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PROJETO E EXPLORAÇÃO DE MPSOCS 3D COM SUPORTE A CACHES 
INTRACHIP 

 
RESUMO 

Avanços na tecnologia de fabricação de semicondutores permitiram implementar um 
sistema computacional completo em um único chip, em inglês de System-on-Chip (SoC). 
SoCs integram múltiplos elementos de processamento (PEs), componentes de memória e 
dispositivos de entrada/saída. Este trabalho emprega o termo inglês Multiprocessor 
System-on-Chip (MPSoCs) para um SoC que integra múltiplos PEs cooperantes. 

À medida que o número de PEs aumenta em um MPSoC, torna-se necessário o uso 
de arquiteturas que proveem escalabilidade e concorrência da comunicação. A rede 
intrachip, em inglês Network-on-Chip (NoC), que interconecta o sistema através de 
roteadores distribuídos no chip foi proposta para atender estes requisitos. 

O sistema de interconexão também deve prover recursos para atender a 
comunicação entre PEs e módulos de memória. Infelizmente, trabalhos prévios 
demonstraram que basear toda a comunicação de memória com uma NoC não é adequado 
para atender os requisitos de latência. Além disso, muitas propostas baseadas em NoC 
descartam o suporte à programação do tipo memória compartilhada que permanece um 
requisito básico de aplicações paralelas. 

A principal contribuição deste trabalho é o projeto e exploração experimental de 
MPSoCs 3D com suporte a caches intrachip que empregam uma matriz de chaveamento 
com suporte à coerência de cache para comunicação entre PEs e a hierarquia de memória, 
e uma NoC para a intercomunicação de PEs, devido à sua eficiência em transmitir 
pequenos pacotes e sua escalabilidade. 

Resultados experimentais foram realizados com o simulador Gem5 utilizando o 
conjunto de instruções da ARM e dois benchmarks: PARSEC e NASA NAS. Os resultados 
foram organizados em três conjuntos de avaliação: 

1. Avaliação da memória principal utilizando memórias emergentes baseadas em 
tecnologias 3D e duas memórias tradicionais para desktops: Double Data Rate (DDR) 
e Low Power (LP) DDR. Para a pluralidade das aplicações, memórias emergentes 
resultaram em um impacto igual ou menor que 10% de acréscimo no tempo de 
execução provendo significativa redução no consumo de energia, quando 
comparadas às memórias tipo DDR; 

2. Avaliação de caches utilizando cinco arquiteturas de cache e explorando seus efeitos 
no tempo de execução de aplicações e consumo de energia. Foram exploradas três 
arquiteturas compartilhadas e duas arquiteturas privadas em caches L2. Para a 
maioria das aplicações, a tradicional arquitetura compartilhada da L2 mostrou o 
melhor tempo de execução. Entretanto, para o consumo de energia, as arquiteturas 
L2 privadas obtiveram os melhores resultados; 

3. Avaliação da escalabilidade do sistema proposto. Os experimentos utilizaram vários 

tamanhos de clusters e aplicações baseadas em troca de mensagens. 

 

Palavras Chave: MPSoC baseado em NoC, MPSoC 3D, Hierarquia de memória, Coerência 

de cache, MPSoC com suporte a caches intrachip.  



 
 
 



 
 

DESIGN AND EXPLORATION OF 3D MPSOCS WITH ON-CHIP CACHE 
SUPPORT 

 
ABSTRACT 

Advances in semiconductor manufacturing technology have allowed implement the 
whole computing system into a single chip, which is namely System-on-Chip (SoC). SoCs 
integrate several processing elements (PE), memory components and I/O devices. This 
work employs the term Multiprocessor Systems-on-Chip (MPSoCs) to SoCs that integrate 
several cooperating PEs. 

The increasing quantity of PEs in an MPSoC demands the use of architectures that 
provide scalability and concurrent communication. The Network-on-Chip (NoC) that 
interconnects the system through distributed routers has come to tackle these requirements. 

The interconnection system must also provide resources to fulfil the communication 
between PEs and memory modules. Unfortunately, previous works have shown that a single 
packet-based NoC is not well-suited to provide scalability and low latency for cache 
supported systems. Additionally, many NoC-based designs lack support for a shared-
memory programming model that is an essential requirement for most of the parallel 
applications. 

The main contribution of this work is the design and experimental exploration of 3D 
MPSoCs with on-chip cache support that employ a crossbar-based infrastructure for the 
cache-coherent memory hierarchy, and a packet-based NoC for inter-processor 
communication, due to its efficiency in travelling small packets and its benefits to ever-
increasing scalability requirements. 

Experimental results performed on the Gem5 simulator using the ARM’s ISA and 
PARSEC and NASA NAS benchmarks were conducted under three evaluations scenarios: 

1. Main memory evaluation using emerging 3D memory technologies and two traditional 
desktop memories: Double Data Rate (DDR) and mobile Low Power (LP) DDR. For 
the plurality of the applications, the emerging 3D memory technologies had less or 
equal than 10% of runtime execution increase providing significant energy saving 
when compared with DDR memories; 

2. Cache evaluation using five cache architectures and exploring its effects on execution 
runtime and energy consumption. Three shared L2 cache designs and two private L2 
cache design were explored. For the majority of the applications evaluated, the 
traditional shared L2 design had the lowest execution runtime. However, the private 
L2 designs showed the lowest energy consumption; 

3. Scalability evaluation of the proposed system. Experiments using various sizes of 
clusters and applications based on message exchange. 

 

 

 

Keywords: NoC-based MPSoC, 3D MPSoC, Memory hierarchy, Cache coherence, MPSoC 

with on-chip cache support.  



 
 
 



 
 

LIST OF FIGURES 

FIGURE 1. WIRING LENGTH OF SIMPLE LAYER VS A STACK OF SMALLER LAYERS [LI06]. ................... 21 

FIGURE 2. EIGHT CATEGORIES OF CACHE ARCHITECTURES DERIVED FROM [BAL11]. ..................... 25 

FIGURE 3. EFFECT OF INCREASING DATA BANKS ON MULTI-BANKED L2 CACHES [LEE15A]. ............. 26 

FIGURE 4. SCHEMATIC EXEMPLIFICATION OF AN MPSOC WITH CACHE HIERARCHY COMPOSED BY 

PRIVATE L1 AND L2 CACHES (BASED ON [ASA09]). .................................................... 27 

FIGURE 5. CONCEPTUAL DIAGRAM OF THE STRUCTURE OF THE INTEL XEON PHI COPROCESSOR 

[INT14]. .................................................................................................................. 28 

FIGURE 6. GENERAL-PURPOSE CORE UNIT OF TILE-GX100 [TIL11B]. ............................................ 29 

FIGURE 7. SCHEMATIC ILLUSTRATION OF AN MPSOC WITH SHARED L2 CACHES (BASED ON 

[ASA09]). ............................................................................................................... 29 

FIGURE 8. POWER8 SMP TOPOLOGY FORMING UP TO 4 GROUPS COMPRISED OF 4-CHIP PER GROUP 

[STA15]. ................................................................................................................ 30 

FIGURE 9. SPARC64-X DIE CONTAINING 16 CORES AND 4 BANKS OF L2 CACHE [REG15]. ............. 30 

FIGURE 10. SPARC M7: (A) SCHEMATIC OF CORE CLUSTER DESIGN, AND (B) CHIP LAYOUT [SIV14].
 .............................................................................................................................. 31 

FIGURE 11. ON-CHIP NETWORK REQUEST AND DATA TOPOLOGY. THE RESPONSE NETWORK IS 

OMITTED IN THIS REPRESENTATION [AIN15]. ............................................................. 31 

FIGURE 12. THE P2012 CLUSTER [BEN10]. ................................................................................ 32 

FIGURE 13. ARCHITECTURE OF THE EXYNOS 5 OCTA SOC [SAM15A]. .......................................... 33 

FIGURE 14. NORMALIZED EXECUTION TIME FOR THREE SYSTEM CONFIGURATIONS [YUN15]. .......... 35 

FIGURE 15. EFFECTIVENESS OF CACHE ISOLATION IN (A) IN-ORDER CORES AND (B) O3 CORES 

[YUN15]. ................................................................................................................ 36 

FIGURE 16. FROM SINGLE MULTITHREADED TO CMP AND CLUSTERED MULTITHREADED 

ARCHITECTURE (BASED ON [ELM05]). ....................................................................... 37 

FIGURE 17. PERFORMANCE OF THE CENTRALIZED CACHE [GAR05]. ............................................. 37 

FIGURE 18. NORMALIZED EXECUTION TIME OF SIX CACHE ARCHITECTURES [GAR05]. .................... 38 

FIGURE 19. OVERALL OPERATIONS IN FOUR CACHE ORGANIZATIONS [GAR05]. ............................. 39 

FIGURE 20. TWO OF EIGHT L2 CACHE DESIGNS STUDIED ON A 2D MPSOC [YE10]. ....................... 41 

FIGURE 21. AVERAGE DELAY OF FOUR L2 CACHE DESIGNS ON THE 8×8 2D MPSOC [YE10]. PIR IS 

THE PACKET INJECTION RATE EXPRESSED IN PACKETS PER CYCLE. ............................. 42 

FIGURE 22. SIXTEEN CORE TILES (LEFT) AND THE DESIGN OF A SINGLE CORE (RIGHT) (BASED ON 

[CHO06]). .............................................................................................................. 42 

FIGURE 23. DETAILED FLOW (A) AND DELAY (B) OF MEMORY REQUESTS AND RESPONSES [SHA12]. 43 

FIGURE 24. WORKLOAD EMPLOYED BY SHARIFI ET AL. [SHA12]. .................................................. 44 

FIGURE 25. NORMALIZED SPEEDUP FOR MEMORY INTENSIVE WORKLOADS [SHA12]. ..................... 44 

FIGURE 26. 3D HARDWARE ARCHITECTURE [LOI10]. .................................................................... 45 

FIGURE 27. ILLUSTRATION OF THE ARCHITECTURE PROPOSED BY [LOI10]. .................................... 45 

FIGURE 28. DISTRIBUTED MEMORY WITH DIRECT ACCESS MODEL [FU14]. ..................................... 46 

FIGURE 29. AVERAGE ACCESS LATENCY BREAKDOWN FOR THE PARSEC BENCHMARK SUITE 

[FU14]. ................................................................................................................... 47 

FIGURE 30. CACHE SUBARRAY DESIGN [WOO10]. ....................................................................... 47 

FIGURE 31. SMART-3D DESIGN: 64 BYTES-WIDE BUS WITH TSVS DIRECTLY ON TOP OF EACH L2 

SUB-BANK [WOO10]. ............................................................................................... 48 

FIGURE 32. 2-CORE SYSTEM PERFORMANCE IMPROVEMENT UNDER DIFFERENT ARCHITECTURES 

[WOO10]................................................................................................................ 48 

FIGURE 33. DYNAMIC ENERGY CONSUMPTION OF 3D-BASE AND 3D-SMART [WOO10]. ............... 49 

FIGURE 34. RANGE OF SYSTEM CONFIGURATIONS UNDER A 250 MW POWER BUDGET [FIC13]. ....... 50 

FIGURE 35. MANYCORE ARCHITECTURE PROPOSED BY GUTHMUTTER, MIRO-PANADES AND 

GREINER [GUT12]. ................................................................................................. 51 

FIGURE 36. (A) NORMALIZED EXECUTION TIME FOR ALL TEST CASES, AND (B) EXECUTION TIME FOR 

THE FFT 220 BENCHMARK [GUT12]. ........................................................................ 51 

FIGURE 37. AREA BREAKDOWN WITH THREE TSV DIAMETERS [GUT12]. ....................................... 52 



 
 
FIGURE 38. TDMA BUS AS THE COMMUNICATION PILLAR [LI06]. ................................................... 52 

FIGURE 39. (A) 3D ARCHITECTURE DESIGN; (B) 2D ARCHITECTURE DESIGN AND; (C) NUMBER OF 

HOPS FOR BOTH ARCHITECTURES [LI06]. .................................................................. 53 

FIGURE 40. AVERAGE L2 HIT LATENCY UNDER FOUR ARCHITECTURAL SCHEMES (BASED ON [LI06]). 53 

FIGURE 41. (A) THREE COMMUNICATIONS TARGETING THE CENTRAL CORE, AND (B) THE CONTROL 

FLIT STRUCTURE [NIK15]. ........................................................................................ 54 

FIGURE 42. (A) PERCENTAGE OF SRAM VS STT-RAM USE AND (B) L2 MISS RATE [NIK15]. .......... 55 

FIGURE 43. THE EFFECTS OF CACHE AND DRAM IN A JPEG2000 ENCODER [SCH15A]. ................ 55 

FIGURE 44. FAST DRAM LAYER AND 8 DRAM LAYERS [SCH15A]. ............................................... 56 

FIGURE 45. SIMULATION RESULTS OF THE EFFECT OF L2 CACHE SIZE REDUCTION IN COMBINATION 

WITH FAST DRAM LAYER, (A) ENCODER (B) DECODER [SCH15A]. ............................... 56 

FIGURE 46. PERFORMANCE (TOP) AND POWER (BOTTOM) COMPARISON OF THE FOUR L2 MEMORY 

TECHNOLOGIES UNDER THE SAME AREA CONSTRAINT [WU09]. ................................... 57 

FIGURE 47. PERFORMANCE OF SRAM-MRAM (HEREIN CALLED RHCA) AGAINST BASELINE SRAM 

CACHE, BEST INTER LEVEL HYBRID CACHE (HEREIN CALLED LHCA), AND DYNAMIC 

NUCA [WU09]. ....................................................................................................... 57 

FIGURE 48. SCHEMATIC OF (A) ATOMICSIMPLE AND (B) TIMINGSIMPLE CPU MODELS [SAI12]. ....... 60 

FIGURE 49. INITIALIZATION OF GEM5 (BASED ON [GEM15E]). ....................................................... 62 

FIGURE 50. GEM5 SIMULATION (A) INPUTS, (B) RUNTIME INTERFACES AND (C) OUTPUTS (BASED ON 

[WIE12])................................................................................................................. 63 

FIGURE 51. EXAMPLE OF A SIMPLE HARDWARE (LEFT) AND ITS REPRESENTATION AS A GRAPH 

(RIGHT) [FRA04]. .................................................................................................... 65 

FIGURE 52. CABA REPRESENTATION OF THE PREVIOUS HARDWARE DESCRIPTION IN FIGURE 51 

(THIS IS NOT THE FINAL OPTIMIZED VERSION) [FRA04]. .............................................. 65 

FIGURE 53. EXAMPLE OF A SIMULATION PLATFORM IN RABBITS [GLI09]. ....................................... 66 

FIGURE 54. EXAMPLE OF A DML DEVICE PROGRAMMING INTERFACE [WIN10]. .............................. 66 

FIGURE 55. EXEMPLIFICATION OF THE ENERGY CONSUMPTION OF A MEMORY CACHE. .................... 69 

FIGURE 56. PIPELINE STAGES OF (A) CORTEX-A7 AND (B) GEM5 O3 CPU MODEL (BASED ON 

[ARM11B][GEM15F]). ............................................................................................. 73 

FIGURE 57. SCHEMATIC REPRESENTATION OF (A) ON-CHIP COMMUNICATION SYSTEM PERFORMED 

WITH A CROSSBAR CONNECTED TO A NOC THROUGH A ROUTER PORT; (B) THE SAME 

PROCESSORS WITH L1 CACHES OF DATA AND CODE AND THE GEM5’S CCI MEMORY 

INTERCONNECTION. ................................................................................................. 74 

FIGURE 58. A CLUSTER OF EIGHT PROCESSORS WITH MESSAGE COMMUNICATION AND MEMORY 

ARCHITECTURES. ..................................................................................................... 74 

FIGURE 59. FIRST TIER OF THE SYSTEM (MESSAGE COMMUNICATION AND MEMORY 

ARCHITECTURES)..................................................................................................... 75 

FIGURE 60. SECOND TIER OF THE SYSTEM (CACHE L2 AND CCI). ................................................. 76 

FIGURE 61. CACHE TRAFFIC IN BYTES PER INSTRUCTION FOR ONE TO SIXTEEN CORES (BASED ON 

[BIE08]). ................................................................................................................ 80 

FIGURE 62. SCALABILITY OF BLACKSCHOLES (A) AS REPORTED BY PUSUKURI, GUPTA, AND BHUYAN 

[PUS11]; (B) MEASURED BY SHOUTERN AND RENAU [SOU15A][SOU15B]. ................. 81 

FIGURE 63. SPEEDUP OF BODYTRACK AND BLACKSCHOLES FOR ALL INPUT SETS FOR BOTH ROI AND 

FULL EXECUTION (BASED ON [SOU15A]). .................................................................. 82 

FIGURE 64. MAXIMUM SPEEDUP OBSERVED FOR ALL MACHINES TESTED FOR EACH BENCHMARK, 
REGION, AND INPUT SET COMBINATION [SOU15A]. ..................................................... 83 

FIGURE 65. ALTERNATING COMPUTATION AND COMMUNICATION PHASES IN AN APPLICATION 

[WAH98]. ............................................................................................................... 86 

FIGURE 66. TOTAL SIMULATION TIME FOR EXPERIMENTAL EVALUATIONS. ....................................... 90 

FIGURE 67. SURFACE AREA OF 1GB GDDR5 AND HBM TECHNOLOGIES [WCC15]. ...................... 94 

FIGURE 68. THE EXECUTION TIME OF EIGHT APPLICATIONS VERSUS SIX MEMORY TECHNOLOGIES. 
ALL VALUES ARE RELATIVELY NORMALIZED ACCORDING TO THE DDR3; I.E., FOR ALL 

APPLICATIONS, THE EXECUTION TIME OF DDR3 IS 0% AND THE REMAINING VALUES ARE 

PERCEPTUAL DEVIATIONS OF THIS REFERENCE. FIGURES (A) AND (B) GROUP THE 

VALUES ACCORDING TO THE APPLICATION AND THE MEMORY TECHNOLOGY, 
RESPECTIVELY. ....................................................................................................... 96 

FIGURE 69. SPEEDUP OF SOME PARSEC APPLICATIONS (HIGHER IS BETTER). .............................. 97 



 
 
FIGURE 70. MISS RATE AS A FUNCTION LINE SIZE. DATA EXECUTED ON AN 8-CORE SYSTEM WITH 

4MB (BASED ON [BIE08]). ........................................................................................ 97 

FIGURE 71. AVERAGE OF DRAM AND L2 LATENCY FOR THE DEDUP APPLICATION. ERROR BARS 

REPRESENT THE LOWEST AND HIGHEST AVERAGE VALUES ENCOUNTERED................... 99 

FIGURE 72. THE X264 APPLICATION ENCODING 128 FRAMES OF A 640×380 VIDEO EMPLOYING SIX 

MEMORY TECHNOLOGIES UNDER THE SIMLARGE INPUT SET. ....................................... 100 

FIGURE 75. EXAMPLE OF THE CACHE ORGANIZATIONS CONTAINING FOUR CPUS: (A) SHARED L2 

I+D; (B) PRIVATE L2; (C) PRIVATE L2 I+D; AND (D) PAIRED SHARED L2. ..................... 101 

FIGURE 76. THE EXECUTION TIME OF EIGHT APPLICATIONS ACCORDING TO FOUR CACHE 

ORGANIZATIONS (LOWER IS BETTER). ALL VALUES ARE RELATIVELY NORMALIZED 

ACCORDING TO THE BASELINE CACHE; I.E., FOR ALL APPLICATIONS, THE EXECUTION 

TIME OF THE BASELINE CACHE IS 0% AND THE REMAINING VALUES ARE PERCEPTUAL 

DEVIATIONS OF THIS REFERENCE. FIGURES (A) AND (B) GROUP THE VALUES ACCORDING 

TO THE APPLICATION AND THE CACHE ORGANIZATIONS, RESPECTIVELY. ...................... 102 

FIGURE 77. (A) DYNAMIC AND (B) STATIC POWER DISSIPATION (SUBTHRESHOLD AND GATE LEAKAGE) 
FOR ALL CACHE ORGANIZATIONS EVALUATED. ............................................................ 105 

FIGURE 78. AREA OCCUPATION (IN MM2) FOR ALL CACHE ORGANIZATIONS. ................................... 106 

FIGURE 79. THE X264 APPLICATION ENCODING 128 FRAMES OF A 640×380 VIDEO EMPLOYING FIVE 

CACHE ORGANIZATIONS UNDER THE SIMLARGE INPUT SET. ......................................... 107 

FIGURE 80. LOGICAL ORGANIZATION OF 4×8-CORE CLUSTERS ARCHITECTURE. ............................. 108 

FIGURE 81. LOGICAL ORGANIZATION OF 8×4-CORE CLUSTERS ARCHITECTURE. ............................. 109 

FIGURE 82. LOGICAL ORGANIZATION OF 16×2-CORE CLUSTERS ARCHITECTURE. ........................... 109 

FIGURE 83. LOGICAL ORGANIZATION OF 32×1-CORE CLUSTERS ARCHITECTURE. ........................... 110 

FIGURE 84. THE EXECUTION TIME OF FIVE APPLICATIONS ACCORDING TO FOUR CLUSTER 

ORGANIZATIONS. ALL VALUES ARE RELATIVELY NORMALIZED ACCORDING TO THE 4×8-
CORE CLUSTERS; I.E., FOR ALL APPLICATIONS, THE EXECUTION TIME OF THIS CLUSTER 

IS 0% AND THE REMAINING VALUES ARE PERCEPTUAL DEVIATIONS OF THIS REFERENCE. 
FIGURES (A) AND (B) GROUP THE VALUES ACCORDING TO THE APPLICATION AND MILLION 

OPERATIONS/SECOND/CORES, RESPECTIVELY. .......................................................... 112 

FIGURE 85. EXAMPLE OF 3D MPSOC ARCHITECTURE EXPLORATION WITH 5 TIERS. THE EXTERNAL 

TIERS ENCOMPASSES PROCESSING ELEMENTS AND L1 CACHES. THE TWO INNER TIERS 

CONNECTED TO THE EXTERNAL TIERS INCLUDES L2 CACHES WITH SEPARATE DATA AND 

CODE ADDRESSING. FINALLY, THE INNERMOST TIER IS A L3 CACHE LEVEL, WHICH MIXES 

DATA AND CODE ADDRESSING. .................................................................................. 115 

FIGURE 86. ARCHITECTURAL EXPLORATION OF 3D SYSTEM WITH SOME UMA, TIERS AND NORMA 

ELEMENTS. THE VALUES ARE ENCODED AS (UMA, 3D - TIERS, NORMA)..................... 116 

 
  



 
 
 



 
 

LIST OF TABLES 

TABLE 1. CLASSIFICATION, INTERCONNECT FABRIC, NUMBER OF CORES, AND CACHE LATENCIES OF 

CHIPS. .................................................................................................................... 34 
TABLE 2. TECHNOLOGY AND 3D CHIPS PRESENTED. .................................................................... 34 
TABLE 3. ADVANTAGES AND DISADVANTAGES OF SHARED AND PRIVATE L2 CACHES [BAL11]. ........ 40 
TABLE 4. SIX TEST CASES SCENARIOS [GUT12]. .......................................................................... 51 
TABLE 5. RELATED WORK SUMMARY. .......................................................................................... 58 
TABLE 6. TAXONOMY OF FULL SYSTEM SIMULATORS..................................................................... 68 
TABLE 7. QUALITATIVE COMPARISON OF THE IMPORTANCE OF SOME MEMORY REQUIREMENTS FOR 

THE EVALUATED CACHE LEVEL. THE COLORS INDICATE THE IMPORTANCE OF EACH 

LEVEL AGAINST THE SPECIFIED CRITERIA. BLUE, YELLOW AND RED MEANS LOW, 
INTERMEDIATE AND HIGH IMPORTANCE, RESPECTIVELY. ............................................. 70 

TABLE 8. CHARACTERIZATION OF THE VERSATILE EXPRESS DEVELOPMENT BOARD (BASED ON 

[ARM11A][ARM12A][ARM12B][ARM15A])............................................................... 71 
TABLE 9. DEFAULT PARAMETERS FOR THE MODELLING OF ARM VERSATILE EXPRESS ON GEM5 

(BASED ON [END14][GEM15F][GUT14][SAI12]). ..................................................... 72 
TABLE 10. QUALITATIVE SUMMARY OF KEY CHARACTERISTICS OF PARSEC BENCHMARKS [BIE08]. 78 
TABLE 11. BREAKDOWN OF FINER DETAILS OF THE BENCHMARK APPLICATIONS FOR INPUT SET 

SIMLARGE ON A SYSTEM WITH 8 CORES [BIE08]. ....................................................... 79 
TABLE 12. THE SPEEDUP OF SIMLARGE FULL AND ROI MODELS NORMALIZED ACCORDING TO THE 

NATIVE FULL MODEL. POSITIVE AND NEGATIVE VALUES MEAN SPEEDUP INCREASE OR 

REDUCTION, RESPECTIVELY...................................................................................... 83 
TABLE 13. WALL-CLOCK TIME FOR THE TIMING CPU MODEL OF A BROAD RANGE OF PARSEC 

APPLICATIONS. ........................................................................................................ 84 
TABLE 14. EXTENDED RANGE OF PARSEC APPLICATIONS UNDER EIGHT O3 CPU CORES. 

