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Uma Abordagem de Roteamento Seguro para Redes Intrachip

RESUMO

A próxima geração de sistemas multiprocessados intra-chip, do inglês MultiPro-
cessor Systems-on-Chip (MPSoC), comportará centenas de elementos de processamento
num único chip, com a promessa de alta vazão de comunicação, baixa latência e, preferen-
cialmente, baixo consumo de energia. Devido à elevada demanda de comunicação paralela
de aplicações para MPSoCs, a rede intra-chip, do inglês Network-on-Chip (NoC), tem sido
amplamente adotada como um meio de comunicação confiável e escalável para MPSoCs.

O espaço de projeto para NoCs deve ser explorado para atender à demanda das
aplicações atuais. Dentre os parâmetros que definem uma NoC, o algoritmo de roteamento
tem sido utilizado para prover serviços como tolerância à falhas, liberdade de deadlocks e
de livelocks, assim como Quality of Service (QoS). Conforme a adoção e complexidade de
Systems-on-Chip (SoC) aumenta para sistemas embarcados, a preocupação com a prote-
ção de dados também torna-se um requisito para o projeto de MPSoCs.

Atualmente, MPSoCs podem ser atacados explorando vulnerabilidades em hard-
ware ou software, sendo o último responsável por 80% dos incidentes de segurança em
sistemas embarcados. A proteção contra vulnerabilidades de software pode acontecer em:
(i) Nível de Aplicação, utilizando técnicas como a criptografia, para evitar a transmissão de
dados desprotegidos entre os elementos de um MPSoC, conhecidos como módulos de pro-
priedade intelectual, do inglês Intellectual Property (IP); ou (ii) Nível de Comunicação, ins-
pecionando ou filtrando elementos na arquitetura de interconexão através de monitores de
comunicação ou firewalls, respectivamente. Portanto, um algoritmo de roteamento, ciente
dos requisitos de segurança do sistema, deve oferecer proteção ao utilizar rotas confiáveis
na NoC, evitando elementos potencialmente maliciosos em rotas porventura inseguras.

A principal contribuição deste trabalho é uma técnica de proteção para NoCs que
atua em nível de comunicação, adaptando os algoritmos Segment-based Routing (SBR) e
Region-based Routing (RBR) para que estes considerem aspectos de segurança do sis-
tema, estes caracterizados por zonas de segurança definidas na NoC de acordo com o ma-
peamento de aplicações nos IPs. A avaliação da técnica de roteamento considera aspectos
como a escalabilidade das tabelas de roteamento, a quantidade de rotas seguras definidas
entre os IPs, e o impacto desta técnica de roteamento em aplicações do benchmark NASA
Numerical Aerodynamic Simulation (NAS) Parallel Bencharm (NPB).

Palavras-Chave: Redes Intrachip, NoCs, Roteamento Intrachip, Segurança em NoC.





A Security-Aware Routing Approach for Networks-on-Chip

ABSTRACT

The next generation of MultiProcessor Systems-on-Chip (MPSoC) will encompass
hundreds of integrated processing elements into a single chip, with the promise of high-
throughput, low latency and, preferably, low energy utilization. Due to the high commu-
nication parallelism required by several applications targeting MPSoC architectures, the
Network-on-Chip (NoC) has been widely adopted as a reliable and scalable interconnec-
tion mechanism.

The NoC design space should be explored to meet the demanding requirements
of current applications. Among the parameters that define a NoC configuration, the routing
algorithm has been employed to provide services such as fault tolerance, deadlock and
livelock freedom, as well as Quality of Service (QoS). As the adoption and complexity of
System-on-Chip (SoC) increases for embedded systems, the concern for data protection
appears as a new design requirement.

Currently, MPSoCs can be attacked by exploiting either hardware or software vul-
nerabilities, with the later responsible for 80% of the security incidents in embedded sys-
tems. Protection against software vulnerabilities can occur at (i) Application Level, by using
techniques such as data encryption to avoid plain data transmissions between Intellectual
Property (IP) modules; or (ii) Communication Level, inspecting or filtering elements at the
interconnect fabric with communication monitors or firewalls, respectively. As such, a routing
algorithm aware of security requirements could also offer protection utilizing trusted commu-
nication paths in the NoC, avoiding potential malicious elements in otherwise unsafe com-
munication paths.

The main contribution of this work is a NoC protection technique at communication
level by adapting Segment-based Routing (SBR) and Region-based Routing (RBR) algo-
rithms to consider system security requirements, characterized by security zones which are
defined on the NoC according to the mapping of applications on IP modules. Evaluation of
the proposed routing technique considers aspects such as the scalability of routing tables,
the number of secure communication paths, and the impact of this technique on applications
of the NASA Numerical Aerodynamic Simulation (NAS) Parallel Benchmark (NPB).

Keywords: Networks-on-Chip, NoCs, Intrachip Routing, NoC Security.
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1. INTRODUCTION

The next generation of MultiProcessor System-on-Chip (MPSoC) will encompass
hundreds of integrated processing cores into a single chip, with the promise of high- through-
put, low latency and, preferably, low energy utilization [33]. However, as the number of
processors increases, on-chip communication becomes a critical factor for achieving perfor-
mance demands [37].

Due to the high communication parallelism required by several applications target-
ing MPSoC architectures, there is a growing need for a reliable and scalable communication
infrastructure. The Network-on-Chip (NoC) paradigm [8], provides these requirements and
has been widely adopted as a viable interconnection mechanism for MPSoCs [60][65].

A NoC consists of routers and links. Intellectual Property (IP) modules interface
with routers through Network Interfaces (NI). The routing units constitute the underlying
communication fabric of the system, where multiple interconnected routers form network
topologies that satisfy specific system requirements. NIs connect IPs to the communication
fabric, abstracting data translation used by the NoC to the IP modules. Lastly, IPs may be
any computational resource in the system, such as a Processing Element (PE), memories,
or peripherals, for example.

Communication in NoCs employs a packet-based paradigm akin to computer net-
works [2]. Each IP is assigned to a unique address in the NoC, which is used by other IPs for
message exchanging. Data from a source IP is encapsulated following the NI protocol and
injected into the NoC. Routers forward these packets according to routing algorithms and
switching techniques to their destination. NIs at the destination then decapsulate packets,
delivering the received data to the destination IP.

However, System-on-Chip (SoC) environments are constrained by power dissipa-
tion and area consumption, and therefore incapable of employing all of the advanced mech-
anisms present in computer networks. The NoC design space should be explored to meet
the demanding requirements of current applications. Among the parameters that define a
configuration of a NoC, the routing algorithm has been employed to provide services such as
fault tolerance, deadlock and livelock freedom, as well as Quality of Service (QoS) [18]. To
address such requirements, routing algorithms and switching methods must employ efficient
techniques that satisfy SoC constraints [62].

As the adoption and complexity of SoCs increases for embedded systems, the con-
cern for data protection appears as a new design requirement [7]. An MPSoC system may
be used in scenarios where availability is a critical factor and downtimes must be minimized.
These systems may also handle sensitive information and as such, it is necessary to protect
this data from unauthorized access.
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Therefore, these security requirements have to be addressed while, at the same
time, they are constrained by the computational limitations of SoCs. Similarly to the routing
issues, security solutions used in general purpose computing systems are usually unsuitable
for MPSoCs due to their demanding computational complexity, requiring approaches that
efficiently address such issues [52][53].

Currently, MPSoCs can be attacked by exploiting either hardware or software vul-
nerabilities, with the latter responsible for 80% of the security incidents in embedded systems
[15]. Software attacks in MPSoCs usually start with an abnormal communication, e.g., flood-
ing or an unauthorized element accessing a restrict system resource [54] [17]. Protection
against software vulnerabilities can occur at (i) Application Level, by using techniques such
as data encryption and source authentication, to avoid plain data transmission between IP
modules and prevent unauthorized access to system resources, respectively [3]; or (ii) Com-
munication Level, by using monitoring elements at the interconnect fabric to detect abnormal
communication behavior in the system [17], or firewall modules capable of traffic filtering
sensitive content in the system [22].

Protection at communication level can prevent situations where the software layers
in the system may become compromised. Due to the intercommunication fabric’s system-
wide visibility and critical role in enabling system operation, it can be exploited to detect and
prevent a broad range of software-based security attacks [15]. NoCs have been shown to
aid in the overall MPSoC protection. The works of [17], [54], [28], among others, imple-
ment security services at the network level, detecting abnormal communication events of
elements and applications in the system. Therefore, a routing algorithm aware of security
requirements could also offer protection utilizing trusted communication paths in the system,
avoiding potential malicious elements in otherwise unsafe communication paths.

This work proposes a NoC protection technique based on the routing algorithm
implementation. By specifying security zones [50] in an MPSoC, the routing algorithm pri-
oritizes communication among paths deemed safe in the system, according to application
requirements. This work assumes that the model of security zones coupled with a routing
algorithm aware of security requirements should enhanced protection from software-based
attacks.

1.1 Motivation

Protection of sensitive data and system security is an ever-increasing concern in
today’s pervasive computing environments. As multicore processors find increasing adop-
tion in domains such as aerospace, medical devices, and the automotive industry, failures
could be catastrophic or expose sensitive information [64].
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An example of vulnerabilities targeting MPSoCs includes access to shared memo-
ries, often employed in MPSoC systems. As the memory has global visibility of the hardware
elements in the system, malicious software can access sensitive memory regions for steal-
ing or modifying information, or for disrupting system operation [25]. A hardware-based
protection approach offers higher reliability by providing access control outside of the soft-
ware context, usually protecting the system at communication level by inspecting memory
access requests.

Other vulnerabilities attempt to saturate the NoC used in MPSoCs by generating
a series of useless communication requests [17], also known as Denial-of-Service (DoS)
attacks. These attacks can saturate the network infrastructure and disrupt normal system
operation, which can lead to failures of time sensitive processes, as they cannot meet op-
erational deadlines. In some cases, attacks can exploit technological characteristics of the
NoC infrastructure in ways that compromise data integrity among communicating elements
in the system [56]. Providing traffic isolation and communication level monitoring can identify
or prevent such malicious behaviors in the system, increasing protection.

More advanced techniques can monitor the communication behavior of processes
in the system, capturing information that can analyze or narrow down the possible values
of cryptographic keys of encryption methods [59]. The adoption of security aware routing
paths, traffic filtering, and communication level monitoring, can significantly increase system
protection by making such attacks infeasible.

In all of the previously mentioned cases, abnormal communication usually pre-
cedes software attacks. As such, a protection mechanism that operates at network level
can mitigate such vulnerabilities. By establishing safe routing paths among communicating
elements in the system, it is possible to enhance the overall system security.

1.2 Objectives

This work proposes to address vulnerabilities in NoC-based systems through a
security aware routing algorithm that is capable of considering security zones in an MPSoC.
Characterization of these zones requires taking into consideration the MPSoC configuration
and its applications.

The approach adopted in this work should offer the following benefits: (i) Enhanced
system security, by routing information in the system through safe communication paths;
(ii) Hardware-assisted security, by offloading system protection to the interconnect fabric.

The following specific objectives must be satisfied to achieve this general objective:
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i. The definition of a routing model that is capable of considering system security require-
ments and define secure routes in the system, while preserving key characteristics
such as deadlock and livelock freedom;

ii. The creation of an abstract model for the secure routing algorithm, allowing the pro-
posed model to be verified for its correctness;

iii. Validation and evaluation of this new routing algorithm for different security configura-
tion scenarios; and

iv. The adaptation of an existing NoC simulation platform to employ this new routing
model, evaluating its behavior for simulated scenarios.

By completing these objectives, the main contributions achieved by this work are:

i. The modeling of security constraints for routing in NoCs;

ii. A study regarding the impact of security zones for securely routing information in NoCs;
and

iii. A study on the scalability, the creation of secure routes, and the performance impact
of the proposed routing technique for different NoC and workload configurations.

1.3 Organization

The remainder of this document is organized into nine Sections. Section 2 dis-
cusses NoC general concepts and its fundamentals. In Section 3, security concerns per-
taining NoCs are discussed, further motivating the study of security measures in MPSoCs.
Related works regarding studies and attempts to address NoC security are presented in
Section 4. Section 5 presents the threat model that constitutes the premises for the pro-
posed solution. Section 6 discusses the model and algorithms of this work to address NoC
related security concerns. The evaluation criteria are discussed in Section 7. Results are
shown in Section 8. Finally, Section 9 presents the conclusions and future work ideas of this
work.
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2. NETWORK-ON-CHIP

[8] mentions the term NoC as a network-based SoC interconnection. As future
SoCs would be increasingly complex, requiring a modular, component-based approach to
both hardware and software design, the NoC has emerged as a communication architec-
ture for complex multiprocessor systems, offering better performance, throughput, scalability,
and a high degree of data transmission parallelism when compared to shared bus systems
[65]. Further, NoCs favor a Globally Asynchronous Locally Synchronous (GALS) model that
simplifies clock skew issues in complex SoC design while propitiating the management of
independent clock domains for improved power consumption [1].

Conceptually, NoCs are similar to general-purpose networks by employing a micro
network stack (Figure 2.1) that encompasses different levels of abstraction. The Physi-
cal layer is responsible for the physical aspects of communication, such as wiring and the
embedded logic responsible for signal processing. Architecture and Control layer employs
the concept of data links and routing algorithms that establish point-to-point or end-to-end
connections among the communicating elements, and encapsulate data into packets for
exchange among different NoC elements. In the Software layer, system services and ap-
plications execute on top of the lower level interfaces. This paradigm decouples abstraction
layers, increasing modularity and subsequent reuse of previously designed IP modules.

Physical Layer
(wiring)

Architecture and Control 
layer

(data link, network, 
transport)

Software
(system, applications)

Figure 2.1: Network stack representation. Upper layers represent increasing design abstrac-
tion levels. (based on [8])

The architectural design of a NoC relies on NIs that encapsulate data into packets
containing protocol information required for communication in the NoC. IPs interface with NIs
and each NI is then interconnected to a routing unit that implements a routing algorithm and
switching techniques responsible for packet exchange with different NoC elements. Routing
units interconnect among each other forming the network, which is configured to satisfy
MPSoC requirements. Figure 2.2 illustrates a 2D mesh NoC with 16 routing units and IPs.
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Figure 2.2: 2D Mesh NoC topology with 16 routers and IPs, forming a regular tile-based
architecture.

There is not a commonly agreed definition of what is the minimum network config-
uration that classifies NoCs [49]. However, their survey identifies the following basic prop-
erties on existent NoC implementations: (i) separates the communication from the compu-
tation; (ii) allows the adoption of distributed / decentralized controllers for communication;
(iii) allows an arbitrary number of IP blocks; (iv) may be implemented by different topologies
and configurations to satisfy communication requirements (scalability); (v) typically does not
utilize long, global wires spanning the whole chip; (vi) allows the customization of several
structures, e.g., link width, buffer depth, topology; (vii) facilitates the implementation of an
architectural model that uses multiple voltage and frequency domains; (viii) allows in-order
data delivery, either naturally or via a layered protocol; (ix) offers varying guarantees for
transfers, e.g., QoS; and (x) enables easier implementation of system testing.

