interested agents cannot
be assumed to share the same set of goals, because they do not necessarily belong to
the same organization; this becomes a problem when there are conflicts between goals of
individual agents, and their corresponding behaviors start to impact negatively one another.
In this context, enforced norms can be used to regulate and coordinate behavior [LMM+13].
In this work we are interested in this second type of norms, where agents can violate them,
and in the resulting problem of how to detect such violations in a monitoring system with
limited resources.

A classical example of a behavior that impacts the agents, and thus their society,
is whether agents drive on the right or on the left side of the road. If each agent follows a
different behavior, the number of crashes increases. To solve this problem, countries have
different norms and associated sanctions to violating agents; this have two main advantages:
first, it tries to enforce common behavior, minimizing the negative impact of undesirable
behaviors in the overall efficiency of the society. Secondly, individual agents can reduce the
amount of information needed to be processed, as indicated by [Eps01]; agents in this case
do not need to reason in which side of the road to drive, they can just follow the established
norm.

Generalizing from the previous example, we state that norm violations have an un-
desirable impact on the society, as encoded by an associated cost. To dissuade agents from
violating norms, when such a violation is detected, a penalty is applied to the violating agent.
We do not consider the nature of this penalty, which is the system designer responsibility,
assuming instead that it is sufficiently large to prevent the agent from repeatedly violating
this norm and that the damage to society is mitigated by its application. Examples of the
nature of punishment include approaches that use emotions [FvSM06, SP+01], reputation
loss [CCP+98, MMH02, RSGJ03] and loss of utility [DMSC00] in order to apply sanctions.

Researchers employ different formalizations of norms [DGMT09, JS93, VKN09].
One common concept used across all works is the deontic modality of the norm; this defines
if a norm is an obligation (behavior that must be followed by agents), a permission (an
exhaustive list of allowed behaviors - and thus all behaviors not mentioned are prohibited, or
it can be assumed that every behavior not prohibited is permitted) or a prohibition (behavior
that must be avoided).

20

A violated norm has an undesirable impact on the society. To dissuade agents
from violating norms, when such a violation is detected, an enforcer applies a penalty to the
agent. We must therefore consider how to monitor these norms to detect violations, which
is the subject of the next section.

2.4 Norm Monitoring and Related Work

According to Savarimuthu et al. [SC11] there are five main topics on norm research:
creation, identification, spreading, enforcement and emergence. While the first two are re-
lated to norm formation, i.e. how they are created and identified by other agents in the
society, the last three are concerned with norm propagation, i.e. how norms spread and are
assimilated. The norm enforcement component is usually responsible to apply sanctions to
violator agents, in order to maintain a norm active after it has been spread in a given society.

Work on normative systems often assumes that the normative enforcement compo-
nent can detect all violations, along with the violator agent [ERRAA04, GCNRA05, GCRASV06,
KN02, MFM+09, yLLd06]. This is a rather strong assumption, because it assumes it is pos-
sible to observe all actions that may violate a norm and to correctly tie this violation to an
agent. This is unrealistic for three reasons. First, in large systems, monitoring cost can
be very high [Sti74, SA85]. Second, the environment is almost never fully observable, i.e.
there are portions of the environment that monitors cannot realistically access. Third, it is
not always possible to distinguish which agent triggered the norm violation.

Some authors partially dropped these assumptions in recent work. Alechina et al.
[ABDL15] models this as a set of queries that a monitor can ask in a state, i.e., a monitor
may not able to distinguish between two different states. They then approximate an ideal
norm to be optimal given the observation capabilities of a monitor. In other words, their
problem modifies the set of norms to a new set of approximate norms that can be optimally
monitored given a set of monitors and queries. However, they neither consider deployment
and monitoring costs nor the problem of distinguishing the violator agent.

Alechina et al. [ADL14] define norms in Linear Temporal Logic (LTL) formulas. They
introduce the concept of a guard, which uses lookahead mechanisms to detect future norm
violations. One key component is the size of this lookahead window, which is bounded to
reduce the amount of computation in the future (they have complete knowledge of the past).
In order to increase their monitoring capabilities, they increase the window size, thus also
impacting the computation cost.

Bulling et al. [BDK13] include the concept of monitors and combination of monitors.
They specify monitors and norms using LTL-formulas, and focus on exploring its properties
and relations. Their current framework does not include norm or monitor costs, but they
intend to add these concepts in future work.