SIMULATION TIME IS IN WALL-CLOCK TIME. ................................................................. 84 
TABLE 15. INPUT SET PARAMETERS FOR THE CG APPLICATION (BASED ON [NAS15B]). .................. 85 
TABLE 16. STATISTICS OF COMMUNICATION AND COMPUTATION PHASES OF NPB ON ORIGIN2000 

[WAH98]. ............................................................................................................... 86 
TABLE 17. WALL-CLOCK TIME FOR THE O3 CPU MODEL OF NASA NAS APPLICATIONS. ................. 87 
TABLE 18. NUMBER OF THREADS SPAWN BY EACH BENCHMARK, WHERE N IS THE USER-DEFINED 

MINIMUM THREADS PARAMETER (BASED ON [SOU15A]). ............................................. 89 
TABLE 19. BASELINE CACHE CONFIGURATION. ............................................................................. 90 
TABLE 20. TOTAL INSTRUCTION COUNT PER MILLION (× 106) AND PER CORE COUNT FOR EACH 

PARSEC APPLICATION. ........................................................................................... 91 
TABLE 21. TOTAL INSTRUCTION COUNT PER MILLION (× 106) AND PER CORE COUNT (0 – 7) FOR EACH 

NASA NAS APPLICATION. ........................................................................................ 92 
TABLE 22. TOTAL INSTRUCTION COUNT PER MILLION (× 106) AND PER CORE COUNT (8 – 15) FOR 

EACH NASA NAS APPLICATION. ............................................................................... 92 
TABLE 23. TOTAL INSTRUCTION COUNT PER MILLION (× 106) AND PER CORE COUNT (16 – 23) FOR 

EACH NASA NAS APPLICATION. ............................................................................... 92 
TABLE 24. TOTAL INSTRUCTION COUNT PER MILLION (× 106) AND PER CORE COUNT (24 – 31) FOR 

EACH NASA NAS APPLICATION. ............................................................................... 92 
TABLE 25. TOTAL AND PER CORE ACTIVE POWER DISSIPATION FOR EACH PARSEC APPLICATION. .. 93 
TABLE 26. MAIN MEMORY MODELS FOR EVALUATION. ................................................................... 93 
TABLE 27. EXECUTION TIME (IN SECONDS) OF THE APPLICATIONS OF PARSEC BENCHMARK VERSUS 

SIX MEMORY TECHNOLOGIES. ................................................................................... 95 
TABLE 28. CACHE PARAMETERS FOR BASELINE AND FOUR L2 CACHE ORGANIZATIONS. .................. 101 
TABLE 29. EXECUTION TIME (IN SECONDS) OF EIGHT APPLICATIONS OF PARSEC BENCHMARK 

ACCORDING TO A BASELINE AND FOUR OTHER CACHE ORGANIZATIONS. ....................... 102 
TABLE 30. L2 MISS RATES FOR THE BLACKSCHOLES APPLICATION. ............................................... 103 
TABLE 31. L2 MISS RATES FOR THE BODYTRACK APPLICATION. ..................................................... 103 
TABLE 32. L2 MISS RATE FOR THE X264 APPLICATION. ................................................................. 104 



 
 
TABLE 33. FOUR DIFFERENT SIZED CLUSTERS AND ITS CACHE PARAMETERS. ................................. 108 
TABLE 34. EXECUTION TIME (IN SECONDS) OF FIVE APPLICATIONS OF NASA NAS BENCHMARK 

ACCORDING TO FOUR CLUSTER ORGANIZATIONS. ....................................................... 111 
TABLE 35. MILLION OPERATION/SECOND/CORE OF FIVE APPLICATIONS OF NASA NAS BENCHMARK 

ACCORDING TO FOUR CLUSTER ORGANIZATIONS. ....................................................... 111 
 
  



 
 

LIST OF ACRONYMS 

2D  Two-Dimensional 

3D  Three-Dimensional 

API  Application Programming Interface 

CABA  Cycle Accurate Bit Accurate 

CCI  Cache Coherent Interconnect 

CMOS Complementary Metal-Oxide-Semiconductor 

CMP  Chip MultiProcessor 

DDR  Double Data Rate 

DMA  Direct Memory Access 

DRAM Dynamic Random Access Memory 

DVFS  Dynamic Voltage and Frequency Scaling 

eDRAM Embedded Dynamic Random Access Memory 

FS  Full System 

GALS  Globally Asynchronous, Locally Synchronous 

Geomean Geometric Mean 

GHB  Global History Buffer 

GIC  Generic Interrupt Controller 

GNU  GNU’s Not Unix 

GPL  General Purpose License 

HBM  Hybrid Bandwidth Memory 

HMC  Hybrid Memory Cube 

HPC  High-Performance Computing 

I + D  Instruction plus Data 

IC  Integrated Circuit 

ISCA  International Symposium on Computer Architecture 

IDE  Integrated Development Environment 

IPC  Instruction Per Cycle 

ISA  Instruction Set Architecture 

ISS  Instruction Set Simulator 

LLC  Lower-Level Cache 

LPDDR Low Power Double Data Rate 

LRU  Least Recently Used 

MPP  Massively Parallel Processor 

MPSoC Multiprocessor System-on-Chip 

MSHR  Miss Status Holding Register 

NAS  Numerical Aerodynamic Simulation 

NPB  NAS Parallel Benchmarks 

NR  Non-replicated 

NUCA  Non-Uniform Cache Architecture 

NUMA  Non-Uniform Memory Access 

NoC  Network-on-Chip 

NORMA NO Remote Memory Access  



 
 
NR  Non-Replicated 

O3  Out-Of-Order 

OS  Operating System 

OSCI  Open SystemC Initiative 

OSI  Open System Interconnection 

OVP  Open Virtual Platforms 

PARSEC Princeton Application Repository for Shared-Memory Computers 

PE  Processing Element 

PIPT  Physically Index Physically Tagged 

ROI  Region of Interest 

RTL  Register Transfer Level 

SA  Simulated Annealing 

SCU  Snoop Control Unit 

SE  System-call Emulation 

SMP  Symmetric MultiProcessing 

SoC  System-on-Chip 

SRAM  Static Random Access Memory 

SSE  Streaming SIMD Extensions 

TDP  Thermal Design Point 

TLB  Translation Lookaside Buffer 

TLM  Transactional Level Modeling 

TLM-DT TLM with Discrete Time 

TSV  Through Silicon Via 

UART  Universal Asynchronous Receiver/Transmitter 

UMA  Uniform Memory Access 

VFP  Vector Floating-Point 

VIPT  Virtually Index Physically Tagged 

VNC  Virtual Network Computing 

 



 
 

CONTENTS 

1 INTRODUCTION ........................................................................................................ 21 

1.1 MEMORY HIERARCHY IN MPSOCS ........................................................................... 21 

1.2 MOTIVATION ........................................................................................................... 22 

1.3 CONTRIBUTION ....................................................................................................... 23 

1.4 OBJECTIVES ........................................................................................................... 24 

1.5 ORGANIZATION ....................................................................................................... 24 

2 CACHE HIERARCHY IN MPSOC ARCHITECTURES .............................................. 25 

2.1 MEMORY ARCHITECTURE DESIGN ............................................................................. 26 

2.2 CACHE ORGANIZATION IN MODERN COMMERCIAL AND RESEARCH CHIPS .................... 27 

2.2.1 Private Cache Architecture ............................................................................. 27 

2.2.2 Shared Cache Architecture ............................................................................ 29 

2.2.3 Summary of Private and Shared Cache Architecture ..................................... 33 

2.2.4 Discussion about the Best Cache Model ........................................................ 35 

3 RELATED WORK ...................................................................................................... 41 

3.1 CACHE ORGANIZATION IN 2D MPSOC ARCHITECTURES ............................................. 41 

3.1.1 Ye et al.: Regional Cache Organization for NoC based Many-core 
Processors .................................................................................................................. 41 

3.1.2 Cho and Jin: Managing Distributed, Shared L2 Caches through OS-Level 
Page Allocation ........................................................................................................... 42 

3.1.3 Shirifi et al.: Addressing End-to-End Memory Access Latency in NoC-Based 
Multicores ................................................................................................................... 43 

3.2 CACHE ORGANIZATION IN 3D MPSOC ARCHITECTURES ............................................. 44 

3.2.1 Loi and Benini: An Eefficient Distributed Memory Interface for Many-Core 
Platform with 3D Stacked DRAM ................................................................................ 45 

3.2.2 Fu, Liu, and Chen: Direct Distributed Memory Access for CMPs ................... 46 

3.2.3 Woo et al.: An Optimized 3D-Stacked Memory Architecture by Exploiting 
Excessive, High-Density TSV Bandwidth ................................................................... 47 

3.2.4 Kim et al.: Design and Analysis of 3D-MAPS (3D Massively Parallel Processor 
with Stacked Memory) ................................................................................................ 49 

3.2.5 Fick et al.: Centip3De: A Cluster-Based NTC Architecture With 64 ARM 
Cortex-M3 Cores in 3D Stacked 130 nm CMOS ........................................................ 49 

3.2.6 Guithmuller, Miro-Panades, and Greiner: Adaptive Stackable 3D Cache 
Architecture for Manycores ......................................................................................... 50 

3.2.7 Li et al.: Design and Management of 3D Chip Multiprocessors Using Network-
in-Memory ................................................................................................................... 52 

3.2.8 Niknam et al.: Energy Efficient 3D Hybrid Processor-Memory Architecture for 
the Dark Silicon Age ................................................................................................... 54 

3.2.9 Schoenberger and Hofmann: Analysis of Asymmetric 3D DRAM Architecture 
in Combination with L2 Cache Size Reduction ........................................................... 55 

3.2.10 Wu et al.: Hybrid Cache Architecture with Disparate Memory Technologies.. 56 

3.2.11 Summary of Related Work on 3D MPSoCs .................................................... 57 

4 GEM5: FULL SYSTEM SIMULATOR ........................................................................ 59 



 
 

4.1 INTRODUCTION TO GEM5 ......................................................................................... 59 

4.2 THE ACCURACY OF THE GEM5 SIMULATOR ................................................................ 61 

4.3 SIMULATION DESIGN AND FLOW ............................................................................... 62 

4.4 OVERVIEW OF FULL SYSTEM SIMULATORS ................................................................ 64 

4.4.1 SoCLib ........................................................................................................... 64 

4.4.2 Rabbits ........................................................................................................... 65 

4.4.3 Simics............................................................................................................. 66 

4.4.4 OVP ............................................................................................................... 67 

4.4.5 Taxonomy of Full System Simulators ............................................................. 67 

5 DESIGN AND EXPLORATION OF 3D MPSOC ARCHITECTURE............................ 69 

5.1 ARCHITECTURE BASELINE ........................................................................................ 70 

5.2 ARCHITECTURAL EXPLORATION ................................................................................ 73 

5.3 LIMITATIONS OF THE GEM5’S ARM ISA .................................................................... 76 

5.4 PARSEC – BENCHMARK SUITE FOR MULTIPROCESSING ............................................ 77 

5.4.1 PARSEC benchmark ...................................................................................... 78 

5.4.2 Integration with Gem5’s ARM ISA .................................................................. 83 

5.5 NASA NAS PARALLEL BENCHMARK ......................................................................... 84 

5.5.1 NAS Parallel Benchmark Applications ........................................................... 85 

5.5.2 Integration with Gem5’s ARM ISA .................................................................. 87 

6 EXPERIMENTAL RESULTS ...................................................................................... 89 

6.1 WORKLOAD EVALUATION ......................................................................................... 91 

6.2 MAIN MEMORY EVALUATION..................................................................................... 93 

6.3 CACHE EVALUATION .............................................................................................. 100 

6.4 SCALABILITY EVALUATION ...................................................................................... 107 

7 CONCLUSION AND FUTURE WORK ..................................................................... 113 

8 REFERENCES ......................................................................................................... 117 

 
 



21 
 

1 INTRODUCTION 

The evolution of technologies employed to manufacture Integrated Circuits (ICs) and 
the ever-increasing ratio of transistors per unit area brought the possibility of integrating 
billions of transistors into a single chip, which allows building the complete system 
functionality on a single IC called System-on-Chip (SoC). [INT15a][QUA15] are examples of 
commercial SoCs. 

Recent terascale applications demand complex functionalities requiring massive 
computational resources [ZAR15], boosting the development of the Multiprocessor System-
on-Chip (MPSoC). This architecture encompasses multiple and possibly heterogeneous 
Processing Elements (PEs), a memory hierarchy (i.e., cache layers and main memory) and 
I/O components. Future MPSoCs will be made up of hundreds of such PEs [FER12][ITR11]. 
However, the growth of the quantity of PEs into a single chip requires a scalable 
interconnection to maintain acceptable communication latency and throughput. 

The traditional solutions based on buses can only handle a few PEs and cannot scale 
to higher degrees of parallelism [BEN02]. Two-dimensional (2D) Network-on-chip (NoC) has 
emerged as a communication architecture that can overcome this problem through a 
scalable, packet-based network, inspired by years of study in computer networks 
[AHM10][JIA11]. This network employs a protocol stack similar to the traditional Open 
System Interconnection (OSI) stack to provide an abstraction of the electrical, logic, and 
functional proprieties of the interconnect scheme. Thus, the designer can optimize each 
layer independently. The complexity increase of this network relies on the fact that 
interconnect technology is an important limiting factor for achieving SoC’s operational goals 
[BEN02]. 

Chip designers proposed three-dimensional (3D) ICs, where components are 
distributed through stacked layers, instead of linearly in a single layer to improve data 
communication and throughput [AHM10][FRE12]. Consequently, reducing some complexity 
involved in the fabrication of ICs, such as global wires length [FEE09][FIC13]. Figure 1 
shows an example of reduced wire length due to the stacking of layers. Besides, 3D 
topologies may reduce the hop count when compared to their 2D counterpart [MAR14]. 
According to Feero and Pande [FEE09], there are 40% more hops in a 2D mesh compared 
to that in a 3D mesh. Conversely, multiple stacked layers of IC exacerbates the need for 
heat dissipation. 

 

Figure 1. Wiring length of simple layer vs a stack of smaller layers [LI06]. 

1.1 Memory Hierarchy in MPSoCs 

One of the most critical components that determine the success of an MPSoC-based 
architecture is its memory system [KAN05] because many applications spend a significant 
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portion of their cycles in the memory hierarchy. Delays in the memory hierarchy are critical 
since the processor depends on it to execute instructions. Therefore, the memory hierarchy 
has a higher impact on the performance of an MPSoC-based system than the inter-core 
communication. 

The technology employed to develop PEs advances faster than that used in the 
development of the memory elements, which enables PEs to operate at higher frequencies. 
This disparity allows PEs to consume data at rates not possibly achieved by Dynamic 
Random Access Memories (DRAMs), creating a performance gap [CHA11]. The 
microprocessor architectures frequently use a memory hierarchy to tackle this gap. The idea 
is to provide the illusion of a large and very fast memory, which is done placing faster but 
smaller memories closer to the PE and slower but larger memories increasingly farther from 
it. The smaller memories contain a subset of the entire memory, which usually consists of 
the most access data by the PEs [PAT13]. 

The smaller memories are called caches. Its presence is based on the principle that 
a program does not access all of its code or data at once with equal probability [PAT13]. 
Hence, the set of most referenced information can be stored in a faster memory, maximizing 
the number of instructions executed by a PE. 

Unfortunately, the use of a simple packet-based communication as the foremost 
network compromises the efficiency of the memory hierarchy. Coskun et al. [COS09] 
demonstrated that an UltraSPARC T1 Core occupies 10 mm² of chip area, and an L2 shared 
cache consumes 19 mm² of chip area, in 90 nm technology. Consequently, shared L2 
caches are commonly employed in NoC-based designs since the core area cannot easily 
absorb L2 cache area. This results that any access to an L2 cache must traverse the NoC 
twice: one for requesting the content of a given address and another one for the reply. 

As shown by previous works [FU14][WA08][YE10], even conservative rates of 
packets injection (i.e., ≤ 1%) result in large 2D NoC latencies due to congestion caused by 
the intensive memory accesses and inter-core communication. For instance, Ye et al. [YE10] 
show that two L2 cache blocks distributed into an 8×8 NoC and packets injection rate of only 
0.2% results in 1976 cycles of network latency, in average – a prohibitive latency for such 
small injection rate. These works have also demonstrated that on-chip traffic congestion is 
primarily caused by the intensive memory access requests and responses. Thus, a better 
design must be employed to tackle this situation with efficiency [YE10]. 

1.2 Motivation 

3D ICs present a promising technology for cache-enabled architecture schemes in a 
NoC-based design. This technology enables the efficient manufacture of both logic and 
memory into a single IC, as they can be produced independently and integrated in a latter 
process [LOI10]. Furthermore, such fabrication process enables the use of emerging new 
technologies, such as 3D main memories enabled by Through Silicon Vias (TSVs) 
connection. The integration of main memory and processor in a single chip package allows 
new design explorations for energy saving and throughput, as they are not affected by 
limited I/O pin count. 

Secondly, 3D NoCs have emerged to reduce the length and the number of global 
interconnections that packets must pass through, and consequently, enabling to decrease 
the network latency and to increase its throughput [FER15]. Nonetheless, NoC architectures 
hardly fulfill the latency and throughput requirements for memory systems, since memory 
access rates are normally orders of magnitude higher than message exchange rate, even 
for I/O bounded systems. Thus, this work proposes a two-layer abstract system that employs 
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disparate communication architectures for the inter-processor and the memory system 
communication; i.e., a NoC performs the inter-processor communication, whereas a special 
purpose architecture fulfills the memory communication requirements. 

1.3 Contribution 

The main contribution of this work is the design and experimental exploration of 3D 
MPSoCs with on-chip cache support that employs independent infrastructures for inter-
processor and memory system communication. We propose the use of packet-based NoC 
for inter-processor communication due to its efficiency on traveling small packets and its 
benefits on ever-increasing scalability requirements [BEN02]. For the memory system, we 
propose the use of a cache coherence hierarchy implemented in a crossbar-based 
infrastructure. 

However, as hardware coherence is costly to maintain and does not scale efficiently 
[MAT10], our system has a two-layer architecture. The first layer is the interconnection 
among PEs of a cluster presenting a single coherent address space and a Uniform Memory 
Access (UMA) model. The second layer interconnects clusters through an NO Remote 
Memory Access (NORMA) model – i.e., clusters do not share address space. As such, a 
NoC architecture accomplishes the communication between clusters having the potential to 
scale to hundreds of PEs. 

Additionally, aggregating UMA and NORMA models in the same target architecture 
enables us to use multiprocessing and multicomputer programming jointly, which enlarges 
the exploration and implementation spectrum of highly complex applications. 

The experimental results were performed on the Gem5 simulator [BIN11] due to its 
ability to accurately model a coherent memory system, while being several times faster than 
a hardware-level model. The target architecture is based on the ARM Versatile Express 
development board [ARM15a]. 

This work adopts scenarios employing 3D IC to provide fast communication between 
processors and caches using a cache coherent interconnect. Since TSV are shorter and 
wider than intra-layer interconnects, they support higher signaling speeds [EBR13]. Besides, 
TSV-enabled memories are employed to provide even additional bandwidth and energy 
saving. 

The experimental results are organized in four evaluations. First, we analyze the 
instruction-level parallelism provided by the parallel workloads and the vanilla Linux kernel 
scheduler. This result is fed to a power estimation tool (McPAT [HP15]) to provide runtime 
dynamic energy consumption. Then, we analyze the impact on the execution time of the 
parallel workloads under a diverse set of memory technologies. This set is comprised of 
conventional desktop memories, mobile low-power memories, and TSV-enabled emerging 
technologies. We complement this study with five different cache architectures and, again, 
analyze the impact on execution runtime. Besides, these scenarios provide energy 
consumption analysis. Finally, the scalability of the system is tested using diverse sized 
clusters on the UMA model. 

The results demonstrate that the impact on execution runtime for the newer TSV-
enabled memories are within -10% and 10% for half of the applications employed (4 out of 
8), which is an impressive result, considering the focus of today’s memories on energy 
saving. The remaining two applications suffer to achieve a desirable speed-up and do not 
perform as well for these types of memories. 
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The conventional shared L2 design has the best execution runtime of all cache 
architectures explored in this work. Unfortunately, its design has one of the most demanding 
power consumption. As such, every cache design is a different optimization point regarding 
execution runtime and power consumption. 

The NoC-based design shows a remarkable performance for appropriate applications 
and scales well. 

1.4 Objectives 

This work proposes the design of 3D NoC-based MPSoCs with stacked memory 
layers, which is satisfied with the following strategic and specific objectives. 

Strategic: 

1. To explore available simulation tools for memory hierarchy evaluation; 

2. To understand and explore cache design for on-chip shared use; 

3. To assess the impact of main memory design for MPSoCs systems; 

4. To explore 3D MPSoC architectures taking into account a memory-centric 
design (i.e., the fulfillment of the memory requirements). 

Specific: 

1. To analyze the instruction-level parallelism of the parallel workloads employed 
in this work. This evaluation is achieved through a full-system simulator and 
power estimation tool; 

2. To analyze the impact on execution time of a diverse set of memory 
technologies; 

3. To implement and validate 3D MPSoCs with shared/private L2 caches for 
latency and energy evaluations. These assessments are achieved through a 
benchmark suite, aiming to substantiate that such design is efficient to fulfill 
the ever-increasing demand of MPSoCs; 

4. To analyze the inter-cluster communication employing a hierarchical packet-
based NoC. This interface provides the scalability of the architecture. This 
evaluation is achieved using a message passing benchmark suited for this 
type of system. 

1.5 Organization 

This work is organized as follows. Chapter 2 discusses cache organization commonly 
found in MPSoC and multicore architectures and details the major memory architecture 
designs. Chapter 3 presents the related work on 2D and 3D MPSoCs with on-chip cache 
support. Chapter 4 presents the Gem5 simulator – its features, accuracy and shortcomings 
– and an overview of alternative modern full system simulators. Chapter 5 discusses the 
design and exploration of 3D MPSoC in this work. This is complemented with the 
experimental results presented and discussed in Chapter 6. Finally, Chapter 7 presents 
conclusions and directions for future works. 
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2 CACHE HIERARCHY IN MPSOC ARCHITECTURES 

The memory hierarchy of the MPSoC architecture follows the same characteristics 
than the one present in the multicore architecture [ASA09], whose levels represent a tradeoff 
between latency and cost. The hierarchy can be summarized from the higher level of 
performance to the lower ones as follows: multiple levels of cache, main memory, and 
massive storage. Often, the lower levels of this hierarchy are placed outside of chips since 
they do not have a response time suitable to the processor demand and require large 
amounts of chip area. Nonetheless, frequently the higher levels are placed on the chip. 

The first level of the cache hierarchy (i.e., L1 cache) can be easily integrated into the 
processor area because it has few kibibytes of memory, which does not happen with lower 
levels of cache due to their bigger size. 

Balasubramonian and Jouppi [BAL11] classify the cache architecture into eight 
categories derived from concepts that define (i) the relative position of the caches and 
processors - centralized vs. distributed; (ii) the exclusive access of information - private vs. 
shared - and (iii) the latency of memory accesses - uniform vs. non-uniform access. Figure 
2 depicts all cache architectures derived from these concepts. These concepts provide 
tradeoffs regarding wire lengths, throughput, area occupation, and energy consumption and 
imply there is no optimal cache hierarchy to fit every system. 

 

Figure 2. Eight categories of cache architectures derived from [BAL11]. 

Follows the definition of the concepts stipulated by Balasubramonian and Jouppi that 
will be used throughout this work. 

Centralized vs. Distributed: a centralized cache occupies a contiguous area on the 
chip. Conversely, a distributed cache is physically distributed on a chip area. 

Private vs. Shared: a private cache grants exclusive access to a given processor. 
The shared cache shares access among processors, requiring mechanisms for 
cache-coherence operation. 

Uniform access vs. Non-uniform access: in the uniform memory model, all 
processors access the caches with the same latency, whereas in a non-uniform 
memory model, the processors and caches placement implies different latencies. 
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This classification refers to the physical organization of the cache and, as such, 
excludes cache coherent protocols that share information between uniform accesses. 

The multitude of cache levels is not restricted to a single category. Therefore, to clarify 
the discussion herein, we will adopt the terminology of Balasubramonian and Jouppi 
[BAL11]: a cache level closer to the processor is considered an upper-level cache, and, for 
the opposite scenario, i.e., closer to the main memory, the cache is considered a Lower-
Level Cache (LLC). 

Four sections divide the remaining chapter. The first discusses memory access 
models commonly used in processor designs. The second presents commercial chips and 
correlates them with the cache hierarchy in MPSoCs. Finally, the third and fourth sections 
discuss recent researchs in cache hierarchy of 2D and 3D chips, respectively. 

2.1 Memory Architecture Design 

Given the inherent difficulty of writing programs to run efficiently on parallel systems, 
one feature often found is the ability to address the entire physical memory space as a single 
entity. Thus, the programmer does not need to concern itself with the data placement, 
because all variables are accessible at any time to any processor [PAT13]. This type of 
system is named Symmetric MultiProcessing (SMP). When the physical address is a unique 
entity, the hardware typically provides cache coherence to give a consistent view of the 
memory subsystem [MAR12][PAT13]. 

For single address space, two of the most common architectures are UMA and NUMA 
(Non-Uniform Memory Access) [PAT13]. In the first architecture, all processors access any 
memory position with the same latency. In the second architecture, processors access the 
same memory position with different latencies. 

The communication rate among processors and memories limits the performance in 
the UMA architecture. Adding processors to the system beyond some point does not 
increase performance linearly since they share the same memory bandwidth [GEN12]. 
Thus, scaling beyond the dozens of processors requires an NUMA architecture [HWA12]. 
The non-uniformity of access can also be applied to an individual memory unit, whereas the 
access latency depends on the location requested. Older L2 caches were comprised of a 
single bank, which were simpler to design and did not provide parallel access to its data 
content. Nowadays, L2 caches are divided into blocks to allow parallel access and diminish 
the individual bank latency [ARM11a][OLU07]. Nonetheless, such design can increase the 
latency penalty due to the interconnect delay as shown in Figure 3. 

  

Figure 3. Effect of increasing data banks on multi-banked L2 caches [LEE15a]. 

Aiming to minimize this penalty, Kim et al. [KIM02] propose the Non-Uniform Cache 
Architecture (NUCA), which allows avoiding the high latency access due to interconnect 
delay if the cache controller accesses each bank at a speed proportional to its distance from 
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the cache controller. This opens new design space for the exploration of cache policies 
regarding mapping, search algorithm, and data migration [KIM03]. Besides, the designer 
can exploit the various cache latencies to design memory hierarchy with more than one 
technology embedded in the same unit. Wu et al. [WU09] study the effect of using disparate 
memory technologies in both intra- and inter-cache levels. A single cache level partitioned 
into multiple regions, where each region exploits the advantage of the memory technology 
employed (e.g., higher density, lower power dissipation) define the intra-cache level. The 
inter-level cache has the same principle but uses multiple levels of cache to employ more 
than one technology. Experimental results from their work with a full system simulator 
showed that the intra-level cache provides 12% of IPC (Instruction Per Cycle) improvement 
over a 3-level cache design implemented with Static Random Access Memory (SRAM) 
under the same area constraint, in average. Moreover, the inter-level cache provides 7% of 
IPC improvement on the same conditions. 

Future MPSoCs, made of hundreds of processing units [FER12][ITR11], hinder the 
ability of the hardware to provide a coherent view of the entire memory space as proposed 
by the UMA and NUMA architectures. For large-scale systems, NORMA is attractive due to 
its ability to decentralize resources and increase reliability [HWA12]. Processor 
communication is carried out by message passing through the NoC [HWA11], and through 
network protocols. 

2.2 Cache Organization in Modern Commercial and Research Chips 

Up to the 2000s most on-chip cache hierarchies were comprised of two levels of 
cache (L1 and L2). However, in recent years, both the academia and industry employed a 
large effort to standardize the use of L3 cache on-chip [BAL11]. 

As mentioned earlier, L1 can be integrated into the core area and, as such is a private 
component. Nevertheless, this clear trend is not present for the extra levels of cache. Thus, 
to enrich the discussion of cache organization, this section focuses on the LLCs. 

2.2.1 PRIVATE CACHE ARCHITECTURE 

The private LLC organization has a dedicated cache hierarchy for each core. Figure 
4 exemplifies a schematic representation of an MPSoC with two levels of cache, where the 
L1 cache area is divided into instruction cache (I1) and data cache (D1). The communication 
architecture is used iff a memory request misses in both L1 and L2 cache banks. 

Core

I1 D1

Core

I1 D1

Core

I1 D1

Core

I1 D1

L2 L2 L2 L2

Communication 
architecture

Memory Controller Main Memory
 

Figure 4. Schematic exemplification of an MPSoC with cache hierarchy composed by 
private L1 and L2 caches (based on [ASA09]). 
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The remaining of this section presents and discusses research and commercial chips. 
Two of the presented chips, Intel’s Knights Landing and AppliedMicro X-Gene 3, have not 
been finalized and may present technical differences from the final product. 

A product family from Intel called Xeon Phi is the first chip presented in this category, 
and the Knights Corner iteration of it is shown in Figure 5. Each core is equipped with a 
32KiB L1 instruction and 32KiB L1 data cache, and an individual 512 KiB L2 cache. The 
entire cache system is kept coherent. This product uses a bidirectional ring for 
communication. Each direction is comprised of three independent rings for data, address 
and acknowledgment messages [INT15b]. Local and remote average accesses of the L2 
cache are 24 and 250 cycles, respectively [FAN13]. Remote access is achieved through a 
coherence protocol. 

 

Figure 5. Conceptual diagram of the structure of the Intel Xeon Phi coprocessor [INT14]. 

The next-generation of the Xeon Phi, called Knights Landing, is an upcoming chip 
that features stacked memory chips, which are linked by TSVs, to increase greatly the 
amount of memory bandwidth that feeds the cores [IDG15]. Full details of this platform are 
still not available, but it is expected to contain at least 60 cores [PLA15][STO15]. 

Tilera Corporation is a semiconductor company focusing on scalable multicore 
embedded processor design. Its products range from supporting 4 to 200+ cores [TIL11a]. 
In the Tilera-Gx architecture, each core has 32KiB L1 instruction and 32KiB L1 data cache, 
and an individual 256KiB L2 cache. Figure 6 depicts the core unit, memory subsystem, and 
the communication network. Tilera-Gx uses five independent NoCs, all of them employing 
mesh topology, whereas three of them are related directly to the memory subsystem. The 
rationale for independent networks is to allow low latency communication for a scalable 
architecture [TIL11c]. Local and remote L2 cache latencies are 11 cycles and 41 cycles, 
respectively. The remote access is achieved through a proprietary and distributed 
coherence protocol [TIL13]. 
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Figure 6. General-purpose core unit of Tile-Gx100 [TIL11b]. 

2.2.2 SHARED CACHE ARCHITECTURE 

The complementary classification to a private architecture is a shared one, where, 
one or more LLC blocks are distributed across the chip to service the whole MPSoC design. 
Figure 7 depicts a schematic representation of an MPSoC with this organization. As the 
case of Figure 4, the L1 cache area is divided between instruction cache (I1) and data cache 
(D1). The NoC is used iff a memory request misses in the L1 cache bank. 
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Figure 7. Schematic illustration of an MPSoC with shared L2 caches (based on [ASA09]). 

IBM produces the Power8 processor with 12 cores per chip. Every core has access 
to 64KiB of L1 data and instruction caches, and each core has an individual 512KiB SRAM 
L2 cache. The cores share a 96MiB eDRAM (embedded DRAM) L3 cache and an optional 
eDRAM L4 cache [IBM14][STU13]. Buses operating at up to 2.4 GHz accomplish the chip 
interconnection [STA15]. Microarchitecture optimization – pipeline, multiple segments, and 
distributed arbitration – is applied to handle the propagation delay across the chip. The 
architecture employs NUCA model from L2 to lower memory levels, which means that not 
all accesses to L2 and lower levels have the same latency. 

Power8 supports up to 192 cores using 16 chips. The off-chip interconnection is a 
multi-tiered fully connected structure designed to reduce latency, which are logically 
organized in a mesh-like 4×4 topology. This topology is shown in Figure 8. Each chip 
connects to its three-abscissa neighbors (called intra-group) and to its three ordinate 
neighbors (called inter-group) [STA15]. Local and remote L3 access are approximately 27 
and 130 cycles, respectively [7ZI15a]. 
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Figure 8. Power8 SMP topology forming up to 4 groups comprised of 4-chip per group 
[STA15]. 

Figure 9 shows a product from Fujitsu with a similar architecture called SPARC64-X. 
This product has four shared L2 caches of 6MiB each (up to 24MiB). Up to four CPU sockets 
can be connected directly and up to 64 sockets can be connected through a crossbar chip. 
A single chip encompassing 16 cores implements a high-throughput serial transfer protocol 
for inter-socket communication. NUMA is employed to maximize memory locality [FUJ15]. 

 

Figure 9. SPARC64-X die containing 16 cores and 4 banks of L2 cache [REG15]. 