The following Sections address implementation characteristics in NoCs, such as
switching techniques and routing algorithms in mesh topologies, which are of special rele-
vance to this work.
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2.1 Switching Techniques

The switching method defines how data is transmitted among the routing units in
the NoC. It is necessary to allocate resources of the communication fabric, establishing
logical channels to exchange data among source-destination pairs.

According to [1], routers implement switching techniques that can be classified
based on network characteristics. There are two groups: (i) Circuit Switching, where a path
from source to destination is reserved before transmitting information. It has the advantage
of contentionless data transmission once the path is configured. However, any other com-
munication that requires a link in an already reserved path is denied; (ii) Packet Switching,
where a message is divided into packets and each packet hops through the routing units
contained in the path from source to destination. In the works of [23] and [42], the most
important modes used in Packet Switching are:

• Store-and-Forward : packets are stored completely in each router’s buffer before for-
warding to the next hop. If a router in the path does not have sufficient buffer space,
contention occurs. Each router needs a buffer capable of storing at least one whole
packet;

• Virtual cut-through: packets are forwarded to the next hop once it is guaranteed that
the full packet can be stored. Therefore, unlike Store-and-Forward, there is no need to
wait for the storage of the whole packet before forwarding it to the next hop. Still, this
method also requires buffering capacity for at least one whole packet;

• Wormhole: each packet is divided into small units called flits. Only the header flit con-
tains the routing information, with subsequent flits containing either the packet size and
body or the packet body followed by a tail. The header flit reserves a path between
hops and establishes a channel where one or many body flits follow. The major advan-
tage of wormhole switching is that there is no need of buffering capacity for an entire
packet.

While switching techniques describe how to perform data transferring among ele-
ments in the NoC, the routing algorithm implements the source-to-target path selection [10],
as presented in Section 2.2. However, before discussing routing algorithms, it is important
to identify two key issues in switching techniques that routing algorithms need to address,
namely deadlock and livelock.
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2.1.1 Deadlock

In the case of wormhole switching, a packet may occupy several intermediate
routers at the same time creating a scenario where packets circularly block each other,
preventing further communication and therefore creating a deadlock [65]. It is important to
note that deadlocks are not tied to wormhole switching and may occur in other switching
schemes as well.

Avoiding deadlocks requires breaking circular dependencies among packets. Fig-
ure 2.3 illustrates a deadlock situation where Packets 0 to 3 are waiting for buffer availability
to reach their destinations. In mesh topologies, it is clear to identify the possible turns. A
two-dimensional mesh contains eight turns, as shown in Figure 2.4. Avoiding deadlocks
requires restricting possible turns in a way that prevents creating scenarios with circular de-
pendencies. However, choosing which turns to restrict requires careful evaluation, as simply
adding restrictions does not guarantee deadlock freedom.

Packet 1

Packet 0

Packet 3

Packet 2

A

B C

D

Packet Destination

0 C

1 D

2 A

3 B

Figure 2.3: Routing deadlock caused by a circular dependency. Packets are unable to reach
their destination due to network resources occupancy by other packets.

One approach is dimension-ordered routing, where packets route in one dimension
first, such as the X -axis in a mesh topology. Upon arrival at the destination column, packets
travel in the Y -axis, reaching their destination. Regarding the turns listed in Figure 2.4,
dimension-ordered routing eliminates SW, SE, NW and NE turns (half among the eight
possibilities).

Although the approach used in dimension-ordered routing solves the deadlock
problem, it is clear that it also greatly restricts routing possibilities. Other routing algorithms
employ a different set of restrictions to address the deadlock issue [6] in a less restrictive
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Figure 2.4: The eight possible turns in a two-dimensional mesh-based topology, namely:
SW : South-West; SE : South-East; NW : North-West; NE : North-East; EN: East-North; WN:
West-North; ES: East-South; and WS: West-South.

manner. West-first routing only prohibits SW and NW turns. In the North-Last algorithm,
NE and NW turns do not occur. Negative-First routing eliminates ES and NW turns. An-
other algorithm called Odd-Even applies turn restrictions differently at each column in mesh
topologies, where even columns prohibit ES and EN turns, and odd columns do not allow
SW and NW turns.

Another model proposed in [41] prevents deadlocks by partitioning the NoC into
segments. Each segment then has a local bidirectional turn restriction independent from
other segments. This model adds a locality independence property that allows customization
of turn restriction placement according to the different requirements criteria of the system.
This work uses proposal discussed in [41] to achieve a deadlock freedom implementation,
as it is further discussed in Section 6.2.1.

2.1.2 Livelock

A livelock is a situation where packets keep circulating the network without ever
reaching their destination [18, Chapter 3]. These can only occur when packets are allowed
to follow non-minimal paths, such as in adaptive routing algorithms.

According to [18], livelocks can be avoided with relative ease. Enforcing minimal
paths is possibly the simplest way to guarantee livelock freedom. However, non-minimal
paths enables routing adaptiveness, which may be of interest in fault tolerance approaches
for efficient use of the available network resources.

Deflection routing [65] is one example that illustrates a livelock scenario. This algo-
rithm is based on the idea of forwarding a packet through a router’s output port at each cycle,
assuming that each router has an equal number of input and output ports, so packets can
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always find at least one output exit. In deflection routing, when contention would occur, the
packet picks any available output port to move to the next router, so that it never waits longer
than a clock cycle at any given router. Note that this method does not guarantee a minimum
routing path. In the worst case, a packet will travel back and forth in the NoC, without reach-
ing its intended destination. However, it has already been shown that deflection routing is
livelock-free in a probabilistic way so that when a sufficiently long period is considered, the
probability of not reaching the destination converges to zero for all packets [18, Chapter 3].

2.2 Routing Algorithms

Routing algorithms define the path taken by a packet between the source and the
destination. The propagation nature of packets in the NoC varies with two modes: (i) Uni-
cast, where a source-destination communication is a one-to-one data exchange. It means
that for a single source to communicate with multiple destinations, various communication
events are necessary; or (ii) Multicast, where a source can communicate to a set of desti-
nations in a single communication event. According to the survey presented in [1], on-chip
communication favors Unicast routing strategies due to the presence of point-to-point com-
munication links among routers in the NoC.

Regarding the place where decisions are made in Unicast routing, it is possible to
characterize it in four groups: (i) Centralized Routing, where a central controller determines
the packet flow; (ii) Source Routing, where the whole path in decided at the source router;
(iii) Distributed Routing, where each router receives a packet and decides the direction to
send it; or (iv) Multiphase Routing, which is a hybrid approach that combines Source Routing
and Distributed Routing.

The NoC routing algorithms are most commonly implemented by checking LookUp
Tables (LUTs) that contain routing entries, or by executing an algorithm, which can be rep-
resented by a Finite State Machine (FSM) [18, Chapter 4]. LUTs are represented by data
structures that hold pre-calculated output values for an input information. They can be im-
plemented either logically in software or by dedicated hardware components. According to
where routing decisions are made, a single, centralized LUT may exist in the system, or
each router may contain its table. The advantage of LUTs is that the routing algorithm can
be changed as required, replacing the LUT entries. However, this approach can be ineffi-
cient concerning area consumption required to store the LUT as the NoC grows, reducing
scalability. Compression techniques are used to significantly reduce LUT size, such as the
one mentioned in [26] and [40], which is a basis for the proposed work. Regarding FSMs,
these can be implemented in either software or hardware, executing the routing algorithm
for each packet as needed.
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Figure 2.5: Taxonomy of routing algorithms. (captured from [18, Chapter 4])

Another characteristic of routing algorithms, which is implementation independent,
regards deterministic or adaptive behavior [18, Chapter 4]. On one hand, in deterministic
routing packets always follow the same path between a source and a destination pair. Adap-
tive algorithms, on the other hand, depend on network conditions, such as traffic and/or
channel status. This characteristic of Adaptive algorithms provides adaptability to network
loads or faulty regions in the network. There are other features of adaptive routing identi-
fied in [18] regarding strategies used for link reservation (progressiveness), path deviation
(minimality ) and path coverage (number of paths), as Figure 2.5 illustrates.

The following subsections provide a general overview of existing deterministic and
adaptive routing algorithms for either FSM or Lookup Table implementations.

2.2.1 Deterministic Routing Algorithms

Some NoC topologies, such as meshes, can be decomposed into several orthogo-
nal dimensions. Computing distances in a source-destination pair in these cases becomes a
matter of measuring the offset in each dimension. Progressive algorithms aim to reduce this
offset at each routing step, such as dimension-ordered routing [18, Chapter 4.2], mentioned
in Section 2.1.2. This algorithm is also extensible for n-dimensional meshes as well, be-
ing usually called XY or XYZ for two-dimensional and three-dimensional mesh topologies,
respectively.
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Another approach is source routing, where the source precomputes the path in a
source-destination pair and appends the path information to the packet header [10]. This
model requires simple hardware implementation as it is only necessary to notify the output
port through where the packet needs to be sent. However, the whole path pre-computation
is required, and additional communication overhead is introduced, as the entire routing path
must be present in the packet’s header.

2.2.2 Adaptive Routing Algorithms

The simplest approach in adaptive routing is deflection routing, discussed in Sec-
tion 2.1.2. This algorithm provides full adaptability by not imposing turn restrictions or con-
ditional behavior that depends on network conditions.

Other variations in adaptive routing include West-First, which is partially adaptive.
Turns to the west are prohibited, so packets traveling west of the source router are routed
in a deterministic way. Eastbound packets, however, are routed with full adaptivity [63].
Similarly, the North-Last algorithm does not allow turns from north to east or from north
to west, so that a packet will only head north (if necessary) once it has traveled with full
adaptivity in the other dimensions. In Negative-First routing, turns from north to west or from
east to south are prohibited, so that packets can travel a miss-routing path to the southwest
of its destination. Odd-even routing is another algorithm that provides adaptivity and offers
a different approach for turn restriction placement. Unlike the previous algorithms, in odd-
even all turns are permitted globally, but each column in a mesh topology has different turn
constraints in a manner that prevents the routing path from ever forming a cycle [18, Chapter
4.3.2].

Routing table based algorithms are also a possibility for adaptive routing, providing
multiple routing entries to reach a destination. [26] proposed the Region-Based Routing
(RBR), which has the benefit of reducing the necessary table space to store routing entries.
By grouping destinations into regions in the NoC, it is possible to use a single routing entry to
reach a set of destinations. This work uses this algorithm for packet routing, which is further
discussed in Section 6.2.3.
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3. NOC SECURITY

A security-aware design of communication architectures is becoming a necessity in
the context of embedded MPSoC security. Even though complex communication infrastruc-
tures, such as NoCs, may lead to weaknesses in the system that can be critical and should
be carefully studied and evaluated [24], NoCs can be a contributing element in secure SoC
design by providing the means to monitor system behavior, enabling the detection of attacks.

Weaknesses during design time inevitably remain in the system implementation
and are often exploited by attackers in the form of either software or hardware attacks. Soft-
ware attacks that exploit vulnerabilities in application code or weaknesses in the system
design are the most common type of attacks [45]. Given that multiple existing devices al-
ready employ MPSoC architectures, it is imperative that security is considered at design
time rather than be employed as a reactive measure.

As [15] mentions, embedded systems are typically designed by assembling various
IP modules on top of a standard communication architecture. Due to the intercommunica-
tion fabric’s system-wide visibility and critical role in enabling system operation, it can be
exploited to detect and prevent a broad range of software-based security attacks. The com-
munication architecture is capable of determining system events, e.g., (i) which components
or programs are accessing a given memory region; (ii) if a component obeys system-level
rules; (iii) if the present configuration for a peripheral device is valid for accessing a com-
ponent; and (iv) system intrusions due to changes in the communication behavior of an
application.

The following Sections discuss general principles employed in security solutions,
and the identification of vulnerabilities and associated techniques to protect NoC-based MP-
SoC systems.

3.1 Security Services

According to [5], security encompasses three primary attributes. In the context of
MPSoC systems, these principle correspond to:

• Confidentiality : The absence of unauthorized disclosure of information; e.g., applica-
tions or IP blocks that do not possess access rights cannot read sensitive data stored
in an MPSoC;

• Integrity : The absence of improper alterations, e.g., the content of packets traversing
the communication fabric must remain unchanged by unauthorized parties in the path
from source to destination; and
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• Availability : The readiness for correct service, e.g., it is necessary to guarantee that
sufficient resources remain available to satisfy the performance requirements in the
system, such as real-time processes. QoS techniques can also address this property.

Furthermore, secondary attributes can be defined, refining or specializing the pri-
mary attributes, namely:

• Accountability : Availability and integrity of a claimed identity. The originator of a re-
quest to access a secured component must present credentials that prove its identity,
e.g., an IP block that attempts to access resources located on a target IP has to provide
information that identifies itself for the target;

• Authenticity : Integrity of a message content and origin, possibly including other mes-
sage attributes related to the origin, e.g., an application executing in a PE requests
read/write operations to a memory address in the MPSoC. The system needs to verify
if the source application has access permissions at the specified memory address; and

• Nonrepudiability : Availability and integrity of the identity of elements in the system. It
avoids that any element denies an action, e.g., an IP block cannot forge its credentials
to gain access permissions to protected system resources.

The combination of these security attributes define a set of security constraints
which systems must adhere by, characterizing a Security Policy. The enforcement of these
constraints is performed by Auditing the system behavior, e.g., logging configuration and
communication events in the MPSoC with different granularity levels, such as IP blocks,
applications, and router configurations [47].

Security attributes are provided by security services. These ensure the system
protection by managing the system resources [34]. Implementation of security services can
be either physical (physical barriers) or logic (such as cryptography, digital signatures, or
hash functions, for example). According to [15], the inclusion of security services in SoCs is
a challenging process, as these can easily exceed the computational capacity of embedded
systems.

Such security services can be integrated into the communication infrastructure of
the MPSoC. By exploring the NoC and NI configuration parameters, system security can be
enhanced. The following sections present threats to MPSoC systems, which a secure NoC
can protect.

3.2 Memory Access Vulnerabilities

Perhaps one of the most discussed vulnerabilities in literature regards memory
access in MPSoCs [24][28][29][15][25]. As Figure 3.1 shows, a typical MPSoC architecture
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includes PEs and shared memories accessible through the intercommunication architecture.
Without an access control mechanism, any process running on some PE may access any
address range in the memories, for either capturing sensitive information or disrupting sys-
tem operation. Even if a protection implementation exists at Operating System (OS) level,
there are no guarantees that malicious applications could not bypass OS protection, leaving
the system vulnerable.

Memory

NI

Router

Memory

NI

Router

Memory

NI

Router

PE

NI

Router

PE

NI

Router

PE

NI

Router

Figure 3.1: Typical NoC-based MPSoC architecture with memories and PEs.

To address this vulnerability, [24] proposes an architecture with probes embedded
into the NI of PEs that monitor communication events and filter address ranges in memory
accesses, specified in the content of packets, providing Accountability and Authorization. At-
tempts to access protected memory blocks from an unauthorized traffic initiator are blocked
and notified to the system, signaling the presence of a compromised core. Other works such
as [28] or [31] adopt a similar technique while using firewall modules, decoupled from the NI
and containing memory access rules.