21

Criado et al. [CS17] takes a different approach and deals with partial observability
concerning actions. In order to detect violations it first reconstructs a partial action sequence
before enforcing norm compliance. In Testerink et al. [TDB16] the problem of enforce-
ment is modeled and addressed using control automata with distributed controllers. Balke
et al. [BDVP13] uses simulation to empirically find the proportion of enforcement agents
that can yield the best results while enforcing a set of norms; their enforcer agents move
randomly in a wireless mobile grid environment, without coordination. Finally, Mouden et
a.l [EMWG10] gives theoretical results about the evolution of enforcement and coordination,
and their interactions in this process.

The work surveyed thus far [ABDL15, ADL14, BDK13], approach the problem from
the perspective of either changing the norms or exploring the relations and properties of
monitors and norms. Their main limitation is that they tend to not consider limitations in
cost and budget of the monitoring system. In the next chapter we propose the bounded
monitor-placement problem, which intends to fill this gap.

22

23

3. BOUNDED MONITOR-PLACEMENT PROBLEM

In this chapter we formalize the bounded monitor-placement problem. Acting as
the object of our problem, we provide two different forms of norm formalization, which have
different expressiveness levels. Then, we introduce the concept of monitors and monitor
placements, which are used as the basic components in our problem. Finally, in the last
section we provide a scenario with a working example of a problem instance.

3.1 Norm

The first, and less expressive norm formalization, is a simple conditional norm in
Definition 10; it concerns actions performed in single states.

DEFINITION 10 (SIMPLE CONDITIONAL NORM). A norm is a tuple n = 〈µ,χ, ρ, C〉, where:

• µ ∈ {obligation, prohibition} represents the norm’s modality;

• χ is a well-formed ground formula that represents the context to which a norm applies,
i.e. a norm is applicable in state s if s |= χ;

• ρ ∈ A represents the object of the norm’s modality;

• C is the cost or penalty to the society which occurs if the norm is violated.

We refer to each of these items for a given norm n as µn, χn, ρn and Cn respectively.

EXAMPLE 1. The following simple conditional norm requires an agent to drive on the left
side of the road if they are in England. An agent violating this norm causes harm to the
society worth 20 units of utility.

n = 〈obligation, at(England), driveLeft(a, b), 20〉

The second norm formalization is more expressive and deals with sequences of
states. We adapt the definition from [MMO+09], represented in Definition 11.

DEFINITION 11 (CONDITIONAL NORM). A norm is a tuple n = 〈µ,α, β, τ , C〉, where:

• µ ∈ {obligation, prohibition} represents the norm’s modality;

• α and τ are well-formed ground formulas that represent, respectively, the activation
and expiration conditions of the norm;

24

• β is a well-formed ground formula that represents the object of the norm’s modality;

• C is the cost or penalty to the society which occurs if the norm is violated.

We refer to each of these items for a given norm n as µn, αn, τn, βn and Cn respec-
tively.

A conditional norm stays active from the state of the world where its activation
condition α holds until some later state where its expiration condition τ holds. In case of an
obligation norm, β describes when this norm is being complied with, while for a prohibition
norm it describes when it is being violated. Thus, the violation of an active obligation norm
occurs when β does not hold, while the violation of an active prohibition norm occurs when
β holds.

EXAMPLE 2. The following conditional norm requires an agent to drive on the left side of the
road if they are in England. An agent violating this norm causes harm to the society worth
20 units of utility.

n = 〈obligation, at(England), drivingLeft(a, b), not at(England), 20〉

3.2 Monitor and Monitor Placement

A monitor represents a single component in the system that is able to determine
the truth value of a boolean combination of predicates, having an associated cost. Formally,
we define a monitor as follows.

DEFINITION 12 (MONITOR). A monitor m = 〈P, D〉 consists of a well-formed ground for-
mula P, and a deployment cost D ∈ R. A monitor is able to determine the truth value of P at
cost D. We refer to the formula of a monitor m as Pm, and to its cost as Dm.

A set of monitors can be used to monitor more complex combinations of predicates.
Some monitors can conceivably detect the status of a predicate related to multiple norms,
or when combined, can be used to determine the status of a norm that individual monitors
cannot.

DEFINITION 13 (MONITOR PLACEMENT). A monitor placement is a set M of monitors able
to determine the truth value of a boolean combination of predicates P, where P =

⋃
∀m∈M

Pm

consists of a combination of predicates of each monitor. It can monitor a set of norms N, s.t.
n ∈ N iff

• P |= χn and P |= pre(ρn) for simple conditional norms;

25

• P |= αn, P |= τn and P |= βn for conditional norms.

The cost C of a monitor placement is
∑

m∈M Dm, while the utility U is
∑

n∈N C, where
N is the set of norms detected by this placement.

3.3 Problem

By introducing the concept of an available budget, we define our problem of placing
monitors in a system as follows.