In 2014, Oracle proposed the SPARC M7 chip with 32 cores [SIV14]. The cores are 
organized in 8-core clusters, where each core accesses 16KiB of instruction and data cache. 
Pairs of two cores have access to a shared 256KiB L2 cache of data. Finally, each pair of 
four cores has access to a 256KiB L2 cache of instructions and an 8MiB L3 cache 
[LI15][SIV14]. Figure 10 shows the cache hierarchy and the chip organization of SPARC 
M7. 
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(a) (b) 

Figure 10. SPARC M7: (a) schematic of core cluster design, and (b) chip layout [SIV14]. 

The crossbar-based network used in previous SPARC processors is scrapped, and 
a hybrid network is employed. This network connects all L3 caches and four memory 
controllers. Three physical networks compose the logical communication architecture: a 
requesting network with a 4-ring topology (maximum hop count is 11), a point-to-point 
response network and a multi-stage mesh of six 10×10 switches [AIN15][LI15]. 

Figure 11 depicts the organization of two of the three physical NoCs – the omitted 
request network overlies the data network physically. Some power management units are 
present to achieve high-performance under acceptable power constraints. Konstadinidis et 
al. [KON15] discuss in detail the power-related elements of the SPARC architecture. 

 

Figure 11. On-chip network request and data topology. The response network is omitted in 
this representation [AIN15]. 
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P2012 is an area- and power-efficient manycore architecture based on multiple 
Globally Asynchronous, Locally Synchronous (GALS) STxP70-based processor clusters. 
Each cluster features up to 16 processors with a multi-banked one cycle access L1 cache 
and specialized hardware for aggressive power management [MEL12]. CEA leti/list 
laboratories and STMicroelectronics developed this platform, which was later rebranded to 
STHORM [TOR14]. Figure 12 depicts a cluster of the platform with two processors and six 
hardware accelerators. Each tile has a dedicated 1MiB L2 cache. Inter-cluster 
communication is achieved through an asynchronous NoC, which allows each cluster to 
operate independently in its own optimized needs. 

 

Figure 12. The P2012 cluster [BEN10]. 

ARM has proposed an architecture called big.LITTLE that pairs a high-performance 
Out-Of-Order (O3) processor cluster with a low-power in-order processor cluster to deliver 
optimal performance and energy consumption [ARM13a]. The two processor clusters are 
architecturally compatible, meaning that they can exchange tasks. Therefore, the high-
performance processor cluster can shut down when no application requires such 
performance, and only the more modest processor cluster can handle the system. Any time 
that performance requirement is increased, the high-performance processor cluster is 
initialized and can ‘steal’ tasks from the modest cluster [ARM13b]. Each cluster has its own 
L2 cache. 

Figure 13 shows the Exynos 5 Octa SoC – one of the products that uses the 
big.LITTLE architecture. For this SoC, the L2 cache has 2MiB and 512KiB of space for, 
respectively, the high-performance cluster and the low-power processor cluster [SAM15a]. 
Communication is accomplished through a multilayer bus. As an example of cache latency, 
Exynos 5250 has L1 and L2 latencies of 4 and 21 cycles, respectively [7ZI15b]. 

X-Gene is a SoC solution developed by Applied Micro Circuits Corporation. Its first 
architecture iteration (X-Gene 1) is comprised of eight ARMv8 cores with private L1 caches, 
four L2 caches shared by each pair of cores, and L3 caches [SIN14]. Interconnection is done 
through a low-latency NoC (Arteris FlexNoC IP solution) [ART15]. The second iteration of 
this product has some changes to its core structure but maintains the same cache hierarchy. 
L2 and L3 cache latencies are 13 and 89 cycles, respectively [7ZI15c]. 
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Figure 13. Architecture of the Exynos 5 Octa SoC [SAM15a]. 

The third iteration of X-Gene is intended for mass production in 2017. It aggressively 
increase the number of cores (up to 64) and proposes a new socket interconnect technology 
called X-Tend. This technology aims to connect seamlessly multiple X-Gene SoCs of any 
iteration [FOR15][SIN14]. From the currently available information, there is no intention to 
enhance the current cache hierarchy employed in its first and second iteration. 

2.2.3 SUMMARY OF PRIVATE AND SHARED CACHE ARCHITECTURE 

Table 1 summarizes the architecture characteristics of all chips presented in this 
section and Table 2 summarizes additional technological features of the same set. 

Table 1 shows that there is no one-size-fits-all scenario when it comes to 
multicore/manycore architectures with on-chip cache support. Designs that use private LLC 
caches tend to stick with uniform access, which is expected since private caches are 
predominately smaller than shared cache and size is a significant factor in determining the 
access latency. Besides, private caches are inherently distributed. In the shared LLC 
domain, we see a trend of using a more diverse set of cache organizations. Power8 is an 
example that uses an NUCA organization to provide scalability in its huge 96MiB L3 cache. 

The interconnect fabric of chips is comprised of a diverse of architectures. Again, 
there is no optimal solution for this scenario. From the eight chips presented three chips 
employ packet-based NoC, one chip employs a ring topology, one chip employs crossbars, 
one chip employs buses, and two chips employ a mixed topology. The number of supported 
cores varies from eight to a hundred; trending to turn to scalable networks (such as packet-
based) appears as the number of cores surpass a few dozen (Tilera-GX 100 and X-Gene 
3). 
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Table 1. Classification, interconnect fabric, number of cores, and cache latencies of chips. 

CHIP CLASSIFICATION 
(LLC) 

INTERCONNECT 
FABRIC 

NUMBER OF 
CORES 

L2 LATENCY L3 LATENCY 

XEON PHI 
Private 

Uniform access 
Distributed 

Three independent 
bidirectional rings 

Up to 61 
24 cycles (local) 
and 250 cycles 

(remote) 
Not present 

TILERA-GX 
100 

Private 
Uniform access 

Distributed 

Five independent 2D 
NoC 

100 
11 cycles (local) 
and 41 cycles 

(remote) 
Not present 

POWER8 
Shared 

Non-uniform access 
Distributed 

Eight on-chip buses 12 per chip 12 cycles 
27 cycles (local) 
and 130 cycles 

(remote) 

SPARC 64X 
Shared 

Uniform Access 
Distributed 

Crossbar based 16 per chip - Not present 

SPARC M7 
Shared 

Uniform Access 
Distributed 

Point-to-Point and 
ring topologies 

32 - - 

P2012 
Shared 

Uniform Access 
Centralized 

Asynchronous NoC 
(inter-cluster) and 

buses (intra-cluster) 

Up to 16 per 
cluster 

- Not present 

EXYNOS 5 
Shared 

Uniform Access 
Distributed 

Multi-layer bus Up to 8 21 cycles Not present 

X-GENE 
Shared 

Uniform Access 
Centralized 

2D NoC 

8 cores 
(gen1&2) 

Up to 64 cores 
(gen3) 

13 cycles 89 cycles 

 
Xeon Phi is the only chip where cache latency is publicly available. No additional 

information was found for the SPARC 64x, SPARC M7 and P2012 chips. The remaining 
chips had their latency experimentally deduced. Applications such as LMbench [MCV15] 
can deduce cache latency, albeit limited to data latency. The use of this kind of application 
is common practice in microarchitecture exploration [RUG08]. From the set of information 
available, there is no clear relation between the classification and latency of the LLC, 
implying that LLC caches can be tuned to the system demand. 

Table 2 presents the process employed in the device fabrication and the existence of 
3D chip or prototypes. Only two chips were fabricated with more advanced technologies 
than 32nm. Both Xeon Phi’s Knights Landing and X-Gene 3 are in development and intend 
to use sub 20nm process. In regards to 3D integration, since 2012 the P2012 development 
team has been prototyping 3D versions of their product exploiting the Wide I/O DRAM 
standard [DUR15]. Xeon Phi’s Knights Landing also use stacked memory for its system; 
however, in this case, a proprietary version based on HMC is employed [PLA15]. 

Table 2. Technology and 3D chips presented. 

CHIP TECHNOLOGY 3D CHIPS/PROTOTYPE 

XEON PHI 
22nm (Knights Corner) 
14nm (Knights Landing) 

No (Knights Corner) 
Yes (Knights Landing) 

TILERA-GX 100 40nm No 
POWER8 22nm No 

SPARC 64X 28nm No 
SPARC M7 20nm No 

P2012 28nm Yes 
EXYNOS 5 28nm No 

X-GENE 
40nm (gen1) 
28nm (gen2) 
16nm (gen3) 

No 
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2.2.4 DISCUSSION ABOUT THE BEST CACHE MODEL 

The consequences of committing to a given cache architecture are a topic of research 
that has been long being investigated. This work will also examine these effects on some 
different schemes using highly-parallel applications. In the following paragraphs, previous 
results from other authors will be discussed. 

Asaduzzaman, Sibai, and Rani [ASA09] show experimental results of shared and 
distributed architectures in multicore systems. Distributed L2 caches alleviate traffic 
congestion in the interconnect fabric since each core has its L2 cache. However, this 
architecture has the initial cost of feeding data to the distributed caches. Moreover, the area 
consumption of L2 caches is not negligible [COS09]. In juxtaposition, shared L2 caches 
increase traffic congestion in the interconnect fabric since each memory request for an L2 
cache must traverse it. The initial cost of feeding data for a shared L2 cache can be mitigated 
if more than one core shares the same data. Furthermore, shared L2 caches are better 
adjusted to area restriction due to their reduced quantity when compared to the previous 
architecture. Consequently, they conclude that the impact of adding cores to the system 
favors the distributed architecture. However, the three applications used for testing on their 
work are limited to the same characteristics: multimedia application profile and little code 
size that fits entirely in the L2 cache (1 to 2.5KiB). 

Yun and Valsan [YUN15] study the effect of using the page-coloring technique on 
commercial off-the-shelf multicore processors featuring shared LLC. Page coloring can 
partition the LLC space among the cores, effectively creating isolation on a shared cache. 
They evaluate the system with two ARM processors (an in-order and an O3), and one Intel 
O3 processor with corresponding 512KiB, 2MiB, and 8MiB LLC shared caches, respectively. 

The caches analyzed in their work employ a Miss Status Holding Register (MSHR) to 
track the status of ongoing memory requests. This structure allows the cache to be non-
blocking – i.e., service additional requests even when a request results in a cache miss. The 
MSHR effectively determines the maximum number of outstanding memory requests and is 
commonly shared among a single LLC. Because of this, even if the cache space is 
partitioned among cores using software-based techniques, accessing the cache partition 
does not guarantee interference freedom. 

Experimental results were conducted using shared LLC evenly partitioned among 
four cores. This work uses a benchmark to determine access latencies that resemble the 
technique adopted by LMbench, which is based on a pointer-chasing application. Figure 14 
shows the results obtained running platforms with up to four cores for each processor. One 
core runs the latency benchmark and the other cores, if present, run a bandwidth benchmark 
to stress the cache and DRAM subsystems. 

 

Figure 14. Normalized execution time for three system configurations [YUN15]. 

The bandwidth benchmark has no data dependency and, therefore, can generate 
multiple outstanding memory requests on an O3 core. When the cache partitioning 
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technique is not applied, the response times of the latency benchmark are increased 
substantially in all platforms. This latency increase is attributed to cache-lines of the latency 
benchmark being evicted by the co-runners tasks. However, in the cache-partitioning 
scenario, this technique is shown to be effective in preventing such cache line evictions 
hence providing isolation. The authors also show that this isolation is not always achieved 
in O3 cores due to the limiting factor of a shared MSHR. One example is the execution of 
the bandwidth benchmark in Cortex-A15 as shown in Figure 15(b). Cortex-A7 and Cortex-
A15 are in-order and O3 cores, respectively. 

 

Figure 15. Effectiveness of cache isolation in (a) in-order cores and (b) O3 cores [YUN15]. 

The study of Yun and Valsan show that software-defined architectures are limited in 
its ability to provide isolation in a shared cache design, reinforcing the need to choose wisely 
the intended cache organization in an architecture proposal. Unfortunately, Yun and Valsan 
employ single-threaded applications and do not analyze parallel applications that are the 
core beneficiaries of an MPSoC architecture. 

Garg et al. [GAR05] identify the design of memory hierarchy in a multicore 
architecture to be a critical component of the system since it must meet the capacity 
(regarding bandwidth and low latency) and coordination requirements of multiple threads of 
control. In their work, the authors investigate the design of the L1 cache for 
multithreaded/parallel workloads. 

The base processor design of their work is the clustered multithreaded architecture. 
In this design, all major back-end structures of the processor (functional units, register files, 
issue queues, load-store queue, and the L1 data cache) are partitioned into multiple clusters. 
The front-end and the L1 instruction cache is shared by all clusters. Figure 16 shows the 
progression of the logical design of single multithreaded to Chip MultiProcessor (CMP)1 and, 
finally, to clustered multithreaded architecture, where clusters are statically assigned to 
threads. There are two major cross-cluster communication networks based on bidirectional 
rings. 

The motivation of the work of Garg et al. is summarized in Figure 17(a) and (b), for 4 
and 8 thread executions, respectively, which is the speedup of a centralized shared cache 
in a clustered multithreaded architecture. Four cases are depicted: centralized cache; 
centralized cache with increased associativity (16-way); 16-way centralized cache assuming 

                                            
 
 
1 Although some authors use the CMP terminology, instead of MPSoC, we emphasize that their architecture 
are the same. 
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zero port contention and; 16-way centralized cache assuming zero port and interconnect 
contention. This experiment shows that there is a lot of potential lost due to contention at 
both the port and interconnect levels. The goal is to validate that a decentralized cache in 
this architecture is a better solution. 

 

Figure 16. From single multithreaded to CMP and clustered multithreaded architecture 
(based on [ELM05]). 

 

Figure 17. Performance of the centralized cache [GAR05]. 

Garg et al. [GAR05] evaluate five cache architectures whose cache banks are 
statically assigned to each thread of execution. The classification of cache architecture is as 
following: 

Coherent Cache: fully coherent cache, where each L1 data cache partition is directly 
accessible only by the thread running on a local cluster. Only a single copy of data is allowed 
inside a cache partition set. A snoopy-based MESI coherence protocol is assumed. 

Distributed Cache: The processor can access directly (although with non-uniform 
latencies) all L1 data banks, even those in remote clusters. The latency of accessing remote 
L1 is smaller than going through the L1-L2 interconnect and accessing the L2 cache. 
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Non-Replicated (NR) Cache with First Touch Policy: In the NR cache, as in the 
distributed cache, data is not replicated in multiple partition-sets. Instead of it, data is placed 
in the partition-set of the first requester. 

NR+Migration cache: Extend the NR cache to allow migration of data. The cache 
maintains threshold values to determine if a line is to be migrated or not. Their work uses 
two 3-bit counter to determine the number and the source of accesses. 

Selectively-replicated Cache: This cache combines the benefit of both NR and fully 
coherent cache. Dynamically, threshold values are employed to determine if access will be 
done remotely (as done in the NR cache) or locally through the copying mechanisms of the 
coherence protocol. These threshold values are architecture dependent. 

Experimental results were conducted using a modified version of Simplescalar-3.0 
for the ALPHA instruction set. The clustered multi-threaded architecture comprises 8 
clusters. The size of L1 cache in the base design is 128KiB, so each partition of the 
distributed cache is 16KiB. For the L1-L2 interconnect, a split-transaction bus is assumed. 
For applications, SPLASH-2 benchmark along some locally available parallel applications 
are used. 

Figure 18 shows the normalized execution time of the previously described cache 
architectures in some benchmark applications. The execution time is normalized to a single-
thread centralized cache architecture. Average time spent in synchronization with each 
cache organization is also shown in black at the bottom of each bar. The primary 
disadvantage of a shared cache, either centralized or distributed, is the increase of inter-
thread conflicts due to the limited associativity and porting of a typical L1 cache. This effect 
is mitigated by providing a private cache to each thread, as is the case of all other 
architectures in this figure. 

 

Figure 18. Normalized execution time of six cache architectures [GAR05]. 

Figure 19 complements the results of the last figure by providing a detailed analysis 
of the overall number of operations on each cache organization. Analyzing the TSP 
application, we can see that the number of remote direct read hits when using the NR 
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organization is as high as 40% of the total operations, which contributes to its higher 
execution time when compared to the coherent cache organization. 

 

Figure 19. Overall operations in four cache organizations [GAR05]. 

In summary, Garg et al. designed and evaluated some options for L1 cache 
organizations. For the workload analyzed, mainly composed of parallel applications, the 
presence of at least a private partition in this cache showed significant improvement in 
performance when compared to a pure shared L1. Techniques such as selectively-
replication showed interesting results but requires modifications on some of the applications 
to provide the optimal performance. 

This section presented some of the work in the research of cache organizations. 
Balasubramonian and Jouppi [BAL11] provides a summary of advantages and 
disadvantages of shared and private L2 caches in Table 3. In the succeeding chapter, we 
will explore additional cache organizations proposed for scalable manycore/MPSoC 
systems. These propositions will employ new technological advances to enhance the overall 
performance of the system. Two technological advances will frequently appear: 3D 
integration and new emerging non-volatile memory technologies. 
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Table 3. Advantages and disadvantages of shared and private L2 caches [BAL11]. 
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3 RELATED WORK 

This chapter presents state-of-the-art work related to the memory hierarchy of 
MPSoC architectures. Section 3.1 describes 2D MPSoC architectures using primarily NoC-
based communications and Section 3.2 describes 3D MPSoC architectures employing 
diverse communication paradigms due to advantages of 3D integration. 

3.1 Cache Organization in 2D MPSoC Architectures 

For 2D MPSoC, L1 cache is predominantly integrated into the core area. As observed 
in Section 2.2 there is not still a dominant architecture paradigm for L2 caches [SAB10]. This 
section presents state-of-the-art 2D MPSoC architectures with on-chip cache support. 

3.1.1 YE ET AL.: REGIONAL CACHE ORGANIZATION FOR NOC BASED MANY-CORE PROCESSORS 

Ye et al. [YE10] study the effect of using eight designs of L2 caches in a NoC-based 
MPSoC. Figure 20 shows two of eight L2 caches studied. Their work clearly showed that 
the dominant factor of L2 access latency was the packet-based NoC latency. Even reduced 
injection rates of packets (≤ 1%) resulted in significant network congestion on mesh 
topologies such as 8×8. Besides, both Ye et al. [YE10] and Wang et al. [WA08] studies 
conclude that on-chip traffic congestion is predominantly caused by the intensive memory 
access of requests and responses. 

 

 

Figure 20. Two of eight L2 cache designs studied on a 2D MPSoC [YE10]. 

Figure 21 shows average delays of four cache organizations connected to 64 PEs. 
The L1 cache miss rates of the PEs are measured using the SPLASH-2 benchmark and fed 
to a NoC simulator. The range of miss rates encountered were of 1% up to 9%. The sizes 
of all caches are assumed as follows: 32KiB for L1 instruction cache, 64KiB for L1 data 
cache, and 64KiB for L2 cache. 

It is clear from Figure 21 that a naive approach to the cache organization in MPSoC 
designs can lead to thousands of cycles of delay. This delay is far worse than a single access 
to the main memory – nullifying the benefits of using a memory hierarchy. 
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Figure 21. Average delay of four L2 cache designs on the 8×8 2D MPSoC [YE10]. PIR is the 
packet injection rate expressed in packets per cycle. 

3.1.2 CHO AND JIN: MANAGING DISTRIBUTED, SHARED L2 CACHES THROUGH OS-LEVEL PAGE 

ALLOCATION 

Cho and Jin [CHO06] present a mixture of shared and distributed L2 cache 
architectures to achieve optimal performance under diverse workloads. In their work, each 
core has an L2 slice controlled by the operating system (OS). An L2 slice is a smaller set of 
a full L2 cache. The OS controls where a cache line will be placed, locally or remotely, 
resulting in different access times. In essence, this means that the OS can choose to use 
any cache architecture according to its policies. For single-threaded applications, this 
scheme can provide additional cache space through other idling cores – in essence, creating 
a new remote LLC. For parallel applications (SPLASH-2), performance did not increase as 
expected when compared to pure private or shared caches. The authors hypothesize that 
SPLASH-2 is optimized to maximize data locality to small caches. As discussed in Section 
2.2.4, another important factor showed by Yun and Valsan [YUN15] is that partitioning a 
cache space into private slices does not guarantee isolation since all slices share the MSHR 
structure. Figure 22 displays the cache organization in Cho and Jin’s work. 

 

Figure 22. Sixteen core tiles (left) and the design of a single core (right) (based on [CHO06]). 



43 
 
3.1.3 SHIRIFI ET AL.: ADDRESSING END-TO-END MEMORY ACCESS LATENCY IN NOC-BASED 

MULTICORES 

Sharifi et al. [SHA12] acknowledge the high latency of memory accesses in NoC-
based multicore and proposes two network prioritization schemes that can cooperatively 
improve performance by reducing end-to-end memory access latencies. Figure 23(a) 
depicts the five steps that comprise the end-to-end communication. Hits in the L1 cache do 
not use the NoC; however, hits in the L2 cache use the path-1 and path-5 of the network. In 
the case of a miss event in L2, the request must reach the closest memory controller and 
reach back, as a response, all the way back to the L1 (all paths of Figure 23(a)). Figure 
23(b) shows that traversing the NoC can reach approximately the same delay of the main 
memory latency. This measurement was done through a simulation of a 4×8 multicore with 
4 memory controllers (placed on each corner), and each core running applications from the 
SPEC2006 benchmark. The results of one of the cores running the milc application from 
SPEC2006 are plotted. The average latency was approximately 400 cycles. 

  
(a) (b) 

Figure 23. Detailed flow (a) and delay (b) of memory requests and responses [SHA12]. 

The first network prioritization scheme proposed by Sharifi et al. tries to expedite late 
messages on their returning path by giving them a higher priority in the on-chip routers. This 
procedure aims to reduce the memory delay variance experienced by an application. For 
this, packets are annotated with an age field (the so-far delay) and compared to a predefined 
threshold value. Every 1ms, the core periodically determine and update the threshold 
values. If it is larger than the threshold value, this message is considered late and will have 
a higher priority on its return path. In each memory controller, a mapping of each 
core/application with a threshold value is created. 

The second network prioritization scheme is to increase the utilization of idling 
memory banks in the system. To do this requests destined for the idle banks are given higher 
priorities in the network to reach their target faster. However, given the distributed nature of 
a NoC, there is no global information available to routers to help them decide whether a 
given packet is destined for an idle bank or not. To address this situation each router 
estimate the pressure imposed by requests recording local packets passing through it. 
Requests addressed to banks that are not recorded locally are given higher priority in the 
on-chip network. A threshold value is used to clear old requests. The higher priority of 
packets is achieved through a specialized pipeline in the routers. The standard routing 
procedure used in Sharifi et al. work is comprised of five stages. However, when a higher 
priority packet is received a two-stage pipeline is employed. 
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Figure 24 summarizes the benchmark applications; where the numbers in 
parenthesis represent the amount of copies for each application in the workload. Generally, 
both prioritization schemes improve the performance of the system. However, this is not true 
for the w-9 workload under scheme-1. The authors hypothesize that by giving a higher 
priority to some of the messages in the network, they hurt other messages, and this can 
offset the benefits of this scheme. Their work presents further results regarding some 
threshold values and workloads. 

 

Figure 24. Workload employed by Sharifi et al. [SHA12]. 

Figure 25 depicts results obtained through a simulation of 32 cores interconnected in 
a 4×8 2D mesh. 

 

Figure 25. Normalized speedup for memory intensive workloads [SHA12]. 

3.2 Cache Organization in 3D MPSoC Architectures 

3D MPSoCs introduced new potential architectures that are not commonly found on 
their 2D counterpart. The ability to stack multiple dies with diverse fabrication processes 
enabled the exploration of such architectures. Examples of such explorations are the use of 
emerging memory technologies in lower cache levels and even the presence of main 
memory in stacked dies. These emerging technologies present much higher density when 
compared to traditional technologies with the cost of higher access latency. This section 
presents a non-exhaustive list of current research effort on 3D MPSoC with cache hierarchy 
support bringing design possibilities, benefits, and drawbacks. 

Zhang et al. [ZHA14] summarize current research effort in the design of 3D CMP, 
with tiers2 dedicated for memory hierarchy. The survey focuses on two categories of 
architectures for 3D CMPs: stacking cache-only and stacking main memory. The stacking 
cache focuses on the use of hybrid cache architectures that combine the benefits of the fast 

                                            
 
 
2 In the 3D technology, a tier consists of a single 2D layer, and two or more tiers are stacked and connected 
to perform a 3D system. 



45 
 
accesses of SRAM with emerging memory technologies that allow scalable space under 
chip area and power constraints. The stacking main memory use TSVs to increase the 
bandwidth and mitigate the Memory Wall limitations [WUL95]. 

3.2.1 LOI AND BENINI: AN EEFFICIENT DISTRIBUTED MEMORY INTERFACE FOR MANY-CORE 

PLATFORM WITH 3D STACKED DRAM 

Figure 26 shows a 2D NoC with a stacked memory layer ([LOI10]). Each processor 
has fast access to a stack of memory banks on its top and remote slower access to memory 
stacks of other processors. Access to remote memory stacks is done through a NoC. 

 

Figure 26. 3D hardware architecture [LOI10]. 

Figure 27 shows the architecture employed in the Loi and Benini [LOI10] work. The 
green square depicts a local access to memory, and the red lines depict an access to a 
remote memory. The 3D DRAM module is the module stacked over the rest of the system. 

 

Figure 27. Illustration of the architecture proposed by [LOI10]. 

The main contribution of their paper is the development of a 3D-DRAM controller 
responsible for administering the two types of memory accesses described above. In 
addition, the data bus used in their work was enhanced from the traditional bi-directional bus 
to two independent buses for read and write. Additionally, the width of the bus is increased 
to a range of 32 bits up to half of the row size. Therefore, access to main memory is faster 
than its traditional counterpart. Further, the power dissipation is reduced by stacking memory 
die on top of the processor instead of using off-chip pins (24 µW vs. 30-40 µW). 

Cadence SoC Encounter and Synopsys Design Compiler were used to obtain a 
synthesized platform. Experimental results using 256-bit bus width show peaks of 4.53 GB/s 
for local memory access, and 850 MB/s for remote access through the NoC. The bandwidth 
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improvement ranges from 1.44x to 7.40x when compared with the JEDEC DDR (Double 
Data Rate) standard. 

3.2.2 FU, LIU, AND CHEN: DIRECT DISTRIBUTED MEMORY ACCESS FOR CMPS  

Fu, Liu, and Chen [FU14] propose a distributed memory with direct access to local 
and remote cache banks due to previous unsatisfactory results achieved with packet-based 
communication. The local cores access remote memory through remote-to-local 
virtualization without any network protocol translation. Every core has an auxiliary memory 
controller to access the local and remote memories. This controller is divided into two circuits 
for managing the core communication and handling the actual memory bank. 
Interconnection for memory accesses between cores is done using multiple buses. Two 
unidirectional buses are employed for each combination of column and row of a mesh 
topology. For an 8×8 topology, 16 buses are used. Each core in this architecture accesses 
a private 16KiB L1 cache and a 64KiB L2 cache. Figure 28 depicts the architecture of the 
system. 

 

Figure 28. Distributed memory with direct access model [FU14]. 

Simulation results with the PARSEC benchmark show that direct memory 
outperforms packet-based access regarding both memory access latency and IPC by 17.8% 
and 16.6%, in average, respectively. The rationale for this is twofold: the lack of network 
protocol translation overhead in the direct memory access and the reduced contention for 
using multiple independent connections. The Gem5 simulator was employed to trace the 
memory accesses of both PARSEC and SPEC2006 benchmarks. Subsequently, they were 
fed to an in-house C++ cycle-accurate simulator responsible for simulating all 
implementation details of both direct and packet-based communication. Figure 29 depicts 
the average access latency breakdown for both architectures: directed memory access 
model (herein called DDMA) and; packet-based memory access (herein called PDMA). 
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Figure 29. Average access latency breakdown for the PARSEC benchmark suite [FU14]. 

3.2.3 WOO ET AL.: AN OPTIMIZED 3D-STACKED MEMORY ARCHITECTURE BY EXPLOITING 

EXCESSIVE, HIGH-DENSITY TSV BANDWIDTH 

Woo et al. [WOO10] propose to redesign the traditional L2 and DRAM interface to 
exploit the advantages of TSV integration. The idea is to leverage the TSV bandwidth to 
hide latency behind enormous data transfers. To tackle the Memory Wall problem, the 
authors prefetch entire memory pages (4KiB) instead of a normal 64-byte cache line. 
Traditionally, this type of massive transfer is avoided since it results in a trailing-edge effect 
on the memory bus and degrades the system’s performance. In their work, the authors 
exploit the TSV connections to avoid the trailing-edge effect. Initially, Woo et al. intended to 
increase the cache line size to the prefetch size. However, they found out that the access 
latency increases almost linearly with the line size – assuming an H-tree subarray cache 
design as depicted in Figure 30. 

 

Figure 30. Cache subarray design [WOO10]. 
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To overcome this limitation a new layer is added comprised of an L2 cache subdivided 
into sixty-four sub-banks. In this design, a read or write operation uses the conventional 64-
byte line while a fill or write-back operation uses a new TSV bus to write 4KiB pages. Figure 
31 shows this design, where 32K TSVs are needed to provide a high-performance bus. 

 

Figure 31. SMART-3D design: 64 bytes-wide bus with TSVs directly on top of each L2 sub-
bank [WOO10]. 