The verification modules placement depends on implementation, and could occur
either: (i) at the traffic initiator, which prevents unauthorized packets from entering the NoC,
thus alleviating resource usage but increasing overhead, as each verification module is in-
dividually reconfigured for all memory related accesses; or (ii) at the target, which filters
incoming memory access requests while offering relatively simpler reconfiguration, since
only the protected component’s verification module needs to be reconfigured, but enabling
packets with invalid access requisitions to consume NoC resources, facilitating attacks as
discussed in Section 3.3.
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3.3 Communication Vulnerabilities

Another common attack aims to disrupt system operation through the form of DoS
attacks; also known as Bandwidth Reduction or Draining Attacks, this often occurs by inject-
ing useless packets that saturate the communication architecture.

According to [17], DoS attacks can be further categorized in four kinds of attack
scenarios: (i) Replay, which corresponds to repeated requests that wastes bandwidth, in-
creasing communication latency; (ii) Incorrect path, which introduces packets with false
paths that could trap communication channels and prevent valid packets from traversing the
NoC; (iii) Deadlock, which creates packets with paths that intentionally disrespect dead-
lock-free rules of the routing techniques; and (iv) Livelock, which injects packets that can
never reach their destination and stay indefinitely traversing the network, wasting bandwidth,
latency and power. While the latter three categories should not affect distributed routing al-
gorithms (but could disrupt source-routing implementations), the first category targets any
of the routing techniques previously discussed in this work.

Some DoS attacks may also be indistinguishable from normal communication events.
Detecting this unusual traffic requires data collection and analysis similar to Intrusion Detec-
tion Systems (IDS) used in computer networks [32].

Variations of DoS attacks target specific technological characteristics of MPSoCs.
Through-Silicon-Vias (TSVs) used for 3D MPSoC interconnection, as described in [56], are
prone to coupling effects by adjacent TSVs that can disrupt communication. A malicious
application can generate traffic at specific TSVs to (i) alter sensitive data in adjacent TSVs;
(ii) induce degradation of a victim TSV under the effect of an aggressor TSV by increasing
interfacial cracks or by promoting electromigration effects; and (iii) modify its performance
by delaying or speeding up signal transitions.

Techniques to mitigate such attacks employ an Integrity service that includes traffic
scheduling among interference prone TSVs to avoid these effects. Another strategy would
be routing algorithms aware of sensitive communications that promote traffic isolation while
providing Availability. The adoption of routing algorithms with safe routing paths and aware
of security requirements, as this work proposes, could be extended to address this attack
scenario.

3.4 Time-based Attacks

Time-based attacks employ more sophisticated techniques to exploit the commu-
nication patterns at MPSoC. Relying on access patterns of traffic flows, attackers can infer
sensible information regarding applications executing in the system.
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This aspect of MPSoC security is studied in [59]. As many-core architectures are
based on memory hierarchies, several levels of cache can be integrated.

Some cores may integrate a processor with its associated caches. In the event of a
cache miss, the coherency mechanism has to access another distant core that contains the
next element in the memory hierarchy. The attack scenario, shown in Figure 3.2, consists
of two processes executing in parallel. A sensible process (S) is performing a cryptographic
function, such as the Advanced Encryption Standard (AES), which employs a secret key.
In the event of a cache miss during S execution, the cache coherency mechanism has to
access the memory located at D. Meanwhile, an attacker A is constantly injecting packets
into the NoC to the same memory D. Due to communication resource sharing between S
and A to access D, A suffers throughput degradation, which leaks information about the
nature of the memory access of the crypto-process in S. As [44] extensively details, time-
based attacks such as this can reveal considerable information for cryptanalysis by reducing
the search space of secret keys, weakening encryption strength, thus violating Confidential-
ity and possibly Integrity. [59] suggests the use of random arbitration and adaptive (non-
deterministic) routing as protection for this sort of vulnerability.

Figure 3.2: Sensible process communicating over the NoC with an attacker in the routing
path. (captured from [59])

Time based-attacks require knowledge of the underlying communication architec-
ture to measure throughput variations and later inference of information on sensitive pro-
cesses. Thus, random arbitration introduces variations in access times of the routing path,
masquerading memory access behavior of sensitive processes. Another approach is to
adopt non-deterministic routing strategies on the NoC. Adaptive algorithms such, as west-
first, offer low-cost and deadlock freedom routing. As the routing path is unpredictable in
most situations, the inference of memory access patterns of sensitive processes by an at-
tacker becomes infeasible, protecting the system from time-based attacks.
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4. RELATED WORK

This section presents the works regarding security in NoC-based MPSoCs. It is
important to note that the items discussed in this section do not represent all existing works
that takes the subject of NoC security into account.

4.1 Security Effectiveness and a Hardware Firewall for MPSoCs

The work of [28], [29] proposes a hardware based firewall module placed between
the NoC’s routing units and IP modules. This firewall is capable of application level filtering
through the Process Identifier (PID) of each task, monitoring memory requests invoked by
any initiator connected to the NoC. A lookup table contains the access rights for each task,
preventing malicious communication from entering the NoC. Rule checking considers the
memory’s physical address, as it takes place after virtual-to-physical address translation.
The main purpose of memory protection is preventing a process from accessing shared
memory regions not mapped for it that could contain sensitive data. This approach protects
only the initiator side, assuming that memory protection takes place at processor requests
instead of memory accesses.

Figure 4.1: Top-level illustration of the Firewall module. (captured from [28])

The architecture, as Figure 4.1 illustrates, consists of the following submodules:

• The Operating Mode Controller (OMC), which accepts, decodes and dispatches NoC
firewall commands.

• The Segment-Level Rule-Checking module (SLRC) that processes incoming memory
access requests and configuration commands. This module implements the deny rules
used for filtering application requests and internal monitors for recording NoC related
activity.
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• The Interrupt Unit (INTU), which accepts, in parallel, interrupt requests from the OMC
and SLRC blocks, and reports interrupts to the CPU this firewall module is associated.

A Cycle Accurate and Bit Accurate (CABA) SystemC model, as well as a higher-
level Transaction Level Model (TLM) in the Gem5 system simulator, validates their system.
Results evaluate the effect on system latency and power consumption at network layer by
measuring the effects of having the firewall modules enabled/disabled for malicious traffic
scenarios. Unfortunately, no results are illustrating the performance impact of the firewall
modules regarding power and latency overhead, as the authors did not consider this evalu-
ation.

4.2 Elastic Security Zones for NoC-Based 3D-MPSoCs

In [57], the authors propose Adaptive Ciphered Elastic 3D-NoC, targeted at 3D-
MPSoCs (3D-ACeNoC), for protecting against software attacks. The system architecture
consists of dynamically reconfigurable hardware firewalls that adapt to the set of tasks
mapped into the MPSoC. This characteristic creates security zones within the NoC topol-
ogy. Components inside the same security zone are trusted and considered secure; hence,
the transactions among them do not require security checking nor content protection.

Figure 4.2: Example of a 3D-NoC based 3D-MPSoC (captured from [57])

Their architecture consists of three key components:

1. Security Checkers: responsible for blocking or allowing transactions according to se-
curity policies. These devices implement access control (authorization for the use of
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a resource), authentication (validates the initiator IP integrity) and confidentiality (data
ciphering). There are four types of security checkers, depending on their location in a
3D topology like the one shown in Figure 4.2:

• Computation-Communication, linking IPs to routers;

• Memory-Router, linking memory dies to routers;

• Router-Router, linking consecutive routers; and

• Routers-TSVs, interconnecting routers to vertical connections.

Either these devices can verify or not incoming/outgoing data according to the config-
ured security zone, as traffic originated by trusty components do not require verifica-
tion.

2. Reconfiguration and Security Manager Modules (RSMM): is a software task with su-
per privileges that configures the Security Checkers according to a security policy. This
module is located on a processor die of the 3D-MPSoC. It also manages the security
keys of each zone used for ciphering data. This module is aware of the application
mapping within the 3D-MPSoC to define the security zones. The RSMM module gen-
erates packets whose final destination is the target firewalls, to perform table updating
for the Security Checkers. All traffic originated from this module is secure and have the
highest communication priority.

3. Monitors: embodied at the NoC routers, these modules are constantly auditing the
communication behavior of the MPSoC. They are responsible for verifying the comple-
tion of the communication among the different master/slave pairs of the 3D-MPSoC.
The RSMM module manages the elasticity of security zones (contract/expand) by en-
abling/disabling the router-router security checkers. A security zone expands when the
security policy of a neighbor IP component is compliant with the security policy of the
security zone, and contracts otherwise.

Validation uses a SystemC-TLM model that performs latency, power and thermal
evaluations. Synthetic and real application traffics allow the implementation verification by
filtering malicious data flows. The synthetic traffic uses Poisson and Long Range Depen-
dence characteristics, while the real application traffic uses the SPLASH-2 benchmark [61].
Their results indicate a higher performance with lower energy requirements while compared
to other works with similar characteristics, such as 3D-SZNoCs [55] – an implementation by
the same authors without security zones – and 3D-SENoC [54], which implements security
zones but without elasticity.
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4.3 3D-LeukoNoC: A Dynamic NoC Protection

Targeting specific 3D NoC vulnerabilities, [56] proposes a secure architecture ca-
pable of traffic isolation and QoS. Interconnections among different planes in 3D NoCs of-
ten employ the TSV bus technology. TSVs are very short, fine-pitched links that create
high-bandwidth communication channels, and are usually grouped into islands for thermal,
reliability and fabrication considerations.

It is known that TSVs greatly suffer from coupling effects, which turns this technol-
ogy vulnerable to integrity and operational problems. These vulnerabilities can be exploited
by malicious software that generates traffic into adjacent TSV links, promoting electromi-
gration effects that may alter legitimate traffic or alter signal transitions. Therefore, unlike
security mechanisms used in 2D NoCs, 3D topologies require specific countermeasures.

The 3D-LeukoNoC uses the concept of Keep-out-Zones to impose an isolation area
around TSVs that carry sensitive data. The Keep-out-Zone size depends on technological
and dimensional parameters. Besides, even when multiple TSVs may be carrying sensitive
information, isolation of these channels help prevent communication degradation caused by
the coupling effect.

The security infrastructure encompasses three key components: (i) Recognizers
(RG), which filter data by inspecting packet fields with known security rules and can be
enabled or disabled accordingly; (ii) QoS routers (QoSR), which are QoS-enabled routers
with reconfigurable arbitration parameters; and (iii) Lymphocyte-B (LB), a reconfiguration and
security manager module that reconfigures the RG and QoSR components. The secure NoC
architecture operates by blocking malicious traffic through the RG and manages inter/intra-
layer communications through LB and QoSR at run-time.

Security policies and performance requirements exist for each application in the
3D-MPSoC. Packets in the NoC carry identifiable information for each application so that
3D-LeukoNoC can enforce its policies and deliver the necessary performance.

Experiments used a SystemC-TLM model capable of integrating latency, power,
thermal and coupling characteristics of the 3D NoC. Results compared 3D-LeukoNoC to
other secure NoC architectures, some that solely employ 2D security countermeasures while
others attempt to extend 2D techniques to 3D NoCs. However, as argued by the authors, 2D
security techniques are shown to be insufficient, emphasizing the proposed architecture.

Although the authors have chosen traffic contention mechanisms to mitigate the
threat model, it should be possible to achieve similar results by adopting routing techniques
that take the security aspect of communication into consideration, as this work proposes.
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4.4 Automatic ILP-based Firewall Insertion for Secure Application-specific Net-
works-on-Chip

In [31], the authors propose NoC based hardware firewalls for application-specific
NoCs. Their research focuses on firewall placement in general-purpose NoCs, which are of-
ten integrated at the NI of targets holding sensitive data. Since certain non-reprogrammable
traffic initiator MPSoC components cannot be compromised, traffic from these trusted mod-
ules would unnecessarily pass through firewalls, introducing significant communication over-
head (an increase of 3% to 9% of total bandwidth), as the packet header from these compo-
nents requires additional fields for the firewalls to perform their functions.

Firewalls used in their architecture provide three security features: (i) Authenticity ,
which guarantees that sensitive data in a target can only be accessed by authorized initia-
tors; (ii) Accountability , which guarantees that the packet is generated from the specified
initiator; and (iii) Availability , which guarantees that critical flows are not blocked even in
attacking scenarios.

To guarantee Authenticity, the firewalls implement three incremental security levels:
(a) L = 1: firewalls check if the packet initiator has access to the target; (b) L = 2: firewalls
also verify address ranges accessed at the target; and (c) L = 3: firewalls also check the
initiator’s role. The firewalls provide Accountability using three incremental security levels:
(a) L = 1: firewalls crosscheck the initiator ID with the packet ID; (b) L = 2: firewalls also
check the packet’s routing path; and (c) L = 3: firewalls also check the packet’s unique
sequential number. Finally, the firewalls implement a bandwidth counter that registers each
passing traffic flow within a time interval to prevent bandwidth overusing, guaranteeing Avail-
ability.

For determining the required firewall security levels, each traffic initiator i has a trust
level ti while each target j possess a security level sj . If ti ≥ sj then traffic does not need to
be checked. However, if ti < sj then a firewall of at least level sj is required.

The remainder of their work discusses in detail the techniques used to predict opti-
mal firewall placement, through integer linear programming, and experimental results. While
the former is best explained in [31, Section III], the later indicates an overhead reduction of
63% to standard solutions for an industrial chip specification that contains 25 PEs and 140
traffic flows, and 54% overhead reduction for a smartphone chip specification that contains
25 PEs and 93 traffic flows.
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4.5 A Non-intrusive and Reconfigurable Access Control to Secure NoCs

The work shown in [22] proposes a secure NoC architecture using firewall modules
that provide three security properties: (i) Accountability, where each element in the system
has to provide credentials that prove its identity; (ii) Authenticity, where only authenticated
sources may access restrict resources in the system; and (iii) Nonrepudiability, where there
is the guarantee that a traffic origin cannot be forged. The presumed NoC architecture uses
packets for exchanging data, which contain a header with routing related information, as
Figure 4.3 illustrates, and an independent circuit dedicated for firewall configuration.

Figure 4.3: NoC packet composition for a 16-bit flit.

Firewalls can provide Authenticity by inspecting packet headers, as these contain
the traffic initiator’s source address. This address uniquely identifies elements in the system,
thus providing the Accountability property. If the initiator is authorized to communicate with
a destination, then traffic enters the NI of the target IP. Otherwise, the packet is rejected
upon arriving at its intended destination. Nonrepudiability occurs by the firewall modules
inspecting the source field information of the packet’s header upon injection by the initiator
IP. If the source address is different from the associated router’s, then the packet is discarded
before entering the NoC. Otherwise, it is normally injected.

The placement of the firewall modules occurs between the NI and router ports,
which does not require altering existing NoC components besides the interconnections. This
approach, illustrated in Figure 4.4, simplifies implementation as the NoC may incorporate
security mechanisms through the firewall modules without significant architectural redesign.

