
FACULDADE DE INFORMÁTICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

FELIPE GOHRING DE MAGALHÃES

HIGH-LEVEL MODELLING OF OPTICAL INTEGRATED NETWORKS-BASED SYSTEMS
WITH THE PROVISION OF A LOW LATENCY CONTROLLER

Porto Alegre
2017

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

GRADUATE PROGRAM IN COMPUTER SCIENCE

HIGH-LEVEL MODELLING OF
OPTICAL INTEGRATED

NETWORKS-BASED SYSTEMS
WITH THE PROVISION OF A
LOW LATENCY CONTROLLER

FELIPE GOHRING DE MAGALHÃES

Thesis presented as partial requirement for
obtaining the degree of Ph. D. in Computer
Science at Pontifical Catholic University of
Rio Grande do Sul.

Advisor: Prof. Fabiano Passuelo Hessel
Co-Advisor: Prof. Gabriela Nicolescu

Co-Advisor: Prof. Odile Liboiron-Ladouceur

Porto Alegre
2017

Dados Internacionais de Catalogação na Publicação (CIP)

M188h Magalhães, Felipe Gohring de

High-level modelling of optical integrated networks-based
systems with the provision of a low latency controller / Felipe
Gohring de Magalhães. – 2017.

139 f.

Tese (Doutorado) – Faculdade de Informática, Pontifícia
Universidade Católica do Rio Grande do Sul.

Orientadores: Prof. Fabiano Passuelo Hessel, Prof. Gabriela
Nicolescu, Prof. Odile Liboiron-Ladouceur

1. Controle de rede de baixa latência. 2. Design de sistemas.
3. Redes ópticas integradas. 4. Modelagem de alto nível.
5. Simulação. 6. Informática. I. Hessel, Fabiano Passuelo.
II. Nicolescu, Gabriela. III. Liboiron-Ladouceur, Odile

CDD 23 ed. 004.35

Salete Maria Sartori CRB 10/1363
Setor de Tratamento da Informação da BC-PUCRS

 Felipe Gohring de Magalhães

High-level Modelling of Optical Integrated Networks-based
Systems with the Provision of a Low Latency Controller

This Thesis has been submitted in partial fulfillment

of the requirements for the degree of Doctor of

Computer Science, of the Graduate Program in

Computer Science, School of Computer Science of

the Pontifícia Universidade Católica do Rio Grande

do Sul.

Sanctioned on 25th May, 2017.

COMMITTEE MEMBERS:

Prof. Dr. Fabiano Passuelo Hessel (PPGCC/PUCRS – Advisor)

Prof. Dr. Gabriela Nicolescu (Ecole Polytechnique de Montreal – Co-advisor)

Prof. Dr. Odile Liboiron-Ladouceur (McGill University – Co-advisor)

Prof. Dr. César Augusto Missio Marcon (PPGCC/PUCRS)

Prof. Dr. Dario Guimarães de Azevedo (PPGEE/PUCRS)

Prof. Dr. Rodolfo Azevedo (IC/UNICAMP)

“Find the tools, know the rules, then the world

will be yours”

(The Moon Invaders - Find My Way)

ACKNOWLEDGMENTS

First, I would like to thank my wife Val, for the support and friendship. Thanks for staying

awake in working late hours and drinking chimarrão with me, so we could stay awake. Thank you

for the period abroad in the cold Montreal, your presence made everything easier. Thank you for

everything.

A special thanks to my advisors, Professor Fabiano, Professor Gabriela and Professor Odile,

for the guidance and patience (specially the patience!). Without your instructions I would never

have gone this far.

Thanks to all the friends made along the way, in Brazil and Canada. The discussions

brought different views and enriched this project.

Finally, thanks to my family, which was always there, for the good and hard times.

HIGH-LEVEL MODELLING OF OPTICAL INTEGRATED

NETWORKS-BASED SYSTEMS WITH THE PROVISION OF A LOW

LATENCY CONTROLLER

RESUMO
As tendências de design para os sistemas multiprocessadores da próxima geração apontam

para a integração de um grande número de núcleos de processamento, exigindo interconexões de

alto desempenho. Uma solução a ser aplicada para melhorar a infraestrutura de comunicação em

tais sistemas é o uso de redes on-chip, pois estas apresentam uma melhoria considerável na largura

de banda e escalabilidade. Ainda assim, o número de núcleos integrados continua a aumentar ao

mesmo tempo em que o sistema cresce, dessa maneira as interconexões metálicas em redes on-chip

podem tornar-se um gargalo no desempenho. Como resultado, uma nova estratégia deve ser adotada

para que essas questões sejam solucionadas.

As Redes Ópticas Integradas (do inglês Optical Integrated Networks - OINs) são atualmente

consideradas como um dos paradigmas mais promissores neste contexto de design: elas apresentam

maior largura de banda, menor consumo de energia e baixa latência para transmitir informações.

Além disso, trabalho recentes demonstram a viabilidade de OINs com suas tecnologias de fabricação

disponíveis e compatíveis com CMOS. No entanto, os designers de OINs enfrentam vários desafios:

• Atualmente, os controladores representam o principal gargalo na comunicação e são um dos

fatores que limitam o uso de OINs. Portanto, novas soluções de controle de baixa latência

são necessárias.

• Designers não possuem ferramentas para modelar e validar OINs. A maioria das pesquisas

atualmente está focada em projetar dispositivos e melhorar os componentes básicos, deixando

o sistema sem melhorias.

Neste contexto, para facilitar a implantação de sistemas baseados em OIN, este projeto de doutorado

concentra-se em três contribuições principais: (1) o desenvolvimento da plataforma de simulação

a nível de sistema; (2) a definição e o desenvolvimento de uma abordagem de controle eficiente

para sistemas baseados em OIN e; (3) a avaliação, a nível do sistema, da abordagem de controle

proposta usando a modelagem definida.

Palavras Chave: Controle de rede de baixa latência; Design de sistemas; Redes Ópticas Integradas;

Modelagem de alto nível; Simulação.

HIGH-LEVEL MODELLING OF OPTICAL INTEGRATED

NETWORKS-BASED SYSTEMS WITH THE PROVISION OF A LOW

LATENCY CONTROLLER

ABSTRACT

Design trends for next-generation Multi-Processor Systems point to the integration of a

large number of processing cores, requiring high-performance interconnects. One solution being

applied to improve the communication infrastructure in such systems is the usage of Networks-

on-Chip as they present considerable improvement in the bandwidth and scaleability. Still as the

number of integrated cores continues to increase and the system scales, the metallic interconnects

in Networks-on-Chip can become a performance bottleneck. As a result, a new strategy must be

adopted in order for those issues to be remedied.

Optical Integrated Networks (OINs) are currently considered to be one of the most promis-

ing paradigm in this design context: they present higher bandwidth, lower power consumption and

lower latency to broadcast information. Also, the latest work demonstrates the feasibility of OINs

with their fabrication technologies being available and CMOS compatible.

However, OINs’ designers face several challenges:

• Currently, controllers represent the main communication bottleneck and are one of the factors

limiting the usage of OINs. Therefore, new controlling solutions with low latency are required.

• Designers lack tools to model and validate OINs. Most research nowadays is focused on

designing devices and improving basic components performance, leaving system unattended.

In this context, in order to ease the deployment of OIN-based systems, this PhD project focuses on

three main contributions: (1) the development of accurate system-level modelling study to realize a

system-level simulation platform; (2) the definition and development of an efficient control approach

for OIN-based systems, and; (3) the system-level evaluation of the proposed control approach using

the defined modelling.

Keywords: Low-latency network control; System-level design; Optical Integrated Network; High-

level modelling; Simulation.

LIST OF FIGURES

Figure 2.1 – Waveguides Examples. 32

Figure 2.2 – Insertion loss Overview. 32

Figure 2.3 – Crosstalk example of a ring resonator. 33

Figure 2.4 – Shift phase example. . 34

Figure 2.5 – Mach-Zehnder Interferometer. 34

Figure 2.6 – 2×2 MZI-based integrated switch. 35

Figure 2.7 – Example of a filter using MR. 36

Figure 2.8 – 1x2 Basic switch using one MR. 37

Figure 2.9 – SERDES block exemplification. 39

Figure 2.10 –Organizational Example of OIN-based System. 39

Figure 2.11 –Resource Sharing System Example. 40

Figure 2.12 –System overview using a centralized time-sharing-based control unit. 41

Figure 2.13 –System Overview Using a Distributed Circuit-switching-based Control Unit 42

Figure 2.14 –System Overview Using a Centralized frequency-division-based Control Unit. 43

Figure 2.15 –Design Abstraction Levels 45

Figure 4.1 – OIN-based system modelling iterative methodology. 57

Figure 4.2 – Controller Design Overview. 59

Figure 4.3 – Controller Design Overview. 59

Figure 4.4 – LUT growing size exemplification. 61

Figure 4.5 – Graph representation of a 2×2 MZI-based optical switch. 62

Figure 4.6 – Graph representation of a 4×4 MZI-based Beneš optical switch. 62

Figure 4.7 – Internal architecture of a 4×4 MZI-based Spanke-Beneš optical switch. 63

Figure 4.8 – Internal architecture of a 4×4 MZI-based strictly non-blocking optical switch. 63

Figure 4.9 – Internal architecture of an 8×8 Beneš network based on employing several 2×2 and
4×4 optical switch . 64

Figure 4.10 –2×2 Validation Switch. . 65

Figure 4.11 –4×4 validation topologies 65

Figure 4.12 –5×5 Validation Switch. 65

Figure 4.13 –8x8 SF Network . . 66

Figure 5.1 – LUCC design Overview 68

Figure 5.2 – iSLIP throughput X iterations number. 69

Figure 5.3 – LUCC decision flow chart. 70

Figure 5.4 – 8×8 Beneš topology numbered graph representation. 71

Figure 5.5 – Graph view of 8×8 SF Network. 78

Figure 6.1 – HyCo overview. . 81

Figure 6.2 – Hybrid Controller execution flow. 82

Figure 6.3 – Conflict detection and Round-Robin execution flow. 84

Figure 6.4 – Bloom filter block execution example. 88

Figure 6.5 – Access control unit simplified execution exemplification. 90

Figure 6.6 – DCU Distribution approach. 90

Figure 7.1 – Simulation platform. 93

Figure 7.2 – 2×2 modelled switch. 93

Figure 7.3 – 2×2 MZI-based Switch simulation. 94

Figure 7.4 – 4×4 MZI-based Beneš switch. 94

Figure 7.5 – 4×4 MZI-based Switch simulation 95

Figure 7.6 – 8×8 SF Network Simulation 96

Figure 7.7 – SF-Sim Configuration Window. 96

Figure 7.8 – 4×4 Example topology on DIA tool. 97

Figure 8.1 – Traffic patterns exemplification. 100

Figure 8.2 – LUCC Simulation for 4×4 Beneš topology. 101

Figure 8.3 – LUCC Simulation for 8×8 SF topology. 102

Figure 8.4 – LUCC Xilinx FPGA execution. 102

Figure 8.5 – LUCC on Altera FPGA execution. 103

Figure 8.6 – Microscopic picture of the 4×4 MZI-based switch. 104

Figure 8.7 – Schematic of the lab setup for the opto-electrical co-design. 104

Figure 8.8 – Measured 10 Gb/s PRBS31 signal switched by the 2×2 MZI switch. 105

Figure 8.9 – Lab-setup overview 105

Figure 8.10 –FPGA and Optical Switch Readings. 106

Figure 8.11 –Complete System Lab Setup Overview. 107

Figure 8.12 –Online Readings of Prototyped Optical Switch and FPGA Execution. 108

Figure 8.13 –Extracted data from second set of lab experiments 108

Figure 8.14 –4×4 Spanke-Beneš Simulation Scenarios. 110

Figure 8.15 –4×4 Spanke-Beneš simulation. 111

Figure 8.16 –System Simulation Setup. 111

Figure 8.17 –System simulation output. . . . 111

Figure 8.18 –Hybrid Controller latency for different traffic patterns. 113

Figure 8.19 –Latency comparison between controllers and state-of-the-art. 116

Figure APPENDIX A.1 – 2×2 Switch Block Overview. 132

Figure APPENDIX A.2 – 2×2 Switch Output Selection Logic 133

Figure APPENDIX A.3 – Logical Block Of Described 2×2 MZI-basedSwitch 134

Figure APPENDIX A.4 – SF-Sim GUI Configuration Window .. 135

Figure APPENDIX A.5 – SF-Sim GUI MZI Configuration Window . . 136

Figure APPENDIX A.6 – SF-Sim GUI DIA Configuration Window. 137

Figure APPENDIX A.7 – SF-Sim GUI DIA Workbench. 137

Figure APPENDIX A.8 – SF-Sim GUI DIA Workbench Presenting Connected Nodes 138

Figure APPENDIX A.9 – SF-Sim GUI DIA Workbench I/O Nodes Placement 138

Figure APPENDIX A.10 – SF-Sim GUI DIA Workbench I/O Nodes Colouring 139

Figure APPENDIX A.11 – SF-Sim Generated Files. 139

LIST OF TABLES

Table 3.1 – Tools Comparison 50

Table 3.2 – Controlling solutions comparison . 53

Table 4.1 – Adjacency matrix examples. The left matrix represents the SF 8×8 network, while

the right represents the Spidergon network . 60

Table 5.1 – LUT Growing Size. 76

Table 6.1 – Bloom filter bit array initial state. 85

Table 6.2 – Updated Bloom filter bit array with positions 12 and 6 marked to ’1’. 85

Table 6.3 – Updated Bloom filter bit array with positions 1 and 10 marked to ’1’. 85

Table 6.4 – Bloom filter bit array testing example for input = 225. 86

Table 6.5 – Bloom filter bit array testing example for input = 161.86

Table 8.1 – Configuration parameters for the 2×2 switch. 110

Table 8.2 – Simulation times for different topologies. 112

Table 8.3 – Simulation accuracy comparison. 112

Table 8.4 – Synthesis values for the Virtex V 330T Xilinx FPGA 114

Table 8.5 – Synthesis values for the Stratix IV Altera FPGA . . 115

Table 8.6 – Synthesis values for the 65nm STMicro Library . 115

Table APPENDIX A.1 – 2x2 Switch Logic Table 132

LIST OF ACRONYMS

ADL Architecture Description Language

CMOS Complementary Metal-Oxide-Semiconductor

CMP Chip Multiprocessor

CRB Conflict Resolution Block

DSB Dynamic Setup Block

eNOC Electrical Network-on-chip

FIFO First-in-first-out

FLB FPGA logical blocks

FSM Finite-state-machine

Gbps Gigabits per second

GUI Graphical User Interface

HDL Hardware Description Languages

HYCO Hybrid Controller

I/O Input-and-Output

IoT Internet of Things

IP Intelectual Property

LUCC LUT-based Centralized Controller

LUT Look-Up Table

MR Micro-ring Resonator

MZI Mach-Zehnder Interferometer

NI Network-Interface

OINs Optical Integrated Networks

ONOC Optical Network-on-Chip

P2P Point-to-Point

PICS Photonic Integrated Circuits

RR Round-Robin

RTL Register transfer level

SERDES Serializer/Deserializer

SF-Sim Straight-forward Simulator

SF StraightForward

SNR Signal-to-noise Ratio

SOI Silicon-on-Insulator

SPF Shortest Path First

TDM Time Division Multiplexing

UML Unified Modelling Language

VHDL VHSIC Hardware Description Language

WBA Weight Based Arbiter

WDM Wavelength-division multiplexing

XUP Xilinx University Program

CONTENTS

List of Figures . 15

1 INTRODUCTION . 27

1.1 CONTEXT AND MOTIVATIONS . 27

1.2 OBJECTIVES & CONTRIBUTIONS . 28

1.3 DOCUMENT ORGANIZATION . 29

2 BASIC CONCEPTS . 31

2.1 BASIC CONCEPTS RELATED TO OPTICAL INTERCONNECTS 31

2.1.1 MACH-ZEHNDER INTERFEROMETER . 34

2.1.2 MICRO-RING RESONATOR . 35

2.1.3 OPTICAL INTEGRATED NETWORKS . 37

2.2 CONTROL UNIT . 39

2.2.1 TIME SHARING . 40

2.2.2 DYNAMICALLY PATHS SETTING . 41

2.2.3 WAVELENGTH DIVISION . 42

2.3 HIGH-LEVEL MODELLING STRATEGIES AND DESCRIPTION LANGUAGES 43

3 RELATED WORK . 47

3.1 MODELLING, SIMULATION AND EVALUATION . 47

3.1.1 INDUSTRIAL TOOLS . 47

3.1.2 ACADEMIC TOOLS . 48

3.2 CONTROLLING SCHEMES . 50

4 METHODOLOGY . 55

4.1 METHODOLOGY OVERVIEW . 55

4.2 HIGH-LEVEL MODELLING . 57

4.3 CONTROL UNIT DESIGN . 58

4.4 VALIDATION ARCHITECTURES . 64

4.4.1 SWITCHES . 64

4.4.2 TOPOLOGIES . 66

5 CONTROL UNIT - THE LUCC . 67

5.1 PATH ANALYZER AND LUT CREATION - THE PALC . 69

5.2 CONFLICT RESOLUTION BLOCK - THE CRB . 74

5.3 DYNAMIC SETUP BLOCK . 76

5.4 DISCUSSION . 78

6 CONTROL UNIT - THE HYCO . 81

6.1 CONFLICT RESOLUTION UNIT . 82

6.2 BLOOM FILTER . 84

6.3 ACCESS CONTROL UNIT (ACU) . 88

6.4 DISTRIBUTED CONFIGURATION UNIT (DCU) . 89

6.5 DISCUSSION . 91

6.5.1 HYCO AND LUCC COMPARISON . 92

7 SIMULATION PLATFORM - THE SF-SIM . 93

7.1 DISCUSSION . 97

8 RESULTS . 99

8.1 LUCC EXECUTION RESULTS . 99

8.1.1 LUCC SIMULATION . 100

8.1.2 LUCC PROTOTYPING IN XILINX FPGA . 102

8.1.3 LUCC PROTOTYPING IN ALTERA FPGA . 102

8.2 CO-DESIGN OF THE CONTROL UNIT AND THE OPTICAL SWITCH 103

8.3 MODELS INTEGRATION . 109

8.4 HYCO EXECUTION RESULTS . 113

8.5 HYCO SYNTHESIS REPORTS . 114

8.6 CONTROLLERS COMPARISON . 115

9 CONCLUSION . 117

9.1 FINAL REMARKS . 117

9.2 FUTURE WORK . 118

10 PUBLICATIONS . 119

10.1 THESIS RELATED PUBLICATIONS . 119

10.1.1 PUBLISHED CONFERENCE PAPERS . 119

10.1.2 PUBLISHED JOURNAL PAPERS . 119

10.2 OTHER PUBLICATIONS . 120

10 REFERENCES . 121

APPENDIX A – Implementation Details . 131

27

1. INTRODUCTION

This chapter includes an overview of the motivations, objectives, and the proposed contri-

butions in the field of optical integrated networks modelling and controlling. The context of optical

networks and the research challenges that inspired this thesis are introduced and deployed solutions

to address the challenges are shortly commented. Lastly, the document organization is presented.

1.1 Context and Motivations

Nowadays systems present a rising number of features, leading to a significant growth

in the applications’ design complexity. Mostly, these systems have their implementation based on

multiple processing elements integrated on the same die and running at a lower clock frequency due

to energy consumption constraints [1].

Since the introduction of Chip Multiprocessor (CMP), one of the design main concerns lies

in how the communication among internal components is performed. Bus-based systems present

a well-known solution with a reasonable bandwidth and great ease of implementation. As the

number of components rises, the complexity of bus design increases and their application becomes

challenging [2]. Moreover, the communication can become a bottleneck in the system performance

of traditional bus-based systems, which can compromise its operation [3]. Aiming to solve this issue,

Electrical Network-on-Chip (eNoC) is one of the most popular solutions that have been proposed.

Systems based on eNoCs tend to provide better communication performance [4] when com-

pared to traditional bus-based systems. In this case, the communication management is performed

by routers that forward packets through the network. Each network node consists of a router and a

connected component which could be, for example, a processor or a memory. Besides the gain in the

communication capability, eNoCs usually present improved energy reliability and efficiency as well as

high re-usability [5]. However, as the number of possible integrated cores on a single chip continues

to increase, metallic interconnects in eNoCs will become a bottleneck due to their high power con-

sumption, limited bandwidth, long latency and poor scaleability, leading ITRS [6] to point out the

need for a new technology to overcome such restrictions. Another drawback of employing eNoCs

is related to their architectural organization. As eNoCs rely on point-to-point communication links,

their usage might be limited as the system scales, resulting in higher contention for long-distance

communications among cores and consequently performance degradation through imposing a higher

power consumption. In this design context, Optical Integrated Networks (OINs) and the 3D die

stacking1 are currently considered to be the two most promising new paradigms [7, 8, 9, 10, 11].

13D die stacking is an integrated circuit manufacturing technique in which two or more silicon wafers are placed
one over the other and interconnected vertically using through silicon via (TSVs) in such a way that they behave as a
single device. This technique is key in the OINs dissemination as it allows the integration of a variety of technologies
prototyped onto the same chip.

28

OINs are already a reality for long-distance communications [12] and their usage for short-

distance communications, such as inter-chip communications, has already been proven to be applica-

ble [13, 14]. Recently, published work presented photonic architectures with low power consumption,

low insertion loss and low power penalty [15, 16]. These work bring forward OINs as attractive can-

didates for high demanding communicating architectures.

Optical Network-on-chip (ONoC) emerges as a possible solution to overcome the afore-

mentioned eNoCs issues as it presents a higher bandwidth when compared to common electrical

eNoCs implementations with low power consumption [17]. Also, another advantage of employing

ONoCs lies on their own physical implementation. With eNoCs, communications are usually lo-

cal (Point-to-Point - P2P), reducing their design complexity but not allowing good scaleability for

shared resources. On the other hand, ONoCs present a potential support for broadcasting messages,

making them suitable for the new multiprocessors paradigms [18].

The performance and efficiency of such architectures are constrained by their controllers.

The control part has an important impact on the OIN overall performance and a better solution

is yet to be found [19]. Previous works demonstrated architectures with either long setup time or

that have become too complex, thus challenging practical deployment [20, 21]. Consequently, while

low latency controllers have been demonstrated [22, 23], further improvement in their response time

is still required to realize practical deployment of OINs. Further, most proposed controllers are

deeply attached to the network for which they are designed. Although this fact may lead to an

increase in the performance of the controller, this goes against the trend for the next generation

of communication systems, in which it is believed that each network layer (application, control and

physical) will be independent from each other [24, 25].

Designing a system based on OINs is a very complex task that need to be automated using

efficient tools. While the device level presents indeed a dense support in terms of automation tools

for the development of optical devices, this is not true for the system level. In fact, when compared

with high-level electrical design tools, system level support is nearly nonexistent [6]. Acknowledging

the importance of this aspect, it is important to highlight that it is not possible to design an

entire system with nowadays commercial tools, as it would be a complex task and would need more

advanced tools. So, a research gap is open for the development of methods and tools to aid in the

design of OIN-based systems.

Aforementioned issues raise two important questions to be addressed by researchers: (i)

how to better explore system-level design of OIN-based systems , and; (ii) how to control OIN-based

systems without adding prohibitive overhead to the system.

1.2 Objectives & Contributions

The main objectives of this thesis are:

29

1. Introducing an efficient solution to help designers better explore the design space for

systems integrating optical networks by finding the most promising solutions. This is achieved by

providing a modelling strategy that is (i) complete, comprising all important characteristics of such

systems; (ii) flexible, so it can describe any type of system; (iii) accurate, so the results extracted

using it are close to real system implementations, and; (iv) not complex, so the modelling of systems

does not impose a prohibitive an overhead during their deployment.

2. Developing efficient control solutions for OINs. The definition of a general solution

for controlling OINs with a low-latency solution, that is flexible, in this way being able to deal with

most kinds of optical networks and has a low overhead in time, thus not adding many extra clock

cycles to compute requests and set dynamic configurations.

By fulfilling these objectives, we realize three main contributions:

1. The definition of accurate system-level modelling method enabling the development of a

system-level simulation platform;

2. The definition and development of efficient control approaches for OIN-based systems, and;

3. The system-level evaluation of the proposed control approaches using the defined modelling

methods.

1.3 Document Organization

This document is organized as follows. Next chapter presents basic concepts about pho-

tonic devices and networks as well as control techniques usually applied on such networks. Chapter

3 brings a state-of-the-art revision, positioning our approach with existing works. Chapter 4 gives

first the global overview of the approach we defined for system-level design of OINs and presents the

proposed accurate system-level modelling methods. Following, Chapter 5 introduces the centralized

control unit, employing Look-Up tables (LUT) in order to speed-up the control unit. Chapter 6

presents the hybrid controller developed, which relies on a centralized core and distributed units to

reduce the control latency. Chapter 7 brings the simulation platform developed using introduced

description models. Following, chapter 8 presents obtained results for both deployed controllers,

the simulator accuracy as well as the models integration outcome. Finally, chapter 9 draws the

conclusion of this document, along with the possible future work in the field and chapter 10 presents

the published work.

30

31

2. BASIC CONCEPTS

This chapter presents general concepts about optical components and systems, their con-

trol schemes as well as modelling techniques required to describe them. Section 2.1 covers topics

such as waveguides, insertion loss and optical filters, from integration with complementary metal-

oxide-semiconductor (CMOS) technology perspective. Section 2.2 discusses controlling solutions for

OIN-based systems. Finally, section 2.3 brings an introduction to modelling and description concepts

on the scope of multi-processed systems.

2.1 Basic Concepts Related to Optical Interconnects

Optical interconnects are well known for their capacity to transfer data with high trans-

mission rates. On the opposite of their electrical counterpart, optical interconnects use light over an

optical via to transmit information instead of wires. In order to take advantage of the maturity of

the CMOS manufacturing technology, Silicon is the material of choice in order to deploy integrated

optics [26]. One approach used is Silicon-on-Insulator (SOI). The SOI substrate is made of a thin

silicon top layer separated from the silicon substrate by a buried oxide layer. The strong refractive

index contrast between the core and the cladding material of the waveguide allows the realization of

very compact components [27]. Other approaches are also possible, such as doped silica [28], silicon

nitride [29] or silicon oxynitride on oxide [30]. Also, it is possible to separate the manufacturing of

the electrical and optical circuits. In this case, the devices are made on different wafers, but still

relying on the same materials mentioned before and then later bonded. In this thesis, we employ

SOI fabrication technology as reference.