Experimental results were conducted using the SESC simulator. Evaluation of single- 
and multi-threaded applications were conducted using the SPEC2006, NuMineBench, and 
other benchmarks. The results were compared to other types of architectures including a 
traditional 3D mesh NoC-based with and without Global History Buffer (GHB) prefetcher. 
Figure 32 depicts one of the results obtained with the SPEC2006 benchmark. The SMART-
3D (2MB) outperforms all other models except in the benchmarks 436 / 456 and 436 / 483. 
The authors assert that they could improve its execution by enhancing page-level locality in 
the 436 benchmark. It is also important to note that, in most cases, the SMART-3D 1MB can 
outperform a 3D-GHB 4MB. The performance shown here scales to an 8-core system too, 
but with a less significant degree due to the increased cache contention. 

 

Figure 32. 2-Core system performance improvement under different architectures [WOO10]. 
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Figure 33 shows the energy consumption comparison between the 3D-Base and 3D-
SMART architecture obtained through CACTI and Synopsys Raphael. 3D-SMART can save 
huge amounts of energy when an application has enough spatial locality, such as 437 and 
450 because prefetching entire memory pages reduce the row buffer misses. On the other 
hand, applications that hop between different pages will consume more energy in this 
architecture. 

 

Figure 33. Dynamic Energy Consumption of 3D-Base and 3D-SMART [WOO10]. 

3.2.4 KIM ET AL.: DESIGN AND ANALYSIS OF 3D-MAPS (3D MASSIVELY PARALLEL PROCESSOR 

WITH STACKED MEMORY) 

Kim et al. [KIM13a] describe a Massively Parallel Processor (MPP) with stacked 
memory called 3D-MAPS, which consists of a 64-core tier and a 64-memory block tier. Each 
core communicates with its dedicated 4 KB SRAM block. Intercommunication is achieved 
through a 2D 8×8 mesh. This chip was built with a two-tier 3D stacking technology using 
approximately 50K TSV and 50K face-to-face bond pads. The estimated fabrication cost of 
3D-MAPS compared to a theoretical 2D-MAPS (each memory block placed right beside its 
corresponding core) is approximately half the cost. 

The number of inter-tier connections for core-memory communication far exceeds the 
traditional number of such designs. It even exceeds the Wide I/O single data rate standard 
that is intended for 3D designs (approximately 7400 vs. 800 connections). The intention is 
to allow the system to read/write to memory every clock cycle. Therefore, fully exploiting the 
wide memory bandwidth. 

The design and analysis of this chip were conducted using commercial tools from 
Cadence, Synopsys and Mentor Graphics, as well as in-house tools for handling 3D 
technology characteristics. The maximum frequency achieved to the cores was 277MHz, 
which results in a theoretical maximum memory bandwidth of 70.912GB/s. The highest 
memory bandwidth observed in simulations was 90% of this value (median filter benchmark) 
and the minimum value observed was 13% (string search benchmark). Current Intel Core i7 
clocking in 1333MHz has approximately 64GB/s as its maximum memory bandwidth. For 
seven benchmarks, the peak power consumption of 3D-MAPS ranges from 3.5W to 4W. 

Kim et al. are currently working on a second version of this chip, called 3D-MAPS v2, 
which will be comprised of five tiers: two logic chips and three DRAM chips. Further, they 
intend to double the core count for this version [GEO15]. 

3.2.5 FICK ET AL.: CENTIP3DE: A CLUSTER-BASED NTC ARCHITECTURE WITH 64 ARM 

CORTEX-M3 CORES IN 3D STACKED 130 NM CMOS 

Fick et al. [FIC13] present a large-scale 3D CMP with a cluster-based near-threshold 
computing architecture called Centip3De. A 3D stacking technology is used in conjunction 
with 130 nm CMOS (Complementary Metal-Oxide-Semiconductor). The 64 cores are 



50 
 
organized into 4-core clusters, and their aggregate cache is combined with a single shared 
4×-larger cache. This larger cache has an increased voltage and frequency to assist all four 
cores. The use of an increased frequency, when compared to the cores, allows the cache 
to maintain single-cycle latency, even when the access is shared. In the 130nm design, the 
cores operate between 10 and 80MHz. 

Eight buses of 128 bytes assist the communication of all 16 clusters. The buses are 
split into two columns that span the cache and core layers of the chip. By building the bus 
architecture vertically, the authors reduced by 50% the required routing resources when 
compared to a single-layer floorplan. 

The system architecture was described and validated using the Gem5 simulator, and 
the experimental results were conducted using the SPLASH-2 benchmark. Figure 34 depicts 
the results obtained with a power budget of 250 mW and a configuration described in the 
format 4-core/3-core/2-core/1-core clusters. As core count diminishes, the frequency and 
voltage of each core increases and this allows the single-threaded (herein called S/T) 
performance to improve. The future version of this chip intends to employ a seven-layer 
chip: two of cores, two of caches and three of DRAMs. 

 

Figure 34. Range of system configurations under a 250 mW power budget [FIC13].  

3.2.6 GUITHMULLER, MIRO-PANADES, AND GREINER: ADAPTIVE STACKABLE 3D CACHE 

ARCHITECTURE FOR MANYCORES 

Guthmuller, Miro-Panades, and Greiner [GUT12] present a modular and scalable 
manycore architecture with multiple stacked cache tiles, as shown in Figure 35. In this 
architecture, each cache controller is responsible for a given segment of the main memory. 
The OS can configure the controller to allocate private sections within the cache for any 
given application. At assembly time, the architecture can incorporate multiple stacks of 
identical cache tiers. Besides, at runtime, the cache quantity allocated to a memory segment 
can be tuned. As the time for the processor to fetch data varies according to memory 
addresses, this mapping defines an NUMA architecture. The tier encompasses cores with 
L1 and L2 caches interconnected by a local bus, and the additional cache tier serves as an 
L3 cache. 
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Figure 35. Manycore architecture proposed by Guthmutter, Miro-Panades and Greiner 
[GUT12]. 

Table 4 describes the test cases employed in the SoCLib platform to perform 
experimental analysis of the proposed architecture. Two memory configurations were 
experimented: an SRAM cache and a mixed SRAM/eDRAM cache. Each memory tier 
includes 16MiB of cache. The total area of the cache block is reduced by 47% with 
eDRAM/SRAM (compared to pure SRAM) since eDRAM presents higher density degree. 

Table 4. Six test cases scenarios [GUT12]. 

 

The first applications are always the most memory intensive of the set. Figure 36(a) 
shows the normalized execution time for all test cases on cache configurations (lower is 
better), and Figure 36(b) shows the FFT 220 case where adding new cache tiers enhanced 
the performance application significantly. 

  
(a) (b) 

Figure 36. (a) Normalized execution time for all test cases, and (b) execution time for the 
FFT 220 benchmark [GUT12]. 
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Figure 37 shows that the silicon area overhead due to die stacking (mainly, TSV area) 
can be as small as 10% of the total die area. The 10 µm TSV diameter parameters is based 
on the Wide I/O standard. 

 

Figure 37. Area breakdown with three TSV diameters [GUT12]. 

3.2.7 LI ET AL.: DESIGN AND MANAGEMENT OF 3D CHIP MULTIPROCESSORS USING NETWORK-
IN-MEMORY 

Li et al. [LI06] present a topology design mixing 2D NoC and TDMA bus. The 2D NoC 
interconnects CPU or caches placed on the same layer. A TDMA bus interconnects the 
multiple stacks of layers, eliminating the multi-hop penalty inherently present in a packed-
based NoC.  As the distance between two layers is slight compared to the distance traveled 
between two NoC routers in 2D, each TDMA bus was implemented as shown in Figure 38. 
Thus, a single-hop and transaction-less communication is achieved.  

 

Figure 38. TDMA bus as the communication pillar [LI06]. 

Li et al. mix caches and processors on the same die allowing the CPU to increase 
the number of caches accessible under a lower hop count as shown in Figure 39(c). Figure 
39(a) and (b) show the 3D and 2D architecture design, respectively. 
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(b) 

 
(a) (c) 

Figure 39. (a) 3D architecture design; (b) 2D architecture design and; (c) number of hops for 
both architectures [LI06]. 

The processors have private 64KiB L1 caches and share a large 16MiB (256×64KiB) 
L2 cache. The L2 cache uses an NUCA architecture and can migrate most-accessed lines 
of a given core to a closer block to him. This technique is called dynamic NUCA. Results 
conducted using the Simics simulator demonstrate that a 3D L2 memory architecture 
generates much better results than the conventional 2D design. The average L2 hit latency 
is summarized in Figure 40 under four different schemes: a 2D architecture with dynamic 
NUCA; a 2D architecture with static NUCA; a 3D architecture with dynamic NUCA and; a 
3D architecture with static NUCA. Static NUCA cannot migrate lines due to the mapping of 
lines and blocks been defined at project time. 

 

Figure 40. Average L2 hit latency under four architectural schemes (based on [LI06]). 
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3.2.8 NIKNAM ET AL.: ENERGY EFFICIENT 3D HYBRID PROCESSOR-MEMORY ARCHITECTURE FOR 

THE DARK SILICON AGE 

Niknam et al. [NIK15] tackle the energy consumption in the cache hierarchy by 
exploiting non-volatile memory in shared distributed LLCs to decrease the leakage power 
consumption. Their project intends to mitigate the dark silicon phenomenon [ESM11]. The 
system comprises 16 cores with private L1 caches, the proposed last level cache, and a 3D 
mesh network interconnects all cores. The LLC structure consists of 16 tiles where each of 
them includes 1MiB SRAM and 4MiB STT-RAM. As the STT-RAM density is roughly four 
times of the SRAM, the cache block occupies approximately the same area. In addition, 
STT-RAM has near zero leakage power. 

A central core collects information from all other cores to estimate the system 
performance. Figure 41(a) depicts the central core for a 4×4 topology, and Figure 41(b) 
illustrates the information received every 1ms. Note that a 128-bit width is used to achieve 
this communication in a single flit. With this information, when the number of LLC accesses 
increases beyond a threshold value, the system workload is estimated to be partially heavy. 
In this case, one of the tiles using STT-RAM-based LLC is selected to swap for the SRAM-
based LLC. In the opposite scenario, i.e., the number of LLC accesses is below another 
threshold value, one of the tiles using SRAM-based LLC is selected to swap for the STT-
RAM-based LLC. The arbitration for tiles is done according to the number of writes access 
to the LLC. The write parameter is used because it is the slowest access latency in non-
volatile memory and, therefore, affects the most the system performance. 

 

 

(a) (b) 

Figure 41. (a) Three communications targeting the central core, and (b) the control flit 
structure [NIK15]. 

Experimental results were conducted using the Gem5 simulator, McPAT, SystemC-
based NoC simulator, and Noxim. The proposed system was compared to a baseline SRAM 
cache. Figure 42(a) shows the percentage use of SRAM and STT-RAM under different 
PARSEC benchmarks. Figure 42(b) displays the normalized L2 miss rate of both the 
baseline and the proposed system. It shows that the miss rate decreases in most cases due 
to the bigger capacity of the STT-RAM cache. In other instances, this does not happen 
because of the application characteristics and because swapping between caches results 
in a burst of misses due to the cold-start effect. 
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(a) (b) 

Figure 42. (a) Percentage of SRAM vs STT-RAM use and (b) L2 Miss rate [NIK15]. 

3.2.9 SCHOENBERGER AND HOFMANN: ANALYSIS OF ASYMMETRIC 3D DRAM ARCHITECTURE IN 

COMBINATION WITH L2 CACHE SIZE REDUCTION 

Schoenberger and Hofmann [SCH15a] introduce a 3D DRAM architecture with a 
latency-optimized layer that partially adopts the cache functionality. Following the locality 
principle of caches, the DRAM optimizations do not affect significantly on applications with 
a limited data set. However, given a certain data set and beyond it, DRAM optimization can 
influence 25% or more of the execution time. Figure 43 depicts the relative runtime overhead 
of caches and DRAM. 

 

Figure 43. The effects of cache and DRAM in a JPEG2000 encoder [SCH15a]. 

The authors note that quadruplicating the input data amount leads to an exponential 
rise of absolute execution values. Because of this behavior, the authors propose a fast 
DRAM layer that acts as a hybrid between an L3 cache and DRAM. Figure 44 shows this 
organization in a TSV-connected 3D system. 
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Figure 44. Fast DRAM layer and 8 DRAM layers [SCH15a]. 

 

Figure 45. Simulation results of the effect of L2 cache size reduction in combination with 
fast DRAM layer, (a) encoder (b) decoder [SCH15a]. 

For simulation results, the authors decreased the timing delays of the fast DRAM 
layer enabling to investigate the reduction of the L2 cache size. Figure 45(a) and (b) 
summarize the results obtained in three scenarios of an encoder and decoder processes, 
respectively: (i) a fixed L2 cache with 512KiB size; (ii) a variable (128KiB – 32KiB) L2 cache 
size; and (iii) a fast DRAM layer in combination with the same variable L2 cache. All results 
are about the baseline presented in Figure 43. Hence, the access time decreasing causes 
the negative values in the decoder process. 

The results show that the fast DRAM layer does not compensate the reduction of the 
L2 cache size. Conversely, this layer can reduce the rise of the DRAM share at runtime 
significantly. The reduction factor is up to three times for the smallest analyzed cache size 
and the encoding process. 

3.2.10 WU ET AL.: HYBRID CACHE ARCHITECTURE WITH DISPARATE MEMORY TECHNOLOGIES 

Wu et al. [WU09] describe two types of hybrid cache architectures: (i) inter-cache, 
where the levels of the cache hierarchy can be made of disparate memory technology, and 
(ii) intra-cache, where a single level of a cache is divided into multiple segments, each one 
containing a different memory technology. The latter uses a fast segment for the most 
accessed addresses and a slow segment for the remaining. This fast segment uses SRAM 
memory technology because it presents the best latency of the four technologies analyzed. 
For the slow segment, three types of memory technologies are evaluated: eDRAM (volatile), 
MRAM (non-volatile) and PCRAM (non-volatile). Figure 46 depicts the normalized IPC and 
power of the four L2 memory technologies under the same area constraint. 
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Figure 46. Performance (top) and power (bottom) comparison of the four L2 memory 
technologies under the same area constraint [WU09]. 

The authors simulate a myriad of benchmarks, in order to show that an inter-cache 
hybrid architecture design can provide 7% of IPC improvement over a baseline 3-level 
SRAM cache, and an intra-cache hybrid design can provide 12% of IPC improvement over 
the same baseline. Figure 47 shows the normalized IPC of the SRAM-MRAM intra-cache 
hybrid (RHCA) against the baseline 3-level SRAM cache, best inter-cache hybrid results 
(LHCA), and a dynamic NUCA (DNUCA). Those results were obtained using Mambo, a 
PowerPC-based simulator [BOH04]. 

 

Figure 47. Performance of SRAM-MRAM (herein called RHCA) against baseline SRAM 
cache, best inter level hybrid cache (herein called LHCA), and dynamic NUCA [WU09]. 

3.2.11 SUMMARY OF RELATED WORK ON 3D MPSOCS 

Table 5 shows a comparison of the reviewed works in memory organizations of 3D 
MPSoCs considering six topics. The first topic is the memory technology employed. In this 
regard, researchers are exploring some types of memories that are still not widely used in 
the industry. Our summary of commercial chips (Table 1) is comprised entirely of SRAM 
technology (for cache) and DRAM (for main memory). Niknam et al. [NIK15] and Wu et al. 
[WU09] explores the use of STT-RAM and MRAM/PRAM, respectively. The second topic is 
the use of L2 and/or L3 caches. The majority of works employ L2 caches, and a few are 
exploring L3 caches. 
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Table 5. Related work summary. 

Work Memory technology 
L2/L3 

present 
Memory layer 
intended for 

Requirements Traffic Simulator  

[LOI10] DRAM No/No Main memory latency, area  JEDEC standard -  

[FU14] DRAM Yes/No Main memory latency, throughput 
PARSEC/SPEC2006 

benchmarks 
Gem5 +  
In-house 

 

[WOO10] DRAM Yes/No 
Main Memory + 
Cache Memory 

Throughput, latency Various benchmarks SESC  

[KIM13a] SRAM No/No Cache memory latency, throughput Eight benchmarks -  

[FIC13] SRAM No/No Cache memory 
throughput, energy 

consumption 
SPLASH-2 
benchmark 

Gem5  

[GUT12] 
SRAM + 

SRAM/eDRAM 
Yes/Yes Cache memory scalability 

SPLASH-2 
benchmark 

SoCLib  

[LI06] Not specified Yes/No 
Cache memory 

+ Processor 
latency, energy 

consumption, area 
SPEC OMP 
benchmark 

Simics  

[NIK15] SRAM + STT-RAM Yes/No Cache Memory 
Throughput, energy 

consumption 
PARSEC benchmark 

Gem5 + 
others 

 

[SCH15a] DRAM Yes/No 
Main Memory + 
Hybrid Memory 

Latency JPEG2000 3DMemory  

[WU09] 
SRAM + 

(eDRAM/MRAM/PRA
M) 

Yes/Yes Cache memory latency, scalability Various benchmarks Mambo  

This work SRAM/DRAM Yes/No 
Main Memory 

+ Cache 
Memory 

Latency, energy 
consumption, 

scalability 

PARSEC + NASA 
NAS benchmarks 

Gem5  

 
As all work summarized here are for 3D integration, the intention of using additional 

layers is shown in the third topic. Three basic scenarios are explored: (i) layer for cache 
memory; (ii) layer for main memory and; (iii) layer for processors. Li et al. [LI06] is the only 
work explored that uses multiple layers for processor distribution, and they do this to 
decrease the distance of cache memories to the processors. Unfortunately, they did not 
specify the cache technology employed. Schoenberger and Hofmann [SCH15a] design a 
specific memory layer that is between a cache and main memory. This memory was named 
hybrid memory. The other works use cache memories, main memories or the combination 
of two employing TSV interconnection. 

The fourth and fifth topics define the requirements explored for the system and which 
benchmark suite is used for this, respectively. The majority of works uses either latency or 
throughput evaluations to estimate the performance of the system. Some of the works also 
explore the energy consumption in the cache hierarchy. For the benchmark suite, all works 
use established benchmark suites except Schoenberger and Hofmann [SCH15a] that 
employ the JPEG2000 encoder/decoder. 

The final topic summarizes how the system is evaluated, with most of the work 
employing simulators. Loi and Benini [LOI10] synthesized its system with Synopsys and 
Cadence tools and also provided an analytical evaluation of its system. Kim et al. [KIM13a] 
system was built with GlobalFoundries and Tezzaron IC technologies. 

This work explores 3D MPSoCs on the following topics. The cache and main memory 
employ the conventional SRAM and DRAM technology, respectively. The cache hierarchy 
is explored up to the L2 cache. For 3D stacking, TSV-enabled emerging main memories and 
five cache organizations are evaluated regarding performance (specifically the comparison 
of execution time) and energy consumption. The scalability of our system is analyzed using 
a packet-based NoC. For the main memory and cache hierarchy, we employ the PARSEC 
benchmark. For scalability evaluation, we employ the NASA NAS benchmark as it supports 
the message passing communication model. Wu et al. [WU09] also employed this 
benchmark for evaluation. Finally, Gem5 is used to provide the execution of all applications 
and McPAT provide energy analysis of the cache hierarchy. 
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4 GEM5: FULL SYSTEM SIMULATOR 

A full system simulator is a fast architecture simulator capable of executing software 
stacks from real systems (user and kernel code) without any modification [ENG10]. Such 
tool can create virtual platform designs that can gather experimental data with workloads 
compatible with the running software. A key feature of such simulator is the flexibility to 
explore architectural designs without the inherent hardware cost of doing so manually. 

The simulation of computer architectures requires tremendous computational effort 
since it comprises any number of processors, memories, and I/O devices. Thus, it is 
necessary low-level descriptions to achieve accurate hardware-level simulation, such as 
Register Transfer Level (RTL), and a detailed hardware simulation model, which increases 
the time for design exploration making prohibitive the entire system simulation 
[BUT12][GUT14]. Therefore, simulators often use models of higher abstraction level that 
exchange precision for efficiency. Many simulators allow the designer to choose the degree 
of precision desired. Hence, they can operate in two execution modes [BIN11][IBM07]: 
simple (atomic) and cycle-based. 

Simple (atomic) mode only captures the program execution without regard to the 
timing accuracy. Resource contention is normally ignored, and fixed latency is used instead. 
The operating system can be abstracted and, therefore, the simulator emulates each system 
call. Memory accesses are assumed synchronous and instantaneous. This model is 
intended for rapid software development/debugging due to its fast execution time. 

Cycle-based mode enables to capture all the functionality of the atomic mode 
together with the accurate timing information that supports resource contention through 
arbiters, queues, and interrupts. This mode is intended for architecture exploration and 
platform design as it gathers information data with a greater level of fidelity. 

This chapter describes the Gem5 simulator – its structure, flexibility and known 
limitations. Afterward, an overview of modern full system simulators and its distinctions is 
discussed. 

4.1 Introduction to Gem5 

Gem5 is a full system simulator that employs a flexible and highly modular discrete 
event model, which is the result of the combined effort of a myriad of industrial institutions 
and academic such as AMD, ARM, University of Michigan, University of Texas and others. 
Currently, Gem5 supports six commercial Instruction Set Architectures (ISAs)3 (i.e., Alpha, 
ARM, MIPS, POWER, SPARC, and x86) and boots the Linux Kernel on at least three of 
them (ARM, Alpha, and x86) [BIN11]. Gem5 uses a BSD-like license that allows commercial 
and academic use and distribution of source code and binary formats [BIN11]. 

Gem5 aims to be a community tool focused on object-oriented design for architecture 
modeling [BIN11]. Utilizing standard and message buffer interfaces, Gem5 follows a 
Transactional Level Modeling (TLM)-like semantic, which enables ample support for 
community-based changes on the simulator4. 

Gem5 supports System-call Emulation (SE) and Full-System (FS) modes, which are 
the simple and cycle-based modes described previously, respectively. The SE mode 

                                            
 
 
3 The current state of those ISAs is maintained at the Gem5 site [GEM15a]. 
4 [GEM15b] is the site where changes are proposed and reviewed by the community. 
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handles the most commonly used system calls. Whenever the program requests a system 
call, Gem5 traps and emulates the expected result. In this mode, no effort is made to model 
devices and other OS services. The FS mode models a bare-metal environment suitable for 
running an OS. Because of the complexity of FS mode, not all ISAs present in Gem5 are 
capable of running it. Currently, Alpha, ARM, SPARC, and x86 ISAs are supported 
[BIN11][GEM15a]. 

FS mode supports four different CPU models: AtomicSimple, TimingSimple, In-Order, 
and O3. AtomicSimple and TimingSimple are non-pipelined CPU models that conduct the 
basic cycle of an instruction (fetch, decode, and execute) and commits it on every cycle of 
execution. The AtomicSimple model is a single IPC CPU, which executes all memory 
accesses instantaneously. The TimingSimple model enhances the execution with the timing 
of memory accesses. Figure 48 shows the differences of execution cycle between these two 
models. In-Order and O3 are “execute-in-execute” CPU models that emphasize instruction 
timing and simulation accuracy. “Execute-in-execute” means that instructions are executed 
only in the pipeline execution stage. While In-Order is restricted to execute instructions in 
the order that they are received, O3 models the instruction execution according to the order 
defined by the CPU dispatcher. Both models have parameterizable resources like the 
number of pipeline stages, load/store queue and reorder buffer (O3 model only). The 
challenge of using these two last models is the simulation time required. They are roughly 
an order-of-magnitude slower than the simpler models [SAI12]. Additionally, not all ISAs 
support those detailed models [END14]. 

 
 

(a) (b) 

Figure 48. Schematic of (a) AtomicSimple and (b) TimingSimple CPU models [SAI12]. 

Gem5 covers Classic and Ruby memory modes. The Classic mode was inherited 
from the M5 simulator [BIN06] while Ruby was inherited from the Gems framework [MAR05]. 
The Classic mode is faster, providing ease configuration through python scripts. Currently, 
this mode maintains memory coherence through an MOESI-like snooping protocol [SUH06]. 
Changing this protocol requires an overhaul of the entire cache system. In contrast, Ruby 
sacrifices simulation speed providing a flexible infrastructure to simulate a wide variety of 
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memory systems. In particular, Ruby provides a specific language, where one can define 
more easily cache coherence protocols. Moreover, Ruby supports many interconnection 
topologies such as a crossbar, mesh, and point-to-point. Unfortunately, Ruby is limited to 
Alpha and x86 ISAs [GEM15c]. 

Devices in Gem5 are built on a base class called io_device. The device must define 
three fundamental functions from this class: getAddressRange, read, and write. The 
getAddressRange function makes the device returns its address range that must be 
provided for the core simulation engine. The read and write operations are performed in their 
respective functions so that the device can interact with the remainder of the system. Many 
devices are already implemented in the Gem5 framework. Examples of such devices are 
Network Interface Controllers, Hard disk controller, Direct Memory Access (DMA) engines 
and Universal Asynchronous Receiver/Transmitter (UART) [BIN11][GEM15d]. 

4.2 The Accuracy of the Gem5 Simulator 

Accuracy is one of the fundamental aspects presented in Gem5. This attribute is 
intended to be balanced concerning the simulation speed desired by the user [BIN11]. 
Therefore, the user has some control of the accuracy achieved by this simulator. Since 
academia develops much of the source code, the focus of development is many times to 
study new concepts instead of replicating existing hardware modules. For instance, Wiener 
[WIE12] incorporates the ARM CoreLink CCI (Cache Coherent Interconnect) into the Gem5 
simulator. However, this is not a simple port – while CCI is aimed at single-hop 
interconnections, the proposed Gem5 counterpart supports multi-hop interconnections with 
some simplifications into the underlying coherence protocol. One example of this is the 
snoop hit scenario. When a snoop hit occurs, the memory controller does not handle the 
request; instead, it destroys the snoop hit immediately. This means a speculative fetch to 
the primary memory is “magically” avoided [WIE12]. Nonetheless, Gem5 still aims to model 
state-of-the-art systems accurately. Recently, studies were conducted to evaluate this 
crucial goal of Gem5. 

Butko et al. [BUT12] were one of the first published papers that discuss Gem5 
accuracy concerning performance estimation. The authors used the Snowball SKY-S9500-
ULP-C01 development kit as the reference hardware model. This development kit comprises 
a dual-core ARM Cortex-A9 processor. Experimental results showed that the mismatch 
between the real hardware and the simulation system ranges from 1.39% to 17.94%. The 
benchmarks employed selected applications of the SPLASH-2 and APLBench suite. The 
primary reason for the discrepancy encountered in their work is the abstraction used in the 
model of the external DDR memory latency. 

Endo, Couroussé, and Charles [END14] propose an In-Order CPU model for the ARM 
ISA based on the O3 model of the same ISA. With both models, the timing accuracy of 
Gem5 is evaluated with real hardware comparing the execution time of 10 benchmarks of 
PARSEC 3.0. The Cortex-A9 model (O3 CPU model) estimates the execution time with an 
absolute error of only 7.4% (ranging from 1% to 17%), in average. The In-Order model 
(Cortex-A8) estimates the execution time with an absolute error of 8% (ranging from 2% to 
16%), in average. The authors conclude that, even considering the generic nature of Gem5, 
the magnitude of error encountered can be regarded as good for an architecture simulator. 

Gutierrez et al. [GUT14] investigate the source of discrepancies in latency estimation 
between the Gem5’s ARM ISA and the execution of a real hardware platform (ARM Versatile 
Express TC2 development board). Only the O3 CPU model was tested in this work. Using 
the PARSEC benchmark, it was observed an average of 11% and -12% of runtime deviation, 
for single and dual-core systems, respectively. The work also shows that when measuring 
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multi-threaded benchmarks, Gem5’s scaling is accurate to within 1%, in average. Changes 
on the Gem5 were proposed and submitted to the Gem5 source code to reduce the overall 
inaccuracies encountered. 

All the works cited here agree that the discrepancies are within acceptable range 
since Gem5 supports many ISAs and does not have a commercial nature. Nonetheless, it 
is important to understand these deficiencies and mend them whenever it is possible. 

4.3 Simulation Design and Flow 

The core of Gem5 simulator is an event-driven engine, which tightly combines C++ 
and Python programming languages. Every component in the simulation is represented 
simultaneously as a C++ object and as a Python object [WIE12] to enable simple 
composition of any system. The designer only needs to recompile the platform if he changes 
the behavior of some components or if he wants to increase/decrease the level of 
verbosity/optimization of the simulator. Otherwise, the platform can be modified just by 
editing Python scripts. Figure 49 shows the initialization process of a “Hello, World” example 
running in SE mode. 

C++

Python

C++

Tim
e

 

Figure 49. Initialization of Gem5 (based on [GEM15e]). 

The first code (C++) is the main function, where the designer can define some 
variables (e.g., debug flags), invoke the python debugger, enable remote gdb debugging 
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and so on. Then the designer invokes a Python script that describes all objects to be 
instantiated and the way they are interconnected – in other words, the architecture is defined 
here; however, he can also define variables in this script, changing the predefined 
architecture. An example of Gem5 invocation of an ARM platform in FS mode is: 
./build/ARM/gem5.opt –debug-flags=Ethernet,IdeDisk configs/example/fs.py –mem-
size=512 –caches –num-cpus=4. 

