
Paulo Fernando Sá Ribeiro de Faria
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Abstract

This work proposes a simultaneous decoupled dynamic linear translational and nonlinear

rotational quaternion-based control of a Stewart platform. For the dynamic modeling

of the manipulator, a Newton-Euler quaternion-based formulation was used for control

design simplification. For the platform translation control, a mixed design composed by

ℋ∞, 𝒟-stability framework applied to a dynamic controller is presented along with an

augmented representation to allow the use of Linear Matrix Inequalities (LMI). Periodic

and constant disturbances are dealt with by the dynamic controller which is based on

the Internal Model Principle (IMP). For the end effector orientation control, an approach

consisting of a controller that achieves ℒ2 gain performance and a state-feedback control

law based on the IMP is used in order to guarantee stability of the rotation system. The

Jacobian of the platform is then used for control signal coupling. Numerical results show

that the proposed controller is able to stabilize the system around the desired reference and

successfully reject external periodic perturbations. Finally, the suggested control strategy

is compared to an inverse dynamics controller and the results of both approaches are

compared.

Keywords: Quaternions, Internal Model Principle, Linear Matrix Inequalities, distur-

bance rejection, Resonant Control, Hamilton-Jacobi Inequality, Stewart Platform, ℋ∞

gain, ℒ2 gain, Newton-Euler dynamics.



Resumo

Este trabalho propõe um controle dinâmico, simultâneo e desacoplado baseado em qua-

ternions para a plataforma de Stewart. Para a modelagem dinâmica do manipulador, uma

formulação de Newton-Euler baseada em quaternions foi usada para simplificação do de-

senvolvimento das estratégias de controle. Para o controle da translação da plataforma,

uma arquitetura mista composta por métodos ℋ∞ e de 𝒟-estabilidade aplicados em um

controlador dinâmico é apresentada em conjunto com uma representação aumentada do

sistema, permitindo o uso de Desigualdades Matriciais Lineares. Distúrbios periódicos e

constantes são tratados pelo controlador dinâmico baseado no Prinćıpio do Modelo In-

terno. Para o controle da rotação da plataforma, um controlador que obtém desempenho

ao ganho ℒ2, além de uma lei de controle por retro-alimentação de estados baseada em

Desigualdades Matriciais Lineares, é usado para garantir a estabilidade do sistema ro-

tacional. A matriz Jacobiana da plataforma é então usada para acoplar os sinais dos

dois controladores. Resultados numéricos apresentados mostram que o método de con-

trole usado é capaz de estabilizar o sistema ao redor da referência desejada e de rejeitar

perturbações externas periódicas. Ao final, a estratégia de controle sugerida é compa-

rada com um controlador de dinâmica reversa e os resultados de ambas abordagens são

apresentados.

Palavras-chaves: Quaternions, Modelo do Prinćıpio Interno, Desigualdades Matriciais

Lineares, rejeição a distúrbios, Controle Ressonante, Desigualdade de Hamilton-Jacobi,

Plataforma de Stewart, ganho ℋ∞, ganho ℒ2, modelagem dinâmica de Newton-Euler.
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1 Introduction

Rigid-body manipulators are widely used mechanical systems capable of position-

ing its end effector in 3D space with ease, given that enough degrees of freedom are

available for the task. The use for such systems ranges from industrial serial manipula-

tors, which may resemble a human arm and are used for welding, part-placement and

other uses, to parallel manipulators, such as the Stewart platform.

The Stewart platform manipulator consists in a six degrees of freedom (DOF)

parallel kinematic system given by a closed-kinematic chain (CKC) mechanism. Parallel

connected mechanisms are constructed in such a way that the links and joints from two or

more actuators connect the base of the manipulator to the end effector (FICHTER, 1986).

In the case of the Stewart platform, it is composed of a movable platform (end-effector)

linked to a static base (bottom platform) by six variable length actuators. While the orig-

inal intent was to use this platform as an aircraft simulator motion base (STEWART,

1965), CKC mechanisms in general have some inherent benefits that have expanded their

applicability. Today, the use of the Stewart platform ranges from industrial-grade ma-

nipulators (HUNT, 1978) to offshore cargo transfer mechanisms (GONZALEZ; DUTRA;

LENGERKE, 2011).

Open-kinematic chain (OKC) mechanisms, such as a serial linked industrial robot

arm, have low stiffness, low strength-to-weight ratio and large position error (NGUYEN

et al., 1991). A CKC manipulator such as the Stewart platform has, on the other hand, a

higher structural rigidity, noncumulative actuator errors and a payload that is proportion-

ally distributed to the links, granting a higher strength-to-weight ratio (LIU; LEBRET;

LEWIS, 1993). Therefore, there is significant interest in this particular configuration of a

parallel manipulator, which is, to this date, a highly active research topic (AYAS; SAHIN;

ALTAS, 2014; KUMAR; CHALANGA; BANDYOPADHYAY, 2015; MAGED; ABOUEL-

SOUD; BAB, 2015).

From a practical perspective, this work considers the scenario where a Stewart

platform is used as a stabilization device on the ocean as, for example, an offshore cargo

transfer mechanism, as a leveled platform for installation of offshore photovoltaic panels,

or even as a reusable rocket landing pad.

In the first scenario, the platform would allow cargo transfer between a large scale

vessel and two smaller ships on the ocean, reducing the time and costs attributed to tra-

ditional cargo unloading mechanisms (MELLO, 2011). The second scenario envisions a

future where photovoltaic (PV) panels are more common and cost-effective than today,

whose installation could also be made in offshore PV farms or on the dams of a hydro-
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electric plant. The third case may also be used in tandem with a reusable space shuttle,

such as the SpaceX orbital launch system, given that the platform would guarantee a

horizontal landing pad for the shuttle to descend onto.

In all these cases, it is desired that the end effector (the top platform) remains as

steady as possible, negating the effects of waves perturbing the bottom frame. Obviously,

the system is subject to external periodic and non-periodic perturbations, whose behavior

and mathematical description are only partly known, as well as variable load conditions.

To that extent, suitable control techniques must be developed to achieve the afore-

mentioned desired behavior. As such, consider the objectives from the next section, which

will be the main focus area of this work.

1.1 Objectives

The main objective of this work is the development of a dynamic control method

for periodic disturbance rejection on a Stewart platform. In order to achieve the pro-

posed goal, the dynamic equations that govern the manipulator must to be described in

a formulation that simplifies the design of control strategies capable of attenuating per-

turbations, namely a quaternion representation of the platform using the Newton-Euler

approach. This results in two mathematically decoupled submodels of the linear trans-

lational and nonlinear rotational portions of the system. Next, the control method itself

is developed to meet the central objective of this work. This includes two dynamic con-

trollers that guarantee asymptotic stability of the unperturbed submodels, ℋ∞ and ℒ2

finite-gain stability of the perturbed translational and rotational subsystems, respectively,

and external perturbation attenuation for both submodels, provided its frequency spec-

trum is known a priori and dominated by resonant peaks. Later, a systematic approach

to unify the control signal of both controllers must be defined and the suggested dynamic

description must be validated against a more classical formulation.

In addition, the results of this work should then be presented to the reader and

the proposed control strategy must be compared to another control proposition which was

already implemented in other works, namely the Inverse Dynamics Controller. Finally,

future research topics should be outlined to warrant further developments in the same

area as this work.

1.2 Structure

This work is organized as follows. Chapter 2 presents the main concepts, theorems

and definitions used in the next sections, namely the attitude quaternion and the Hamil-

tonian algebra, some basic results on linear and nonlinear systems, such as the internal
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model principle, linear matrix inequalities, ℒ2 gain and the classic Lyapunov stability the-

ory. Next, on Chapter 3, the main mathematical descriptions of the Stewart platform are

presented, such as its constructive parameters, the inverse kinematics and the dynamic

equations of the manipulator. Chapter 4 describes then the proposed control strategy

of this work and focuses on the development of the suggested control laws for meeting

the aforementioned objectives. Going further, Chapter 5 shows the numerical results ob-

tained from this work and compares the proposed control method to the Inverse Dynamics

Controller. Finally, Chapter 6 delineates the final considerations of this work and future

research suggestions are given.
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2 Preliminaries

In this chapter, the main concepts, theorems and definitions used throughout this

work will be presented. This chapter is organized as follows: first, a brief introduction on

quaternions is presented, along the essential mathematical operations of the Hamiltonian

algebra, the use of quaternions for spatial rotation purposes, and its equivalence to classic

Euler angle representation. Next, some basic results on linear systems are brought to

attention, namely the internal model principle and its particular use in this work: resonant

controllers for periodic perturbation rejection. In this same context of linear systems, the

concept of linear matrix inequalities (LMIs) is introduced with a focus on control theory,

in order to enable a systematic method of linear control design to be defined later in this

work. The 𝒟-stability LMI formulation is also featured in this section. Some basic results

on nonlinear systems follow on the next section, such as the classic Lyapunov stability

theory, the Hamilton-Jacobi inequality and ℒ2 gain of perturbed systems. Finally, a primer

on the nonlinear 𝐻∞ control law used in this work is presented.

2.1 Quaternions and Spatial Rotations

Originally developed by William Rowan Hamilton (HAMILTON, 1844), quater-

nions can be defined as an extension to complex numbers, described in a hyper-complex

domain, also called the Hamiltonian domain. Among other uses, such as electrodynamics

(WASER, 2000) and crystallography (MACKAY, 1984), a quaternion 𝑞 can be seen as a

mathematical framework for expressing rotations and attitude (positioning) of an object

in a three dimensional space. In an usual comparison to classic Euler angles, quaternions

present an easier computation of the kinematics and dynamics of 3D rigid bodies while

also avoiding the gimbal lock problem. Such problem arises when a degree of freedom is

lost, given that two gimbals are placed in a parallel configuration (KUIPERS et al., 1999).

2.1.1 Definition and Operations

For a formal description of quaternions, consider Definition 2.1.

Definition 2.1. (Quaternion) A quaternion 𝑞 ∈ ℋ is defined as a hyper-complex number

with four components that satisfy

𝑞 = 𝜂 + 𝜀1𝑖+ 𝜀2𝑗 + 𝜀3𝑘, (2.1)
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where 𝜂 ∈ R is the quaternion real component, 𝑖, 𝑗 and 𝑘 are imaginary identities that form

the basis elements of the Hamiltonian domain and the vector part 𝜀 =
[︁
𝜀1 𝜀2 𝜀3

]︁⊤
∈ R3

is sometimes called the quaternion imaginary component. �

While the quaternion 𝑞 ∈ ℋ requires an special algebra framework, quaternions

can also be represented in a vector form, such as

𝑞 → 𝑞 =

[︃
𝜂

𝜀

]︃
∈ R4. (2.2)

In this work, the quaternion vector representation will be used throughout the

remaining chapters. As such, consider Definitions 2.2 through 2.5 that will allow a series

of manipulations to be computed.

Definition 2.2. (Quaternion sum) The sum of quaternions 𝑞𝑎 and 𝑞𝑏 can be described as

the vector sum

𝑞𝑎 + 𝑞𝑏 → 𝑞𝑎 + 𝑞𝑏 =

[︃
𝜂𝑎 + 𝜂𝑏

𝜀𝑎 + 𝜀𝑏

]︃
. (2.3)

�

Definition 2.3. (Quaternion conjugate) The conjugate quaternion 𝑞* can be defined as

the vector

𝑞* → 𝑞* =

[︃
𝜂

−𝜀

]︃
. (2.4)

�

Definition 2.4. (Quaternion product) The product of two quaternions 𝑞𝑎 and 𝑞𝑏 can be

defined as

𝑞 = 𝑞𝑎𝑞𝑏 → 𝑞 = 𝑀(𝑞𝑎)𝑞𝑏 = 𝑁(𝑞𝑏)𝑞𝑎,

where 1,2

𝑀(𝑞) =

[︃
𝜂 −𝜀⊤

𝜀 𝜂𝐼 + 𝑆(𝜀)

]︃
, 𝑁(𝑞) =

[︃
𝜂 −𝜀⊤

𝜀 𝜂𝐼 − 𝑆(𝜀)

]︃
. (2.7)

�

1 The skew-symmetric matrix function 𝑆 : R3 → R3×3 defines a square matrix 𝑆(𝑥)⊤ = −𝑆(𝑥) which
represents cross products × as matrix multiplications, so that

𝑥× 𝑦 = 𝑆(𝑥)𝑦 (2.5)

and

𝑆(𝑥) =

⎡⎣ 0 −𝑥3 𝑥2

𝑥3 0 −𝑥1

−𝑥2 𝑥1 0

⎤⎦ ,∀ 𝑥 =

⎡⎣𝑥1

𝑥2

𝑥3

⎤⎦ ∈ R3. (2.6)

2 𝐼 is the 3 × 3 identity matrix.
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Definition 2.5. (Quaternion length) The length of 𝑞 is defined as the norm

‖𝑞‖ =
√
𝑞𝑞* → ‖𝑞‖ =

√︀
𝑞⊤𝑞 =

√︀
𝜂2 + 𝜀21 + 𝜀22 + 𝜀23. (2.8)

�

These definitions form the necessary mathematical basis for the next subsection,

attitude quaternions.

2.1.2 Attitude Quaternion and Quaternion Rotations

Attitude or orientation quaternions are a special case of quaternion variables when

they are used to represent the rotation of an object relative to a reference coordinate

system. While Euler angles 𝛼, 𝛽 and 𝛾 can be used to represent rotations of a 3D body

in three linearly independent axis as consecutive rotations, attitude quaternions provide

a simpler method to represent this rotation, namely by products of quaternions. Consider

Definition 2.6 for this case (DIEBEL, 2006).

Definition 2.6. (Attitude quaternion) A quaternion 𝑞 with length ‖𝑞‖ = 1 of the form

𝑞 → 𝑞 =

[︃
cos( 𝜃

2
)

𝑟 sin( 𝜃
2
)

]︃
(2.9)

is an attitude quaternion and may be used to represent a rotation of angle 𝜃 around the

unit vector 𝑟 ∈ R3. �

Note that the attitude quaternion has unitary norm for a natural rotation without

scalings. Consider now that an arbitrary vector 𝑥 ∈ R3 is subject to rotation. If 𝑥 is

represented in augmented quaternion form, i.e.

𝑥̄ = 𝑥1𝑖+ 𝑥2𝑗 + 𝑥3𝑘 → 𝑥̄ =

[︃
0

𝑥

]︃
, (2.10)

then its rotation by angle 𝜃 around the unit vector 𝑟 can be represented as proposed by

the following definition.

Definition 2.7. (Quaternion rotation) The rotation of vector 𝑥 by angle 𝜃 around the

unit vector 𝑟 is defined by

𝑦 = 𝑞𝑥̄𝑞* → 𝑦 = 𝑅(𝑞)𝑥, (2.11)

where 𝑥̄ is the augmented quaternion of vector 𝑥, 𝑦 is the augmented quaternion of the

resulting rotated vector 𝑦, 𝑞 is the attitude quaternion defined from (𝜃, 𝑟) and 𝑅(𝑞) ∈ R3×3

is the equivalent rotation matrix defined by

𝑅(𝑞) = 𝐼 + 2𝜂𝑆(𝜀) + 2𝑆2(𝜀). (2.12)

�
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Furthermore, a given representation of an attitude quaternion 𝑞 may also be rep-

resented in equivalent Euler angles, and vice-versa, as the next section shows.

2.1.3 Equivalent Euler Angles

Given that Euler angles are more natural and easier to understand than the same

attitude in quaternion representation, equivalent Euler angles can be described as a func-

tion of an orientation quaternion 𝑞. As such, consider Definition 2.8.

Definition 2.8. (Equivalent Euler angles) Let 𝑞 be an orientation quaternion. The equiv-

alent Euler angles 𝛼, 𝛽 and 𝛾 of 𝑞 can be obtained by computing

⎡⎢⎣𝛼𝛽
𝛾

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

arctan

(︂
2(𝜂𝜀1 + 𝜀2𝜀3)

1− 2(𝜀21 + 𝜀22)

)︂

arcsin(2(𝜂𝜀2 − 𝜀3𝜀1))

arctan

(︂
2(𝜂𝜀3 + 𝜀1𝜀2)

1− 2(𝜀22 + 𝜀23)

)︂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.13)

and 𝑞 can be derived from 𝛼, 𝛽 and 𝛾 by computing

𝑞 =

⎡⎢⎢⎢⎢⎢⎢⎣
cos

(︀
𝛼
2

)︀
cos

(︀
𝛽
2

)︀
cos

(︀
𝛾
2

)︀
− sin

(︀
𝛼
2

)︀
sin

(︀
𝛽
2

)︀
sin

(︀
𝛾
2

)︀
sin

(︀
𝛼
2

)︀
cos

(︀
𝛽
2

)︀
cos

(︀
𝛾
2

)︀
− cos

(︀
𝛼
2

)︀
sin

(︀
𝛽
2

)︀
sin

(︀
𝛾
2

)︀
cos

(︀
𝛼
2

)︀
sin

(︀
𝛽
2

)︀
cos

(︀
𝛾
2

)︀
− sin

(︀
𝛼
2

)︀
cos

(︀
𝛽
2

)︀
sin

(︀
𝛾
2

)︀
cos

(︀
𝛼
2

)︀
cos

(︀
𝛽
2

)︀
sin

(︀
𝛾
2

)︀
− sin

(︀
𝛼
2

)︀
sin

(︀
𝛽
2

)︀
cos

(︀
𝛾
2

)︀

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.14)

�

2.1.4 Error Quaternion

Even though this work will not make use of trajectory tracking, that is, the ref-

erence will always be that of an horizontal platform, it was developed in such way that

reference tracking is easily added. For that, consider that an error quaternion describes

the attitude error to a reference quaternion 𝑞𝑟𝑒𝑓 and is computed as shown on Definition

2.9.

Definition 2.9. (Error Quaternion) The error quaternion 𝑞𝑒 is defined as

𝑞𝑒 =

[︃
𝜂𝑒

𝜀𝑒

]︃
=

[︃
𝜂𝑟𝑒𝑓𝜂 + 𝜀⊤𝑟𝑒𝑓𝜀

𝜂𝑟𝑒𝑓𝜀− 𝜀𝑟𝑒𝑓𝜂 + 𝑆(−𝜀𝑟𝑒𝑓 )𝜀

]︃
, (2.15)

where 𝑞𝑟𝑒𝑓 =
[︁
𝜂𝑟𝑒𝑓 𝜀⊤𝑟𝑒𝑓

]︁⊤
∈ R4 is the reference attitude. �
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Since both 𝑞𝑟𝑒𝑓 and 𝑞 represent rotations and are unitary quaternions, ‖𝑞𝑒‖ = 1

and the null error quaternion is 𝑞0𝑒 =
[︁
±1 0 0 0

]︁⊤
. Furthermore, every orientation unit

quaternion is considered a redundant representation of attitude, since it has two equilibria

(𝜀 = 0, 𝜂 = ±1) that describe the same pose of the system.

2.2 Basic Results on Linear Systems

This section aims at presenting the reader to the main results on linear systems

used throughout this work, namely the Internal Model Principle, Linear Matrix Inequal-

ities and the 𝒟-stability LMI formulation.

2.2.1 Internal Model Principle

The internal model principle (IMP) (FRANCIS; WONHAM, 1975), also called

internal-model-based tracking, is a concept applied in asymptotic tracking of prescribed

trajectories or, more specifically in this work, asymptotic rejection of disturbances. In

contrast to other methods used for this purpose, such as dynamic inversion or adaptive

tracking, the IMP handles both uncertainties in the model of a given system, as well

as in the trajectory which is to be tracked (ISIDORI; MARCONI; SERRANI, 2012). It

is well known from the IMP that a perturbation signal can be asymptotically rejected

if its dynamics are reproduced by the states of the controller. In other words, if the

trajectory to be rejected belongs to the set of all trajectories of a given perturbed system,

a dynamic controller that incorporates an internal model of such perturbation guarantees

robust (regarding parameter uncertainties) asymptotic rejection of this disturbia for every

trajectory in this set (ISIDORI; MARCONI; SERRANI, 2012).

Figure 1 – Block diagram of a linear control system.

C(s) G(s)
R(s) E(s) U(s) Y(s)

D(s)

+

-

Source: the author (2016).

Consider the closed-loop block diagram from Figure 1. In this diagram, 𝑅(𝑠) is

the reference input signal, 𝐸(𝑠) is the error signal, 𝑈(𝑠) is the control signal, 𝐷(𝑠) is the

exogenous perturbation and 𝑌 (𝑠) is the output signal of the given system. In addition
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to the signals that are included in the diagram, the transfer functions 𝐶(𝑠) = 𝑈(𝑠)
𝐸(𝑠)

and

𝐺(𝑠) =
[︁
𝐺1(𝑠) 𝐺2(𝑠)

]︁
are defined for the controller and the linear system, respectively.

Furthermore, define 𝐺1(𝑠) = 𝑌 (𝑠)
𝑈(𝑠)

as the input-to-output transfer function and 𝐺2(𝑠) =
𝑌 (𝑠)
𝐷(𝑠)

as the perturbation-to-output transfer function and assume that the poles from 𝐺2

belong to the same set of the poles from 𝐺1, that is, the system is controllable regarding

𝑈(𝑠).