All optical devices are composed of some basic structures:

• A via is the path where the lights travel on, being the equivalent of wires in electrical devices;

• An interface is used to input data on the via or read/receive data to/from the via, and;

• Active and passive components are responsible for the control of the data flow on the

device working like a filter. Passive components are static, while active components can be

dynamic. Both types are detailed in Subsection 2.1.3.

An optical via is called a waveguide and is the path on which the light travels, usually with

a rectangular structure. Nowadays, designs are projected with a waveguide width greater or equal

to 450 nm and, as the size changes, different wavelengths might be transmitted on it.

Different wavelengths might be used at the same time on the same waveguide transmitting

data in parallel, provided that the waveguide supports these wavelengths. It is important to highlight

that simultaneous connections are one of the main advantages of optical interconnections when

compared to electrical-based ones.

32

As previously mentioned, waveguides are the paths on which light travels, and they should

be as straight as possible to allow better transmission quality. However, it is nearly impossible to

have a system composed exclusively by straight lines, being necessary to bend the waveguides in

order for the light to change its direction. This is a crucial design step, as light might be completely

lost in a very abrupt bend. Also, despite the fact that this may introduce a given signal loss,

waveguides might cross each other without causing a non-functional state of the system, like it

would in electrical crossing.

Figure 2.1 shows the three main types of waveguides: (a): straight waveguide, transmitting

from one side to the other, exclusively; (b): crossing waveguides, where two inputs and two outputs

can coexist, and; (c): waveguide bending, changing the transmission direction.

Figure 2.1: Waveguides examples (a) straight waveguide, (b) crossing waveguides and (c) waveg-
uide bending.

When using optical components, one important aspect to be considered is the system

insertion loss, which directly affects the power required for an input to reach its output. So, the

higher the insertion loss, the higher is the power needed on the input. Each component introduces

a given loss on the input signal, represented in Figure 2.2.

Figure 2.2 – Insertion loss overview.

33

Additionally, total optical loss can be expressed as the sum of internal losses, in decibels

(dB) 1

LossTOTAL = Lossinput + Lossbending + Lossw + Lossoutput (2.1)

where Lossinput is the loss of the input signal when it couples into the waveguide, Lossbending

is the bending loss, Lossw is the waveguide loss, and Lossoutput is the loss of the output [31].

Another important effect to be studied and understood is the crosstalk. This happens

when part of the signal couples on different waveguides, and it is not desired to happen. Figure

2.3 presents an example of crosstalk in a ring resonator, where it is possible to see the signal being

transmitted from left to right, with the undesired fact that part of it is being coupled on the ring

and going to the output on the bottom. This kind of issue introduces noise on the communication,

which reduces the transmission quality and may jeopardize the reliability of the output signal. This

is a risky situation because, sometimes, so much noise is inserted on the channel that is not possible

to distinguish if the output signal is real data or only noise.

Figure 2.3: Crosstalk example of a ring resonator, showing a portion of the signal being transmitted
by the undesired waveguide.

Most designs focus on reducing both the insertion loss and crosstalk in order to obtain

a more efficient architecture, with a better Signal-to-noise Ratio (SNR) [32]. SNR is a value that

compares the relation of a noise signal to the desired signal over a component. This means that

higher the ratio is, higher the transmitted signal quality is.

It is not possible to build an entire system relying solely on waveguides, as it would be

necessary to create dedicated links for all possible communication paths, which is not feasible. This

creates the need for more elaborated components, such as the Mach-Zehnder Interferometer and

Micro-Ring Resonator. These components incorporate extra functionalities, enabling the flow control

in the network, working as network switches. Both components are presented in detail hereafter.

1Decibel indicates the proportion of a physical quantity in relation to an entry point. In other words, decibels
express a power ratio, not an amount. The simple equation which defines a decibel is: A = 10 ∗ log10

P2
P1 (dB), where

P1 is the power being measured, and P1 is the reference to which P2 is being compared. The conversion from
decibels measure back to power ratio is given by: P2

P1 = 10(A
10). For instance, the ratio of 1 kW to 1W, in decibels is:

GdB = 10 ∗ log10(1000
1) = 30 dB.

34

2.1.1 Mach-Zehnder Interferometer

A Mach-Zehnder Interferometer (MZI) is a device used to control the amplitude of an

optical wave by dividing it in two, applying a given delay and then merging the two beans of light

into one again. The physical implementation of such functionality works as it follows: the inserted

wave is split in two, maintaining the same phase and amplitude for both resultant waves. One wave

is transmitted over a straight waveguide and keeps its phase and amplitude. The second wave is

somehow delayed, which inserts a phase change. Wave phase can be defined as the position of a

wave point in one specific time. When a phase change happens, it means that the wave moved in

time. Figure 2.4 illustrates this event, where two sinusoidal waves are presented. As it is possible to

see, one sinusoidal wave is slightly forward in the X axis, which represents time. This can be defined

as a phase change. By the time both waves are merged, the two waves can interfere constructively

or destructively at the output. Depending on the interference, the introduced phase change affects

the amplitude of the resultant wave [33].

A
m

p
lit

u
d

e

Time

Figure 2.4 – Shift phase example, showing a sine wave changing its phase, thus moving in time.

For the shift phase, two approaches might be used: one active and one passive (the

concepts of active and passive devices are covered in Subsection 2.1.3). Figure 2.5 presents the

basic structure of one MZI, where it is possible to see the presence of two parallel waveguides, one

with a delay portion and one as a straight line. In the image, it is possible to see an input signal

being split in two, so they can travel each on their own waveguide, being later merged into one

signal, on the output.

Figure 2.5 – Mach-Zehnder Interferometer example structure.

35

For the delay that introduces the phase shift to be applied to the wave, we can use either

an active or a passive device, as previously mentioned. For the active device an electrical arm is

attached to the waveguide and a given current is applied to it. Depending on the applied current a

different phase shift is induced. For the passive counterpart the phase shift is fixed at design time

and may never change, being achieved by adding a series of waveguide bends in order to change the

phase.

In order to build a MZI-based switch, two inputs and two outputs are employed. The light

is split in the two arms of the input coupler of the interferometer, and they are later recombined in

the output coupler of the interferometer. The switching between the ports is achieved by an electro-

optic effect within the structure. Voltage, applied to the electrodes deposited on the integrated MZI,

alters the electric field distribution within the substrate, which consequently changes its refractive

index. By changing the effective refractive indices of one of the arms, it is possible to generate

the phase difference between the optical signals in two arms of MZI. Based on the generated phase

difference, the light switches from one output port to the other. The following equations are used

in order to determine the normalized power in each output port, where ∆φ is the difference of two

phase changes [34].

Pout1 = sin2(
∆φ

2
); (2.2)

Pout2 = cos2(
∆φ

2
); (2.3)

Figure 2.6 illustrates the 2×2 MZI-based integrated switch, where the input and output

ports, the splitters and the integrated electrodes are presented.

Figure 2.6 – 2×2 MZI-based integrated switch structure.

2.1.2 Micro-Ring Resonator

A Micro-ring Resonator (MR) is an optical filter applied to select a desired wavelength

from a given input and redirect it to an output [35]. On opposite to the presented MZI, MRs

are wavelength selective. The MRs work based on three principles: optical coupling, total internal

reflection, and constructive interference.

36

Total internal reflection is an effect in which the light travelling within a waveguide remains

in the waveguide. It happens when the light hits the boundary of the waveguide and does not refract

over the boundary. Constructive interference is when two waves interfere on each other and the

resultant wave is the sum of the two interfering waves. Optical coupling is the effect of light

travelling from one media to another. Particularly in MRs, it is the effect of the light travelling

from the waveguide to the ring and from the ring to the waveguide. Three characteristics affect

the optical coupling: the distance between the ring and the waveguide, the length of the coupling

region and the refractive indexes2 of the waveguide and the ring. To optimize the coupling, usually

the distance between the ring and the waveguide is narrowed.

Figure 2.7 shows the structure of a simple MR used as a filter. In the figure it is possible

to notice the presence of two waveguides and one ring between them. On the top waveguide, there

is one input signal that might be transmitted directly, leaving by the through port, or it can be

coupled into the ring and redirected to the drop port, on the lower waveguide.

Figure 2.7 – Example of a filter using MR.

The decision if a wavelength is coupled or not into the ring is defined by some MR’s

physical characteristics, like the round trip length and the transmitted wavelength. For instance,

assuming wavelengths λ1 and λ2 are transmitted, if λ1 satisfies the resonant condition, such as

neff L = mλ1, (2.4)

the wavelength λ1 is coupled. As a result, the wavelength λ1 will couple to the ring while wavelength

λ2 will not. Here, neff is the effective index of the input waveguide, L is the length of the optical

round trip length and m is the mode number.

Such a capacity to select a given wavelength to be coupled into the ring makes this kind

of structure useful on the communications domain, since this behaviour is the same presented by

a switch. The implications of this capacity are tremendous considering that MRs are very cheap

2The refractive index of a component is a constant that indicates how much the light will bend, or refract, in that
medium. It is defined by n = c

v
, where c is the speed of light, in vacuum and v is the phase velocity. For instance,

the refractive index of silicon is 3.42, meaning that light travels 3.42 times faster in a vacuum than it does in silicon.

37

structures in terms of footprint and power consumption, which makes them a natural solution for

integrated optical communications.

2.1.3 Optical Integrated Networks

Optical integrated networks take advantage of the previously presented components to

achieve high bandwidth while maintaining low power consumption levels. It is possible to design

basic-switch blocks using MZIs and/or MRs to route optical signals, and group these switches to

create a network. Several works were published showing this kind of structure and great improvement

on both throughput and bandwidth, with lower latency and power consumption [36, 37, 38, 39, 40].

Figure 2.8 shows the structure of a basic MR-based switch used to select if an input

(IN) will either communicate with one output (OUT_0) or the other (OUT_1). This selection is

performed by using different wavelengths; when OUT_0 is to be reached, wavelength λ0 is used.

On the other hand, when OUT_1 is to be reached, wavelength λ1 is used. It is important to

highlight that it is possible to use both wavelengths at the same time, thus transmitting information

in parallel.

Figure 2.8: 1x2 Basic switch using one MR, showing the selection behaviour for two transmitted
wavelengths.

By simply replicating this structure, it is possible to design an entire OIN with no con-

tention. In fact, most of proposed architectures [36] rely on similar structures to the one presented

in Figure 2.8.

When defining an OIN architecture, the designer might choose between active components

and passive components, or decide for a combination of them. Summarizing, these components differ

only by the fact that passive components are static while active components are not.

38

Passive components are reactive devices by definition, which have their behaviours defined

during design time. We can use a 1-input × 2-outputs MR as an example. In this case, during

design time, we define which wavelength(s) will be coupled into the micro-ring and follow a different

direction, and which will not, following directly to the default output. This kind of device presents

a low design complexity, with low footprint and low power consumption. Still, for scenarios with

dynamic characteristics, this type of structure might not be the most suitable, as it would be

mandatory to use as many devices as necessary to capture every single configuration needed on the

system.

On the other hand, active components are designed in such a way that its routing charac-

teristics may change during runtime, by adding an electrical control system to it. One example of

the behaviour of active devices might be given by using the same MR as before, but now assuming

it as an active component. Instead of a constant coupling in the same wavelength, it is possible to

change the effective index by applying a given current on the MR, thus selecting another wavelength.

As expected, active components are more area and power demanding, as they have a more complex

structure and make usage of power to change their behaviours.

Other components are also usually present when using OINs: signal converters, fast

transceivers and Serializer(s)/Deserializer(s) (SERDES). Signal converters are used, as the name

suggests, to convert signals between domains. The Intellectual Property (IP3) blocks, which gen-

erate network traffic are usually digital. So, digital data must be converted to optical signals to

be inserted in the network and in the same way, the optical network output has to be converted

to digital signal to be processed by IPs. Still, when using OINs, the designer can define whether

the network will send messages bit-by-bit or word-by-word. In cases where the sending is performed

bit-by-bit, it is necessary to use a SERDES, a device applied to the serialization and de-serialization

of a message. On the sender side, this device receives a word and returns it, bit-by-bit. On the

receiver part, the SERDES receives a word, bit-by-bit and returns it as one entire word. Figure 2.9

illustrates an example of a SERDES block. The input message is an 8-bit word array. The figure

represents the serialization, where each bit is shown one after the other and lastly the deserialization,

where all bits are grouped as an 8-bit word array again. Finally, fast transceivers are used to adjust

the data rate injection and reception, as the IP blocks operating frequency might be different than

the frequency needed on the network.

3An IP block can be defined as any computational unit: a processor, a memory or a DSP, for example. In this
context, it represents any type of node connected to the network.

39

Figure 2.9: SERDES block exemplification showing an 8-bit word being serialized and later deseri-

alized.

Figure 2.10 shows an organizational example of a system using an OIN with the afore-

mentioned components. In the figure, the internal structure of the OIN is not detailed, rather

highlighting only the connections with the IPs. The figure also illustrates the connections among

components.

Figure 2.10: Organizational example of OIN-based system illustrating the data flow, passing by the
IP, the SERDES, the transceiver, the signal converter and network switch.

2.2 Control Unit

When talking about OINs, the design of the controller of the system is as important as

choosing the right topology. Unlike eNoCs, optical networks do not rely on buffers to temporarily

store data at every switch. If that were the case, it would be necessary to convert all data to digital

signals and then re-convert back to the optical signals, leading to high and undesired costs. Thus,

the controller algorithm is usually based on one of the following techniques:

40

• Time sharing, where time windows are set for each IP to transmit its information. On each

time window, a set of IPs is granted to send their data, while the others are stalled until the

time window ends;

• Dynamically paths setting, which presents a behaviour similar to the one found in circuit-

switching eNoCs. The path is defined at the beginning of the transmission. In this context,

the controller should compute all the input requests and choose all paths, either by assigning

wavelengths on passive-based networks or by tuning the components of active-based networks,

and;

• Wavelength division, uses the parallel communication capabilities of optical devices to trans-

mit separate signals. This technique divides the total available bandwidth into a series of

non-overlapping sub-bands, assigning a different wavelength for each transmitting IP. Usually

this technique is employed for passive networks, but not exclusively.

2.2.1 Time Sharing

There are cases where the topologies are built using components that have exclusive

access, i.e., allows a single transmission at a time. When this happens, the control unit must

manage the requests and granting in a manner that no request waits forever. Figure 2.11 presents a

scenario composed of seven communicating blocks that share a single communication medium and

a centralized controller. In this case, it is possible to notice conflicting situations that may occur

when more than one communicating block tries to access the shared media at the same time.

Figure 2.11: Resource sharing system example, where one simple bus is shared between different
communicating IPs. The controller (left box), receives requests and grants access to one IP at a
time.

To prevent this kind of situation, a common approach is to use a time sharing/division

multiplexing (TDM) algorithm [41], which divides the time into several recurrent windows (slots),

being one for each IP. The time slots might have the same duration depending on the priority

41

attributed to the IPs. Also, the amount of information transmitted over the media on each slot may

either be the same for all the IPs or vary according to their priorities.

The simplest implementation for this kind of situation is based on the Round-Robin Algo-

rithm [42]. It implements a first-in-first-out (FIFO) queue, which stores in each position a single IP

ID. For every new time slice, the ID found on the next output of the FIFO has its access granted.

This kind of control imposes a fair time overhead on the system, being usually deployed on a single,

centralized control unit, being more suitable for a lower design complexity, such as low radix systems.

Figure 2.12 shows an organizational example of using an OIN with a centralized control

unit. In the figure both the control and network are integrated as one black box.

Figure 2.12 – System overview using a centralized Time-sharing-based control unit.

2.2.2 Dynamically Paths Setting

Another possibility when controlling OINs concerns a circuit-switching technique. It is a

suitable technique used in dynamic network configurations, where an electrical layer has access to

all network nodes and configures those needed for each communication to perform correctly. The

main appeal of the circuit switching is its utilization on the 3D stacked integrated-on-chip systems,

in which each layer of the chip holds one parcel of the entire architecture [43].

In circuit-switching, each optical network node is directly connected to one electrical net-

work node. The latter is then physically placed above/under the optical node, using intra-connections

such as Through-Silicon Vias (TSVs) [44, 45] to share information between each other. The IPs are

connected to electrical nodes and requests travel along all the electrical path, thus closing their way

from the origin until their destination. By the time the path is closed, the message starts to be sent

through the optical path.

Figure 2.13 shows an overview of the stacked networks and their connections. In the figure,

the network nodes are illustrated as blocks, where each block is a network router. Figure 2.13(a)

42

presents the top system view. Figure 2.13(b) shows a lateral systems view, where it is possible to

see the connections between the electrical and optical nodes. Figure 2.13(c) illustrates the optical

network layer. Finally, figure 2.13.(d) indicates the electrical layer showing the IPs connected to the

routers.

Figure 2.13: System overview using a distributed circuit-switching-based control unit; (a) presents
the upper view of the system, where the optical layer is placed above the electrical layer; (b) shows
the system view from the side. The layers connections are presented as arrows, and communicating
nodes as rectangles; (c) illustrates the optical layer, its switches and connections; (d) presents the
electrical layer, its switches, IPs and connections.

In this approach, the tuning time can impose a high overhead. Even though, it remains

very interesting for systems where large messages are exploited. This occurs since the high cost to

close the path can then be compensated by the gain to transmit the message.

2.2.3 Wavelength Division

The last technique applied to control units for OINs is the Wavelength Division Multiplexing

(WDM) [46]. This technique is very similar to the TDM. However, instead of using different time

slices, WDM employs different wavelengths. When using WDM, the available bandwidth of the

channel is divided into sub-channels. For each sub-channel a given wavelength is attributed [47].

Figure 2.14 depicts an example of the usage of a WDM-based controller interacting with

four requesting IPs which requires access to the network simultaneously. For each one of them,

the controller attributes one different wavelength (λ). This way, the four IPs can transmit data in

parallel.

This technique allows wavelengths overlapping to be used for two different scenarios: (i)

different IPs requesting access simultaneously, as presented in Figure 2.14, and; (ii) for the cases

when only one IP is requesting access and all wavelengths are free. In both cases, the controller

might attribute more than one wavelength to the same IP, so its transmission might occur in a

parallel stream.

43

Figure 2.14 – System overview using a centralized wavelength-division-based control unit.

2.3 High-level Modelling Strategies and Description Languages

Large system developers usually struggle to precisely identify all aspects that comprise

their design, such as the number of components4 and proper abstraction implementation. In current

digital systems, such as multiprocessor embedded systems, it is possible to find from hundreds to

thousands different components working together, communicating with each other and depending

on each other’s responses.

Therefore, for a designer to effectively capture and manage all these aspects, higher ab-

straction levels are mandatory. In this way, a model might be defined as a simplified vision of

anything real and, in order to decrease the system design complexity, different models are used.

For instance, a computation system can be defined as a set of digital ports, as a series of logical

transactions or as a single I/O block.

Diverse challenges arise when modelling current systems. Among those, we highlight

model complexity, simulation runtimes and analysis complexity, model abstraction, complex inter-

dependencies, and parallel components.

The Unified Modelling Language (UML) [48, 49] is a general-purpose modelling language

designed to be used as a standard description modelling language. It relies on visual blocks to

describe all system architectural contents: transactions, components, timing, data flow, etc. Most

visual high-level modelling tools use the standardized patterns (UML blocks and their connections)

adopted in UML.

In the case of the Petri nets [50], directed graphs are used to model distributed systems,

and the system is described as a series of places, transitions and directed arcs. Each place represent a

component or logic block. All these places are connected by arcs. For the flow in the net, transitions

are used, which represent the movement from one place to the other, passing through transitions.

The system flow of a Petri net always follows the same behaviour, where one arc moves towards

another passing by one transition.

4in this context, a component can vary between a logical port and a processing unit.

44

Another model type is the Kahn Network [51], in which sequential processes communicate

through FIFOs. Its main characteristic is the synchronization imposed by the FIFOs, which makes

this kind of model suitable for distributed, communicating systems.

Besides specific models, different languages are defined for specifications as well. Although

their usage is not restricted to one specific functionality, their focus is usually well defined. Architec-

ture Description Languages (ADL) [52] are designed to describe and represent system architectures.

ADLs might be used to describe both software and hardware. For software, ADLs cover features such

as processes and threads. For hardware description, ADL describes components, such as processors,

devices and buses. Also, the connection between the components is described in ADL. For instance,

a processor can be described in ADL as a simple device that receives requests and returns a value.

One example of ADL is the Architecture Analysis and Design Language (AADL) [53] also

known as Avionics Architecture Description Language. It is largely used in the modelling of real

time embedded systems, to describe either hardware or software components.

Hardware Description Languages (HDL) focus on describing the characteristics of hardware

components. It is possible to describe logical ports, components such as processors and memories

and even systems. The main appeal of HDLs lies in the fact that they hold a close relation to the

physical layer. Still, it is possible to use HDLs in a way that such physical aspects are abstracted and

only the behaviour is captured. This makes HDLs powerful description languages to be used when

designing systems. By using these languages, attributes like time, components concurrent execution

and connecting signals can be modelled. The most common languages in this group are VHDL [54]

and Verilog [55]. Programming languages are a different group of specification languages, where

the focus is on software deployment. Usually, they act as an interface between the hardware and

the user. Common examples of this group are C++ [56] and Java [57].

Throughout the years, the modelling abstraction level has been upgraded and the in-

troduction of digital designs has led to the need for reducing design complexity by increasing the

system-level view. Figure 2.15 presents the evolution of the abstraction level used on the deployment

of digital systems. Starting from the transistor - the fundamental design unit - the abstraction level

started to rise. First, a digital system was represented as a set of logical ports, then registers, and

finally as hardware and software models. In the figure, four rows are presented: the timeline, the

device abstraction, the modelling level and the system overview.

It is possible to see that the level of modelling method cope with the complexity of the

state-of-the-art systems. As new functionalities are added to systems, the modelling strategy has

to be updated as well. At first, systems were simpler than nowadays, which made it possible to

describe them one transistor at a time. Later, systems evolved from groups of transistors to big sets

of logical ports, which lead to the utilization of Register transfer level (RTL) languages. Nowadays,

systems incorporate different elements, as hardware components and software logic. For designers

to capture all different aspects involved in the description of such systems, higher-level modelling

strategies are adopted. The concepts of high-level modelling, like ADLs and UML are employed for

these systems. In the next systems’ generation, not only different elements will be present, but also

45

Figure 2.15 – Design Abstraction Levels

different technologies, where systems will be heterogeneous. Future systems will be composed of

digital hardware, such as processors; magnetic components, as magnetic RAMs; logic models, as

software; optical components, such as OINs. This makes mandatory the update of current design

methods. The update may be achieved by the definition of new modelling languages, where such

aspects can be described. Another possibility is the re-utilization of nowadays modelling languages,

by employing them in different contexts. While developing new languages for the description of

future systems would make them perfectly suited to the context, the re-utilization is appealing, as

it takes advantage of mature approaches.

46

47

3. RELATED WORK

This chapter summarizes the most important related works in the field of OINs modelling

and simulation as well as controllers for OIN-based systems. Section 3.1 introduces a set of tools and

methods to simulate, model and evaluate optical systems. Their description will be divided into two

sub-sections: one presenting a discussion about industrial tools and one focusing on academic tools.

Moreover, Section 3.2 presents a discussion of state-of-the-art controlling solutions for OIN-based

systems, where recent and relevant publications on the field are discussed and their methods are

explained.

3.1 Modelling, Simulation and Evaluation

The design of optical devices is a complex task, requiring different variables to be con-

sidered. Optical devices are sensitive to dynamic variations, such as temperature and even a small

deviation can change the device behaviour, making it mandatory to capture all those small peculiar-

ities. This way, different approaches and tools were made available by either industrial or academic

research. These tools can focus on the entire design flow or specific aspects, such as power loss. In

this chapter we will focus on tools considering the design from a system-level perspective.

3.1.1 Industrial Tools

Facilitating the employment of optical devices, several companies provide tools and method-

ologies for engineers to use. Those tools usually cover the entire design flow, from the very beginning,

when each device is modelled and the integration of developed devices. These kind of tools depends

on numerical methods and solvers to compute all variables that compose the system, which are

usually complex and processing demanding.

One example of industrial state-of-the-art company is Lumerical Tools [58], which provides

an environment for the deployment of optical devices, from the initial level till the integration level.

It has four applications that might be run solo or in an integrated way, following a design plan.

Designers can start their device from scratch using MODE, adopted to model the device and make

initial verification, like group index. The second application in the design flow is FDTD, which is a

3D Maxwell solver that analyzes the light interactions on different wavelengths scales. Following,

Lumerical presents INTERCONNECT, a photonic integrated circuit design environment that enables

the design, simulation and analysis of photonic integrated circuits. INTERCONNECT is able to

perform analysis either on the frequency domain or in the time domain. Last of four Lumerical

Tools is the DEVICE Tool which is used to integrate photonic and CMOS devices.

48

VPIPhotonics provides a set of tools for the design of Photonics devices with the difference

that most of their tools focus on long-distance communication systems. The provided tool for

Photonic Devices design and optimization is the VPIcomponentMaker Photonic Circuits [59], a tool

with a focus on photonic integrated circuits (PICs), electric circuits, and optoelectronic devices.

Optiwave [60] is a design suit for the deployment of photonic devices. It offers a great list

of applications to ease the project of such systems, making it possible to even integrate their tools

with available electrical tools, like Matlab [61]. Optiwave also provides SPICE tools for integration

with CMOS devices.

Some other tools might be cited as well, like OptSim [62] and Optilux [63], which also

provide support for the development of Optical Devices. These tools present features such as

numerical solvers for the analysis of physical aspects of modelled devices.

Aforementioned tools are accurate and provide feedback, relying on precise models to

represent the system. By using them, designers can entrust that obtained results are very close

to the fabricated devices. However, as implemented models depend on complicated equations and

analytical models, their computation time is large, jeopardizing their effectiveness for large systems,

limiting their usage to small systems. Although it is important to acknowledge the high complexity

to attain the level of accuracy of such tools, the fact that they do not contemplate the entire system

design puts at risk the time-to-market.

3.1.2 Academic Tools

In order to support system-level design, initial tools were made available by academy. These

tools are meant for academic purposes and are firstly focused on proving new methods and theories.