Interaction with the system is twofold: telnet connection and Virtual Network 
Computing (VNC) session. For the telnet connection, Gem5 provides a specialized program 
called m5term. For VNC session, the user must use an external application. Telnet is limited 
to keyboard interactions only, whereas VNC enables additional mouse inputs [WIE12]. 

Gem5 supports checkpoints allowing the designer to start execution at his desired 
region of interest, which enables fast-forward large workloads that can take many hours just 
to initialize. This procedure mitigates some of the slower execution of Gem5 Instruction Set 
Simulator (ISS) when compared to binary translation-based simulators [BIN11]. 

Another interesting feature to mitigate the slower execution of detailed CPU models 
is a program called M5ops. This program enables special instructions on the executing 
simulation to trigger simulator events. Two functions are especially useful: dumpstats and 
switchcpu. Dumpstats clears all the simulation statistics until its call, which is useful for 
cleaning the warming up process of the system. Switchcpu causes the simulation to quit 
with an event of type “switch cpu”. Then the designer can check for this kind of event and 
change the CPU model during the system execution. Therefore, the system can execute 
faster until the region of interest and only changes its model for a slower one. Gebhart et al. 
[GEB09]demonstrate the compilation and the execution of the PARSEC benchmark using 
such features on Gem5. 

Linux Kernel

Linux Disk Image

Boot Loader

.rcS script

Config.ini

Stats.txt

simout

simerr

System.terminal

Framebuffer.bmp

System Python script

 
(a) (b) (c) 

Figure 50. Gem5 simulation (a) inputs, (b) runtime interfaces and (c) outputs (based on 
[WIE12]). 

Gem5 generates a couple of files after the end of the simulation. Figure 50 depicts 
simulation input, runtime interfaces, and output. Simulation is ended either by the user or by 
choosing a maxtick parameter. In FS mode, the following outputs are produced: 
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Simout and simerr - The standard output and error stream generated by the 
simulated OS. 

System.terminal - The output of the simulated system’s terminal. 

Framebuffer.bmp - The latest contents of the simulated system’s display. 

Config.ini - A key output of the Gem5 simulator. This file shows all components 
instantiated, its interconnections and its respective parameters. This allows the validation of 
the system simulated with the one intended by the user. 

Stats.txt - The second key output of the Gem5 simulator. This file aggregates all 
statistics generated by every component in the system. The overall extent of this file is 
limited to the implementation of the system’s components. Fortunately, the components 
already implemented in Gem5 have a good amount of statistics gathering. 

4.4 Overview of Full System Simulators 

This section presents an overview of some relevant full system simulators that are 
employed in the design space exploration of MPSoC platforms. The criterion for choosing 
these simulators was established in accordance with published works in areas related to 
design exploration of MPSoC and/or cache. 

4.4.1 SOCLIB 

SoCLib [SOC15a] is an open platform for virtual prototyping of MPSoCs described in 
SystemC language, providing high-level of abstraction while maintaining accurate 
transaction-level results. In this platform, processors are described using ISS. Currently, 
SoCLib is maintained at Lip6 laboratory in France. SoCLib is licensed under GNU’s Not Unix 
(GNU) General Purpose License (GPL) version 2. 

Hardware is implemented using one of two types: TLM with Distributed Time (TLM-
DT) or Cycle Accurate Bit Accurate (CABA). TLM-DT is a model compliant to TLM2.0 Open 
SystemC Initiative (OSCI) standard [SOC15b]. However, TLM-DT and TLM2.0 differ in the 
timing representation because an absolute time is used instead of the global simulation time 
provided by the SystemC core. Besides, all messages are annotated with timing information, 
since synchronization between timed processes is no longer centralized [TEC15a]. CABA 
aims to model hardware at the cycle accurate level. As stated in [SOC15c]: “The idea is to 
force the ‘event driven’ SystemC simulation engine to run as a cycle-based simulator.” To 
force this behavior, a hardware description is taken and converted to three types of function: 
(i) Transition function, which is responsible for the computation of the next value of 
registers. It takes as input the current values of the registers and input signals; (ii) Moore 
generation function, which is responsible for the computation of output signals that only 
depend on the internal registers; and (iii) Mealy generation function, which is responsible 
for the computation of output signals that depend on the internal registers and the values of 
the input signals. 

Figure 51 shows an example of a simple hardware and its representation using a 
graph, which is the input to the CABA conversion algorithm that produces the description of 
Figure 52. Fraboulet, Risset, and Scherrer [FRA04] define this algorithm and an extended 
version to avoid unnecessary duplicated code. As expected, this higher-level of detail 
compared to TLM-DT results in a significant increase of simulation time – CABA is 
approximately ten times slower than TLM-DT [POU09]. 



65 
 

 

Figure 51. Example of a simple hardware (left) and its representation as a graph (right) 
[FRA04]. 

 

Figure 52. CABA representation of the previous hardware description in Figure 51 (this is 
not the final optimized version) [FRA04]. 

The most recent SoCLib version supports four OS’s [SOC15a]. We chose to test 
MutekH OS, since it is maintained by the same laboratory as SoCLib, and we found out 
many errors in SoCLib during simulation. Observing the repository activity, we can 
hypothesize that although SoCLib continues to be updated, the platform used for MutekH 
did not receive the same maintenance. There are a two-year gap and approximately 300 
commits between updates in those two cases5. 

4.4.2 RABBITS 

Rabbits is a system simulator that relies on QEMU for software execution and 
SystemC for hardware modeling [RAB15]. Architecture support is limited to the ARM family. 
QEMU is employed for its binary translation technique, as it improves the simulation time 
required for hardware/software evaluation [GLI09]. Figure 53 shows an example of a 
platform in this simulator, whereas the processing units are executed in the QEMU 
framework and its communication with the outside system is wrapped in SystemC. Rabbits 
is licensed under GNU GPL version 3. 

                                            
 
 
5 Revision 2624 (SoCLib) and Revision 2325 (MutekH platform examples). 
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Figure 53. Example of a simulation platform in Rabbits [GLI09]. 

QEMU lacks any implementation of cache models [GLI09][MAH13]. Recently, there 
have been extensions for cache support in QEMU – Mahmoodi et al. [MAH13] proposed an 
extension for the MIPS architecture and Dung, Taniguchi, and Tomiyama [DUN14] for the 
ARM architecture. However, Rabbits was designed earlier than this and rolls out its 
implementation of cache in SystemC. 

The major drawback of Rabbits is its lack of proper documentation. This is even 
alluded at its main page [RAB15]. Rabbits offers seven platforms in its repository. However, 
without documentation, it is rather difficult to determine their characteristics. Because of this 
limitation, Rabbits was rejected for this work. 

4.4.3 SIMICS 

Simics is a full system simulator intended to produce an executable specification for 
hardware designers and a fast virtual platform for software developers [WIN10] that uses 
ISS for processor execution [MAG02]. Contrasting to the previous simulators described in 
this section, Simics is a commercial product and has a closed license [GUT14], and 
accesses to its source code is handled on a case-by-case basis [WIN15a]. 

Hardware designers write TLM-like code using a proprietary language called Simics 
DML. This language uses a C-like programming syntax. The hardware is not analyzed to 
determine its delay; instead, the designer issues latency at a later stage [WIN10]. Figure 54 
shows an example of a hardware interface with interrupt support. 

 

Figure 54. Example of a DML device programming interface [WIN10]. 

For software developers, Simics offers a customized version of the widely-used 
Eclipse Integrated Development Environment (IDE). Also, virtual platforms are executed 
using the following OS’s: vanilla Linux, Wind River Linux, VxWorks, and others [WIN15b]. 
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Due to the lack of a cache and a memory latency models [WIN10], we decided to 
work on a different full system simulator. 

4.4.4 OVP 

Open Virtual Platforms (OVP) is a system simulator that uses dynamic binary 
translation to cope with system design complexity while still maintaining high simulation 
speed [REK13]. OVP has a dual license model [IMP13]: (i) its main simulation core and 
some processor models are proprietary, (ii) while other processor models and Application 
Programming Interfaces (APIs) are open sourced via a modified Apache 2.0 license. OVP 
comprises three crucial components: 

 OVPsim is the simulation engine responsible for translating the target 
architecture binary code to x86 host instructions. It can be wrapped and called 
from other simulators environments like, for instance, SystemC [IMP15a]. 
While OVPsim is freely available (for non-commercial usage), CpuManager is 
the commercial alternative provided by Imperas. Some functionalities are 
exclusive to the commercial tool [IMP14]. 

 Library of processor models contains open-source and pre-compiled 
models of processing units. These models support various I/O components 
(e.g., UART and DMA), memory systems and OS’s (Linux, Android, and 
µcLinux are supported) [IMP15b]. 

 OVP APIs are four interfaces for the C language. These interfaces are 
responsible for instantiation of full systems, creating new processing unit 
models and creating new peripheral models [IMP15c]. 

OVP is a software virtual platform that does not model hardware in a latency-aware 
manner [IMP11]. Consequently, it is designated as an instruction accurate simulator. 
Therefore, for a given processing unit, OVP guarantees that registers hold the correct values 
at the end of each instruction. However, there is no concern for pipeline progression, out-of-
order execution or delays in the memory system [AGR09]. 

Some of the processor models support L1 cache [IMP15d]. However, the designer 
cannot customize the cache behavior. For this, the designer must roll out his cache model 
implementation at the cost of simulation performance, as OVP is unable to optimize this 
scenario [IMP15d]. One of the creators of OVP, James Kenney, states that: “(…) in terms of 
performance, on my 3Ghz PC, I expect to see several hundred MIPS simulation speeds for 
simulations without caches (…) and 10-20 MIPS when I have full MMCs, although this is of 
course highly dependent on the complexity of the MMC model (…)” [IMP15e]. 

A challenge of using OVP for cache evaluation is its lack of proper latency model 
since it assumes a ‘perfect’ memory model – where there is no latency penalty 
[IMP15f][IMP15g]. Therefore, OVP was rejected for this work since it is intended for software 
virtual platform, whereas this work aims to explore software/hardware virtual platforms. 
Nevertheless, restructuring OVP is undesirable since there are alternative simulators better 
suited for this scenario. 

4.4.5 TAXONOMY OF FULL SYSTEM SIMULATORS 

Table 6 depicts the key characteristics of the full system simulators discussed in this 
work. The items below describe the characteristics analyzed here. 

ISA(s) supported by the simulator. This does not differentiate if the ISA is limited to 
atomic mode only or supports both modes of execution (atomic and cycle-based). 
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Processor emulation technique employed by the simulator. Binary translation is 
faster than ISS; however, it requires a complex implementation code [BIN11]. 

Primary License of the simulator. Note that some parts of the simulator (primarily 
external programs) may employ a separate license. 

Accuracy employed by the simulator. Functional accuracy is limited to the behavior 
of the system while cycle-accurate aims to detail the timing behavior as well. 

Operating systems supported by the simulator. They can be restricted to a limited 
number of the overall ISA(s) held by the simulator. Again, this is not differentiated in this 
table. 

The presence of a cache model presumes the support for storage, coherence 
protocol, and timing behavior. 

Table 6. Taxonomy of full system simulators. 

Simulator ISA(s) supported 
Processor 
emulation 

License Accuracy Operating systems 
Cache 
model 

SoCLib 
SPARC, Nios II, POWER, 
MIPS, ARM, and others 

ISS GNU GPL v2 
Cycle-

accurate 
DNA/OS, MutekH, 
NetBSD and others 

Yes 

Rabbits ARM 
Binary 

translation 
GNU GPL v3 

Cycle-
accurate 

Linux and DNA/OS No 

Simics 
x86, ARM, M68k, MIPS, 
POWER, SPARC, Alpha 

ISS Closed Functional 
Linux, NetBSD, Solaris, 

Windows, and others 
No 

OVP ARM, MIPS, x86 
Binary 

translation 
Dual license Functional 

Android, Linux, and 
others 

No 

Gem5 
POWER, ARM, MIPS, 
Alpha, SPARC, x86 

ISS BSD 
Cycle-

accurate 
Android, FreeBSD, 

Linux, Solaris 
Yes 
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5 DESIGN AND EXPLORATION OF 3D MPSOC ARCHITECTURE 

This chapter explores 3D MPSoCs with on-chip cache support targeting some 
specific architectures, in order to evaluate tradeoffs in energy consumption and latency 
minimization of the cache hierarchy. The experimental analysis were conducted using the 
Gem5 full system simulator. 

Energy saving has become one of the most important design challenges as 
technology has advanced [RET11][TRA10]. Several previous works [BEN13][GOR07] have 
shown that more than 50% of energy consumption in processor-based architectures can be 
consumed by the cache subsystem. Aiming to reduce energy consumption while maintaining 
acceptable performance requires careful design. 

At some level of abstraction, we roughly define the energy consumption of a cache 
as a composition of two parcels, which are the Standby energy and the Access energy. 
Figure 55 exemplifies these parcels of energy consumption, taking into account 45 ns of 
memory operation and two memory accesses. 

 

Figure 55. Exemplification of the energy consumption of a memory cache. 

The Standby energy is the average energy consumed by a cache without any 
information access (i.e., reading or writing accesses), which can be modeled with the 
average power dissipation (PowerAVG) and the total operation time (timeTOT). Additionally, 
PowerAVG is composed by the static power dissipated in subthreshold and gate leakages, 
and the average dynamic power dissipated during cache maintenance operations; i.e., 
operations that are transparent to any application execution (e.g., memory refresh). 

The Access energy is composed by all additional energy consumed during a read 
(Energyread) or write (Energywrite) operation, which takes into account the quantity of reads 
(nread) and writes (nwrite). Both, Energyread and Energywrite are average values. 

Composing all parcels, the total energy consumed by a given cache level may be 
modeled by Equation 1. 

EnergyTotal = nread × Energyread + nwrite × Energywrite + TimeTOT × PowerAVG (1) 
 
It is important to emphasize that our model regards the energy consumption produced 

by the application execution. Consequently, we employed the term Access energy, instead 
of dynamic energy, because some memories consume lots of dynamic energy, even without 
accesses required by the application (e.g., dynamic RAM). Any memory refresh is 
abstracted by the application execution, and thus, the energy consumed in a given memory 
refresh is computed as a Standby energy consumption. 
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Latency minimization is a common requirement in applications targeting on-chip 
architectures [BJE06][SAB10]. Unfortunately, such minimization can induce an increase in 
other requirements such as area and energy consumption minimization [BEN13]. Therefore, 
a multi-constraint oriented approach is recommended. 

Each one of these requirements is strongly related to the principles of locality, which 
justify the use of caches [PAT13]. These principles are (i) temporal locality - If a particular 
memory location is referenced, then it is likely that the same place will be referenced again 
in the near future memory access; and (ii) spatial locality - If a particular memory location 
is referenced, also adjacent memory locations tend to be referenced. These principles can 
be easily associated with two basic elements of programming languages: loop statements 
and sequential execution [LUT13]. Therefore, due to the principle of locality as new levels 
of caches are added, the following statements are made: 

1. The importance of saving access and standby energies are inversely and directly 
proportional to the cache level, respectively. 

2. The importance of latency reduction is inversely proportional to the cache level. 

The requirements discussed here are outlined in Table 7 considering three levels of 
cache. The qualitative importance applied to each row is about the cache subsystem only. 

Table 7. Qualitative comparison of the importance of some memory requirements for the 
evaluated cache level. The colors indicate the importance of each level against the specified 

criteria. Blue, yellow and red means low, intermediate and high importance, respectively. 

Cache level Access energy saving Standby energy saving Latency reduction 

L1 High Low High 

L2 Intermediate Intermediate Intermediate 

L3 Low High Low 

 
This chapter is organized as follows. Next section discusses the Versatile Express 

architecture that is the baseline for this work. Then, the architecture exploration that will be 
conducted over the baseline architecture. During this discussion, we also detail the 
limitations found in the Gem5 framework to work with MPSoCs. Finally, we present and 
discuss the parallel workloads employed in this work – PARSEC and NASA NAS 
benchmarks. 

5.1 Architecture Baseline 

The starting point of our architectural exploration is the ARM system modeled by the 
Gem5 simulator. The ARM ISA was chosen for three reasons: (i) it is one of the ISAs 
supported by the Gem5 simulator; (ii) it is widely employed in embedded systems such as 
mobile cellphone, automobile vehicles, and developments kits [ARM15e][NVI15][SAM15a]; 
(iii) ARM is committed to helping the development of the Gem5 simulator and provides tool 
support for analyzing the ARM system behavior [ARM15f]. 

The ARM system of Gem5 is based on the ARM Versatile Express development 
board [GUT14]. Table 8 details the most relevant characteristics of the processor, cache, 
and memory subsystems, respectively. 

 



71 
 

Table 8. Characterization of the Versatile Express development board (based on 
[ARM11a][ARM12a][ARM12b][ARM15a]). 

Processor subsystem 
Big.LITTLE architecture 

2× Cortex-A15 3× Cortex-A7 

Core Type Out-of-Order In-Order 

Speed 1Ghz 800Mhz 

Pipeline 15 stages (integer) 8 stages (integer) 

Extensions VFP & NEON VFP & NEON 

Cache Subsystem Cortex-A15 Cortex-A7 

L1 cache Private L1 cache (32KiB instruction and 32KiB data) 

L1 I/D associativity 2-way 

L1 I-cache block size 64 Bytes 32 Bytes 

L1 D-cache block size 64 Bytes  

L1 I/D replacement policy LRU (Least Recently Used) Pseudo random 

L1 I-cache addressing PIPT VIPT 

L1 D-cache addressing PIPT 

L1 coherence protocol MESI MOESI 

L2 cache Shared L2 cache (1MiB) Shared L2 Cache (512KiB) 

L2 associativity 16-way 8-way 

L2 block size 64 Bytes 

L2 replacement policy Pseudo random 

L2 addressing PIPT 

L2 coherence protocol MOESI 

Interconnection Internal CoreLink CCI-400 

Memory Subsystem  

DRAM type DDR2 x32 

DRAM frequency 400MHz 

Memory size 2GB 

Memory Interfaces 1 

System bus frequency 500Mhz 

Components  

NOR Flash, UART, SD Card Controller, 10/100 Ethernet, HDLCD and others 

 
This board uses the big.LITTLE architecture, which means that it has a high-

performance cluster of O3 processing units and a low-power cluster of in-order processing 
units. Both have the same extensions: ARM Vector Floating-Point (VFP) and a general 
purpose engine called NEON for accelerating multimedia and signal processing algorithms 
[ARM15b]. On the cache subsystem, 2-way set associative is used for L1 caches and 16-
way, and 8-way are used for L2 caches of the high-performance and low-power clusters, 
respectively. Only the L1 instruction cache of the Cortex-A7 core uses Virtually Index 
Physically Tagged (VIPT), while all the other caches use Physically Index Physically Tagged 
(PIPT). For the high-performance cluster, the L1 cache employs the MESI coherence 
protocol, while the L2 cache employs the MOESI protocol. A dedicated hardware called 
Snoop Control Unit (SCU) coordinates the translation between the two protocols [ARM11a]. 
For the low-performance cluster, all caches employ the MOESI protocol. Finally, the memory 
subsystem is comprised of a 2GB 32-bit DDR2 clocked at 400 MHz. 

Table 9 shows how Gem5 models the architecture of ARM Versatile Express. 
Internally, this architecture is called VExpress_EMM. Note that this table is limited to the 
default parameters and to the specific version of Gem56. Basically, all parameters shown in 
Table 9 can be changed using Python scripts – the exceptions are: adding/removing pipeline 

                                            
 
 
6 In this work, Gem5’s version is identified by the following id: 5fe05690d03d (Mercurial repository 
identification). Revision 10923 from the Gem5 stable repository. Date of commit: August/2015. 
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stages, addressing policy employed in caches, coherence protocols employed in caches 
and the CCI. For these, Gem5’s capabilities must be expanded. 

Table 9. Default parameters for the modelling of ARM Versatile Express on Gem5 (based on 
[END14][GEM15f][GUT14][SAI12]). 

Processor subsystem Cortex-A9 based (ARMv7-A profile) 

Core Type Out-of-Order 

Speed 500Mhz 

Pipeline 7 stages (integer) 

Extensions VFP & NEON 

Cache Subsystem7 Cortex-A9 based 

L1 cache Private L1 cache (32KiB instruction and 32KiB data) 

L1 I/D associativity 2-way 

L1 I-cache block size 64 Bytes 

L1 D-cache block size 64 Bytes  

L1 I/D replacement policy LRU (Least Recently Used) 

L1 I-cache addressing PIPT 

L1 D-cache addressing PIPT 

L1 coherence protocol MOESI 

L2 cache Shared L2 cache (1MiB) 

L2 associativity 16-way 

L2 block size 64 Bytes 

L2 replacement policy Pseudo random 

L2 addressing PIPT 

L2 coherence protocol MOESI 

Interconnection Internal CoreLink CCI-400 based 

Memory Subsystem  

DRAM type DDR3 x64 

DRAM frequency 800MHz 

Memory size 2GB 

Memory Interfaces 1 

System bus frequency 1Ghz 

Components  

Hard Disk, UART, 10/100 Ethernet, HDLCD and others 

 
In comparison to the Versatile Express board, there are discrepancies in all 

subsystems analyzed. In the processor subsystem, the speeds of cores are lower. However, 
this can easily be changed. In the cache subsystem, all caches use PIPT for addressing, as 
does Cortex-A15 (Cortex-A9 uses VIPT and PIPT for L1 and L2 cache addressing, 
respectively [ARM10]). Again, all caches use MOESI for cache coherence protocol. Our 
hypothesis is that it happens because there is no SCU implementation on Gem5. Therefore, 
there is no hardware to coordinate between two coherence protocols. 

An expanded CoreLink CCI structure that supports multi-hops networks performs the 
interconnection architecture. The default option of the memory subsystem is the 64-bit 
DDR3. Nevertheless, there is a model for 32-bit DDR2 that resembles the Versatile Express 
main memory. Finally, some components of the system are missing (SD Card Controller) 
and others have a broader range of operation (Hard Disk Controller). 

Figure 56 illustrates the integer pipeline stages of both models Cortex-A7 and Gem5 
O3 core. Gem5 model is based on the Alpha 21264 pipeline [GEM15f], which is 
customizable, whereas the user can define the width of each stage depicted in this figure. 

                                            
 
 
7 Default parameters for the Classic memory system. 
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Figure 56. Pipeline stages of (a) Cortex-A7 and (b) Gem5 O3 CPU model (based on 
[ARM11b][GEM15f]). 

5.2 Architectural Exploration 

The main contribution of this work is the exploration of a diverse set of MPSoC 
architectures based on the ARM ISA. These designs aim to balance scalability, throughput, 
latency and energy consumption. The basis of this study is twofold: to separate the memory 
from the communication systems and to use 3D IC to tackle the constraints described above. 

We propose to disconnect the memory and communication system since they have 
different requirements. When a packet-based communication system is expanded to provide 
access to the memory system, it can be easily overburdened and unable to sustain an 
acceptable performance [FU14][WA08][YE10]. Thus, the use of two independent system is 
attractive due to its scalability. 

The interprocessor communication system uses a packet-based NoC, which is 
capable of providing an efficient on-chip communication when compared to traditional 
solutions as shared bus [BEN02]. Physically, distributing router units reduces the wire delays 
and the capacitance of the interconnection. Architecturally, decentralizing the interconnect 
fabric enables reliable systems building through independent operations. 

Specifically, we employ the hierarchical NoC proposed by Matos et al. [MAT11]. This 
architecture manages intra-cluster communication by a low-latency circuit-switched 
crossbar and manages inter-cluster communication by a high-bandwidth packet-based NoC. 
By doing this, the intra-cluster communication avoids the inherent multi-hop penalty of 
packet-based NoC and additional buffers that consume significant power. Figure 57(a) 
depicts the communication system connecting eight cores. 

The Gem5’s CCI-like structure, which is heavily based on the CoreLink CCI provided 
by ARM, grants the resources for memory system interconnection. The CCI is a low-cost 
and low-power crossbar-based communication architecture that provides support for cache 
coherence protocols enabling to connect caches, I/O devices, and GPUs. All read and write 
data channels are fixed 64-bit width. Moreover, CCI supports more than one memory 
controller, which allows parallelism for accessing the main memory [ARM12c][ARM15g]. 
Figure 57(b) depicts the Gem5’s CCI connecting the eight cores into a single coherent 
memory space. The General Interrupt Controller (GIC) is responsible for distributing 
interrupts for all cores. Since there is no core distinction for accessing the main memory this 
denote a UMA system. Currently, ARM does not employ NUMA in its interconnect family 
products [ENT15][LIN15]. 
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Figure 57. Schematic representation of (a) on-chip communication system performed with a 
crossbar connected to a NoC through a router port; (b) the same processors with L1 caches 

of data and code and the Gem5’s CCI memory interconnection. 

Figure 58 shows the entire target architecture, which comprises the junction of both 
message communication and memory architectures. The CCI is located on a second tier 
presented in Figure 60. 
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Figure 58. A cluster of eight processors with message communication and memory 
architectures. 

To scale this architecture to hundreds of cores, we propose to use more than one 
global address space, as maintaining coherence in an UMA architecture model is costly and 
impractical. This limitation is known as the Coherence Wall [HUA12][MAT10]. Therefore, we 
propose to use a hierarchy of tiers, with different models for each hierarchy level. 

The first tier comprises clusters with fully coherent UMA architecture. In each cluster, 
tasks are intended to be mapped according to their communication, processing, and 
memory requirements (e.g., highly communicating task are mapped to the same cluster). 
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The second tier is a NORMA architecture that binds multiple clusters of the first tier. 
In this case, tasks are intended to be mapped in different clusters that, for instance, have a 
sporadic communication traffic between themselves. Consequently, the one responsible for 
mapping tasks must take these considerations in its policy. This work employs manual 
mapping arranged by the developer – he chooses the cluster for application tasks execution 
and, if he wishes so, the particular core within the cluster (through either the 
sched_setaffinity system call [DIE15a] or the taskset application [DIE15b]). 

Figure 59 depicts the memory and communication architecture in the first tier. 
Clockless repeated wires as proposed by Krishna et al. [KRI13] can be employed to maintain 
single-cycle hops and reduce wire delays. 
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Figure 59. First tier of the system (message communication and memory architectures). 

Aiming to achieve an efficient layout that approximates all the levels of the memory 
hierarchy to the processors, we employ 3D IC architectural model. The cache levels of the 
memory hierarchy can be shared or privately-accessed across the number of processors 
attributed to each cluster. More than one configuration is performed to explore effective 
throughput and energy consumption. Figure 60 depicts an example of a two die 3D system 
interconnected through TSVs. 
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Figure 60. Second tier of the system (Cache L2 and CCI). 

5.3 Limitations of the Gem5’s ARM ISA 

Gem5 does not impose any inherent limit of how many cores it can process 
[GEM15g]. However, Gem5 simulate with some nuances or restriction according to the type 
of target processor. For instance, GEM5’s documentation for the ARM platform provides 
examples limited to two cores. Also, systems with more than four cores present some 
complications [GEM15h][GEM15i]. For the Linux kernel, the platform can inform the number 
of cores available in many different ways. For the particular version used in this work (3.3.0-
rc3), the kernel consults the L2 Control Register for this. Unfortunately, this register reserves 
only two of its thirty-two bits to inform the cores count [ARM15c], which only allows 
identifying four cores. We modified the Linux kernel expanding this field to three bits, using 
one bit of reserved space, increasing the previous limitation to eight cores. Note that, core 
identification can also be done using the SCU control register. However, this was not 
implemented because there is no SCU implementation on Gem5 and this register also has 
the same core count limitation as the L2 register [ARM15d]. 

Furthermore, the GICv2 for ARM is implemented in Gem5. Regrettably, this version 
is restricted to service eight cores [ARM11c]. The newer version 3 of this same module is 
capable of running 128+ cores. Linux kernel support was added just recently (version 4 and 
onward) [LWN15]. 

Further difficulties were encountered for executing eight cores. One of the first code 
that every cores executes (arch/arm/kernel/smp.c:secondary_start_kernel) is responsible 
for incrementing the initial mm_struct (variable init_mm) used by the kernel. An additional 
increment is done on the scheduler (kernel/sched/core.c:sched_init). Therefore, after the 
system has booted, init_mm must be equal to n + 1, whereas n is equal to the core count. If 
this is not met, the system will later fail with a kernel panic. Unfortunately, only the simplest 
model of CPU achieves this. We do not know the source of this discrepancy and remedy 
this by using the switchcpu method described in Section 4.3. 
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The ARM ISA on Gem5 is limited to the classic memory system. In this system, only 
the CCI-like interconnect is supported for on-chip interconnection. This structure uses a 
three-layered bus for requests, responses, and snoop message handling [WIE12]. Off-chip 
interconnection is based on this model; however, it uses a simplified two-layered bus (lacks 
snoop messages) [GEM15k]. As such, there is no support for packet-based 
communications. We developed an abstract model for our inter-cluster communication, 
which will be discussed in Section 6.4. 

Besides, the ARM ISA on Gem5 is limited to a classical L2 shared design. However, 
our intention is to evaluate five designs: two shared, two private, and one paired design 
based on the SPARC M7 chip (Figure 10). Therefore, we extended Gem5 to support all 
these designs. 

Native Gem5 does not have full support for Dynamic Voltage and Frequency Scaling 
(DVFS). Researchers have been extending Gem5 to support this feature [HAR14][SPI13], 
but this requires modifications of Gem5 code or full-blown dedicated extensions of Gem5 
infrastructure. Due to time constraints, we did not incorporate DVFS in our analysis. 