It is desirable to partition the reference and perturbation signals in such form

that the poles in the left and right semi-plane (LSP and RSP, respectively) may be in-

dependently evaluated. Therefore, consider the polynomial partition of 𝑅(𝑠) and 𝐷(𝑠)

as

𝑅(𝑠) =
𝑍𝑅(𝑠)

𝑃 𝑙𝑠𝑝
𝑅 (𝑠)𝑃 𝑟𝑠𝑝

𝑅 (𝑠)
, 𝐷(𝑠) =

𝑍𝐷(𝑠)

𝑃 𝑙𝑠𝑝
𝐷 (𝑠)𝑃 𝑟𝑠𝑝

𝐷 (𝑠)
, (2.16)

so that for every 𝑖 = (𝑅,𝐷)

1. No common roots exist in 𝑍𝑖(𝑠), 𝑃
𝑙𝑠𝑝
𝑖 (𝑠) and 𝑃 𝑟𝑠𝑝

𝑖 (𝑠);

2. Polynomials 𝑃 𝑙𝑠𝑝
𝑖 (𝑠) contain only stable poles, i.e. poles in the LSP;

3. Polynomials 𝑃 𝑟𝑠𝑝
𝑖 (𝑠) contain only unstable or marginally stable poles, i.e. poles on

the RSP or on the imaginary axis.

Similarly, partition the controller and system transfer functions as

𝐶(𝑠) =
𝑍𝑐(𝑠)

𝑃𝑐(𝑠)
, 𝐺(𝑠) =

[︂
𝑍𝐺1(𝑠)

𝑃𝐺1(𝑠)

𝑍𝐺2(𝑠)

𝑃𝐺2(𝑠)

]︂
, (2.17)

so that for every 𝑖 = (𝐶,𝐺1, 𝐺2) no common roots exist in 𝑍𝑖(𝑠) and 𝑃𝑖(𝑠).

Considering the provisions above, the internal model principle regarding linear

systems is presented on Theorem 2.1 and its corresponding proof is found in (CASTRO,

2015).

Theorem 2.1. (Internal Model Principle) Consider the linear time-invariant closed-loop

system presented on Figure 1 and assume that it is stabilizable and detectable. Assume

also that the perturbation is neutrally stable, i.e forward and backward in time stable in

the sense of Lyapunov (Definition 2.12), and that the error signal 𝐸(𝑠) is readable from

the output 𝑌 (𝑠). Then, for every initial condition of 𝑥(𝑡), 𝑐(𝑡) and 𝑑(𝑡),

lim
𝑡→∞

𝑒(𝑡) = 0

where 𝑐(𝑡) is the states vector of the controller, if the following conditions hold true:
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1. The unperturbed system with characteristic polynomial

𝜉(𝑠) = 𝑍𝐶(𝑠)𝑍𝐺1(𝑠) + 𝑃𝐶(𝑠)𝑃𝐺1(𝑠)

contain roots in the LSP only, that is, the closed-loop system is stable;

2. Polynomial 𝑃𝐶(𝑠) contains all poles from 𝑃 𝑟𝑠𝑝
𝑅 (𝑠) and 𝑃 𝑟𝑠𝑝

𝐷 (𝑠), that is, the controller

must replicate the unstable or marginally stable dynamics of the system;

3. Polynomial 𝑍𝐺1(𝑠) contains no common roots from 𝑃 𝑟𝑠𝑝
𝑅 (𝑠) and 𝑃 𝑟𝑠𝑝

𝐷 (𝑠), that is, the

zeros of the system do not cancel the added controller poles. �

One such use of Theorem 2.1 is for the rejection of periodic signals, in the form of

a resonant controller later used in this work. As such, the rejection of perturbations with

marginally stable poles implies in singularities on the same frequencies that are present

in this perturbation, i.e. with |𝐶(𝑗𝑤)| → ∞ on such frequencies, so that in closed-loop

𝑒(𝑡) → 0.

Going further, linear matrix inequalities will be presented on the next section,

which may be used for systematically computing a control law that stabilizes the system

from Figure 1.

2.2.2 Linear Matrix Inequalities in Control Theory

Linear matrix inequalities (LMIs) are widely utilized in dynamic systems analysis,

with uses ranging from stability and performance evaluations, control law synthesis, op-

timal system realization and for many optimization problems in control theory that are

constrained by LMIs (BOYD et al., 1994). Even though its use got widened in the late

1980’s with the development of computational algorithms, the first LMI used to evaluate

the stability of a system was the Lyapunov inequality on 𝑃 . Mathematically, a linear

matrix inequality takes the form of

𝐹 (𝑥) = 𝐹0 +
𝑚∑︁
𝑖=1

𝑥𝑖𝐹𝑖 > 0, (2.18)

where 𝑥 ∈ R𝑛 is the decision variable vector and matrices 𝐹𝑖 = 𝐹⊤
𝑖 ∈ R𝑚×𝑚, 𝑖 =

0, . . . , 𝑛 are given3. This defines 𝐹 (𝑥) as positive definite and that its leading prin-

cipal minors are positive (BOYD et al., 1994). Furthermore, multiple LMIs 𝐹1(𝑥) >

0, . . . , 𝐹𝑝(𝑥) > 0, 𝑝 ∈ N+ can be expressed as a single LMI when disposed diagonally,

i.e., 𝑑𝑖𝑎𝑔(𝐹1(𝑥), . . . , 𝐹𝑝(𝑥)) > 0.

3 Note that variables that are function of time have this notation omitted, i.e. 𝑥(𝑡) → 𝑥, unless when
necessary or for better comprehension, e.g., when representing limits and integrals.
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Aside from the characteristics already presented, (2.18) is also convex on 𝑥, that

is, it belongs on a convex set 𝒳 so that for points (𝑔, ℎ) ∈ 𝒳 ⊆ R and scalar 𝛼 ∈ [0, 1],⎧⎨⎩𝐹 (𝑔) > 0,

𝐹 (ℎ) > 0
=⇒ 𝐹 (𝑥) > 0,∀ 𝑥 = 𝛼𝑔 + (1− 𝛼)ℎ ∈ 𝒳 ⊆ R, (2.19)

which means that the line segment that unites the points (𝑔, ℎ) also belongs to set 𝒳 and

if 𝐹 (𝑔) > 0 and 𝐹 (ℎ) > 0, then 𝐹 (𝑥) > 0 for any 𝑥 along this line segment.

While LMIs have plenty of uses, most pertinent cases naturally present them-

selves in nonlinear forms, specially in control systems design. In this regard, the following

mathematical manipulations were used in this work (BOYD et al., 1994).

Lemma 2.2. (Matrix congruence, congruence transformation) Consider an invertible

symmetric matrix 𝑃 ∈ R𝑛×𝑛. Then

𝑃 > 0 =⇒ 𝑄⊤𝑃𝑄 > 0 ∀ 𝑄 ∈ R𝑛×𝑛, (2.20)

where 𝑄 has full rank. �

Lemma 2.3. (Schur complement) Consider matrix 𝑆 ∈ R𝑛×𝑚 and symmetric matrices

𝑅 ∈ R𝑛×𝑛, 𝑇 ∈ R𝑚×𝑚, with 𝑇 > 0. Then4

𝑅− 𝑆𝑇−1𝑆⊤ > 0 =⇒

[︃
𝑅 𝑆

⋆ 𝑇

]︃
> 0. (2.21)

�

One of the uses of linear matrix inequalities in this work is regarding the 𝒟-stability

concept, as further explained in the next subsection.

2.2.2.1 𝒟-stability LMI Formulation

The 𝒟-stability concept lets one create LMI-based constraints for an optimization

problem that places the eigenvalues of a given system on a region 𝒟. The definition to

𝒟-stability is given below.

Definition 2.10. (D-stability) A generic LTI system 𝑥̇ = 𝐴𝑥 is 𝒟-stable if, and only if,

all the eigenvalues 𝜆𝑖 of the matrix 𝐴 belong to the sub-region 𝒟 of the negative complex

plane C−, namely:

𝜆𝑖(𝐴) ∈ 𝒟 ⊂ C−, ∀ 𝑖 ≤ 𝑛 ∈ N+, (2.22)

where 𝑛 is the number of eigenvalues of the system. �
4 The symbol ⋆ denotes the transpose of the diagonal block matrix.
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This defines a sub-region of the complex plane that, when all the eigenvalues of a

given closed-loop system reside within it, guarantees asymptotic stability and defines the

dynamic behavior of the process. To allow the use of 𝒟-stability in an LMI optimization

problem, the sub-region 𝒟 must also be an LMI region as follows on Definition 2.11.

Such region is described by constant matrices 𝐿 and 𝑀 , which denote the format that

the desired region will take. For instance, the region can be circular, planar, conical,

intersections between these regions or even take other formats.

Definition 2.11. (LMI Regions) A subset 𝒟 of the negative complex semi-plan is denoted

an LMI region if constant matrices 𝐿 = 𝐿𝑇 and 𝑀 exist, such that

𝒟 = {𝑠 ∈ C|𝐿+ 𝑠𝑀 + 𝑠*𝑀⊤ < 0}, (2.23)

where 𝑠 = 𝜎 + 𝑗𝜔 and 𝑠* = 𝜎 − 𝑗𝜔. �

The complete LMI formulation of the 𝒟-stability theorem was originally developed

by (CHILALI; GAHINET; APKARIAN, 1999), and given by

Theorem 2.4. (𝒟-stability LMI Formulation) The system 𝑆 is 𝒟-stable if, and only if,

a matrix 𝑃 = 𝑃⊤ > 0 with appropriate dimensions exists so that

𝐿⊗ 𝑃 +𝑀 ⊗ (𝑃𝐴) +𝑀⊤ ⊗ (𝐴⊤𝑃 ) < 0, (2.24)

where ⊗ is the Kronecker product 5. �

2.3 Basic Results on Nonlinear Systems

Similarly to Section 2.2, results on nonlinear systems are presented to the reader,

namely the Lyapunov stability theory, the ℒ2 gain concept and the nonlinear ℋ∞ control

law that will be later used in this work. The Sylvester’s criterion is also introduced in

this segment, mainly for its use for determining the definiteness of Lyapunov candidate

functions.

2.3.1 Lyapunov Stability Theory

The Lyapunov stability theory is a classic result used in nonlinear systems control

design. By using the concept of a generalized energy function, this theorem enables one to

5 Given matrices 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑝×𝑞, the Kronecker product is defined by

𝐴⊗𝐵 =

⎡⎢⎣𝑎11𝐵 . . . 𝑎1𝑛𝐵
...

. . .
...

𝑎𝑚1𝐵 . . . 𝑎𝑚𝑛𝐵

⎤⎥⎦ ∈ R𝑚𝑝×𝑛𝑞.
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draw conclusions about the trajectories of a given system without solving the differential

equations that govern it.

The main goal of a stability proof in typical Lyapunov form is to find a scalar

Lyapunov candidate function 𝑉 (𝑥) and 𝑉̇ (𝑥) that satisfies some conditions regarding its

definiteness. For instance, consider a nonlinear time-invariant system in the form of

𝑥̇ = 𝑓(𝑥), (2.25)

where 𝑥 ∈ ℬ ⊆ R𝑛 is the state vector, the function 𝑓 : R𝑛 → R𝑛 is locally Lipschitz on 𝑥

and ℬ is an open set containing the origin 𝑥 = 0. Consider also that this system has an

equilibrium point 𝑥𝑒𝑞 ∈ ℬ, such that 𝑓(𝑥𝑒𝑞) = 0.

In this regard, a set of stability classes can be established as presented on Definition

2.12 and the definiteness of a function as shown on Definition 2.13. Furthermore, the

Lyapunov stability concept is presented on Theorem 2.5 (KHALIL; GRIZZLE, 1996).

Definition 2.12. (System stability) Consider the equilibrium point 𝑥𝑒𝑞. This equilibrium

point, and, thus system (2.25), is:

1. Stable in the sense of Lyapunov if all solutions that start near 𝑥𝑒𝑞 remain near

𝑥𝑒𝑞, that is, if for every 𝜖 > 0 there exists 𝛿 > 0 such that

‖𝑥(0)− 𝑥𝑒𝑞‖ < 𝛿 =⇒ ‖𝑥(𝑡)− 𝑥𝑒𝑞‖ < 𝜖,∀𝑡 ≥ 0. (2.26)

2. Asymptotically stable if 𝑥𝑒𝑞 is stable in the sense of Lyapunov and locally at-

tractive, i.e. all solutions that start near 𝑥𝑒𝑞 tend to 𝑥𝑒𝑞 with 𝑡 → ∞, that is,

‖𝑥(0)− 𝑥𝑒𝑞‖ < 𝛿 =⇒ lim
𝑡→∞

‖𝑥(𝑡)− 𝑥𝑒𝑞‖ = 0, ∀𝑡 ≥ 0. (2.27)

3. Globally asymptotically stable if 𝑥𝑒𝑞 is asymptotically stable for all initial con-

ditions 𝑥0 ∈ R𝑛. �

Definition 2.13. (Definiteness of a function) Consider a continuously differentiable func-

tion 𝑉 (𝑥(𝑡)), 𝑉 : R𝑛 → R. This function is:

1. Positive definite if 𝑉 (0) = 0 and 𝑉 (𝑥) > 0 ∀𝑥 ̸= 0 ∈ ℬ.
2. Positive semi-definite if 𝑉 (0) = 0 and 𝑉 (𝑥) ≥ 0 ∀𝑥 ̸= 0 ∈ ℬ.
3. Negative definite if 𝑉 (0) = 0 and 𝑉 (𝑥) < 0 ∀𝑥 ̸= 0 ∈ ℬ.
4. Negative semi-definite if 𝑉 (0) = 0 and 𝑉 (𝑥) ≤ 0 ∀𝑥 ̸= 0 ∈ ℬ. �

Theorem 2.5. Consider the equilibrium point 𝑥𝑒𝑞 for system (2.25) and the continuously

differentiable positive definite function 𝑉 : R𝑛 → R𝑛, with 𝑥 ∈ ℬ ⊆ R𝑛 and ℬ an open set

containing the origin 𝑥 = 0. The system is
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1. Stable in the sense of Lyapunov if 𝑉̇ (𝑥) is negative semi-definite.

2. Asymptotically stable if 𝑉̇ (𝑥) is negative definite.

3. Globally asymptotically stable if 𝑉̇ (𝑥) is negative definite and 𝑉 (𝑥) is radially

unbounded, i.e. ‖𝑥‖ → ∞ =⇒ 𝑉 (𝑥) → ∞. �

2.3.2 Sylvester’s Criterion

The Sylvester’s Criterion is a necessary and sufficient condition to evaluate if a

given real symmetric matrix is positive-definite and may, thus, be used to determine the

definiteness of a Lyapunov candidate function. For that, consider Definition 2.14 and

Theorem 2.6 (GILBERT, 1991).

Definition 2.14. (Principal minors) A leading principal minor 𝐷𝑘 of order 𝑘 of matrix

𝑀 is defined as the determinant of the sub-matrix obtained by deleting the last 𝑛 − 𝑘

rows and columns of 𝑀 . �

Theorem 2.6. (Sylvester’s criterion) A real symmetric matrix 𝑀(𝑥) = 𝑀(𝑥)⊤ ∈ R𝑛×𝑛 is

positive-definite if and only if all leading principal minors of M are positive, i.e. 𝐷𝑘 > 0,

with 𝑘 ≤ 𝑛 ∈ N+. �

2.3.3 ℒ2 Gain

The ℒ2 gain describes how the energy of an external perturbation relates to the

output energy of a given system and can be defined as a positive scalar 𝜈. For example,

a system that has ℒ2 gain less than or equal 𝜈 from a perturbation 𝑑(𝑡) ∈ ℒ2[0,∞) 6 to

an output 𝑧(𝑡) ∈ ℒ2[0,∞) is represented by

‖𝑧(𝑡)‖ℒ2 ≤ 𝜈‖𝑑(𝑡)‖ℒ2 +ϒ, (2.28)

where ϒ is a positive scalar and the ℒ2 norm of 𝑧(𝑡) is given by

‖𝑧(𝑡)‖ℒ2 =

∫︁ 𝑡

0

‖𝑧(𝑡)‖2 d𝑡. (2.29)

Systems that have small 𝜈 have perturbation attenuation characteristics. In order

to test for inequality (2.28), consider Theorem 2.7 and the corresponding proof (KHALIL;

GRIZZLE, 1996).

Theorem 2.7. Consider system

𝑆 :=

⎧⎨⎩𝑥̇ = 𝑓(𝑥) +𝐺(𝑥)𝑢,

𝑧 = ℎ(𝑥),
(2.30)

6 The ℒ2-space is formed by a set of square integrable ℒ2 functions that form a Hilbert space.
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where 𝑓(𝑥) is locally Lipschitz and 𝐺(𝑥) and ℎ(𝑥) are continuous over R𝑛. Let 𝜈 be a pos-

itive scalar and 𝑢 the input of the system, which may contain exogenous perturbations. If

there exists a continuously differentiable positive semidefinite function 𝑉 (𝑥) that satisfies

the inequality

𝐻̄𝑣 =

(︂
𝜕𝑉 (𝑥)

𝜕𝑥

)︂
𝑓(𝑥) +

1

2𝜈2

(︂
𝜕𝑉 (𝑥)

𝜕𝑥

)︂
𝑔(𝑥)𝑔(𝑥)⊤

(︂
𝜕𝑉 (𝑥)

𝜕𝑥

)︂⊤

+
1

2
ℎ(𝑥)⊤ℎ(𝑥) ≤ 0,

(2.31)

then the system is finite-gain ℒ2 stable and its ℒ2 gain is less than or equal to 𝜈. �

Proof. Complete the squares, such that

𝜕𝑉

𝜕𝑥
𝑓(𝑥) +

𝜕𝑉

𝜕𝑥
𝐺(𝑥)𝑢 = −1

2
𝜈2

⃦⃦⃦⃦
⃦𝑢− 1

𝜈2
𝐺⊤(𝑥)

(︂
𝜕𝑉

𝜕𝑥

)︂⊤
⃦⃦⃦⃦
⃦
2

+
𝜕𝑉

𝜕𝑥
𝑓(𝑥)

+
1

2𝜈2

𝜕𝑉

𝜕𝑥
𝐺(𝑥)𝐺(𝑥)⊤

(︂
𝜕𝑉

𝜕𝑥

)︂⊤

+
1

2
𝜈2‖𝑢‖2.

(2.32)

Use (2.31) to obtain

𝜕𝑉

𝜕𝑥
𝑓(𝑥) +

𝜕𝑉

𝜕𝑥
𝐺(𝑥)𝑢 ≤ 1

2
𝜈2‖𝑢‖2 − 1

2
‖𝑧‖2 − 1

2
𝜈2

⃦⃦⃦⃦
⃦𝑢− 1

𝜈2
𝐺⊤(𝑥)

(︂
𝜕𝑉

𝜕𝑥

)︂⊤
⃦⃦⃦⃦
⃦
2

(2.33)

and thus

𝜕𝑉

𝜕𝑥
𝑓(𝑥) +

𝜕𝑉

𝜕𝑥
𝐺(𝑥)𝑢 ≤ 1

2
𝜈2‖𝑢‖2 − 1

2
‖𝑧‖2. (2.34)

Notice that

𝑉̇ (𝑥) =
𝜕𝑉

𝜕𝑥
𝑥̇ =

𝜕𝑉

𝜕𝑥
𝑓(𝑥) +

𝜕𝑉

𝜕𝑥
𝐺(𝑥)𝑢 (2.35)

and integrate both sides from 𝑡 = 0 to 𝑡 = 𝑇 ≥ 0, with initial conditions 𝑥(0) = 𝑥0 to

achieve

∫︁ 𝑇

0

‖𝑧(𝑡)‖2 d𝑡 ≤ 𝜈2

∫︁ 𝑇

0

‖𝑢(𝑡)‖2 d𝑡+ 2(𝑉 (𝑥0)− 𝑉 (𝑥(𝑇 ))). (2.36)

Given that 𝑉 (𝑥) ≥ 0,

∫︁ 𝑇

0

‖𝑧(𝑡)‖2 d𝑡 ≤ 𝜈2

∫︁ 𝑇

0

‖𝑢(𝑡)‖2 d𝑡+ 2(𝑉 (𝑥0)). (2.37)
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Take the square roots from both sides and use the inequality
√
𝑎2 + 𝑏2 ≤ 𝑎 +

𝑏, ∀ (𝑎, 𝑏) ≥ 0 ∈ R to yield

‖𝑧(𝑇 )‖ℒ2 ≤ 𝜈‖𝑢(𝑇 )‖ℒ2 +
√︀

2𝑉 (𝑥0), (2.38)

and, thus, the proof to Theorem 2.7 is complete.

In the next section, an expanded Hamilton-Jacobi inequality will be presented, as

well as a control law that guarantees ℒ2 gain performance for a given system.

2.3.4 Nonlinear ℋ∞ Control Law

The state-feedback control law that is used in later sections of this work, namely

as the controller for the rotation submodel of the platform, leverages the Hamilton-Jacobi

inequality in order to prove closed-loop ℒ2 finite-gain stability of a given system 𝑆, as

described by Theorem 2.8 and the proof that follows (SCHAFT, 1992).

Theorem 2.8. Consider an expanded system derived from (2.30)

𝑆 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥̇ = 𝑓(𝑥) + 𝑔1(𝑥)𝑑+ 𝑔2(𝑥)𝑢,

𝑧 =

⎡⎣ℎ(𝑥)
𝜌𝑢

⎤⎦ ,

where 𝑓(𝑥) is locally Lipschitz, 𝑔1(𝑥), 𝑔2(𝑥) and ℎ(𝑥) are continuous over R𝑛, 𝑢 is the

input and 𝑑 is a perturbation that affects the system, 𝜌 is a positive weighting scalar for

the control signal and ℎ(𝑥) is an output function.