Their model is validated using the Hermes NoC [42], a 2D mesh NoC described in
VHDL with SystemC-based packet injectors. Results include area overhead and a synthetic
traffic scenario that mixes legitimate, malicious and forbidden dataflows. Synthesis shows
the firewall modules to be scalable to the NoC size with 12% to 16% of area overhead.
Meanwhile, NoC communication occurs normally while detecting non-secure traffic flows.

The firewall placement strategy is similar to the one adopted in this work, as fire-
wall modules reside between routers and NIs in a manner that does not require complex
architectural changes.
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Figure 4.4: NoC port interface and firewall interconnection.

4.6 IP Protection of Mesh NoCs Using Square Spiral Routing

In contrast to other works that address data and system vulnerabilities in NoC-
based MPSoCs, [36] proposes a mechanism for preventing the illegal distribution of IP cores.

While usual IP protection mechanisms employ the generation of a uniquely identifi-
able signature (known as watermarking) through FSMs, the authors argue that this approach
is inefficient due to two reasons: (i) FSMs are deterministic by nature and a centralized im-
plementation requires visibility of the entire network, while traffic in NoCs can be defined as
stochastic with distributed routing decisions, making it difficult to use FSMs as a control for
the entire network; and (ii) since each router in a NoC has an FSM, it would be possible
to apply watermarking to each router. However, the overhead of implementing individually
strong watermarking per router would be much larger than a solution that works at the net-
work level. It is estimated that a 64-bit wide watermark increases router area by 6.1%, on
average [16]. Using this approach on multiple routers would multiply the area overhead.

The proposed technique explores characteristics of routing algorithms to generate
a system-wide watermark. Special authentication packets travel the NoC using Square Spi-
ral Protection (SSP) routing, collecting encrypted path information from all visited IP cores.
As the packet travels the NoC, each IP’s network interface decodes its contents, appends
the encrypted path information, and forwards the packet to the next router, completing a
predefined spiral path, as shown in Figure 4.5.

As NoCs usually employ routing algorithms that aim to prevent deadlocks and per-
formance improvements, certain routing paths may rarely occur. These unusual paths can
then generate a signature, which defines a unique traveling path. Since the number of
distinct spiral paths exponentially increases according to NoC dimensions, when a buyer j
makes a purchase request, NoC designers randomly select SSP paths as an authorship
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Figure 4.5: Spiral routing for IP core verification. (captured from [36])

watermark Ri for a NoC IP i . A watermark authority then randomly selects a secret key Kj

to generate a unique signature RKj
i that is used with 128-bit AES encryption. If a NoC IP i is

then illegally distributed there is undeniable proof that buyer j is the IP’s source.

The remainder of their work details attack scenarios and the improbability of signa-
ture collision, while emphasizing the validity of their approach to enforce IP authenticity in
MPSoCs. Similar to the proposed work, the authors have identified routing techniques as a
way to address security related problems in NoC-based architectures.

4.7 Packet security with path sensitization for NoCs

The authors of [12] propose Packet-Security (P-Sec), which is a packet validation
scheme for use in compromised NoCs. Their work ensures communication integrity through
fault tolerance, employing encoding to prevent malicious tampering of packet contents during
transmission.

The threat model considers the existence of a hardware Trojan, as shown in Figure
4.6, which is capable of creating a side channel attack. In their work, they limit such attacks
to fault injection at a NoC’s links.

Their proposed solution consists of inserting Algebraic Manipulation Detection (AMD)
between IP cores, providing end-to-end integrity and confidentiality of transmitted packets.
Unlike traditional error detection techniques like Cyclic Redundancy Check (CRC), strong
AMD codes cannot be masked into other valid code words for any other value generated by
a side channel attack. Therefore, for applications working with sensitive data, AMD encoding



45

Figure 4.6: Threat model of a hardware Trojan. (captured from [12])

should be used, while non-critical applications could be encoded with simpler approaches
(like CRC) for baseline protection.

While the proposed technique greatly enhances system security, results show that
area overhead ( 300%), power overhead ( 200%), and latency overhead ( 200%) are sig-
nificant due to the complexity of AMD encoding. However, since the encoding strength can
be chosen according to application requirements, the cost of P-Sec can be minimized for
non-critical situations.

4.8 Towards Risk Aware NoCs for Data Protection in MPSoCs

In [51], the authors propose the Global Risk-Aware NoC (GRaNoC), a NoC ar-
chitecture able to monitor and evaluate the risk of the communication paths inside a NoC.
This architecture can protect sensitive data by using low-risk paths, where the risk is defined
by the probability of a malicious application of spying, denying communication or corrupt-
ing data at NoC hops. Like this work, [51] also employs the routing algorithm to enhance
security.

Risk measurement considers notifications generated by firewall, modules which
monitor the violation of system security rules. Usually, GRaNoC employs XY routing to
define the paths for sensitive data, which is a well-known routing algorithm due to area and
power efficiency. When a risk threshold exceeds a design time constraint, new routes for
the sensitive path are set employing source-based routing, where the source IP defines a
secure communication path.

GRaNoC is modeled in SystemC for scalability, performance, and security evalua-
tion, using the SPLASH-2 benchmark for traffic generation. Scalability measures the impact
of computing secure routing paths when security rules are violated. Four approaches are
considered for route computation and compared to an exhaustive approach: (i) Determin-
istic, containing predefined alternative paths stored at design time; (ii) Hop-based, defining
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a low risk path by backtracking the routing path from the destination back to the source;
(iii) Weighted-2D, which is similar to the Hop-based approach but considers the risk of more
than the immediate neighboring router; and (iv) Bounded, which works like Weighted-2D but
restricts routes to generate a minimal path. The deterministic approach yields the lowest
performance overhead since there is no route computation involved. Considering the dy-
namic approaches, Hop-based, Weighted-2D and Bounded offer similar performance and
greatly reduce the overhead of an exhaustive approach by up to 75%.

Performance considers the NoC latency overhead when employing the security
solution. While using the secure routes for communication have a low impact in Deterministic
mode, the dynamic techniques impose a significant overhead due to the communication of
neighboring routers for risk assessment. Each time a secure route is computed, the source
queries routers in the communication path. Only after all routers report back to the source,
the route is computed and then data is transmitted. This process can nearly double the NoC
latency with small injection rates of 20%, and grows exponentially with higher communication
volumes.

Lastly, security evaluation measures the efficacy of the secure technique for block-
ing unauthorized access to system elements and preventing DoS attacks from disrupting
NoC communication. In this regard, the dynamic routing approaches yield higher efficacy
than Deterministic, with the Bounded approach blocking all attacks used during evaluation.

4.9 Overview of Related Works

This section summarizes the previously discussed works on security for NoC-based
MPSoCs. Table 4.1 presents an overview of the characteristics commonly found in all stud-
ied related works, and how these characteristics relate to the proposed work.

The classification criteria for Services relates to the key properties in information
security, defined in Section 3.1, namely: 1 - Accountability; 2 - Authenticity; 3 - Integrity;
4 - Availability; 5 - Confidentiality; 6 - Auditing; and 7 - Nonrepudiability. Most of the

studied works employ Accountability and Authenticity in MPSoCs. To prevent exploiting
these two security measures, Nonrepudiability usually accompanies the security solution to
avoid credential forgery.

The Implementation characteristic differentiates how the security solution was im-
plemented in the system, which can be: H - Hardware-based; and S - Software-based;
All studied works employ at least a hardware-based component for the security solution.
The software components, when present, are usually used in conjunction with the hardware
elements, handling configuration and/or monitoring of the software layers of the MPSoC.
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Granularity relates to the nature of the content filtered by the security services,
with each subsequent level complementing the former, namely: C - Communication level
filtering; M - Memory access filtering; and T - Task role filtering. Due to the nature of the
studied works, Communication level filtering is always present with some works adopting
detailed verification (e.g., address ranges in memory accesses and identification of initiator
software tasks).

Finally, the Technique relates to the techniques employed in the security service,
which may be: F - Firewalls for implementing security rules; AT - Access tables that contain
rule checking parameters; EC - Encoding of sensitive content; and R - Routing techniques
targeting security; Although firewalls and access tables may be similar, the former filters
communication flows from accessing system resources, while the later evaluates requests
to system resources, considering the initiator’s role.

Table 4.1: Overview of related works.

Title Services Implementation Granularity Technique Reference

Security Effectiveness and a
Hardware Firewall for
MPSoCs

1, 2 H C, M AT [28]

Elastic Security Zones for
NoC-Based 3D-MPSoCs

1, 2, 5, 6, 7 H, S C F, AT [57]

3D-LeukoNoC: A Dynamic
NoC Protection

3, 4 H, S C F, AT [56]

Automatic ILP-based Firewall
Insertion for Secure
Application-specific
Networks-on-Chip

1, 2, 4, 7 H, S C, M, T F, AT [31]

A Non-intrusive and
Reconfigurable Access
Control to Secure NoCs

1, 2, 7 H C F [22]

IP Protection of Mesh NoCs
Using Square Spiral Routing 1, 6, 7 H C R [36]

Packet security with path
sensitization for NoCs

1, 3 H C EC [12]

Towards Risk Aware NoCs
for Data Protection in
MPSoCs

1, 3, 4 H C, M F, AT [51]

This work 3, 4, 5 H, S C R -

In this work, 3, 4 and 5 are obtained by using safe routing paths, enhancing pro-
tection from DoS and timing attacks, which are further discussed in Section 5. The security
solution is implemented by H (routing tables) and S (routing algorithm) elements, which op-
erate at communication (C) level, based purely on a routing (R) technique.
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5. THREAT MODEL

This work is based on two premises: (i) that sensitive applications communicate
over the NoC in MPSoC systems, and are therefore vulnerable to interference by malicious
applications; and (ii) that protection from software attacks is achieved by communication level
protection, e.g., by defining safe communications paths for sensitive applications. Therefore,
a routing algorithm that is capable of defining secure routing paths for sensitive applications
executing in MPSoCs should enhance the overall system protection.

Considering the existence of an MPSoC composed by a set of IPs interconnected
by a shared NoC, the MPSoC is capable of executing parallel applications that can use
either a shared memory or message exchanging for communication. Each application can
be split into smaller pieces of code, called tasks, and mapped into different and several IPs
to enhance system performance.

However, splitting an application into distributed tasks in an MPSoC forces the com-
munication of data through the NoC. Applications that handle sensitive system information
are, therefore, forced to communicate sensitive data through the interconnect fabric. The
communication path between a pair of IPs that execute a critical application is called a sen-
sitive path. Figure 5.1 illustrates an MPSoC with nine IPs in a 3x3 2D Mesh NoC, highlighting
a sensitive communication path between the IPs S (source) and D (destination).

A

D

S

S

A

D

Source

Attacker

Destination

Link

Sensitive Path

Unsafe Path

Router

IP

Malicious Flow

Figure 5.1: A source process S communicates with a destination D over an insecure path
due to a DoS or Timing Attack from an attacker A to D.

An attacker A, aware of the system architecture and the mapping strategy in the
MPSoC, performs a software attack by infecting an IP through a malicious code. The infec-
tion can occur by downloading a malware directly off the Internet into the chip or by modifying
the external memory used by the MPSoC to store applications. The NoC is considered se-
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cure, which means the attacker cannot tamper its resources (e.g., routers) to compromise
system security. Application mapping also homogeneously assigns tasks into IPs so that
distinct applications do not share an IP block’s resource.

It is desirable to have the infected IP located inside the sensitive path to increase the
efficiency of the attack. Knowledge of the routing algorithm by the attacker is a requirement
if the malicious application performs timing attacks to extract sensitive information from the
MPSoC, but not mandatory while performing DoS attacks, whose goal is to disrupt system
operation by overloading resources.

The attacks considered in this work are timing and DoS, previously described in
Sections 3.4 and 3.3, respectively. Both attacks create malicious traffic flows originating from
an infected IP to compromise the MPSoC security. Timing attacks exploit the communication
collision between the sensitive and malicious traffics to infer secret information off the traffic
pattern. DoS attacks, however, simply flood the NoC resources to disrupt the sensitive path
with useless communication.
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6. SECURITY AWARE ROUTING

The routing algorithm approach proposed by this work consists of two concepts:
(i) Security Zones; and (ii) the Routing Algorithm. The following sections describe these
concepts as well as their applicability in this work.

6.1 Security Zones

A security zone is a physical space (continuous or disrupted, Figure 6.1) that wraps
IPs that execute critical applications. IPs that belong to a security zone are considered
trusted among them. The task mapping of critical applications inside the MPSoC defines
the shape of the security zone. Certain IP blocks might not be assigned to any security
zone, e.g., idle system resources, or shared memories that contain information from multiple
applications.

a) b)

: Router

: Link : No Assigned Security Zone

: Security Zone 1

Figure 6.1: Possible security zones configurations: a) A continuous security zone; b) A
disrupted/noncontinuous security zone.

A set of IP cores (P) that executes a critical application defines a security zone SZ ,
such that the elements pi , pj ∈ P are considered secure and trusted. A transaction from pi

to pj , where i , j ∈ [0, N − 1) with N representing the number of IP blocks in the system, is
called sensitive and must be performed inside SZ . However, typical NoC routing algorithms
may force the route of the sensitive path outside the SZ . Three communication scenarios
regarding security zones are shown in Figure 6.2 among source (S) and destination (D)
pairs:

1. Full intra-zone communication (FIZ): S and D are in the same SZ . The sensitive
path is completely inside the SZ , e.g., the path from IP1 to IP2;
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2. Partial intra-zone communication (PIZ): S and D are in the same SZ . However, the
sensitive path is partially inside the SZ . PIZ occurs in disrupted security zones, or for
irregular SZ shapes, when the routing algorithm forces out the sensitive traffic, e.g.,
the path from IP3 to IP4;

3. Inter-zone communication (IZ): S and D are in different SZ , e.g., the path from IP5
to IP6.

IP1

IP2 IP5

IP4

IP3

IP6

:  Router

:  IP

 :  Link

:  Routing Path

:  Forbidden/    
Disabled Path

: Security Zone 1

: Security Zone 2

: Security Zone 3

Figure 6.2: The three communication scenarios with security zones: FIZ (IP1 to IP2); PIZ
(IP3 to IP4); IZ (IP5 to IP6). This scenario defines a synthetic mapping of three applications
on a 4x3 2D Mesh NoC.

FIZ communication is the most secure situation, as sensitive communications are
contained in secure elements of the system. Whenever possible, traffic flows should adhere
to this model. PIZ occurs when the security zone is noncontinuous, or when the routing
algorithm forbids a communication path, usually to avoid a route that would lead to a routing
deadlock. Lastly, IZ should occur due to communications: (i) among distinct applications in
the system; or (ii) between an application and IPs that does not belong to any security zone
(e.g., a shared memory).

6.2 Routing Algorithm

Searching for secure paths on MPSoCs demands high flexibility. As shown in Fig-
ure 6.2, establishing secure paths inside the SZ requires in some cases non-minimal paths,
e.g., the path from IP1 to IP2. It heavily depends on the shape of the security zone.