5.4 PARSEC – Benchmark Suite for Multiprocessing 

Benchmarking is the quantitative foundation for computer architecture research 
[BIE08]. Without a program selection that provides a representative load of the target 
application space, performance results can be skewed and invalidate conclusions drawn 
from it. A well-known fact of multiprocessing is the disruptive change of programming models 
for programs to benefit from their full potential. The use of older High-Performance 
Computing (HPC) workloads does not fit this scenario since it is based on smaller suites 
and sequential applications. This shortcoming is the target intended to be answered by the 
Princeton Application Repository for Shared-Memory Computers (PARSEC) suite [BIE08]. 

The first version of PARSEC was created by Intel and Princeton University [BAO15]. 
The latest version available of PARSEC is 3.0 [PRI15]. It is a highly used benchmark, for 
instance, PARSEC was employed for benchmarking in more than 55 papers in International 
Symposium on Computer Architecture (ISCA) from 2010 to 2014 [SOU15a]. 

The five objectives proposed by PARSEC are described as following: 

Multi-threaded Applications - Shared-memory multiprocessor is one of the most 
employed architecture today for high-performance systems. The trend for future 
architectures is to deliver performance improvements through increasing core counts on 
multiprocessing. Therefore, applications that require processing power must use a parallel 
model of execution. 

Emerging Workloads - The increase of processing power enables new classes of 
applications whose computational requirements were beyond the capabilities of earlier 
generations of processors. Hence, the benchmark suite should represent this trend. 

Diverse - A benchmark suite must be broad in its representative load of applications, 
which includes both interactive applications like computer games, offline applications like 
data mining, and programs with different parallelization models. While a real representative 
suite is impossible to create for all cases, reasonable effort should be applied to maximize 
the diversity of the program selection. 

Employ State-of-Art Techniques - A benchmark suite must be up-to-date with 
current practice in parallel application techniques. 
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Support Research - A benchmark suite intended for research has additional 
requirements that goes beyond the ones used for benchmarking real machines alone. 
Representative input sets with different proprieties should be provided. 

PARSEC fulfills the objectives by providing a rich, parallelized, state-of-the-art 
applications with diverse areas of research. The areas contemplated are computer vision, 
media processing, computational finance, enterprise servers, and animation physics. Table 
10 summarizes the key characteristics of PARSEC benchmarks. 

Table 10. Qualitative summary of key characteristics of PARSEC benchmarks [BIE08]. 

 
 
PARSEC provides three categories of input sets for each benchmark. The test and 

simdev are tiny input sets intended for testing and development, and should not be used for 
scientific studies. Simsmall, simmedium, and simlarge are intended for simulators and vary 
progressively in size and follows a trend that larger inputs contain bigger working sets and 
more parallelism They approximately represent the runtime execution of 1, 5, and 15 
seconds [BAO15], respectively. Finally, the native input set is the most interesting one 
because it resemble real program inputs. However, its runtime execution is about 15 
minutes, which is prohibitive for a full system simulator. Section 5.4.2 will show the wall-
clock time of the simmedium and simlarge on the Gem5 simulator. 

The remaining sections are organized as follows. First, benchmark applications used 
in this work will be briefly presented. Then, the Gem5 integration with PARSEC will be 
discussed. 

5.4.1 PARSEC BENCHMARK 

This work chose the following applications present on the PARSEC Benchmark: 
Blackscholes, Bodytrack, Canneal, Dedup, Fluidanimate, Swaptions, Vips, and x264 
because they give a broad range of behaviors to analyze the impact of microarchitecture 
changes. From the data presented in Table 10, we can see that all parallelization 
model/granularity and working set are achieved. Table 11 summarizes the finer details of 
instructions and synchronization primitives employed on all benchmark applications under 
an 8-core system with the input set simlarge. 
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Table 11. Breakdown of finer details of the benchmark applications for input set simlarge on 

a system with 8 cores [BIE08]. 

 
 
The application descriptions are based on the characterization presented in 

[BIE08][BAO15]. 

Blackscholes is an Intel RMS application that calculates the prices for a portfolio of 
European options analytically with the Black-Scholes partial differential equation. It has been 
shown that there is no closed-form expression for the Black-Scholes equation and, hence, 
it must be computed numerically. This program is limited by the amount of floating-point 
calculations a processor can perform. Input sets are synthetic based on replication of a 
1000-real options. This application is the simplest of all PARSEC benchmarks and has 
negligible communication. 

Bodytrack computer vision is also an Intel RMS application that tracks a 3D pose of 
a market-less human body with multiple cameras through an image sequence. Bodytrack 
employs an annealed particle filter to track the pose using edges and the foreground 
silhouette as image features. Computing vision is a significant step to the machines interact 
with the environment dynamically. Input sets are from a video feed from 4 cameras. The 
communication in this benchmark presents a bigger impact than in the case of Blackscholes. 
Bodytrack suffers to achieve expected speed-up with eight cores or more, which is inherent 
from its sequential sections and redundant computations. This application has the least 
theoretical speed-up for all benchmarks. 

Canneal is the first application developed by Princeton University, which uses cache-
aware Simulated Annealing (SA) to minimize the routing cost of a chip design. SA is a 
common method to approximate the global optimum in a large search space. Canneal uses 
a very aggressive synchronization strategy that is based on data race recovery instead of 
avoidance. The cases where data is misread due to synchronization issue are accepted as 
swaps that increase the routing cost momentarily but may result in a global decrease. The 
swap operations employ lock-free synchronization that are implemented with atomic 
instructions. Input sets are from a synthetic netlist. Canneal has the workload with the most 
critical memory responses. 

Dedup is an application developed by Princeton University that achieves high 
compression ratios of a data stream combining global and local aspects. Such compression 
is called ‘deduplication’. Also, this benchmark uses a pipelined programming model to 
parallelize the compression where five pipelines stages are employed, the intermediate 
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three of which are parallel. Dedup is intended for enterprise storage servers, where each 
input is an archive that contains a selection of files. 

Fluidanimate is an Intel RMS application that uses an extension of a previous 
method called Smoothed Particle Hydrodynamics to simulate an incompressible fluid for 
interactive animation purposes. Its output can be visualized by detecting and rendering the 
surface of the fluid. The input set comprises of many particles and frames. Fluidanimate 
uses by far the largest number of synchronization locks primitives. Also, this is the only 
application that has over 5% of parallelization overhead when comparing a parallel version 
to a serial version, which limits its achievable speedup in multiprocessor architectures. 

Swaptions is an Intel RMS application that uses the Heath-Jarrow-Morton framework 
to price a portfolio, which describes how interest rates evolve for risk management and asset 
liability management for a class of models. Swaptions employs Monte Carlo simulation to 
compute the prices. The input set includes some swaptions and simulation runs. This 
application has few communications between cores. 

Vips is based on the VARASI Image Processing System, which was developed 
through several projects funded by the European Union. The application includes 
fundamental image operations such as affine transformation and convolution that uses the 
VARASI system to construct, transparently at runtime, multi-threaded image processing 
pipelines. The input set is an uncompressed image to be transformed into another image. 

X264 is an H.264/AVC video encoder application based on the ITU-T H.264 standard, 
which is now also part of ISO/IEC MPEG-4. H.264 describes the lossy compression of a 
video stream, which improves over previous video encoding standards by employing new 
features that achieve a higher output quality with a lower bit-rate at the expense of a 
significantly increased encoding and decoding time. The parallel algorithm of x264 uses the 
pipeline model with one stage per input video frame. X264 processes some pipeline stages 
equal to the number of encoder threads in parallel, resulting in a sliding window which moves 
from the beginning of the pipeline to the end. The input set is a video with a given resolution 
and a given number of frames. This benchmark is very communication intensive. 

 

Figure 61. Cache traffic in bytes per instruction for one to sixteen cores (based on [BIE08]). 

Bienia et al. [BIE08] used CMP$im with the Pin simulator to obtain experimental 
results for the PARSEC benchmark. The baseline cache configuration was a shared 4-way 
associative cache of 4MiB capacity with 64-byte lines. Figure 61 shows the cache traffic of 
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shared writes and reads, private writes and reads, and true shared writes and reads. 
Simulation is done using one, two, four, eight, and sixteen cores. An access is a true access 
if the last reference to a given cache line came from another thread. As can be inferred from 
this figure, all programs exhibit very few true shared writes. 

Execution of a PARSEC application can be achieved in two ways: full execution or 
partial execution. The full execution is the measurement of time elapsed from the start to the 
end of execution of all instructions, which includes the serial portions of the application and 
thread instantiation. Partial execution is achieved through measurement in specific places 
already provided by PARSEC. These places are called Region Of Interest (ROI) and 
delimitate the parallel portion of the applications [BAO15]. When these places are reached, 
a user-defined function is called so that the designer can set up the measurement 
environment. ROI was created for mitigating the skew of running inputs smaller than native 
since they provide a smaller fraction of parallel code versus serial code. Hence, Bienia et al. 
[BIE08] state that it is safe to assume that the serial initialization and shutdown phases are 
negligible in the real inputs, and this allows one to completely ignore them for experiments. 

(a)  (b)  

Figure 62. Scalability of blackscholes (a) as reported by Pusukuri, Gupta, and Bhuyan 
[PUS11]; (b) measured by Shoutern and Renau [SOU15a][SOU15b]. 

However, Southern and Renau [SOU15a] shown that the use of ROI can mask 
significant limitation of the parallelization of some applications. Their work is based and 
motivated by previous findings by Pusukuri, Gupta, and Bhuyan [PUS11], which are shown 
in Figure 62(a). Figure 62(b) shows the measured results of their work and pinpoints the 
source of discrepancy between ROI and full simulation. Thus, Southern and Renau extend 
the work on [PUS11] to measure the runtime scalability of the four main PARSEC input sets 
(i.e., simsmall, simmedium, simlarge, and native) and compare the scalability of the ROI 
with that of the whole application.Experimental results were conducted on the 13 
benchmarks available in PARSEC using three different real multicore systems. Evaluation 
of execution is done through the wall-clock runtime. The systems tested are: a single CPU 
with 4 cores, 2 threads per core; a dual socket system with 8 cores per socket, 2 threads 
per core and; a quad socket system with 12 cores per socket, 1 thread per core. 

Figure 63 is a collection of some of the results presented in [SOU15a] work. M32 and 
M48 are the dual- and quad-socket machines, respectively. 
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(a) Blacksholes (M32) 

 

(b) Bodytrack (M32) 

 

(c) Bodytrack (M48) 

 

Figure 63. Speedup of bodytrack and blackscholes for all input sets for both ROI and full 
execution (based on [SOU15a]). 

These results show that the relation between simulation and native input sets, and 
also ROI and full execution, is a complex matter. Figure 63(a) shows a case where all ROI 
executions extrapolate the real achievable speedup greatly. Figure 63(b) shows a case 
where full/ROI native run has the best speedup while the simlarge input full/ROI run has a 
lower speedup. Meanwhile, Figure 63(c) shows similar results for native and simlarge inputs 
using the same benchmark but with a different machine configuration. 

Finally, Figure 64 shows that there is no single consistent trend on input sets and full 
execution versus ROI. Some benchmarks show a consistent relation between native and 
simlarge inputs (Blackscholes, Bodytrack), full execution and ROI (Swaptions, Vips), while 
others do not show it at all (Canneal and Raytrace). 
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Figure 64. Maximum speedup observed for all machines tested for each benchmark, region, 
and input set combination [SOU15a]. 

Table 12 shows the speedup variation comparing the native set with full simulation 
model with simlarge set and both full and ROI simulation models. The table is presented in 
percentage variation having as reference the native set model. This table allows to observe 
the accuracy of each simulation model. 

Table 12. The speedup of simlarge full and ROI models normalized according to the native 
full model. Positive and negative values mean speedup increase or reduction, respectively. 
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Simlarge-full -11.1 -10.0 -50.0 50.0 -57.1 -70.6 -73.3 -68.4 -50.0 -45.5 -28.6 -47.4 -57.1 -58.3 

Simlarge-ROI 177.8 0.0 325.0 75.0 -28.6 -64.7 -20.0 -68.4 575.0 -45.5 -28.6 -44.7 -57.1 -8.3 

 
Our work employs simlarge set with full simulation to model all the benchmark 

applications. As a consequence, Blackscholes and Bodytrack simulation are the ones that 
present the most consistent results when compared with their native counterpart, while 
Fluidanimate is the opposite. In the next subsection, we will describe the integration of the 
PARSEC benchmark with Gem5 and explain why the native set was not employed. 

5.4.2 INTEGRATION WITH GEM5’S ARM ISA 

The first step to integrate the PARSEC benchmark suite into Gem5 is to compile it. 
The management program used by parsec, parsecmgmt, is tailored to compile applications 
for the host machine. In other words, cross-compiling is not natively supported. Also, ARM 
is not officially supported by PARSEC. Fortunately, other researchers have already tackle 
this situation. 

A QEMU machine was built to emulate an ARM Versatile Express board and to 
compile PARSEC natively to solve these issues.  The machine followed the instructions 
underlined in this link [UBU15a]. However, it is not enough, so a patch [GEM15l] is applied 
to make PARSEC compatible with the ARM ISA. This patch adds atomic instructions for this 
platform. Additionally, we had to decrease the optimization level of the compiler (O3 to O2) 
for the x264 application due to corruption on the clean-up phase of this application. This 
behavior was also encountered by other PARSEC users [PAR15a]. Ultimately, all 
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benchmarks can be compiled except raytrace since it uses Intel’s Streaming SIMD 
Extensions (SSE) [GEM15l].  

The architecture exploration on GEM5 can use timing or O3 CPU models. The 
following tables will show the difference in wall-clock time for simulating PARSEC 
benchmarks. A single core8 of Intel Xeon E5-2660 clocked at 2.60 GHz is employed for 
simulation. 

Table 13 shows the wall-clock time for a number of benchmarks using the timing CPU 
model. They range from 30 minutes up to 29 hours and 30 minutes. All simulations were 
done using eight cores with the same cache and memory configurations. In our experiments, 
changing the main memory configuration did not result in a significant change of wall-clock 
time. However, the number of CPU cores impact the simulation time. A simulation of 8 timing 
CPU cores is 2.2 times slower than the same simulation with only one core, in average. 

Table 13. Wall-clock time for the timing CPU model of a broad range of PARSEC 
applications. 

 Blackscholes Bodytrack Dedup Swaptions Vips x264 

simmedium 0.5 hour 1 hour 2 hours 2 hours 3.5 hours 10 hours 

simlarge 2 hours 4 hours 10 hours 11 hours 9.5 hours 29.5 hours 

 

Early results demonstrated that the timing CPU model did not sufficiently model the 
cores to capture nuances of changes in the main memory or cache organizations regarding 
simulated execution time. Hence, we were forced to use the more detailed O3 CPU model. 
As previously stated by the authors of Gem5 [SAI12], O3 is an order-of-magnitude slower 
than the timing and atomic CPU models. This can be seen in the experimental results of 
Table 14, where all applications more than doubled its required simulation time. Also, two 
additional applications were computed. For this scenario, execution of a single core was not 
conducted. 

Table 14. Extended range of PARSEC applications under eight O3 CPU cores. Simulation 
time is in wall-clock time. 

 Blacksc. Bodytrack Canneal Dedup Fluid. Swaptions Vips x264 

simmedium 2 hours 4 hours 8 hours 8.5 hours 6 hours 11 hours 13 hours 33.5 hours 

simlarge 7.5 hours 13 hours 16.5 hours 54 hours 15 hours 42 hours 35 hours 108 hours 

 

Table 14 shows why we did not use the native set for simulation. As the intended 
execution time for simlarge is 15 seconds and for native is 15 minutes, execution of a single 
application on Gem5 would easily surpass a month. 

5.5 NASA NAS Parallel Benchmark 

The Numerical Aerodynamic Simulation (NAS) Parallel Benchmarks (NPB) is another 
benchmark for testing the capabilities of parallel computers. Its main difference from 
PARSEC is the ability to select some parallelization techniques providing shared memory 
and message passing programming models freely. The two main frameworks are OpenMP 
– for shared memory – and MPI – for message passing – and some additional frameworks 
[NAS15a]. Aftosmis et al. [AFT06] tested both versions and found out that OpenMP 

                                            
 
 
8 Gem5 is a single-threaded application. 
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demonstrated better performance on a small number of CPUs, but the MPI implementation 
produced significantly better scaling. 

The applications of these benchmarks are derived from computational fluid dynamics 
used for aerophysics applications [SAI96]. These applications are distinguished from 
traditional scientific applications due to its large memory requirements [WAH98]. Although 
the NPB suite is rooted in the problems of computational fluid dynamics, they are valuable 
in the evaluation of parallel computing since they are rigorous and as close to real 
applications as can be expected from a benchmark suite [ALM04]. 

Four categories of increasingly input sizes are currently available. The first category 
has one size (S) and is intended for quick test purposes. The second category also has one 
size (W) and mimics the input set expected for a 90’s workstation. The third category is 
comprised of three sizes (A, B, and C) and is considered the standard input set. From one 
class to the next the input size roughly increases four-fold. Finally, the last category is also 
comprised of three sizes (D, E, and F) and is considered the large input set. From one class 
to the next the input size roughly increases sixteen-fold [NAS15a]. Table 15 shows the 
parameter values of the CG application for all input sets (expect class F). The CG application 
will be described in the following section. 

Table 15. Input set parameters for the CG application (based on [NAS15b]). 

 

5.5.1 NAS PARALLEL BENCHMARK APPLICATIONS 

From the eleven applications provided by the benchmark suite, the following were 
chosen: MG, CG, FT, IS, and LU. As the objective of using such suite is testing scalability 
on message passing systems, applications that do not have this profile were excluded. For 
instance, the EP benchmark provides an estimate of the upper achievable limits for floating-
point performance and requires almost no communication [SAI96]. Using such benchmark 
would be redundant since we already employ Blackscholes from PARSEC to do this.  

The application descriptions are based on characterization presented in 
[BAI94][BAI95][SAI96]. Most benchmarks from NAS are based on iteration steps involving 
mathematical equations. Hence, this allows the application to self-validate each iteration 
[BAI95]. 

MG is a simplified MultiGrid kernel, which solves the 3D Poisson partial difference 
equation. This problem is simplified in the sense that it uses constants rather than variable 
coefficients as in a more realistic application. This benchmark is a good test of both short 
and long distance highly structured communication. 

CG is a Conjugate Gradient method used to compute an approximation to the 
smallest eigenvalue of a large, sparse, symmetric positive definitive matrix. Complementary 
to MG, it tests irregular long distance communication, employing unstructured matrix-vector 
multiplication. 

FT is another 3D partial differential equation solver using Fast Fourier Transform. 
This is a test of long distance communication performance. 
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IS is a benchmark that moves significant data and executes integer computation to 
achieve sorting operations in particle method codes. This benchmark must sort some 
generated values in parallel. This problem is unique in NPB that floating-point arithmetic is 
not involved. 

LU is a benchmark that solves a synthetic system of nonlinear partial differential 
equations using a symmetric successive over-relaxation solver. LU is very sensitive to the 
small message communication performance of MPI. It is the only benchmark from version 
2.0 that sends large numbers of very small messages (40 bytes). 

As shown by these descriptions, the NAS benchmark suite focus on a class of 
computational fluid dynamics applications that solve partial differential equations. Waheed 
and Yan [WAH98] did the workload characterization of this benchmark to generalize the 
results of various measurements of its runtime behavior. 

The measure of computation versus communication of class A of the NPB 
benchmarks is the first contribution of Waheed and Yan’s work. Figure 65 shows the 
alternative nature of their relation. Computation in this context is the execution of instructions 
and memory fetches. Communication is the execution of system calls for invoking a 
communicative service and network resources for actual data transfer. 

 

Figure 65. Alternating computation and communication phases in an application [WAH98]. 

Table 16 shows the results obtained in an NUMA architecture called Origin2000. 
Each node of the Origin2000 is comprised of an MIPS processor with two levels of separate 
data and instruction caches for each processor. On-chip cycle counter were employed to 
determine the depicted characteristics. 

Table 16. Statistics of communication and computation phases of NPB on Origin2000 
[WAH98]. 

 
 

This figure shows that FT has a distinct mean value for all analyzed characteristics. 
This is justified, in part, by the use of long distance communications, as stated earlier. The 
fact that the computational phase is also particularly long points to the fact that FT uses few 
but large communications, while all the other benchmarks scatter the communication 
throughout their execution [WAH98]. 

Waheed and Yun also observed that 80% of execution time is spent in accessing 
memory when executing either floating-point as well as integer operations. Based on this 
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measurement, the authors observed that almost every floating point instruction in the 
benchmarks analyzed require at least one memory access. This observation is consistent 
with the common belief that computational dynamic fluid solvers are often memory bound 
applications [WAH98].  Almojel [ALM04] also found that memory operations dominated the 
execution of the benchmarks EP, MG, CG, FT, and BU under the class A input set. 

For the memory subsystem of Origin2000, Waheed and Yun found that L1 cache 
miss rate falls in the range of 11% to 27%, and L2 cache miss rate falls in 4% to 22%. 
Translation Lookaside Buffer (TLB) misses are insignificant due to fine-grained data 
distribution on the benchmarks. This analysis is for the following benchmarks: BT, SP, LU, 
FT, CG, and MG [WAH98]. 

5.5.2 INTEGRATION WITH GEM5’S ARM ISA 

As NPB does not use special architectural instructions, it was easily compiled for 
ARM. The intended framework for communication chosen for this work is MPI since its 
compatible with message passing systems. For MPI to execute in a cluster of processors, 
some auxiliary tools are needed. In this work, the mpich2 (an application that implements 
the MPI standard) is supported with a password-less private-key authentication SSH and 
appropriate user for it, which is done according to the guidelines of [UBU15b]. 

Table 17 depicts the simulation time required to execute the five NASA NAS 
applications selected and employing a system with 4 clusters of 8-core each (32 cores total). 
LU used a smaller input set (W) since its simulation time is demanding. 

Table 17. Wall-clock time for the O3 CPU model of NASA NAS applications. 

 CG FT IS LU MG 

W - - - 89.8 hours - 

A 20.5 hours 83.3 hours 21.4 hours - 27.9 hours 
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6 EXPERIMENTAL RESULTS 

This chapter describes and discusses the experimental results, which are divided into 
four groups: workload distribution, main memory, cache, and scalability. The workload 
evaluation depicts how the Linux kernel distributes the parallel applications among all 
available cores. For main memory and cache evaluation, shared memory is employed for 
inter-core communication and the PARSEC benchmark defines the applications domain. 
Finally, for scalability evaluation message passing is employed for inter-core communication 
and the NASA NAS benchmark characterizes the applications domain. 

The PARSEC benchmark uses a user-defined value that determines the minimum 
number of threads spawn by each benchmark. For this work, this value was fixed to the 
number of cores present in a single cluster. However, it does not mean that each core is 
running a single thread as PARSEC can spawn additional threads. The real number of 
threads is depicted in Table 18. As can be seen from this table, the x264 benchmark has 
the greatest number of threads. This justifies its discrepancy of simulation time when 
compared to other benchmarks shown in Table 14 – more than double the time of Dedup, 
the second most demanding benchmark for simulation time. According to the PARSEC user 
forum [PAR15b], x264 tries to limit the pool of threads by the user-defined minimum number 
of threads. In other words, the values shown in Table 18 are for the total number of threads 
created over the entire execution time. 

Table 18. Number of threads spawn by each benchmark, where n is the user-defined 
minimum threads parameter (based on [SOU15a]). 

Benchmark Threads simlarge (𝒏 = 𝟖) 
Blackscholes 1 + 𝑛 9 
Bodytrack 2 + 𝑛 10 
Canneal 1 + 𝑛 9 
Dedup 3 + 3𝑛 27 
Fluidanimate 1 + 𝑛 9 
Swaptions 1 + 𝑛 9 
Vips 3 + 𝑛 11 
x264 1 + 2 × 𝑓𝑟𝑎𝑚𝑒𝑠 257 

 
The NASA NAS Parallel benchmark also uses a user-defined number – however, for 

this benchmark, this number is for defining core units. For this work, this value was fixed to 
the number of cores present in the system. 

For all evaluations, a baseline cache was set up as shown in Table 19, which contains 
an example of the baseline organization in an architecture with four CPUs. The cache and 
scalability evaluations define additional configurations that will be discussed in their 
respective sections. The baseline configuration has two L1 caches for each core, one for 
the instruction cache and another for the data cache. In addition, an L2 cache is shared by 
all cores and uses data prefetching to reduce execution time. A strided prefetcher is 
employed that monitors the core’s address pattern to detect and prefetch constant stride 
array references originating, for instance, from looping structures [VAN00]. This 
configuration is based on the Versatile Express board presented in Table 8 from Section 
5.1. 
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Table 19. Baseline cache configuration. 

Cache 
baseline 

Parameter Values Example of baseline organization with 4 CPUs 

Private L1 I+D 
(Instruction 
and data) 

Size 32 KiB + 32 KiB CPU

L1d L1i

CPU

L1d L1i

CPU

L1d L1i

CPU

L1d L1i

L2

Main Memory

Legend:

Connection of data and instruction
Connection of data
Connection of instruction

Memory of data and instruction

Memory of data

Memory of instruction

 

Hit Latency 1 ns + 2 ns 

Associativity 2-way + 2-way 

MSHR queue size 4 + 6 

Shared L2 

Size 1 MiB 

Hit Latency 12 ns 

Associativity 16-way 

MSHR queue size 16 

 
Figure 66 depicts that all experimental results require 6622.6125 hours 

(corresponding to 276 days, approximately) of Gem5 simulating. Note that, excluding the 
scalability, every experiment can be contained in a single core. Hence, more than one 
simulation can be performed simultaneously. The experiments of scalability employ 32 cores 
while the others employ 8 cores. The additional runs were needed to explore particular cases 
for the experimental evaluations, and they will be discussed in the following sections. 
Besides, we executed two times every experiment to check for improper behavior. 

 

Figure 66. Total simulation time for experimental evaluations. 

The rest of this chapter is organized as follows. Section 6.1 shows the distribution of 
our parallel workload over the available cores. Section 6.2 evaluates six technologies for 
main memory and its effect on the system. Section 6.3 evaluates five cache architectures 
and its effects. Finally, Section 6.4 shows the behavior of our system using different sized 
UMA clusters. 

6 Memory 
Configurations

5 Cache 
Configurations

1 Scalability 
configuration

1746 hours 727.5 hours 659.27 hours

162.3 hours+ Additional Runs
(Memory Configurations)

Additional Runs
(Cache Configurations)

16.3 hours

6622.6125 hours

x

3311.30 hours

Quantity of 
experiments

2
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6.1 Workload Evaluation 

This evaluation intends to determine how the workload is dynamically distributed over 
the available cores of the system. Southern and Renau [SOU15a] already analyzed the 
speedup of the PARSEC workload for real machines, and we discussed its results in Section 
5.4.1. Here we are interested to see the effects of using the vanilla Linux kernel 3.03 
scheduler on the instruction distribution and the power dissipation of the cores. Table 20 
summarize the results obtained running all eight PARSEC’s benchmark for instruction count, 
while Table 21, Table 22, Table 23, and Table 24 do the same for five NASA NAS’s 
benchmark for 32 cores. 

Table 20 shows that Dedup and Swaptions present an excellent workload distribution 
over all cores evenly. The maximum deviation for more or less instruction is within the range 
of 11% and 0.004%, respectively. Vips and x264 still manage to distribute its workload, but 
the maximum deviation is within the range of 24% and 40%, respectively. All other 
benchmarks showed a master-slave like structure where a single core dominates the 
instruction count. Bodytrack, Fluidanimate, and Blackscholes have a single core with up to 
78%, 161% and 171% increase of the least executed core in each benchmark, respectively. 
Canneal has a massive disparity with the core 3, which executes 320% more instructions 
than the core 0, the least executed core. Southern and Renau corroborate the limited 
scalability of Blackscholes, Bodytrack, and Canneal (Figure 64). Blackscholes also showed 
the least amount of instructions and corroborated its design as being the simplest of the 
PARSEC suite [BIE08]. The instruction count is one of the limiting factors for the effective 
speedup of a parallel application and a crucial factor for the power dissipation that will be 
analyzed shortly. 

Table 20. Total instruction count per million (× 106) and per core count for each PARSEC 
application. 