If there exists a positive semidefinite function 𝑉 (𝑥) that satisfies Theorem 2.7 with

generalized Hamilton-Jacobi inequality

𝐻𝑣 =

(︂
𝜕𝑉 (𝑥)

𝜕𝑥

)︂
𝑓(𝑥) +

1

2

(︂
𝜕𝑉 (𝑥)

𝜕𝑥

)︂(︂
1

𝜈2
𝑔1(𝑥)𝑔1(𝑥)

⊤ − 1

𝜌2
𝑔2(𝑥)𝑔2(𝑥)

⊤
)︂(︂

𝜕𝑉 (𝑥)

𝜕𝑥

)︂⊤

+
1

2
ℎ(𝑥)⊤ℎ(𝑥) ≤ 0,

(2.39)

then the control law

𝑢 = − 1

𝜌2
𝑔⊤2

𝜕⊤𝑉

𝜕𝑥
, (2.40)
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with 𝑔2 ∈ R𝑛 and scalar 𝜌 > 0, stabilizes system 𝑆 with ℒ2 gain from 𝑑 to 𝑧 =
[︁
ℎ⊤(𝑥) 𝜌𝑢⊤

]︁⊤
less than or equal a positive scalar 𝜈. �

Proof. Consider the first derivative of 𝑉 (𝑥) and complete the squares, i.e.

𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑥
𝑓(𝑥) +

𝜕𝑉

𝜕𝑥
𝑔1(𝑥)𝑑+

𝜕𝑉

𝜕𝑥
𝑔2(𝑥)𝑢

≤ 1

2
𝜌2

⃦⃦⃦⃦
𝑢+

1

𝜌2
𝑔⊤2

𝜕⊤𝑉

𝜕𝑥

⃦⃦⃦⃦2

− 1

2
𝜈2

⃦⃦⃦⃦
𝑑− 1

𝜈2
𝑔⊤1

𝜕⊤𝑉

𝜕𝑥

⃦⃦⃦⃦2

− 1

2
𝜌2‖𝑢‖2 + 1

2
𝜈2‖𝑑‖2 + 𝜕𝑉

𝜕𝑥
𝑓(𝑥)− 1

2

1

𝜌2
𝜕𝑉

𝜕𝑥
𝑔2𝑔

⊤
2

𝜕⊤𝑉

𝜕𝑥

+
1

2

1

𝜈2

𝜕𝑉

𝜕𝑥
𝑔1𝑔

⊤
1

𝜕⊤𝑉

𝜕𝑥
,

(2.41)

and use (2.39) to obtain

𝑑𝑉

𝑑𝑡
≤ 1

2
𝜌2

⃦⃦⃦⃦
𝑢+

1

𝜌2
𝑔⊤2

𝜕⊤𝑉

𝜕𝑥

⃦⃦⃦⃦2

− 1

2
𝜈2

⃦⃦⃦⃦
𝑑− 1

𝜈2
𝑔⊤1

𝜕⊤𝑉

𝜕𝑥

⃦⃦⃦⃦2

− 1

2
𝜌2‖𝑢‖2 + 1

2
𝜈2‖𝑑‖2 − 1

2
‖ℎ‖2.

(2.42)

Now substitute the control law (2.40)

−2
𝑑𝑉

𝑑𝑡
− 𝜈2

⃦⃦⃦⃦
𝑑− 1

𝜈2
𝑔⊤1

𝜕⊤𝑉

𝜕𝑥

⃦⃦⃦⃦2

≤ ‖ℎ‖2 + 𝜌2‖𝑢‖2 − 𝜈2‖𝑑‖2, (2.43)

and integrate both sides from 𝑡 = 0 to 𝑡 = 𝑇 ≥ 0, with initial conditions 𝑥(0) = 𝑥0 to

achieve

∫︁ 𝑇

0

(︀
‖ℎ(𝑡)‖2 + ‖𝜌𝑢(𝑡)‖2

)︀
d𝑡 ≤ 𝜈2

∫︁ 𝑇

0

‖𝑑(𝑡)‖2 d𝑡+ 2(𝑉 (𝑥0)− 𝑉 (𝑥(𝑇 ))). (2.44)

Given that 𝑉 (𝑥) ≥ 0,

∫︁ 𝑇

0

‖𝑧(𝑡)‖2 d𝑡 ≤ 𝜈2

∫︁ 𝑇

0

‖𝑑(𝑡)‖2 d𝑡+ 2(𝑉 (𝑥0)), (2.45)

and, thus, the proof to Theorem 2.8 is complete.
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3 Stewart Platform

This chapter approaches the main mathematical descriptions of the Stewart plat-

form that are necessary in order to develop the control methods that will later be proposed

on Chapter 4. This chapter is organized as follows: first, a geometric description of the

platform used throughout this work will be presented, along with the main constructive

parameters of the manipulator. Next, the inverse kinematics of the system is addressed in

order to present the Jacobian matrix as defined in terms of a quaternion description. In

this same context, the Jacobian singularities are presented to the reader. The dynamics of

the end effector is then described in quaternion terms using the Newton-Euler formulation

and mathematically expressed in two decoupled submodels. Finally, the quaternion-based

Newton-Euler model is validated against the more classical Euler-angle Lagrange model.

3.1 Geometric Description of the Stewart Platform

Consider the Stewart platform from Figure 2. Define three reference systems, a

global inertial frame 𝑂𝐼 , a local reference frame for the bottom platform 𝑂𝐵 and for the

end effector 𝑂𝑇
1. For both local reference frames, the coordinate origins coincide with the

center of mass of the respective bodies.

Figure 2 – The Stewart platform and its reference systems.
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Source: the author (2016).

This manipulator has 𝑖 = (1, . . . , 6) linear actuators, also called legs of the system,

which concede to the platform its six degrees of freedom (DOF). Each joint 𝑏𝑖 and 𝑡𝑖 is a

vertex of an hexagon inscribed in a circle with radius 𝑟𝐵 and 𝑟𝑇 . Furthermore, let angles

1 The subscripts 𝐵 and 𝑇 will be used from now on to denote reference to the bottom and top platforms,
respectively, when regarding the geometric definition of the manipulator.
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𝜙𝐵 and 𝜙𝑇 define the length of each edge of the platform, as Figure 3 shows. Given that

the joints are arranged in pairs, spaced 120∘ apart from each other (MELLO, 2011), 𝜙𝐵

and 𝜙𝑇 also define the spacing between each joint in a pair.

Figure 3 – Geometric parameters of joint placement, with 𝜙 → 𝜙𝑗, with 𝑗 = (𝑇,𝐵).

1

2

0

°

φ

/

2

φ

/

2

X

Y

B,T

B,T

b,t

1

b,t

2

b,t

3

b,t

4

b,t

5

b,t

6

r

B,T

Source: the author (2016).

Furthermore, the joints 𝑏𝑖 and 𝑡𝑖 are geometrically defined by vectors 𝐵𝑖 ∈ R3 and

𝑇𝑖 ∈ R3 for the bottom and top platforms, respectively, regarding each local reference

frame, such as

𝐵𝑖 =

⎡⎢⎣𝑟𝐵 cos(𝜆𝑖)

𝑟𝐵 sin(𝜆𝑖)

0

⎤⎥⎦ , 𝑇𝑖 =

⎡⎢⎣𝑟𝑇 cos(𝜐𝑖)

𝑟𝑇 sin(𝜐𝑖)

0

⎤⎥⎦ , (3.1)

where,

𝜆𝑖 =

⎧⎨⎩
𝑖𝜋

3
− 𝜙𝐵

2
, 𝑖 = (1, 3, 5)

𝜆𝑖−1 − 𝜙𝐵, 𝑖 = (2, 4, 6)

𝜐𝑖 =

⎧⎨⎩
𝑖𝜋

3
− 𝜙𝑇

2
, 𝑖 = (1, 3, 5)

𝜐𝑖−1 − 𝜙𝑇 𝑖 = (2, 4, 6).

(3.2)

Therefore, parameters 𝑟𝐵, 𝑟𝑇 , 𝜙𝐵 and 𝜙𝑇 define the geometric structure of a given

Stewart platform.

Now that the platform is geometrically described, the next section will approach

the inverse kinematics of the system to define a Jacobian matrix, which will allow the

outputs of the later proposed controllers to drive the linear actuators of the manipulator.
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3.2 Quaternion-based Jacobian and Inverse Kinematics

As a standard definition, the Jacobian matrix 𝐽 transforms the linear velocities of

the six actuators 𝑙 ∈ R6 to the linear and angular velocities of the platform, 𝑝̇𝑗 ∈ R3 and

𝜔𝑗 ∈ R3, respectively, with 𝑗 = (𝑇, 𝐵). That is,

𝑙 = 𝐽

⎡⎢⎢⎢⎢⎣
𝑝̇𝑇

𝜔𝑇

𝑝̇𝐵

𝜔𝐵

⎤⎥⎥⎥⎥⎦ , (3.3)

with angular velocities 𝜔𝑇 and 𝜔𝐵 referenced in each local body frame.

Going further, from Figure 4, the vectors 𝑇𝑖 and 𝐵𝑖 are defined from the center of

the top and bottom platforms, to the 𝑖th top and bottom links, relative to the top and

bottom platforms, respectively, and 𝑝𝑇 and 𝑝𝐵 are the position vectors of the platforms.

This allows, thus, Theorem 3.1 to be presented.

Figure 4 – Main vectors of the platform.
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Theorem 3.1. (Jacobian matrix) Consider the Stewart platform and vectors shown on

Figure 4. There exists a Jacobian matrix 𝐽 ∈ R6×12 given by

𝐽 =

⎡⎢⎢⎣
𝑛⊤
1 (𝑆(𝑅𝐼

𝑇𝑇1)𝑛1)
⊤ −𝑛⊤

1 −(𝑆(𝑅𝐼
𝐵𝐵1)𝑛1)

⊤

...
...

...
...

𝑛⊤
6 (𝑆(𝑅𝐼

𝑇𝑇6)𝑛6)
⊤ −𝑛⊤

6 −(𝑆(𝑅𝐼
𝐵𝐵6)𝑛6)

⊤

⎤⎥⎥⎦ , (3.4)

if the relation (3.3) holds true, where

𝑛𝑖 =
𝐿𝑖

‖𝐿𝑖‖
(3.5)
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is an unit vector with the same direction of the 𝑖th leg 𝐿𝑖 (𝑖 = 1 . . . 6) such as

𝐿𝑖 = 𝑅𝐼
𝑇𝑇𝑖 + 𝑝𝑇 − (𝑅𝐼

𝐵𝐵𝑖 + 𝑝𝐵), (3.6)

and 𝑅𝐼
𝑇 and 𝑅𝐼

𝐵 are the rotation matrices regarding the global inertial frame of the plat-

forms, given by

𝑅𝑗(𝜂𝑗, 𝜀𝑗) = 𝐼 + 2𝜂𝑗𝑆(𝜀𝑗) + 2𝑆2(𝜀𝑗), (3.7)

where 𝜂𝑗 and 𝜀𝑗 are the real and imaginary values of q𝑗, 𝑗 = 𝑇, 𝐵. �

Proof. Differentiate both sides of (3.6) relative to time to obtain

𝐿̇𝑖 = 𝑝𝑇 + 𝑆(𝜔𝑇 )(𝑅
𝐼
𝑇𝑇𝑖)− 𝑝𝐵 − 𝑆(𝜔𝐵)(𝑅

𝐼
𝐵𝐵𝑖), (3.8)

and define the velocity vector with the same direction of the 𝑖th leg:

𝑙𝑖 = 𝐿̇𝑖 · 𝑛𝑖. (3.9)

Substitute (3.9) in (3.8) to achieve

𝑙𝑖 = 𝑝𝑇 · 𝑛𝑖 + (𝑆(𝜔𝑇 )(𝑅
𝐼
𝑇𝑇𝑖)) · 𝑛𝑖 − 𝑝𝐵 · 𝑛𝑖 − (𝑆(𝜔𝐵)(𝑅

𝐼
𝐵𝐵𝑖)) · 𝑛𝑖. (3.10)

Using the property that the vector dot product is the same as the product of a

transposed vector, that is,

𝑎 · 𝑏 = 𝑏⊤𝑎,

and the cross product property given by

𝑢 · (𝑆(𝑣)𝑤) = (𝑆(𝑢)𝑣) · 𝑤,

yields

𝑙𝑖 = 𝑛⊤
𝑖 𝑝𝑇 − 𝑛⊤

𝑖 𝑝𝐵 + (𝑆(𝑅𝐼
𝑇𝑇𝑖)𝑛𝑖)

⊤𝜔𝑇 − (𝑆(𝑅𝐼
𝐵𝐵𝑖)𝑛𝑖)

⊤𝜔𝐵. (3.11)

Finally, (3.11) may be rewritten into

𝑙 = 𝐽

⎡⎢⎢⎢⎢⎣
𝑝̇𝑇

𝜔𝑇

𝑝̇𝐵

𝜔𝐵

⎤⎥⎥⎥⎥⎦ , (3.12)

where 𝐽 is the Jacobian matrix from (3.4).
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Corollary. If the global inertial frame coincides with the local reference frame of the

bottom platform of the manipulator, (3.6) is simplified to

𝐿𝑖 = 𝑅𝐼
𝑇𝑇𝑖 + 𝑝𝑇 , (3.13)

and the Jacobian matrix (3.4) is given by

𝐽 =

⎡⎢⎢⎣
𝑛⊤
1 (𝑆(𝑅𝐼

𝑇𝑇1)𝑛1)
⊤

...
...

𝑛⊤
6 (𝑆(𝑅𝐼

𝑇𝑇6)𝑛6)
⊤

⎤⎥⎥⎦ . (3.14)

�

Another important result used in this work is that of Theorem 3.2, which allows

the use of the Jacobian matrix to relate the forces and torques of the platform to the

forces of the six actuators that power the manipulator.

Theorem 3.2. (Actuator linear forces to platform forces and torques relation) If 𝐽 is a

Jacobian matrix, its transpose 𝐽⊤ may also be used to relate the linear forces of the six

actuators 𝑓𝑙 = [𝑓𝑙1 . . . 𝑓𝑙6 ]
⊤ to the forces and torques applied on the top (𝐹𝑇 and 𝜏𝑇 ) and

bottom platforms (𝐹𝐵 and 𝜏𝐵), that is

𝐹 =

⎡⎢⎢⎢⎢⎣
𝐹𝑇

𝜏𝑇

𝐹𝐵

𝜏𝐵

⎤⎥⎥⎥⎥⎦ = 𝐽⊤𝑓𝑙. (3.15)

�

Proof. From the definition of work and power

𝑊 =

∫︁
𝐹⊤ d𝑡,

𝑃 =
𝑑𝑊

𝑑𝑡
∴ 𝑃 = 𝐹⊤𝑣,

where 𝑊 is the work, 𝑃 is the power and 𝑣 is the velocity, consider the following relations:

𝑃 = 𝐹⊤𝑣,

𝑃𝑙 = 𝑓⊤
𝑙 𝑙,

(3.16)
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where 𝑙 is the linear velocities of the six actuators and

𝑣 =

⎡⎢⎢⎢⎢⎣
𝑝̇𝑇

𝜔𝑇

𝑝̇𝐵

𝜔𝐵

⎤⎥⎥⎥⎥⎦ ∈ R12.

From the energy conservation principle, it follows that the resulting power 𝑃 pro-

duced by the forces and torques applied to the platform must equal that of the resulting

power produced by 𝑓𝑙, that is

𝑃 = 𝑃𝑙.

Going further, expand the equations and continue the computation such as

𝐹⊤𝑣 = 𝑓⊤
𝑙 𝑙 ∴

𝐹⊤𝑣 = 𝑓⊤
𝑙 𝐽𝑣 ∴

𝐹⊤ = 𝑓⊤
𝑙 𝐽 ∴

𝐹 = 𝐽⊤𝑓𝑙,

(3.17)

which results in (3.15), and, thus, the proof to Theorem 3.2 is complete.

From the theorems presented in this section, more specifically Theorem 3.2, if

matrix 𝐽−⊤ := (𝐽⊤)−1 is locally pseudo invertible, the output signals of the controllers

presented on Chapter 4 may be successfully transformed in the inputs of the linear actua-

tors that effectively control the platform. In this sense, the attitude of the platform must

be analyzed for singularities, given that in some stances of the manipulator 𝑟𝑎𝑛𝑘(𝐽⊤) < 6,

where six is the number of actuators.

3.2.1 Jacobian Singularities

As briefly introduced in the last section, the Jacobian matrix transpose 𝐽⊤ must

be pseudo2 invertible in order to allow the coupling of the controller signals later presented

in this work. More specifically, 𝑟𝑎𝑛𝑘(𝐽⊤) must be equal to the number of actuators of the

platform and the actuators must not be saturated, else (3.15) does not have a solution.

Physically, the platform loses one or more degrees of freedom when the length of the

actuators reach their maximum or minimum values or when 𝐽 loses rank. There exist

two cases where 𝑟𝑎𝑛𝑘(𝐽⊤) is less than the number of actuators3, namely (GOSSELIN;

ANGELES, 1990):

2 Since 𝐽⊤ ∈ R12×6, a pseudo inverse algorithm must be used to obtain 𝐽−⊤, such as the Moore-Penrose
pseudoinverse computed via singular value decomposition (BARATA; HUSSEIN, 2012).

3 Since 𝐽⊤ is not a square matrix, 𝑟𝑎𝑛𝑘(𝐽⊤) is computed via QR decomposition with column pivoting
(HIGHAM, 2000).
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1. When two or more actuators belong to the same plane or when two or more links

are parallel;

2. When all actuators are parallel to each other, i.e., the platform is non-controllable

given ill-defined structural parameters 𝑟𝑇 = 𝑟𝐵 and 𝜙𝑇 = 𝜙𝐵.

In those cases or when the actuators are saturated, the platform assumes a so-

called singular configuration where the manipulator becomes uncontrollable, and, thus,

must be avoided.

Singular attitude determination of closed-kinematics mechanisms are a research

field on their own. For detection of singularities of the Stewart platform modeled in quater-

nion terms, refer to (CHARTERS; ENGUIÇA; FREITAS, 2009).

3.3 Quaternion-based Dynamic Model

This section aims to provide the necessary mathematical description of the dy-

namics of the Stewart platform, which will then later be used on Chapter 4. While many

works (GARCÍA, 2015) (MELLO, 2011) use the Lagrange formulation for modeling the

dynamics of this system, it is inherently complex to compute the matrices that describe

such dynamics. Some other works use the Newton-Euler formulation, which is easier to

compute in itself, but using regular Euler angles (LEE et al., 2003).

This work uses, thus, a different approach, namely a Newton-Euler formulation in

quaternion form. Such use of quaternions simplify the controller design for this system,

mainly when describing Lyapunov candidate functions, given the properties of an attitude

quaternion as presented on Section 2.1.2. This enables one to design different simple

controllers for each submodel, one for the translational dynamics and another for the

rotational dynamics, which may later be combined in a single control signal using the

Jacobian matrix.

3.3.1 Quaternion-based Newton-Euler Model

The Stewart platform, when its corresponding description is mathematically cou-

pled, is a nonlinear system that is usually modeled using the Lagrange or Newton-Euler

formulation, being the latter used in this work. The main goal of this section is to present

a decoupled mathematical model for the Stewart platform using quaternions, in such form

that the translational dynamics of the manipulator are represented by a linear system and

the rotational dynamics by a nonlinear system.

For this purpose, the classic description of a generic 3D rigid body with respect

to a coordinate frame whose origin coincides with the center of mass of the body will be
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used. Consider, thus, the Newton-Euler equations that represent the upper platform (end

effector) given by

𝜏 = 𝐼𝑚𝜔̇ + 𝑆(𝜔)𝐼𝑚𝜔,

𝐹 = 𝑚𝑣̇,
(3.18)

where 𝜏 ∈ R3 is the torque vector, 𝐼𝑚 ∈ R3×3 is the inertia tensor and 𝜔 ∈ R3 is the

angular velocity vector, all represented in the local body frame of the upper platform. In

addition, 𝐹 ∈ R3 is the force vector and 𝑣 ∈ R3 is the linear velocity vector, where these

last two are represented in the global inertial frame, and 𝑚 is the body mass of the end

effector, whose center of mass is described by point 𝑂𝑇 in Figure 2. The term 𝑆(𝜔)𝐼𝑚𝜔

represents the gyroscopic effect on the platform.

In order to relate the dynamics of the velocities, position and orientation of the

upper platform, the mapping

𝑞 = 1
2

[︃
−𝜀⊤

𝜂𝐼 + 𝑆(𝜀)

]︃
𝜔,

𝑝̇ = 𝑣,

(3.19)

may be used (XU; MANDIC, 2014), where 𝑞 =
[︁
𝜂 𝜀⊤

]︁⊤
∈ R4 is the body orientation

unit quaternion (with scalar and vector parts 𝜂 ∈ R, 𝜀 ∈ R3) and 𝑝 =
[︁
𝑝𝑥 𝑝𝑦 𝑝𝑧

]︁⊤
∈ R3

is the position vector of the end effector regarding the global inertial frame, with 𝑝𝑥, 𝑝𝑦

and 𝑝𝑧 related to the 𝑥-, 𝑦- and 𝑧-axis respectively.