Also, such tools are usually designed for one specific purpose, like analyzing crosstalk [64, 65], thus

not allowing an entire system deployment. In this way, with very specific purposes are not covered

in this review.

Among system-level tools, it is possible to split them in two groups: extensions on already

existing simulations tools and the ones implemented from scratch.

PhoenixSim [66] is an example of a simulator extension. It is built based on the

OMNeT++ [67] framework, a well-known network simulation platform that allows users to extend

its functionalities. PhoenixSim may be used for designing and analyzing the performance of photonic

interconnection networks, generating reports for propagation delay, insertion loss, extinction ratio,

spectral resonant profiles, area occupation, and energy dissipation.

GRAPHITE [68] is a distributed simulator for multi-core systems. The focus of this tool

is to reduce the simulation time, by splitting the computation overhead among different CPUs in a

network, thus giving a fast feedback on different validation scenarios.

An accurate and promising tool was introduced by [69], named DSENT. This tool presents

models to simultaneously simulate electrical and optical devices and providing different reports, such

49

as area usage and power consumption. The developed models are precise and rely on information

extracted from physical libraries for different technologies, such as 45 nm, 32 nm, 22 nm, 14 nm

and 11 nm.

Some other tools used as bases for the design of system simulators are Booksim [70] and

NoCSim [71], both projected to validate eNoCs but, thanks to similarity between approaches, can

be extended to validate ONoCs as well.

The main issue with these tools is that they are still deeply attached to a component view,

making their usage difficult for dynamic scenarios, with applications running and real-time changes

occurring. Also, most tools are designed to exploit one specific design constraint, such as power

loss, thus leaving the support for all other aspects unattended. While their focus was on solving one

specific metric, it is important to highlight that all the design context must be covered.

In this work, the Straight-forward Simulator (SF-Sim) is introduced. The fundamental

difference of the aforementioned tools and the SF-Sim lies on the fact that the proposed tool gives

engineers an accurate feedback, maintaining obtained results close to the ones obtained in real

systems. At the same time, the SF-Sim enables the design flexibility of a system-level perspective.

Designers have the opportunity to create systems from scratch by using pre-defined components in

a library or by adding new ones using the developed methodology.

Table 3.1 presents the comparison between previous tools and the one proposed in our

project, emphasizing the following points:

• Model Style: description model provided by the tool. Might be textual, graphical, etc;

• Level: abstraction level of the tool;

• Accuracy: the given accuracy, such as: cycle, physical, events, etc. For instance, if the tools

run at a clock-base, it is defined as cycle accurate and if it runs as series of events, such as

application transactions, it is defined as events;

• Goal: focus of the tool. If a tool lets users design an entire system, but is meant for devices

only, the design goal will be defined as Device;

• Status: if the tool development and user support is either active or inactive;

• Licence: the type of licence required for users to have access to the tool, and;

• Flexibility: the flexibility to describe models using the tool, from a system-level perspective.

In other words, the degree of easiness to describe a system, using available modelling strategy.

This comparison is performed based on the functionalities presented by the tools as well as in

hands-on experience. For instance, some tools present a deep support to evaluate preloaded

optical networks. Still, if needed, the designer cannot add new topologies or systems, thus

diminishing the flexibility of the tool.

50

Table 3.1 – Tools Comparison
INDUSTRIAL TOOLS

Name Model Style Level Accuracy Goal Status Licence Flexibility

MODE Graphical & Textual Device Physical Component Active Proprietary Low

FDTD Graphical & Textual Device Physical Component Active Proprietary Low

Interconnect Graphical & Textual Device Physical System Active Proprietary Low

DEVICE Graphical & Textual Device Physical System Active Proprietary Low

VPI Graphical Device Physical Component Active Proprietary Low

OptiWave Graphical Device Physical Component Active Proprietary Low

OptSim Textual Device Physical System Active Proprietary Low

OptiLux Textual Device Physical System Inactive Open Source Low

ACADEMIC TOOLS

PhoenixSim Graphical & Textual Device Physical System Inactive GPL1 Medium

Omnet Textual System Cycle System Active GPL Low

Graphite Graphical & Textual Device Physical System Active Open Source Medium

BookSim Textual System Events System Inactive Open Source Medium

NoCSim Textual System Events System Inactive Open Source Medium

DSENT Textual System Device Physical Active Open Source Low

Proposed tool (SF-Sim) Graphical & Textual System Cycle System Active GPL High

1 - General Public License (GPL).

3.2 Controlling Schemes

Most state-of-the-art works opt for designing a network controller that is suited for a

specific topology or type of architecture, thus optimizing at most its performance. This way, most

of proposed controllers are presented along a specific topology or router structure.

In [72], the authors present the design of a 5x5 MR-based router, which uses a mixed

active-passive design approach. It is designed to passively route the optical signal travelling in one

direction and actively route the optical signal making a turn. The authors claim that this router is

designed in such a way that it is scalable to be used as a basic block for large networks. The control

unit used for the proposed router is a circuit-switched-based one, where XY algorithm is applied on

the electrical layer and closes the paths for the optical layer. The main drawback of this approach

lies in the fact that circuit-switching techniques are time demanding and as the network’s size grows

their response time might get prohibitive.

In [73], a new architecture for photonic networks-on-chip is presented, along with its con-

trolling scheme. The overall power consumption of the system is claimed to be reduced by using

a dynamic resources provisioning. Each electrical router, on the electrical layer, is connected to

a processor with private L1/L2 caches, and routers and processors are located above the corre-

sponding optical switches. The electrical router and the optical switch communicate through TSVs1

and optical/electrical signal converters on the control die. Each electrical router contains four I/O

interfaces. The controlling layer works along with the Network Interface (NI). The NI role is to acti-

vate/deactivate laser sources in order to save power, after the controller triggers the beginning/end

1Through-Silicon Vias are vertical structures used to connect different layers of a 3D on-chip system.

51

of transmissions. Once again, the technique used to define either if an IP will have access to the

network or not is by using circuit-switching. Also, to guarantee message delivery, a given time is

used before turning the laser source off, where the time is defined according to the number of hops

the message will pass by and is dynamically calculated by the controller. The latency of such method

was calculated to be around 3.5ns in an 8×8 network where resonators and peripherals run at 5GHz.

The architecture was validated on a simulator built over Simics/GEMS framework [74]. The main

comment that might be addressed for the solution proposed by the authors is that the usage of

circuit-switching for path allocation is very expensive in resource allocation and, even for a fairly

small network size (eight IP nodes), the control latency is high (for a 5GHz frequency operation,

the period is equal 0.2 ns, meaning that it takes around 17 clock cycles for every request to be

computed).

The work presented in [75] brings the design of an ONoC which is an extension of previous

works, like the λ-Router [76], but reducing resource utilization. The technique used by the authors

to reduce the resources utilization is similar to clustering, where the switches are grouped in small

blocks, thus dividing the network in small versions of itself. The number of used resources in which

a message may pass is reduced because as it goes in one direction all nodes in previous directions

will never be visited. The control unit is based on wavelength routing, where each I/O is assigned

to one specific wavelength and might communicate at any time, without arbitration. Although this

kind of structure solves any kind of contention, the overhead imposed by this solution is high, as

for every I/O port, ’n’ buffers must be used, being n = number of IPs. Still, each I/O requires

a specific wavelength, which is difficult to implement from an optical perspective. This is due to

physical limitations, which curb the number of possible wavelengths to be used. This way, in a

system with a big number of I/Os, not enough wavelengths would be available.

Authors of [47] introduce a routing technique based on wavelength selection integrated

with spatial routing. The main contribution authors claim is that classic circuit-switching techniques

are too time and resources demanding and based on that they present an extension of such methods.

Their technique is based on the unused spectrum that exists between the resonances of a broadband

ring switch by interleaving additional wavelength channels in the unused spectral space. That way,

instead of having simple wavelength selection a wavelength division multiplexing (WDM) selection

is used, where each group is an isolate case. The Circuit-switching technique is used along WDM

and each router is composed of a junction of a receiver bank and a modulator bank. The design was

tested with the electrical layer running at a frequency of 2.5GHz. The results for timing improvement

of the introduced technique shows a reduced latency. Still, even for small messages passing (100-

kbit messages, for instance), using a 100Gbps (gigabits per second) transmission rate, the checked

latency reported is around 100 ns, which is high, taking into account the fact that this controller is

fully tailored for the architecture it is designed for. Consequently, it is not possible to apply it to

different network topologies.

An electrical-optical mixed approach is brought by [77], where a butterfly-based topology is

introduced and each node is composed of an optical switch and an electrical switch. Optical switches

52

are composed of MRs and are in charge of transmitting data on a circuit-switching fashioned way,

while electrical switches are in charge of closing the path by using package-switching techniques.

The main contribution of this solution is the fact that, after a set of trials, if the control unit is not

able to close the optical path, the message will be transmitted using the electrical layer directly. As

for the other cases where circuit-switching is used, the tuning time necessary to close the optical

path is the main issue.

An asynchronous and variable-length packet switching is presented in [78]. This technique

uses a two layered approach to dynamically set the message path over the network. Every IP is

attributed to one exclusive label, which corresponds with each output fiber, for sending out switch

fabric reconfiguration. While the message travels over the optical path, when it comes across a new

network node, the message gets delayed while its label is computed by the electrical node. Based on

the message location over the network and the labels checking, the switch is reconfigured to direct

the message to the correct output. The main drawback of this technique is that, depending on the

delay time imposed by the control layer, the gain in using the optical path might be spoiled. Also,

the delay necessary for this technique to be applied imposes modifications on the network layer.

This diminishes the contribution, as it is not always possible and desirable to modify the network

layer.

A multi-cast scheduling control solution is proposed in [79], which focus on input-queued

switches based on the Weight Based Arbiter (WBA). The technique used by the authors is based

on time sharing and aged-based weight calculations. The goal of this design is in achieving a time

slot of around 51 ns for a payload data rate of 40 Gbps. The algorithm works by attributing weights

to all the input cells at the beginning of every time slot and, in cases of equality on weights, the

controller randomly chooses one of the conflicting choices. Results show a latency of around 20 ns

for a 64×64 network. The main issue with this approach lies in the fact that it is suited for only one

kind of network, as it was designed for the network the authors presented. This way, this technique

would have to be extended, or adapted, in order to be employed in different networks.

Finally, in [80] the authors presented a controlling solution for contention handling based

on optical-buffering, by introducing a three-stage buffering method. This method uses electronically

controlled wavelength routing switches in combination with optical delay lines to temporarily store

data [81, 82, 83]. The control unit works as follows. An optical threshold function which is driven

by a message packet controls a wavelength routing switch, so that as this packet arrives, the next

one is delayed for one packet period. Similarly, the routing of the following packet is determined

by the presence of the first two packets. An optical arbiter that drives a wavelength routing switch

is employed to decide whether packet contention takes place. The wavelength routing switch is

operated by wavelength conversion in combination with a de-multiplexer. The optical-buffer-based

scheme was tested on an experimental setup composed only by a laser and a modulator, which

injected packets on a data rate of 2.5 Gbps. Although this technique is very promising, as it deals

with optical signals directly, it still is at an early stage of deployment, not being suitable for short-mid

term designs.

53

As explained above, most of related works present a network controller that is suited for

a specific topology or type of architecture, which is said to optimize at most their performance.

However, the topology-constrained controllers diminishes their contribution, as their employment

is hard-limited by the very one topology they are built for. Further, this fact goes against the

trend for the next generation of communication systems, in which it is believed that each network

layer (application, control and physical) will be independent from each other [24][25]. Also, a

good number of works use circuit-switching techniques only, thus adding a control latency that

could shatter completely the benefits of using an OIN-based system besides adding extra power

consumption for each electrical node added to the control layer.

Table 3.2 – Controlling solutions comparison
Reference Topology-Constrained Algorithm Strategy Latency Scalable

[72] Hard Yes Circuit Switching Distributed High Yes

[73] Yes Circuit Switching Distributed High Yes

[75] Hard Yes WDM Distributed Low Yes

[47] No Circuit Switching & WDM Distributed High Yes

[77] No Circuit Switching Distributed High Yes

[78] Yes WDM Distributed Low Yes

[79] Hard Yes TDM Centralized Low No

[80] Hard Yes WDM Distributed Low Yes

Proposed 1 No TDM1 Centralized Low No

Proposed 2 No TDM1 Hybrid Low Yes

1 - The implemented multiplexing control block is TDM-based, not using strict time slots. Still, the multiplexing
block might be replaced without affecting the general controller behaviour.

This thesis presents two solutions in order to control OINs. The first solution relies on

fast access memories to store pre-calculated routes in order to speed-up the network routing. The

second solution, relies on an hybrid approach, where both a centralized control core and distributed

configuration units are employed. Compared with the previously presented contributions, this work

stands out thanks to the fact that our control units are suitable for a large variety of network topolo-

gies: the topologies based on tunable switches or the ones that only need arbitration. Topologies

that just need arbitration are the ones where no network configuration is needed, such as the one

based on wavelenght routing. For such cases, the controller works as an arbiter, avoiding destination

conflicts. Topologies based on tunable switches are the ones where each network node has to be

configured so different paths are correctly arranged. Moreover, as opposed to the controllers based

solely on circuit-switching, the proposed controllers latency does not affect the overall system per-

formance. Still, for the devices where multiple frequencies are allowed, designers can slightly modify

the controller so it comports WDM routing.

Table 3.2 presents the comparison between presented controlling schemes and the ones

proposed by this work, emphasizing the following points:

54

• Topology-Constrained: this property specifies if the control unit is somehow constrained by

the controlled topology or if it has a generic behaviour. Three different categories are going

to be used: (1) hard-yes, for the cases deeply constrained; (2) yes, for cases directly related

to the topology, but somehow being applicable to others, and; (3) no, for the cases where the

control might be used with none or small modifications for any topology;

• Routing Algorithm: the algorithm used by the controller in the network;

• Strategy: specify if the control is centralized, distributed or abstract;

• Latency: the time overhead due to the controller. An estimation based on the presented

data and routing techniques is made. This information is normalized and simply presented as

LOW or HIGH. The threshold from HIGH to LOW is a composition of different aspects of

presented results for each work. For instance, a controller that shows a routing capability of 5

ns, but executes with a clock frequency of 10 GHz, thus taking 100 clock cycles to execute is

considered HIGH. At the same time, a controller that takes the same 5 ns to perform routing,

but executes with a clock frequency of 1 GHz, thus taking five clock cycles is considered LOW;

• Scalable: indicating the capacity to employ the approach in systems with a rising number of

network nodes without risking its physical implementation.

55

4. METHODOLOGY

This Chapter illustrates the defined methodology as well as the proposed approach for OIN-

based systems modelling. Section 4.1 presents an overview of the defined methodology followed by

Section 4.2, which illustrates the considered modelling strategy. In Section 4.3, the approach used to

model the controlling solution is shown and, finally, Section 4.4 introduces the validation platform.

4.1 Methodology Overview

The methodology follows a step-by-step approach. First, basic characteristics, such as

transmission delay, are modelled and validated, and then, new characteristics, such as power dis-

sipation, are added and validated. The final goal is a simulation platform composed of two types

of components: (1) OIN’s devices models parameterized using fabrication results and (2) OIN con-

trollers.

Figure 4.1 presents the development methodology as a series of iterative steps. The main

steps of the defined methodology are described as it follows.

Constraints Analyses and Proposed Design Solutions

In the first step, optical integrated networks are analyzed while looking for the main

constraints involved in their design and usage. Constraints such as the controlling aspects of OINs

and the latency they impose are evaluated. Considering design constraints, aspects like OINs physical

charachteristcs and their impact on the system behaviour are analyzed. Available approaches to

surpass these constraints are studied and possible solutions evaluated. Subsequently, the controlling

solution (algorithm, target platform, etc.) and modelling strategy for OIN-based systems are defined.

Models Definition and Refinement

Following, the controller as well as the components that compose an OIN-based system

are modelled. The model definition and refinement step are divided in two main stages.

• Controller modelling: the model of the control unit is generated and later has its perfor-

mance evaluated. To do so, firstly, we define the controller main blocks, defining aspects such

as routing algorithms. Later, the design is simulated under different traffic patterns and its

latency is verified. Following, it is prototyped on an FPGA and later integrated with optical

switches, lasers and photo-detectors in an optical lab in order to verify its behaviour under

realistic (i.e., not simulated) scenarios.

• Systems components modelling: different devices are modelled. These devices include

switches, routers, and links which are used to build a complete network. Also, besides networks

56

and their components, blocks such as traffic injectors and traffic analyzers are defined in

order to evaluate the network. Most of the existing works available in literature employ

analytical methods for devices modelling [84], as analytical models for basic components are

already available and are well proven [69]. However, these models are used to describe simple

components and devices, thus leaving the system level unattended. It is a very complex task

to model an entire system relying on available models, as it is hard to capture every aspect

of the system. Models to enable the definition of entire systems, such as for optical switches

and routers and ultimately at the network level are developed.

Models Integration

Considering the second step, both models for the controller and the system, are integrated

in order to enable the deployment of an entire OIN-based system, composed of network nodes, traffic

injectors and a control unit. At this stage, it is possible to execute realistic scenarios and obtain

initial feedback, like the network latency.

Models Extension

Next, we extend the developed models, where both models for the controller and OIN

components are improved. Once again, this step is done in parallel:

• Controller: the scaleability and frequency execution of the controller are mainly addressed in

this step. Different aspects of the controller design are taken into account, so the controller

blocks could be improved. To do so, the reports of synthesis tools for both ASIC and FPGA

technologies are used.

• System component models: addition of different aspects to modelled components, pre-

sented in Section 4.2, such as insertion and transmission losses. To do so, extracted values

from lab measurements are employed to create estimation constants, which are used in the

models to obtain accurate results.

Final Integration - Simulation Platform

Finally, aforementioned models are deployed using VHDL (VHSIC Hardware Description

Language) hardware description language and grouped in a simulation platform. This platform gives

designers the flexibility to use, add or modify components and then validate them.

Section 4.4 introduces the devices and topologies to be used to validate the controller

presented in Section 4.3 as well as the model illustrated in Section 4.2.

57

Figure 4.1 – OIN-based system modelling iterative methodology.

4.2 High-level Modelling

In order to implement the required devices and components, a high-level modelling ap-

proach is performed to capture their different aspects. Models are divided into four main categories:

vias, devices, networks and controllers. Each category can be used as a standalone model or

along the others, as they have category affinities with each other.

A waveguide W is defined as a function of 〈TW ,LW ,PW〉 with each parameter standing

for:

• TW : transmission delay in pico-seconds. In other words, it is the time it takes for the light to

travel from the input port to the output port;

• LW : insertion loss, and;

• PW : stores the power penalty for each travelling wavelength on the waveguide.

Each modelled device, such as an optical switch, is expressed as a function with five

parameters. This way, an optical device C is defined as an n-uple 〈NC, TC,LC,PC,RC〉, where:

• NC: number of inputs and outputs. For instance, a 4×4 switch has NC = 4;

• TC: is the transmission delay or the time it takes for an optical signal to travel from an input

to an output port. As there are more than one input and/or output, and the variation for

each pair of I/O is small at a system-level perspective, the attributed value is an average of

all I/Os;

• LC: stands for the insertion loss. For the same reason as above, the value used here is an

average;

58

• PC: holds the average power penalty of the component, and;

• RC: is used for the components that behave as a switch or router. It represents the routing

information of the component, which maps an input to an output.

This way, an OIN Υ can be defined as an n-uple 〈N , Co, ωj ,J ,O〉, where:

• N : is the number of inputs and outputs in the network. For instance, an 8×8 network has

N = 8;

• O: number of components in the system;

• Co: is a list which comprises the optical components used to route light over the network;

• J : is the number of waveguides in the system;

• ωj : is a list of waveguides used to connect the internal network components.

Finally, in order to model a control unit, a function of four parameters is used, in which a

controller κ can be defined as an n-uple 〈Nκ,S,D,Ai〉, where:

• Nκ: is the number of communicating nodes using the network. For instance, in a system

composed of four communicating processors, one DSP and one shared memory, Nκ = 6;

• S: defines the routing algorithm used to compute the messages path;

• D: holds the delay, in clock cycles, imposed by the processing time of the routing algorithm

and network tuning, and;

• Ai : is a memory array composed of i elements used to store information related to the control

like allocation tables for the dynamic network tuning.

4.3 Control Unit Design

The performance and efficiency of OIN-based architectures can be constrained by their

controllers. Long setup time of circuit-switching techniques makes them not efficient for OINs,

while the physical design and implementation of TDM and WDM techniques for OINs can become

complex in practice. At the same time, controllers have been successfully demonstrated [22], thus

showing the approach to be potentially used.

The design of the controller is based on independent blocks, which are graphically illus-

trated in Figure 4.2, in which it is possible to see four main blocks:

• the matrix definition: defines the network connections;

59

• the paths creation: holds the routing information of the controlled network. This block is

used mainly to reduce computation time, thus reducing control latency;

• the conflicts resolution block: is responsible for detecting destination conflicts and solving

them by using a given algorithm, and;

• the real-time calculations: is a block responsible for on-line calculations, like path attribution

and memory addresses reading.

Figure 4.2 – Controller design overview presenting the four main blocks of the modelled controller.

We start by defining the adjacency matrix for all the I/O ports in the network. It is

also possible to consider methods to reduce/simplify the matrix [85], thus reducing the controller

overhead. In particular, such reduction methods can be used to remove the redundant and/or unused

network nodes in the matrix when not all the network nodes are connected to each other (depending

on the topology). Figure 4.3 presents two 8×8 network topologies, the SF and the Spidergon. While

the SF topology has a direct connection path for all the I/Os, the Spidergon does not, as presented

in the figure.

Figure 4.3 – Controller design overview presenting the four main blocks of the modelled controller.

Table 4.1 indicates the adjacency matrices M for the two 8×8 networks presented in

Figure 4.3. In the matrices, each paired index i,j represents a communication from input i to output

60

j, such that:

∀ij ∈M, ifMi ⇐⇒ Mj ⇒Mij = 1, (4.1)

resulting in the adjacency matrix M.

Table 4.1: Adjacency matrix examples. The left matrix represents the SF 8×8 network, while the
right matrix represents the Spidergon 8×8 network.

Node A B C D E F G H

A 1 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1
C 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1
F 1 1 1 1 1 1 1 1
G 1 1 1 1 1 1 1 1
H 1 1 1 1 1 1 1 1

Node A B C D E F G H

A 0 1 0 1 0 0 0 1
B 1 0 1 0 0 0 1 0
C 0 1 0 1 0 1 0 0
D 1 0 0 0 1 1 0 0
E 0 0 1 1 0 0 0 1
F 0 0 1 1 0 0 1 0
G 0 1 0 0 0 1 0 1
H 1 0 0 0 1 0 1 0

After defining the adjacency matrix, the second step is to compute all the input requests

as fast as possible, as a high-latency controller impacts the efficiency of the entire network. In

order to minimize the controller overhead, we target one clock cycle latency, resulting in a latency

within nanoseconds. Algorithm 1 describes the logic for the conflicts resolution and dynamic setup,

determining the best available path for each input request. In the algorithm, one can notice dif-

ferent possible scenarios, such as when several input requests are received and conflicts are found.

Summarizing, the algorithm works by checking all the input requests (while i < numberOfInputs)

and looking for conflicts for each one of them (checkConflicts(i)). When no conflict is found and

the target is not busy (noOpenComm(i)), the requesting node is granted access. If a conflict is

found (conflict()), the controller checks to see if the next node in the Round-Robin queue1 is the

requesting node (roundRobinControl()), and if so, it grants the access. For the cases where the

round robin queue is used, a new requesting node is set as the next one in the Round-Robin queue

(roundRobinSpin()). Lastly, the controller defines the network configuration (pathDefinition()) by

accessing the LUT. The concept of LUT will be covered later in this thesis.

Finally, the last step for the controller is to configure the path that the message should

take from the source to the destination node. For every input request, more than one optical path

might be selected, generating a huge number of path possibilities for the controller to compute.

Figure 4.4 illustrates this situation. In the 2×2 switch, six different message patterns may be found:

(i) A → D; (ii) B → C, and; (iii) A → D and B → C; (iv) A → C; (v) B → D, and; (vi) A →

C and B → D. In the second scenario for the 4×4 switch, not only different message patterns are

found, but also each pattern may follow different paths to reach its destination. For instance, for

the message path A→ H, the message may pass through nodes 1, 2, 5, 8, 21 and 24. Alternatively,

it may use nodes 1, 4, 17, 20, 23 and 24 to reach the same destination.
1The Round-Robin queue size is equal to the number of inputs of the network, avoiding queue overflow. The RR

control works as classic Round-Robin implementation, where the queue works as a First-in-first-out queue. This way,
all requesting inputs are guaranteed to be granted at some point in time, avoiding starvation.

61

Algorithm 1 Conflicts Resolution and Granting Control
while i < numberOfInputs do

checkConflicts(i);
if requestReceived(i) and noOpenComm(i) then

if destIsAvail() and noDestConf () then
acknowledge(i)← 1;
writeEnable(i)← 1;

else if destIsAvail() and conflict() then
if roundRobinControl() then

acknowledge(i)← 1;
writeEnable(i)← 1;

end if
roundRobinSpin();

end if
else if endOfCommunication(i) then

acknowledge(i)← 0;
writeEnable(i)← 0;
endOfComm(i)← 1;

else
endOfComm(i)← 0;

end if
end while
pathDefinition();

A

B

C

D

1 2

3 4

A

B

C

D

E

F

G

H

1 2

3 4

5 6

7 8

13 14

15 16

9 10

11 12

17 18

19 20

21 22

23 24

Figure 4.4 – LUT growing size exemplification.

One possible approach to address this issue is to use a shortest path first (SPF) algorithm,

like the Dijkstra algorithm [86]. The SPF algorithm looks for the minimal distance between the source

and the destination in a network. The distance between the source and destination is considered

as the number of network nodes the message should pass by. It works by considering the value of

each edge that connects any two nodes, and then looking for the minimal sum of those edge values

between the source and the destination. The edge weight can be defined as any measure inside the

network context. For example, the distance between nodes or the power consumption. It depends

on the routing technique objective and is defined by the designer. If power consumption is to be

considered, each edge might express the power dissipated between each nodes pair, for instance. As

it would be very complex to calculate a new path for every new input request, a pre-calculated path

62

allocation lookup table is generated and stored in memory (i.e., static memory) by implementing

the SPF algorithm and running it during the design time.