Application Total of instructions Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 

Blackscholes 7.403 
761 

(10%) 
767 

(10%) 
761 

(10%) 
2.061 
(28%) 

762 
(10%) 

759 
(10%) 

763 
(10%) 

767 
(10%) 

Bodytrack 14.084 
1.773 
(13%) 

1.312 
(9%) 

2.142 
(15%) 

2.207 
(16%) 

1.331 
(9%) 

2.083 
(15%) 

1.998 
(14%) 

1.233 
(9%) 

Canneal 12.204 
299 

(2%) 
309 

(3%) 
309 

(3%) 
10.015 
(82%) 

312 
(3%) 

319 
(3%) 

312 
(3%) 

325 
(3%) 

Dedup 63.333 
8.068 
(13%) 

7.536 
(12%) 

8.019 
(13%) 

8.381 
(13%) 

7.802 
(12%) 

7.532 
(12%) 

8.216 
(13%) 

7.775 
(12%) 

Fluidanimate 13.356 
1.535 
(11%) 

1.626 
(12%) 

1.316 
(10%) 

3.322 
(25%) 

1.421 
(11%) 

1.513 
(11%) 

1.270 
(10%) 

1.350 
(10%) 

Swaptions 44.259 
5.524 
(12%) 

5.542 
(13%) 

5.520 
(12%) 

5.525 
(12%) 

5.546 
(13%) 

5.523 
(12%) 

5.534 
(13%) 

5.540 
(13%) 

Vips 36.721 
4.010 
(11%) 

4.365 
(12%) 

4.769 
(13%) 

4.994 
(14%) 

4.596 
(13%) 

4.643 
(13%) 

4.625 
(13%) 

4.715 
(13%) 

X264 145.215 
15.657 
(11%) 

14.924 
(10%) 

19.217 
(13%) 

16.005 
(11%) 

19.815 
(14%) 

20.975 
(14%) 

19.000 
(13%) 

19.620 
(14%) 

 
Table 21, Table 22, Table 23, and Table 24 show the instruction count for all five 

applications of the NASA NAS benchmark. All applications show a remarkable distribution 
of instructions on all cores. Deviations are within one percentage point for either more or 
less instructions. FT and LU have three to four times the amount of instructions compared 
to the other applications, approximately. This corroborate the simulation time required for 
each application, as shown in Table 17 from Section 5.5.2. 
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Table 21. Total instruction count per million (× 106) and per core count (0 – 7) for each NASA 

NAS application. 

Application Total of instructions Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 

CG 49.382 
1.478 
(3%) 

1.585 
(3%) 

1.593 
(3%) 

1.502 
(3%) 

1.534 
(3%) 

1.699 
(3%) 

1.579 
(3%) 

1.578 
(3%) 

FT 177.709 
4.423 
(2%) 

5.769 
(3%) 

5.901 
(3%) 

5.861 
(3%) 

5.770 
(3%) 

5.787 
(3%) 

5.724 
(3%) 

5.664 
(3%) 

IS 44.110 
925 

(2%) 
1.465 
(3%) 

1.483 
(3%) 

1.186 
(3%) 

1.383 
(3%) 

1.517 
(3%) 

1.414 
(3%) 

1.485 
(3%) 

LU 180.219 
4.754 
(3%) 

5.708 
(3%) 

5.799 
(3%) 

5.649 
(3%) 

5.647 
(3%) 

5.593 
(3%) 

7.254 
(4%) 

6.303 
(3%) 

MG 58.810 
1.486 
(3%) 

1.889 
(3%) 

1.553 
(3%) 

1.687 
(3%) 

1.876 
(3%) 

1.944 
(3%) 

1.896 
(3%) 

1.857 
(3%) 

Table 22. Total instruction count per million (× 106) and per core count (8 – 15) for each 
NASA NAS application. 

Application Total of instructions Core 8 Core 9 Core 10 Core 11 Core 12 Core 13 Core 14 Core 15 

CG 49.382 
1.392 
(3%) 

1.623 
(3%) 

1.518 
(3%) 

1.538 
(3%) 

1.699 
(3%) 

1.484 
(3%) 

1.580 
(3%) 

1.400 
(3%) 

FT 177.709 
4.423 
(2%) 

5.769 
(3%) 

5.901 
(3%) 

5.814 
(3%) 

5.858 
(3%) 

5.793 
(3%) 

5.583 
(3%) 

5.806 
(3%) 

IS 44.110 
991 

(2%) 
1.587 
(4%) 

1.460 
(3%) 

1.455 
(3%) 

1.462 
(3%) 

1.454 
(3%) 

1.448 
(3%) 

1.477 
(3%) 

LU 180.219 
3.881 
(2%) 

5.419 
(3%) 

5.259 
(3%) 

5.196 
(3%) 

5.271 
(3%) 

6.393 
(4%) 

5.183 
(3%) 

5.218 
(3%) 

MG 58.810 
1.644 
(3%) 

1.786 
(3%) 

1.809 
(3%) 

1.902 
(3%) 

1.991 
(3%) 

1.849 
(3%) 

1.888 
(3%) 

1.912 
(3%) 

Table 23. Total instruction count per million (× 106) and per core count (16 – 23) for each 
NASA NAS application. 

Application Total of instructions Core 16 Core 17 Core 18 Core 19 Core 20 Core 21 Core 22 Core 23 

CG 49.382 
1.326 
(3%) 

1.601 
(3%) 

1.708 
(3%) 

1.594 
(3%) 

1.706 
(3%) 

1.621 
(3%) 

1.605 
(3%) 

1.490 
(3%) 

FT 177.709 
4.554 
(3%) 

5.920 
(3%) 

5.852 
(3%) 

5.842 
(3%) 

5.698 
(3%) 

5.725 
(3%) 

5.556 
(3%) 

5.786 
(3%) 

IS 44.110 
1.011 
(2%) 

1.531 
(3%) 

1.511 
(3%) 

1507 
(3%) 

1.229 
(3%) 

1.521 
(3%) 

1.634 
(4%) 

1.415 
(3%) 

LU 180.219 
4.132 
(2%) 

4.819 
(3%) 

5.516 
(3%) 

5.730 
(3%) 

5.204 
(3%) 

5.224 
(3%) 

5.171 
(3%) 

5.245 
(3%) 

MG 58.810 
1.708 
(3%) 

1.945 
(3%) 

1.987 
(3%) 

1.925 
(3%) 

1.954 
(3%) 

1.918 
(3%) 

1.584 
(3%) 

1.903 
(3%) 

Table 24. Total instruction count per million (× 106) and per core count (24 – 31) for each 
NASA NAS application. 

Application Total of instructions Core 24 Core 25 Core 26 Core 27 Core 28 Core 29 Core 30 Core 31 

CG 49.382 
1.382 
(3%) 

1.604 
(3%) 

1.604 
(3%) 

1.219 
(2%) 

1.568 
(3%) 

1.484 
(3%) 

1.508 
(3%) 

1.582 
(3%) 

FT 177.709 
4.417 
(2%) 

5.606 
(3%) 

5.459 
(3%) 

5.481 
(3%) 

5.309 
(3%) 

5.595 
(3%) 

5.581 
(3%) 

5.504 
(3%) 

IS 44.110 
877 

(2%) 
1.471 
(3%) 

1.432 
(3%) 

1.166 
(3%) 

1.362 
(3%) 

1.468 
(3%) 

1.498 
(3%) 

1.281 
(3%) 

LU 180.219 
5.737 
(3%) 

7.093 
(4%) 

6.087 
(3%) 

6.223 
(3%) 

6.270 
(3%) 

6.319 
(4%) 

6.603 
(4%) 

6.322 
(4%) 

MG 58.810 
1.576 
(3%) 

1.940 
(3%) 

1.875 
(3%) 

1.949 
(3%) 

1.901 
(3%) 

1.935 
(3%) 

1.861 
(3%) 

1.879 
(3%) 

 
Table 25 displays the active power dissipation of all cores running the PARSEC’s 

benchmark. The output produced by Gem5 (stats.txt) is fed through McPAT [HP15] using a 
conversion tool [RIC15] to generate these results. McPAT uses some internal elements of 
the core to produce its overall power dissipation, such as L1 caches, branch predictor, 
pipeline units and memory management unit. 
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The previously identified benchmarks that expressed a master-like structure 
(Blackscholes, Bodytrack, Canneal, and Fluidanimate) also show the predicted master core 
in regards to consuming the largest active power. Dedup, Swaptions, Vips, and x264 show 
a proper distribution of consumption over the cores. This table also depicts how demanding 
a benchmark is to the system. x264 and Swaptions, for instance, have approximately the 
same distribution of power dissipation, but x264 has a larger overall dynamic power value 
than Swaptions because of its application nature (Table 18). 

Table 25. Total and per core active power dissipation for each PARSEC application. 

 Total Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 

Blackscholes 12.5 W 1.37 W 1.38 W 1.37 W 2.87 W 1.37 W 1.37 W 1.37 W 1.38 W 
Bodytrack 17.8 W 2.17 W 1.72 W 2.63 W 2.71 W 1.73 W 2.57 W 2.48 W 1.77 W 

Canneal 15.1 W 0.74 W 0.74 W 0.75 W 9.85 W 0.76 W 0.77 W 0.76 W 0.77 W 
Dedup 12.3 W 1.54 W 1.47 W 1.55 W 1.62 W 1.54 W 1.50 W 1.58 W 1.52 W 

Fluidanimate 12.6 W 1.48 W 1.55 W 1.30 W 2.85 W 1.37 W 1.45 W 1.28 W 1.34 W 
Swaptions 15.1 W 1.89 W 1.90 W 1.89 W 1.89 W 1.90 W 1.89 W 1.89 W 1.90 W 
Vips 11.5 W 1.30 W 1.39 W 1.48 W 1.53 W 1.45 W 1.45 W 1.45 W 1.46 W 

X264 20.1 W 2.19 W 2.12 W 2.65 W 2.26 W 2.73 W 2.87 W 2.63 W 2.70 W 
 

Legend: 0W – 1W 1W – 1.3W 1.31W – 1.6W 1.61W – 2W 2.1 – 2.5W > 2.5W 

 
Canneal is a particular case of a single core reaching up to 9.85 W. Note that Cortex-

A9, an in-order core, has a Thermal Design Point (TDP) of 2.5 W [PIN14], and Cortex-A15, 
an O3 core, has a TDP of 4W [PUR15]. These two cores are the basis of the core design 
employed on this work. The Exynos 5 achieves 8W TDP using both Cortex-A15 and a GPU, 
each using approximately half of the total TDP [PUR15]. In this work, we do not have a GPU 
model and let the CPU consume a higher TDP value. 

6.2 Main Memory Evaluation 

The main memory evaluation comprises six memory technologies: (i) DDR3, which 
is widely employed on desktops; (ii) Low Power Double Data Rate (LPDDR3), which is a 
typical mobile memory, and some emerging memory technologies; (iii) Wide I/O version 1; 
(iv) Wide I/O version 2; (v) High Bandwidth Memory (HBM); and (vi) Hybrid Memory Cube 
(HMC). Table 26 summarizes the differences of these memory technologies. 

Table 26. Main memory models for evaluation. 

Memory Clock (Real) Bus Width Memory Channels 

DDR3 800 MHz 64 bits 2 

LPDDR3 800 MHz 32 bits 2 

Wide I/O – v1 200 MHz 128 bits 4 

Wide I/O – v2 266 MHz 64 bits 8 

HBM 500 MHz 128 bits 8 

HMC 1250 MHz 32 bits 16 

The DDR3 model is based on a standard Micron chip with two memory channels and 
eight internal banks per rank [MIC15a]. The LPDDR3 model is also from a standard Micron 
chip with two memory channels and eight internal banks per rank. The LPDDR3 features 
lower operating voltage and power saving techniques such as temperature-compensated 
self-refresh [MIC15b] that allows fewer refresh rates for the memory when the internal 
temperature is low. 
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The remaining four memory types are for 3D TSV-integrated chips. TSV is at the 
center of one of the most significant changes to the memory interface and, consequently, to 
the famous Memory Wall [WUL95]. The Memory Wall is the observation of the increasingly 
processor/memory performance gap in at least the last 20 years. On top of that, the trend of 
placing more and more cores on a single chip exacerbates this gap. One way to diminish 
this is to increase memory bandwidth through wider interfaces. However, until now this has 
been very challenging because wider interfaces mean more off-chip pins and such pins are 
very expensive [FU14][ROG09][PAD11]. TSV eliminates such limitation by stacking dies and 
incorporating main memory into the chip. Hence, no extra off-chip pins are necessary. 

Wide I/O is a standard memory interface that maximizes the memory bandwidth at 
the lowest possible power dissipation. The key is to stack multiple memory channels on top 
of the system and interconnect them through TSV [CAD15a]. Recently, JEDEC9 published 
the second standard of Wide I/O that presents significant improvements [JED15a]. At half 
of the power dissipation of LPDDR3, Wide I/O can maintain the same memory bandwidth. 
Increasing the memory frequency, Wide I/O effectively provides more than double the 
baseline LPDDR bandwidth [GRE12][VIV11]. ST Ericsson confirmed 50% power reduction 
in the memory interconnections when Wide I/O was compared to LPDDR2 with the same 
bandwidth [KIM13b]. Samsung develops this technology since 2011 [SAM15b]. The first 
Wide I/O version has four channels of 128 bus width. The second version doubled the 
number of channels and halved their width. Both versions can operate at 200 and 266 MHz. 

AMD and Hynix produce HBM memories, which is a technology that also exploits an 
enormous number of signals available with die-stacking technology to provide very high 
memory bandwidth. Each HBM stack accommodates eight independent memory channels, 
and each channel follows the traditional DDR interface with power saving techniques from 
LPDDR [CON14]. HBM achieves better power saving using a substantially smaller form 
factor and lower operating voltages than traditional DDR [TEC15b]. Figure 67 depicts how 
stacked HBM uses 19× less surface area than GDDR5 for the same memory amount. HBM 
is also a JEDEC standard [JED15b]. 

 

Figure 67. Surface Area of 1GB GDDR5 and HBM technologies [WCC15]. 

                                            
 
 
9 JEDEC is a global leader in developing open standards for the microelectronics industry, with more than 
3,000 volunteers representing nearly 300 member companies (source: www.jedec.org/about-jedec). 
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HMC is another memory solution that relies on TSV. While Wide I/O aims at the 
mobile low-power market, HMC aims at the high-performance server market. HMC achieves 
up to 15 times the bandwidth with 70% less energy consumption when compared to 
traditional DDR3 technology [CAD15b][MIC15c]. In this memory, four to eight stacks of 
DRAM are on top of a single logic chip responsible for data access [ALT14]. The HMC 
Consortium develops the HMC interface specification and promotes integration into a wide 
variety of systems [HMC15]. HMC utilizes closed-page policy and its DRAM devices are 
redesigned to have short rows (256 bytes instead of 8-16KiB in a typical DDR3 device) for 
high-performance computing and server workloads that exhibit little locality [AZA14]. 

Azarkhish [GEM15m] is working on a highly accurate model of HMC for Gem5. 
However, this work does not use this model as it is not fully developed. As such, we 
employed HMC as a DRAM model with lesser details of the memory controller 
intercommunication and latency. Azarkhish et al. [AZA14] also note that PARSEC, and 
others current multi-threaded workloads, cannot easily utilize the vast bandwidth potential 
provided by HMC, mainly due to the overheads of the cache coherence mechanisms. We 
will also observe this effect, where more than half the L2 miss latency in the Dedup 
benchmark is due to on-chip congestion (Figure 71). 

The Gem5’s memory controller is an event-based model tailored to capture the most 
important DRAM timing constraints for current and emerging DRAM interfaces.  Hansson et 
al. [HAN14] compare this model with the cycle-based DRAMSim2 and shows that the impact 
of the event-based model is minimal to the system-level effects of DRAM while allowing 
much faster simulation speeds – 7× in average. 

Table 27 illustrates the execution time of the applications of PARSEC benchmark 
according to six memory technologies. This experiment aims to explore how the memory 
technology affects each application execution time. 

Table 27. Execution time (in seconds) of the applications of PARSEC Benchmark versus six 
memory technologies. 

Execution 
time (in 
seconds) 

Application 

Blackscholes Bodytrack Dedup Canneal Fluidanimate Swaptions Vips x264 

M
e

m
o

ry
 t

e
ch

n
o

lo
gy

 DDR3 0.47 0.55 2.74 7.95 0.96 1.08 1.01 3.40 

LPDDR3 0.47 0.57 2.97 8.59 1.14 1.07 1.35 3.56 

WideIO 0.47 0.57 3.07 9.55 1.18 1.10 1.51 3.59 

HBM 0.47 0.55 2.75 7.91 0.92 1.07 0.95 3.40 

HMC 0.47 0.55 2.82 8.68 1.00 1.07 1.02 3.58 

WideIO2 0.47 0.56 2.89 9.07 1.04 1.07 1.20 3.58 

 

Figure 68(a) and (b) illustrate the set of results of Table 27, which is normalized 
according to the execution time of the DDR3 module. Both Wide I/O versions show the least 
optimized execution time due to its overall low frequency. However, the results show that 
the execution time is still competitive even when compared to desktop DDR3 – the execution 
time for five benchmarks were lower than 20%. Combining these results with the fact that 
Wide I/O consumes approximately half the power of LPDDR3, this is a very interesting 
memory for MPSoC systems. Wide I/O achieves this performance by providing double 
(version 1) and quadruple (version 2) memory channels available to DDR3 and LPDDR3. 
The benchmarks that are impacted significantly (≥ 10%) are Canneal, Dedup, Fluidanimate, 
and Vips.  
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a) 

 

(b) 

 

Figure 68. The execution time of eight applications versus six memory technologies. All 
values are relatively normalized according to the DDR3; i.e., for all applications, the 

execution time of DDR3 is 0% and the remaining values are perceptual deviations of this 
reference. Figures (a) and (b) group the values according to the application and the memory 

technology, respectively. 

Canneal centralizes its execution in a single core (Table 20) and has little benefits 
from additional memory channels. Besides, due to lower DDR frequency when compared to 
desktop DDR3, Wide I/O suffers to provide comparable performance to sequential 
programs. Dedup also suffers from this lower frequency as its speedup is very limited as 
shown by Southern and Renau (Figure 64). 

Figure 69 shows the discrepancy of achievable speedup for two extreme cases: 
Canneal and Swaptions, and an intermediate case: Vips. The speedup is calculated by 
comparing our results from Figure 68 with the sequential implementation of the same 
benchmark. On one hand, Canneal has the worst speedup of our set of PARSEC 
benchmarks (Figure 64) and achieves only up to 1.38 with our 8-core system. On the other 
hand, Swaptions achieves near perfect speedup with our 8-core system with all memory 
technologies. 
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Figure 69. Speedup of some PARSEC applications (higher is better). 

Figure 69 depicted the Vips speedup on our platform, which is far less than the 
speedup reported by Southern and Renau (Figure 64). Bienia et al. [BIE08] showed that in 
an 8-core organization, Vips has one of the highest L2 miss rates and follows Canneal 
closely on this regard, as shown in Figure 70. Considering that Southern and Renau used a 
bigger L2 cache (and even L3 cache), and the fact that the work set of Vips may be larger 
than the L2 explains the results found in Figure 68. In this regard, Vips follows the behavior 
of Canneal: low-power and lower frequencies memory technologies (LPDDR, Wide I/O 
version 1 and 2) suffers to achieve acceptable performance. LPDDR3 and Wide I/O version 
1 have the worst performance for this benchmark: 33.3% and 49.4% additional execution 
time, respectively. 
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Figure 70. Miss rate as a function line size. Data executed on an 8-core system with 4MB 
(based on [BIE08]). 

The execution time variance of the Fluidanimate is affected significantly by low 
frequency memories. The use of different memory technologies in this case produces 
execution time variances of -4.2% up to 22.4%. For this application, low-power memory 
technologies with lower frequencies (Wide I/O version 1 and 2) and fewer memory channels 
(LPDDR) increase the execution time, while more memory channels (HBM) decrease the 
execution time. 

LPDDR is the traditional memory technology employed in low-power embedded 
systems such as mobile cellphones. It uses power saving techniques to reduce its overall 
power consumption – for instance, a desktop DDR3-1333 consumes 39 pJ/bit [ORC13] 
while LPDDR3 consumes 9.2 pJ/bit [ROS12]. Although our work uses the same baseline 
clock for both, LPDDR3 has a number of its timing parameters (tCL, tRCD, and tRAS) 
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approximately 15% slower than its DDR3 counterpart, therefore its bank operations require 
more time. Additionally, 1.2V and 1.5V are provided to LPDDR3 and DDR3, respectively 
[MIC15a][MIC15b]. The results show that the effects of low-power for six appliations are 
restrained – the execution time increase is less than 10% of the normalized runtime. Once 
again, Vips and Fluidanimate are the most sensible benchmark due to its application nature. 
Swaptions is the only application that has better execution time on this memory than on 
DDR3. Considering that LPDDR3 is slower, this can only be attributed to a difference of 
temporal distribution of memory requests due to the time required to process them. In other 
words, for this particular case, the slower operation of LPPDR3 resulted on a better 
distribution of memory requests.  

HMC technology serializes the IO pins of the parallel communication requiring a serial 
and high-speed transceiver technology. As such, HMC uses only 10% of the pin counts of 
DDR3 (power and ground not counted) and consumes 16 pJ/bit [SCH15b]. The Gem5 model 
is based on the works of Azarkhish et al. [AZA14] and uses a 32-bit bus width per memory 
channel. The results show that HMC performs significantly worse than DDR3 even 
considering its higher frequency. This can be attributed to two HMC characteristics: (i) HMC 
uses closed-page policy to handle memory pages recently accessed. As such, it punishes 
applications that have good spatial/temporal locality because they will need additional 
latency to open an already accessed page. For this exact reason, DDR memories have 
traditionally employed open-page policies, and applications, such as those present in the 
PARSEC suite, are developed to exploit this. (ii) The narrow bus width increases the 
congestion of memory requests from the application. We will show that for the Dedup 
application more than half of the response time of this memory is attributed to congestion 
on the external memory bus. 

HBM continues the trend of using parallel communication and doubling the number 
of data and address pins employing a 1024-bit bus width across eight memory channels 
[KIM14]. HBM consumes approximately 6 to 7 pJ/bit [CON14] and presents a counterpoint 
to the performance of the HMC for the analyzed workload. HBM has the best overall 
performance for our workset, albeit a restricted improvement from DDR3. For Canneal and 
Vips, two applications that share a profile of low speedup and high L2 miss rates, HBM 
reduced the execution time by 0.5% and 6.1% compared to DDR3, respectively. In addition, 
Fluidanimate also had a decrease of execution time of 4.2%. Only two applications 
(Bodytrack and x264) had an increase of execution time – in both cases of the lowest 
possible increment: 0.1%. 

Figure 71 depicts the average latency of the DRAM memory controller and L2 miss 
handler for the Dedup application, which has 6% up to 10% L2 miss rates across the 
analyzed memory technologies. The average latency of the DRAM memory controller is the 
arithmetic mean of all memory channels. This latency is further broken down into the 
following components: queue, bus, bank and the remaining components (others). The queue 
latency is the experienced delay for servicing each DRAM burst. As the device bus width 
determines the DRAM burst, increasing the device bus width results in lower queue delay, 
as there are fewer DRAM bursts to be executed. The bus latency is the time required to 
expedite a memory packet, which does not include any outside contention. Finally, the bank 
latency is the time spent to execute all operations related to DRAM banking. The ‘others’ 
describe latencies that are outside of the DRAM controller – mainly on-chip congestion. The 
absence of the ‘other’ in this figure does not mean that is not present – it means that it did 
not contribute significantly to the overall average latency. The error bars in Figure 71 
represent the lowest and highest average value encountered for L2 miss rates.  
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Figure 71. Average of DRAM and L2 latency for the Dedup application. Error bars represent 
the lowest and highest average values encountered. 

From this set of results, we can see that queue delay is responsible for at least half 
of the DRAM latency in all cases (excluding external congestion). Three complementary 
ways to decrease this delay are achieved increasing the (i) operational frequency, (ii) 
memory channels, and (iii) bus width. The memory technologies analyzed in this work 
employ a selected number of these ways to achieve a balance between performance and 
energy consumption. 

DDR3 and LPDDR3 show the effect of using 64- and 32-bit bus width, respectively. 
LPDDR3 has approximately 15% slower bank operations than DDR3. Overall, the LPDDR3 
has higher latency penalty in all cases. HBM and HMC show the effects of increasing 
operational frequency and using a large number of memory channels. Conversely, HMC 
uses a low-bit bus width, which results in higher on-chip congestion due to longer 
transmission of data from DRAM to L2. HBM and HMC have lower average latency when 
compared to DDR3, even though both consume less energy. However, they require 3D 
chips. Wide I/O version 1 shows the worst average latency and version 2 shows a very 
similar performance when compared to LPDDR3. We highlight that it is possible to avoid 
bank operations if a read operation finds the data in the write buffer because Gem5’s 
memory controller buffers the write operations and drains them at a later point [HAN14]. 
Some user-defined variables control the threshold to start writes to the memory. 

In conclusion, we analyzed the runtime execution of six memory technologies through 
a broad range of applications from the PARSEC benchmark intended for financial analysis, 
engineering, computer vision, storage processing, and media processing. We demonstrated 
that this set of applications ranged from -6.1% to 49.4% of the performance of a standard 
desktop DDR3. Canneal has the worst speedup of all the set of applications and is further 
complicated by the fact that the simlarge input set has even lower speedup than the 
achievable speedup of the native input set (Figure 64). For our evaluation, this benchmark 
was used to represent applications that are mostly non-parallelizable. Vips is another 
application that suffers to achieve sound speedup in our system. Moreover, not all memory 
technologies studied here are intended to give better performance when compared to DDR3. 
Clearly, Wide I/O is designed for ultralow-power bandwidth as it operates at lower 
frequencies. In this aspect, the performance achieved by it is impressive. 

It is important to consider that this range of performance variance may be more or 
less effective depending on the type of applications running on the system. For applications 
that execute intensively for only a few seconds, this variance can be negligible. However, 
for real-time applications with strict deadlines or even applications such as media encoding, 
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this variance is critical. Therefore, the system nature defines the impact of adopting these 
new types of memories. For instance, consider the following experiment: how many minutes 
does it take to encode a 2 hour 640×380 video using the x264 encoder under the set of 
memories analyzed here. Assuming the convetional 24 frames per second used in movies 
this would result in 172800 frames. Figure 72 depicts the speed (frames per second) of the 
x264 encoding process using the simlarge input set. In this case, extrapolating this 
information for the aforementioned scenario, we have the following execution times: 76.3 
minutes for DDR3; 80.1 minutes for LPDDR3; 80.7 minutes for Wide I/O 1; 76.4 minutes for 
HBM; 80.5 minutes for HMC; and 80.2 minutes for Wide I/O 2. This experiment shows that 
DDR3 followed by HBM enable the faster execution for this type of application. 

 

Figure 72. The x264 application encoding 128 frames of a 640×380 video employing six 
memory technologies under the simlarge input set. 

6.3 Cache Evaluation 

This evaluation comprises a diverse set of L2 cache configurations intended to 
provide distinct points in the Pareto optimality of cache resources. Two effects are analyzed 
in this section: execution runtime and energy consumption. As a rule of thumb, as the cache 
size raises, the execution runtime decreases whereas the energy consumption increases – 
the former and the latter being a benefit and a drawback, respectively. Besides, as shown 
in Section 2.1, raising the cache size has other adverse effects on the cache design. 

Table 28 defines four organizations of L2 cache restricted to a total of 1MB that differ 
from the baseline (also described in Table 19) in the way they are distributed and allocated 
to the system. The baseline (Shared L2) is a centralized cache that mixes both instructions 
and data. The cache entitled Shared L2 I+D halves the memory space for instructions and 
data, dividing the connected components and possibly decreasing congestion. Specifically, 
L1 instruction cache and Instruction TLB are connected to the Shared L2 I and the 
corresponding L1 data cache and data TLB are connected to the Shared L2 D. Two cache 
organizations are defined on the same principles of the shared organization discussed here 
but are privately accessed by a single core and distributed across the chip, which are entitled 
as Private L2 and Private L2 I+D. Finally, a paired cache organization in a similar fashion 
as the proposed L2 cache from SPARC M7 (Figure 10) is experimented upon. Here, we 
employ a simplified version that pairs two cores only (Core 0 and Core 1, Core 2 and Core 
3, and so on). This last cache organization is entitled of Paired Shared L2. 
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The cache designs also differ in the hit latency and MSHR queue size. This affects, 
respectively, the response time and the depth of the outstanding misses provided by the L2 
cache. Conservative values are used in these designs as researchers have shown that more 
aggressive values are possible [WOO10]. 

Table 28. Cache parameters for baseline and four L2 cache organizations. 

 Shared L2 
(baseline) 

Shared L2 I+D 
(2 caches/cluster) 

Private L2 
(8 caches/cluster) 

Private L2 I+D 
(16 caches/cluster) 

Paired Shared L2 
(4 caches/cluster) 

Size 1 MiB 512 KiB+512 KiB 128 KiB 64 KiB+64 KiB 256 KiB 

Hit latency 12 ns 10 ns+10 ns 8 ns 4 ns+4 ns 10 ns 

Associativity 16-way 16-way+16-way 16-way 16-way+16-way 16-way 

MSHR queue size 16 14+14 12 8+8 14 

 
Aiming to clarify the memory hierarchy organizations, Figure 73 shows a simplified 

example of 4 processor interconnected according to the 4 additional cache organizations. 
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Figure 73. Example of the cache organizations containing four CPUs: (a) Shared L2 I+D; (b) 
Private L2; (c) Private L2 I+D; and (d) Paired Shared L2. 

We repeat the same applications used in Section 6.2 for the execution time evaluation 
of L2 cache organization. The main memory remained unchanged to not influence the 
application execution. The Wide I/O version 2 shown in Table 26 is employed running at 266 
MHz with 8 memory channels. All memory organizations share the same L1 caches 
described in Table 19. Table 29 shows the execution time of eight applications of PARSEC 
Benchmark according to a baseline and four other cache organizations. This experiment 
aims to explore how the cache organization affects each application execution time. 
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Table 29. Execution time (in seconds) of eight applications of PARSEC Benchmark 
according to a baseline and four other cache organizations. 