Add the gravity force on the system and the complete dynamics of the upper

platform can then be expressed by

𝑥̇ =

⎡⎢⎢⎢⎢⎣
𝑞

𝑤̇

𝑝̇

𝑣̇

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1
2

[︃
−𝜀⊤

𝜂𝐼 + 𝑆(𝜀)

]︃
𝜔

𝐼𝑚
−1(𝑢𝜏 + 𝜏𝑒𝑥𝑡 − 𝑆(𝜔)𝐼𝑚𝜔)

𝑣

𝑚−1(𝑢̄𝐹 + 𝐹𝑒𝑥𝑡) + 𝑔

⎤⎥⎥⎥⎥⎥⎥⎦ ,
(3.20)

where 𝑢𝜏 ∈ R3 and 𝜏𝑒𝑥𝑡 ∈ R3 are the input and perturbation torques referenced on the

local body frame, 𝑢̄𝐹 ∈ R3 and 𝐹𝑒𝑥𝑡 ∈ R3 are the input and perturbation forces referenced

on the global inertial frame and 𝑔 is the gravity vector.

In this work, 𝐼𝑚 and 𝑚 are assumed constant in the dynamic models so that

variations on their values are treated as perturbations. Actuator dynamics are also con-
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sidered4 as perturbations. Therefore, external perturbations represent some important

disturbances that the platform is subject to, such as: mass increase and center of mass

shift in load conditions, external forces and torques applied directly on the base and top

platforms, unmodelled elements and uncertain parameters. In addition, it is assumed that

the actuators do not saturate.

From (3.20), two systems may defined: a linear translational model 𝑆1 and a non-

linear rotational model 𝑆2 as follows:

𝑆1 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣𝑝̇
𝑣̇

⎤⎦ =

⎡⎣0 𝐼

0 0

⎤⎦⎡⎣𝑝
𝑣

⎤⎦+

⎡⎣ 0

𝑚−1𝐼

⎤⎦𝑢𝐹 +

⎡⎣ 0

𝑚−1𝐼

⎤⎦𝐹𝑒𝑥𝑡

𝑥1 =

⎡⎣𝑝
𝑣

⎤⎦
, (3.21)

where 𝑢𝐹 = 𝑢̄𝐹 − 𝑔 and

𝑆2 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣𝑞

𝜔̇

⎤⎦ =

⎡⎢⎢⎢⎣
1
2

⎡⎣ −𝜀⊤

𝜂𝐼 + 𝑆(𝜀)

⎤⎦𝜔

−𝐼𝑚
−1𝑆(𝜔)𝐼𝑚𝜔

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0

0

𝐼−1
𝑚

⎤⎥⎥⎥⎦ 𝜏𝑒𝑥𝑡 +

⎡⎢⎢⎢⎣
0

0

𝐼−1
𝑚

⎤⎥⎥⎥⎦𝑢𝜏 ,

𝑥2 =

⎡⎣𝑞

𝜔

⎤⎦
. (3.22)

The choices made in this work, namely the reference frames for each parameter,

the decoupled equations presented on (3.21) – (3.22) and the use of quaternions are key

to obtaining a simple control solution for the platform, later presented on Chapter 4.

3.3.2 Validating the Quaternion-based Dynamic Model

For comparison purposes, the quaternion-based dynamic model presented on Sec-

tion 3.3.1 will be validated against the more common Lagrange formulation, as to confirm

that it is a valid description of the platform. In order to do that, consider the Lagrange

dynamic equation of the platform described in Euler angles (KIM; KANG; LEE, 2000):

𝑀(𝑥)𝑥̈+ 𝑉 (𝑥, 𝑥̇)𝑥̇+𝐺 =

[︃
𝐹𝑗

𝜏𝑗

]︃
, (3.23)

4 This assumption was made given that the bandwidth of the closed-loop system is generally significantly
smaller than that of the actuators. Furthermore, this work provides a general control solution for the
Stewart platform, regardless of the chosen actuator solution.
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with 𝑗 = (𝑇,𝐵), where 𝑀(𝑥) ∈ R6×6 is the inertia matrix, 𝑉 (𝑥, 𝑥̇) ∈ R6×6 is the Coriolis

matrix and 𝐺 ∈ R6×1 is the gravity matrix, with

𝑀(𝑥) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 0 0 0 0 0

0 𝑚 0 0 0 0

0 0 𝑚 0 0 0

0 0 0 𝐼𝑥𝐶
2
𝛽𝐶

2
𝛾 + 𝐼𝑦𝐶

2
𝛽𝑆

2
𝛾 + 𝐼𝑧𝑆

2
𝛽 (𝐼𝑥 − 𝐼𝑦)𝐶𝛽𝐶𝛾𝑆𝛾 𝐼𝑧𝑆𝛽

0 0 0 (𝐼𝑥 − 𝐼𝑦)𝐶𝛽𝐶𝛾𝑆𝛾 𝐼𝑥𝑆
2
𝛾 + 𝐼𝑦𝐶

2
𝛾 0

0 0 0 𝐼𝑧𝑆𝛽 0 𝐼𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.24)

𝑉 (𝑥, 𝑥̇) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 𝐾1𝛽̇ +𝐾2𝛾̇ 𝐾1𝛼̇ +𝐾5𝛽̇ +𝐾3𝛾̇ 𝐾2𝛼̇ +𝐾3𝛽̇

0 0 0 −𝐾1𝛼̇ +𝐾3𝛾̇ 𝐾4𝛾̇ 𝐾3𝛼̇ +𝐾4𝛽̇

0 0 0 −𝐾2𝛼̇−𝐾3𝛽̇ −𝐾3𝛼̇−𝐾4𝛽̇ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.25)

𝐺 =
[︁
0 0 𝑚𝑔 0 0 0

]︁⊤
. (3.26)

In addition, the operators 𝐶 and 𝑆 denote the cosine and sine functions of the

variable subscripted, the variables 𝐾𝑖 (i = 1, . . . , 5) are defined by

𝐾1 = −𝐶𝛽𝑆𝛽(𝐶
2
𝛾𝐼𝑥 + 𝑆2

𝛾𝐼𝑦 − 𝐼𝑧),

𝐾2 = −𝐶2
𝛽𝐶𝛾𝑆𝛾(𝐼𝑥 − 𝐼𝑦),

𝐾3 =
1

2
𝐶𝛽(𝐶𝛾 − 𝑆𝛾)(𝐶𝛾 + 𝑆𝛾)(𝐼𝑥 − 𝐼𝑦),

𝐾4 = 𝐶𝛾𝑆𝛾(𝐼𝑥 − 𝐼𝑦),

𝐾5 = −𝐶𝛾𝑆𝛾𝑆𝛽(𝐼𝑥 − 𝐼𝑦),

(3.27)

and the scalars 𝐼𝑥, 𝐼𝑦, 𝐼𝑧 are obtained from the inertia matrix 𝐼𝑚 as follows

𝐼𝑚 =

⎡⎢⎣𝐼𝑥 0 0

0 𝐼𝑦 0

0 0 𝐼𝑧

⎤⎥⎦ . (3.28)

Both mathematical models were simulated with the scenario as follows. A sinu-

soidal torque of the form 𝐴1 sin(𝜎𝑐𝑡) was applied on every axis, i.e. 𝛼, 𝛽 and 𝛾, and a

sinusoidal force of the form 𝐴2 sin(𝜎𝑐𝑡) on the z-axis of the bottom platform, 𝐴1 and

𝐴2 ∈ R. For reference, the default values were 𝐴1 =
1
3
, 𝐴2 = 5 and 𝜎𝑐 = 0.2Hz.
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For a more objective approach, the mean square error (MSE) was calculated on

both the motion and attitude errors as simulated, such as

MSE =
1

𝑛

𝑛∑︁
𝑖=1

(‖𝑣𝑄𝑖
‖ − ‖𝑣𝐿𝑖

‖)2 ,

where 𝑖 = 𝑠𝑖𝑧𝑒(𝑣𝑄) = 𝑠𝑖𝑧𝑒(𝑣𝐿) is the number of samples considered and 𝑣𝑄, 𝑣𝐿 are the

considered vectors for the quaternion-based and Lagrange-based models, respectively, e.g.

the motion and attitude errors to the reference stance.

The resulting MSE was numerically null for sample values truncated after the

seventh decimal point, which validates the quaternion-based Newton-Euler model as a

valid alternative for describing the Stewart platform.
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4 Proposed Control Methods

In this chapter, the proposed control methods are presented to the reader. The

first topic is the suggested controller for the translational submodel, which starts by

augmenting such model with resonant and integral action states. Next, a state-feedback

law is designed to control this augmented translational system via an optimization problem

subject to LMIs and performance criteria, namely ℋ∞ gain minimization and 𝒟-stability

concepts. Going further, a nonlinear state-feedback control law for the rotational submodel

is designed to achieve ℒ2 gain performance. The resulting closed-loop system is then

linearized and augmented with resonant and integral states. It is subsequently subject to

another control law defined via an optimization problem subject to LMIs and 𝒟-stability

criteria.

Next, instead of using the Jacobian matrix inside the computation of the control

law that will be applied on the platform, the proposed approach effectively defers the use of

such matrix to the very last computational step, while also leveraging the signal coupling

characteristic that is inherent to it. The coupling of the control signals of both controllers

is, thus, addressed via the Jacobian presented earlier on Chapter 3. For reference, consider

Figure 5, which illustrates the control loop.

Figure 5 – Proposed control loop.

Controller Stewart
ref  (t) err (t) z1 (t), z2 (t)

Fext (t), τext (t)

+

-

J
-T

(t)

uF (t)

uτ (t)
fl (t)

Source: the author (2016).

Finally, an inverse dynamics controller is described in order to allow comparisons

of the controller suggested in this work to be drawn against control methods proposed in

other works.
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4.1 Translational Control

This section aims to provide a clear understanding on the developed dynamic

translation controller applied on the Stewart platform.

As the reader can notice from the submodels that arose from decoupling the sys-

tem, the translational portion of the model is linear. Therefore, all the classic theories

of linear control design can be applied on this submodel of the platform, namely, in

this particular work, a mixed dynamic controller with resonant states based on the IMP

with integral action, ℋ∞ gain minimization and region-based eigenvalue placement with

𝒟-stability. To allow for a systematic method for designing the control parameters, an

optimization problem subject to Linear Matrix Inequalities is defined.

The first step to achieve this design is to describe an augmented model which

encompasses the desired resonant and integral-action states to be added on the original

system. These additions will guarantee both rejection to sinusoidal perturbations and DC

component removal of the motion error, respectively. The next step is to define a set

of constraints for an LMI-based optimization problem that minimizes the ℋ∞ gain to

the external perturbation and places the closed-loop eigenvalues of the system inside a

subregion 𝒟 of the negative complex plane.

4.1.1 Augmented Model

The main goal of the translation control, beyond the necessary condition of closed-

loop stability, is to reject external sinusoidal perturbations included in the external distur-

bance 𝐹𝑒𝑥𝑡. This perturbation can have known frequencies, e.g. from ocean waves, which

are no higher than 0.2Hz on oceans near Brazil (MELLO, 2011), known dynamics, e.g.

gravity, or unknown dynamics, such as model uncertainties, wind, load conditions on the

platform, and so forth. So as to tackle the first case presented, the use of a resonant

controller, which is based on the IMP, is the starting point of the proposed design.

4.1.1.1 Resonant Controller

Recall the translation submodel 𝑆1, which represents the dynamics around the

equilibrium point (𝑝 = 0, 𝑣 = 0)1 regarding only the cartesian position 𝑝 and linear

velocities 𝑣 of the platform, but with an output function 𝑧1, such as

𝑆1 :=

⎧⎨⎩𝑥̇1(𝑡) = 𝐴𝑥1(𝑡) +𝐵𝑢𝑢𝐹 (𝑡) +𝐵𝜑𝐹𝑒𝑥𝑡(𝑡)

𝑧1(𝑡) = 𝐶𝑥1(𝑡)
, (4.1)

1 0 is the appropriately sized zero-filled matrix or vector.
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where 𝑥1(𝑡) =
[︁
𝑝(𝑡)⊤ 𝑣(𝑡)⊤

]︁⊤
∈ R6 is the state vector for the translation of the platform

and the matrices

𝐴 =

[︃
0 𝐼

0 0

]︃
∈ R6×6, 𝐵𝑢 = 𝐵𝜑 =

[︃
0

𝑚−1𝐼

]︃
∈ R6×3 (4.2)

represent the state (or system) matrix and the input matrices, respectively. The state

vector 𝑥1 represents the deviation from the equilibrium point, with 𝑢𝐹 = 𝑢̄𝐹 − 𝑔.

Assume that all states are available to the controller, with 𝐶 = I ∈ R6×6 and that

𝑆1 is also controllable under sustained perturbation 𝐹𝑒𝑥𝑡. The state output vector 𝐶 is of

the form

𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶𝑥

𝐶𝑦

𝐶𝑧

𝐶𝑤𝑥

𝐶𝑤𝑦

𝐶𝑤𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R6×6, 𝐶𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

, 𝐶𝑦 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

, . . . , 𝐶𝑤𝑧 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

, (4.3)

where 𝐶𝑥 to 𝐶𝑤𝑧 represent the single state output vectors for each state.

It is well known from the IMP, presented on Section 2.2.1, that a perturbation

signal can be asymptotically rejected if its dynamics are reproduced by the states of

the controller. If the periodic perturbation applied to the system is a sinusoidal signal

of fundamental frequency 𝜎𝑟, the control loop must include additional resonant states

𝑥𝑟 ∈ R2 in the form of

𝑥̇𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) +𝐵𝑟𝑒𝑟(𝑡),

𝑦𝑟(𝑡) = 𝑥𝑟(𝑡),
(4.4)

where 𝑒𝑟(𝑡) ∈ R is the motion error, i.e., 𝑟𝑥−𝑝𝑥 for the state regarding the 𝑥 axis, 𝑟𝑥(𝑡) ∈ R
being the reference,

𝐴𝑟 =

[︃
0 1

−(ℎ𝜎𝑟)
2 0

]︃
, 𝐵𝑟 =

[︃
0

1

]︃
, (4.5)

and ℎ representing the ℎ𝑡ℎ harmonic, with ℎ = 1 for the fundamental frequency and

ℎ > 1 ∈ N for the harmonics.

4.1.1.2 FFT Analysis

Even though the translational submodel 𝑆1 of the top platform is by itself linear,

the perturbations applied on the bottom platform in the form of prescribed movements
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are defined on the global inertial frame, i.e. instead of the reference frames used on the

translational model, and must propagate through the entire nonlinear structure of the

complete coupled system consisting of the bottom and top platforms. This process is done

by applying rotations and translations on the end effector, so as to correctly represent the

movement of the bottom platform onto the upper one, as seen on Figure 6.

Figure 6 – The Stewart platform simulated with the necessary rotations applied.

Source: the author (2016).

Given that it is nonlinear, this process of applying transformations on the various

reference frames can, thus, generate harmonics on the translation of the top platform.

A Fourier analysis of the system output should be performed, as this will enable the

appropriate tuning of the right harmonics to include on the resonant controller.

To illustrate the phenomenon, consider the scenario used on Section 3.3.2. Let 𝑒1,

𝑒2 and 𝑒3 be the position errors relative to 𝑝 =
[︁
𝑝𝑥 𝑝𝑦 𝑝𝑧

]︁⊤
and the reference stance.

The resulting movement of the upper platform is presented on Figure 7.

While the motion errors of the 𝑥 and 𝑦-axis visually maintain the same frequency

of the torques applied on the bottom frame, the 𝑧-axis error presents a higher order

harmonic on its output, along with a DC signal. The resulting two-sided power spectrum

(2SPS) of a Discrete Fast Fourier Transform, with sampling frequency of 𝑓𝑠 = 100Hz, of

the motion error on the top platform is obtained as presented of Figure 8. The remaining

harmonics of the open loop system are negligible when compared to the first and second

harmonics, and, thus not shown.

As it is clear to see, both the fundamental frequency and the second harmonic

of the 𝑧-axis motion error possess a high amplitude and should be attenuated. The re-

maining errors from axis 𝑥 and 𝑦 concentrate themselves on the fundamental frequency.

Higher harmonics are found to not significantly impact the performance of the system so
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Figure 7 – Motion error of the top platform when subject to torques and forces applied
on the bottom frame.
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Figure 8 – 2SPS of the motion error shown on Figure 7.
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as to require adding additional states to the controller. Nevertheless, such higher-order

harmonics will be attenuated by the ℋ∞ controller.

For the purposes of this work, both the fundamental frequency and the second

harmonic of all three axis will be attenuated. Define, thus, matrices 𝐴𝑟 and 𝐴ℎ with ℎ = 1

and ℎ = 2 respectively

𝐴𝑟 =

[︃
0 1

−(𝜎𝑟)
2 0

]︃
, 𝐴ℎ =

[︃
0 1

−(2𝜎𝑟)
2 0

]︃
, (4.6)

which represent the fundamental frequency and its second harmonic to be attenuated.

Since the platform has 3 axis of linear movement and the resonant controller has 2 states

for each frequency to be rejected, i.e. 𝜎𝑟 and 2𝜎𝑟, at each axis, twelve states have to be

introduced in the control loop, or rather, in the augmented model of the system.
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4.1.1.3 Complete Augmented Model

In order to deal with unknown load conditions, e.g. increment of mass on top of

the platform, model uncertainties, e.g. mass variations between the mathematical and

physical systems, and to remove DC components of the motion error as seen on Figure 8,

three extra states are introduced in the controller. Namely, integrator states in the form

𝑥̇𝐼(𝑡) = 𝑒(𝑡), 𝑦𝐼(𝑡) = 𝑥𝐼(𝑡), one for each linear axis.

To better define the proposed control loop, consider an augmented system 𝑆𝑎 in the

form of (4.1), where the matrices and vectors denoted with subscript 𝑎 are the equivalent

augmented counterparts of (4.2) given by

𝐴𝑎 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴 0 0 0 0 0 0 0

−𝐵𝑟𝐶𝑥 𝐴𝑟 0 0 0 0 0 0

−𝐵𝑟𝐶𝑥 0 𝐴ℎ 0 0 0 0 0

−𝐵𝑟𝐶𝑦 0 0 𝐴𝑟 0 0 0 0

−𝐵𝑟𝐶𝑦 0 0 0 𝐴ℎ 0 0 0

−𝐵𝑟𝐶𝑧 0 0 0 0 𝐴𝑟 0 0

−𝐵𝑟𝐶𝑧 0 0 0 0 0 𝐴ℎ 0

−𝐶𝑥 0 0 0 0 0 0 0

−𝐶𝑦 0 0 0 0 0 0 0

−𝐶𝑧 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

𝐵𝑢,𝑎 =
[︁
𝐵⊤

𝑢 0
]︁⊤

, 𝐵𝜑,𝑎 =
[︁
𝐵⊤

𝜑 0
]︁⊤

,

(4.7)

such that 𝑥𝑎(𝑡) ∈ R21 encompasses the plant and controller states, 𝐴𝑎 ∈ R21×21, 𝐵𝑢,𝑎 ∈
R21×3, 𝐵𝜑,𝑎 ∈ R21×3. That is,

𝑆𝑎 :=

⎧⎨⎩𝑥̇𝑎(𝑡) = 𝐴𝑎𝑥𝑎(𝑡) +𝐵𝑢,𝑎𝑢𝐹 (𝑡) +𝐵𝜑,𝑎𝐹𝑒𝑥𝑡(𝑡),

𝑧1(𝑡) = 𝐶𝑎𝑥𝑎(𝑡),
(4.8)

with 𝐶𝑎 = I ∈ R21×21.

4.1.2 Optimization Subject to LMI constraints

The proposed augmented model has notable sinusoidal perturbation rejection char-

acteristics, but it does not stabilize the system nor rejects unknown disturbia, since

the augmented model is still open-loop. To that extent, a state feedback in the form

of 𝑢𝐹 = 𝐾𝑥𝑎 is proposed in order to guarantee closed-loop stability of 𝑆𝑎, while also

meeting additional performance criteria such as region-based eigenvalue placement and

ℋ∞ gain minimization.
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The main goal of this section is to present an optimization problem subject to

constraints in the form of LMIs to systematically design the proposed controller for the

translational augmented submodel of the Stewart platform presented on (4.8). In this

sense, consider the stabilization task as defined in Problem 4.1, together with additional

performance criteria.

Problem 4.1. Design a feedback gain 𝐾 such that

𝑥̇𝑎 = A𝑥𝑎, (4.9)

for A = (𝐴𝑎 + 𝐵𝑢,𝑎𝐾), is asymptotically stable and satisfy the following performance

criteria:

PC1. Place the closed loop eigenvalues 𝜆𝑎 of A inside a stable subregion of the complex

plane

𝒟 = 𝒟𝑐 ∩ 𝒟𝑝 (4.10)

composed by the intersection of a circular region 𝒟𝑐 centered at −𝑐 < 0 with radius

𝑟 and the plane 𝒟𝑝 := {𝜆𝑎 ∈ C | ℜ(𝜆𝑎) < −𝜉 < 0}.

PC2. Minimize the ℋ∞ gain of the unknown perturbation 𝐹𝑒𝑥𝑡 to the output 𝑧1, i.e.,

minimize

𝜇̄ = sup
‖𝐹𝑒𝑥𝑡‖ℋ∞ ̸=0

‖𝑧1(𝑡)‖ℋ∞

‖𝐹𝑒𝑥𝑡(𝑡)‖ℋ∞

=

⎯⎸⎸⎸⎸⎸⎷
∞∫︀
0

𝑧⊤1 (𝑡)𝑧1(𝑡)𝑑𝑡

∞∫︀
0

𝐹𝑒𝑥𝑡(𝑡)⊤𝐹𝑒𝑥𝑡(𝑡)𝑑𝑡

. (4.11)

The solution of Problem 4.1 subject to the performance criteria PC1 and PC2 is

presented in Theorem 4.1.