DEFINITION 14 (BOUNDED-MONITOR PLACEMENT PROBLEM). A bounded-monitor place-
ment problem is encoded as a triple 〈M, N, B〉 where M is a set of monitors, N is a set of
norms, and B ∈ R+ is a budget.

A solution to the problem is a monitor placement MP, consisting of a subset of the
set of monitors M, such that its cost is smaller than or equal to the budget.

The size of the state-space for a bounded-monitor placement problem is exponen-
tial in relation to the size of the set of monitors M. More specifically, it has a size of 2|M|.
Therefore, the search of a solution for this problem is also exponential in the worst case.

We may also identify some special cases of the problem. For example, when the
set of available monitors contains all possible combinations of predicates, then all norms
can be monitored (given a sufficient budget). Next, we provide a concrete example of the
bounded-monitor placement problem.

3.4 Scenario

To motivate and exemplify the bounded-monitor placement problem, in what fol-
lows, we introduce an example scenario and a related problem.

3.4.1 Drink-driving Domain

The domain consists of a city environment where it is possible to move between
locations by driving a car. Specific locations of the city contain bars, which agents can enter,
possibly drink at, and exit for an alcohol fueled drive. An agent becomes drunk after drinking
and not drunk after sleeping.

There are five predicates in this domain: at(l) to represent an agent’s location;
inBar (b) when an agent is inside a bar b; in(b, l) to indicate that a bar b is located at a

26

specific city location l ; connected(l1, l2) when there is a road between two city locations l1
and l2; and drunk () to indicate when an agent is drunk.

Agents can perform five distinct actions in this environment: move(l1, l2) from loca-
tion l1 to location l2; enter (l , b) to represent an agent entering a bar b located in location l ;
exit(l , b) to represent an agent exiting from bar b to location l ; drink (b), when an agent drinks
at bar b and becomes drunk; sleep(l) when an agent sleeps at location l , and becomes not
drunk. In this domain, predicates in(b, l) and connected(l1, l2) never change, i.e., no oper-
ator changes them, and thus they are rigid predicates; the remaining three predicates are
mutable predicates.

Having formalized the planning domain, we proceed to describing a planning prob-
lem in this domain.

3.4.2 Planning Problem

A simple problem in this domain consists of two locations (a, b) connected to each
other, represented by connected(a, b) and connected(b, a); one bar (barA) located in loca-
tion (a), represented by predicate in(barA, a). One possible initial state for a single agent is
specified as follows.

s0 =〈connected(a, b), connected(b, a),

in(barA, a), not drunk(), at(a), not

at(b), not inBar (barA)〉

The number of ground mutable predicates in this problem is 4.

The state-space graph of this problem is shown in Figure 3.1. Note that each node
represents a reachable state; we do not represent all possible states of the problem. The
label of each node contains only mutable predicates evaluated to true in that state, in order
to keep graph legible.

1:at(a)

sleep

2:inBar(barA)
enter

6:at(b)

move

exit
3:inBar(barA),drunk()drink 4:at(a),drunk()exit

sleep

5:at(b),drunk()move

move

sleep
move

sleep

Figure 3.1 – State-space graph of the simple problem

27

A possible goal here could be g = 〈at(b), drunk ()〉, which is only achievable by state
node 5 in the graph if Figure 3.1. A possible optimal plan is then as follows:

π∗ = 〈enter (a, barA), drink (barA), exit(a, barA), move(a, b)〉

There is a norm in this environment that states that it is forbidden to drive while drunk, in
order to avoid collisions. We can state this norm as simple conditional norms n1 and n2,
based on Definition 10.

n1 = 〈prohibition, drunk (), move(a, b), 10〉

n2 = 〈prohibition, drunk (), move(b, a), 10〉

Plan π∗ violates the norms in this domain when, in state 4, the agent performs
action move(a, b) while drunk . The only other possible violation, and which does not occur
in this plan, is to perform action move(b, a) while drunk in state 5.

If instead we want to use conditional norms based on Definition 11, we can state
these norms as norms n3 and n4. For this, a new predicate moving must be added, repre-
senting when an agent is currently moving from one location to another.

n3 = 〈prohibition, drunk (), moving(a, b), not drunk (), 10〉

n4 = 〈prohibition, drunk (), moving(b, a), not drunk (), 10〉

For this problem, the simple conditional norm is able to capture the intended pro-
hibition, i.e. to forbid driving while drunk. However, norms with a temporal component, e.g.
you cannot drive while drunk from the moment you enter in location x until the moment you
enter in location y, can only be expressed using the conditional norm.