Another possibility, besides the usage of an SPF algorithm, is the employment of distributed

configuration units. Learning from circuit-switching-based techniques, it is possible to deploy a

similar approach, which is scalable and maintains low latency. By keeping all other blocks centralized

and distributing only the configuration units, it is possible to reduce the block complexity, accelerating

its execution time and thus not compromising the system latency. This is achieved by reducing the

distributed blocks complexity, thus speeding up its execution time.

For the routing block(s), we represent the network as a graph. The OIN architecture in

our work consists of several optical switches integrated to form the network. As a result, the graph

representation starts from MZI-based optical switches, for example. Figure 4.5 presents the graph

abstraction of a 2×2 MZI-based optical switch, where inputs and outputs are represented as a graph

node and connections are represented as edges.

Figure 4.5 – Graph representation of a 2×2 MZI-based optical switch.

Employing several 2×2 switching blocks, it is possible to form a 4×4 optical switch, shown

in Figure 4.6. As can be seen, six 2×2 optical switches are interconnected, forming an optical switch

with four inputs and four outputs. The presented topology is the non-blocking 4×4 Beneš topology.

Non-blocking topologies are designed in such a way that for any combination of input outputs, a

route is possible.

Figure 4.6 – Graph representation of a 4×4 MZI-based Beneš optical switch.

Another possible 4×4 optical switch based on the 2×2 switching blocks is the 4×4 Spanke-

Beneš topology. On opposite to the presented 4×4 Beneš switch, the Spanke-Beneš is a blocking

structure, which means that not all input-output combinations are possible simultaneously. Figure

4.7 illustrates the internal organization of the 4×4 Spanke-Beneš switch, where the five internal

2×2 switching blocks and their connections are shown.

63

Figure 4.7 – Internal architecture of a 4×4 MZI-based Spanke-Beneš optical switch.

Besides non-blocking and blocking topologies, a third possibility is the strictly non-blocking

topology. While non-blocking topologies have possible routes for any inputs-outputs combinations,

they sometimes require the re-routing of already open paths. Strictly non-blocking topologies present

routes for any input-output combination without the need for re-routing. Figure 4.8 presents a 4×4

strictly non-blocking topology, 16 2×2 switching blocks and their connections.

Figure 4.8 – Internal architecture of a 4×4 MZI-based strictly non-blocking optical switch.

At this point, the resulting graph is already complex to compute during runtime, as not

only the number of possible source-target path combinations is already big but the internal switch

organization might change. Therefore, the possible hardware implementation, although feasible,

would be costly.

Employing the 2×2 and 4×4 optical switches and connecting them accordingly, one can

construct different OINs. Figure 4.9 shows the graph representation of one possible OIN topology,

the 8×8 Beneš network, in which eight 2×2 and two 4×4 optical switches are employed. As can be

seen, the complexity increases with the addition of extra nodes and I/O ports, justifying the choice

for a pre-computed path lookup table. The path allocation lookup tables have to be generated for

every new topology. This is due to the fact that for different topologies various possible paths can

be found. It is worth mentioning that this computation can be performed once and it is off-line,

reducing the final design complexity.

64

Figure 4.9: Internal architecture of an 8×8 Beneš network based on employing several 2×2 and 4×4
optical switches.

4.4 Validation Architectures

To validate the developed models and controllers, we described the basic network com-

ponents, like MR-based and MZI-based switches and entire networks, in VHDL. The results are

evaluated by comparing results extracted from fabricated devices with simulation results.

4.4.1 Switches

Firstly, optical-based switches are described based on the modelling strategy introduced in

Section 4.2, with internal behaviours based on MZIs and MRs blocks. The timing and functional

characteristics of such devices are considered, where values such as the network transmission rate

and dissipated power are obtained from simulations.

To do so, basic building blocks are defined and then replicated to build bigger systems.

Figure 4.10 presents the architectural structure of a 2×2 switch. This device routes two inputs to

two different outputs and might be designed as active or passive. This is the building block and

different topologies are built using this block. Also, this is the starting validation point, where all

models are employed for the first time.

Figure 4.11 shows the second validation system, based on 4×4 switches. Figure 4.11.(a)

presents a 4x4 Beneš switch, while Figure 4.11.(b) illustrates a 4x4 Spanke-Beneš switch. We

selected these blocks thanks to the fact that they are already widely employed and have a rich

gamma of results available in literature. Further, prototyped devices such as the ones presented are

available for in-lab validations, enhancing obtained results.

Figure 4.12 shows a 5×5 MR-based strictly non-blocking switch [87]. The figure illustrates

the router internal organization where it is possible to see the 16 micro-ring resonators (MRs), six

65

Figure 4.10 – 2×2 validation switch block, based on MZIs and MRs.

(a) 4x4 MZI-Based Beneš Switch (b) 4x4 MZI-Based Spanke-Beneš
Switch

Figure 4.11 – 4×4 validation topologies.

waveguides, and two waveguide terminators. The MRs in the switching fabric are identical, and

have the same on-state and off-state resonance wavelengths.

Figure 4.12 – 5×5 MR-based strictly non-blocking switch [87].

66

All network topologies used in this thesis are based on the introduced switching blocks.

The topologies are illustrated using the switches abstracted view or nodes representation view.

4.4.2 Topologies

Different network topologies are described. Network topologies such as the 8×8 Beneš

(eight I/O ports and 20 switches) network [88], a strictly non-blocking 32×32 topology (32 I/O

ports and 1024 switches) [89] and a MR-based mesh topology [90] are used in order to measure the

models accuracy in different scenarios.

In addition to describing an already known topologies, we propose a new topology, called

StraightForward (SF), is used for comparison. The SF topology is presented in Figure 4.13. This

network is defined to be simple, with no waveguide crossings between blocks. Still in the same Figure,

it is possible to see, once again, that only basic 4×4 switch blocks are used. When compared to

the 8×8 Beneš, the 8×8 SF presents a better path availability, as presented in Section 5.1, which

means that more parallel communications can be performed. Also, for any configure path in the

network, the number of nodes will be the same.

Figure 4.13 – 8x8 SF Network

At this point, it is important to highlight that the majority of the validation architectures are

based on MZIs, but are not limited to them. This is due the fact that prototyped MZI-based switches

are available, thus making them more suitable for models validation. Nevertheless, topologies based

on MRs are also used and have their published results used [87][65].

67

5. CONTROL UNIT - THE LUCC

In OIN based systems, the employment of optical technology provides a fast communication

path. From a network perspective, where the network is composed of a control layer (responsible for

the access control and network configuration) and a transmission layer, the controller is the slowest

component. Due to this fact, its latency determines the latency of the entire system. So, further

speed-up in OINs can be achieved through the improvement of the controller. Therefore, to take

advantages of the OIN characteristics, it is important to find new solutions enabling the acceleration

of the control unit in OIN based systems.

Centralized controllers have been successfully demonstrated [22], thus making this solution

newsworthy to be exploited. We propose a new control unit which relies in pre-calculated routes

stored on fast access memories, such as Look-up Tables (LUTs). The routes are generated by

the Shortest Path First algorithm, so the smallest number of hops can be used. As the control

unit uses Look-up Tables (LUT), the developed controller is named LUCC (LUT-based Centralized

Controller).

The design of LUCC consists of four different parts: the adjacency matrix definition, the

conflict resolution, the path configuration, and the runtime calculation (i.e., dynamic setup). The

matrix definition is a technique used to describe all the network connections, facilitating applying

different methods for possible simplifications (e.g., the matrix reduction method [85]). The conflict

resolution is responsible for detecting same-destination conflicts (i.e., when several IPs simultaneously

request to communicate with the same IP core), and solving them using a given algorithm. The

path configurations is a memory block used to store static data accessed by the controller during the

runtime, which can be built using the output from the matrix definition. This memory is used mainly

to reduce computation time, thus reducing the overall control latency. The runtime calculations is

a block responsible for real-time calculations (e.g., computations related to path assignments and

readings of memory addresses). Figure 5.1 illustrates the designed controller overview. The matrix

definition and the path configuration are performed at design time and result in the LUT which

holds the network paths, while the conflict resolution and real-time calculations are performed at

runtime.

To minimize the time overhead, the iSLIP algorithm [91] is used as an inspiration for the

LUCC. This algorithm has been proven to work efficiently for small to medium size networks and it

works with ’n’ iterations, where each iteration can be divided into three steps:

• Request: all requesting input ports signal their intention to have access to the network, which

are stored in virtual queues, one for each port;

• Grant: each output port that has received a request must determine which input ports may

be granted to send. For the situations where only one input port is requesting access, this step

is straightforward. For the cases where two or more requests are targeting the same output,

a Round-Robin (RR) algorithm is used to decide which will have access granted, and;

68

Figure 5.1 – LUCC design overview.

• Accept: the input ports consider all grant messages and choose from them in a Round-Robin

fashion. When selecting, the input notifies the targeted output that the access is granted and

only after receiving the accept signal it can move to the next request.

The iSLIP runs through multiple iterations. As a result, the matches number of input-to-

output is improved and studies showed that running the iSLIP beyond four iterations does not yield

significantly greater matches [91]. Figure 5.2 illustrates the relation between the number of iterations

and the obtained network throughput under different traffic patterns. The network throughput does

not increase after two iterations [92].

Similarly, the implemented control core relies on three steps with the difference that the

LUCC does not perform recursive iterations nor utilizes virtual queues on the input ports1. The reason

for that is to reduce the complexity of the implemented core focusing on a fast and efficient conflict

solution. A possible drawback in removing such features from the original iSLIP implementation lies

in the fact that the recursive iterations are designed to improve throughput. This way, for some

specific scenarios, the LUCC throughput might be inferior when being compared with the original

iSLIP implementation.

Figure 5.3 presents the decision chart of the controller, where the LUCC execution flow is

depicted into single decision steps. Mostly, the overall behaviour of the conflicts resolution block

and the path attribution are illustrated. The flow chart represents all steps taken by the LUCC

within one clock cycle. The one clock cycle latency is obtained by the combination of the fast

access LUT and the optimized conflicts resolution blocks, presented hereafter. The execution flow

works as follows. The controller expects a request, and by the time it receives one it checks if

the targeted destination is available (not busy, in the middle of another transmission or somehow

1As the LUCC works in a request-based approach, there is no need for virtual queues in the input. This way,
each requesting input port signals its desire to access the network using one bit (e.g., request signal) and the LUCC
signals the input port may start transmitting using an acknowledge signal (e.g., ack signal).

69

Figure 5.2 – iSLIP throughput X iterations number [92].

not able to receive a message). Next, the LUCC checks if there is no destination conflicts: if a

conflict is found, the round robin algorithm determines which requesting node should have its access

granted. Following, the LUT is accessed in order for the network to be configured and the granting

signal is sent to the requesting node. Finally, the LUCC waits for the signal to point the end of

communication, sent by the transmitting port and by the time it receives the signal, the connection

is closed.

5.1 Path Analyzer and LUT Creation - The PALC

Besides developing the LUCC, a path analyzer and a table generator framework were

implemented. This tool was created to ease the early stage evaluation of topologies, even before

their modelling. To use the tool, the designer must describe the topology as a graph, i.e. Figure 5.4,

and use this graph as the entry point. Starting from the topology graph, all possible communication

combinations and all possible paths are generated. The worst, best and average cases are also

analyzed. The best cases stand for those cases where all requests of an input set are satisfied.

Average cases are for those cases where a portion of the request combinations are satisfied, while

the worst cases are for the worst obtained routing for one input set. Finally, the tool generates the

memory array used by the controller, which stores the pre-calculated paths.

Listing 5.1 presents the textual entry for the tool, where the Graph view of the 8×8 Beneš

network, illustrated in Figure 5.4, is described and three distinct groups are found:

70

Figure 5.3 – LUCC decision flow chart.

1. The number of connections in the network are the number of connections, related to the

internal graph nodes and their connections and not the system nodes, like IPs;

2. The network nodes connections, where the internal nodes and their weighted edges are shown.

The connections are presented in trios - origin, destination and weight of each connection. As

it is possible to see in Figure 5.4, each node is assigned with an ID. These IDs are used as

index to represent the origin node and destination node, for each connected pair. The weight

of each connection can represent different aspects of the connection: the distance between

nodes or the consumed power to communicate between connected nodes. For example, the

power consumption for the BAR and CROSS-BAR states of the MZI have different values.

The weight can represent these consumption in such a way as the tool takes into account

these variations when performing its computation, and;

71

3. The I/O mapping, where the input and output network points, i.e. the IPs, are mapped to

one specific node in the topology. For instance, in Figure 5.4, one IP is mapped to input

network node 57 and output network node 74. This means that, this specific IP will insert its

data into the network through node 57, and any other IP which targets it will address their

messages to node 74.

Although this file was generated manually, some third-party tool might be used, like [93],

in order to accelerate the description.

Figure 5.4 – 8×8 Beneš topology numbered graph representation.

Listing 5.1 – 8×8 Beneš Network description as a graph
1 −−Number o f Connec t i on s

2 112

3 −−Nodes Connec t i on s

4 1 2 1 1 4 1 3 2 1 3 4 1 5 6 1 5 8 1 7 6 1 7 8 1 9 10 1 9 12 1

5 11 10 1 11 12 1 13 14 1 13 16 1 15 14 1 15 16 1 17 18 1 17 20 1 19 18 1 19 20 1

6 21 22 1 21 24 1 23 22 1 23 24 1 2 5 1 4 17 1 6 9 1 8 21 1 14 7 1 16 19 1

7 18 11 1 20 23 1 10 65 1 12 73 1 22 67 1 24 75 1 25 26 1 25 28 1 27 26 1 27 28 1

8 29 30 1 29 32 1 31 30 1 31 32 1 33 34 1 33 36 1 35 34 1 35 36 1 37 38 1 37 40 1

9 39 38 1 39 40 1 41 42 1 41 44 1 43 42 1 43 44 1 45 46 1 45 48 1 47 46 1 47 48 1

10 26 29 1 28 41 1 30 33 1 32 45 1 38 31 1 40 43 1 42 35 1 44 47 1 34 69 1 36 77 1

11 46 71 1 48 79 1 49 50 1 49 52 1 51 50 1 51 52 1 50 1 1 52 25 1 53 54 1 53 56 1

12 55 54 1 55 56 1 54 3 1 56 27 1 57 58 1 57 60 1 59 58 1 59 60 1 58 13 1 60 37 1

13 61 62 1 61 64 1 63 62 1 63 64 1 62 15 1 64 39 1 65 66 1 65 68 1 67 66 1 67 68 1

14 69 70 1 69 72 1 71 70 1 71 72 1 73 74 1 73 76 1 75 74 1 75 76 1 77 78 1 77 80 1

15 79 78 1 79 80 1

16 −− I /O Mapping

17 49 66

18 51 68

19 53 70

20 55 72

21 57 74

22 59 76

23 61 78

24 63 80

The implemented SPF algorithm is Dijkstra [86] and the tool output, after processing the

given topology and analyzing the data patterns is presented in Listing 5.2. The performed analysis is

72

analytical, and does not consider traffic patterns and wavelength division. It is important to highlight

that provided information is an early stage evaluation of topologies, obtained from the analytical

analysis of possible paths in the network, considering only the network routes and contention. In

summary, the following information is provided:

• # RUNS: presents the number of different combinations used to feed the network. For

example, the connection between the first network input and the second network output is

one combination. The connection between the first network input and the second network

output at the same time as the connection between the third network input and the fourth

network output is another combination;

• # DIFFERENT INPUTS USED: shows the number of I/O ports in the analyzed network;

• # ROUTING CASES: presents the percentage of successful routing for a given number of

inputs. So, for example, line 14 shows that, on average, when two distinct inputs are trying to

reach two different outputs, the topology is able to provide a path at 90.39% of the time. For

the remaining 9.61% of cases, it is not possible to have both connections in parallel. Another

example is in line 20, where eight inputs are trying to reach eight outputs (all-to-all). In this

case, in average the Beneš topology is able to provide a path to satisfy the eight requesting

inputs at the same time at 55.39% of the time. This category is subdivided in three extra

categories:

– BEST CASES: as the name suggests, shows the best cases for all groups of inputs

number, one-by-one;

– AVERAGES: presents the mean of the success rate for closing connections in parallel,

for all inputs number, and;

– WORST CASES: presents the worst cases obtained by the given topology for all the

inputs.

• LAST WORST CASE: is the last worst case mapping configuration checked, and;

• LAST RUN: is the last tried mapping configuration.

73

Listing 5.2 – 8×8 Beneš summary
1 693838 RUNS − 8 DIFFERENT INPUTS USED

2 ∗ BEST CASES NODES ROUTING :

3 ∗∗ 1 INPUT(S) − 1 ROUTED (100 .00 %)

4 ∗∗ 2 INPUT(S) − 2 ROUTED (100 .00 %)

5 ∗∗ 3 INPUT(S) − 3 ROUTED (100 .00 %)

6 ∗∗ 4 INPUT(S) − 4 ROUTED (100 .00 %)

7 ∗∗ 5 INPUT(S) − 5 ROUTED (100 .00 %)

8 ∗∗ 6 INPUT(S) − 6 ROUTED (100 .00 %)

9 ∗∗ 7 INPUT(S) − 7 ROUTED (100 .00 %)

10 ∗∗ 8 INPUT(S) − 8 ROUTED (100 .00 %)

11 ∗ AVERAGES NODES ROUTING :

12 ∗∗ 1 INPUT(S) − 1 .00 ROUTED (100 .00 %)

13 ∗∗ 2 INPUT(S) − 1 .81 ROUTED (9 0 . 3 9 %)

14 ∗∗ 3 INPUT(S) − 2 .70 ROUTED (8 9 . 9 4 %)

15 ∗∗ 4 INPUT(S) − 2 .39 ROUTED (5 9 . 6 9 %)

16 ∗∗ 5 INPUT(S) − 4 .80 ROUTED (9 5 . 9 2 %)

17 ∗∗ 6 INPUT(S) − 3 .44 ROUTED (5 7 . 2 6 %)

18 ∗∗ 7 INPUT(S) − 6 .89 ROUTED (9 8 . 4 4 %)

19 ∗∗ 8 INPUT(S) − 4 .48 ROUTED (5 5 . 9 6 %)

20 ∗ WORST CASES NODES ROUTING :

21 ∗∗ 1 INPUT(S) − 1 ROUTED (100 .00 %)

22 ∗∗ 2 INPUT(S) − 1 ROUTED (5 0 . 0 0 %)

23 ∗∗ 3 INPUT(S) − 2 ROUTED (6 6 . 6 7 %)

24 ∗∗ 4 INPUT(S) − 2 ROUTED (5 0 . 0 0 %)

25 ∗∗ 5 INPUT(S) − 3 ROUTED (6 0 . 0 0 %)

26 ∗∗ 6 INPUT(S) − 3 ROUTED (5 0 . 0 0 %)

27 ∗∗ 7 INPUT(S) − 4 ROUTED (5 7 . 1 4 %)

28 ∗∗ 8 INPUT(S) − 4 ROUTED (5 0 . 0 0 %)

29 ∗ LAST WORST CASE RUN NODES:

30 | | 0 −> 7 | | 1 −> 6 | | 2 −> 5 | | 3 −> 4 | | 4 −> 3 | | 5 −> 2 | | 6 −> 1 | | 7 −> 0 | |

31 ∗ LAST RUN TRIAL NODES:

32 | | 0 −> 7 | | 1 −> 6 | | 2 −> 5 | | 3 −> 4 | | 4 −> 3 | | 5 −> 2 | | 6 −> 1 | | 7 −> 0 | |

As it is possible to see, the provided summary helps designers obtain an initial feedback on

a given network topology, even before its deployment, without any need for describing, simulating or

testing it, but simply by analytically evaluating it. For comparison matters of practical employment

of the tool, the same procedure used to analyze the 8×8 Beneš Network was performed for the 8×8

SF Network, which was modelled as a graph, its textual description was inserted into the analyzing

tool and its summary was collected. The Listing 5.3 illustrates the obtained information, which

shows that the 8×8 SF Topology presents a better path availability than the 8×8 Beneš Topology,

as both average and worst-case scenarios presented a higher parallel path availability. This is thanks

to the fact that the SF topology presents more internal connections, when compared to Beneš.

As presented in figures 5.4 and 5.5, the Beneš is composed of two 4×4 switches and eight 2×2

switches, while the SF is composed of five 4×4 switches.

74

Listing 5.3 – 8×8 SF Summary
1 −−SUMMARY−−

2 693838 RUNS − 8 DIFFERENT INPUTS USED

3 ∗ BEST CASES NODES ROUTING :

4 ∗∗ 1 INPUT(S) − 1 ROUTED (100 .00 %)

5 ∗∗ 2 INPUT(S) − 2 ROUTED (100 .00 %)

6 ∗∗ 3 INPUT(S) − 3 ROUTED (100 .00 %)

7 ∗∗ 4 INPUT(S) − 4 ROUTED (100 .00 %)

8 ∗∗ 5 INPUT(S) − 5 ROUTED (100 .00 %)

9 ∗∗ 6 INPUT(S) − 6 ROUTED (100 .00 %)

10 ∗∗ 7 INPUT(S) − 7 ROUTED (100 .00 %)

11 ∗∗ 8 INPUT(S) − 8 ROUTED (100 .00 %)

12 ∗ AVERAGES NODES ROUTING :

13 ∗∗ 1 INPUT(S) − 1 .00 ROUTED (100 .00 %)

14 ∗∗ 2 INPUT(S) − 2 .00 ROUTED (100 .00 %)

15 ∗∗ 3 INPUT(S) − 2 .24 ROUTED (7 4 . 6 1 %)

16 ∗∗ 4 INPUT(S) − 2 .48 ROUTED (6 2 . 1 1 %)

17 ∗∗ 5 INPUT(S) − 4 .03 ROUTED (8 0 . 5 8 %)

18 ∗∗ 6 INPUT(S) − 6 .00 ROUTED (100 .00 %)

19 ∗∗ 7 INPUT(S) − 7 .00 ROUTED (100 .00 %)

20 ∗∗ 8 INPUT(S) − 8 .00 ROUTED (100 .00 %)

21 ∗ WORST CASES NODES ROUTING :

22 ∗∗ 1 INPUT(S) − 1 ROUTED (100 .00 %)

23 ∗∗ 2 INPUT(S) − 2 ROUTED (100 .00 %)

24 ∗∗ 3 INPUT(S) − 2 ROUTED (6 6 . 6 7 %)

25 ∗∗ 4 INPUT(S) − 2 ROUTED (5 0 . 0 0 %)

26 ∗∗ 5 INPUT(S) − 3 ROUTED (6 0 . 0 0 %)

27 ∗∗ 6 INPUT(S) − 4 ROUTED (6 6 . 6 7 %)

28 ∗∗ 7 INPUT(S) − 4 ROUTED (5 7 . 1 4 %)

29 ∗∗ 8 INPUT(S) − 4 ROUTED (5 0 . 0 0 %)

30 ∗ LAST WORST CASE RUN NODES:

31 | | 0 −> 3 | | 1 −> 2 | | 2 −> 1 | | 3 −> 0 | | 4 −> 7 | | 5 −> 6 | | 6 −> 5 | | 7 −> 4 | |

32 ∗ LAST RUN TRIAL NODES:

33 | | 0 −> 7 | | 1 −> 6 | | 2 −> 5 | | 3 −> 4 | | 4 −> 3 | | 5 −> 2 | | 6 −> 1 | | 7 −> 0 | |

Besides analyzing the topologies, the proposed tool also generates the memory arrays to

be used by the LUCC. The created memory array is a static table structure and, after its creation,

it will never be changed by the LUCC. This way, even though its generation processing time and

complexity is costly (it is a NP-complete problem [94]) the benefits of having this structure during

the runtime pays off the effort. This is thanks to the fact that the time it takes to access the

memory array is smaller than the time it would take to calculate the entire route for every request.

5.2 Conflict Resolution Block - The CRB

The conflict resolution block (CRB) is a piece of hardware responsible for detecting and

solving conflicting points in the targeted IPs, where a conflicting point is defined as any situation in

which two or more inputs are requesting the same output. It works by analyzing all LUCC’s received

requests and comparing them among each other to check for disputes.

The CRB works in two steps: first, it analyzes all requests, looking for a conflict, and;

second, if a conflict is found, a Round-Robin algorithm is applied to define which IP will have

75

its accessed granted. Algorithm 2 presents the logical behaviour of the CRB block, showing the

pseudo-code extracted from the implemented design.

Algorithm 2 CRB Logic Implementation
i ← Nκ ⊲ number of I/Os in the network

j ← Nκ ⊲ number of I/Os in the network

for all i do
for all j do

if conflict(i) = 0 then
if req(j) 6= req(i) then

conflict(i)← 0
else if req(j) = req(i) then

conflict(i)← 1
end if

end if
end for

end for
for all i do

if conflict(i) = 1 then
for all j do

while roundDone 6= 1 do
if RoundRobinChooser() = j then

roundDone ← 1
granted(j)← i

else
roundDone ← 0

end if
end while

end for
end if

end for

The conflict resolution block works by analyzing all input and output pairs and then finding

the ones where two or more inputs are requesting the same output. This block might work either

for the cases where the receiver accepts only one incoming message at a time or when all possible

wavelengths are being used, thus not leaving any wavelength available for the new request.

Following, the Round-Robin (RR) algorithm implements a first-in-first-out (FIFO) queue

to decide which port will have its access granted when a conflicting situation is found. As the RR

uses a FIFO for each input, each request is treated individually as one particular process, which is

triggered by the conflict bit. Lastly, the control algorithm implements the LUCC, by processing the

received requests, where each request port has its own running process.

76

5.3 Dynamic Setup Block

The Dynamic Setup Block (DSB) is implemented to alleviate the design physical imple-

mentation complexity, as only the usage of the CRB and the LUT would imply a prohibitive resource

usage to efficiently apply the LUCC. If only the CRB and LUT blocks were used, a big (physically

unbearable) chip area would be needed, as the memory array would get bigger as the number of paths

combinations rise. Table 5.1 presents the LUT size for an I/O number up to 10, where it is possible

to see that, even for a small number of I/Os, the LUT size gets big. The number of combinations

is the same no matter what is the network topology. This is thanks to the fact that the number

of combinations is only related to the input-output combinations. What changes accordingly to the

topology is the LUT information, which holds the specific paths for each input-output combination.