Theorem 4.1. Consider the linear augmented system 𝑆𝑎 and given constant matrices 𝐿

and 𝑀 . If there are matrices 𝑃 = 𝑃⊤ = 𝑄−1 > 0 and 𝑌 with appropriate dimensions and

a positive scalar 𝜇 > 0 subject to the following constraints2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐿⊗𝑄+𝑀 ⊗ Γ(𝑄, 𝑌 ) +𝑀⊤ ⊗ Γ(𝑄, 𝑌 )⊤ < 0,

⎡⎢⎢⎢⎣
Γ(𝑄, 𝑌 ) + Γ(𝑄, 𝑌 )⊤ ⋆ ⋆

𝐵⊤
𝜑,𝑎 −𝜇2𝐼 ⋆

𝐶𝑎𝑄 0 −I

⎤⎥⎥⎥⎦ < 0,

(4.12)

2 I denotes the appropriately sized identity matrix.



Chapter 4. Proposed Control Methods 53

with Γ(𝑄, 𝑌 ) = (𝐴𝑎𝑄+𝐵𝑢,𝑎𝑌 ), then the control law

𝑢𝐹 = 𝐾𝑥𝑎 (4.13)

with 𝐾 = 𝑌 𝑄−1 solves Problem 4.1 and satisfies PC1. Furthermore, if the above inequal-

ities are satisfied while minimizing 𝜇, PC2 is also satisfied. �

Proof. The first step in this particular design makes use of the 𝒟-stability concept, which

seeks to guarantee asymptotic stability of the unperturbed system and to place the eigen-

values within a desired region 𝒟, all with respect to the closed-loop system.

To establish the desired boundaries within which the eigenvalues 𝜆𝑎 will be placed,

let matrices 𝐿 and 𝑀 (from Definition 2.11) be described in terms of the intersection of

regions 𝒟𝑐 and 𝒟𝑝 so that 𝒟 = 𝒟𝑐 ∩ 𝒟𝑝, with

𝐿 =

[︃
𝐿𝑐 0

0 𝐿𝑝

]︃
and 𝑀 =

[︃
𝑀𝑐 0

0 𝑀𝑝

]︃
, (4.14)

where 𝒟𝑐 is a circular region in the complex plane with radius 𝑟 centered at −𝑐 < 0,

described by

𝐿𝑐 =

[︃
−𝑟 𝑐

𝑐 −𝑟

]︃
and 𝑀𝑐 =

[︃
0 1

0 0

]︃
, (4.15)

and 𝒟𝑝 := {𝜆𝑎 ∈ C | ℜ(𝜆𝑎) < −𝜉 < 0} is a plane described by

𝐿𝑝 = 2𝜉 and 𝑀𝑝 = 1. (4.16)

Consider the D-stability equation from Theorem 2.4 in a closed-loop scenario, with

control law 𝑢𝐹 = 𝐾𝑥𝑎 and 𝐾 = 𝑌 𝑄−1 so that

𝐿⊗𝑄+𝑀 ⊗ Γ(𝑄, 𝑌 ) +𝑀⊤ ⊗ Γ(𝑄, 𝑌 )⊤ < 0, (4.17)

with Γ(𝑄, 𝑌 ) = (𝐴𝑎𝑄 + 𝐵𝑢,𝑎𝑌 ). The state-feedback control gain 𝐾 = 𝑌 𝑄−1 is obtained

by solving for 𝑄 and 𝑌 , given the constraints presented.

While the𝒟-stability criterion is capable of stabilizing the system, further unknown

perturbations may still affect negatively the motion error. The second step is to design a

controller that aims at minimizing the ℋ∞ gain of the unknown perturbation 𝐹𝑒𝑥𝑡 to the

output 𝑧1. To that extent, assume the Lyapunov candidate function

𝑉 (𝑥𝑎) = 𝑥⊤
𝑎 𝑃𝑥𝑎. (4.18)
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From the standard Lyapunov theory, the system is globally asymptotically stable

if ⎧⎨⎩𝑉 (𝑥𝑎) > 0 (a)

𝑉̇ (𝑥𝑎) + 𝑧⊤1 𝑧1 − 𝜇2𝐹⊤
𝑒𝑥𝑡𝐹𝑒𝑥𝑡 < 0 (b)

(4.19)

holds true. From (4.18) and (4.19.a), the Lyapunov candidate function is positive definite

if the optimization variable 𝑃 > 0.

Rearrange (4.19.b) to

𝑉̇ (𝑥𝑎) < −𝑧⊤1 𝑧1 + 𝜇2𝐹⊤
𝑒𝑥𝑡𝐹𝑒𝑥𝑡 (4.20)

and integrate both sides of the equation on the temporal variable 𝑡 with limits [0,∞):

lim
𝑡→∞

𝑉 (𝑥𝑎(𝑡))− 𝑉 (𝑥𝑎(0)) < −
∞∫︁
0

𝑧⊤1 (𝑡)𝑧1(𝑡) d𝑡+ 𝜇2

∞∫︁
0

𝐹⊤
𝑒𝑥𝑡(𝑡)𝐹𝑒𝑥𝑡(𝑡) d𝑡. (4.21)

Given that the system is stabilized via 𝒟-stability, i.e.

lim
𝑡→∞

𝑉 (𝑥𝑎(𝑡)) = 0. (4.22)

and that 𝑉 (𝑥𝑎(0)) > 0 by definition, (4.21) becomes

0 < −
∞∫︁
0

𝑧⊤1 (𝑡)𝑧1(𝑡) d𝑡+ 𝜇2

∞∫︁
0

𝐹⊤
𝑒𝑥𝑡(𝑡)𝐹𝑒𝑥𝑡(𝑡) d𝑡. (4.23)

Let the ℋ∞ gain be as defined by

‖ℋ(𝑠)‖∞ = sup
‖𝐹𝑒𝑥𝑡(𝑡)‖ℋ∞ ̸=0

‖𝑧1(𝑡)‖ℋ∞

‖𝐹𝑒𝑥𝑡(𝑡)‖ℋ∞

. (4.24)

This gain represents the maximum gain, at any frequency, that the perturbation

will affect the output of the system and should, thus, be minimized.

For a sub-optimal solution, define 𝜇 such that 𝜇 > ‖ℋ(𝑠)‖∞. Then,

𝜇 >
‖𝑧1(𝑡)‖ℋ∞

‖𝐹𝑒𝑥𝑡(𝑡)‖ℋ∞
=

⎯⎸⎸⎷ ∞∫︀
0

𝑧⊤1 (𝑡)𝑧1(𝑡) d𝑡

∞∫︀
0

𝐹⊤
𝑒𝑥𝑡(𝑡)𝐹𝑒𝑥𝑡(𝑡) d𝑡

. (4.25)

By minimizing 𝜇 one is also minimizing the ℋ∞ gain from 𝐹𝑒𝑥𝑡 to 𝑧1, given that

rearranging (4.23) implies (4.25).
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Consider now the complete closed-loop augmented system

𝑆𝑎 :=

⎧⎨⎩𝑥̇𝑎(𝑡) = (𝐴𝑎 +𝐵𝑢,𝑎𝐾)𝑥𝑎(𝑡) +𝐵𝜑,𝑎𝐹𝑒𝑥𝑡(𝑡)

𝑧1(𝑡) = (𝐶𝑎 +𝐷𝑢,𝑎𝐾)𝑥𝑎 +𝐷𝜑,𝑎𝐹𝑒𝑥𝑡.
(4.26)

Rearrange (4.19.b) to closed-loop form

((𝐴𝑎 +𝐵𝑢,𝑎𝐾)𝑥𝑎 +𝐵𝜑,𝑎𝐹𝑒𝑥𝑡)
⊤𝑃𝑥𝑎

+𝑥⊤
𝑎 𝑃 ((𝐴𝑎 +𝐵𝑢,𝑎𝐾)𝑥𝑎 +𝐵𝜑,𝑎𝐹𝑒𝑥𝑡)

+((𝐶𝑎 +𝐷𝑢,𝑎𝐾)𝑥𝑎 +𝐷𝜑,𝑎𝐹𝑒𝑥𝑡)
⊤((𝐶𝑎 +𝐷𝑢,𝑎𝐾)𝑥𝑎 +𝐷𝜑𝐹𝑒𝑥𝑡)

−𝜇2𝐹⊤
𝑒𝑥𝑡𝐹𝑒𝑥𝑡 < 0,

(4.27)

and rewrite (4.27) into the quadratic form

[︃
𝑥⊤
𝑎

𝐹⊤
𝑒𝑥𝑡

]︃[︃
𝑎11 𝑎12

𝑎21 𝑎22

]︃ [︁
𝑥𝑎 𝐹𝑒𝑥𝑡

]︁
< 0. (4.28)

This allows for a more concise approach of determining the necessary inequalities

for the optimization problem, given that (4.28) is in the quadratic form. The only condition

thus needed to satisfy (4.19.b) is

[︃
𝑎11 𝑎12

𝑎21 𝑎22

]︃
< 0, (4.29)

where

𝑎11 = (𝐴𝑎 +𝐵𝑢,𝑎𝐾)⊤𝑃 + 𝑃 (𝐴𝑎 +𝐵𝑢,𝑎𝐾)

+(𝐶𝑎 +𝐷𝑢,𝑎𝐾)⊤(𝐶𝑎 +𝐷𝑢,𝑎𝐾)

𝑎12 = 𝑃𝐵𝜑,𝑎 + (𝐶𝑎 +𝐷𝑢,𝑎𝐾)⊤𝐷𝜑,𝑎

𝑎21 = 𝐵⊤
𝜑,𝑎𝑃 +𝐷⊤

𝜑,𝑎(𝐶𝑎 +𝐷𝑢,𝑎𝐾)

𝑎22 = 𝐷⊤
𝜑,𝑎𝐷𝜑,𝑎 − 𝜇2𝐼.

(4.30)
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Since the only condition needed is (4.29), rewrite it as a sum of two matrices

[︃
(𝐴𝑎 +𝐵𝑢,𝑎𝐾)⊤𝑃 + 𝑃 (𝐴𝑎 +𝐵𝑢,𝑎𝐾) 𝑃𝐵𝜑,𝑎

𝐵⊤
𝜑,𝑎𝑃 −𝜇2𝐼

]︃

+

[︃
(𝐶𝑎 +𝐷𝑢,𝑎𝐾)⊤(𝐶𝑎 +𝐷𝑢,𝑎𝐾) (𝐶𝑎 +𝐷𝑢,𝑎𝐾)⊤𝐷𝜑,𝑎

𝐷⊤
𝜑,𝑎(𝐶𝑎 +𝐷𝑢,𝑎𝐾) 𝐷⊤

𝜑,𝑎𝐷𝜑,𝑎

]︃
< 0,

(4.31)

and apply a congruence transformation to obtain

[︃
(𝐴𝑎 +𝐵𝑢,𝑎𝐾)⊤𝑃 + 𝑃 (𝐴𝑎 +𝐵𝑢,𝑎𝐾) 𝑃𝐵𝜑,𝑎

𝐵⊤
𝜑,𝑎𝑃 −𝜇2𝐼

]︃

−

[︃
(𝐶𝑎 +𝐷𝑢,𝑎𝐾)⊤

𝐷⊤
𝜑,𝑎

]︃
(−𝐼−1)

[︁
(𝐶𝑎 +𝐷𝑢,𝑎𝐾) 𝐷𝜑,𝑎

]︁
< 0.

(4.32)

Now that the matrices are in a proper formulation for this, apply the Schur com-

plement on (4.32) to result in

⎡⎢⎣(𝐴𝑎 +𝐵𝑢,𝑎𝐾)⊤𝑃 + 𝑃 (𝐴𝑎 +𝐵𝑢,𝑎𝐾) 𝑃𝐵𝜑,𝑎 (𝐶𝑎 +𝐷𝑢,𝑎𝐾)⊤

𝐵⊤
𝜑,𝑎𝑃 −𝜇2𝐼 𝐷⊤

𝜑,𝑎

(𝐶𝑎 +𝐷𝑢,𝑎𝐾) 𝐷𝜑,𝑎 −𝐼−1

⎤⎥⎦ < 0. (4.33)

Since in the original augmented system the inputs do not directly influence the

outputs, i.e. 𝐷𝑢,𝑎 = 𝐷𝜑,𝑎 = 0 ∈ R21×3, define those matrices as zero and multiply both

sides of (4.33) by

⎡⎢⎣𝑃
−1 0 0

0 1 0

0 0 1

⎤⎥⎦ , (4.34)

to obtain the second inequality from (4.12), after performing the substitution of the state-

feedback control gain as 𝐾 = 𝑌 𝑄−1 and defining 𝑃 = 𝑃⊤ = 𝑄−1 > 0. Therefore, by

minimizing 𝜇 and solving for 𝑄 and 𝑌 , a static control law 𝑢𝐹 = 𝐾𝑥𝑎 can be implemented

on the dynamic augmented model 𝑆𝑎, so as to solve Problem 4.1 subject the performance

criteria PC1 and PC2.
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4.2 Rotation Control

This section is dedicated to the development of the state-feedback controller that

acts on the rotation submodel of the platform.

The rotation submodel is clearly nonlinear, so the set of control techniques used

on system 𝑆1 does not apply directly. To that extent, the proposed control includes non-

linear control methods, namely a nonlinear ℋ∞ control law that achieves full ℒ2 gain

performance via the Hamilton-Jacobi inequality.

This proposed control law comprehends full realization of ℒ2 gain performance

by defining a Lyapunov candidate function that also meets the Hamilton-Jacobi partial

differential inequality. Furthermore, the closed-loop system obtained is then linearized

and augmented to reject external sinusoidal perturbations via a dynamic resonant con-

troller. This composition is further subjected to the static-gain control law of a 𝒟-stability

controller tuned by an optimization problem constrained by LMIs.

4.2.1 Nonlinear ℋ∞ Controller

Recall the rotation submodel 𝑆2 which represents the dynamics around the equi-

librium point (𝜂 = ±1, 𝜀 = 0, 𝜔 = 0) regarding the attitude 𝑞 and angular velocities 𝑤 of

the platform. This system can be rewritten in a more general form, i.e.

𝑆2 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥̇2 = 𝑓(𝑥2) + 𝑔1(𝑥2)𝜏𝑒𝑥𝑡 + 𝑔2(𝑥2)𝑢𝜏 ,

𝑧2 =

⎡⎣ℎ(𝑥2)

𝜌𝑢𝜏

⎤⎦ ,
(4.35)

where

𝑓(𝑥2) =

⎡⎢⎣1
2

[︃
−𝜀⊤

𝜂𝐼 + 𝑆(𝜀)

]︃
𝜔

−𝐼𝑚
−1𝑆(𝜔)𝐼𝑚𝜔

⎤⎥⎦ , 𝑔1(𝑥2) = 𝑔2(𝑥2) =

⎡⎢⎣ 0

0

𝐼−1
𝑚

⎤⎥⎦ , (4.36)

𝑥2 =
[︁
𝑞⊤ 𝜔⊤

]︁⊤
∈ R7 is the state vector, 𝑞 =

[︁
𝜂 𝜀⊤

]︁⊤
∈ R4 is the body orientation

error quaternion (with scalar and vector parts 𝜂 ∈ R, 𝜀 ∈ R3, respectively), 𝜌 is a positive

scalar, 𝑢𝜏 ∈ R3 is the input, 𝜏𝑒𝑥𝑡 ∈ R3 is the perturbation that affects the system and

ℎ(𝑥2) ∈ R6 is the output function

ℎ(𝑥2) =

[︃√
𝜌1𝜀

√
𝜌2𝜔

]︃
, (4.37)

given positive scalars 𝜌1 and 𝜌2.
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While function 𝑧2 is the virtual output considered in the design, it is better de-

scribed as an objective function. The scalar 𝜌 serves as a control signal weighting variable,

so as to better account for the control energy, and ℎ(𝑥2) can be used to better tune the

attitude control performance.

The main goal of this section is to present a nonlinear control law for the rota-

tion submodel 𝑆2 of the Stewart platform that stabilizes the system and guarantees ℒ2

gain performance with tunable attitude performance control. In this sense, consider the

stabilization task as defined in Problem 4.2, together with additional performance criteria.

Problem 4.2. Design a nonlinear state-feedback law 𝜁(𝑥2) such that

𝑥̇2 = 𝑓(𝑥2) + 𝑔1(𝑥2)𝜏𝑒𝑥𝑡 + 𝑔2(𝑥2)𝜁(𝑥2) (4.38)

is finite-gain ℒ2 stable and satisfy the following performance criteria:

PC3. Achieve ℒ2 gain performance so that the ℒ2 gain from 𝜏𝑒𝑥𝑡 to 𝑧2 is less than or

equal a positive scalar 𝜈.

PC4. Allow the control law to be tunable by scalars 𝜌, 𝜌1 and 𝜌2 to account for control

energy and attitude control performance.

This is similar to what was done on (4.25), but instead of minimizing the effect

external disturbia have on the system, this controller guarantees that it is bounded by a

scalar 𝜈, which may be arbitrarily small.

The solution of Problem 4.2 subject to the performance criteria PC3 and PC4 is

presented in the next Theorem (SHOW et al., 2003).

Theorem 4.2. Consider the nonlinear rotation system 𝑆2. If there are positive scalars 𝜌,

𝜌1, 𝜌2, 𝑎, 𝑏1 and 𝑏2 subject to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝐼 − (𝑏1 + 2𝑏2)
2𝐼𝑚 > 0, (𝑎)

1

2
𝜌1 + 2(𝑏1 − 2𝑏2)

2(
1

𝜈2
− 1

𝜌2
) < 0, (𝑏)

(𝑏1 + 2𝑏2)‖𝐼𝑚‖+
1

2
𝜌2 + 2𝑎2(

1

𝜈2
− 1

𝜌2
) < 0, (𝑐)

(4.39)

then the control law

𝜁(𝑥2) = − 2

𝜌2
(𝑎𝜔 + 𝑏1𝜀+ 𝑏2𝜂𝜀) (4.40)

solves Problem 4.2 and satisfies PC3, PC4. �
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Proof. Define the Lyapunov candidate function

𝑉 (𝑥2) = 𝑎𝜔⊤𝐼𝑚𝜔 + 2(𝑏1 + 2𝑏2𝜂)𝜀
⊤𝐼𝑚𝜔 + 2(1− 𝜂)(𝑐1 + 𝑐2𝜂). (4.41)

By using characteristics of the orientation unit quaternion, i.e., 2(1− 𝜂) = 𝜀⊤𝜀 +

(1− 𝜂)2, the candidate function becomes

𝑉 (𝑥2) = 𝑎𝜔⊤𝐼𝑚𝜔 + 2(𝑏1 + 2𝑏2𝜂)𝜀
⊤𝐼𝑚𝜔 + (𝜀⊤𝜀+ (1− 𝜂)2)(𝑐1 + 𝑐2𝜂). (4.42)

To that extent, rewrite (4.42) into the quadratic form

𝑉 (𝑥2) =
[︁
𝜂 − 1 𝜀⊤ 𝜔⊤

]︁
⎡⎢⎣(𝑐1 + 𝑐2𝜂) 0 0

0 (𝑐1 + 𝑐2𝜂)𝐼 (𝑏1 + 2𝑏2𝜂)𝐼𝑚

0 (𝑏1 + 2𝑏2𝜂)𝐼𝑚 𝑎𝐼𝑚

⎤⎥⎦
⎡⎢⎣𝜂 − 1

𝜀

𝜔

⎤⎥⎦ .
(4.43)

This allows for a more concise approach of determining the definiteness of 𝑉 (𝑥2),

given that from (4.43) the quadratic terms

[︁
𝜂 − 1 𝜀⊤ 𝜔⊤

]︁⎡⎢⎣𝜂 − 1

𝜀

𝜔

⎤⎥⎦ > 0. (4.44)

Therefore, the only condition needed to satisfy 𝑉 (𝑥2) > 0, i.e. for the candidate

function to be positive definite, is

⎡⎢⎣(𝑐1 + 𝑐2𝜂) 0 0

0 (𝑐1 + 𝑐2𝜂)𝐼 (𝑏1 + 2𝑏2𝜂)𝐼𝑚

0 (𝑏1 + 2𝑏2𝜂)𝐼𝑚 𝑎𝐼𝑚

⎤⎥⎦ > 0. (4.45)

By Sylvester’s criterion (Chapter 2.3.2), 𝑉 (𝑥2) is positive definite if

𝐷1 = (𝑐1 + 𝑐2𝜂) > 0,

𝐷2 = (𝑐1 + 𝑐2𝜂)
2𝐼 > 0,

𝐷3 = 𝑎𝐼 − (𝑏1 + 2𝑏2𝜂)
2𝐼𝑚 > 0,

(4.46)

that is, ∀ 𝜂 ∈ [−1, 1] ⎧⎨⎩(𝑐1 + 𝑐2𝜂) > 0 (a)

𝑎𝐼 − (𝑏1 + 2𝑏2𝜂)
2𝐼𝑚 > 0. (b)

(4.47)
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By considering the worst case scenario (WCS) of 𝜂 = −1 for (4.47.a) and 𝜂 = 1

for (4.47.b), the conditions can be rewritten as

⎧⎨⎩𝑐1 > 𝑐2, (a)

𝑎𝐼 − (𝑏1 + 2𝑏2)
2𝐼𝑚 > 0. (b)

(4.48)

Note that (4.48.b) is the condition (4.39.a) from Theorem 4.2. For evaluating ℒ2

gain performance of the system, consider Theorem 2.7.