Several routing algorithms have been studied before in the areas of high perfor-
mance and fault-tolerant MPSoCs. Segment-based Routing (SBR) [41] and Region-based
Routing (RBR) [26] have been used in conjunction to find non-minimal paths efficiently. SBR
is responsible for deadlock prevention while RBR computes the routing entries.
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6.2.1 Segment-based Routing

SBR logically partitions the NoC into subnets and subnets into segments. Since
each segment is independent, this allows the placement of bidirectional turn restrictions
locally within each segment.

Segments are characterized by a list of interconnected routers and links. Figure
6.3 illustrates four segments labeled S1 to S4 computed for an arbitrary NoC N, where the
first segment contains the routers {A, B, C, D} and the links {1, 2, 3, 4}. Each router and link
∈ N belong to one and only one segment.

: Turn Restriction: Router : Link : Segment
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Figure 6.3: Four possible SBR segment configurations with routers and links.

Furthermore, segments are grouped into subnets. A subnet is a set of segments
that connects to the rest of the network (other subnets) through only one link. Figure 6.4
shows two configurations for the same set of routers. In Figure 6.4a the segmentation pro-
cess results in segments S1 to S3 and a single subnet. By removing one of the links from
the NoC topology (link 5), the result is two segments (S1 and S2) and two subnets (Subnet1
and Subnet2) interconnected by link 2, as shown in Figure 6.4b.
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Figure 6.4: Segment connectivity defines subnets in SBR: a) segments S1 to S3 form a
single subnet; b) link 5 is removed, so only link 2 connects S1 to S2, forming two subnets.

SBR computation is composed of two phases: (i) segment computation; and (ii) rout-
ing restriction placement. At segment computation, SBR partitions the NoC into segments
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comprising routers and links. Each segment is characterized by a turn restriction to avoid
routing deadlocks. Figure 6.5 illustrates the three possible types of segments computed by
SBR: (i) starting, which starts and ends at the same router, forming a loop; (ii) regular, which
starts at a link, contains at least one router, and ends at another link; and (iii) unitary, which
contains a single link that does not allow traffic.

: Router

: Link

: Segment

Starting Segment:

Regular Segment:

Unitary Segment:

: Disabled Link : Turn Restriction

Figure 6.5: Segments and turn restrictions computed by the SBR algorithm in a 4x4 2D
Mesh NoC (based on [41]).

SBR aims to create segments that minimize the number of elements per segment
to reduce the occurrence of unitary segments, as these segments restrict certain links in
the topology. During the execution of SBR, routers and links can be in the following states:

• not visited : initially, all routers and links are in this state;

• visited : a router or a link becomes visited once it belongs to an already computed
routing segment;

• tvisited : during the process of computing segments, routers and links may be tem-
porarily marked as tvisited ;

• starting: a router is marked as starting if it is the first router chosen to compute a
segment within a subnet;

• terminal : a router is marked as terminal if no segment is found through at least one of
its links.

Algorithms 6.1 and 6.2 demonstrate how SBR defines segments and subnets in
the NoC topology. Table 6.1 contains a description of each function used by the these al-
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gorithms. Once the entire NoC is partitioned into segments, bidirectional routing restrictions
are placed at each segment according to its type.

input : nocTopology , startingRouter
output: segmentList
begin

segmentList ←− ∅
subnet ←− 0
segIndex ←− 0
router ←− nocTopology [startingRouter ]
router .starting ←− True
router .subnet ←− subnet
router .visited ←− True
router .starting ←− True
segList []←− ∅
segment ←− segList [segIndex ]

while router 6= null do
if find (nocTopology , router ,
segment , subnet) then

segIndex ←− segIndex + 1
segment ←− segList [segIndex ]

else
router .terminal ←− True
router ←− nextVisited()

end
if router == null then

router ←− nextNotVisited()
end
if router 6= null then

subnet ←− subnet + 1
router .starting ←− True

end
end

end

Algorithm 6.1: SBR

input : nocTopology , router , segment ,
subnet

begin
router .tvisited ←− True
segment .append(router )
links = suitableLinks(router )

if links == ∅ then
router .tvisited ←− False
segment .remove(router )
return False

end
foreach link ln ∈ links do

ln.tvisited = True
segment .append(ln)
nrouter = aTop(router , ln)
if (nrouter .visited and
nrouter .subnet = subnet) or
find(nrouter , segment , subnet))
then

ln.visited ←− True
router .visited ←− True
ln.tvisited ←− False
router .tvisited ←− False
return True

else
ln.tvisited ←− False
segment .remove(ln)

end
end
segment .remove(router )
router .tvisited ←− False
return False

end

Algorithm 6.2: Find procedure used by SBR
to compute segments.

The estimated computational cost of SBR depends on its implementation and its
phases. Considering a 2D mesh NoC, the algorithms previously presented results in each
link being visited only once yielding O(l) cost, with l as the number of links in the NoC
topology. Adding routing restrictions only requires evaluating the segments computed in the
first phase, so that the computational cost of this phase is O(s), where s is the total number
of segments.
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Table 6.1: SBR functions used for segment computation.

find(topology, router,
segment, subnet)

Defines a segment for the specified topology, starting at a
given router and subnet (Algorithm 6.2).

nextVisited() Finds a router marked as visited, belonging to the current
subnet, and with at least one link not marked as visited.

nextNotVisited() Finds a router not marked as visited, not marked as
terminal, and attached to a terminal router.

aTop(router,link) Returns a new router that is connected to the specified
router through the specified link.

suitableLinks(router) Returns a list links for the specified router that are not
marked as visited or tvisited.

Once the turn restrictions are in place, a routing algorithm, such as RBR, computes
the routing paths between the source and destination pairs.

6.2.2 SBR Security Zone Awareness

SBR capabilities can be used to calculate the segments and turn restrictions based
on the security zones of the system. Figure 6.6 shows two cases of segment computation
for the same six routers of a NoC topology. Depending on the NoC segments computed by
SBR, the communication path between S and D can be either PIZ, as shown in Figure 6.6a;
or FIZ, as illustrated in Figure 6.6b.

S

D

: Router

: Link

: Segment

: Turn Restriction

: Routing Path

a)

: Security Zone 1

: Security Zone 2

S

D

b)

Figure 6.6: Two SBR segment computations: a) the path between S and D goes through an
insecure element due to a routing restriction; b) the set of routing restrictions in the segments
enables a secure path between S and D.



57

This work proposes SBR Security Zone Awareness (SBR-SZA), which uses the
SBR algorithm to place turn restrictions that favor the occurrence of FIZ scenarios. The
segments are tailored to a security zone so that SBR-SZA creates the smallest possible
segments that contain elements from the same security zone.

: Router

: Link

: Segment

: Turn Restriction : Security Zone 2

: Security Zone 1

: Disabled Link (Unitary)

Figure 6.7: Segmentation example with SBR-SZA. While PIZ scenarios do not occur, the
segmentation results in unitary segments.

While SBR-SZA should favor the occurrence of FIZ scenarios, a performance im-
pact is a possibility since the segmentation can lead to a greater occurrence of unitary seg-
ments, as Figure 6.7 illustrates.

The computational cost of SBR-SZA is the same of traditional SBR. The difference
is that instead of computing as small as possible segments, SBR-SZA attempts to close
segments by visiting routers from the same security zone of the initial router used in the find
procedure, shown in Algorithm 6.2.

6.2.3 Region-based Routing

RBR takes the turn restrictions computed by SBR to find paths between all sources
and destinations in the NoC. As a result, the routing entries for each router are generated.
The main advantage of RBR is that a single routing entry can represent a path to more than
one destination. Additionally, destinations can be packed using a technique called interval
routing [18, Chapter 4], in which only the delimiting coordinates of routers in a rectangular
region are necessary to describe a routing entry. These characteristics of RBR can reduce
the size of routing tables significantly.
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There are three steps in the computation of RBR, shown in Figure 6.8. The first
step is routing computation from each NoC router to every other router. Path selection is
performed according to the designer goals and system requirements, e.g., security. The
computed paths are stored in the routing table of the router. Each entry is represented by
3-tuple (N, d , S), where N is the packet input port, d the destination address, and S is the
router output port used to reach d .

REGION
SET

TOPOLOGY &
ROUTING

RESTRICTIONS
SET

PATH
COMPUTATION

REGION
COMPUTATION

REGION
MERGE

max_regions

Figure 6.8: The three computation steps of RBR algorithm. A NoC topology with its config-
urations is the sole input.

The second step is region computation, where multiple entries are joined based on
the input and output port values. Figure 6.9a shows the paths computed by RBR algorithm
to a destination d from two different source routers. The entries (N, d , S), (W , d , S), and
(I, d , S), of router �, which have the same set of output ports for the same destination can
be grouped. As a result, a single routing entry ({N, W , I}, d , S) is stored. Analogously, the
3-tuples with the E output port can be packed into ({N, W , I}, d , E). Further packing of
these entries can be done based on their sets of input ports and destination, leading to a
single entry ({N, W , I}, d , {S, E}). This result represents adaptive routing, as more than one
output port exists to reach the same destination. Lastly, routing entries can be grouped by
destination if they possess the same set of input and output ports, forming regions as shown
in Figure 6.9b (R1 to R3).

d
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(a) Paths computed in RBR from two sources to
a destination d.

R1 ({N,W,I}, {x1,x2}, S)

R2 ({N,W,I}, {x3,x4}, E)

R3 ({N,W,I}, {x5,x6}, {S,E})

x2 x5

x1

x4

x3

x6

R1 ({N,W,I}, {x1,x2}, S)

R2’ ({N,W,I}, {x3,x6}, E)

(b) Regions defined for a router. Overlapping re-
gions R2 and R3 can be merged into a single en-
try, albeit sacrificing adaptability.

Figure 6.9: An example of paths and regions computed by RBR algorithm. (captured from
[26])

The third step, region merge, merges overlapping regions to reduce the quantity
of routing entries. Figure 6.9b illustrates two regions (R2 and R3). Even though the set of
destinations are distinct from these regions, each region is adjacent to one another, and R2’s
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output ports is a subset of R3’s. By sacrificing adaptability, these regions can be merged
into a single region (R2’), reducing the number of routing entries.

Algorithm 6.3 demonstrates RBR’s main procedure for computing regions. Table
6.2 contains a description of functions used by RBR. Once all regions are computed, the
routing tables of NoC routers are generated.

input : nocTopology
output: routingRegions
begin

foreach src ∈ nocTopology.routers do
foreach dst ∈ nocTopology.routers do

if src == dst then
skip

else
foreach inputPort ∈ src.ports do

outputPort = getPath(nocTopology , src, dst)
if outputPort 6= null then

src.entries.add(inputPort , dst , outputPort)
end

end
end

end
packOutputPorts(src.entries)
packInputPorts(src.entries)
packDestinations(src.entries)
mergeRegions(src.entries)

end
end

Algorithm 6.3: RBR

Regarding the computational cost of RBR, checking the paths from all sources to
all destinations is O(n2), where n represents the number of routers in the NoC. Due to this
inherent costly characteristic of RBR, it is necessary to use an efficient pathfinding algorithm,
such as Dijkstra shortest path or heuristic graph searching algorithms, further discussed in
Section 6.2.5.

6.2.4 Modeling of Security Zones

This work models routers and links of the NoC as a graph. Vertices correspond to
routers and their associated IPs, while edges correspond to links that interconnect routers.
Each vertex can belong to a security zone, and each edge has a positive weight that is set
according to the pathfinding algorithm iteration.
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Table 6.2: RBR functions used for region computation.

getPath(topology, src, dst) This procedure is responsible for computing the path
between src and dst for the specified topology.

packOutputPorts(entries)
Groups the specified routing entries by output port. Two
entries can be merged if they have the same input port
and destination.

packInputPorts(entries)
Groups the specified routing entries by input port. Two
entries can be merged if they reach the same destination
through the same set of output ports.

packDestinations(entries)
Groups the specified routing entries by destination. Two
entries can be merged if they have the same set of input
and output ports.

mergeRegions(entries)
Merges the specified routing entries, defining regions in
the NoC. Entries can be merged if they share the same
subset of input and output ports.

When computing the path from a source router to a destination, the weight of edges
adjusts to favor paths to other routers from the same security zone as the source. In Figure
6.10, there are three paths from S to D. The topmost path traverses an insecure element
in the context of S. Therefore, it has a higher edge cost than edges that lead to a router
of the same security zone of S. The middle path traverses two secure routers, reaching D.
Meanwhile, the bottommost path has a turn restriction that forbids traffic from S to D.

: Router

: Link :  Turn Restriction

: Security Zone 1

: Security Zone 2

: Path of Least Cost is

10

1

1

1

1

#      :  Cost Relative to

1

R3

R4

S R1 DR2
1

S SZ

{S,R1,R2,D}

Figure 6.10: Modeling of the paths from a source S to a destination D. Traversing a different
security zone leads to a higher path cost.

Determining the edge cost is about system requirements. It could represent the
cost to protect a NoC package by a cryptographic module while traversing to an insecure
zone, the cost of passing a firewall, or the risk of a given path. There is a broad spectrum of
possibilities for defining the edge cost in this model.
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6.2.5 Path-Finding Algorithm

The choice of the path-finding algorithm used for computing the source and desti-
nation pairs for the routing algorithm is independent of RBR. The only constraints are: (i) it
has to consider the turn restrictions computed by SBR; and (ii) it must take into consider-
ation the edge cost between hops in the NoC, according to the model defined in Section
6.2.4. An approach that satisfies these requirements is the greedy best-first search family
of graph searching algorithms, which consider the entire path cost between a source and a
destination to compute paths.

The most widely known form of best-first search is called A* search [48, Chapter
3.5]. It expands vertices from a source towards a destination to quickly obtain a solution.
The cost to reach a destination from a vertex v is given by f (v ) = g(v ) + h(v ), where g(v )
is the cost to reach a vertex, and h(v ) is the cost to get from a vertex to a destination. h(v )
defines a heuristic function that when admissible, i.e., it does not overestimate the cost to
reach a destination, greatly reduces the search space and therefore the time complexity of
the algorithm.

Regarding two-dimensional mesh NoCs, computing the heuristic function can be
done in O(1) time complexity by using Manhattan Distance [48, Chapter 3.6], shown in
Equation 6.1, where d corresponds to the destination. Figure 6.11 illustrates the heuristic
function applied to a two-dimensional mesh NoC.

h(v ) = |v .X − d .X | + |v .Y − d .Y |. (6.1)
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Figure 6.11: Manhattan Distance computed for a 3x3 mesh NoC from all routers to a desti-
nation in coordinates (2,2).

In A* search, path finding between a source and a destination only expands vertices
that lead to shortest paths, as shown in Figure 6.12. Vertices that deviate from the optimal
solution define a frontier that will only be expanded once vertices that yield a shorter path
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are evaluated. Since Figure 6.12 does not illustrate turn restrictions and considers that each
hop costs exactly 1, multiple optimal paths exist.
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Figure 6.12: A* search in an 8x8 mesh NoC. Only paths that lead to the destination are
expanded.