Also, the reduction method introduced later is also topology dependent, as the network organization

reflects in the degree of possible LUT optimization.

Table 5.1 – LUT Growing Size.
I/O Table Entries

2 6
3 16
4 106
5 778
6 6598
7 63838
8 693838
9 8361358
10 110557438

Consequently, a practical implementation relying only on the LUT is not feasible. The

DSB works as a real-time calculation unit on the LUCC. Acknowledging the fast access time of

LUTs and the ease of their usage, a reduced version of the final LUT is created, as a LITE version.

The LITE-LUT stores only small portions of the network info, such as the most critical paths or

the paths of one of the basic 4×4 switches used as construction blocks and the DSB performs the

remaining calculations necessary to choose the ideal path. The path allocation generation process

is presented in the Algorithm 3.

77

Algorithm 3 LUT Generation and Reduction
inputsCombinations();

for all inputs do

spf _algorithm(); ⊲ executes the SPF algorithm for each combination set

end for

allocOptmization(); ⊲ exclude duplicated table entries / realloc values

while allocSize ≥ threshold do2

allocReduction();

end while

Considering Figure 5.5 as an example, which presents the SF topology, it is possible to see

one of the LITE-LUT’s reduction approaches. In the original LUT size for this network, all possible

combinations and paths were calculated and stored, resulting in a LUT’s size to be equal to 693838

table entries, as eight I/Os are used. The network is composed of five 4×4 identical switches. This

makes it possible to generate the LUT for only one of the switches and then replicate the information

for all remaining 4×4 switches. Thus, on the LITE-LUT version only the paths for one 4×4 switch

is stored, and the complete path is calculated on the fly, as a composition of the information for one

4×4 switch by the DSB. In this case, the LUT size dropped from 693838 to 106 table entries.

Different topologies lead to different reduction effectiveness. For instance, aforementioned

8×8 SF topology, the LUT size dropped from 693838 to 106 table entries. This is thanks to the fact

that the SF topology is composed of similar 4×4, making it possible to reduce at most the LUT,

resulting in a small LITE-LUT. The 8×8 Beneš network has a different internal organization, being

composed of two 4×4 switches and eight 2×2, leading to a bigger LITE-LUT. This way, for the

8×8 Beneš network, not only the 106 entries for the 4×4 switch is needed, but also the information

of the 2×2 switches. This results in a LITE-LUT size of 154 entries.

The DSB works using the information stored in the LITE-LUT. For example, using the

8×8 SF network from Figure 5.5 and assuming that the LITE-LUT stores the path for one 4×4

switch, used in the 8×8 construction. The DSB receives the request for a given path and analyzes

the information regarding the 4×4 switch. Following, it checks the next 4×4 switch in the path,

until the destination is reached. In the figure, it is possible to notice the procedure using any input

as an example. Assuming input A wants to communicate with output A. The DSB checks that

input A is connected to the 4×4 switch S1. Using the LITE-LUT information a given route will be

processed. Analyzing the route, the DSB checks that the next 4×4 switch is the S2. Once again,

the LITE-LUT is accessed and the route for this portion is processed. By the time the DSB realizes

the end of the path, the entire route is attributed to the input A to output A communication.

2In this context, a threshold size might be defined as any limitation, or constraint, on the final memory size. For
example, memory utilization on FPGAs can be defined as the upper threshold size. Using the 4×4 Beneš switch and
the 2×2 switching block it is possible to make a comparison. While the LUT synthesis for a given FPGA for the 2×2
switching block results in nine flip-flops, the same process for the 4×4 Beneš results in 27 flip-flops. It is important
to highlight that the synthesis process performs optimizations, thus the original LUT size is not directly related to
the number of used flip-flops.

78

Figure 5.5 – Graph view of 8×8 SF Network.

5.4 Discussion

The LUCC alleviates the control latency impact in OIN-based systems. The use of lookup

tables containing pre-calculated routes reduces the time spent for network routing. Also, the Round

Robin and conflicts detection blocks are implemented in a way to avoid adding extra processing

overhead. On the other hand, the dynamic setup block adds extra resource utilization overhead,

as extra hardware blocks are used. Due to the extra hardware overhead, the power consumption is

increased. Also, as a centralized core is used, the controller scaleability can be an issue. Further, as

the number of network I/Os rises, the LUT size grows as well. As a result, the LUCC is suited for

small-sized networks. Even so, as presented in Chapter 8, it has unmatched latency time.

The LUCC main advantages are:

• Small overhead to detect and solve conflicts;

• Low latency to receive requests and determine network route, and;

• Using a SPF algorithm ensures that, for any requests combination, the best possible route will

be used.

The LUCC main drawbacks are:

79

• Low scaleability as a result of using a centralized core, and;

• Larger memory utilization, used to store the LUT with the pre-calculated routes. Even though

reduction methods were introduced to lower the memory utilization, the LITE-LUT is still

translated into memory blocks, which requires a large area to be deployed.

80

81

6. CONTROL UNIT - THE HYCO

This chapter introduces the Hybrid Controller (HyCo), a new controller defined to cope

with the scaleability issue presented by the LUCC controller. Leveraging the scaleability of circuit-

switched techniques and the full control provided by centralized cores, the HyCo employs both

approaches to fully exploit OINs capabilities. Moreover, the HyCo takes advantage of the introduced

pre-calculated routes to expedite the network configuration and lower the latency. A Bloom filter

[95] is employed for the controller to self-optimize itself by learning and storing critical information

about the network during the system execution.

Figure 6.1 presents an overview of the HyCo organization. The execution flow followed by

requests are represented in the figure with arrows, which show the interaction between blocks.

The main blocks of the HyCo architecture are presented hereafter and each one of the

blocks will be explained in the following subsections.

• Bloom filter: used to check if the desired route is available;

• Round-Robin: employed for the cases where a route is not available or a conflict is found.

It is placed in the conflict resolution unit (CRU);

• Control unit: receives access requests and triggers the network configuration. It is the access

control unit (ACU), and;

• Configuration units: are the distributed nodes that configure the optical switches, named

distributed configuration units (DCU).

Figure 6.1: HyCo overview. The conflict resolution unit (CRU), the access control unit (ACU) and
the distributed configuration units (DCU) are illustrated. The bloom filter functions and array are
represented in the top.

Figure 6.2 presents the HyCo execution flow, where it is possible to see the steps executed

by the controller, from the moment it receives a request until the request is granted and then the

end of the communication. The flowchart represents all steps taken by the HyCo when processing

requests. The HyCo expects a request, and by the time it receives one it checks if the targeted

destination is available. Next, the HyCo checks if there is no destination conflicts: if a conflict is

82

found, the round robin algorithm determines which requesting node should have its access granted.

Following, the HyCo verifies if the requested route was already tried, by checking the Bloom filter.

Later, the DCUs are triggered in order for the network to be configured and by the time the network

is configured the granting signal is sent to the requesting node. Finally, the HyCo waits for the signal

to point the end of the communication, and by the time it receives it, the connection is closed.

Figure 6.2 – HyCo execution flow.

6.1 Conflict Resolution Unit

The Conflict Resolution Unit (CRU) is a hardware block responsible for detecting conflicts

in targeted IPs. A conflict is defined as any situation in which two or more source IPs are targeting

the same destination IP at the same time.

The CRU works as follows: firstly, it analyzes all the requests, looking for a conflict.

Secondly, if a conflict is found, a Round-Robin (RR) algorithm is applied to define which IP will

have its accessed granted. To detect a conflict, a matrix method is used: for every new request, all

the source-target pairs are mapped to a matrix R of requests, and then each column j is checked

for any possible conflicts. For instance, the matrix for a 3×3 optical switch, where all the inputs

83

are requesting to communicate with the output two (〈0→ 2, 1→ 2, 2→ 2〉) is:

R =











0 0 1

0 0 1

0 0 1











.

Considering the same switch, but in a different scenario such that 〈0→ 2, 1→ 0, 2→ 1〉,

the request matrix changes to:

R =











0 0 1

1 0 0

0 1 0











.

The matrices are created based on the IDs of the requesting input port and the requested

output port. For example, using the same switch as discussed above, R(i , j) =1 if the input port i

requests to access output port j in the switch, such that:

∀ij , if request(i) = j ⇒ Rij = 1. (6.1)

As the matrix can be accessed directly (i.e., the hardware implementation is a register),

no extra processing is needed, thus accelerating the conflict detection.

Once the matrix is generated, all the columns of the matrix (each column is associated

with an output port) are verified to find any possible conflicts, where a conflict is defined as any

situation in which two or more inputs are requesting the same output. This can be defined as:

∀j ∈ R, ¬XOR(j) ∧ OR(j) =⇒ conflict(j) = 1. (6.2)

Taking matrix R as an example, such that:

R =











1 0 0

0 0 1

0 0 1











,

a conflict is configured for inputs one and two, as both of them are targeting output two.

Using equation 6.2 for column two we have:

¬(0 XOR 1 XOR 1) ∧ (0 OR 1 OR 1) =⇒ ¬(0) ∧ (1) =⇒ (1) ∧ (1) =⇒ conflict(2) = 1.

When a conflict is found, FIFO queue is implemented based on the RR algorithm to decide

which port will be granted access. Since the RR algorithm uses a FIFO for each input, each request

is treated individually as one particular process that is triggered by the conflict flag controlled by

the matrix method.

84

Figure 6.3 illustrates the conflict detection block execution flow on a waveform graph. In

the figure, it is possible to see two different input ports requesting (req(0) and req(1)) access to

the same output port (target(0) and target(1)): output 2. This situation sets the conflict bit on

the output 2 (conflict(2)) which triggers the Round-Robin algorithm. Further, it is possible to see

that for each new conflict, the RR picks a different port to be granted, avoiding starvation. When a

port requests access to the network it is expected that at some point it will have its access granted,

even when conflicts are found. When a port is never granted access, it is called starvation.

Figure 6.3 – Conflict detection and Round-Robin execution flow.

6.2 Bloom Filter

A Bloom filter [95] essentially consists of a bit vector of length m. In order to insert a new

entry in the Bloom filter, different hash functions1 are used. Each function returns a given value,

which is used as index. The returned indexes are then used to access the Bloom bit vector and set

these positions to ’1’. To test if an item is in the filter, again the filter is fed with the same hash

functions. This time, the filter is checked to see if any of the bits of these positions are not ’1’. If

any bit is not ’1’, it means that the item is definitely not in the set. Otherwise, it is probably in the

set.

For example, assuming a Bloom filter with m = 16 and two hash functions, such that:

h1(x) takes the lower bits of the input data and h2(x) takes the higher bits of the input data. Two

scenarios show the process to update the bloom filter bit array. First, the Bloom filter bit array

should be initialized and all the positions should be marked to ’0’, as presented next.

1A hash function h(x) is a mathematical expression that returns one number based on an implemented equation.
In the current context, the hash functions receive as input the targets set and then apply different mixing mechanisms
on it, in such a way that each set results in different values. For example, assuming a hash function h(x) that shifts
all input bits to the left and targets = 32, such that 〈0→ 2 and 1→ 3〉. First, the targets array is converted from
integer to binary, such that targets = 1110. Next, the hash function h(x) is used, so all the bits are shifted left: h(x)

85

Table 6.1 – Bloom filter bit array initial state.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In the first scenario, the input set is equal to 108. This way:

input = 108d → 01101100b

h1(x) = 1100b → 12d

h2(x) = 0110b → 6d

By applying the hash functions, it is possible to use the resultant values as indexes to

update the Bloom filter bit array:

Table 6.2 – Updated Bloom filter bit array with positions 12 and 6 marked to ’1’.
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

In the second scenario, the input set is equal to 161, so:

input = 161d → 10100001b

h1(x) = 0001b → 1d

h2(x) = 1010b → 10d

using the result of the hash functions, the Bloom filter bit array is updated again:

Table 6.3 – Updated Bloom filter bit array with positions 1 and 10 marked to ’1’.
0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0

To check if a value is in the Bloom filter array, the same hash functions should be used.

Applying obtained indexes, the Bloom filter bit array is tested: if any position has a zero, then the

value is not in the array. If all checked positions have ones, then probably the value is in the bit

array.

For example, an input set that equals to 225 gives:

input = 225d → 11100001b

h1(x) = 0001b → 1d

h2(x) = 1110b → 14d

= 1101. Finally, the resulting bit array is converted back to integer: 1101 → 13. This way, the Bloom filter array
will have its bit in position 13 set to ’1’.

86

Table 6.4 – Bloom filter bit array testing example for input = 225.
0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0

In the position 14 the bit is ’0’, which indicates that this input was not fed to the Bloom

filter. Now, testing an input which equals to 161 gives:

input = 161d → 10100001b

h1(x) = 0001b → 1d

h2(x) = 1010b → 10d

Table 6.5 – Bloom filter bit array testing example for input = 161.
0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0

In this case, both tested positions have ’1’ which indicates that the input set was probably

fed to the Bloom filter.

The Bloom filter is employed in the context of the HyCo in order to avoid unnecessary

path searching. By storing in the Bloom filter the information of tried paths which were unsuccessful

to route all requesting inputs, the HyCo is able to avoid trying the same path again in the future.

For example, using the 4×4 MZI-based Spanke-Beneš optical switch: if the requesting inputs are

targeting destinations 0123, such that 〈0 → 3, 1 → 2, 2 → 3, 3 → 0〉, not all the paths would be

available, as would cause contention. In this case, the input set 0123 would be used to update the

Bloom filter, using the same procedure as introduced above. In the future, when the same 0123 set

is tried again, the HyCo does not try to route it, as regarding in the information stored in the Bloom

filter, it will know that this route is not possible. In this way, it is possible to speed up the routing

decisions, as unsuccessfull routes will never be tried again. As the information of which routes are

not possible can be added during run-time, the HyCo self-optimizes itself, through learning from

previous tries.

The HyCo Bloom filter block works as follows:

1. The block receives the destinations (targets) array and applies different hash functions on

them;

2. Using the obtained indexes from the hash functions, the Bloom filter is tested on the resulting

positions. Two possible cases can happen:

• All tested positions have ’1’. This means that desired routes were already tried and were

not available. In this case, the RR algorithm is used and one of the requesting ports is

chosen to be stalled. The new set, without the stalled port is used as input of the Bloom

filter block, starting the process from the beginning, and;

87

• At least one of the tested bits in the Bloom filter is equal to ’0’. This means that this

input set either was not tried before or it was tried and successfully routed. In both

cases, this indicates that the controller should try to route this input set, which triggers

the network distributed configuration units.

3. If all the nodes are successfully routed, the Bloom filter takes no action. For the cases where

any input is not satisfied within a specific time, configured by the user, the Bloom filter is

updated. This is achieved by using the hash functions and using the obtained indexes to mark

the corresponding bits in the Bloom filter array to ’1’. This way, next time the same set is

tried again, the Bloom filter will indicate that the desired routes are not possible2.

The Bloom filter block allows three configurations. STATIC configuration calculates all

the possible routes at design time (off-line) and store only the filter. In this case, the Bloom Filter

would only be accessed, as there would be no need for further additions. For the cases where the

calculation of all possible routes is not possible (due to a large number of combinations, for instance),

the Bloom filter can be fed during runtime. In this case, LIMITED configuration is established where

a stopping point can be defined, indicating that no extra additions will be admitted to the filter,

for the cases where it is known that after some point no extra combinations will be found. Finally,

DYNAMIC configuration is used in cases where there is no limit to add new combinations to the

filter.

The number of hash functions and the size of the Bloom filter bit array are determined

based on the size of the network. As the number of I/O nodes rises, the number of hash functions

and the size of the bit array have to be enlarged as well. The number of hash functions varies from

four functions up to 16 hash functions, while the bit array size can be configured between a size

of 16 and 256 bits. One important aspect to be taken into account when deciding the number

of hash functions and the bit array size is their impact on the number of false positives. A small

bit vector enlarge the possibility of false positives being found. On the other hand, too big bit

array would lead to unnecessary usage of memory. This way, the choice of the bit array size is a

trade off between false positives and memory utilization. This decision can be performed relying on

analytical methods, which usually leads to the minimization of false positives at the cost of high

memory utilization. In order to avoid unnecessary memory utilization, it was chosen to perform this

tunning based on the knowledge of the network, where each network has its Bloom filter parameters

configured accordingly.

In order to illustrate the basic functionality of the Bloom filter, Figure 6.4 illustrates an

execution example. Three scenarios are presented:

2Bloom filters can produce false positives, which are situations where two or more different inputs result in the
same indexes, after applying the hash functions. This might lead to a situation where one input set is not routed
and the other set, which generates the same indexes is routed. Due to this fact, it was chosen to feed the filter
with unsatisfied routes. This way, for the cases where a false positive is found, this will not compromise the HyCo
functionalities, as the only thing that will happen is for the HyCo to try to close the route, as if it was not tried
unsuccessfully before.

88

1. A request (req) is made targeting a given set of output ports (targets = 3210, such that

〈0 → 0, 1 → 1, 2 → 2, 3 → 3〉). Firstly, the Bloom filter is tested (bloom check = ’1’) to

check if the input set was already tried. If it was not, the HyCo tries to configure the network

in order to satisfy all the requests. If this scenario is sucessfull, then by the time the network

is already configured, the ACU sends the confirmation signal (ack = ’1’). As all the requests

are satisfied, the Bloom filter is not updated (bloom set = ’0’);

2. Different ports are targeted (targets = 1203, such that 〈0→ 3, 1→ 0, 2→ 2, 3→ 1〉). Once

again, the first performed action is to check the Bloom filter (bloom check = ’1’) and as this

input set was not already tried the HyCo tries to configure the network in order to satisfy all

requests. In this case, not all the inputs could be satisfied, as the network did not provide

paths to route all inputs. In this case, hash functions are used in the input set (1203) and the

resulting bit(s) in the Bloom filter marked to ’1’, and;

3. A pre-tried set is used as a request group (targets = 1203). In this case, checking the Bloom

filter (bloom check = ’1’) returns positive, pointing out that this set was already tried and

the network was not able to route all the requests. Thus, one of the requesting ports is stalled

(targets = 120X, where X indicates that this input is not requesting access), to be granted

later. The network is then configured for the three remaining ports.

Figure 6.4 – Bloom filter block execution example for three scenarios.

The main gain on using a Bloom filter lies in the fact that, as the system runs, previously

received requests can be treated faster as the information regarding whether a route is possible or

not is stored in the filter. This enables the system to be self-optimized, as its knowledge over the

controlled network will improve over time, thus lowering its control latency.

6.3 Access Control Unit (ACU)

The Access Control Unit (ACU) is responsible for the access control to the network. It

holds the states of the connected IPs, such that the availability and busy status. When a request

89

arrives, the ACU checks the conflicts, the status of both destination IP and filter to make a decision.

If all states are found to be as expected, the ACU triggers the configuration of the network switches.

By the time it receives the confirmation pointing that the network is configured, an acknowledge

signal is sent to the requesting IP.

Furthermore, the request computation runs in parallel, and each possible request port is

considered as one running process. Thus, it is possible for the HyCo to receive requests, solve

conflicts and grant access to the network within a short time.

Figure 6.5 presents an example of the ACU execution. For a better visualization, not all the

involved signals in the process are presented. Also, each point mentioned in the text is highlighted

in the figure with an ID, such as A.1, for instance. In the figure, it is possible to check the ACU

block behaviour when a request arrives. Different scenarios are presented:

1. Output port three is targeted. The ACU checks for a conflict on the targeted port (conflict(3)),

represented by the point 1.A in the figure. As a conflict is found, the ACU expects the RR

(nextOnRR, point 1.B in the figure) to signal that it is the turn of the requesting port to have

its access granted. After the RR confirmation, the network distributed configuration units are

triggered, in order for the paths to be configured. After receiving the confirmation that the

route is closed (routeClosed, point 1.C in the figure), the acknowledge signal is sent (point

1.D in the figure);

2. Port one is targeted. As no conflict is found (point 2.A in the figure) the network distributed

configuration units can be triggered. As soon as the path is closed (point 2.B in the figure),

the acknowledge signal can be easily granted (point 2.C), and;

3. Port three is once again targeted, and again a conflict is found (point 3.A in the figure). This

time, as the port is not the next one in the RR queue (point 3.B in the figure), it is stalled

until the granted port targeting the output three ends its communication.

6.4 Distributed Configuration Unit (DCU)

Using the LUTs decreases the computation time, as the routing information can be stored

in fast access memories, replacing computation time for storage. Nevertheless, their usage increases

the physical memory utilization as the number of path combinations rises to a point at which it

becomes prohibitive. The DCU was conceived to reduce the memory utilization.

Since practical implementation relying only on LUTs is hard to achieve for large scale net-

works, the DCU works as a small, replicable, configuration unit. Similar to the technique introduced

in Section 5.3, a reduced version of the final LUT is created, the same LITE version. The LITE-LUT

stores only small portions of the network info, such as the most used paths or the paths for one

portion of the network. This small portion is then distributed. For example, Figure 6.6.(a) presents

90

Figure 6.5: Access control unit simplified execution exemplification for one input with three scenarios.

a hypothetical network, where a read-only database is connected with four nodes (A, B, C and D).

In this case, the paths for nodes A, B, C and D to read from the database can be stored in the

LITE-LUT, as they would happen more frequently. Any other communication combination, such as

A to B or C to A, for example, would have to be defined during the system execution. In Figure

6.6.(b), if the LUT stores the information of all the possible paths for a 4×4 switch, the LITE-LUT

could store only the info of one 2×2. Using the LITE-LUT information, it is replicated in order to

have the entire path for the 4×4 switch.

Figure 6.6 – DCU Distribution approach.

The main drawback when using DCU lies in the fact that not all the possible routes are

pre-calculated and stored. This fact leads to an overhead in time for the network configuration, as

the routes need to be calculated during the system execution. Indeed, opposed to the LUCC, the

HyCo does not take only one clock cycle. A more detailed discussion related to this aspect will be

presented in Chapter Chapter 8. The latency associated with the network configuration is defined

by the size of the network, where the larger the number of the network nodes, the higher the latency

is. For instance, while the LUCC takes one clock cycle to configure the 4×4 Beneš, the HyCo can

take up to three clock cycles. Still, as it will be discussed in Chapter 8, the HyCo presents one

91

of the lowest latency among state-of-the-art works, being overpassed only by the LUCC, with the

advantage of a better scaleability.

It is important to highlight that, even-though MZI-based switches were used for example

architectures, the HyCo is not anyhow limited to them. HyCo blocks would remain the same,

no matter what kind of topology or technology it is controlling. The only thing that changes

accordingly with the network is the information stored in the LITE-LUTs and DCUs. As a result, the

HyCo can be effectively employed in the networks using MZI-based switches and in those employing

Microresonator (MR)-based switches.

6.5 Discussion

The HyCo incorporates the benefits of both centralized and distributed cores to control

the network. The main gain in using the distribution approach allied to a centralized core lies in

the fact that most of the processing is performed in the central core, allowing the distributed units

to be as simple as possible, speeding up its execution and reducing the time required to configure

the entire network. Indeed, as presented in Section 8.5, the DCU time overhead is significantly

small (nanoseconds), so it does not impose excessive latency on the OIN execution. The deployed

matrix method accelerates the conflict detection and the Bloom filter enables self-optimizing feature.

Nevertheless, using a Bloom filter adds an overhead in memory, as it uses a bit array. Different bit

array sizes lead to different impacts on memory. The matrix method also increases the memory

utilization, as hardware registers are used to store the input-output pairs. As the network I/Os

number gets larger, the matrix sizes in the matrix method grows accordingly. Further, despites the

fact that not only a centralized core is used, still its usage will limit the scaleability of the approach

at some point.

The HyCo main advantages are:

• Acceleration of conflicts detection using a matrix method;

• Improved scaleability for a system based in a central controller;

• Self-optimization characteristics using a Bloom filter, reducing the controller latency over time,

and;

• Compared with the classic circuit-switching distributed approach, the introduced HyCo dis-

tributed configuration units have reduced latency, thanks to their simplification, leading to a

scalable low latency solution.

The HyCo main drawback is:

• Larger memory utilization is required, due to using the Bloom filter bit array and for the matrix

method registers.

92

6.5.1 HyCo and LUCC Comparison

Thanks to the fact that the HyCo was conceived based on the LUCC cons and pros,

both controllers have similarities and differences. The two controllers rely on centralized cores for

the conflicts solving and Round Robin implementation. Nevertheless, while the LUCC implements a

point-to-point conflicts checking, the HyCo utilizes a matrix method. Further, the LUCC have all the

network routes stored in fast access memories, accessed by a centralized network configuration block

during run time. Likewise, the HyCo uses pre-calculated routes, but they are stored in distributed

units. Lastly, the HyCo implements a Bloom filter, which enables the self-optimization of the

controller.

The HyCo is able to extend the LUCC scaleability as the need for the controller to have

access to all the network nodes is droped. Instead, the HyCo central core is connected to IP nodes

and input network nodes only, where the network input nodes are the ones connected directly to

IPs. The remaining network nodes are configured by the distributed units. This hybrid approach

enabled the HyCo to be used in larger network topologies, when compared to the LUCC. Indeed,

while the LUCC is suited for low radix networks, such as 8×8 and 16×16 topologies, the HyCo can

be employed in bigger topologies, like 64×64 and 128×128 topologies.

93

7. SIMULATION PLATFORM - THE SF-SIM

Based on the defined components, presented in Section 4.4, and using the description

models, presented in Section 4.2, a simulation platform was developed. This simulation platform

is built over a components library, which is composed of switches and network topologies. The

simulation platform is depicted in Figure 7.1, where it is possible to see the steps required for a

simulation. The simulation platform is named Straight-forward Simulator (SF-Sim).

Figure 7.1 – Simulation platform.

The SF-Sim consists of a library of components described in hardware description language

(VHDL) [54], integrated within a user interface and runs using ModelSim simulation engine [96].

VHDL is used as it has the closest relationship to the hardware layer, which makes it a powerful

language to capture desired devices characteristics. Also, the use of VHDL allows to prototype

developed designs in FPGA technology, so the models can be further verified. Nevertheless, the

models can be employed to describe the components in different programming languages, thus the

ModelSim engine will not be required. The specific aspects regarding the implementation can be

found in Annex APPENDIX A.

The development of the SF-Sim was achieved in two main steps: first, the devices were

modelled using the modelling methodology presented in Chapter 4 and, in the second stage, they

were described using VHDL. We explain the main concepts of SF-Sim using simple and illustrative

networks/switches.