Assume the inertia matrix 𝐼𝑚 to be symmetric and recall (4.41) to define the

corresponding gradient and its transpose

(︂
𝜕𝑉 (𝑥2)

𝜕𝑥2

)︂
= [4𝑏2𝜀

⊤𝐼𝑚𝜔 − 2𝑐1 + 2𝑐2(1− 𝜂)

2(𝑏1 + 2𝑏2𝜂)𝜔
⊤𝐼𝑚 2𝑎𝜔⊤𝐼𝑚 + 2(𝑏1 + 2𝑏2𝜂)𝜀

⊤𝐼𝑚],

(4.49)

𝜕𝑉 ⊤(𝑥2)

𝜕𝑥2

=

⎡⎢⎣4𝑏2𝜔
⊤𝐼𝑚𝜀− 2𝑐1 + 2𝑐2(1− 2𝜂)

2(𝑏1 + 2𝑏2𝜂)𝐼𝑚𝜔

2𝑎𝐼𝑚𝜔 + 2(𝑏1 + 2𝑏2𝜂)𝐼𝑚𝜀

⎤⎥⎦ . (4.50)

Now compute the term
(︁

𝜕𝑉 (𝑥2)
𝜕𝑥2

)︁
𝑓(𝑥2) by using the property 𝜔⊤𝑆(𝜔) = 0 to result

in(︂
𝜕𝑉 (𝑥2)

𝜕𝑥2

)︂
𝑓(𝑥2) = 𝜔⊤((𝑏1 + 2𝑏2𝜂(𝜂𝐼 + 𝑆(𝜀))𝐼𝑚 − 2𝑏2𝐼𝑚𝜀

⊤𝜀)𝜔 + 𝜀⊤(𝑐1 + 𝑐2(2𝜂 − 1))𝜔.

(4.51)

In order to account for all the terms of system 𝑆2, consider the Hamilton-Jacobi

inequality (2.39) from Theorem 2.8. Since in this particular case 𝑔1(𝑥2) = 𝑔2(𝑥2) = 𝑔(𝑥2),

𝐻𝑣 =

(︂
𝜕𝑉 (𝑥2)

𝜕𝑥2

)︂
𝑓(𝑥2) +

1

2

(︂
1

𝜈2
− 1

𝜌2

)︂(︂
𝜕𝑉 (𝑥2)

𝜕𝑥2

)︂(︀
𝑔(𝑥2)𝑔(𝑥2)

⊤)︀(︂𝜕𝑉 (𝑥2)

𝜕𝑥2

)︂⊤

+
1

2
ℎ(𝑥2)

⊤ℎ(𝑥2) < 0.

(4.52)

Therefore, the Hamilton-Jacobi inequality can be described by

𝐻𝑣 = 𝜔⊤
(︂
(𝑏1 + 2𝑏2𝜂)(𝜂𝐼 + 𝑆(𝜀))𝐼𝑚 − 2𝑏2𝐼𝑚𝜀

⊤𝜀+

(︂
1

2
𝜌2 + 2𝑎2

(︂
1

𝜈2
− 1

𝜌2

)︂)︂
𝐼

)︂
𝜔

+ 𝜀⊤
(︂
𝑐1 + 𝑐2(2𝜂 − 1) + 4𝑎(𝑏1 + 2𝑏2𝜂)

(︂
1

𝜈2
− 1

𝜌2

)︂)︂
𝜔

+ 𝜀⊤
(︂
1

2
𝜌1𝐼 + 2(𝑏1 + 2𝑏2𝜂)

2

(︂
1

𝜈2
− 1

𝜌2

)︂
𝐼

)︂
𝜀 < 0.

(4.53)
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It is clear to see that the quadratic terms 𝜔⊤𝜔 and 𝜀⊤𝜀 are always positive, and,

thus, the terms that are multiplied by them must be negative for the inequality (4.53) to

be true. In contrast, for this same inequality to be proven, the cross-multiplication term

𝜀⊤𝜔 must be null. For that to be valid,

𝑐1 + 𝑐2(2𝜂 − 1) + 4𝑎(𝑏1 + 2𝑏2𝜂)

(︂
1

𝜈2
− 1

𝜌2

)︂
= 0, ∀ 𝜂 ∈ [−1, 1]. (4.54)

To better grasp the conditions necessary for (4.54) to hold true, define the sub-

conditions

⎧⎪⎪⎨⎪⎪⎩
𝑐1 − 𝑐2 + 4𝑎𝑏1

(︂
1

𝜈2
− 1

𝜌2

)︂
= 0, (𝑎)

2𝑐2𝜂 + 8𝑎𝑏2𝜂

(︂
1

𝜈2
− 1

𝜌2

)︂
= 0, (𝑏)

(4.55)

in order to obtain the necessary values of 𝑐1 and 𝑐2, that is,

𝑐1 = 4𝑎(𝑏1 + 𝑏2)

(︂
1

𝜌2
− 1

𝜈2

)︂
, (4.56)

and

𝑐2 = −4𝑎𝑏2

(︂
1

𝜈2
− 1

𝜌2

)︂
. (4.57)

Recall condition (4.48.a) to result in

4𝑎(𝑏1 + 𝑏2)

(︂
1

𝜌2
− 1

𝜈2

)︂
> 4𝑎𝑏2

(︂
1

𝜌2
− 1

𝜈2

)︂
∴ 𝑏1 + 𝑏2 > 𝑏2

∴ 𝑏1 > 0,

(4.58)

which is feasible from the conditions of Theorem 4.2.

Since the cross-multiplication term 𝜀⊤𝜔 is now null, 𝐻𝑣 becomes

𝐻𝑣 = 𝜔⊤
(︂
(𝑏1 + 2𝑏2𝜂)(𝜂𝐼 + 𝑆(𝜀))𝐼𝑚 − 2𝑏2𝐼𝑚𝜀

⊤𝜀+

(︂
1

2
𝜌2 + 2𝑎2

(︂
1

𝜈2
− 1

𝜌2

)︂)︂
𝐼

)︂
𝜔

+ 𝜀⊤
(︂
1

2
𝜌1𝐼 + 2(𝑏1 + 2𝑏2𝜂)

2

(︂
1

𝜈2
− 1

𝜌2

)︂
𝐼

)︂
𝜀 < 0.

(4.59)



Chapter 4. Proposed Control Methods 62

The last quadratic term 𝜀⊤𝜀 is easily brought to negative values by choosing WCS

of 𝜂 = −1, resulting in

1

2
𝜌1 + 2(𝑏1 − 2𝑏2)

2

(︂
1

𝜈2
− 1

𝜌2

)︂
< 0, (4.60)

which is the condition (4.39.b) from Theorem 4.2. The other quadratic term 𝜔⊤𝜔 must

also be negative, and for that to hold true

(𝑏1 + 2𝑏2𝜂)(𝜂𝐼 + 𝑆(𝜀))𝐼𝑚 − 2𝑏2𝐼𝑚𝜀
⊤𝜀+

(︂
1

2
𝜌2 + 2𝑎2

(︂
1

𝜈2
− 1

𝜌2

)︂)︂
𝐼 < 0. (4.61)

For the WCS analysis, consider just the following portion of (4.61)

(𝑏1 + 2𝑏2𝜂)(𝜂𝐼 + 𝑆(𝜀))𝐼𝑚 − 2𝑏2𝐼𝑚𝜀
⊤𝜀. (4.62)

It is obvious that the last term −2𝑏2𝐼𝑚𝜀
⊤𝜀 ≤ 0 ∀ 𝜀, and, as such, the worst case is

when −2𝑏2𝐼𝑚𝜀
⊤𝜀 = 0. Thus,

(𝑏1 + 2𝑏2𝜂)(𝜂𝐼 + 𝑆(𝜀))𝐼𝑚 − 2𝑏2𝐼𝑚𝜀
⊤𝜀

≤ (𝑏1 + 2𝑏2𝜂)(𝜂𝐼 + 𝑆(𝜀))𝐼𝑚.
(4.63)

Note that from the quaternion characteristics, ‖𝜂𝐼 + 𝑆(𝜀)‖ ≤ 1, therefore

(𝑏1 + 2𝑏2𝜂)(𝜂𝐼 + 𝑆(𝜀))𝐼𝑚 − 2𝑏2𝐼𝑚𝜀
⊤𝜀

≤ (𝑏1 + 2𝑏2𝜂)(𝜂𝐼 + 𝑆(𝜀))𝐼𝑚

≤ (𝑏1 + 2𝑏2𝜂)‖𝐼𝑚‖,

(4.64)

is the WCS for (4.62).

Recall (4.61) to define the condition

(𝑏1 + 2𝑏2𝜂)‖𝐼𝑚‖+
1

2
𝜌2 + 2𝑎2

(︂
1

𝜈2
− 1

𝜌2

)︂
< 0, (4.65)

which is the inequality (4.39) from Theorem 4.2.

The state-feedback control law is devised using Theorem 2.8, so that the input

𝑢𝜏 = 𝜁(𝑥2) = − 1

𝜌2
𝑔⊤2 (𝑥2)

(︂
𝜕𝑉 (𝑥2)

𝜕𝑥2

)︂⊤

= − 2

𝜌2
(𝑎𝜔 + 𝑏1𝜀+ 𝑏2𝜂𝜀)

(4.66)
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solves Problem 4.2 while meeting PC3 and PC4.

Remark 4.1. The condition from (4.58) results from the chosen worst case scenario of

𝜂 = −1 in (4.48). Had the other value be chosen, i.e. 𝜂 = 1, the result would be as follows.

4𝑎(𝑏1 + 𝑏2)

(︂
1

𝜌2
− 1

𝜈2

)︂
> 4𝑎𝑏2

(︂
1

𝜈2
− 1

𝜌2

)︂
∴ 4𝑎(𝑏1 + 𝑏2)

(︂
1

𝜌2
− 1

𝜈2

)︂
> −4𝑎𝑏2

(︂
1

𝜌2
− 1

𝜈2

)︂
∴ 𝑏1 + 𝑏2 > −𝑏2

∴ 𝑏1 > −2𝑏2,

(4.67)

which is also feasible, given that, from definition of Theorem 4.2, 𝑏1 ≥ 0 and 𝑏2 ≥ 0.

Remark 4.2. The resulting control law (4.66) stems from the chosen Lyapunov candidate

function (4.41). Had the function be defined without the terms 𝑐1 and 𝑐2, i.e.,

𝑉 (𝑥2) = 𝑎𝜔⊤𝐼𝑚𝜔 + 2(𝑏1 + 2𝑏2𝜂)𝜀
⊤𝐼𝑚𝜔 + 2(1− 𝜂), (4.68)

the condition (4.39.a) would be rewritten as

𝑎 = − 1

4𝑏1

(︂
1

𝜈2
− 1

𝜌2

)︂−1

≥ 0, (4.69)

and the nonlinear term of the control law would be zero, given that another condition

𝑏2 = 0 would arise. The omission of this nonlinear term would result in a lower performance

of the controller (SHOW et al., 2003).

Remark 4.3. As can be seen from conditions (4.39), the most sensitive parameter of the

controller is 𝜌, the control signal weighting variable. If 𝜌 is large, the control signal will be

small and the controller will not be able to guarantee the desired ℒ2 gain of the system,

and, thus, the conditions from (4.39) will not be met.

Remark 4.4. Likewise, variables 𝜌1 and 𝜌2 are attitude control parameters which govern

the values of 𝑏1 and 𝑏2, and 𝑎, respectively, that satisfy (4.39). The parameters that

successfully meet these conditions can be found either by using a numerical solver or by

trial and error.

4.2.2 Resonant Rotation Controller

Given that the controller presented on Section 4.2.1 only achieves ℒ2 finite-gain

stability, attitude errors on the rotation submodel still present significant oscillatory val-

ues, i.e., the control law attenuates both known and unknown external disturbia, but does

not asymptotically reject either. To that extent, by leveraging the IMP, a new controller

can be implemented in addition to the stabilizing controller (4.40). In order to do so, the
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linearization of the closed-loop system is computed and some techniques discussed in Sec-

tion 4.1 applied, namely the development of an augmented model that includes resonant

states and an optimization problem subject to LMI constraints.

4.2.2.1 System Linearization

Recall the rotation submodel 𝑆2 and assume that the control law (4.40) brings the

system near the equilibrium point (𝜂 = 1, 𝜀 = 0, 𝜔 = 0). If the attitude errors to the

aforementioned equilibrium point are small, a linearized model of 𝑆2 correctly represents

the system near this equilibrium and linear control techniques may be applied on it.

To validate this assumption, consider the scenario from Section 4.1.1.2, with the

system subject only to the ℒ2 control law. Let 𝛼, 𝛽 and 𝛾 be the equivalent Euler angle

errors relative to 𝑞𝑟𝑒𝑓 =
[︁
1 0 0 0

]︁⊤
, that is, to a horizontal platform. The resulting

orientation errors, thus, on steady-state of the upper platform would be as presented on

Figure 9.

Figure 9 – Equivalent Euler angles of the attitude error of the platform, when subject to
the ℒ2 control law on steady-state.
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Source: the author (2016).

It is clear to see from Figure 9 that the system is very close to the chosen equi-

librium point. As such, consider that the input of system 𝑆2 is now composed of the ℒ2

controller and a second control law 𝑢𝜏2 ∈ R3 , i.e.

𝑢𝜏 = 𝜁(𝑥2) + 𝑢𝜏2 , (4.70)
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and substitute (4.70) on (4.35) to obtain

⎡⎢⎣𝜂̇𝜀̇
𝜔̇

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎣
−1

2
𝜀⊤𝜔

1

2
(𝜂𝜔 + 𝑆(𝜀)𝜔)

−𝐼−1
𝑚

(︂
𝑆(𝜔)𝐼𝑚𝜔 − 2

𝜌2
(𝑎𝜔 + 𝑏1𝜀+ 𝑏2𝜂𝜀) + 𝜏𝑒𝑥𝑡 + 𝑢𝜏2

)︂
⎤⎥⎥⎥⎥⎦ . (4.71)

Let the linearization take form of

𝜕𝑥̇2(𝑡) ≈
𝜕𝑓(𝑥2(𝑡), 𝜏𝑒𝑥𝑡(𝑡), 𝑢𝜏2(𝑡))

𝜕𝑥2(𝑡)
𝜕𝑥2(𝑡) +

𝜕𝑓(𝑥2(𝑡), 𝜏𝑒𝑥𝑡(𝑡), 𝑢𝜏2(𝑡))

𝜕𝜏𝑒𝑥𝑡(𝑡)
𝜕𝜏𝑒𝑥𝑡(𝑡)

+
𝜕𝑓(𝑥2(𝑡), 𝜏𝑒𝑥𝑡(𝑡), 𝑢𝜏2(𝑡))

𝜕𝑢𝜏2(𝑡)
𝜕𝑢𝜏2(𝑡)

(4.72)

when the higher order terms are not considered. Since the linearization technique is trivial,

the resulting linear system for the equilibrium point (𝜂 = 1, 𝜀 = 0, 𝜔 = 0) is

𝑆𝑙 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣
𝜕𝜂̇

𝜕𝜀̇

𝜕𝜔̇

⎤⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎢⎣
0 0 0

0 0 1
2
𝐼

0 −2(𝑏1 + 𝑏2)𝐼
−1
𝑚

𝜌2
−2𝑎𝐼−1

𝑚

𝜌2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜕𝜂

𝜕𝜀

𝜕𝜔

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0

0

𝐼−1
𝑚

⎤⎥⎥⎥⎦ (𝜕𝜏𝑒𝑥𝑡(𝑡) + 𝜕𝑢𝜏2(𝑡)),

𝜕𝑧2(𝑡) =

⎡⎢⎢⎢⎣
𝜕𝜂

𝜕𝜀

𝜕𝜔

⎤⎥⎥⎥⎦ .

(4.73)

Note that this system has one non-controllable state, namely 𝜕𝜂. Given that the

goal of this control design is to develop an optimization problem subject to LMI con-

straints, this non-controllable state must be removed, else the solver will not converge

on a solution. In order to do so, the quaternion unitary length is explored, so that

𝜀 = 0 =⇒ 𝜂 = 1. In other words, by enforcing 𝜀 = 0, one is effectively solving the

control problem for the whole linearized system in (4.73). Define, then, system 𝑆𝑙, which

removes 𝜕𝜂 from system 𝑆𝑙 as follows.

𝑆𝑙 :=

⎧⎨⎩𝑥̇𝑙(𝑡) = 𝐴𝑙𝑥𝑙(𝑡) +𝐵𝑢,𝑙𝜕𝑢𝜏2(𝑡) +𝐵𝜏𝑒𝑥𝑡,𝑙𝜕𝜏𝑒𝑥𝑡(𝑡),

𝜕𝑧2(𝑡) ≈ I 𝑥𝑙(𝑡),
(4.74)
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where 𝑥𝑙(𝑡) =
[︁
𝜕𝜀⊤ 𝜕𝜔⊤

]︁⊤
∈ R6 and

𝐴𝑙 =

⎡⎣ 0 1
2
𝐼

−2(𝑏1 + 𝑏2)𝐼
−1
𝑚

𝜌2
−2𝑎𝐼−1

𝑚

𝜌2

⎤⎦ ∈ R6×6, 𝐵𝑢,𝑙 = 𝐵𝜏𝑒𝑥𝑡,𝑙 =

[︃
0

𝐼−1
𝑚

]︃
∈ R6×3. (4.75)

Once again, if the periodic perturbation applied to the system is a sinusoidal

signal of fundamental frequency 𝜎𝑟, the control loop must include additional resonant

states 𝑥𝑟 ∈ R2 in the form of (4.4).

4.2.2.2 FFT Analysis

In a similar way to what was done on Section 4.1.1.2, an FFT analysis was carried

out on the nonlinear closed-loop rotation system 𝑆2 with perturbations as previously

described (Section 4.2.2.1). Take Figure 9 as reference and see that the sinusoidal disturbia

applied on the bottom platform have visually perceptible DC-gain, e.g. on the 𝛼 and

𝛽 angles, and skewed sinusoidal characteristics. For a more objective evaluation of the

frequency characteristics of the nonlinear closed-loop system 𝑆2, refer to the resulting 2SPS

of a Discrete Fast Fourier Transform with sampling frequency 𝑓𝑠 = 100Hz presented on

Figure 10. This represents the FFT of the attitude error on the top platform, considering

the error quaternion as described in Section 2.1.4.

Figure 10 – FFT analysis of the attitude error shown on Figure 9.
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Source: the author (2016).

It is clear to see that even though the ℒ2 controller contributes to attenuate the

effect perturbations have on the system, both the fundamental frequency and the second

harmonic of the attitude error still possess a considerable amplitude and can be better

attenuated. Higher harmonics are found to not significantly impact the performance of

the system so as to require adding additional states to the resonant controller, given that
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such higher-order harmonics were already attenuated by the ℒ2 control law. In addition,

the state 𝜂 of the error quaternion does not have oscillatory characteristics.

For the purposes of this work, based on the result of Figure 10, both the funda-

mental frequency and the second harmonic the attitude error will be further attenuated.

Define, thus, matrices 𝐴𝑟 and 𝐴ℎ with ℎ = 1 and ℎ = 2 respectively

𝐴𝑟 =

[︃
0 1

−(𝜎𝑟)
2 0

]︃
, 𝐴ℎ =

[︃
0 1

−(2𝜎𝑟)
2 0

]︃
, (4.76)

which represent the fundamental frequency and its second harmonic to be attenuated.

Since the error quaternion imaginary component 𝜀 has three states and the resonant

controller has two states for each frequency to be rejected, i.e. 𝜎𝑟 and 2𝜎𝑟, for each state,

twelve states have to be introduced in the control loop, or rather, in the augmented model

of the system.

4.2.2.3 Complete Augmented Model

Similarly to what was the case in Section 4.1.1.3, in order to deal with unknown

load conditions, e.g. loads placed outside the center of mass, model uncertainties and to

remove DC components of the attitude error as seen on Figure 10, three extra states are

introduced in the controller. Namely, integrator states in the form 𝑥̇𝐼(𝑡) = 𝑒(𝑡), 𝑦𝐼(𝑡) =

𝑥𝐼(𝑡), one for each state of 𝜀.