When considering the context of security zones and turn restrictions employed on
this work, the set of optimal paths can be more restricted. In these scenarios, A* search can
approach linear time complexity as the expansion of graph vertices is bound by the length
of the optimal solution. Algorithms 6.4 and 6.5 demonstrate an implementation of A* search
considering a two-dimensional NoC and the modeling of security zones discussed in Section
6.2.4.
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input : topology , source, destination
begin

foreach router ∈ topology do
router .hn←− |(router .X − destination.X )| + |(router .Y − destination.Y )|
if router == source then

router .gn←− 0
router .fn←− router .hn

else
router .gn←−∞
router .fn←−∞

end
end
currentRouter ←− source
priorityQueue[]←− ∅
while currentRouter 6= NULL do

if currentRouter == destination then
path = extractPath(destination)
outputPort = Port(Path[0], Path[1])
return outputPort

end

updateNeighbors(topology , source, currentRouter , priorityQueue)
currentRouter .visited = true
currentRouter ←− priorityQueue[0]

end
return NULL

end

Algorithm 6.4: A* Path-Finding

input : nocTopology , source, currentRouter , priorityQueue
begin

outputLinks ←− currentRouter .links
foreach link ∈ outputLinks do

neighbor ←− topology .neighbor (currentRouter , link )
if neighbor 6= NULL then

if neighbor .visited then
continue

end
if source.zone == neighbor .zone then

linkWeight ←− 1
else

linkWeight ←− IZ_EdgeCost
end
cost ←− source.gn + linkWeight
if cost > neighbor .gn then

continue
else

neighbor .previous ←− currentRouter
neighbor .gn←− cost
neighbor .fn←− neighbor .gn + neighbor .hn
priorityQueue.append(neighbor , neighbor .fn)

end
end

end
end

Algorithm 6.5: Neighbor Update function.



64



65

7. EXPERIMENTAL SETUP AND EVALUATION CRITERIA

This work adopts an abstract model of a parameterizable NoC specified in the Java
programming language to evaluate the proposed secure routing technique. This model sup-
ports the configuration of the NoC topology at design time using a graphical tool (Figure 7.1),
with configurable parameters such as the security zone of each router and the operational
status of individual links (enabled or disabled). The inter-zone traversal cost for comput-
ing the routing paths among source and destination pairs can also be configured to satisfy
system design specifications.

Figure 7.1: Abstract NoC configuration tool.

The NoC configuration tool implements both SBR and RBR algorithms according
to their specifications discussed in Section 6.2. Once the NoC configuration is complete,
the tool generates the routing entries for each NoC router according to the specified design
time constraints. Additionally, it is also possible to output the configured NoC to a simulation
platform, such as the ones discussed in Section 7.1.

7.1 Network Simulation Platforms

This work adopts two platforms for network simulation: (i) a SystemC parame-
terizable NoC with TLM precision called Secure-enhanced Hybrid on-chip Communication
(SHOC) [58][54]; and (ii) a SystemC parameterizable NoC with Register-Transfer Level
(RTL) precision called Hermes [42].
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The SHOC platform enables the customization of the following parameters: (i) NoC
dimension; (ii) number of ports per router, which enables customized topologies; (iii) place-
ment of port buffers (at input, at output, or both); (iv) arbitration; and (v) routing algorithm.
Communication among NoC elements occurs by traffic generators that simulate the behavior
of IP blocks.

A limitation of SHOC’s TLM simulation is the precision of packet communication
among NoC elements. Links are modeled as having variable bit widths, so that transferring
a whole packet among routers takes a single clock cycle, regardless of its size. This results
in a packet switching model similar to Store-and-Forward, where packets are forwarded to
the next hop once there is enough buffer space to store an entire packet. Buffers are also
modeled in the same manner, having variable bit width (enough to store a whole packet) per
buffer slot.

Despite these limitations, the TLM offered by the platform is sufficient to validate
the proposed secure routing technique. SHOC is capable of modeling contention due to
resource sharing, or employ parameterizable communication delays; e.g., to simulate a data
protection mechanism to protect packet contents. Moreover, SHOC offers faster simulation
speeds than flit-accurate or cycle-accurate models.

The Hermes NoC contains a similar set of configurable parameters as the ones
present in SHOC, encompassing: (i) NoC dimension; (ii) arbitration; (iii) flit width; (iv) buffer
depth; and (v) routing mechanism. Routers contain five communication ports. Ports East,
West, North, and South connect one router to another, forming a two-dimensional mesh
topology. The Local port is used exclusively for connecting to an IP block.

Differently from SHOC TLM, the Hermes NoC used in this work is described in
SystemC-RTL, which is a higher precision communication model, using Wormhole switching
where a minimum transmission unit (flit) is transmitted among NoC elements per clock cycle.
Packets are split into flits and sent from one router to another. Links are modeled at design
time with fixed bit widths, specified by the flit size. Buffers are located at each one of the
five router input ports and have fixed bit widths as well, according to the flit size. The routing
mechanism of Hermes also employs a clock accurate multistage state machine for arbitration
and switching.

These characteristics of Hermes NoC enables greater simulation precision for mea-
suring network latency. Modeling of contention and resource sharing is accurate with an RTL
implementation, enabling to measure the impact of the proposed secure routing technique
on network latency.
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7.2 System Simulation Platform

To evaluate the impact of the proposed routing technique on real application work-
loads, this work employs Gem5 [9]. This simulator utilizes a modular discrete event model
for simulating system architectures, encompassing processors, memories, peripherals, and
intercommunication interfaces (e.g., buses and NoCs). Gem5 supports most commercial
CPU’s Instruction Set Architectures (ISA) available (ARM, ALPHA, MIPS, Power, SPARC
and x86), with ARM, ALPHA and x86 enabling to boot an unmodified Linux kernel.

Gem5 employs a wide variety of simulation modes. CPUs can implement Atom-
icSimple, a very simplified, event driven simulation model that responds to input requests,
or O3, which is a very complex model with pipelines and out-of-order instruction execution.
The system in Gem5 can be modeled in two ways. System-call Emulation (SE) emulates
most system-level services, which avoids the need to model devices or an OS. Alterna-
tively, Full-System (FS) mode models a complete system, including the OS and devices.
Lastly, Gem5 enables two memory modes. Classic mode employs a fast and reconfigurable
memory system, while Ruby enables the modeling of a variety of cache coherence memory
systems.

Out of the three CPU ISAs that support Linux kernel simulation, ARM is the only
actively developed version which supports (FS) mode [27]. Alpha architecture is mostly
deprecated and therefore unsupported, while x86 only supports SE mode. To perform an
accurate simulation on application performance, this work adopts an O3 ARM-based archi-
tecture using FS simulation and a Classic memory mode.

The architecture used for simulations consists on differently sized NoCs with a
single CPU connected to each router local port, as shown in Figure 7.2. Each IP is char-
acterized by an ARMv7a processor with 64 KiB of L1 cache for data, 32 KiB L1 cache for
instructions, and 2 MiB L2 cache, running Linux Kernel 3.3.0-rc3gem5+ to execute user ap-
plications. However, Gem5’s ARM ISA does not provide a NoC implementation. NoCs in
Gem5 are only available for ALPHA and x86 ISAs, using the Ruby memory system which is
unavailable for ARM ISA. Due to this limitation, this work uses a NoC model that operates
over Gem5 with flit precision, as presented in [13]. This NoC model employs packet-based
congestion by means of a normal probability distribution, where the values for mean and
standard deviation were obtained from previous packet-based NoC works [14] [20].

The NoC model is based on Hermes NoC characteristics, described in Section 7.1,
which consist on: (i) 5 clock cycles for packet switching; (ii) 1 clock cycle to forward flits; and
(iii) wormhole switching. Routing a packet P between a source S and a destination D pair,
therefore, takes into consideration a Hermes NoC implementation along with a congestion
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Figure 7.2: General system architecture used for Gem5 simulation. ARMv7a CPU running
a Linux Kernel are connected to each router in the NoC topology.

probability model C, such that the communication delay L is given by Equation 7.1:

L(S, D, P) = H + PathLen(S, D) + Size(P) + C (7.1)

where PathLen corresponds to the routing path length between S and D, and H to the router
arbitration latency, which is fixed at 5 for the Hermes NoC.

The NoC schedules packet delivery according to the delay computed by Equation
7.1 and the packet injection time Ti . Since Gem5 is a discrete event simulator, a packet
delivery time Td is the sum of Ti and D(S, D, P), as shown in Equation 7.2.

Td (S, D, P) = Ti + L(S, D, P) (7.2)

This flexibility for configuring NoC constraints allows the routing model shown in
this work to be implemented for Gem5 simulations. The delay among source and destination
pairs posses delays which depend on the paths computed by RBR, according to the mapping
of applications in the system. Section 7.3 details the set of applications used for evaluating
this work.

7.3 Evaluation Scenarios

To evaluate the proposed secure routing technique for real workload scenarios, this
work uses the NASA Numerical Aerodynamic Simulation (NAS) Parallel Benchmark (NPB)
[43]. Each application in NPB has varying communication and computation requirements.
To explore a varied set of communication requirements, six applications out of the eleven
provided by the benchmark were used, namely:
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• EP - Embarrassingly Parallel: Measures floating point performance. A series of ran-
dom numbers is generated and spread among multiple processes for computation.
The end result is then verified by each process, without significant interprocessor com-
munication;

• MG - MultiGrid kernel: Solves the 3D discrete Poisson differential equation. Tests
both short and long range structured communication;

• CG - Conjugate Gradient: Computes the eigenvalues of a large, sparse, symmetric
and positive definite matrix. Complementary to MG, this application tests irregular long
range communication;

• FT - 3D Fast Fourier Transform: Solves 3D partial differential equations using Fast
Fourier Transformations. This application requires considerable communication for ma-
trix operations. Tests long distance communication performance;

• IS - Integer Sort: Performs a sorting operation. This application tests both computa-
tion and communication performance; and

• LU - Lower-Upper Gauss-Seidel solver: Computes fluid dynamics calculations by
solving nonlinear partial differential equations. This application is very sensitive to
communication performance, as it sends a very large amount of small messages.

This set of NPB applications can be split into multiple tasks for parallel processing. To
generate scenarios with various security zones and varying amounts of communication pat-
terns, we consider NoC configurations with enough IPs to support all six NPB applications
executing simultaneously. By varying the degree of parallelism on each application, four
base scenarios were created. Table 7.1 illustrates the NoC configurations and degrees of
parallelism applied to all NPB applications.

Table 7.1: NoC and NPB configurations.

Processes per application Total
processesNoC dimension EP MG CG FT IS LU

5x5 4 4 4 4 4 4 24
7x7 8 8 8 8 8 8 48

10x10 16 16 16 16 16 16 96
14x14 32 32 32 32 32 32 192

Since all benchmark applications execute independently and the NoC employed
by Gem5 models contention probabilistically, it is possible to execute each application as
a standalone simulation. The communication delays for an application depends solely on
the NoC model and task mapping, the latter defining the length of the communication paths
between source and destination pairs in the NoC. To generate NoCs scenarios with security
zones and NPB applications, some preliminary configuration steps are necessary:
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1. A communication map of all applications is extracted. Each of the 24 application config-
urations, shown in Table 7.1, are executed in Gem5. The mapping of tasks at this step
is irrelevant, since only the communication dependency among tasks is necessary;

2. The Gem5 NoC is capable of generating a report that details the communication vol-
ume among NoC elements. This report is used to generate a communication map of
all tasks of an application, as shown in Figure 7.3.

3. Once the communication map is obtained, applications are mapped on the NoC con-
figurations described in Table 7.1.
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Figure 7.3: Communication Map for CG application with four processes. The map illustrates
the amount of bytes exchanged among all tasks of the application.

A mapping algorithm then defines the distribution of tasks on each NoC configu-
ration according to their communication dependencies. The resulting mappings also corre-
spond to the security zones. The mapping strategies and application mappings adopted in
this work is discussed in Section 7.4.

7.4 Task Mapping

Once the communication model is obtained, the set of applications is mapped
using a framework called Communication Analysis for Embedded Systems (CAFES) [38].
This framework is capable of mapping application tasks into IP blocks connected to a NoC.
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CAFES enables applications to be described with models that consider aspects such as
computation and communication.

The NPB applications executed in Gem5 produce a communication map among all
tasks, as shown in Section 7.3. This map is used in the communication model in CAFES for
defining task mapping on the various NoC configurations. Tasks are mapped according to
their communication requirements, placing highly communicating tasks closer to one another
in order to increase application performance.

However, the default mapping approach employed in CAFES does not take into
consideration the security aspects explored in this work, as tasks are grouped solely on
their communication requirements. This mapping characteristic may lead to security zone
fragmentation, which is an undesirable situation as it increases PIZ routes. Figure 7.4a illus-
trates how a security zone (encompassing application EP) is fragmented after mapping with
CAFES. This fragmentation occurs because tasks have different communication require-
ments. Highly communicating tasks, such as LU, communicate orders of magnitude more
than lowly communicating tasks, e.g., EP. Figure 7.5a illustrates this difference.

(a) Default Mapping. (b) Standardized Mapping.

Figure 7.4: A 7x7 NoC with NPB applications split into 8 tasks. Application EP is fragmented
using Default mapping, creating PIZ routes. The Standardized approach overcomes this
undesired effect.

To better illustrate the communication dependency model regarding each applica-
tion, we apply Standardization (also known as Z-score normalization [39]) on the communi-
cation model dataset. The communication model’s features are rescaled according to Equa-
tion 7.3, where µ corresponds to the communication amount average, and σ to the standard
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(a) Default communication model.

Percentage of total communications

CG

12.6%EP

8.0%

FT

24.1%

IS

13.7%

LU30.7%

MG

10.9%

NPB communications map (Standardized)

(b) Standardized communication model.

Figure 7.5: A 7x7 NoC communication distribution. Standardization masks the absolute
differences between datasets and better illustrates the communication dependency model.

deviation. Standardizing the communication model masks the absolute differences between
each NPB application, resulting in the distribution shown in Figure 7.5b and mapping shown
in Figure 7.4b.

z =
x − µ
σ

(7.3)

Considering the Default and Standardized mapping approaches and the four NoC
configurations shown on Table 7.1, this results in eight scenarios for the NPB applications.
Figure 7.6 illustrates all mapping configurations that will be used for evaluating this work,
along with the communication amounts of each application.
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(a) 5x5 NoC Default Mapping. (b) 5x5 NoC Standardized Mapping.

(c) 7x7 NoC Default Mapping. (d) 7x7 NoC Standardized Mapping.

(e) 10x10 NoC Default Mapping. (f) 10x10 NoC Standardized Mapping.

(g) 14x14 NoC Default Mapping. (h) 14x14 NoC Standardized Mapping.