The first example is a 2×2 MZI-based switch, illustrated in Figure 7.2. This device is used

to build all other system components. This block was simulated to verify the expected behaviour,

using the ModelSim Simulation Tool.

Figure 7.2 – 2×2 modelled switch block.

Figure 7.3 presents the simulation output showing the internal signals and the correct

behaviour and timing. In this example, the internal delay is configured to be TC = 4, so while

94

the signal tb_we is high, the correspondent output will receive the inserted data from the input,

after 4 ps. Each delay value is configurable, thus any positive time can be used. This delay may

be modeled using equations specific to the devices (e.g. MZIs and MRs). The imposed delay is

a composition of different physical aspects of fabricated switches, such as waveguide lengths and

ring radius. For the validation of the models and results comparison, the delay values were obtained

from a collaboration project with McGill University, which helped us to exploit prototyped designs.

As presented in Section 8.2, different experiments were performed, which allowed the extraction of

precise reference values.

Figure 7.3 – 2×2 MZI-based switch simulation.

Following, the same steps were applied to the description of a 4×4 MZI-based Beneš

switch. The 4×4 Beneš switch is a structure which simply replicates basic 2×2 switches with the

addition of channels to interconnect them. Figure 7.4 shows an overview of the designed 4×4

MZI-based Beneš switch, where it is possible to see the 2×2 switches and the I/O pins.

Figure 7.4 – 4×4 MZI-based Beneš switch block.

Subsequently, the 4×4 Beneš switch was simulated to verify its correctness. In this ex-

ample, the transmission delays of connecting waveguides, which connect the internal 2×2 switches

are neglected. In order for the waveguides delay to be taken into account, the waveguide models

introduced in Section 4.2 should be used. Figure 7.5 presents the simulation output showing the

expected timing of the internal signals. Once again, the internal delay is configured to be TC = 4 ps,

so while the signal we is high, the correspondent output will receive the correspondent data after 12

95

ps1. Still, the following messages addressing is configured: In0 → Out3; In1 → Out2; In2 → Out1,

and; In3 → Out0. In the figure, four scenarios highlighting the serial transmission. Taking the top

scenario as an example, it is possible to see four signals: we(0), input(0), output(3) and sending(3).

In the input side, while we(0) is ’1’, data is inserted in the switch, represented by signal input(0).

In the receiver side, the inserted data is received after the given delay, and is represented by signal

output(3). As can be seen, the same inserted data is received in the output, after the configured

transmission delay.

Figure 7.5 – 4×4 MZI-based switch simulation.

Lastly, two different 8×8 topologies are presented. The first network topology described

is an 8×8 Beneš Network, as introduced in Figure 4.9. Finally, the 8×8 SF Network, introduced in

Figure 4.13, is described. Both network illustrations were omitted as their final logical designs are

too complex.

As both topologies rely on the same basic blocks and on the same internal logic to connect

those blocks, only the simulation results of one of them will be indicated. This way, Figure 7.6 shows

the simulation output for an 8×8 SF Network, where different arriving times can be seen2. The

unequal arriving times are due to the different paths messages have to travel from the input until

they reach the output. As a different number of switches might be crossed by each message and

each one of the switches imposes a given delay, the total delay for each message might change. In

the figure, two arriving times are highlighted, output(0) receiving the inserted data at input(0) and

output(1) receiving the inserted data at input(1).

Besides the VHDL implementation of the models, a Graphical User Interface (GUI) was

also developed. The main goal of this GUI is to ease the deployment of larger systems, as the

textual description of such systems would turn into a difficult task. Through the GUI, the user can

configure different aspects that comprise the simulation platform, as presented in Figure 7.7: blocks

delay (execution time), laser input power, switches (2×2 blocks) transmission and insertion losses

and delay, as well as the option to open a third party tool to graphically describe the system. In this

1It takes 12 ps as the message should travel through three 2×2 switches before reaching the output. Given TC =
4 ps, 4 ps + 4 ps + 4 ps = 12 ps.

2Arriving time corresponds to the clock cycle the first sent bit arrives at the targeted output

96

Figure 7.6 – 8×8 SF network simulation.

case, the DIA tool [97] is used, as it is an open source diagramming tool, suitable for the description

task.

(a) SF-Sim Traffic Config-
uration Window.

(b) SF-Sim MZIs Configu-
ration Window.

(c) SF-Sim MRs Configu-
ration Window.

Figure 7.7 – SF-Sim Configuration Window.

After configuring all the aspects of the system, the DIA tool can be employed to visually

describe the system. Figure 7.8 illustrates the SF-Sim component library already made available on

the DIA tool. These components were modelled and later added to the DIA library. As an example,

a small system described in the tool is presented, a hypothetical blocking 4×4 MR-based switch.

On the left-hand-side of the Figure, the available components to be used to build the network are

presented, and on the right-hand-side the example topology is illustrated: four I/O nodes (each

coloured one is one I/O node, where each colour corresponds to one index. This way, two nodes

have the same colour, one representing the node input and the other indicates the node output), 12

MRs and their connections. The available components in the tool are the ones presented as building

97

blocks in this thesis: 2×2 blocks (MR and MZI), 4×4 blocks (Beneš and Spanke-Beneš) as well as

a strictly non-blocking 8×8 topology.

Figure 7.8 – 4×4 Example MR-based topology on DIA tool.

7.1 Discussion

The SF-Sim was conceived in order to ease the deployment of OIN-based systems and

to simplify the generation of introduced controlling solutions. Its usage enables early evaluation of

OINs as well generates the VHDL files which are necessary to use the low latency controllers. From

the simulations, it is possible to obtain results in terms of dissipated power and network traffic.

Also, by using the DIA tool, the description of the topologies is facilitated, as it is possible to

describe different topologies graphically. Further, designers can add new optical components using

the models introduced in Section 4.2 and enrich the available library of components. Besides that,

all files needed for the controllers VHDL files to be created are automatically generated by the tool.

This way, all topology related controllers configurations are made available: the LUT/LITE-LUT;

the matrix for the conflicts resolution units; the distributed configuration units information, among

others.

The SF-Sim main advantages are:

• Acceleration of the description of topologies, by using a GUI;

• Including a library of fast and accurate components to be used in the OINs description;

• Automated generation of controllers VHDL files, and;

• Simplified way to obtain results regarding the OIN from a system level perspective.

The SF-Sim main drawback is:

98

• Larger simulation time due the utilization of VHDL when compared to higher level description

languages.

99

8. RESULTS

This chapter presents the evaluation of the proposed approaches. Section 8.1 shows the

LUCC evaluation, where its latency is measured within the context of its deployment: low radix

network systems. Later, in Section 8.2 the opto-electrical co-design of the controller model in a

prototyped system is presented. Section 8.3 presents the evaluation of the simulation models, by

comparing the simulation output with the measured values from real devices, such as the 4×4

MZI-based switch introduced in Section 8.2, or using values extracted from referred publications.

Also, the average simulation time for illustrated cases is presented. Next, Section 8.4 presents

results obtained from applying HyCo, where its self-optimization feature is shown along with the

HyCo latency and in Section 8.5 synthesis reports are presented. Finally, in Section 8.6, deployed

controllers are compared with state-of-the-art controllers to verify their low latency.

8.1 LUCC Execution Results

To validate LUCC, different traffic patterns, such as complement and all-to-all are con-

sidered to assess LUCC’s performance under various request conditions. The complement traffic

pattern is used to verify the largest paths in the network. Largest paths refer to the paths in which

the transmitted message passes through the largest number of network nodes. All-to-all traffic

pattern comprises all possible communication combinations in the network, as the IPs present in

the system request access to all nodes, one by one. For these validations, the traffic load is not

taken into account, as the aspects involved in the conflict resolution and network configuration are

not directly affected by that. The focus is on determining the LUCC response time for different

request configurations and patterns. Figure 8.1 depicts employed traffic patterns. In the figure, the

IPs zero and seven (IP 0 and IP 7) are used as an example, where it is possible to see the targets

each pattern employs. For the all-to-all traffic pattern, IP 0 requests access to all the nodes in

the network, one at a time, while in the complement, IP 0 requests access to the other extreme of

the network (IP 7), and IP 7 request access to its other extreme, the IP 0. Both simulations and

FPGA-based prototyping were performed.

An effort is made to verify the one clock cycle latency of the LUCC under different scenarios,

as well as exploring the correct network configuration. We first perform simulations and then the

same scenarios were applied on FPGA prototypes. For both cases (simulation and prototyping),

a list of signals is employed to illustrate the results, presented as arrays of values organized in a

little-endian fashion. As a result, the rightmost and leftmost values of the array hold the information

of IP 0 and IP 7, respectively. The most important used signals are:

• target: it holds the target for each requesting port. If the value for a position equals -1,

it means that the IP at that position is not requesting access to the network. Otherwise, it

100

Figure 8.1 – Traffic patterns exemplification.

shows the desired destination. For instance, the array target = 0 -1 -1 -1 -1 -1 3 -1 indicates

that the IP 7, whose position in the array is on the leftmost, is targeting IP 0 and IP 1 is

targeting IP 3. Also, the other IPs are not requesting any access;

• request: it is used by the IPs to signal their intention to access the network, where 1 shows

a request for access and 0 means idle (i.e., no request). For instance, the array request =

00000001 indicates that the IP 0, whose position in the array is at the rightmost, is requesting

access to the network, while all the other IPs are idle, and;

• ack: it is used by the LUCC to signal IPs when the access is granted, where 1 means that

the access is permitted and 0 means that it is not. For instance, the array ack = 10010000

shows that the IP 7 and IP 4 are permitted to access the network, while all the others are

not.

8.1.1 LUCC Simulation

The simulation results show the fast response time of LUCC. The latency is given by the

frequency execution of the platform, as the control unit is able to solve requests in one clock cycle.

Figure 8.2 illustrates one cycle response time of LUCC. In this example, two scenarios are presented.

In the first scenario, marked with yellow boxes, four simultaneous input requests (request

= 1111) are generated (target = 0123, such that 〈0→ 3, 1→ 2, 2→ 1, 3→ 0〉) and their access

is granted after one clock cycle (in the figure, request signals are set to 1 and one clock cycle later

ack signals are set to 1). The yellow arrow shows the period it takes for the LUCC to acknowledge

the access.

101

In the second communication scenario, marked with red boxes, four simultaneous input

requests are again generated (target = 2022, such that 〈0 → 2, 1 → 2, 2 → 0, 3 → 2〉). Note

that more than one input is targeting the output 2, and hence a conflict occurs. It is possible to

see the resolution of the conflicted request at a time, and even for the cases in which a conflict is

found, the controller latency is not affected for computing the requests. First, among the conflicting

request ports, IP 0 is granted access (i.e., ack = ***1). Next, IP 1 has its access granted (i.e., ack

= **1*), and finally IP 3 is granted access (i.e., ack = 1***). In this situation, the receiver side

takes two clock cycles to set its connection, thus blocking its port. This fact delays the granting

response time of LUCC, as the destination is blocked until the receiver side computes the end of the

transmission. This can be noticed in the figure by considering trans_end and end_ack signals.

The simulation results indicate the fast response time of LUCC whose latency is constrained by the

frequency of the platform, in which the control unit is able to solve requests in one clock cycle.

Figure 8.2: LUCC simulation diagram running at 500 MHz for a 4×4 Beneš topology, which shows:

input requests (request), LUCC grants (acknowledge), destination outputs (target), LUCC requests

for destination outputs (out request), end of transmissions (end), acknowledges for transmissions

ending (end ack) and the bits to set up the MZI switches (path setup). In each array of bits, one

bit corresponds to an I/O. Thus, the size of the array is given by the number of I/Os.

Figure 8.3 illustrates one cycle response time of LUCC when controlling the 8×8 SF

topology. Once again two scenarios are presented.

In the first scenario, marked with red boxes, eight simultaneous input requests (request =

11111111) are generated (target = 76543210, such that 〈0→ 0, 1→ 1, 2→ 2, 3→ 3, 4→ 4, 5→

5, 6→ 6, 7→ 7〉) and their access is granted after one clock cycle, as there is no conflict. The red

arrow shows the period it takes for the LUCC to acknowledge the access.

In the second communication scenario, marked with yellow boxes, four simultaneous input

requests are again generated (target = 76543217, such that 〈0 → 7, 1 → 1, 2 → 2, 3 → 3, 4 →

4, 5 → 5, 6 → 6, 7 → 7〉). Note that more than one input is targeting the output 7, and hence

a conflict occurs. It is possible to see the resolution of the conflicted request at a time, and even

for the cases in which a conflict is found, the controller latency is not affected for computing the

requests.

102

Figure 8.3 – LUCC Simulation for 8×8 SF topology.

8.1.2 LUCC Prototyping in Xilinx FPGA

LUCC was synthesized for a Xilinx FPGA [98], the Xilinx II-Pro, from the Xilinx University

Program (XUP). The signal readings were performed using the Chipscope Pro Analyzer, also from

Xilinx. The 4×4 Beneš topology is employed and the input-output configuration, for the presented

example is 0123, such that 〈0 → 3, 1 → 2, 2 → 1, 3 → 0〉. Figure 8.4 shows four ports requesting

(RX_*) access and receiving a granting (ACK_*) one clock cycle after. Also, in the figure, the

end of communication signals (TAIL_* and TAIL_ACK_*) are presented, illustrating the protocol

used at the end of a transmission. The LUCC latency is based on the deployed technology, as it is

able to compute the requests in one clock cycle. Thus, for this specific scenario, the FPGA execution

frequency was configured to 50 MHz, which gives a period of 20 ns. As a result, for this FPGA the

LUCC latency is 20 ns.

Figure 8.4: LUCC Xilinx FPGA execution with an operation frequency set to 50 MHz. Highlighted
boxes show the request and granting moments, within one clock cycle.

8.1.3 LUCC Prototyping in Altera FPGA

After validating the LUCC by simulating and prototyping on Xilinx FPGA, the design was

once again prototyped, but this time on an Altera’s FPGA [99], with the signal readings being

performed with Altera’s SignalTap Logic Analyzer Tool [100]. For this step, not only the LUCC was

103

prototyped, but fast transceivers as well, configured for an injection rate of 8 Gbps. In this scenario,

the LUCC receives requests from input blocks. Once the access is granted, the input blocks insert

traffic into the transceivers. The transceivers output is connected to I/O pins in the FPGA. In order

to emulate the transmitted traffic, virtual links were used to connect these I/O pins. The FPGA

used in this case was the Stratix IV 330T, configured to an execution frequency of 100 MHz, with a

period equals 10 ns. Figure 8.5 presents the readings, where it is possible to see the request, ack, tail

and tail_ack signals, with the same functionalities as explained in the previous section. Moreover,

three more signal groups are presented: Gen_DATA_*, TX_DATA_* and RX_DATA_*. These

signals correspond to the traffic generated in the inputs (Gen_DATA), the fast transceivers input

(RX_DATA) and the fast transceivers output (TX_DATA). The main goal of this step is to show

the LUCC interacting with IPs, in this case the traffic injectors.

Figure 8.5 – LUCC on Altera FPGA execution with an operation frequency set to 100 MHz.

8.2 Co-Design of the Control Unit and the Optical Switch

This section discusses the joint design (also known as co-design) of the LUCC and a

fabricated optical switch. Different aspects are involved when co-designing OIN-based systems.

The multiprocessor systems are mainly composed of digital components, such as processors and

memories, while OINs work in the optical domain, mostly running at a light-based basis. Therefore,

the opto-electrical co-design must consider the integration of different domains while maintaining

the desired performance and full functionality of the system.

The LUCC was integrated with a fabricated switch to verify its behaviour in a realistic

and dynamic scenario. The integrated Silicon Photonic (SiP) switch used is a 4×4 optical switch

distributed on a Spanke-Beneš topology with five integrated 2×2 MZIs directly controlled by LUCC.

Carrier injection tuning method was employed to bias one arm of the MZI for high-speed and efficient

switching [23]. The SiP chip was fabricated by the IME foundry and the measured VπL and switching

time are 0.18 Vmm and 6 ns, respectively. This integration took place in the Photonics System

Group at McGill University. Figure 8.6 presents a microscope picture of the aforementioned switch.

The lab setup is illustrated in Figure 8.7. The figure presents all the blocks used during

the opto-electrical co-design, such as: the driving circuit used as an interface between FPGA and

104

Figure 8.6 – Microscopic picture of the 4×4 MZI-based switch.

the optical switch; the conversion equipment employed to convert digital to optical and optical to

digital; signal amplifiers; optical switch, and; digital blocks (controller, traffic generators, etc.).

Figure 8.7: Schematic of the lab setup for the opto-electrical co-design. INSET: amplifier circuit
used as a drive between FPGA and the optical switch. CW: continuous wave; PC: polarization
controller; EDFA: erbium doped fibre amplifier; PD: Photodetector; DCA: digital communication
analyzer [101]

.

Before measuring the integration outcome, the switch was solely appraised. The reason to

do so is to have reference values to be used as comparison after the integration process. The switch

values are used in the simulation models introduced in Chapter 7. Firstly, the MZI-based 2×2 switch

was measured. For this purpose, PRBS31 traffic pattern1 was injected into one of the inputs of

the switch. Following, the switch was analyzed for both bar and cross states, and different aspects

measured, such as its switching time and power loss. Figure 8.8 illustrates the PRBS31 packages

travelling through the switch. On the top of the figure we show the BAR state configuration and

on the bottom we show the CROSS state configuration. In the Figure 8.8.A, it is possible to see

the global picture of the execution, where the packages are travelling one after the other. Next, in

1PRBS31 is a pseudo-random binary sequence that is difficult to predict and exhibits statistical behaviour similar
to a truly random sequence.

105

Figure 8.8.B, the rising and fall times of each package are indicated. Finally, in Figure 8.8.C, the eye

diagram of the measured switch. From the experiments, it was possible to extract the information

needed by the simulation models as well as to define the comparison scenario to be used later, when

all the components are integrated.

Figure 8.8: Measured 10 Gb/s PRBS31 signal switched by the 2×2 MZI switch. The top row shows

the signal for the bar state and the bottom row for the cross state. The inset picture shows the

schematic of the 2×2 balanced MZI switch element. The bar and cross states are IN1-OUT1 and

IN1-OUT2, respectively [101].

For the opto-electrical co-design, the 4×4 switch was controlled by the LUCC running

on the Altera Stratix IV FPGA. Besides the LUCC design, the FPGA was added with a requests

generation block. The FPGA was configured to execute at 100 MHz, with a period of 10 ns. Due to

the experimental driving circuit, used to configure the MZIs, the switching time was set to 5 s. The

lab-setup overview is illustrated in Figure 8.9, where the main blocks are presented. In the figure, it

is possible to see that for this experiment only inputs A and B and the outputs F and G are used.

Figure 8.9 – Lab-setup overview.

106

Figure 8.10 presents the extracted results, where the FPGA readings are shown as well.

The execution of the following configurations are presented: (i) input A targeting output F twice,

so it is possible to see the switching ON and OFF, and (ii) inputs A and B targeting output F,

which results in a conflict. The figure illustrates the FPGA readings for each scenario, where it

is possible to see the requests, acks, tail, tail acks, MZIs configuration and target signals. Tail

and tail acks signals are used in the protocol to close the connection. The protocol works in a

handshake fashion, where the requesting port signals it will finish its connection (setting tail signal

to ’1’) and then receiving a confirmation from the LUCC (tail ack signal equals ’1’). As the figure

illustrates, the LUCC computes requests within one clock cycle, even when a conflict is configured,

as in the last scenario. In order to identify if a conflict is configured, the signals LinkReq, TX1 and

TX2 should be verified. The conflict is illustrated when both TX1 and TX2 are requesting access

simultaneously (LinkReq=0011) while targeting the same destination, RX2. For this co-design step,

the request generator send requests to the controller, which configures the network and grant access.

One external equipment then injects traffic into the network with a 10 Gbps injection rate. As can

be seen from the figure, the traffic payload (illustrated as light power) dynamically changes when

different requesting nodes are granted access. From these experiments, it was possible to verify the

interfaces needs and to observe the correct switch behaviour when dynamically controlled by the

FPGA.

(a) FPGA timing diagram for all scenarios

(b) Switch measurements for all scenarios

Figure 8.10 – FPGA and Optical switch readings.

In order to further explore the opto-electrical co-design, we realized a second set of exper-

iments. Figure 8.11 gives an overview of the system setup, where it is possible to see the considered

107

connections. Three possible communication scenarios could be configured for this setup: (i) input

A targeting output F, (ii) input B targeting output F and (iii) input D targeting output F. Also,

this setup contains all the components needed in a system, not relying on any extra device. Traffic

injectors and traffic analyzers were deployed on the FPGA. The execution flow is illustrated in the

figure: the traffic injector requests access and by the time it is granted, it starts to send data. On

the receiver side, the data is collected and then analyzed for potential transmission errors.

Figure 8.11 – Complete system lab setup overview.

In the first set of measurements, only inputs A and B were used. Figure 8.12 presents

obtained results for this configuration. Figures 8.12.(a) and 8.12.(b) illustrate the traffic generated

on the FPGA travelling through the switches. Also, the request signal and the exact moment of

the beginning of the transmission are presented, showing one clock cycle latency. Figure 8.12.(c)

brings the traffic injector and analyzer, where a bit error count is used to show the number of miss

transmitted bits. From the figure, it is possible to see that 37402251 bits were inserted in the

network and properly read on the receiver and seven bit were not successfully read.

Finally, Figure 8.13 presents a setup with three inputs enabled. Three different scenarios

are illustrated: (a) only input A is requesting access, targeting output F ; (b) inputs A and B are

both targeting output F, and; (c) all three inputs request access simultaneously, all targeting output

F. For each scenario, it is possible to see the payload readings in the output F. For the conflicting

cases, the figure shows the sequential transmission, where each input waits the grant signal to be

transmitted.

The initial measurements and the co-design of the controller with the switch enabled the

models to be verified and validated. Also, extracted data was integrated into the SF-Sim to enable

its high accuracy, as presented in Section 8.3. Further, the performed opto-electrical co-design

shows a promising advance to the silicon photonic technology on system-level design, pushing the

boundaries for the technology integration one step ahead.

108

Figure 8.12 – Online readings of prototyped optical switch and FPGA execution.

Figure 8.13 – Extracted data from lab experiments in McGill Laboratories.

109

8.3 Models Integration

The models introduced in Section 4.2 are used to describe optical switches and OINs.

Also,the controllers developed in the context of this thesis, the HyCo and the LUCC are used to

control the described networks. In order to do so, the integration of the control models and optical

models is performed. This integration allows the verification of accuracy and correctness of all the

models. Data extracted from real devices is available, as presented in Section 8.2, which makes

it possible to improve the models in order to reduce the error rate of obtained results when using

them. The models integration lead to the SF-Sim, presented in Chapter 7.

The simulation models accuracy was validated in four steps:

1. MZI and MR based switches were modelled with focus on their behaviour;

2. These models had their results compared with the analytical values and the models were

updated accordingly;

3. Aspects such as insertion loss were added to the models. This enabled us to measure the

power budget of the designed system, under different traffics, and;

4. The models were expanded to the network level so entire systems could be evaluated.

In order to present an overview of the simulation, two different scenarios are presented,

both of them using a 4×4 Spanke-Beneš topology. Figure 8.14 presents the schematic of the

scenarios considered as an example, where it is possible to see the 4×4 switch organization and the

message path for each scenario. In Figure 8.14.(a) the first communication scenario is illustrated:

all switches are configured as bar state. This way, input 0 heads towards output 0, input 1 heads

towards output 1, input 2 heads towards output 2 and input 3 heads towards output 3. In the second

scenario, presented in Figure 8.14.(b) all switches are configured to cross-state, so: input 0 heads

towards output 3, input 1 heads towards output 1, input 2 heads towards output 2 and input 3

heads towards output 0. These two scenarios are used as they present an opposite behaviour, when

compared with each other. While in one scenario, all switches are configured to bar state, thus not

having any communication crossing the switch, in the other scenario all switches are configured to

crossbar state, which leads to messages crossing the switch.

An optical network is composed of a large number of components, which are translated

as simulation signals. To show all involved signals in the simulation of an OIN would require an

unbearable big figure. This way, for the sake of a better explanation, we use a small system, using

a small number of signals. Table 8.1 shows the configuration parameters used for the 2×2 switch.

The transmission losses for cross and bar states are the same, normalized as Transmission loss.

Figure 8.15 presents the I/O signals of the 4×4 switch, where it is possible to see the

following signals: sim_clk, ip_in, ip_out, switch_configuration and power_out. The sim_clk signal

is used to ease the results visualization, where each period is configured to 100 ps. In the figure, the

110

(a) All switches configured to bar state. (b) All switches configured to cross-state.

Figure 8.14 – 4×4 Spanke-Beneš Simulation Scenarios.

Table 8.1 – Configuration parameters for the 2×2 switch.
Parameter Value
Transmission
delay

100 ps

Transmission
loss

2 dB

Coupling loss 10 dB
Laser input
power

1 mW

left side presents the first scenario, where it is possible to see the delay for the messages to go from

one input to the targeted output as well as the output optical power for each output. Taking the

communication from input 0 to output 0 as example, the time it takes for the data to go from the

input to the output is highlighted in the figure, 200 ps. Also, by checking the power_out(0) signal,

the estimated optical power in the output is presented: 0.0398107 mW. This output considers the

power losses for all the switches in the message path and the coupling loss. Given the value of 0.04

mW obtained by prototyping in Section 8.2, we conclude that the error rate of the tool is less than

1%. The right side of the figure presents the second scenario, with all the switches configured as

cross-states. The same evaluation might be performed for this case. In the figure, it is possible to

check the output power for all the communication inputs, as well as the transmission delay for each

case. For instance, the output power of input 1 can be seen in output 1. In this case, the estimated

output power is 0.0398107 mW.

After simulating and validating the network models, all presented models were integrated

into one single simulation platform. Figure 8.16 shows one example of a validation platform setup,

where it is possible to see the presence of I/O nodes interacting with the control node and with

the optical path. The 4×4 Spanke-Beneš topology is used, but this time integrated with traffic

injectors and traffic analyzers. In this system, input nodes send requests to the control core, that

process the requisitions and configure the network. By the time the network is already configured,

and acknowledge signal is sent to requesting nodes, which triggers the communications start.