3.4.3 Bounded-Monitor Placement Problem

Now that we have the planning domain and the problem defined, we can state the
bounded-monitor placement problem B = 〈M, N, B〉, where N = {n1, n2}. We assume the
following set of possible monitors:

28

m1 =〈{at(a)}, 4〉

m2 =〈{at(b)}, 4〉

m3 =〈{drunk ()}, 3〉

m4 =〈{at(a), drunk ()}, 6〉

m5 =〈{at(b), drunk ()}, 6〉

If we have an unlimited budget, i.e. B = ∞, one of the possible solutions (and
indeed an optimal solution) is the set of all possible monitors with cost 23. The problem
as described above has a solution that achieves its maximum possible observability, i.e. it
can observe all predicates from the set of monitors. This problem becomes harder when we
limit the total budget available, so if the total budget is B = 12, the above solution becomes
too costly, and we need to find a more restricted monitor placement. Example of restricted
monitor placement include MP1 = ({m4, m5}) or MP2 = ({m1, m2, m3}). Note that we can
monitor norm n1 with either monitor m4 or with monitors m1 and m3. The same is true for
norm n2: it can be monitored with monitor m5 or with monitors m2 and m3. However, to find
the optimal solution to this is problem, it is not sufficient to simply choose the set of monitors
with the least cost that is able to monitor a given norm. For example, for D = 11 a solution
containing monitors m4 and m5 is too costly; instead, monitors m1, m2 and m3 are able to
monitors both norms, while having cost C = 11.

29

4. SOLUTION

We developed five different approaches to generate monitors in partially observable
environments using limited resources, which we detail in what follows. We start by describing
a brute-force approach to generate all optimal solutions; first by exploring all of the solution
search space in Section 4.1, and then another approach based on a mapping from norms
to monitors in Section 4.2. Then we describe heuristics which find approximate solutions
in linear time, consisting of a naive solution in Section 4.3, and another solution exploiting
features of the problem in Section 4.4. In the next chapter we compare and evaluate these
approaches with experiments.

For the proposed solutions we are assuming, without loss of generality, that each
norm has a conjunction of predicates in its definition. We can make a transformation, of a
general norm n into multiple norms n′ that follows this assumption, with these steps:

1. Simple Conditional Norm

(a) Convert the well-formed ground formula from the norm context χ to Disjunctive
Normal Form (DNF)

(b) For each clause c in the DNF formula, create a norm n′ with context χ = c

2. Conditional Norm

(a) Convert the well-formed ground formula from the norm activation α, expiration τ

and modality β to Disjunctive Normal Form (DNF)

(b) For each clause c in the DNF formula, create a norm n′ with a well-formed ground
formula c

After this transformation, we have |C| new norms, which can be used as input for
the proposed solutions.

4.1 Brute-force

A brute-force approach is a trivial solution to this problem. It considers all possible
combinations of available monitors and returns the best one, i.e. it searches the entire
problem state-space. We can clearly see that this is impractical for large problems, as its
complexity increases exponentially given the size of the possible monitors set input. More
specifically, it has a time complexity of O(2|M|). We use this approach as a baseline against
which we compare the remaining heuristics.

30

4.2 Mapping from norms to monitors

The main drawback of the brute-force approach is that it includes a large number of
irrelevant solutions while enumerating all possible solutions. We can minimize this problem
by computing a mapping from norms to monitor placements, i.e., for each norm find the
set of all monitor placements capable of monitoring it. For example, for the problem from
Section 3.4.3, this mapping is as follows:

• n1 → {m1, m3} OR {m4}

• n2 → {m2, m3} OR {m5}

With this mapping, we can compute possible solutions by choosing one monitor
placement for each norm. Generalizing, we have

∏|N|
i=1(|MPni | + 1) possible solutions, where

MPni is the set of monitor placements able to monitor norm ni ; since we also need to con-
sider the impracticality to monitor a given norm (when there is no available budget), we need
to add the empty monitor placement set. In the best case we have only one possible mon-
itor placement for each norm, and in the worst case we have all possible combinations of
available monitors for for each norm. Therefore, the number of solutions ranges from 2|N|

to 2|M|∗|N|. This shows that for medium and large problems these approaches do not scale.
To try to overcome the time limitation we can use approximate methods to find non-optimal
solutions, which we explore in the following sections.

4.3 Naive Approximate Solution

In order to improve the run-time over the brute-force approach described in Sec-
tion 4.1, we introduce a simple approximate solution whose purpose is to serve as a a base-
line to compare the accuracy of the other two approximate solutions. This solution does not
use any special data structure; it iterates over monitors ranked by their expected probability
of detecting norm violations. In order to rank these monitors it uses the number of norms
that a single monitor can partially detect, i.e., a monitor can partially detect a norm if it has
at least one predicate of the norm’s context or of the preconditions of the norm’s action ρ.
The intuition here is that choosing monitors that can locally partially observe several norms
leads to a final monitor placement that can detect many existing norms.