Figure 7.6: NPB application mapping on all four NoC configurations with two mapping strate-
gies: Default and Standardized. Pie charts illustrate the communication amount for each
application.
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7.5 Evaluation Overview

Each evaluation of the scenarios shown in Section 7.4 consists of a set of prelimi-
nary steps:

• Initial router for segment computation: since segments in SBR are sequentially com-
puted, varying the initial router (seed) used for segment computation can yield different
segmentation configurations as it was previously shown in Figure 6.6. By checking dif-
ferent seeds, it is possible to verify which configurations offer a higher occurrence of
FIZ routes;

• Segment computation: after setting the seed for segment computation, algorithm SBR
is executed to place bidirectional turn restrictions to achieve deadlock-free routing. This
step generates two configurations, using traditional SBR and SBR-SZA;

• Routing computation: once the turn restrictions are in place, RBR computes the routes
from all source and destination pairs, generating the routing entries for each NoC
router;

• Evaluation of obtained configuration: once SBR and RBR compute the NoC configu-
ration, an assessment of the obtained configuration is performed.

Table 7.2: Summary of evaluated scenarios.

Scenario NoC dimension Mapping SBR seeds Segmentation modes Configurations per scenario

NPB 4 processes 5x5 Default 25 SBR / SBR-SZA 50

NPB 8 processes 7x7 Default 49 SBR / SBR-SZA 98

NPB 16 processes 10x10 Default 100 SBR / SBR-SZA 200

NPB 32 processes 14x14 Default 196 SBR / SBR-SZA 392

NPB 4 processes 5x5 Standardized 25 SBR / SBR-SZA 50

NPB 8 processes 7x7 Standardized 49 SBR / SBR-SZA 98

NPB 16 processes 10x10 Standardized 100 SBR / SBR-SZA 200

NPB 32 processes 14x14 Standardized 196 SBR / SBR-SZA 392

Total scenarios: 1480

Table 7.2 contains a summary of all tested configurations for each scenario. The
amount of configuration scenarios is obtained by combining all SBR seeds with all Segmen-
tation Modes. Three aspects of the proposed secure routing approach are evaluated: (i) the
scalability of the RBR routing tables; (ii) the occurrence of FIZ routing scenarios; and (iii) the
impact on NPB applications execution time given the proposed routing mechanism. Section
8 shows a discussion on the evaluation methodology and results of these aspects.
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8. RESULTS AND EVALUATION

This section presents the results obtained from the evaluation procedure described
in Section 7. The results shown in the following sections consist on an evaluation of routing
table scalability, FIZ routing occurrence, and NPB applications execution time.

8.1 Routing Table Scalability Evaluation

Routing table scalability evaluation consists of measuring how many routing entries
are generated at each router in the NoC. It is desirable to have fewer entries per router to
reduce the necessary routing table memory. Since this work considers 2D Mesh-based
NoCs, Width and Height are the number of routers that correspond to the 2D NoC width and
height, respectively. Moreover, the 2D Mesh NoC adopted by this work consists of routers
with the same amount of input and output ports P

By taking into consideration bi-dimensional NoC dimensions, it is possible to calcu-
late the size of each routing entry. Equations 8.1 and 8.2 demonstrate how to calculate, in
bits, the size of each routing entry of a router.

EntrySize = 2× dlog2 Pe︸ ︷︷ ︸
Input and

output ports

+ Coordinates︸ ︷︷ ︸
Destination region

(8.1)

Coordinates = Xmin + Ymin + Xmax + Ymax , where



xmin = dlog2 Widthe

ymin = dlog2 Heighte

xmax = dlog2 Widthe

ymax = dlog2 Heighte

(8.2)

Due to the modeling of security zones with non-minimal distance routing paths, it is
expected that additional RBR routing entries are necessary to accommodate routes within
security zones. This behavior is shown in Figures 8.1 and 8.2, which illustrates the average
size of routing entries per router in each scenario.

Additionally, Figures 8.1 and 8.2 demonstrate that varying the seed used for SBR or
SBR-SZA computation slightly impacts the amount of routing entries necessary per router.
Since the placement of bidirectional turn restrictions can limit the available routing paths to
reach a group of destinations, this results in routes sharing the same paths, which RBR
packs into fewer routing entries.
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Figure 8.1: Average size of routing entries, in bits, per router per SBR seed using Default
Mapping. Both segmentation modes are used (SBR and SBR-SZA) and compared with a
Base-NoC without security zones.
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Figure 8.2: Average size of routing entries, in bits, per router per SBR Seed using Standard-
ized Mapping. Both segmentation modes are used (SBR and SBR-SZA) and compared with
a Base-NoC without security zones.
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The amount of routing entries per router in a NoC configuration can vary greatly.
Routers on the edges of the NoC have fewer output ports and, therefore, fewer routing
paths to reach destinations. In these cases, RBR can pack more routing entries due to
the common set of destinations and output ports. Routers located at the center of the NoC,
however, have more routing options, which can result in more entries that cannot be grouped
by RBR. Figure 8.3a shows for the 10x10 NoC scenario the average amount of routing
entries when changing the seed used for segmentation. The amount of routing entries can
be as few as 3 entries in a router, up to 24 entries, depending on the SBR seed.
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Figure 8.3: Variation of routing entries per router in NPB scenario with 16 processes per
application in a 10x10 NoC.

Even though the variance in routing entries shown in Figure 8.3 is large, the av-
erage amount of entries is lower than the worst case, which shows that most routers do
not contain many routing entries. The average distribution of routing entries per router also
does not drastically change with the segmentation process. Regarding the 10x10 NoC with
Default mapping, the coefficient of variation on the amount of routing entries for different
SBR seeds is only 3.59%, indicating that the segmentation process has a low impact on the
amount of routing entries. Considering a Base-NoC with no security zones, there is an aver-
age increase of 23.84% and 24.47% of routing entries per router for the 10x10 NoC scenario
in Default mapping with SBR and SBR-SZA segmentation modes, respectively. The results
for all NoC configurations is shown in Table 8.1, which illustrates that the segmentation pro-
cess has little impact on routing table scalability. Meanwhile, the mapping approach is of
greater significance, with Standardized mapping offering reduced routing table overhead in
all cases, as is also shown in Figure 8.4.

Figures 8.5, 8.6, 8.7 and 8.8 show a heatmap of the amount of routing entries per
router in each scenario with Default mapping. Routers near the border of the NoC contain
fewer entries than inner routers since these have fewer output ports, resulting in a greater
packing of routing entries by RBR due to a common set of destinations and output ports.
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Table 8.1: Summary of routing table evaluation results.

Scenario Segmentation Increase in routing
entries per router

Variation in routing
entries per SBR seed

5x5 Default SBR 12.12% 3.07%
SBR-SZA 13.05% 3.02%

7x7 Default SBR 22.71% 4.93%
SBR-SZA 22.93% 5.12%

10x10 Default SBR 23.84% 3.59%
SBR-SZA 24.47% 3.99%

14x14 Default SBR 34.22% 3.05%
SBR-SZA 34.42% 3.00%

5x5 Standardized SBR 10.68% 4.93%
SBR-SZA 10.91% 4.84%

7x7 Standardized SBR 12.88% 2.36%
SBR-SZA 13.35% 2.78%

10x10 Standardized SBR 15.13% 3.85%
SBR-SZA 15.54% 4.21%

14x14 Standardized SBR 13.29% 3.48%
SBR-SZA 13.51% 3.50%
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Figure 8.4: Average routing table size comparison for 14x14 NoC scenario. Standardized
mapping offers reduced area overhead with both segmentation modes.

Scenarios without security zones contain an homogeneous distribution of routing entries,
independent of the NoC size (Figures 8.5a, 8.6a, 8.7a and 8.8a). However, when security
zones are present, the routing entries per router increases, and the distribution of these
entries depends on the shape of the security zones. The equivalent comparison on the
distribution of routing entries is shown in Figures 8.9, 8.10, 8.11 and 8.12 for Standardized
mapping. In all cases, the overhead of adding security zones is small, not greatly impacting
the scalability of routing tables for the tested scenarios.
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(b) Average over all SBR seeds.
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(c) Using optimal SBR seed.

Figure 8.5: Routing entries per router heatmap in NPB 4 Processes 5x5 NoC scenario with
Default mapping.
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(b) Average over all SBR seeds.
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(c) Using optimal SBR seed.

Figure 8.6: Routing entries per router heatmap in NPB 8 Processes 7x7 NoC scenario with
Default mapping.
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Figure 8.7: Routing entries per router heatmap in NPB 16 Processes 10x10 NoC scenario
with Default mapping.
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(b) Average over all SBR seeds.
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(c) Using optimal SBR seed.

Figure 8.8: Routing entries per router heatmap in NPB 32 Processes 14x14 NoC scenario
with Default mapping.
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(b) Average over all SBR seeds.
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(c) Using optimal SBR seed.

Figure 8.9: Routing entries per router heatmap in NPB 4 Processes 5x5 NoC scenario with
Standardized mapping.
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(b) Average over all SBR seeds.
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(c) Using optimal SBR seed.

Figure 8.10: Routing entries per router heatmap in NPB 8 Processes 7x7 NoC scenario with
Standardized mapping.
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(c) Using optimal SBR seed.

Figure 8.11: Routing entries per router heatmap in NPB 16 Processes 10x10 NoC scenario
with Standardized mapping.
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Figure 8.12: Routing entries per router heatmap in NPB 32 Processes 14x14 NoC scenario
with Standardized mapping.

8.2 FIZ Occurrences Evaluation

Evaluation of the occurrences of FIZ routing paths is performed by checking the
routes from all sources to all destination pairs in the NoC. FIZ and PIZ scenarios are in-
versely proportional. A configuration with zero occurrences of PIZ routes means that all
communication occurs as FIZ . Therefore, configurations with fewer occurrences of PIZ sce-
narios are preferred.

To determine if a routing path is FIZ or PIZ , consider Equation 8.3. The routing
path from a source router S to a destination D consists of a set of routers (Path). If for every
router R ∈ Path the condition SZR = SZS is satisfied (where SZ corresponds to the security
zone of a router) then the routing path is FIZ . Otherwise, if there exists R ∈ Path such that
SZR 6= SZS, then the routing path is PIZ .

RoutingPath =

FIZ ⇐⇒ ∀R ∈ Path|SZR = SZS

PIZ ⇐⇒ ∃R ∈ Path|SZR 6= SZS

(8.3)
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Figures 8.13 and 8.14 illustrate the distribution of PIZ communications in each
scenario for different seeds used by the segmentation algorithms. The 5x5 NoC is the only
scenario that obtains FIZ routing with either mapping methods. In Default mapping, any
segmentation approach results in only FIZ , which is a characteristic specific to that mapping
layout. Standardized mapping, on the other hand, contains PIZ routes depending on the
seed used in SBR.
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Figure 8.13: Distribution of PIZ routers per SBR seed using Default mapping. Both segmen-
tation modes are used (SBR and SBR-SZA). When zero PIZ routers occur, it characterizes
a configuration with only FIZ communication.

A summary on PIZ routes occurrences for all evaluated configurations is shown in
Table 8.2. Employing SBR-SZA does not yield more secure paths than normal SBR, indicat-
ing that this technique did not improve the amount of secure routes for the tested scenarios.
However, the choice of the segmentation seed plays am important role in defining secure
routes; for instance, the 14x14 NoC scenario possesses a 7.12% and 21.62% variation in
the occurrence of PIZ routes per SBR seed with Default and Standardized mapping, re-
spectively. It is important to note that the 5x5 NoC with Standardized mapping has a very
high coefficient of variation due to the existence of many segmentation modes with no PIZ
routes, as the chart in Figure 8.14 shows.
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Figure 8.14: Distribution of PIZ routers per SBR seed using Standardized mapping. Both
segmentation modes are used (SBR and SBR-SZA). When zero PIZ routers occur, it char-
acterizes a configuration with only FIZ communication.

Table 8.2: Summary of FIZ Evaluation Results.

Scenario Segmentation Minimum PIZ
Routes

Variation in PIZ
Scenarios per SBR Seed

5x5 Default SBR 0 0%
SBR-SZA 0 0%

7x7 Default SBR 48 5.64%
SBR-SZA 48 5.64%

10x10 Default SBR 182 9.72%
SBR-SZA 182 9.94%

14x14 Default SBR 946 7.12%
SBR-SZA 946 6.85%

5x5 Standardized SBR 0 107.09%
SBR-SZA 0 86.96%

7x7 Standardized SBR 4 58.39%
SBR-SZA 6 57.39%

10x10 Standardized SBR 6 40.29%
SBR-SZA 6 42.14%

14x14 Standardized SBR 121 23.33%
SBR-SZA 121 21.62%
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Regarding the mapping techniques, Standardized mapping provides the lowest oc-
currence of PIZ routing scenarios. In the 10x10 NoC there is a reduction of 96.71% of PIZ
routes. Significant reductions also occur for the 7x7 and 14x14 NoC configurations, with the
5x5 NoC being the only exception due to the existence of only FIZ routes in both mappings.
This significant reduction demonstrates that the mapping technique can improve system se-
curity by lowering the amount of insecure communication paths. Figure 8.15 illustrates the
occurrence of PIZ routes on the tested NoC configurations with both mapping modes when
varying the SBR seed, demonstrating the lower occurrence of PIZ routes in Standardized
mapping. With the exception of the 5x5 NoC, all other scenarios benefit from the Standard-
ized Mapping technique.
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Figure 8.15: Comparison of Default and Standardized Mappings on the occurrence of PIZ
routes.

8.3 NPB Applications Evaluation

It is possible to evaluate the impact of the secure routing technique on system
workloads by measuring application execution times. All of the NPB applications, described
in Section 7.3, generate a simulation report that measures their final execution time. An
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evaluation of their performance, therefore, consists of executing the benchmark applications
while using different network latency configurations on the NoC employed by Gem5.

There are two main parameters that define the network latency: the Routing Path
and the Communication Delay. The Routing Path depends on two variables, namely: (i) the
NoC Size, which corresponds to the four configurations shown in Table 7.1; and (ii) Task
Mapping, corresponding to the eight mappings illustrated in Figure 7.6. Using these param-
eters it is possible to compute the routing paths among tasks distributed in the NoC with SBR
and RBR. Since the occurrences of PIZ scenarios did not change with SBR-SZA compared
to SBR, as it was shown in Section 8.2, the evaluations consider only SBR segmentation.
Additionally, in all configurations the NoC was segmented using the optimal SBR seed for
minimal PIZ routes.

The Communication Delay depends on the NoC model. This work assumes a Her-
mes NoC model, described in Section 7.1, where routing packets from one router to another
occurs in five stages, encompassing: (i) input request; (ii) buffering; (iii) route computation;
(iv) arbitration; and (v) packet switching to the next router. Each stage requires a clock cycle
to perform, therefore each hop of a packet takes five clock cycles to complete, disregarding
contention.

Assuming that packets which are traversing an insecure zone employ encryption as
the protection mechanism, the Communication Delay also takes into consideration symmet-
ric block-cipher techniques that simulate the protection of NoC packets. Table 8.3 shows the
encryption cost of seven block cipher implementations. Out of the seven techniques, three
were chosen, namely AES-128, DES, and mCrypton, characterizing high, medium, and low
cost block cyphers, respectively.

We also consider a Base scenario that disregards security. The Base configuration
employs SBR and RBR routing with no security zones and no encryption in any cases,
generating minimal routing paths for all communication pairs. This scenario enables the
evaluation of the overhead introduced by the secure routing implementation in applications
execution time.