Figure 8.17 presents the simulation output of the controlled 4×4 switch. In the figure, the

switches I/Os, the controller request and ack signals, the switch configuration signals, the inputs

targets and the power outcome are presented. The four inputs are requesting access simultaneously

111

Figure 8.15: 4×4 Spanke-Beneš simulation scenarios. On the left, all switches are configured to bar
state. On the right, all switches are configured to the cross-state. The clk_in signal can be used as
a reference point, with a period configured to 100 ps.

Figure 8.16 – System Simulation Setup.

(tb_req = 1111). After one clock cycle, two of them have their access granted (inputs one and

three - tb_ack = 1010), as it would not be possible to route all the inputs at the same time. After

the messages are sent (ip_in), and the end of communication is treated by the controller, the two

remaining inputs are granted access (inputs zero and two - tb_ack = 0101).

Figure 8.17 – System simulation output.

The time required for each network topology is presented in Table 8.2. The considered

topologies are: 4×4 Spanke-Beneš topology, 8×8 PILOSS topology [16], 16×16 topology, 32×32

strictly non-blocking topology [89] and 64×64 topology. The number of atomic units (AUs), or

switching blocks, is an important factor for the simulator speed. This is explained by the fact that

112

each AU counts as one network node and one control node/table entry. Another important factor in

the simulator speed depends on the controller behaviour. The control unit initializes all the network

nodes before enabling the network to be accessed, meaning that as the number of network nodes

rises, the time it takes for the controller to initialize all nodes rises along. These facts explain why

the simulation of the 32×32 SNB Topology is the one that takes the longest time. This topology

counts with the largest number of switching blocks, which results in the same number of distributed

units, for the controller. This way, when the simulation is eerformed, more simulated components

should be taken into account. The executed simulations were configured with a word size of 16 bits

and each package composed of 10 messages. IPs frequencies were normalized for all thee scenarios

and were executed with a frequency of 100 MHz.

Table 8.2 – Simulation times for different topologies.
Network Topology #AU Co-Simulation Time (s)
4×4 Spanke-Beneš 5 ≈ 0.190

8×8 Ring Topology 8 ≈ 0.220

8×8 SF 20 ≈ 0.317

8×8 PILOSS Topology 64 ≈ 0.514

16×16 Topology 48 ≈ 0.498

64×64 Topology 384 ≈ 1.103

32×32 SNB Topology 1024 ≈ 21

Table 8.3 illustrates the simulator accuracy by comparing the results obtained with the

proposed simulator and the results obtained in our measurements and in the literature [16, 89]. The

first two scenarios present the measurements of the in-house MZI switches, presented in Section 8.2.

The next two scenarios present the results for two different networks, found in published literature.

For these cases, the results are approximated. The simulator accuracy is high, with a top error

rate of 12 %. It is important to highlight that the reference values are also passive to errors. For

instance, the results obtained in [16] have 1 dB error rate (13 %) in their published values. This way,

for the 8×8 PILOSS topology for example, the reference value may vary from 6.5 db to 8.5 dB. For

our measurements, the error involved in the reference values are due to the equipment employed in

the experiments. The obtained values were compared with the state-of-the-art tools and analytical

methods and the reading errors could be neglected.

Table 8.3 – Simulation accuracy comparison.
Network Topology Reference Values Obtained Results Error Rate
2×2 MZI Switch1 ≈ 10.96 dB ≈ 10.97 dB ≈ 1%

4×4 Spanke-Beneš1 ≈ 13.97 dB ≈ 14 dB ≈ 1%

8×8 PILOSS Topology2 ≈ 7.5 dB ≈ 8.5 dB ≈ 12%

32×32 SNB Topology2 ≈ 15.8 dB ≈ 16.18 dB ≈ 2.5%

1 - Measurements performed in the frame of our project, at McGill Photonics Laboratory.
2 - Results extracted from the state-of-the-art publications. Both cases have approximated results (+- 1 dB).

113

8.4 HyCo Execution Results

As presented in Chapter 6, the HyCo is powered by a Bloom filter, used to dynamically

reduce the controller latency as it executes. The real impact of the filter and the controller on

a system was verified. To do so, the devices presented in Chapter 7 were employed and different

network topologies were deployed. Different traffic patterns, such as complement and all-to-all,

were used. Figure 8.18 presents the latency for the following network configurations: 4×4 Spanke-

Beneš topology, 4×4 Beneš topology, 6×6 Fat-Tree topology, 8×8 Beneš topology [88], 8×8 Ring

topology, 8×8 PILOSS topology [16], 16×16 Beneš topology, 32×32 Beneš topology, 32×32 strictly

non-blocking topology [89] and 64×64 Beneš topology. In most cases as the system runs, the HyCo

starts to exhibit lower latency. This is thanks to the HyCo’s self-optimizing, powered by the Bloom

filter. As presented in the figure, after running for a given time, which changes depending on the

topology, the filter reaches it threshold value and the latency remains the same. For the topologies

that are strictly non-blocking, the Bloom filter has no impact. This happens as there are no

impossible routes, therefore the Bloom filter is never used. In the figure, the results are presented as

a curve that relates latency to time. The latency illustrates the number of clock cycles needed by the

HyCo to compute each request. The time axis is presented as a normalized time. This is thanks to

the fact that each topology is simulated for a given amount of time, needed to reach the threshold

value for the Bloom filter. For example, the 4×4 Spanke-Beneš is simulated for 2 seconds, while

the 6×6 fat-tree topology is simulated for 5 seconds. The 4×4 Spanke-Beneš reaches its threshold

value at around 1,35 seconds of execution, which represents ≈ 80% of its execution time. The 8×8

Beneš reaches its threshold value at around 4.8 seconds, which is nearly all of its execution time.

In order to ease the visualization of the results, the curves are drawn following this normalization

approach.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0.2 0.4 0.6 0.8 1.0

C
y
c
le

s

Normalized Execution Time

4x4 Spanke-Benes
4x4 Benes
8x8 Benes

16x16
32x32
64x64

8x8 Ring
6x6 Fat-Tree
8x8 PILLOS
32x32 SNB

Figure 8.18 – Obtained latency of the Hybrid Controller for different topologies.

114

8.5 HyCo Synthesis Reports

The HyCo was synthesized for different topologies: 4×4 Spanke-Beneš topology, 4×4

Beneš topology, 6×6 Fat-Tree topology, 8×8 Beneš topology, 8×8 Ring topology, 8×8 PILOSS

topology, 16×16 topology, 32×32 topology, 32×32 strictly non-blocking topology and 64×64 topol-

ogy. The chosen topologies were picked to show the HyCo latency for different scenarios, with various

radix, switches count, and topological properties. It is important to highlight that the HyCo is not

limited to the presented topologies. The only requirement for using HyCO in other topologies is the

generation of the LITE LUT.

Table 8.4 presents the obtained results after the synthesis of the Virtex V 330T Xilinx

FPGA. We give the number of FPGA logical blocks (FLB2) for each block, the minimum delay, as

well as the number of distributed configuration units (DCUs). For the 64×64 topology, composed

of almost 400 network nodes, the HyCo is able to operate with a delay of 8.57 ns. As presented

in subsection 8.4, it takes five clock cycles on average for all the requests to be granted. More

specifically, in the worst case, the HyCo can receive, process and grant requests in up to 50 ns.

Table 8.4 – Synthesis values for the Virtex V 330T Xilinx FPGA
Network Topology #FLBs Block Delay (ns) #DCUs
4x4 Spanke-Beneš 1443 3.57 5

4x4 Beneš 1615 3.391 6

6x6 Fat-Tree Topology 3037 3.38 54

8x8 Ring Topology 2370 4.15 8

8x8 Beneš 2556 4.12 20

8x8 PILOSS Topology 3625 4.29 64

16x16 Topology 5792 6.25 48

32x32 Topology 18199 7.57 120

32x32 SNB Topology 32948 7.54 1024

64x64 Topology 67918 8.57 384

Table 8.5 illustrates the obtained results for the Stratix IV FPGA from Altera. Altera and

Xilinx rely on different technologies and synthesis techniques, and hence different values are found

considering the same scenarios. Compared to the Virtex V, the results for the Stratix IV FPGA

indicate a slighter bigger area and an increased block delay.

The last executed synthesis is targeting ASIC technology. For that, the proposed flow for

the 65 nm STMicro technology was employed. Table 8.6 illustrates the obtained results, organized

in three columns presenting the results: Cell Area: occupied chip area for the synthesized block,

in millimetres; Block Delay: the block signals propagation delay, which shows the minimum clock

period for the block, and; DCU: the number of distributed configuration units for each topology.

Obtained results indicate that, in the worst case, the maximum delay is 3.3 ns. Also, it is possible to

see that for a 64×64 topology, composed of almost 400 distributed elements, the chip area would

not exceed 34×34 mm, including wiring.

2In literature, these blocks are called LUTs. As in this work the term LUT is already employed for a different
context, the FPGA LUT blocks are named FLB.

115

Table 8.5 – Synthesis values for the Stratix IV Altera FPGA
Network Topology FLBs Block Delay (ns) DCUs
4x4 Spanke-Beneš 2325 3.91 5

4x4 Beneš 2573 3.7 6

6x6 Fat-Tree Topology 3945 4.01 54

8x8 Ring Topology 2931 4.76 8

8x8 Beneš 3556 4.75 20

8x8 PILOSS Topology 3981 5.01 64

16x16 Topology 6587 6.75 48

32x32 Topology 19273 7.97 120

32x32 SNB Topology 41958 8.63 1024

64x64 Topology 85837 9.77 384

Table 8.6 – Synthesis values for the 65nm STMicro Library
Network Topology Chip Area (mm2) Block Delay (ns) DCUs
4x4 Spanke-Beneš 2.59× 2.59 1.05 5

4x4 Beneš 2.75× 2.75 1.04 6

6x6 Fat-Tree Topology 7.03× 7.03 1.7 54

8x8 Ring Topology 4.29× 4.29 1.5 8

8x8 Beneš 5.2× 5.2 1.1 20

8x8 PILOSS Topology 6.71× 6.71 1.2 64

16x16 Topology 9.3× 9.3 1.5 48

32x32 Topology 18× 18 2 120

64x64 Topology 34× 34 3.3 388

8.6 Controllers Comparison

The LUCC and the HyCo were compared with the state-of-the-art controllers. For a fair

comparison, the well-known 8×8 Beneš [88] topology was used. The 8×8 Beneš was selected as

it is a well-established topology which is composed of a fair number of switches and is not strictly

non-blocking, thus requiring the controllers to perform routing and deal with conflicts. Also, based

on the fabricated optical switch, the latency for each optical bit to pass through the network was

rounded to 210 ps. The comparison was performed by analyzing the total time required for a

message to be arbitrated and passes through the network, such that: TotalTime = CL + Nob ∗TD,

where CL stands for control latency, Nob stands for the number of bits transmitted and TD stands

for transmission delay. Still, four different message sizes (128 B, 256 B, 512 B, and 1 Kb) were

used. Figure 8.19 presents the latency comparison between the HyCo and LUCC and the three

state-of-the-art solutions [73, 78, 79].

Figure 8.19 shows that the LUCC and HyCo latency are smaller than the fastest state-of-

art solutions. The provided solution [78] was validated through FPGA prototyping, using the Xilinx

1I000E FPGA, with similar latency to our solutions. Nevertheless, its usage imposes modifications

on the application network layer, which is not always possible, thus reducing its applicability. The

approach used in [79] uses the same time division technique as this work, and obtained fairly similar

results. However, the solution is suited for one specific topology, jeopardizing its application to other

116

cases. Finally, the solution presented in [73] claims to use an operation frequency of 5 GHz, which

is not realistic, and hence the validations were under simulations only.

 0

 50

 100

 150

 200

128 256 512 1024

T
im

e
 (

n
s
)

Message Size

LUCC
HyCo

[73]
[78]
[79]

 25

 30

 35

 40

 45

 50

 50

 55

 60

 65

 70

 75

 100

 105

 110

 115

 120

 125

 130

 210

 215

 220

 225

 230

 235

 240

Figure 8.19 – Latency comparison between controllers and state-of-the-art.

Based on the presented results, it is possible to see that both the LUCC and the HyCo

have good performances when processing requests and dealing with conflict situations for OIN-based

systems. Due to implementation characteristics, the LUCC is suited for small networks, while the

HyCo might be applied to bigger topologies. The HyCo’s Bloom filter shown to reduce the controller

latency until it reaches a threshold value. Also, the Bloom filter exploitation enabled to improve

scaleability for HyCo. Besides showing the lowest latency, neither controller demands any changes

to the network layer, coping with the tendency for the next generation of high-bandwidth networks.

117

9. CONCLUSION

This chapter summarizes the main contributions of this thesis and presents the future

work.

9.1 Final Remarks

Optical Integrated Networks (OINs) are currently considered to be one of the most promis-

ing paradigm in the multiprocessor systems design context: they present high bandwidth, low power

consumption and low latency to broadcast information. Still, their application may be restricted by

poor controlling solutions and lack of proper design tools to aid OINs design.

In this context, we proposed the following contributions:

1. The definition of accurate system-level modelling method enabling the development of a

system-level simulation platform.

2. The definition and development of efficient control approaches for OIN-based systems.

The second contribution of this work is the development of low latency controlling solutions,

as it follows:

• Low latency centralized controller - a low latency controller based on pre-calculated

routes technique for OIN-based systems. This technique enables the exploitation of full

capacity of the OIN. Also, this controller is not specific to a given network opology, and;

• Hybrid Controller - based on both a centralized and distributed units, it may be used in

high radix count systems and yet present low latency. Further, as the LUCC, the HyCo

is not limited by the network it is controlling, being able to employ it in a variety of

systems.

3. The system-level evaluation of the proposed control approaches using the defined modelling

methods.

Introduced models were integrated into a simulation platform, where it is possible to design

and test OIN-based systems from a system-level perspective. The developed controllers could

be deeply evaluated under different scenarios. Their impact could be measured for different

technologies, such as MZIs and MRs. Lastly, in the context of system-level evaluation, the

opto-electrical co-design of OIN-based systems was performed. Optical integrated networks

are still in the initial development stage, and their application is still limited.

118

9.2 Future Work

This project opens several new research directions:

1. Expand the developed models in order to incorporate new features. Current models per-

form power and timing analysis. Expanded models can evaluate new aspects, such as heat

dissipation.

2. Extend the controller by adding spatial routing support. Proposing a new approach for ex-

ploring routing in both space and time. Our approach considered only the time domain.

3. Further evaluation of the HyCo distributed units. The DCUs are able to perform routing

based on pre-calculated routes, stored as LUTs. Still, the relationship between DCU size and

obtained latency is not explored yet. Synthesis techniques could be employed to discover the

best relationship, in order for the best configuration to be found.

4. Expand the co-design based on a commercial system. Even though the performed co-design

proved the OIN-based system feasibility, a design deployed after real systems would enrich

the contribution. For instance, a system targeting the Internet of Things (IoT) servers could

be deployed, which would serve as a perfect test case for OIN-based systems on one of the

mainstream future systems.

119

10. PUBLICATIONS

10.1 Thesis Related Publications

In the context of this thesis, six conference papers and one journal paper were published,

as follows.

10.1.1 Published Conference Papers

1. A Low-Latency Centralized Controller for MZI-based Optical Integrated Networks

[102], submitted in 2015 to the International Conference on Photonics in Switching (PS) and

accepted to oral presentation and published on the proceedings in 2015;

2. Towards a Fast Centralized Controller for Integrated Silicon Photonic Multistage

MZI-based Switches [23], submitted in 2015 to Optical Fiber Communication Conference

and accepted to oral presentation and published on the proceedings in 2016;

3. Co-design of an FPGA-based low-latency controller for MZI-based SiP switches

[103], submitted in 2016 to Photonics North (PN) and accepted to oral presentation and

published on the proceedings in 2016;

4. Cluster-based architecture relying on Optical Integrated Networks with the provi-

sion of a low-latency arbiter [90], submitted in 2016 to 29th Symposium on Integrated

Circuits and Systems Design (SBCCI) and accepted to oral presentation and published on the

proceedings in 2016;

5. Modelling and Simulation of Optical Integrated Networks for Early-stage Design

Exploration (WIP) [104], submitted in 2016 to Summer Computer Simulation Conference

and accepted to oral presentation and published on the proceedings in 2016, and;

6. Co-design of a Low-latency Centralized Controller for Silicon Photonic Multistage

MZI-based Switches [101], submitted in 2016 to Optical Fiber Communication Conference

and to be published on the proceedings in 2017.

10.1.2 Published Journal Papers

1. Design and Modelling of a Low-Latency Centralized Controller for Optical Integrated

Networks [105], submitted in 2015 to IEEE Communications Letters and published on the

proceedings in 2016.

120

10.2 Other Publications

Besides the publications directly related to the context of this thesis, different works were

developed in collaboration researches. From these collaborations, four conference papers were pub-

lished during the period of the PhD studies.

1. BaBaNoC: An asynchronous network-on-chip described in Balsa [106] submitted in

2012 to The IEEE International Symposium on Rapid System Prototyping (RSP) and accepted

to oral presentation and published on the proceedings in 2013;

2. Customizable RTOS to support communication infrastructure and to improve design

space exploration in MPSoCs [107] submitted in 2012 to The IEEE International Sympo-

sium on Rapid System Prototyping (RSP) and accepted to oral presentation and published on

the proceedings in 2013;

3. Communication support at the OS level to enhance design space exploration in

multiprocessor embedded systems [108]submitted in 2013 to The 28th Annual ACM Sym-

posium on Applied Computing and accepted to be published on the proceedings in 2013;

4. Embedded cluster-based architecture with high-level support - presenting the HC-

MPSoC [109], submitted in 2013 to The IEEE International Symposium on Rapid System

Prototyping (RSP) and accepted to oral presentation and published on the proceedings in

2014;

121

BIBLIOGRAPHY

[1] W. Wolf, A.A. Jerraya and G. Martin. Multiprocessor System-on-Chip Technology. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(10):1701–

1713, 2008.

[2] T. Le and M. Khalid. NoC Prototyping on FPGAs: A Case Study Using An Image Processing

Benchmark. In IEEE International Conference on Electro/Information Technology, pages 441–

445, 2009.

[3] C. Hilton and B. Nelson. PNoC: A Flexible Circuit-switched NoC for FPGA-based Systems.

IEEE Computers and Digital Techniques, 153(3):181 – 188, 2006.

[4] S. Tota, M.R. Casu, M.R. Roch and M. Zamboni. A Multiprocessor Based Packet-switch:

Performance Analysis of The Communication Infrastructure. In IEEE Workshop on Signal

Processing Systems Design and Implementation, pages 172 – 177, 2005.

[5] L. Benini and G. De Micheli. Powering Networks on Chips: Energy-efficient and Reliable

Interconnect Design For SoCs. In ACM International Symposium on Systems Synthesis, pages

33–38, 2001.

[6] ITRS. International Technology Roadmap for Semiconductors, http://www.itrs2.net/ - Last

access on 09/2017.

[7] W. C. Lo, Y. H. Chen, C. T. Ko and M. G. Kao. TSV and 3D Wafer Bonding Technologies

for Advanced Stacking System and Application at ITRI. In Symposium on VLSI Technology,

pages 70–71, 2009.

[8] S. Le Beux, G. Nicolescu, G. Bois and P. Paulin. A System-level Exploration Flow for Optical

Network on Chip (ONoC) in 3D MPSoC. In IEEE International Symposium on Circuits and

Systems, pages 3613–3616, 2010.

[9] I. P. Kaminow. Optical Integrated Circuits: A Personal Perspective. Journal of Lightwave

Technology, 26(9):994–1004, 2008.

[10] W. J. Dally. Future Directions for On-Chip Interconnection Networks.

http://www.ece.ucdavis.edu/ ocin06/talks/dally.pdf.

[11] Euronymous: 3D Integration: A Revolution in Design. Real World Technologies. May 2007 -

https://www.realworldtech.com - Last access on 11/2017 .

[12] A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta and M. B. Ritter. Exploitation of Op-

tical Interconnects in Future Server Architectures. IBM Journal of Research and Development,

49(4.5):755–775, 2005.

122

[13] D.A.B. Miller. Rationale and Challenges For Optical Interconnects to Electronic Chips. Pro-

ceedings of the IEEE, 88(6):728–749, 2000.

[14] B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D.

M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow

and Y. A. Vlasov. Monolithic Silicon Integration of Scaled Photonic Switch Fabrics, CMOS

Logic, and Device Driver Circuits. Journal of Lightwave Technology, 32(4):743–751, 2014.

[15] M. S. Hai, P. Liao, M. M. Shafiei, O. Liboiron-Ladouceur. MZI-based Non-blocking SOI

Switches. In Asia Communications and Photonics Conference - paper ATh3A.147. Optical

Society of America, 2014.

[16] K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. Kim, S. Suda, M. Ohno, T. Chiba, H.

Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki and H. Kawashima. Ultra-

compact 8x8 Strictly-non-Blocking Si-wire PILOSS Switch. Optics Express, 22(4):3887–3894,

2014.

[17] D. A. B. Miller. Why Use Optics for Interconnects. In IEEE Lasers and Electro-Optics Society

Annual Meeting, volume 1, pages 192–193 vol.1, 1997.

[18] A.R. Mickelson. Silicon Photonics For On-chip Interconnections. In Custom Integrated Circuits

Conference, pages 1–8, 2011.

[19] A. Shacham, K. Bergman and L.P. Carloni. Photonic Networks-on-Chip for Future Generations

of Chip Multiprocessors. IEEE Transactions on Computers, 57(9):1246–1260, 2008.

[20] A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson and K. Bergman. Broadband Operation

of Nanophotonic Router for Silicon Photonic Networks-on-Chip. IEEE Photonics Technology

Letters, 22(12):926–928, 2010.

[21] Z. Li, M. Mohamed, X. Chen, H. Zhou, A. Mickelson, L. Shang and M. Vachharajani. Iris:

A Hybrid Nanophotonic Network Design for High-performance and Low-power On-chip Com-

munication. Journal of Emerging Technologies in Computing Systems, 7(2):8:1–8:22, 2011.

[22] F. Lou, M. Moayedi Pour Fard, P. Liao, M. S. Hai, R. Priti, Y. Huangfu, C. Qiu, Q. Hao,

Z. Wei and O. Liboiron-Ladouceur. Towards a Centralized Controller For Silicon Photonic

MZI-based Interconnects. In IEEE Optical Interconnects Conference, pages 146–147, 2015.

[23] Y. Xiong, F. G. de Magalhães, B. Radi, G. Nicolescu, F. Hessel and O. Liboiron-Ladouceur.

Towards a Fast Centralized Controller for Integrated Silicon Photonic Multistage MZI-based

Switches. In Optical Fiber Communication Conference - paper W1J.2. Optical Society of

America, 2016.

[24] Huawei Technologies. White Paper - Huawei Observation to NFV. Technical Report 399662,

2014.

123

[25] Ericsson AB. Network Functions Virtualization and Software Management. Technical Report

Uen 284 23-3248, 2014.

[26] R. Orobtchouk. On Chip Optical Waveguide Interconnect: the Problem of the In/Out Cou-

pling, pages 263–290. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[27] W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Campen-

hout, D. Van Thourhout and R. Baets. SOI Nanophotonic Waveguide Structures Fabricated

With Deep UV Lithography. Photonics and Nanostructures - Fundamentals and Applications,

2(2):81 – 86, 2004.

[28] M. Kawachi. Recent Progress In Silica-based Planar Lightwave Circuits On Silicon. IEEE

Proceedings - Optoelectronics, 143(5):257–262, 1996.

[29] X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A.

Fave, F. Dross, I. Gordon and C. Seassal. Design, Fabrication And Optical Characterization

Of Photonic Crystal Assisted Thin Film Monocrystalline-silicon Solar Cells. Optics Express,

20(S4):A465–A475, 2012.

[30] F. Ay and A. Aydinli. Comparative Investigation Of Hydrogen Bonding In Silicon Based

PECVD Grown Dielectrics For Optical Waveguides. Optical Materials , 26(1):33 – 46, 2004.

[31] I. O’Connor. Optical Solutions for System-level Interconnect. In International Workshop on

System Level Interconnect Prediction, pages 79–88, 2004.

[32] R. Paschotta. Encyclopedia of Laser Physics and Technology, volume 1. John Wiley & Sons,

Oct 2008.

[33] P. Hariharan. Basics of Interferometry. Elsevier Academic Press, Amsterdam Boston, 2007.

[34] S. Kumar, S. Raghuwanshi and A. Kumar. Implementation of Optical Switches Using

Mach–Zehnder Interferometer. Optical Engineering, 52(9):097106–097106, 2013.

[35] M.K.Chin and S.T. Ho. Design And Modeling of Waveguide-coupled Single-mode Microring

Resonators. Journal of Lightwave Technology, 16(8):1433–1446, 1998.

[36] S. Le Beux, J. Trajkovic, I. O’Connor, G. Nicolescu, G. Bois and P. Paulin. Optical Ring

Network-on-Chip (ORNoC): Architecture And Design Methodology. In Design, Automation

Test in Europe Conference Exhibition, pages 1–6, 2011.

[37] A. Shacham, B.G. Lee, A. Biberman, K. Bergman and L.P. Carloni. Photonic NoC for DMA

Communications in Chip Multiprocessors. In IEEE Symposium on High-Performance Inter-

connects, pages 29–38, 2007.

[38] S. Pasricha and S. Bahirat. OPAL: A Multi-layer Hybrid Photonic NoC for 3D ICs. In Asia

and South Pacific Design Automation Conference, pages 345–350, 2011.

124

[39] S. Koohi, A. Shafaei and S. Hessabi. An Optical Wavelength Switching Architecture for a

High-Performance Low-Power Photonic NoC. In IEEE Workshops of International Conference

on Advanced Information Networking and Applications WAINA, pages 1–6, 2011.

[40] Z. Li, A. Qouneh, M. Joshi, W. Zhang, X. Fu and T. Li. Aurora: A Cross-Layer Solution

for Thermally Resilient Photonic Network-on-Chip. IEEE Transactions on Very Large Scale

Integration Systems, 23(99):170–183, 2014.

[41] W.P. Boothroyd and E.M. Creamer. A Time Division Multiplexing System. Transactions of

the American Institute of Electrical Engineers, 68(1):92–97, July 1949.

[42] A.C. Lantz and B. Mukherjee. Efficient and Modified Round-Robin Protocols for Fiber Op-

tic Networks. In IEEE International Conference on Communications, Including Supercomm

Technical Sessions, pages 1687–1691 vol.4, 1990.