This approach, however, does not capture essential parts of the problem. First,
it does not take into consideration the norm’s cost and monitor’s cost. Second, it has an
overly strong assumption that joining monitors that can partially detect norms (i.e. that can
only detect a subset of the corresponding norm predicates, not being able to detect a norm

31

violation) will lead to a monitor placement that can detect the problem norm violations. Thus,
we use the mapping data structure introduced earlier to improve on both approaches by
using greedy search in Section 4.4.

4.4 Greedy Solution

We propose two approaches with different heuristics using the mapping structure
introduced in Section 4.2. By using a heuristic to rank the best monitor placements, we
can avoid searching through an exponential solution search space and perform a greedy
search. More specifically, we select the best monitor placement candidate of each norm.
The resulting heuristic sacrifices optimality for efficiency, running in linear time.

1: function Find Approximate Solution(N:Norms)
2: build mapping from norms to monitor placements
3: currentMP ← {}
4: while hasBudget do
5: n← extractMaxNorm(N)
6: mp ← getMinMP(n)
7: currentMP ← currentMP ∪mp
8: end while
9: return currentMP

Algorithm 4.1 – Greedy algorithm

Our base algorithm structure for both heuristics is described in Algorithm 4.1. It
starts by building a mapping between norms and monitor placements in Line 2, as described
in Section 4.2. After this, it adds monitors to an initially empty monitor placement currentMP
in Line 3, while there is still available budget (Line 4). At each iteration, it chooses one norm
(Line 5), gets one monitor placement that is able to monitor this norm (Line 6), and adds the
monitor placement to the currentMP (Line 7). We now describe two heuristics to speed up
this Algorithm 4.1.

4.4.1 Norm Independence Heuristic

Our first heuristic considers norms to be monitored completely independently of
each other when choosing monitors in order to substantially prune the search space of the
problem. We first need to define which norm extractMaxNorm(N) chooses; for this, we
select the norm with the highest penalty, in order to increase the value of U (the sum of each
individual norm penalty):

32

arg max
n∈N

Cn

The other decision is which monitor placement is selected by the getMinMP(n)
method; for this, we select the one with the lowest cost, as it is the better monitor placement
able to monitor norm n:

arg min
MP∈MPn

CMP

This approach does not consider the intersection of monitors that are able to moni-
tor multiple norms; it selects monitor placements independently of the others. Consequently,
we improve this solution in what follows by introducing the concept of current cost to try to
find a better approximate solution for our problem.

4.4.2 Add and Update Heuristic

The structure of this heuristic is similar to the previous approach; but instead of
using the cost of each monitor placement as the metric to select the one with lowest budget,
we use its current cost. This current cost of a given monitor placement MP is computed
as Formula 4.1, meaning that we only consider the cost of monitors that were not already
selected in a previous iteration (and thus not in the set of monitors of currentMP).

CCMP =
∑

m∈MMP∧m 6∈McurrentMP

Dm (4.1)

arg min
MP∈MPn

CCMP (4.2)

arg max
n∈N

Cn

CCgetMinMP(n)
(4.3)

Then the getMinMP(n) method is implemented as Formula 4.2, which we use to compute
the next norm to be monitored using the extractMaxNorm(N) method, implemented as For-
mula 4.3. Basically it chooses the norm with the highest value of the ratio between its penalty
and the lowest current cost of the set of monitor placements. Using the concept of current
cost we are disregarding the costs of monitors that have already been chosen in past iter-
ations, yielding better estimates. In the next section we describe our experiments and the
results for the different approaches proposed in this section.

33

5. EXPERIMENTS AND RESULTS

To empirically evaluate our approaches, we automatically generate sets of norms
and sets of monitors with increasing complexity. The experiments were performed on a
computer equipped with an Intel Core i7-6700 and 16 GB of RAM running a 64-bit version of
Ubuntu 16.04, with an OpenJDK 64-Bit Server Java Virtual Machine1. Our main tested do-
main is the drink-driving domain from Section 3.4; we also tested with blocksworld, depots,
dwr, easy_ipc_grid, gripper, logistics and robby domains, from different planning competi-
tions [Bac01, EH21, LF03].