To better define the proposed control loop, consider an augmented system 𝑆𝑙,𝑎 in

the form of (4.74), where the matrices and vectors denoted with subscript 𝑙, 𝑎 are the

equivalent augmented counterparts of (4.75) given by

𝐴𝑙,𝑎 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴𝑙 0 0 0 0 0 0 0

−𝐵𝑟𝐶𝜀1 𝐴𝑟 0 0 0 0 0 0

−𝐵𝑟𝐶𝜀1 0 𝐴ℎ 0 0 0 0 0

−𝐵𝑟𝐶𝜀2 0 0 𝐴𝑟 0 0 0 0

−𝐵𝑟𝐶𝜀2 0 0 0 𝐴ℎ 0 0 0

−𝐵𝑟𝐶𝜀3 0 0 0 0 𝐴𝑟 0 0

−𝐵𝑟𝐶𝜀3 0 0 0 0 0 𝐴ℎ 0

−𝐶𝜀1 0 0 0 0 0 0 0

−𝐶𝜀2 0 0 0 0 0 0 0

−𝐶𝜀3 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

𝐵𝑢,𝑙,𝑎 =

[︃
𝐵𝑢,𝑙

0

]︃
, 𝐵𝜏𝑒𝑥𝑡,𝑙,𝑎 =

[︃
𝐵𝜏𝑒𝑥𝑡,𝑙

0

]︃
,

𝐶𝜀1 =
[︁
1 0 0 0 0 0

]︁
,

𝐶𝜀2 =
[︁
0 1 0 0 0 0

]︁
,

𝐶𝜀3 =
[︁
0 0 1 0 0 0

]︁
,

(4.77)
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such that 𝑥𝑙,𝑎(𝑡) ∈ R21 encompasses the plant and controller states, 𝐴𝑙,𝑎 ∈ R21×21, 𝐵𝑢,𝑙,𝑎

and 𝐵𝜏𝑒𝑥𝑡,𝑙,𝑎 ∈ R21×3. That is,

𝑆𝑙,𝑎 :=

⎧⎨⎩𝑥̇𝑙,𝑎(𝑡) = 𝐴𝑙,𝑎𝑥𝑙,𝑎(𝑡) +𝐵𝑢,𝑙,𝑎𝜕𝑢𝜏2(𝑡) +𝐵𝜏𝑒𝑥𝑡,𝑙,𝑎𝜕𝜏𝑒𝑥𝑡(𝑡),

𝜕𝑧𝑙,𝑎(𝑡) ≈ 𝐶𝑙,𝑎𝑥𝑙,𝑎(𝑡),
(4.78)

with 𝐶𝑙,𝑎 = I ∈ R21×21.

4.2.3 Optimization Subject to LMI Constraints

Consider a state feedback in the form of 𝑢𝜏2 = 𝐾𝑟𝑡𝑥𝑙,𝑎 is applied on system 𝑆𝑙,𝑎

in order to guarantee closed-loop stability, while also meeting additional performance

criterion, namely region-based eigenvalue placement.

The main goal of this section is to present an optimization problem subject to

constraints in the form of LMIs to systematically design the proposed controller for the

linearized closed-loop rotation augmented submodel of the Stewart platform presented on

(4.78). In this sense, consider the stabilization task as defined in Problem 4.3, together

with additional performance criterion.

Problem 4.3. Design a feedback gain 𝐾𝑟𝑡 such that

𝑥̇𝑙,𝑎 = A𝑙,𝑎𝑥𝑙,𝑎, (4.79)

for A𝑙,𝑎 = (𝐴𝑙,𝑎+𝐵𝑢,𝑙,𝑎𝐾𝑟𝑡), is asymptotically stable and satisfy the following performance

criterion:

PC5. Place the closed loop eigenvalues 𝜆𝑙,𝑎 of A𝑙,𝑎 inside a stable subregion of the complex

plane

𝒟𝑟𝑡 = 𝒟𝑐𝑟𝑡 ∩ 𝒟𝑝𝑟𝑡 (4.80)

composed by the intersection of a circular region 𝒟𝑐𝑟𝑡 centered at −𝑐𝑟𝑡 < 0 with

radius 𝑟𝑟𝑡 and the plane 𝒟𝑝𝑟𝑡 := {𝜆𝑙,𝑎 ∈ C | ℜ(𝜆𝑙,𝑎) < −𝜉𝑟𝑡 < 0}.

The solution of Problem 4.3 subject to the performance criteria PC5 is presented

in the next theorem.

Theorem 4.3. Consider the linearized augmented system 𝑆𝑙,𝑎 and given constant matrices

𝐿 and 𝑀 . If there are matrices 𝑃 = 𝑃⊤ = 𝑄−1 > 0 and 𝑌 with appropriate dimensions

subject to the following constraint

𝐿⊗𝑄+𝑀 ⊗ Γ(𝑄, 𝑌 ) +𝑀⊤ ⊗ Γ(𝑄, 𝑌 )⊤ < 0, (4.81)

with Γ(𝑄, 𝑌 ) = (𝐴𝑙,𝑎𝑄 + 𝐵𝑢,𝑙,𝑎𝑌 ), then the control law 𝑢𝜏2 = 𝐾𝑟𝑡𝑥𝑙,𝑎, with 𝐾𝑟𝑡 = 𝑌 𝑄−1,

solves Problem 4.3 and satisfies PC5. �
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Proof to Theorem 4.3 is similar to the proof to Theorem 4.1 and will, thus, be

omitted.

With these developments in mind, system 𝑆2 is subject to the control law

𝑢𝜏 = 𝜁(𝑥2) + 𝑢𝜏2(𝑥𝑙,𝑎), (4.82)

where 𝜁(𝑥2) provides ℒ2 finite-gain performance and 𝑢𝜏2 accounts for known sinusoidal

perturbations and unknown load conditions, as well as model uncertainties and DC com-

ponents of the attitude error.

4.3 Control Signal Coupling

Notice that the dynamic control of the translation and the rotation control of the

platform output two different and decoupled vectors, 𝑢𝐹 and 𝑢𝜏 , respectively. To unify

both controllers, consider the Jacobian 𝐽−⊤, which relates the forces and torques applied

on the platform to the linear forces of the actuators, such as

𝑓𝑙 = 𝐽−⊤

⎡⎢⎢⎢⎢⎣
𝐹𝑇

𝜏𝑇

𝐹𝐵

𝜏𝐵

⎤⎥⎥⎥⎥⎦ , (4.83)

which, in turn, calculates the actual control signal to be applied on the linear actuators.

This proposed control method of the Stewart platform allows for the use of two indepen-

dent controllers, facilitating the design of the control system, given that the attitudes of

the platform are not singular (Section 3.2.1)3.

Finally, since 𝐽⊤ ∈ R12×6, a pseudo inverse algorithm must be used to obtain

𝐽−⊤, such as the Moore-Penrose pseudoinverse computed via singular value decomposition

(BARATA; HUSSEIN, 2012).

4.4 Inverse Dynamics Controller

For comparison purposes of the numerical results presented in this work on Chapter

5, an inverse dynamics controller (IDC) will also be designed to evaluate the performance

of the proposed control method. The IDC (ASADA; SLOTINE, 1986), also known as

computed-torque controller, is a control method that aims to cancel the undesired dy-

namics and to impose the desired behavior on the controlled system. Given sufficiently
3 In effect, since the presented controller relies on the Jacobian matrix for signal coupling, no stability

guarantees can be made because the system may be in a singular stance. This can be mitigated by
avoiding such configurations and attitudes of the platform, so that the stability proofs presented still
hold.
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accurate modeling of the manipulator, this controller exhibits good control performance.

For the IDC, recall the Newton-Euler equations from (3.18) and rewrite them as

[︃
𝑚𝐼 0

0 𝐼𝑚

]︃[︃
𝑣̇

𝜔̇

]︃
=

[︃
𝑚𝑔

−𝑆(𝜔)𝐼𝑚𝜔

]︃
+

[︃
𝑢𝐹

𝑢𝜏

]︃
. (4.84)

Considering the Euler angle representation of the manipulator, the states of the

system are 𝑋 =
[︁
𝑝⊤ 𝜃⊤

]︁⊤
∈ R6, where 𝑝 ∈ R3 is the translational position and 𝜃 ∈ R3

is the angular position, in Euler angles, of the end effector, and 𝑋̇ =
[︁
𝑣⊤ 𝜔⊤

]︁⊤
∈ R6.

Equation (4.84) can be further described by

𝑀(𝑋)𝑋̈ + ℎ(𝑋, 𝑋̇) =

[︃
𝑢𝐹

𝑢𝜏

]︃
, (4.85)

where matrices 𝑀 and ℎ may be inferred from (4.84). The control law that describes the

IDC is as follows (LEE et al., 2003):

𝑢 =

[︃
𝑢𝐹

𝑢𝜏

]︃
= 𝑢𝑐 + 𝑢ℎ, (4.86)

where

𝑢𝑐 = 𝑀

(︂
𝑋̈𝑟𝑒𝑓 +𝐾𝑝(𝑋𝑟𝑒𝑓 −𝑋) +𝐾𝑑(𝑋̇𝑟𝑒𝑓 − 𝑋̇) +𝐾𝑖

∫︁
(𝑋𝑟𝑒𝑓 −𝑋) d𝑡

)︂

𝑢ℎ = ℎ(𝑋, 𝑋̇),

(4.87)

and the subscript 𝑟𝑒𝑓 denotes the reference values for 𝑋, 𝑋̇ and 𝑋̈. The constant gains

𝐾𝑝, 𝐾𝑑 and 𝐾𝑖 are designed to achieve the desired behavior of the closed-loop system.

Essentially, 𝑢𝑐 is the control effort to drive the errors 𝑋 − 𝑋𝑟𝑒𝑓 , 𝑋̇ − 𝑋̇𝑟𝑒𝑓 to zero and

𝑢ℎ is the term that cancels nonlinearities and undesired characteristics of the platform.

Therefore, in closed-loop the system becomes[︃
𝑣̇

𝜔̇

]︃
= 𝑋̈𝑟𝑒𝑓 +𝐾𝑝(𝑋𝑟𝑒𝑓 −𝑋) +𝐾𝑑(𝑋̇𝑟𝑒𝑓 − 𝑋̇) +𝐾𝑖

∫︀
(𝑋𝑟𝑒𝑓 −𝑋) d𝑡, (4.88)

given that the matrix 𝑀−1(𝑋) from 𝑢𝑐 cancels the matrix 𝑀(𝑥) from the dynamics of the

system, as well as the matrix ℎ(𝑋, 𝑋̇) from 𝑢ℎ cancels the nonlinearities from the model.

In this case, the dynamics of the system are imposed by the gains 𝐾𝑝, 𝐾𝑑 and 𝐾𝑖, given an

accurate mathematical description of the manipulator. On the other hand, if the model is

not accurate, the dynamics and nonlinearities will not be canceled and the performance

of this controller will not generally be acceptable.
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5 Numerical Results

In this chapter, the numerical results of this work will be presented along with the

procedures, values and considerations used throughout the simulations. First, the simu-

lation method itself will be described, followed by the necessary parameters of the envi-

ronment, the constructive constants considered for the Stewart platform and the designed

control parameters for the proposed controller. Next, three scenarios will be presented for

validating this work, and, finally, a comparison to another control method, namely the

inverse dynamics controller (IDC), will be demonstrated.

5.1 Simulation Procedure

For the results of this work, a numeric simulation was performed in a MATLAB

environment, while the optimization problems with LMI constraints were solved using

the YALMIP (LÖFBERG, 2004) and SDPT3 (TOH; TODD; TÜTÜNCÜ, 1999) software

packages. The simulation is performed as follows.

From the platform and control parameters, calculate the static state-feedback gains

for the linear translational and linearized rotational augmented systems𝐾 and𝐾𝑟𝑡, respec-

tively. Then, perform a simulation loop with given sampling period and total simulation

time:

Step 1 Simulate the resonant and integrator states and compute the augmented model

for the translational submodel (4.8);

Step 2 Simulate the resonant and integrator states and compute the augmented lin-

earized model for the rotational submodel (4.78);

Step 3 Compute the control signal to the translational system from control law (4.13);

Step 4 Compute the control signal to the rotational system from control law (4.82);

Step 5 Compute the Jacobian matrix 𝐽 from (3.4);

Step 6 Compute the linear forces of the actuators via the Jacobian matrix 𝐽 such as

(4.83);

Step 7 Simulate the dynamics of the top platform using the model from (3.20), while

applying the control signals to the actuators;

Step 8 Apply the desired perturbations on the bottom (e.g. sinusoidal translations and

rotations) and top platforms (e.g. load conditions, instrumentation noise);
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Step 9 Naturally propagate the perturbations of the bottom platform to the end effector

by use of rotation matrices and displacement vectors1, i.e., for the top platform,

𝐺𝑇 =

[︃
𝑅𝑇 𝑝𝑇

0 1

]︃
∈ R4×4, (5.1)

where 𝐺𝑇 is the transformation matrix, 𝑅𝑇 is the rotation matrix and 𝑝𝑇 is the

position vector for the top platform, such as those presented on Chapter 3.

Given that, the simulation must have some parameters defined in order to correctly

represent a given scenario, such as simulation and control parameters and also geometric

and constructive parameters of the platform. These will be presented on the next section.

5.2 Simulation, Platform and Control Parameters

While the systematic representation of the simulation procedure from the last

section covers the necessary steps to perform a dynamic representation of the Stewart

platform, some important constants need to be defined beforehand. First, define the main

simulation parameters as shown on Table 1, which will govern how the environment will

compute the simulation scenario.

Table 1 – Considered simulation parameters.

Parameter Symbol Value

Sampling period [𝑠] 𝑇 0.001
Total simulation time [𝑠] 𝑡𝑡𝑜𝑡𝑎𝑙 20
ODE23 solver relative tolerance 𝑅𝑡𝑜𝑙 1× 10−5

Gravity acceleration [𝑚/𝑠2] 𝑔 9.85

Source: the author (2016).

Going further, the geometric and constructive parameters were chosen similarly

to (HAJIMIRZAALIAN; MOOSAVI; MASSAH, 2010), the only difference being that the

joints of the upper platform were placed in such way to present a gap between them, i.e.

with 𝜙𝑇 ̸= 0. Therefore, the platform parameters were as follows on Table 22. With the

given constructive and geometric parameters, the resulting platform is shown on Figure

11.

As for the control parameters, the constants needed for the 𝒟-stability, resonant

and ℒ2 controllers are as presented on Table 3. The chosen fundamental frequency to

1 This propagation is needed for simulation purposes because (3.20) is built with different reference
frames than the simulation environment, which uses the global inertial frame as basis.

2 The inertia matrix 𝐼𝑚 has non-zero terms only on its diagonal because it is distributed along the axis
of its reference frame.
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Table 2 – Chosen platform parameters.

Parameter Symbol Value

Top platform mass [𝑘𝑔] 𝑚 1.36

Top platform tensor of inertia [𝑘𝑔𝑚2] 𝐼𝑚 𝑑𝑖𝑎𝑔

⎛⎝⎡⎣1.705× 10−4

1.705× 10−4

3.408× 10−4

⎤⎦⎞⎠
Platform radius, top [𝑚𝑚] 𝑟𝑇 125
Platform radius, bottom [𝑚𝑚] 𝑟𝐵 200
Gap between actuator pair, top [𝑟𝑎𝑑] 𝜙𝑇 𝜋/2
Gap between actuator pair, bottom [𝑟𝑎𝑑] 𝜙𝐵 𝜋/4

Initial position, top platform [𝑚𝑚] 𝑝𝑇 (0)
[︀
0 0 180

]︀⊤
Initial orientation, top platform 𝑞𝑇 (0)

[︀
1 0 0 0

]︀⊤
Initial position, bottom platform [𝑚𝑚] 𝑝𝐵(0)

[︀
0 0 0

]︀⊤
Initial orientation, bottom platform 𝑞𝐵(0)

[︀
1 0 0 0

]︀⊤
Source: the author (2016).

Figure 11 – The Stewart platform with constructive parameters from Table 2.

Source: the author (2016).

be rejected on the resonant controllers was 0.2Hz, which is the highest frequency value

used on (MELLO, 2011), considering the perturbations affecting a large vessel floating

atop ocean waves. More specifically, with the considered ℒ2 constants, the ℒ2 gain of the

rotational system is less than or equal 𝜈 = 35.

Given these considerations, the resulting control gains for the translational and
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Table 3 – Designed controller parameters.

Parameter Symbol Value

Translational 𝒟𝑐 radius 𝑟 7
Translational 𝒟𝑐 center 𝑐 7
Translational 𝒟𝑝 placement 𝜉 1.4
Rotational 𝒟𝑐𝑟𝑡 radius 𝑟𝑟𝑡 10
Rotational 𝒟𝑐𝑟𝑡 center 𝑐𝑟𝑡 10
Rotational 𝒟𝑝𝑟𝑡 placement 𝜉𝑟𝑡 1.2
Fundamental resonant frequency to reject 𝜎𝑟 0.4𝜋
Harmonic resonant frequency to reject 𝜎ℎ 0.8𝜋
First ℒ2 constant 𝜌 20
Second ℒ2 constant 𝑎 13
Third ℒ2 constant 𝑏1 11
Fourth ℒ2 constant 𝑏2 12
ℒ2 gain goal 𝜈 35

Source: the author (2016).

rotational state-feedback control laws 𝐾 and 𝐾𝑟𝑡, respectively, are as follows:

𝐾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−331.3 0 0

0 −293.7 0

0 0 −293.7

−34.1 0 0

0 −31.6 0

0 0 −31.6

1, 765.1 0 0

1, 150.9 0 0

2, 381.5 0 0

−484.4 0 0

0 1, 260.3 0

0 941.1 0

0 1, 998.5 0

0 −279.5 0

0 0 1, 260.3

0 0 941.1

0 0 1, 998.5

0 0 −279.5

993.5 0 0

0 745.4 0

0 0 745.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

∈ R3×21, 𝐾𝑟𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.01 0 0

0 0.0695 0

0 0 0.0241

0.0596 0 0

0 0.0618 0

0 0 0.0587

0.6509 0 0

0.4183 0 0

0.8994 0 0

−0.1596 0 0

0 0.0659 0

0 0.0963 0

0 0.1981 0

0 0.0173 0

0 0 0.1316

0 0 0.1924

0 0 0.3959

0 0 0.0346

0.3733 0 0

0 0.0549 0

0 0 0.1097

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊤

∈ R3×21.

(5.2)
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It is important to draw attention to the values which compose these static state-

feedback gains just described. While the translational gain vector 𝐾 is comprised of high

gains, the reader should recall the augmented system from (4.8) and notice that the highest

values are those that influence the resonant and integral controller states, not those of

the position and velocities of the manipulator. This follows the disturbance rejection

characteristics of the design while also allowing robust treatment of model uncertainties

and measurement noise. On another note, the rotational gain vector 𝐾𝑟𝑡 is populated with

small gains, since the ℒ2 gain goal is relatively relaxed and the control signal weighting

variable 𝜌 successfully tames the control effort dispensed by the controller.

After applying the control laws and the aforementioned gain vectors, the closed-

loop eigenvalues of the translational (𝜆𝑎) and linearized rotational (𝜆𝑙,𝑎) augmented sys-

tems are as follows:

𝜆𝑎 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10.5292

−8.2926

−8.2926

−2.2122 + 3.0971𝑖

−2.2122− 3.0971𝑖

−4.2031

−1.9362

−2.0054 + 1.3597𝑖

−2.0054− 1.3597𝑖

−4.1355

−4.1355

−2.1787 + 2.7242𝑖

−2.1787− 2.7242𝑖

−2.1787 + 2.7242𝑖

−2.1787− 2.7242𝑖

−2.1318

−2.1318

−2.1500 + 1.2342𝑖

−2.1500− 1.2342𝑖

−2.1500 + 1.2342𝑖

−2.1500− 1.2342𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C21, 𝜆𝑙,𝑎 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−11.8830 + 4.1239𝑖

−11.8830− 4.1239𝑖

−8.2696

−8.2613

−1.5685 + 2.9023𝑖

−1.5685− 2.9023𝑖

−1.7459 + 2.9344𝑖

−1.7459− 2.9344𝑖

−1.7462 + 2.9342𝑖

−1.7462− 2.9342𝑖

−1.5110 + 1.3836𝑖

−1.5110− 1.3836𝑖

−1.5109

−1.7333 + 1.5476𝑖

−1.7333− 1.5476𝑖

−1.7328 + 1.5478𝑖

−1.7328− 1.5478𝑖

−1.6942 + 0.4648𝑖

−1.6942− 0.4648𝑖

−1.6936 + 0.4649𝑖

−1.6936− 0.4649𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C21. (5.3)

In the next section, the simulation results of this work will be presented to the

reader.
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5.3 Simulation Results

For the purpose of presenting the performance of the proposed controller, three

scenarios were devised. In the first scenario, the simulated environment applies a linear and

angular perturbation at the center of mass of the bottom reference frame, similar to those

of ocean waves, whose disturbances are then naturally propagated to the top platform. In

a second scenario, a load condition is additionally imposed on the manipulator, in order to

assess the compensation capabilities of the designed controller. Finally, instrumentation

noise is added to the system, to evaluate robustness of the controller. In this final scenario,

the suggested control method is then compared to an inverse dynamics controller (IDC),

similar to what was proposed by (LEE et al., 2003).

5.3.1 Sinusoidal Perturbations

The first simulated environment applies a linear and angular perturbation 𝑝𝑑 and

𝑟𝑑, respectively, at the center of mass of the bottom reference frame, as defined by

𝑝𝑑(𝑡) =

⎡⎢⎣6 sin(0.2𝜋𝑡+
𝜋
1.1

)

3 sin(0.02𝜋𝑡+ 𝜋
3
)

15 sin(0.2𝜋𝑡− 𝜋
4
)

⎤⎥⎦ , 𝑟𝑑(𝑡) =

⎡⎢⎣
2𝜋
45

sin(0.24𝜋𝑡− 𝜋
8
)

3𝜋
45

sin(0.4𝜋𝑡− 𝜋
5
)

𝜋
180

sin(0.12𝜋𝑡)

⎤⎥⎦ , (5.4)

where 𝑟𝑑 is the Euler angle equivalent to 𝑞𝑑, the angular perturbation in quaternion terms.

These disturbances were chosen similarly to (GARCÍA, 2015), which are compatible fre-

quencies from large vessels floating atop ocean waves, but applying a scaling factor of 6.6

on the amplitudes of the linear displacements, given that the length of the actuators on

this particular platform are proportionally smaller.