[43] J. Carson. The Emergence of Stacked 3D Silicon And Its Impact On Microelectronics Systems

Integration. In IEEE International Conference on Innovative Systems in Silicon, pages 1–8,

1996.

[44] M.G. Smith and S. Emanuel. Methods of Making Thru-connections In Semiconductor Wafers,

1967. US Patent 3,343,256.

[45] S.J. Ben Yoo, B. Guan and R.P. Scott. Heterogeneous 2D/3D Photonic Integrated Microsys-

tems. In Microsystems & Nanoengineering , volume 2, article number 16030, 2016.

[46] C. White. Data Communications And Computer Networks: A Business User’s Approach.

Thomson Course Technology, Boston, Mass, 2007.

[47] J. Chan and K. Bergman. Photonic Interconnection Network Architectures Using Wavelength-

selective Spatial Routing For Chip-scale Communications. IEEE/OSA Journal of Optical

Communications and Networking, 4(3):189–201, 2012.

[48] G. Booch. The Unified Modeling Language User Guide. Addison-Wesley, Upper Saddle River,

NJ, 2005.

[49] M. Elhaji, P. Boulet, A. Zitouni, S. Meftali, J. Dekeyser and R. Tourki. System Level Modeling

Methodology of NoC Design from UML-MARTE to VHDL. Design Automation Embedded

Systems, 16(4):161–187, 2012.

[50] M. Zhou. Modeling, Simulation, And Control Of Flexible Manufacturing Systems : A Petri

Net Approach. World Scientific, Singapore River Edge, NJ, 1999.

[51] J.L. Rosenfeld. Information processing 74: IFIP Congress 74. North-Holland American Elsevier,

Amsterdam New York, 1974.

125

[52] Robert Allen and David Garlan. A Formal Basis for Architectural Connection. ACM Transac-

tions on Software Engineering and Methodology, 6(3):213–249, July 1997.

[53] P.H. Feiler, D.P. Gluch, and J.J. Hudak. The Architecture Analysis & Design Language

(AADL): An Introduction. Technical Report CMU/SEI-2006-TN-011, Software Engineering

Institute, Carnegie Mellon University, 2006.

[54] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 3 edition, 2008.

[55] S. Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis. Prentice Hall Press,

Upper Saddle River, NJ, USA, second edition, 2003.

[56] B. Stroustrup. The C++ Programming Language. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 3rd edition, 2000.

[57] J. Gosling, B. Joy, G.L. Steele Jr., G. Bracha and A. Buckley. The Java Language Specification,

Java SE 7 Edition. Addison-Wesley Professional, 1st edition, 2013.

[58] LUMERICAL Tools - https://www.lumerical.com/tcad-products/ - Last access on 03/2017.

[59] VPIcomponentMaker Photonic Circuits -

http://www.vpiphotonics.com/Applications/PhotonicCircuits/ - Last access on 03/2017.

[60] Optiwave: Design software for Photonics - http://optiwave.com/ - Last access on 03/2017.

[61] MATLAB - http://www.mathworks.com/products/matlab/ - Last access on 03/2017.

[62] Synopsys Optical Solutions: OptSim - http://optics.synopsys.com/rsoft/rsoft-system-

network-optsim.html - Last access on 03/2017.

[63] Optilux: and Open Source of Light - http://optilux.sourceforge.net/ - Last access on 03/2017.

[64] Y. Xie, M. Nikdast, J. Xu, W. Zhang, Q. Li, X. Wu, Y. Ye, X. Wang and W. Liu. Crosstalk

Noise And Bit Error Rate Analysis For Optical Network-on-Chip. In ACM/IEEE Design Au-

tomation Conference, pages 657–660, 2010.

[65] Q. Shixiong, W. Kun, G. Huaxi, W. Kang and W. Xiaolu. Crosstalk analysis for closed ring-

based optical network-on-chip. In IEEE International Conference on Communication Problem-

Solving, pages 331–333, 2015.

[66] J. Chan, G. Hendry, A. Biberman, K. Bergman and L.P. Carloni. PhoenixSim: A Simula-

tor For Physical-layer Analysis Of Chip-scale Photonic Interconnection Networks. In Design,

Automation and Test in Europe Conference Exhibition, pages 691–696, 2010.

[67] G. Pongor. OMNeT: Objective Modular Network Testbed. In International Workshop on

Modeling, Analysis, and Simulation On Computer and Telecommunication Systems, pages

323–326. The Society for Computer Simulation, 1993.

126

[68] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep, and

A. Agarwal. GRAPHITE: A Distributed Parallel Simulator For Multicores. In IEEE International

Symposium on High Performance Computer Architecture, pages 1–12, 2010.

[69] C. Sun, C.H.O. Chen, G. Kurian, W. Lan, J. Miller, A. Agarwal, P. Li-Shiuan and V. Sto-

janovic. DSENT - A Tool Connecting Emerging Photonics with Electronics for Opto-Electronic

Networks-on-Chip Modeling. In IEEE/ACM International Symposium on Networks on Chip,

pages 201–210, 2012.

[70] N. Jiang, D.U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D.E. Shaw, J. Kim and

W.J. Dally. A Detailed And Flexible Cycle-accurate Network-on-Chip Simulator. In IEEE

International Symposium on Performance Analysis of Systems and Software, pages 86–96,

2013.

[71] P. Bhojwani, R. Mahapatra, J.K. Eun and T. Chen. A Heuristic For Peak Power Constrained

Design of Network-on-Chip (NoC) Based Multimode Systems. In International Conference on

VLSI Design, pages 124–129, 2005.

[72] H. Jia, Y. Zhao, L. Zhang, Q. Chen, J. Ding, X. Fu and L. Yang. Five-Port Optical Router

Based on Microring Switches for Photonic Networks-on-Chip. IEEE Photonics Technology

Letters, 25(5):492–495, 2013.

[73] Z. Li and T. Li. ESPN: A Case For Energy-star Photonic-on-Chip Network. In IEEE Interna-

tional Symposium on Low Power Electronics and Design, pages 377–382, 2013.

[74] M. M. K. Martin, D.J. Sorin, B.M. Beckmann, M.R. Marty, M. Xu, A.R. Alameldeen, K.E.

Moore, M.D. Hill and D.A. Wood. Multifacet’s General Execution-driven Multiprocessor

Simulator (GEMS) Toolset. SIGARCH Computer Architecture News, 33(4):92–99, 2005.

[75] H.A. Khouzani, S. Koohi and S. Hessabi. Fully Contention-free Optical NoC Based On

Wavelenght Routing. In CSI International Symposium on Computer Architecture and Digital

Systems, pages 81–86, 2012.

[76] M. Briere, B. Girodias, Y. Bouchebaba, G. Nicolescu, F. Mieyeville, F. Gaffiot and I. O’Connor.

System Level Assessment of an Optical NoC in an MPSoC Platform. In Design, Automation

Test in Europe Conference Exhibition, pages 1–6, 2007.

[77] J. Wang, B. Li, Q. Feng and W. Dou. A Highly Scalable Butterfly-Based Photonic Network-

on-Chip. In IEEE International Conference on Computer and Information Technology, pages

33–37, 2012.

[78] H. Yang, V. Akella, C. N. Chuah and S. J. B. Yoo. Design of Novel Optical Router Controller

and Arbiter Capable of Asynchronous, Variable length Packet Switching. In International

Conference on Photonics in Switching, pages 1–3, 2006.

127

[79] M. Shoaib. Selectively Weighted Multicast Scheduling Designs For Input-Queued Switches.

In IEEE International Symposium on Signal Processing and Information Technology, pages

92–97, 2007.

[80] Y. Liu, M. T. Hill, H. de Waardt, G. D. Khoe and H. J. S. Dorren. All-Optical Buffering Using

Laser Neural Networks. IEEE Photonics Technology Letters, 15(4):596–598, 2003.

[81] D.K. Hunter, M.C. Chia and I. Andonovic. Buffering In Optical Packet Switches. Journal of

Lightwave Technology , 16(12):2081–2094, 1998.

[82] M. Renaud, C. Janz, P. Gambini and C. Guillemot. Transparent Optical Packet Switching:

The European ACTS KEOPS Project Approach. In IEEE Lasers and Electro-Optics Society,

1999.

[83] T. Sakamoto, K. Noguchi, R. Sato, A. Okada, Y. Sakai and M. Matsuoka. Variable Optical

Delay Circuit Using Wavelength Converters. Electronics Letters, 37(7):454–455, 2001.

[84] MODE from LUMERICAL Tools - https://www.lumerical.com/tcad-products/mode/ - Last

access on 03/2017.

[85] S. Le Beux, I. O’Connor, G. Nicolescu, G. Bois and P. Paulin. Reduction Methods for Adapting

Optical Network on Chip Topologies to 3D Architectures. Microprocessors & Microsystems,

37(1):87–98, 2013.

[86] N. Jasika, N. Alispahic, A. Elma, K. Ilvana, L. Elma and N. Nosovic. Dijkstra’s Shortest Path

Algorithm Serial and Parallel Execution Performance Analysis. In International Convention

MIPRO, 2012.

[87] H. Gu, K. H. Mo, J. Xu and W. Zhang. A Low-power Low-cost Optical Router for Optical

Networks-on-Chip in Multiprocessor Systems-on-Chip. In IEEE Computer Society Annual

Symposium on VLSI, pages 19–24, 2009.

[88] V.E. Beneš. On Rearrangeable Threestage Connecting Networks. pages 1481–1492. Bell Syst.

Tech. J., 1962.

[89] K. Tanizawa, K. Suzuki, S. Suda, H. Matsuura, K. Ikeda, S. Namiki and H. Kawashima. Silicon

Photonic 32x32 Strictly-non-blocking Blade Switch And Its Full Path Characterization. In

OptoElectronics and Communications Conference held jointly with International Conference

on Photonics in Switching, pages 1–3, 2016.

[90] F. G. de Magalhães, F. Hessel, O. Liboiron-Ladouceur and G. Nicolescu. Cluster-based Archi-

tecture Relying on Optical Integrated Networks With The Provision Of a Low-latency Arbiter.

In Symposium on Integrated Circuits and Systems Design, pages 1–6, 2016.

[91] N. McKeown. The iSLIP Scheduling Algorithm For Input-queued Switches. IEEE/ACM

Transactions on Networking, 7(2):188–201, 1999.

128

[92] Petros Mol, Todor Ristov, and Nikolaos Trogkanis. Throughput/Fairness Trade-offs For The

iSLIP Scheduling Algorithm, 2009.

[93] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North and G. Woodhull. Graphviz and Dynagraph

– Static And Dynamic Graph Drawing Tools. In Graph Drawing Software, pages 127–148.

Springer-Verlag, 2003.

[94] J. Leeuwen. Handbook of Theoretical Computer Science.

[95] B.H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communications

ACM, 13(7):422–426, 1970.

[96] Handbook of Digital Techniques for High-Speed Design. Pearson Education, 2007.

[97] DIA Diagram Editor - http://dia-installer.de/index.html.en - Last access on 12/2016.

[98] XILINX. http://www.xilinx.com - Last access on 12/2016, 2007.

[99] Altera Stratix IV - http://tinyurl.com/neqmmj3 - last access on 07/2016.

[100] Signaltap II Embedded Logic Analyzer - http://tinyurl.com/nhx69nj - last access on 07/2016.

[101] Y. Xiong, F. G. de Magalhães, G. Nicolescu, F. Hessel and O. Liboiron-Ladouceur. Co-design

of a Low-latency Centralized Controller for Silicon Photonic Multistage MZI-based Switches.

In Optical Fiber Communication Conference - paper Th2A.37, 2017.

[102] F. G. de Magalhães, R. Priti, M. Nikdast, F. Hessel, O. Liboiron-Ladouceur and G. Nico-

lescu. A Low-latency Centralized Controller For MZI-based Optical Integrated Networks. In

International Conference on Photonics in Switching, pages 118–120, 2015.

[103] F. G. de Magalhães, Y. Xiong, F. Hessel, O. Liboiron-Ladouceur and G. Nicolescu. Co-design

of an FPGA-based low-latency controller for MZI-based SiP switches. In Photonics North,

pages 1–1, 2016.

[104] F. G. de Magalhães, F. Hessel, O. Liboiron-Ladouceur and G. Nicolescu. Modelling and

Simulation of Optical Integrated Networks for Early-stage Design Exploration. In Summer

Computer Simulation Conference, pages 44:1–44:6, 2016.

[105] F. G. de Magalhães, R. Priti, M. Nikdast, F. Hessel, O. Liboiron-Ladouceur and G. Nicolescu.

Design and Modelling of a Low-Latency Centralized Controller for Optical Integrated Networks.

IEEE Communications Letters, 20(3):462–465, 2016.

[106] M. T. Moreira, F. G. Magalhães, M. Gibiluka, F. P. Hessel and N. L. V. Calazans. BaBaNoC:

An Asynchronous Network-on-Chip Described In Balsa. In International Symposium on Rapid

System Prototyping, pages 37–43, 2013.

129

[107] A. Aguiar, S. Johann, F. Magalhães and F. Hessel. Customizable RTOS To Support Communi-

cation Infrastructures And To Improve Design Space Exploration In MPSoCs. In International

Symposium on Rapid System Prototyping, pages 130–135, 2013.

[108] A. Aguiar, S.J. Filho, F. Magalhães and F. Hessel. Communication Support at the OS Level

to Enhance Design Space Exploration in Multiprocessed Embedded Systems. In Annual ACM

Symposium on Applied Computing, pages 1555–1556, 2013.

[109] F. G. de Magalhães, S. J. Filho, O. Longhi and F. Hessel. Embedded Cluster-based Architecture

With High Level Support - Presenting the HC-MPSoC. In International Symposium on Rapid

System Prototyping, pages 100–106, 2014.

130

131

APPENDIX A – IMPLEMENTATION DETAILS

2x2 Switch

The 2×2 switching blocks, introduced in Figure 7.2 are used to build the network topolo-

gies in this thesis. Simplifying, the physical realization of optical switches involves waveguides and

transmitted beans of light. The switching aspects of such optical blocks take into account their

physical characteristics, as introduced in Section 2.1. Nevertheless, it is required a lot of compu-

tational power for a simulator to handle all those aspects, as they are mostly ruled by differential

equations. In this context, the modelled optical devices use abstractions in order to emulate the

optical behaviour, while maintaining simplicity. VHDL is used as description language, as it holds

the closest relation to the hardware layer. Still, the same approach introduced in this annex can be

employed to describe the optical blocks using different programming languages.

The implemented models take advantage of VHDL features in order to capture the em-

ulated optical behaviours. For example, in order to emulate the transmission delay of the optical

blocks, the synchronization characteristics provided by clocking signals in VHDL can be used. This

way, it is possible to define a clock configured with the desired transmission delay and use it as

transmission windows.

The described switches work by logically choosing the direction that inserted data must

follow by using the config and we signals and based on their combination, writing the input port on

the output port after a given delay. Table APPENDIX A.1 presents the logical used to select which

input will be directed to each output, where X’s mean the output is not being used. The following

signals are employed:

• config: holds the switching block configuration, where ’0’ represents BAR state and ’1’

represents CROSS-BAR state;

• we: enables the transmission of the designed port. It is a two-bit signal, where the bit zero is

used as write enable of input 0 and bit one is used as write enable of input 1;

• output: is the switch output, which receives the inserted data. It is a two-bit signal, one bit

for each output, and;

• input: the switch input. It is a two-bit signal: bit zero is the input 0 and bit one is the input

1.

Figure APPENDIX A.1 illustrates the overview of the 2×2 switching block and its control

and I/O signals. In the figure, it is possible to see the two inputs, the control bit (config), the write

enable bits (we(0) and we(1)) and the switch outputs.

Figure A.2 illustrates a finite state machine diagram (FSM) that shows the required steps

the switch selection mechanism should perform: (i) while we signal is low (two bits), the switch is

132

Table APPENDIX A.1 – 2x2 Switch Logic Table
config we(0) we(1) output(0) output(1)

0 0 0 X X
0 0 1 X input(1)
0 1 0 input(0) X
0 1 1 input(0) input(1)
1 0 0 X X
1 0 1 X input(0)
1 1 0 input(1) X
1 1 1 input(1) input(0)

Figure APPENDIX A.1 – 2×2 switch block overview.

idle; (ii) if we gets high for any bit, the FSM moves for the next stage: pick the correct output,

and; (iii) while the we signal stays high, the switch keeps transmitting, where each output receives

its related input1.

The Listing APPENDIX A.1 presents the 2×2 MZI-based switch instantiation (in VHDL),

where the signals used to interact with the MZI are shown. In this model, the following signals are

employed:

• reset: as this model is described as a digital block, this signal resets all involved signals of the

block;

• clk: used as the synchronization signal. Is configured based on the desired transmission delay

of the optical block;

• input: receives the incoming data;

• output: receives the inserted data from its paired input port;

• we: enables the transmission of the designed port;

• config: holds the switching block configuration, where ’0’ represents BAR state and ’1’ rep-

resents CROSS-BAR state;

1the following nomenclature is used: (wr01) means that output zero receives input one at the same time that
output one received inputs zero, and; (wr10) means that output one receives input one at the same time that output
zero receives input zero.

133

idle

pick

pick
wr01

wr10

we = 00

we! = ∗1

we! = 1∗

we! = 00

we! = 00

config = 0

config = 1

config = 1

config = 0

we = 00

we = 00

Figure APPENDIX A.2 – 2×2 switch output selection logic

• sending: signalizes that the switch has data coming out. It is used when connecting several

switches, so they can synchronize the transmission;

• i_pwr: input optical power, and;

• o_pwr: output optical power, after the involved losses in the transmission.

Listing APPENDIX A.1 – 2×2 MZI-based Switch instantiation in VHDL
1 e n t i t y swi tch_2x2 i s

2 g e n e r i c (

3 power_count : s t r i n g := "ON"

4) ;

5 p o r t (

6 r e s e t : i n s t d _ l o g i c ;

7

8 i_we : i n s t d _ l o g i c _ v e c t o r (1 downto 0) ;

9 c o n f i g : i n s t d _ l o g i c ;

10 i n p u t : i n s t d _ l o g i c _ v e c t o r (1 downto 0) ;

11

12 o_we : out s t d _ l o g i c _ v e c t o r (1 downto 0) ;

13 output : out s t d _ l o g i c _ v e c t o r (1 downto 0) ;

14

15 i_pwr : i n SWITCH_POWER;

16 o_pwr : out SWITCH_POWER

17) ;

18 end switch_2x2 ;

Hereafter, having the internal switch logic defined, the design is translated into logical

ports (NORs, ANDs, ORs, Muxes, Flip-Flops, etc) so it can be simulated. Figure APPENDIX A.3

presents the final 2×2 Switch internal organization and connections. All other components are built

over this basic block.

134

Figure APPENDIX A.3 – Logical Block of Described 2×2 MZI-based Switch

VHDL Package

In order to ease the usage of the described models, a VHDL package file was created

so basic simulation configurations could be written directly to it, facilitating future deployments.

Listing APPENDIX A.2 presents the created package with types, constants and function definitions,

which are going to be used from this point on.

Listing APPENDIX A.2 – Package with definitions in VHDL

1 package sim_pack i s

2 c o n s t a n t ATOMIC_UNITS : i n t e g e r := 5 ; −−number o f 2x2 b l o c k s

3 c o n s t a n t MZI_BAR_DELAY : t ime := 4 ps ; −−component t r a n s m i s s i o n d e l a y (SIM)

4 c o n s t a n t MZI_CROSS_DELAY : t ime := 4 ps ; −−component t r a n s m i s s i o n d e l a y (SIM)

5 c o n s t a n t MR_BAR_DELAY : t ime := 4 ps ; −−component t r a n s m i s s i o n d e l a y (SIM)

6 c o n s t a n t MR_CROSS_DELAY : t ime := 4 ps ; −−component t r a n s m i s s i o n d e l a y (SIM)

7 c o n s t a n t MZI_PERIOD : t ime := MZI_CROSS_DELAY/2 ; −−d e f i n e d p e r i o d f o r i n t e r n a l s w i t c h d e l a y (Emu)

8 c o n s t a n t MR_PERIOD: t ime := MR_CROSS_DELAY/2 ; −−d e f i n e d p e r i o d f o r i n t e r n a l s w i t c h d e l a y (Emu)

9 c o n s t a n t IP_PERIOD : t ime := 10 ns ; −−d e f i n e d p e r i o d f o r IP s i m u l a t i o n

10

11 −−FLIT DEFINITION

12 c o n s t a n t MESSAGE_SIZE : i n t e g e r := 16 ; −− f l i t s i z e , i n b i t s

13 subtype MESSAGE i s s t d _ l o g i c _ v e c t o r (MESSAGE_SIZE−1 downto 0) ; −−one f l i t

14

15 c o n s t a n t MESSAGE_PACKAGE: i n t e g e r := 10 ; −−package s i z e , i n f l i t s

16 type MESSAGE_ARRAY i s a r r a y (MESSAGE_PACKAGE−1 downto 0) o f MESSAGE; −−package a r r a y

17 type MESSAGES_INPUT i s a r r a y (NETWORK_IOS−1 downto 0) o f MESSAGE;

18

19 −−SERDES IN/OUT RATE

20 c o n s t a n t SERDES_RATE: t ime := (IP_PERIOD/MESSAGE_SIZE) − MZI_BAR_DELAY;

21

22 −−POWER DEFINITIONS (mW)

23 type POWER_MEASURE i s range 0 .0 to 99999999 .0 ; −−t ype d e f i n i t i o n

24 type NET_POWER i s a r r a y (NETWORK_IOS−1 downto 0) o f POWER_MEASURE; −−network power

25 c o n s t a n t MZI_INS_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MZI i n s e r t i o n l o s s , i n %

26 c o n s t a n t MR_INS_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MR i n s e r t i o n l o s s , i n %

27 c o n s t a n t MZI_BAR_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MZI BAR t r a n s m i s s i o n i n s e r t i o n l o s s , i n %

28 c o n s t a n t MZI_CROSS_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MZI CROSS t r a n s m i s s i o n i n s e r t i o n l o s s , i n %

29 c o n s t a n t MR_BAR_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MR BAR t r a n s m i s s i o n i n s e r t i o n l o s s , i n %

30 c o n s t a n t MR_CROSS_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MR CROSS t r a n s m i s s i o n i n s e r t i o n l o s s , i n %

31 c o n s t a n t LASER_INPUT_POWER : POWER_MEASURE := 1 5 . 0 ; −−power o f i n p u t l a s e r

32 end sim_pack ;

135

SF-Sim Design Flow

This section presents the design flow when using the SF-Sim to deploys a system. A 4×4

topology will be described.

First, the general simulation parameters should be configured, as presented in Figure

APPENDIX A.4.

• Number of IOs: defines the number of IP nodes in the system. In the figure, four IPs will be

connected to the configured network.

• IPs Period: the IPs execution period, consequently frequency. In this case, 10 ns or 100 MHz.

• Flit Size: is the number of bits of each transmitted package. In the figure, each flit is

configured to have 16 bits.

• Message Size: is the number of transmitted packages. In this case, 10 flits are transmitted.

As each flit is configured with 16 bit, in total 160 bits are to be transmitted.

• Laser Input Power: defines the available laser power on each network input.

Figure APPENDIX A.4 – SF-Sim GUI Configuration Window.

Next, the MZI and MR configuration is performed. Dynamic parameters should be con-

figured, as presented in Figure APPENDIX A.5.

• BAR Transmission Delay: defines the transmission delay, when in BAR state. Parameter in

pico-seconds.

• CROSS Transmission Delay: defines the transmission delay, when in CROSS state. Parameter

also in pico-seconds.

136

• BAR Transmission Loss: is the transmission loss, when the switch is configured to BAR state.

The loss is defined in dB.

• CROSS Transmission Loss: is the transmission loss, when the switch is configured to CROSS

state. Again, the loss is defined in dB.

• Coupling Loss: defines the coupling loss for I/O switches. As the last two cases, the loss is

defined in dB.

Figure APPENDIX A.5 – SF-Sim GUI MZI configuration window.

After configuring the simulation parameters, the user should describe the system. To do

so, the DIA tool is used. When the Create Graph button is triggered, the DIA interface is called.

The Figure APPENDIX A.6 presents the DIA tool main window. In the initial screen, it is possible

to see the available components in the left and the workbench in the right. To build the system the

user can use the drag-and-drop feature and simply connect desired network nodes. The available

components in the tool are the ones presented as building blocks in this thesis: 2×2 blocks (MR

and MZI), 4×4 blocks (Beneš and Spanke-Beneš) as well as a strictly non-blocking 8×8 topology.

137

Figure APPENDIX A.6 – SF-Sim GUI DIA configuration window.

Figure APPENDIX A.7 shows the workbench filled with 12 2×2 switches used to build the

strictly non-blocking 4×4 Beneš topology. At this point no connection neither IPs are placed, only

the network nodes.

Figure APPENDIX A.7 – SF-Sim GUI DIA Workbench.

138

Next, it is possible to connect the placed nodes in the workbench. To do so, the available

arrows should be used and their direction respected. Figure APPENDIX A.8 illustrates the 12 2×2

switches connected to each other.

Figure APPENDIX A.8 – SF-Sim GUI DIA Workbench Presenting Connected Nodes.

After, the I/O nodes should be placed and connected to their input and output switches.

Figure APPENDIX A.9 shows the I/O nodes with their respective switches.

Figure APPENDIX A.9 – SF-Sim GUI DIA Workbench I/O Nodes Placement.

Finally, the I/O nodes should be coloured in order to the proper I/O mapping to be set.

Figure APPENDIX A.10 shows the coloured I/O nodes with their respective switches. In the figure,

coloured nodes in the left are input nodes and coloured nodes in the right are output nodes.

After all the system is described and configured, the user can trigger the Generate button.

This will generate all needed files to simulate the created system, besides the HyCo files to control

139

Figure APPENDIX A.10 – SF-Sim GUI DIA Workbench I/O Nodes Colouring.

the same system. Figure APPENDIX A.11 presents the generated files. The following files are

presented: the HyCo VHDL files, used to control the described network. The simulation files, such

as the MZI/MR switching blocks and the Modelsim script, to trigger the simulation. Further, the

VHDL package, which holds all the configurations needed to simulate the system is created as well.

The traffic generator, used to inject data in simulated networks and finally, the test bench files are

created.

Figure APPENDIX A.11 – SF-Sim Generated Files.