There are two metrics to consider when analyzing results: time performance and
accuracy. When comparing time performance we use the brute-force approach as a baseline
for the approximate approaches. In Figure 5.1 we can see that the brute-force approach
becomes intractable for relative small number of norms, while the approximate approaches
remains linear as the number of norms increases.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 5 10 15 20 25 30

Ti
m

e
(m

s)

Number of Norms

Brute-force
Approximate Approach

Figure 5.1 – Time Efficiency of Brute-Force and Approximate Solution, with timeout of 60
seconds

Figure 5.2 shows the time performance of both greedy solutions. The Add and
Update Solution is worse in this metric than the Norm Independence Solution because it
needs to recompute the current cost at each iteration. It is still fast compared to the brute-

1Open JDK VM build 25.151-b12, mixed mode

34

 0

 50

 100

 150

 200

 250

 50 100 150 200 250

Ti
m

e
(m

s)

Number of Norms

Norm Independence
Add and Update

Figure 5.2 – Time Efficiency of both greedy solutions, smoothed using a sample of 100 data
points and interpolated using splines

force approach, being able to find a solution for a problem with almost 300 norms in under
one second.

We performed two experiments to compare the accuracy of the results of the ap-
proximate approaches. First, in Figure 5.4, we show the relative accuracy compared with
an optimal solution to the problem using the brute-force approach. Note that, as we are
comparing with the brute-force approach, these results are limited to small problems that
this approach can solve2. In this experiment, both greedy approaches outperform the naive
solution; between the two greedy approaches, the second one (Add and Update Heuris-
tic) has, in almost all domains, greater accuracy, and — in all cases — a smaller standard
deviation. For the depots, gripper and logistics domain, the second solution achieves opti-
mal accuracy; this can be explained as these domains becomes intractable for really small
number of norms, thus the number of problems in this experiment, for these domains, is also
small. The increase in performance from the first to the second greedy approach is relatively
small for these domains; while it is relatively large for the drinkdriving and rooby domains.

To investigate if the relations found for the first experiment hold for large problems,
we perform additional experiments, shown in Figure 5.3. As these problems cannot be
solved in a timely manner using a brute-force approach, in order to calculate their accuracy
we compare them with a perfect solution that could monitor all norms, but that does not
necessarily need to respect the available budget. This perfect solution has the maximum

2We set a timeout of 30 seconds for this experiment.

35

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

blocksworld

depots
drinkdriving

dwr
easyipcgrid

gripper

logistics

robby

Ac
cu

ra
cy

Domain
Naive

Norm Independence
Add and Update

Figure 5.3 – Accuracy of approximate approaches, compared to the maximum U possible;
error bars represent one standard deviation of uncertainty

value of U, which can be unattainable for actual solutions to these problems; therefore, in this
experiment we are interested in the relative accuracy between the approximate approaches,
and not in how close they are from the perfect solution.

We can see the same pattern in this experiment; the greedy approaches perform
better than the naive solution, with a slight advantage for the Add and Update Heuristic. The
increase in performance from the first to the second greedy approach remains large for the
drinkdriving domain, while for other domains it is relatively small.

From the experiments we conclude that brute-force solution is intractable for all but
small problems, while approximate approaches can solve large problems. The accuracy
of the greedy approaches is better than the naive solution, with a slight advantage to the
second greedy approach. This advantage is more noticeable for small problems; for large
problems, as we do not have the value for the optimal solution, this difference is smaller.

36

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

blocksworld

depots
drinkdriving

dwr
easyipcgrid

gripper

logistics

robby

Ac
cu

ra
cy

Domain
Naive

Norm Independence
Add and Update

Figure 5.4 – Accuracy of approximate approaches, compared to a brute-force solution; error
bars represent one standard deviation of uncertainty

37

6. CONCLUSION AND FUTURE WORK

In this work we report on our extension of the state of the art in the theory of norm
monitoring by dropping the assumption that a monitor system has full observability, i.e. that
monitors can observe all actions performed. Adding the notion of a set of available moni-
tors and an associated cost results in the problem of finding a monitor placement in order
to maximize the number of detectable violations. While brute-force solutions are impracti-
cal because the possible solution search space is exponential on the size of the input, we
propose quasi-linear algorithms that use a mapping between norms and monitors to find ap-
proximate solutions. Our empirical of runtime performance and accuracy shows that these
algorithms are both practical in computational terms and approach optimal performance for
many realistic domains from the planning literature.

This work was published in the International Workshop on Linked Democracy: Ar-
tificial Intelligence for Democratic Innovation at IJCAI [KOM17]. We aim to extend the work
in at least two ways. The first extension would be to consider different agents being able to
perform concurrent actions, and how to build monitors able to correctly identify which agent
violated a given norm. The second extension is to allow more complex expressions repre-
senting both what monitors can observe and how monitors can be combined, as currently
we only consider conjunctions of monitors. This can increase the richness of our approach,
and we intend to investigate heuristics for the use of such more expressive monitors.