Table 8.3: Summary of block-cipher modules (based on [11]).

Key
size

Block
size

Cycles per
block

Throughput at
100KHz (Kbps)

Present-80 [11] 80 64 32 200
AES-128 [19] 128 128 1032 12.4
HIGHT [30] 128 64 34 188.2
mCrypton [35] 96 64 13 492.3
Camellia [4] 128 128 20 640
DES [46] 56 64 144 44.4
DESXL [46] 184 64 144 44.4
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The network latency is obtained by considering the communication path length
|Path(S, D)| between each source S and destination D. The hop cost H is determined
according to how packets are forwarded through routers, which is presumed to take four
clock cycles for switching, and another clock cycle to forward, which we call F . If a packet
requires protection, then the cost of the encryption process (in clock cycles) Ecost (cipher )
is considered, depending on the chosen cipher mode. Equations 8.4 and 8.5 demonstrate
how to estimate the network delay between a source and a destination pair.

Delay(S,D) = |Path(S, D)| × H + (|Path(S, D) + 1)× F + Ecost (cipher ) (8.4)

Ecost (cipher ) =

FIZ route, 0

PIZ route, Block cost of Table 8.3
(8.5)

Figures 8.16 and 8.17 illustrate the benchmarks execution time with Default and
Standardized mapping, respectively. In most cases application performance remains the
same with either mapping modes, and the secure routing implementation does not incur an
overhead when compared to the Base scenario without security zones. Variations in execu-
tion time when employing an encryption technique are due to the occurrence of PIZ routes
for communication flows of an application. When PIZ routes are present, any communica-
tion incurs a latency overhead due to the cost of the block cypher employed to protect NoC
packets. Still, some applications with low amounts of communication might not be affected
by encryption, as most of the application time is used for computation instead of communi-
cation.

The 5x5 NoC configurations with Default and Standardized mapping do not posses
PIZ routes for any one of the NPB applications and, as a result, execution times do not vary
when employing packet protection. Applications with low communication requirements, such
as EP, are also not affected by the overhead of encrypting NoC packets, even thought this
application concentrates the majority of PIZ routes in all configurations.

However, CG, FT, IS and MG can suffer significant variations in execution time.
Using the Default mapping, CG with 32 processes and AES-128 encryption has an increase
of over 400% in execution time. For the same application, mCrypton and DES incur a much
lower overhead, at 1.3% and 31.29%, respectively.

An interesting situation is shown in LU with 32 processes. Out of the six NPB appli-
cations used in this work, LU concentrates the highest communication amount, exchanging
several small packets among its tasks. As such, task mapping plays a crucial role on this ap-
plication’s performance. The mapping criteria employed by CAFES consists into distributing
applications on a NoC topology such that a pair of tasks with high communication amounts
are as close as possible. In Default mapping, this property is properly accomplished by



87

Base AES mCrypton DES
0

5

10

15

20

A
p
p
lic

a
ti

o
n
 t

im
e
 (

se
co

n
d
s)

1.
31

1.
31

1.
31

1.
31

4.
08

4.
08

4.
08

4.
08

6.
46

6.
46

6.
46

6.
46

1.
48

1.
48

1.
48

1.
48

19
.1

9

19
.1

9

19
.1

9

19
.1

9

1.
21

1.
21

1.
21

1.
21

Default mapping for NPB 4 processes

CG

EP

FT

IS

LU

MG

(a) 5x5 NoC with applications split into 4 pro-
cesses.

Base AES mCrypton DES
0

2

4

6

8

10

12

14

A
p
p
lic

a
ti

o
n
 t

im
e
 (

se
co

n
d
s)

1.
01 1.

17

1.
01

1.
01

2.
04

2.
04

2.
04

2.
04

5.
05

5.
05

5.
05

5.
05

1.
30

1.
30

1.
30

1.
30

12
.2

6

12
.2

6

12
.2

6

12
.2

6

0.
72

0.
72

0.
72

0.
72

Default mapping for NPB 8 processes

CG

EP

FT

IS

LU

MG

(b) 7x7 NoC with applications split into 8 pro-
cesses.

Base AES mCrypton DES
0

1

2

3

4

5

6

7

A
p
p
lic

a
ti

o
n
 t

im
e
 (

se
co

n
d
s)

1.
08

1.
08

1.
08

1.
08

1.
02

1.
02

1.
02

1.
02

3.
55

5.
73

3.
60 3.

70

1.
08

1.
56

1.
08

1.
09

6.
33

6.
33

6.
33

6.
33

0.
56

0.
56

0.
56

0.
56

Default mapping for NPB 16 processes

CG

EP

FT

IS

LU

MG

(c) 10x10 NoC with applications split into 16 pro-
cesses.

Base AES mCrypton DES
0

1

2

3

4

5

6

7

8

A
p
p
lic

a
ti

o
n
 t

im
e
 (

se
co

n
d
s)

1.
47

6.
52

1.
49

1.
93

2.
46

2.
46

2.
46

2.
46

3.
43

7.
45

3.
43

4.
05

0.
83

2.
91

0.
83

1.
16

5.
12

5.
12

5.
12

5.
12

0.
95 1.

19

0.
94

0.
95

Default mapping for NPB 32 processes

CG

EP

FT

IS

LU

MG

(d) 14x14 NoC with applications split into 32 pro-
cesses.

Figure 8.16: NPB application time using AES-128, mCrypton, and DES encryption modes
in Default mapping.

CAFES since the absolute communication volume of tasks is the criteria used for application
mapping. Therefore, LU with 32 processes improves 20% its execution time versus LU with
16 processes due to higher parallelization with Default mapping. However, the Standardized
technique can lead to situations that mask the difference in communication amounts among
pairs of tasks, since the absolute values are leveled off. As a result, the distribution of tasks
inside a security zone can be such that two highly communicating tasks are mapped far
apart, degrading communication performance. A non-optimal mapping strategy can greatly
impact applications, which is the case in LU with 32 processes using Standardized mapping,
where its execution time is over three times longer than in Default mapping. Also, due to the
high communication volume of LU, the associated cost of an encryption technique is negli-
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Figure 8.17: NPB application time using AES-128, mCrypton, and DES encryption modes
in Standardized mapping.

gible, not affecting its execution time even though PIZ routes are present in the 14x14 NoC
scenarios.

The results shown in Table 8.4 demonstrate that the mapping technique has greater
impact in application performance than the secure routing implementation. In all cases that
do not contain PIZ routes, a scenario that employs the secure routing algorithm does not
increase application execution time when compared to the Base scenario. However, differ-
ences are present for the same application among different mappings. CG with 8 processes
is 3.69% slower in Standardized mapping versus Default. Meanwhile, FT with 8 processes is
7.51% faster in Standardized mapping. However, for other applications, like LU with 4, 8, and
16 processes, there is not difference in execution time among either mapping technique.
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Table 8.4: NPB Simulation Results.

Default Mapping Standardized Mapping

Benchmark PIZ
Routes

Execution Time (seconds) PIZ
Routes

Execution Time (seconds)

Base AES mCrypton DES Base AES mCrypton DES

CG 4 0 1.31 1.31 1.31 1.31 0 1.31 1.31 1.31 1.31

CG 8 0 1.01 1.01 1.01 1.01 4 1.05 1.05 1.05 1.05

CG 16 0 1.08 1.08 1.08 1.08 0 1.11 1.11 1.11 1.11

CG 32 43 1.47 6.52 1.49 1.93 30 1.39 1.4 1.39 1.39

EP 4 0 4.08 4.08 4.08 4.08 0 4.08 4.08 4.08 4.08

EP 8 48 2.04 2.04 2.04 2.04 0 2.04 2.04 2.04 2.04

EP 16 169 1.02 1.02 1.02 1.02 0 1.02 1.02 1.02 1.02

EP 32 780 2.46 2.46 2.46 2.46 36 2.46 2.46 2.46 2.46

FT 4 0 6.46 6.46 6.59 6.46 0 6.46 6.46 6.46 6.46

FT 8 0 5.46 5.46 5.46 5.46 0 5.05 5.05 5.05 5.05

FT 16 3 3.55 5.73 3.6 3.7 0 3.65 3.65 3.65 3.65

FT 32 4 3.43 5.95 3.43 3.7 14 3.43 7.45 3.43 4.05

IS 4 0 1.48 1.48 1.48 1.48 0 1.48 1.48 1.48 1.48

IS 8 0 1.3 1.3 1.3 1.3 0 1.22 1.22 1.22 1.22

IS 16 10 1.08 1.56 1.08 1.09 0 0.96 0.96 0.96 0.96

IS 32 12 0.83 2.91 0.83 1.16 10 0.77 1.95 0.77 0.9

LU 4 0 19.19 19.19 19.19 19.19 0 19.19 19.19 19.19 19.19

LU 8 0 12.26 12.26 12.26 12.26 0 12.26 12.26 12.26 12.26

LU 16 0 6.33 6.33 6.33 6.33 0 6.33 6.33 6.33 6.33

LU 32 91 5.12 5.12 5.12 5.12 19 17.51 17.51 17.52 17.51

MG 4 0 1.21 1.21 1.21 1.21 0 1.21 1.21 1.21 1.21

MG 8 0 0.72 0.72 0.72 0.72 0 0.81 0.81 0.81 0.81

MG 16 0 0.56 0.56 0.56 0.56 6 0.54 1.33 0.54 0.6

MG 32 20 0.95 1.19 0.94 0.95 12 0.94 1.08 0.95 0.96
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9. CONCLUSIONS AND FUTURE WORK

Due to the growing adoption of complex SoCs in embedded systems, the explo-
ration of security features at the design phase for such systems can offer increased protec-
tion from vulnerabilities. Embedding security at the interconnect fabric of SoCs has been
shown to enhance system security with low performance impact [17], [54], [28]. As such,
this work’s main contribution is the utilization of the routing algorithm used in NoCs to define
secure routing paths for applications targeting MPSoCs. To achieve this purpose, this work
presented a routing technique that is capable of considering security zones defined on the
NoC, evaluating aspects such as the overhead in the routing tables of the NoC routers, the
amount of secure routing paths achieved by the routing technique, and the impact of this
method in real application workloads. The proposal of this work has already been published
and accepted at the Symposium on Integrated Circuits and System Design (SBCCI) in 2016
[21].

Results demonstrate that the adopted routing strategy is capable of considering
system security requirements for defining the communication paths among elements in a
NoC. The proposed model has been validated using the abstract NoC configuration tool pre-
sented in Section 7; SBR is correctly inserting bidirectional turn restrictions in order to obtain
deadlock-free routing, while RBR is correctly defining regions in the NoC and populating the
routing tables of the routers.

Evaluation has shown that an implementation of RBR with security zones brings
an overhead in the size of routing tables, depending on the shape and the number of se-
curity zones. Nevertheless, this impact is small, corresponding to, at most, a 34% increase
in the size of routing tables when compared to a NoC without security zones. Even so, this
overhead has the benefit of reducing PIZ communication scenarios, contributing to system
security. The proposed segmentation process using SBR-SZA has not improved the amount
of secure routing paths for the tested scenarios, demonstrating that traditional SBR is suffi-
cient. Still, the segmentation process has a significant impact for reducing PIZ routes in the
NoC, as it was shown in Table 8.2.

As it was previously discussed in Section 6.2, the shape of the security zone plays
a crucial role for defining secure routing paths. Therefore, the mapping technique can greatly
impact the evaluated results. While there is a 34% increase in the size of routing tables for
the 14x14 NoC with Default mapping, the Standardized technique was able to reduce this
overhead to 13%; a significant decrease due to the greater packing of application tasks,
reducing the necessary amount of secure routes. The same benefits of Standardized map-
ping applies to the amount of PIZ routes, previously at 946 for the 14x14 NoC with Default
mapping, and now at 121 routes.
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The NPB results have demonstrated that the utilization of non-minimal routing
paths has a very low performance impact on that set of applications. Most of the overhead
comes from applications that contain PIZ routes while employing a costly data protection
mechanism, such as AES-128. For low cost encryption techniques, like mCrypton, the over-
head becomes negligible, not presenting any noticeable changes in application performance.
Still, applications will behave differently based on their communication requirements. An ap-
plication like EP with several PIZ routes, for example, suffers no performance degradation
even with AES-128 due to its low communication requirements. However, for applications
with high communication demands like FT, a small amount of PIZ routes is enough to incur a
74% overhead in its execution time in a 14x14 NoC with AES-128 in Default mapping. While
the NPB applications do not represent an exhaustive evaluation on the impact of the secure
routing technique shown in this work, the varied communication demands of its applications
should provide a reasonable understanding regarding the behavior of this routing technique.

We would also like to extend the exploration of this work to consider runtime recon-
figuration. During normal operation of a MPSoC, tasks can be loaded and unloaded from
IPs, generating different mappings and, therefore, other security zones configurations. The
computational complexity of RBR can become a determinant factor when a security zone
changes, as it is necessary to recompute all secure routes for all routers in the NoC. De-
pending on the NoC size, this process could negatively impact performance, specially if it
frequently occurs. As such, it is important to use low overhead path-finding algorithms and
to exploit the inherent parallelism of MPSoCs to minimize RBR recomputation.

Another approach to generate secure routes could be Circuit Switching, where the
routing path among a source and a destination is reserved during data transmission. By
locking the communication resources during the transmission of sensitive content among
IPs, it would be possible to mitigate timing or DoS attacks from interfering with the commu-
nication; still, malicious applications could drain the communication resources by constantly
requesting NoC routes, degrading system performance. Much like in this work, unless it
is possible to isolate regions in the MPSoC in order to lock malicious applications out of
sensitive zones, DoS attacks are still a vector for disrupting normal system operation.

When we consider the possibility of traffic isolation and reducing the overhead of
runtime reconfiguration, mapping applications into security zones that do not generate PIZ
routes presents interesting possibilities. As the results demonstrate, the Standardized map-
ping technique is able to greatly reduce the occurrence of PIZ routes due to the packing
of application tasks into non-fragmented security zones. A similar approach could use pre-
defined security clusters for mapping applications. Figure 9.1 illustrates a NoC with nine
clusters, each with eight IPs. The mapping algorithm then distributes tasks into these clus-
ters, creating the security zones. A cluster can only contain a single zone, but a zone can
spam multiple clusters. As Figure 9.1 shows, Zone 3 spams two clusters. Specific links con-
nect each cluster and are enabled or disabled according to system security requirements. A
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Zone 1 Zone 2

Zone 3

Zone 4

Zone 5

Zone 7

Zone 6

: Enabled Interzone Link : Intrazone Link: Disabled Interzone Link

Figure 9.1: Clustered security zones. A cluster might contain a single security zone, and
each security zone might span to more than one cluster.

zone can also communicate with another zone if needed, e.g., Zones 1, 2 and 5, or execute
completely isolated, e.g., Zone 4. Clusters contain routing paths defined at design time that
never change during runtime, therefore never requiring route recomputation. The obvious
downside of this approach is intra-cluster fragmentation since not all IPs from a cluster might
be used.
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