Execution time 
(in seconds) 

Application 

Blackscholes Bodytrack Canneal Dedup Fluidanimate Swaptions Vips x264 

C
ac

h
e

 

o
rg

an
iz

at
io

n
 Baseline 0.47 0.57 9.06 2.90 1.06 1.07 1.17 3.58 

Shared L2 I+D 0.47 0.57 9.48 3.19 1.03 1.06 1.36 3.71 

Private L2 0.47 0.89 11.28 3.05 1.05 1.05 1.21 4.42 

Private L2 I+D 0.46 1.08 11.80 3.17 1.07 1.07 1.28 4.31 

Paired Shared L2 0.47 0.60 10.56 3.14 1.06 1.06 1.20 3.90 

 
Figure 74 (a) and (b) illustrate the set of results of Table 29, which is normalized 

according to the Baseline cache execution time. 

(a) 

 

(b) 

 

Figure 74. The execution time of eight applications according to four cache organizations 
(lower is better). All values are relatively normalized according to the baseline cache; i.e., 

for all applications, the execution time of the baseline cache is 0% and the remaining values 
are perceptual deviations of this reference. Figures (a) and (b) group the values according 

to the application and the cache organizations, respectively. 

The first significant observation from these results is the fact that no other cache 
organization executes substantially faster than the baseline cache. Blackscholes, 
Fluidanimate and Swaptions are the cases where some cache organization executes faster, 
however, for a limited amount (less than 3%). For the remaining five applications, the new 
organizations are up to 90% slower, as in the case of Bodytrack. 
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To better understand how these cache organizations are affecting the performance 
of the applications, we plot the L2 cache miss rate for all cache organizations for three 
applications: Blackscholes, Bodytrack, and x264. Using these three applications, we have a 
representative set to show the effects of cache organization. They represent, respectively: 
a simple application with scarce communication; an application with high synchronization 
barriers that limits its achievable speedup and; highly parallel application. 

Table 30 depicts the L2 miss rates for the Blackscholes application. The baseline 
cache has a 4.04% miss rate while the miss rate of the shared L2 I+D is near zero (0.18%) 
and 10.87% for instructions and data, respectively. This increase of data miss rate, and near 
zero instruction miss rate implies that the instruction cache size is overestimated. Both 
private L2 and paired shared L2 have an increase of miss rates, except Core 4. From these 
results, we can deduce that the thread assigned for Core 4 is pinned to it during the entire 
execution, which is corroborated by the results from the private L2 I+D cache. 

Table 30. L2 miss rates for the Blackscholes application. 

 Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7  

B
la

c
k
s
c
h

o
le

s
 4.04 % Baseline 

0.18 % I 
Shared L2 

10.87 % D 

16.23 % 14.82 % 16.35 % 14.02 % 3.07 % 12.14 % 11.14 % 12.38 % Private L2 

50.78 % 45.05 % 47.67 % 47.33 % 0.34 % 34.39 % 33.21 % 50.48 % I 
Private L2 

20.08 % 19.51 % 20.49 % 18.07 % 20.49 % 17.57 % 16.71 % 17.95 % D 

12.52 % 11.47 % 3.27 % 8.78 % Paired Shared L2 

 
The private L2 I+D cache also shows a remarkable phenomenon that affects all 

applications analyzed in this work. In this cache design, we observe instructions miss 
surpassing the 40% rate. Recalling Table 18, even though we set PARSEC parameters the 
intent of using an equal number of threads and cores, it internally uses additional threads. 
In this case, Blackscholes employ one additional thread, which cannot be pinned to a single 
core and must hop around the available cores and thrashing the cache data with its working 
set. This thrashing affects very negatively the performance of private L2 caches for parallel 
applications. In the particular case of Blackscholes, Table 29 and Figure 74 demonstrate 
that execution time is not affected even with exorbitant L2 miss rates because Blackscholes 
is the simplest applications of the PARSEC’s suite. 

Table 31 shows that Bodytrack L2 miss rates are similar to Blackscholes. Once again, 
the baseline cache has a low L2 miss rate (i.e., 1.03%). The shared L2 data cache has 
approximately the same miss rate as the baseline while the instruction cache has near zero 
miss rate (0.15%). Conversely, the private L2 I+D has thrashing of data information instead 
of instructions as was the case of Blackscholes. 

Table 31. L2 miss rates for the Bodytrack application. 

 Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7  

B
o

d
y
tr

a
c
k
 

1.03 % Baseline 

0.15 % I 
Shared L2 

1.39 % D 

31.03% 30.85% 30.72% 31.57% 31.50% 31.00% 30.72% 30.88% Private L2 

2.22% 1.45% 2.22% 1.95% 3.54% 1.99% 1.38% 1.14% I 
Private L2 

61.12% 61.00% 61.00% 61.03% 59.56% 60.11% 60.86% 61.21% D 

3.89 % 3.32 % 5.98 % 3.17 % Paired Shared L2 

 
Bodytrack has a significant amount of data sharing. Luo, Li, and Ding [LUO14] 

showed that Bodytrack can share up to 10% of the cache size across all cores – in the case 
studied by them, this means that 10% of data is shared by 8 cores, which is the highest 
sharing encountered when 7 applications were compared (Canneal, Fluidanimate, 
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Streamcluster, Facesim, Blackscholes, Dedup, and Bodytrack). For privately accessed 
caches, this phenomenon can degrade performance considerably. The use of an MSI-like 
coherence protocol (as it is done in our system) can result in two effects [IBM15]: copy & 
invalidate operation on a store instruction (i.e., one cache has its line invalidated and another 
gains the exclusive/owned access to that line) and a “ping-pong” effect of two caches writing 
to the same cache line. Both events result in increased latency to exchange cache lines. An 
additional execution with increased data size (64KiB to 128KiB) and decreased instruction 
size (64KiB to 16KiB) was done to assert the effect of data sharing in this application. The 
average data miss was impacted significantly – falling from 61% to 28%. 

The Bodytrack results from Table 29 and Figure 74 depict a different scenario than 
the one presented in the Blackscholes results. The L2 miss rate increase and the data 
sharing discussed earlier rises the execution time significantly. The private L2 cache 
organization showed 58% and 90% raises for the unified and I+D organizations, 
respectively. The shared L2 I+D shows approximately the same execution time as the 
baseline cache – corroborated by the miss rates from Table 31. The paired shared L2 
organization increases 0.5% the execution time. 

Table 32 shows the x264 application analysis. Again, from Table 18, we know that a 
vast number of threads are created for this application. The baseline cache has 12.75% of 
miss rate. The Shared L2 I+D has the lowest instruction miss rate of all applications (0.03%) 
and increases to 25.54% the data miss rate. As in the case of the Blackscholes, yielding up 
the instruction size for data size would benefit the execution time. The private L2 I+D 
organization again shows high miss rate for both instruction and data, which are in average 
25.04% and 37.69%, respectively. The private L2 organization presents a miss rate between 
the instruction and data caches of the private L2 I+D organization. Finally, the paired shared 
L2 cache shows a better miss rate than the shared L2 D (i.e., 21.83%, in average).  

Table 32. L2 miss rate for the x264 application. 

 Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7  

x
2

6
4
 

12.75 % Baseline 

0.03 % I 
Shared L2 

25.54 % D 

33.40% 34.13% 31.60% 33.21% 33.15% 31.74% 33.83% 33.21% Private L2 

25.23% 24.90% 25.06% 26.00% 25.27% 23.79% 24.95% 25.12% I 
Private L2 

37.47% 38.57% 37.97% 39.38% 36.15% 37.12% 37.09% 37.73% D 

22.20 % 21.74 % 22.15 % 21.24 % Paired Shared L2 

 
The shared L2 I+D and paired shared L2 have an increase of 4% and 9% from the 

baseline cache for the x264 application, respectively. Private L2 I+D and private L2 have an 
increase of 23% and 20% from the baseline cache, respectively. These results match the 
findings of increased L2 miss rate from Table 32. 

The remaining applications of Figure 74 had the following results. Canneal and Vips 
once again had more than 10% of performance variance. For Canneal, private L2 
organization had the worst execution time; i.e., 24% and 30% of increase when comparing 
the unified and I+D schemes with the baseline, respectively. The paired shared L2 
organization also surpass the 10% mark, increasing performance by 16% compared to the 
baseline. For the Vips application, only the shared L2 I+D surpassed the 10% mark – also 
increasing performance by 16% compared to the baseline. The variance of all other cache 
organizations is under 10%. Three cache organizations are approximately at the 10% mark 
for Dedup application – shared L2 I+D (10%), L2 private I+D (9%), and paired shared L2 
(8%). The L2 private designs showed the best execution time of the new cache designs, 
albeit it is still worse compared to the baseline. 
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All organizations of cache have approximately the same performance for the 
Fluidanimate and Swaptions applications. This behavior was also observed for the main 
memory evaluation (Figure 68). 

McPAT uses predefined memory models and some statistic files generated by Gem5 
simulation to estimate the energy consumption and area occupation of all cache 
organizations. We employed SRAM cells for all the caches with 32nm technology and 
conservative interconnect technology projection. McPAT evaluates this type of memory 
taking into account the dynamic energy consumption and the static energy consumption. 

The dynamic energy consumption covers the energy consuming for readings and 
writings accesses of Equation (1); i.e. nread × Energyread + nwrite × Energywrite. The static 
energy consumption comprises two types of static power dissipated due to circuit leakage 
[LI09]: subthreshold leakage and gate leakage. Subthreshold leakage occurs when a 
transistor is supposedly turned off but allows a small current to pass through its source and 
drain. Gate leakage is current that leaks through the gate terminal. The sum of these to 
static powers composes the PowerAVG of Equation (1). Aiming to compare dynamic and 
static energy parcels, the experiments illustrate both parcels as average power dissipations. 

(a) 

 

(b) 

 

Figure 75. (a) Dynamic and (b) static power dissipation (subthreshold and gate leakage) for 
all cache organizations evaluated. 

Figure 75(a) and (b) illustrate the dynamic and static power dissipation of the baseline 
and some organizations of cache using the parameters established in Table 28. The 
comparison is done summarizing all caches of a single cluster. For instance, for the private 
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L2 cache, the subthreshold and gate leakage of 8 caches are summed up. Note that all 
caches have the same 1MB size when summed up. 

Figure 75(a) depicts that the baseline dissipates more dynamic power than all other 
cache organizations; e.g. the privative cache organizations dissipate almost 20 times less 
dynamic power than the baseline. This is an exciting aspect in contraposition of the notorious 
reduction of execution time when using the baseline cache organization. Besides, Figure 75 
(b) shows that only the private cache organization have a lower static energy consumption 
than the baseline cache. The baseline cache consumes 60% and 100% more subthreshold 
and gate leakage than the private L2 organization, respectively. On the other hand, this 
changes to 87% more and 5% less subthreshold and gate leakage than the private L2 I+D 
organization, respectively. For the remaining two cache organization, shared L2 I+D and 
paired shared L2, they consume more static energy than the baseline for both cases. 

Figure 76 depicts the area consumption of the entire L2 system. The attained values 
for individual caches are 25.92 mm² for the baseline cache design; 15.35 mm² for one shared 
L2 I+D; 1.15 mm² for one private L2; 0.73 mm² for one private L2 I+D and; 7.95 mm² for one 
paired shared cache. These values are within the expected range because considering a 
rough assumption of halving the cache size results in halving the area consumption, the 
results have the following disparity: 2.38 mm² (+18%), -2.08mm² (-65%), -0.88 mm² (-55%), 
1.47mm² (22%). Clearly, there are a lot of extra factors influencing the attained area, such 
as floorplanning design, MSHR queue size, writeback buffer size, and so on. 

 

Figure 76. Area occupation (in mm2) for all cache organizations. 

The experiments show that only the private cache organization diminish the area 
consumption when compared to the baseline. Both private caches consume under 50% of 
the baseline. The fact that shared L2 I+D cache consumes more area is not surprising since 
it essentially doubles the amount of logic required to control the same cache size. The paired 
shared design needs four caches in our cluster, and each one has additional area 
requirements described earlier. The result is that this cache organization consumes 22% 
more area than the baseline. 

In this section, five cache designs were analyzed. Three of them based on sharing 
information among cores and two of them privately accessed. All caches have uniform 
access models. Three types of evaluations were employed: execution runtime, energy 
consumption, and area consumption. We replay the movie analysis done in Section 6.2 to 
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give a perspective of scale for these results. Figure 77 depicts the frames per seconds for 
all cache organizations. Feeding the same movie for all cache configurations we have the 
following results: 80.5 minutes for the baseline design; 83.4 minutes for the shared I+D 
design; 99.3 minutes for the private design; 96.7 minutes for the private I+D design and; 
87.5 minutes for the paired shared design. 

 

Figure 77. The x264 application encoding 128 frames of a 640×380 video employing five 
cache organizations under the simlarge input set. 

6.4 Scalability Evaluation 

This section describes the scalability of integrating multiple clusters of cache coherent 
systems over a NORMA communication model. The NORMA model uses a hierarchal 
packet-based NoC for interconnection [MAT11]. Each cluster employs a crossbar to 
interconnect all cores to the NoC router. We implemented some sizes of clusters under the 
restriction of 32 cores to evaluate the impact of mixing UMA and NORMA memory models. 

As stated in Section 5.3, Gem5’s ARM ISA does not provide a packet-based NoC. 
Gem5’s NoC requires the use of the Ruby memory system that, at the time of writing, is 
restricted to the ALPHA and x86 ISAs. Therefore, we implemented a NoC model over Gem5, 
which operates at the same frequency of the cores (1GHz) and can send one flit every cycle. 
To model a packet-based congestion, we employ a normal probability distribution, which 
satisfies the following properties [TRI11]: 68% of the observations fall within 1 standard 
deviation; 95% of the observations fall within 2 standard deviations and; 99.7% of the 
observations fall within 3 standard deviations. Previous packet-based NoC work were 
analyzed [CAT14][FER15] for appropriate values of mean and standard deviation. The 
values are 100 ns and 50 ns for mean and standard deviation, respectively. 

We analyzed four sizes of clusters for scalability proposes considering a target 
MPSoC with 32 CPUs: (i) 4 clusters with 8 CPUs, which was already used in Sections 6.2 
and 6.3. (ii) 8 clusters with 4 CPUs; (iii) 16 clusters with 2 CPUs and (iv) 32 clusters 
containing a single CPU, which models a pure packet-based system. Table 33 depicts the 
four different sized clusters and its parameters that will be discussed shortly. 
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Table 33. Four different sized clusters and its cache parameters. 

Cluster Memory channels Cache Parameter Values 

4×8-core clusters 
2 for each cluster  

(8 total) 
Shared L2 

(per cluster) 

Size 1MiB 

Hit Latency 12 ns 

Associativity 16-way 

MSHR queue size 16 

8×4-core clusters 
1 for each cluster  

(8 total) 
Shared L2 

(per cluster) 

Size 512 KiB 

Hit Latency 10 ns 

Associativity 16-way 

MSHR queue size 14 

16×2-core clusters 
1 for each cluster  

(16 total) 
Shared L2 

(per cluster) 

Size 256 KiB 

Hit Latency 10 ns 

Associativity 16-way 

MSHR queue size 14 

32×1-core clusters 
1 for each cluster  

(32 total) 
Shared L2 

(per cluster) 

Size 128 KiB 

Hit Latency 8 ns 

Associativity 16-way 

MSHR queue size 12 

 
Aiming to clarify the cluster organization, Figure 78 to Figure 81 show the logical 

organization of the four cluster architectures analyzed in this work. The packet-based NoC 
is organized as follows for each cluster: 2×2 for 4×8-core clusters; 4×2 for 8×4-core clusters; 
4×4 for 16×2-core clusters; and 8×4 for 32×1-core clusters. 

 

Figure 78. Logical organization of 4×8-core clusters architecture. 
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Figure 79. Logical organization of 8×4-core clusters architecture. 

 

Figure 80. Logical organization of 16×2-core clusters architecture. 
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Figure 81. Logical organization of 32×1-core clusters architecture. 

All the systems use the shared L2 cache and have the same size restriction – 4MB 
L2 cache. The cache parameters follow the definitions of the baseline cache and the 
additional caches discussed in Section 6.3. Essentially, each cluster has less space on its 
shared L2 caches as additional clusters are added to the system. The 1-core cluster uses 
the L2 cache as an extension of its L1 cache, albeit with slower access. Note that mpich2 
(mpi executable) can switch to the shared memory paradigm for multicore clusters [MPI15]. 
Hence, the cache coherent interconnect can be used in this case instead of the crossbar. 

The Wide I/O version 2 is once again employed for the system’s main memory. 
However, due to limitations of our simulation environment, we could not model the 
congestion of multiple clusters accessing the same memory controller. To offset this 
simplification, we limited the availability of memory channels per cluster. 

The evaluation workload is the NASA NAS benchmark discussed in Section 5.5. 
Table 34 illustrates the execution time of five applications of NASA NAS Benchmark 
according to the cluster organizations. The operation/second/cores is calculated 
automatically by the NAS benchmark suite as millions of operations per second. Larger 
values of operations indicate better performance [SMI05]. 

The IS application has the least overall operations and operations per second as 
shown in Table 34 and Table 35, respectively. In this regard, IS can be considered the 
simplest application of the NASA NAS Benchmark. IS achieves the best operations per 
second on the pure message passing system, allowing the 1-core system to reduce its 
execution time compared to all other organizations. The 2-core system has 32% fewer 
operations per seconds. The 4-core system has the worst execution time and operations 
per second from all the organizations. 
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Table 34. Execution time (in seconds) of five applications of NASA NAS Benchmark 
according to four cluster organizations. 

Execution time 
(in seconds) 

Application 

CG IS FT LU MG 

C
lu

st
e

r 

o
rg

an
iz

at
io

n
 

4×8-core clusters 0.87 0.505 3.12 2.81 1.265 

8×4-core clusters 0.99 0.565 2.85 3.17 1.115 

16×2-core clusters 0.87 0.47 2.11 3.11 0.625 

32×1-core clusters 0.91 0.36 1.23 3.72 0.35 

 

Table 35. Million operation/second/core of five applications of NASA NAS Benchmark 
according to four cluster organizations. 

Million 
operation/second/core 

Application 

CG IS FT LU MG 

C
lu

st
e

r 

o
rg

an
iz

at
io

n
 

4×8-core clusters 53.675 5.19 71.44 200.74 96.02 

8×4-core clusters 47.345 4.655 78.24 177.81 109.115 

16×2-core clusters 53.89 5.55 105.78 181.33 194.27 

32×1-core clusters 51.23 7.3 181.03 151.68 343.9 

 
Figure 82 depicts the normalized execution time and million operations/second/cores 

for all applications. The FT and MG applications also show the best performance on the 
pure message passing system. FT aims to test long distances and MG intends to test long 
and short distances, as described in Section 5.5.1. They significantly reduce the execution 
time from 3.12 to 1.23 seconds and 1.265 to 0.35 seconds, respectively. Their 
operations/second/cores corroborate this behavior. Table 34 shows that both applications 
continually decrease execution time as the system reduces the cluster size. 

Conversely, the CG application has the best performance on multicore clusters. 2-
core and 8-core clusters have approximately the same performance, and they execute 13% 
more operations/second/cores than the 4-core system. The pure message passing system 
has a slightly increase of execution time from 0.87 (4×8-core) to 0.91. 

The LT application has the worst performance on packet-based system for the set of 
applications analyzed here. This application employs a vast number of small messages. The 
4×8-core clusters show the best execution time of 2.81 seconds. The 16×2-core cluster have 
a slightly better execution time than 8×4-core clusters at 3.11 and 3.17 seconds. The pure 
message passing system showed an execution time of 3.72 seconds and a reduction of 
25% of operations/second/cores from the cluster with best results. 

These results show that a pure NoC-based MPSoC has a remarkable performance 
for message passing applications. In most cases, the NoC communication exceeds the 
crossbar-based communication used in intra-clusters due to the parallel nature of the NoC 
communication provided by multiple independent routers. However, the crossbar-based 
communication is necessary to provide acceptable performance for shared memory 
applications, as was the case for Sections 6.2 and 6.3. 
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(a) 

 

(b) 

 

Figure 82. The execution time of five applications according to four cluster organizations. 
All values are relatively normalized according to the 4×8-core clusters; i.e., for all 
applications, the execution time of this cluster is 0% and the remaining values are 

perceptual deviations of this reference. Figures (a) and (b) group the values according to 
the application and million operations/second/cores, respectively. 
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7 CONCLUSION AND FUTURE WORK 

The ever increasing number of PEs in MPSoC designs requires the study of memory 
system solutions that preserve the high bandwidth, low latency and low energy consumption 
expected from such systems. Besides, as the interconnect fabric becomes the predominant 
factor in delaying information on a chip [BEN02], the exploration of appropriate interconnect 
for scalability is necessary. Therefore, this work contributes in three topics related to memory 
organization in a cache-coherent MPSoC: (i) evaluation of main memory technologies; (ii) 
evaluation of cache architectures; (iii) evaluation of scalability in our proposed system. 
These three evaluations are based on the execution time of a set of applications executing 
on our system. 

In this work, we are not exploring mapping techniques and, as such, employ the 
standard Linux kernel scheduler for this task. However, the mapping of tasks is one of the 
aspects that influence the execution time of applications [MAR11]. Therefore, we provide a 
workload evaluation that shows how the Linux kernel scheduler maps the set of applications 
over the available cores in terms of instruction distribution. In this way, this work can be 
compared to any mapping technique proposal. 

The assessment of main memory technologies helps to determine if the intended 
performance of the newer types of memories applies to real parallel workloads. We 
compared four types of new memories based on TSV-enabled chips: Wide I/O version 1 
and 2, HBM, and HMC. They were compared to the widely adopted desktop DDR3 and 
LPDDR3 [RAN15]. The execution time was measured for eight applications of PARSEC 
Benchmark. For four applications (Blackscholes, Bodytrack, Swaptions, and x264), the 
execution time variance was within the range [-10%, 10%], which is an impressive 
performance considering that most of the newer types of memories are focused on power 
saving instead of higher performance. Three of them (Wide I/O version 1 and 2, and HBM) 
use lower frequencies than DDR3/LPDDR3. For the Canneal and Vips applications, the 
execution time increased in some cases to 20% and 42%, respectively. 

Canneal has the least speedup using parallel computation on the PARSEC 
Benchmark, which was corroborated by the work of Southern and Renau (Figure 64). 
Hence, since new memories employ more memory channels instead of higher frequencies 
to maintain performance, this type of application will behave poorly. Vips also suffered from 
lower frequencies as the speedup achieved in our system was underwhelming, because we 
used a smaller L2 cache compared to previous works of Southern and Renau (Figure 64) 
and Bienia et al. [BIE08]. Therefore, the L2 cache was unable to sustain the same latency 
for lower frequencies memories (Wide I/O version 1 and 2) and LPDDR3. 

The evaluation of cache organizations is done using two aspects: execution time and 
energy consumption. We analyzed five organizations of caches L2: (i) standard shared L2 
cache, which was employed as a baseline for comparative evaluations; (ii) shared L2 I+D 
cache; (iii) private L2 cache; (iv) private L2 I+D cache; and (v) paired shared cache. 

In general, no cache organization had better execution time than the baseline, since 
our workload comprises parallel applications intended to share data across tasks. The 
private organizations behaved poorly regarding performance due to their smaller size 
available and the increase of coherence overhead of multiple L2 caches. The additional 
shared designs, shared L2 I+D and paired shared, behaved better but increasing up to 16% 
in the execution time. 

Regarding static power consumption, the private cache designs were much better 
than all shared designs. Again, this is expected since the caches are appropriately resized 
to have the same size restriction, regardless of the cache design. Hence, private caches are 
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much smaller and consumes less static power. Unfortunately, it degrades the performance 
of the system both in terms of execution time and coherence overhead. Of all shared 
designs, the traditional shared L2 cache showed the best static power. Combining the fact 
that the shared L2 cache also showed the best execution time, for our workload, this was 
the best cache design. 

Yet, the baseline organization had the most consumption of dynamic power by far 
which was fifteen and nineteen times the consumption of the set of private L2 and private 
L2 I+D organizations, respectively.  A similar trend occurs with the area occupation where 
they are decreased twenty two and thirty five times compared to the baseline for the private 
L2 and private L2 I+D organizations, respectively. When the shared organizations were 
compared to the baseline, they showed a drawback (increase of area occupation) and a 
benefit (decrease of power dissipation). The set of shared L2 I+D has two thirds of the 
dynamic power dissipation and six fifths of the area occupation compared to the baseline, 
approximately. The set of paired shared L2 has half of the power dissipation and six fifths of 
the area occupation compared to the baseline, approximately. 

Therefore, the cache organizations provide compelling tradeoffs for energy 
consumption, execution time, and area occupation allowing the designer to optimally employ 
a design that suit his needs. For the lowest energy consumption, we recommend to employ 
privately small L2 caches. In the exact opposite of this scenario, i.e. highest performance, 
we recommend to employ large shared L2 caches. The additional shared L2 organization 
explored in this work are the middle ground of these scenarios. 

Finally, the scalability of our proposed system was evaluated. Our system is intended 
to be comprised of two layers: cache coherent UMA clusters and NORMA multiple 
connected clusters. Until this evaluation, all tested were conducted using an 8-core cluster. 
Now, we scale different sized clusters, reaching to the 1-core cluster that represents a full 
NORMA system. Due to the NORMA communication nature, we had to change the 
benchmark suite to another compatible with the message passing paradigm. For this reason, 
we employed the NASA NAS benchmark. Five benchmark applications were employed. 
They showed that NoC-based MPSoC are capable architecture to provide excellent 
performance for message passing applications. 

To perform such evaluations, we had to extend Gem5’s current capability in two 
significant ways. Firstly, there was no Wide I/O version 2 model. We implemented a new 
model since it has important distinctions to the first version (discussed in section 6.2). 
Secondly, the Gem5’s classic mode provides only the traditional shared L2 cache. We had 
to implement all the other cache designs. We intent to provide these two contributions to the 
Gem’s community through the patch submission process once this work is finished. 

The current work is an initial effort performed by the author to explore memory and 
cache design for MPSoC systems. The future work in this scope includes a deeper study of 
power-related metrics to employ in all evaluations and explore the full range of the 
benchmark suite. Specifically we would like to calibrate our power estimation tool, McPAT, 
to produce more accurate results. This way, we could use the full range of output information 
provided by it. Lee et al. [LEE15b] have shown a methodology to train McPAT to produce 
better results. In their work, McPAT was attuned to the ARM Cortex-A15 architecture using 
a number of coefficients collected by experimentally running benchmarks on real hardware. 
Hence, for this methodology, a real ARM system is needed. 

We wish to explore the full range of applications provided by the PARSEC benchmark 
as every one of them represents a unique scenario. Using such approach would allow a 
more comprehensive comparison with other works. To offset the limitation of using a full-
system simulator, we also would like to use Southern and Renau’s work [SOU15a] to map 
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each application to its appropriate use – either full simulation or ROI-limited, because, as 
shown by the authors, ROI can mask the real speedup achieved by the native (i.e., real 
behaviour) input set of PARSEC. 

We would also like to extend the study of cache architectures to provide a better 
representative set. As the paired shared showed interesting results, it would be viable to 
extend this simpler version to the one used by the SPARC M7 (Figure 10). A deeper study 
of power saving techniques is needed to provide an in-depth analysis of the full potential for 
every cache design analyzed in this work. We restricted the power analysis to the 
capabilities of McPAT. 

We limited our 3D study up to 32 cores and only one tier for cache organization. 
However, this study provides a broad range of interesting possibilities. We originally 
intended to provide support for L3 caches in an energy-aware architecture. Our model 
comprises 64 cores that follows the same principles of UMA and NORMA organization of 
our work but shares an L3 cache. This L3 cache uses page-coloring techniques to identify 
the source of information. Thus, they provide isolation for every NORMA cluster and full L3 
space for a given limited set of cores running. Today, the caches of an idle cluster cannot 
be used by other clusters. Figure 83 shows the intended architecture. 

 

Figure 83. Example of 3D MPSoC architecture exploration with 5 tiers. The external tiers 
encompasses processing elements and L1 caches. The two inner tiers connected to the 
external tiers includes L2 caches with separate data and code addressing. Finally, the 

innermost tier is a L3 cache level, which mixes data and code addressing. 

This figure is just one of the possibilities of architectural exploration. Our 3D system 
can be further extended following three axis of exploration: tiers, UMA, and NORMA. Tiers 
can be comprised of logic, memory or the combination of the two. UMA determines the 
number of cores that share a single coherent address space. Finally, NORMA determines 
the number of UMA clusters that are interconnected through a packet-based NoC. Figure 
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84 illustrated this idea and shows the explored architectures in this work (M1, M2, M3, M4) 
and our example of future work in M5 (Figure 83). These values do not depict TSV-
connected main memories. 
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Figure 84. Architectural exploration of 3D system with some UMA, tiers and NORMA 
elements. The values are encoded as (UMA, 3D - tiers, NORMA). 

Finally, we employed a statistical distribution to model a real NoC congestion. It has 
been a long desire of the community to use Ruby on the Gem5’s ISA 
[GEM15n][GEM15o][GEM15p]. This would be a remarkable work that would open many 
design explorations not possible today on the ARM ISA, such as the exploration of different 
coherence protocols. 
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