38

39

REFERENCES

[ABDL15] Alechina, N.; Bulling, N.; Dastani, M.; Logan, B. “Practical run-time
norm enforcement with bounded lookahead”. In: Proceedings of the 14th
International Conference on Autonomous Agents and Multiagent Systems,
2015, pp. 443–451.

[ADL14] Alechina, N.; Dastani, M.; Logan, B. “Norm approximation for imperfect
monitors”. In: Proceedings of the 13th International Conference on
Autonomous Agents and Multiagent Systems, 2014, pp. 117–124.

[Bac01] Bacchus, F. “Aips 2000 planning competition: The fifth international
conference on artificial intelligence planning and scheduling systems”, AI
magazine, vol. 22–3, Jan 2001, pp. 1–47.

[BDK13] Bulling, N.; Dastani, M.; Knobbout, M. “Monitoring norm violations in multi-
agent systems”. In: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems, 2013, pp. 491–498.

[BDVP13] Balke, T.; De Vos, M.; Padget, J. “Evaluating the cost of enforcement by agent-
based simulation: A wireless mobile grid example”. In: Proceedings of the
International Conference on Principles and Practice of Multiagent Systems,
2013, pp. 21–36.

[BVDTV06] Boella, G.; Van Der Torre, L.; Verhagen, H. “Introduction to normative
multiagent systems”, Computational & Mathematical Organization Theory,
vol. 12–2-3, Oct 2006, pp. 71–79.

[CCP+98] Castelfranchi, C.; Conte, R.; Paolucci, M.; et al.. “Normative reputation and
the costs of compliance”, Journal of Artificial Societies and Social Simulation,
vol. 1–3, Jun 1998, pp. 1–3.

[CS17] Criado, N.; Such, J. M. “Norm monitoring under partial action observability”,
IEEE transactions on cybernetics, vol. 47–2, Jun 2017, pp. 270–282.

[DGMT09] Dastani, M.; Grossi, D.; Meyer, J.-J. C.; Tinnemeier, N. “Normative multi-agent
programs and their logics”. In: Knowledge Representation for Agents and
Multiagent Systems, Springer, 2009, pp. 16–31.

[Dig99] Dignum, F. “Autonomous agents with norms”, Artificial Intelligence and Law,
vol. 7–1, Jul 1999, pp. 69–79.

40

[DMSC00] Dignum, F.; Morley, D.; Sonenberg, E. A.; Cavedon, L. “Towards socially
sophisticated bdi agents”. In: Proceedings of the Fourth International
Conference on Multiagent Systems, 2000, pp. 111–118.

[EH21] Edelkamp, S.; Hoffmann, J. “Pddl2. 2: The language for the classical part
of the 4th international planning competition”, Technical Report, University of
Freiburg, 2004, pp. 21.

[EMWG10] El Mouden, C.; West, S. A.; Gardner, A. “The enforcement of cooperation by
policing”, Evolution, vol. 64–7, Feb 2010, pp. 2139–2152.

[Eps01] Epstein, J. M. “Learning to be thoughtless: Social norms and individual
computation”, Computational economics, vol. 18–1, Aug 2001, pp. 9–24.

[ERRAA04] Esteva, M.; Rosell, B.; Rodriguez-Aguilar, J. A.; Arcos, J. L. “Ameli: An
agent-based middleware for electronic institutions”. In: Proceedings of the
Third International Joint Conference on Autonomous Agents and Multiagent
Systems, 2004, pp. 236–243.

[FvSM06] Fix, J.; von Scheve, C.; Moldt, D. “Emotion-based norm enforcement and
maintenance in multi-agent systems: foundations and petri net modeling”.
In: Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, 2006, pp. 105–107.

[GCNRA05] García-Camino, A.; Noriega, P.; Rodríguez-Aguilar, J. A. “Implementing
norms in electronic institutions”. In: Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems, 2005, pp.
667–673.

[GCRASV06] García-Camino, A.; Rodríguez-Aguilar, J.-A.; Sierra, C.; Vasconcelos, W.
“Norm-oriented programming of electronic institutions”. In: Proceedings of the
Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, 2006, pp. 670–672.

[GCRASV09] García-Camino, A.; Rodríguez-Aguilar, J. A.; Sierra, C.; Vasconcelos, W.
“Constraint rule-based programming of norms for electronic institutions”,
Autonomous Agents and Multiagent Systems, vol. 18–1, Feb 2009, pp. 186–
217.

[GNT35] Ghallab, M.; Nau, D.; Traverso, P. “Automated planning: theory & practice”.
Elsevier, 2004, pp. 635.