For comparison purposes, Figs. 12 – 13 show the attitude errors and their fre-

quency behavior of the system without control, considering that the actuators apply just

the necessary reaction to gravity. In those and further figures, 𝑒1, 𝑒2 and 𝑒3 are the posi-

tion errors relative to 𝑝 =
[︁
𝑝𝑥 𝑝𝑦 𝑝𝑧

]︁⊤
and 𝛼, 𝛽 and 𝛾 are the equivalent Euler angles

related to the rotation of the top platform (see Section 2.1.3). The reference stance of the

end effector is that of its initial attitude of Table 2, and the Discrete Fast Fourier Trans-

form was performed with sampling frequency 𝑓𝑠 = 1000Hz, with presented frequencies

normalized by the fundamental frequency considered on the controller 𝜎𝑟 = 0.2Hz and

the system on steady-state (SS), from 𝑡 = 10s → 20s.

As was explained on Section 4.1.1.2, the platform behaves in a coupled non-linear

fashion as is clear to see in the displacement error pictured on Figure 12. The resulting

two-sided power spectrum (2SPS) shown on Figure 13 enables one to draw the conclusion

that the chosen fundamental frequency of 𝜎𝑟 = 0.2Hz of the resonant controllers tackles

the highest frequency perturbation and that the DC gain of the translational model is

small, relative to the magnitudes of the other frequencies.
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Figure 12 – Displacement (left) and angular (right, in Euler angles) errors to the reference
stance of the top platform, uncontrolled.
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Figure 13 – 2SPS of the displacement (left) and angular (right, in quaternion form) errors
to the reference stance of the top platform, uncontrolled, on steady-state.

-6 -4 -2 0 2 4 6
Frequency, multiples of σr [Hz]

0

5

10

15

20

2S
P
S
of

e
1
,
e
2
an

d
e
3 e1

e2

e3

-6 -4 -2 0 2 4 6
Frequency, multiples of σr [Hz]

0

0.01

0.02

0.03

0.04

0.05

0.06

2S
P
S
of

η
,
ε
1
,
ε
2
an

d
ε
3 η

ε1

ε2

ε3

Source: the author (2016).

5.3.1.1 Proposed Controller

Now that the default behavior of the perturbed platform is known and available for

comparison, the proposed controller is added to the system. The resulting attitude errors

and their frequency behavior are shown in Figs. 14 – 16, with the same FFT parameters

as before.

The controlled system exhibits good transient response, without significant over-

shoot and oscillations, while also demonstrating a fast settling time (around 2s). On

steady-state, the dynamics of the controlled manipulator is also commendable, with small

position and attitude errors. Referencing the FFT shown on Figure 16, it is clear to see

that the magnitudes present on the output of the system have been significantly damp-

ened, specially those regarding the perturbations. While the resonant controllers were

tuned for frequencies 𝜎𝑟 = 0.2Hz and 𝜎ℎ = 0.4Hz, the ℋ∞ and ℒ2 control laws attenuate

the remaining disturbia on other frequencies.
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Figure 14 – Transient displacement (left) and angular (right) errors to the reference stance
of the top platform, with the proposed controller.
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Figure 15 – Steady-state (SS) displacement (left) and angular (right) errors to the refer-
ence stance of the top platform, with the proposed controller.
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Figure 16 – 2SPS of the displacement (left) and angular (right) errors to the reference
stance of the top platform, with the proposed controller on SS.
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With the system now being controlled, the linear forces required on steady-state

from the actuators are presented on Figure 17.
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Figure 17 – Actuator forces 1 – 3 (left) and 4 – 6 (right) as controlled by the proposed
control laws.
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From Figure 17, one can see that the suggested controller is able to smoothly drive

the actuators of the Stewart platform without causing chattering on the control signal,

contrary to what would be typical of control methods that rely on high gains.

5.3.2 Sinusoidal Perturbations and Load Condition

Going further in testing the capabilities of the designed controller, in addition to

the perturbations of Section 5.3.1, a load with mass

𝑚𝑙 = 1.56kg

is added on top of the end effector, i.e. the mass of the system is increased by almost

115%. Furthermore, its center of mass does not coincide with the center of mass of the

manipulator. This may cause a shift of the inertia matrix to a different value than is

considered by the controller. Assume that in this case the norm of the inertia matrix is

increased by more than 70%, to

𝐼𝑚2 =

⎡⎢⎣3.44× 10−4 0 0

0 2.40× 10−4 0

0 0 5.88× 10−4

⎤⎥⎦ .

This setup was devised in order to evaluate the robustness of the suggested controller,

since the load condition of the manipulator is unknown at design time. It is expected that

the proposed controller retain similar performance as presented on the last section, albeit

with higher position and attitude errors, as well as higher actuation force to manipulate

the added mass on the end effector.

5.3.2.1 Proposed Controller

Without altering the control parameters, i.e. not modifying the gains of the con-

troller to compensate for model uncertainties, the resulting attitude errors and frequency

behavior are shown in Figs. 18 – 20, with the same sampling frequency as before.
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Figure 18 – Transient displacement (left) and angular (right) errors to the reference stance
of the controlled manipulator, with an out-of-center load.
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Figure 19 – Steady-state displacement (left) and angular (right) errors to the reference
stance of the controlled manipulator, with an out-of-center load.
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Figure 20 – 2SPS of the displacement (left) and angular (right) errors to the reference
stance of the controlled manipulator, with an out-of-center load.
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The controlled system considering an out-of-center load condition retains good

transient response, albeit with higher overshoot and some oscillations, with settling time

of 2.5s, just 0.5s slower than previously. On steady-state, the dynamics of the controlled

manipulator still present good performance, even though with bigger errors than was

obtained on the first scenario. Considering that the added load exceeds 115% of the

platform mass considered on the controller, its response is robust enough to maintain

similar performance to the first simulated setup.

Referencing the FFT shown on Figure 20, it is clear to see that the magnitudes

present on the output of the system have still been significantly dampened from the

original uncontrolled state, specially those regarding the perturbations, but the remaining

frequencies have now higher magnitudes than previously. Still, the ℋ∞ and ℒ2 methods

attenuate the remaining disturbia on frequencies not pertaining to the resonant controller.

Even with this unknown at design time load condition, the actuators still present

the same steady-state dynamics albeit with higher amplitudes (which are necessary to

handle the added load), and without any kind of chattering, as Figure 21 shows.

Figure 21 – Actuator forces 1 – 3 (left) and 4 – 6 (right) as controlled by the proposed
control laws in an out-of-center load condition.
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5.3.3 Sinusoidal Perturbations, Load Condition and Instrumentation Noise

In this last scenario, instrumentation noise is additionally included in the states

𝑝, 𝑣, 𝑞 and 𝜔 that are used by the controller, namely an white Gaussian noise with signal-

to-noise ratio (SNR) of 60dB. This inclusion will aid in the assessment of the robustness

of the designed control laws, given that stochastic exogenous signals are directly injected

in the measured states of the controller. Furthermore, the behavior of an IDC considering

two proposals will be presented: one designed to match the control signals of the proposed

controller and another designed to match the response of the controlled system by the

control methods suggested in this work.
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5.3.3.1 Proposed Controller

Without altering the control parameters, consider Figs. 22 – 24.

Figure 22 – Transient displacement (left) and angular (right) errors to the reference stance
of the controlled, loaded manipulator, with added white noise.
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Figure 23 – Steady-state displacement (left) and angular (right) errors to the reference
stance of the controlled, loaded manipulator, with added white noise.
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Figure 24 – 2SPS of the displacement (left) and angular (right) errors to the reference
stance of the controlled, loaded manipulator, with added white noise.
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As is clear to see, some distortion is perceptible on the output of the controlled

system on steady-state and on the frequency response of the attitude errors, but the system

still converges on the reference. Even with instrumentation noise added, the actuators once

again present similar steady-state dynamics without any kind of perceptible chattering,

as Figure 25 shows.

Figure 25 – Actuator forces 1 – 3 (left) and 4 – 6 (right) as controlled by the proposed
control laws in an out-of-center load condition with white Gaussian noise.
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Source: the author (2016).

In the next sections (5.3.3.2 and 5.3.3.3), two inverse dynamic controllers with

different design criteria will be developed, namely to possess a similar control signal and

a similar system response to what was achieved in this section. Two IDC must be devised

because the parameters that are used in one do not satisfy the goals of the other, and

vice-versa.

5.3.3.2 Inverse Dynamics Controller with Similar Control Signal

For comparison purposes, an IDC (Section 4.4) was designed to match the control

signal of the results presented on Section 5.3.3.1, as this will allow the evaluation of

the effort dispensed by this controller and whether it is more effective than that of the

suggested control method of this work. For this design criterion, the parameters used

were as follows on Table 4, whose magnitudes are similar to those obtained on the static

state-feedback gain vector (5.2) of the translational control, resonant and integral states

notwithstanding.

Table 4 – Designed IDC parameters to match the control signal of Section 5.3.3.1.

Parameter Symbol Value

Proportional constant 𝐾𝑝 250
Derivative constant 𝐾𝑑 50
Integral constant 𝐾𝑖 10

Source: the author (2016).
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With these parameters, which are in a similar range to the gains of the controller

proposed in this work, the resulting behavior of the system is shown on Figs. 26 – 28.

Figure 26 – Transient displacement (left) and angular (right) errors to the reference
stance, with the IDC tuned for similar control signal.
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Figure 27 – Steady-state displacement (left) and angular (right) errors to the reference
stance, with the IDC tuned for similar control signal.
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Figure 28 – 2SPS of the displacement (left) and angular (right) errors to the reference
stance, with the IDC tuned for similar control signal.
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It is visible that the transient response of the system controlled by the IDC tuned

for similar control signal is faster, with a settling time of less than one second and no visible

oscillation, but the steady-state behavior is significantly worse when compared to what
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was presented on Section 5.3.3.1, regarding the position error (more than 20-fold increase

in the displacement error amplitude). From Figure 28 it is possible to understand the

reason for this behavior: the proportional gain characteristic of this controller attenuates

all frequencies in a similar fashion, without focusing on a given band of frequencies. The

frequencies of the perturbations (0.2Hz and lower), whose magnitudes are higher than the

others, are dampened, but still higher than that of the suggested controller in this work,

seen on Figure 24.

On further note, the design goal was achieved, given that the actuators controlled

by the IDC behave similarly to the suggested control method of this work on steady-state

without any kind of perceptible chattering, as Figure 29 shows. As such, given similar

effort, i.e. similar control signals, the steady-state response of the IDC is worse than that

presented using the proposed controller of this work.

Figure 29 – Actuator forces 1 – 3 (left) and 4 – 6 (right) as controlled by the IDC tuned
for similar control signal to the controller proposed in this work.
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5.3.3.3 Inverse Dynamics Controller with Similar System Response

Going further, another IDC was now designed to match the steady-state (SS)

system response of the results presented on Section 5.3.3.1 as this will allow the evaluation

of how much effort should be dispensed by this controller to match the results provided

by the suggested control method, specially for the displacement behavior. As such, the

parameters used were as follows on Table 5.

Table 5 – Designed IDC parameters to match the system response of Section 5.3.3.1.

Parameter Symbol Value

Proportional constant 𝐾𝑝 5500
Derivative constant 𝐾𝑑 75
Integral constant 𝐾𝑖 30

Source: the author (2016).
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With these unsuitably high control gains, the resulting behavior of the system is

shown on Figs. 30 – 32.

Figure 30 – Transient displacement (left) and angular (right) errors to the reference
stance, with the IDC tuned for similar SS system response.
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Figure 31 – Steady-state displacement (left) and angular (right) errors to the reference
stance, with the IDC tuned for similar SS system response
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Figure 32 – 2SPS of the displacement (left) and angular (right) errors to the reference
stance, with the IDC tuned for similar SS system response
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It is clear that the IDC needs much higher gains in order to produce comparable

system response to what was achieved with the proposed controller. This is particularly

so because the IDC relies on canceling the unwanted dynamics of the system. Therefore,

its performance depends on an accurate modeling of the manipulator, and is severely

negatively impacted by the fact that it is dealing with instrumentation noise and load

conditions.

This time, the steady-state system response is similar to what was produced on

Section 5.3.3.1, for the displacement behavior. However, the actuators show visible chat-

tering, as Figure 33 shows.

Figure 33 – Actuator forces 1 – 3 (left) and 4 – 6 (right) as controlled by the IDC tuned
for similar SS system response to the controller proposed in this work.
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Source: the author (2016).

For a more objective approach, the signal swing of the control signal was computed

in order to evaluate the chattering produced by the controllers. The resulting swing over

25 samples3, with 𝑓𝑠 = 1000𝐻𝑧, is presented on Table 6.

Table 6 – Comparison of control signal swing of the controllers.

Controller Control signal swing [N/(0.025s)]

Suggested controller
[︀
0.6588 0.6843 0.6653 0.6584 0.6786 0.6712

]︀⊤
IDC, similar control signal

[︀
0.7385 0.6809 0.7158 0.7180 0.6802 0.7200

]︀⊤
IDC, similar system response

[︀
8.8455 8.8296 8.6450 8.5948 8.8067 8.6967

]︀⊤
Source: the author (2016).

3 The control signal swing was computed by

𝑓𝑠𝑤 = 𝑚𝑎𝑥(𝑓𝑙) −𝑚𝑖𝑛(𝑓𝑙), 𝑙 = (1, . . . , 6),

where 𝑚𝑎𝑥 and 𝑚𝑖𝑛 return the maximum and minimum values of the signal over a 25 sample period.
The resulting swing presented is the maximum control signal swing 𝑓𝑠𝑤 over 10s on steady-state.
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From Table 6, it is clear that the proposed controller has the smallest chattering

on the control signal. Going further, consider the results of Table 7, where the ℒ2 norm

of the position and attitude errors, as well as the control effort and control swing on

steady-state (𝑡 = 10s → 20s) were computed.

Table 7 – Comparison of the controllers by ℒ2 norm.

Controller Pos. error Att. error Control effort Control swing

Suggested controller 0.7320 0.0556 852.4643 1.6054
IDC, similar control signal 16.3439 0.0612 871.9080 1.7372
IDC, similar system response 0.7360 0.0241 873.0287 21.4010

Source: the author (2016).

In terms of direct comparison, consider Table 8 which presents the relative dif-

ferences between the suggested controller and the IDC, with positive values representing

improvements and negative values performance degradation.

Table 8 – Direct comparison of the controllers, relative to the suggested controller.

Controller Pos. error Att. error Control effort Control swing

Suggested controller — — — —
IDC, similar control signal −2, 132% −10.07% −2.28% −8.20%
IDC, similar system response −0.54% +56.65% −2.41% −1, 233%

Source: the author (2016).

As is evidently obvious from the previous figures and results, the suggested con-

troller is very effective in meeting the objectives of this work, as proposed on Section

1.1.

Remark 5.1. For the sake of completeness, consider that the system is perturbed with

frequencies that match those of the resonant controllers, i. e.,

𝑝𝑑(𝑡) =

⎡⎢⎣ 6 sin(0.4𝜋𝑡)

3 sin(0.4𝜋𝑡)

15 sin(0.4𝜋𝑡)

⎤⎥⎦ , 𝑟𝑑(𝑡) =

⎡⎢⎣
2𝜋
45

sin(0.4𝜋𝑡)
3𝜋
45

sin(0.4𝜋𝑡)
𝜋
180

sin(0.4𝜋𝑡)

⎤⎥⎦ . (5.5)

Since the resonant controller is exactly tuned for the perturbation frequencies, it

is expected that the first and second harmonics are asymptotically rejected. Consider,

thus, the Figures 34 and 35, which show the position and angular errors to the reference

stance, and the 2SPS for the position and angular errors, respectively. It is clear to see

that, indeed, the frequencies tuned on the resonant controllers were successfully rejected

on both the translational and rotational controllers. In fact, the harmonics that once
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(Figures 8 and 10) were small enough to be neglected, now present comparatively the

highest magnitudes (albeit small in absolute values).

Figure 34 – Transient displacement (left) and angular (right) errors to the reference
stance, using the proposed controller, with the perturbations following (5.5).
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Figure 35 – 2SPS of the displacement (left) and angular (right) errors to the reference
stance, using the proposed controller, with the perturbations following (5.5).

-10 -5 0 5 10
Frequency, multiples of σr [Hz]

0

1

2

3

4

5

6

2S
P
S
of

e
1
,
e
2
an

d
e
3

×10-3

e1

e2

e3

-10 -5 0 5 10
Frequency, multiples of σr [Hz]

0

0.5

1

1.5

2

2.5

2S
P
S
of

η
,
ε
1
,
ε
2
an

d
ε
3

×10-6

η

ε1

ε2

ε3

Source: the author (2016).



90

6 Conclusions

This work proposed a dynamic control method for the Stewart platform that aims

at rejecting periodic perturbations which may adversely affect the system. The presented

control strategies are based on the inverse kinematics and the Jacobian of the end effec-

tor and, more importantly, on the quaternion-based Newton-Euler representation from

Chapter 3. In this chapter, the platform was geometrically described and its most signif-

icant constructive parameters were defined. In addition, the Jacobian singularities were

presented and the suggested dynamic model validated against the more classical Euler-

angle-based Lagrange model. The presented model may, thus, be used for describing the

Stewart platform.

With the mathematical description of the system validated, the decoupled nature

of the model was leveraged on Chapter 4 to propose two different control strategies.

First, a state-feedback law was designed to control the augmented translational submodel

via an optimization problem subject to LMIs and given performance criteria (ℋ∞ gain

minimization and 𝒟-stability-based eigenvalue placement). In this case, the augmented

states from the resonant and integral controllers provide the dynamic aspect of this control

method. In this context, the resonant controller provides periodic disturbance rejection

characteristics for the designed frequencies while the static state-feedback gain minimizes

the ℋ∞ gain of the external perturbations. In fact, the closed-loop translational system

is asymptotically stable when unperturbed and ℋ∞ finite-gain stable when subject to

perturbations.

Chapter 4 also addressed the nonlinear state-feedback control law of the rotational

submodel of the manipulator. This control strategy was particularly designed to achieve ℒ2

gain performance by making use of the Hamilton-Jacobi inequality and a Lyapunov can-

didate function. The resulting closed-loop system was then linearized and augmented with

resonant and integral states to allow a state-feedback control law to also provide periodic

disturbance rejection characteristics to the rotational submodel. In fact, the closed-loop

rotational system is asymptotically stable when unperturbed and ℒ2 finite-gain stable

when subject to perturbations.

Going further, the coupling of the two suggested controllers was addressed via the

Jacobian matrix, and, finally, an inverse dynamics controller was presented to provide a

solid comparison between the control method described in this work and the strategies

proposed in other endeavors.

The proposed controller is robust in the sense that it minimizes the perturbation

to output ℒ2 gain (rotational subsystem), the ℋ∞ gain of the external perturbations
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(translational subsystem) and that any perturbation with a given spectrum is attenuated

(resonant states for the rotational and translational submodels), provided its frequency

spectrum is known a priori and dominated by resonant peaks. The proposed control

technique relies in the fact that the system is not in a singular stance, which can be

guaranteed by avoiding such configurations on the trajectory of the platform.

Next, Chapter 5 presents the main results of this work. The first simulated en-

vironment replicates the effect ocean waves have on a floating Stewart platform. Going

further, an out-of-center load condition was devised in order to evaluate the robustness

on the suggested control methods. In the third and last scenario, instrumentation noise

was injected in the measured states of the controller to assess its behavior given stochastic

exogenous signals. In this same context, an inverse dynamics controller was implemented

with two design criteria for a head-on comparison, namely to possess a similar control

signal and a similar system response to that of the proposed control method. While the

IDC with similar control signal did not present control signal chattering, its steady-state

performance fell short of that of the proposed controller. On the other hand, the IDC with

similar system response was negatively affected by the use of high gains, showing visible

chattering on the actuator forces.

Contrary to the IDC, the proposed controllers need some parameter tuning, such as

the constants of the ℒ2 controller for example, but cope much better to model uncertainties

and load conditions. In addition, the approach used may be further extended and improved

with the techniques presented on Section 6.1, which by itself should provide another set

of interesting results and research topics.

In conclusion, the control method suggested in this work had both a smooth control

signal and a significant attenuation of external perturbations. These results validate, thus,

the effectiveness of the suggested control strategy for periodic disturbance rejection on

the Stewart platform.

6.1 Future Works

This work addresses some important topics concerning the rejection of periodic

disturbances on the Stewart platform. Nevertheless, the control strategies presented here

may be further improved by the use of some additional techniques. It is suggested for

future research that the stability of the complete platform be taken into account by using

the passivity concept, which relates nicely to ℒ2 stability (KHALIL; GRIZZLE, 1996)

and may allow the Jacobian to be considered in the stability proof formulation. Another

useful contribution would be the consideration of actuator saturation in such proof, as

well as on the developed control law. Furthermore, instead of relying on FFT to define

the harmonics to attenuate, one could also perform trigonometric relations to compute
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the resulting harmonics to reject.

Given that LMI constraints were widely applied in this work, it is suggested also

that a polytopic approach be used to guarantee further robustness of the closed-loop

system. In addition, a repetitive controller may be used in a unified approach with the

resonant controller to reduce the residual steady-state error presented (SALTON et al.,

2013) and the system linearization performed on Section 4.2.2.1 may be avoided by using

the nonlinear internal model principle formulation (ISIDORI; MARCONI; SERRANI,

2012).
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