[JS93] Jones, A. J.; Sergot, M. “On the characterisation of law and computer
systems: The normative systems perspective”. 1993, chap. 12, pp. 275–307.

41

[KN02] Kollingbaum, M. J.; Norman, T. J. “Supervised interaction: creating a web of
trust for contracting agents in electronic environments”. In: Proceedings of the
First International Joint Conference on Autonomous Agents and Multiagent
Systems, 2002, pp. 272–279.

[KOM17] Krzisch, G.; Oren, N.; Meneguzzi, F. “Bounded-monitor placement in
normative environments”. In: Proceedings of the Workshop on Linked
Democracy, 2017, pp. 28–37.

[Ld+02] Luck, M.; d’Inverno, M.; et al.. “Constraining autonomy through norms”.
In: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems, 2002, pp. 674–681.

[LF03] Long, D.; Fox, M. “The 3rd international planning competition: Results and
analysis”, Journal of Artificial Intelligence Research, vol. 20, Jun 2003, pp.
1–59.

[LMM+13] Luck, M.; Mahmoud, S.; Meneguzzi, F.; Kollingbaum, M.; Norman, T. J.;
Criado, N.; Fagundes, M. S. “Normative agents”. In: Agreement technologies,
Springer, 2013, pp. 209–220.

[MDS15] Meneguzzi, F.; De Silva, L. “Planning in bdi agents: a survey of the integration
of planning algorithms and agent reasoning”, The Knowledge Engineering
Review, vol. 30–1, Jan 2015, pp. 1–44.

[MFM+09] Modgil, S.; Faci, N.; Meneguzzi, F.; Oren, N.; Miles, S.; Luck, M. “A framework
for monitoring agent-based normative systems”. In: Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems,
2009, pp. 153–160.

[MMH02] Mui, L.; Mohtashemi, M.; Halberstadt, A. “Notions of reputation in multi-agents
systems: a review”. In: Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems, 2002, pp. 280–287.

[MMO+09] Meneguzzi, F.; Modgil, S.; Oren, N.; Miles, S.; Luck, M.; Faci, N.; Holt, C.;
Smith, M. “Monitoring and explanation of contract execution: A case study in
the aerospace domain”. In: Proceedings of the 8th International Conference
on Autonomous Agents and Multiagent Systems, 2009, pp. 153–160.

[RSGJ03] Ramchurn, S.; Sierra, C.; Godó, L.; Jennings, N. R. “A computational trust
model for multi-agent interactions based on confidence and reputation”. In:
Proceedings of the 6th International Workshop of Deception, Fraud and Trust
in Agent Societies, 2003, pp. 69–75.

42

[SA85] Sutinen, J. G.; Andersen, P. “The economics of fisheries law enforcement”,
Land economics, vol. 61–4, Jan 1985, pp. 387–397.

[SC11] Savarimuthu, B. T. R.; Cranefield, S. “Norm creation, spreading and
emergence: A survey of simulation models of norms in multi-agent systems”,
Multiagent and Grid Systems, vol. 7–1, May 2011, pp. 21–54.

[SP+01] Staller, A.; Petta, P.; et al.. “Introducing emotions into the computational study
of social norms: A first evaluation”, Journal of Artificial Societies and Social
Simulation, vol. 4–1, Feb 2001, pp. U27–U60.

[SS07] Sierra, A. P. d. P. C.; Schorlemmer, M. “Friends no more: Norm enforcement in
multi-agent systems”. In: Proceedings of the 6th international joint conference
on Autonomous agents and multiagent systems, 2007, pp. 92–94.

[Sti74] Stigler, G. J. “The optimum enforcement of laws”, vol. 3, Jan 1974, pp. 55–67.

[TDB16] Testerink, B.; Dastani, M.; Bulling, N. “Distributed controllers for norm
enforcement”. In: Proceedings of the 22th European Conference on Artificial
Intelligence, 2016, pp. 751–759.

[VdHW08] Van der Hoek, W.; Wooldridge, M. “Multi-agent systems”, Foundations of
Artificial Intelligence, vol. 3, Oct 2008, pp. 887–928.

[VKN09] Vasconcelos, W. W.; Kollingbaum, M. J.; Norman, T. J. “Normative conflict
resolution in multi-agent systems”, Autonomous Agents and Multiagent
Systems, vol. 19–2, Nov 2009, pp. 124–152.

[yLLd06] y López, F. L.; Luck, M.; d’Inverno, M. “A normative framework for agent-based
systems”, Computational & Mathematical Organization Theory, vol. 12–2-3,
Oct 2006, pp. 227–250.

