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“Disks are a hack, not a design feature.

The time and complexity penalty for using disks is so severe that nothing short of enormous
cost-differential could compel us to rely on them. Disks do not make computers better, more

powerful, faster, or easier to use. Instead, they make computers weaker, slower, and more complex.
They are a compromise, a dilution of the solid-state architecture of digital computers. (...)

Wherever disk technology has left its mark on the design of our software, it has done so for
implementation purposes only, and not in the service of users or any goal-directed design rationale.”

Alan Cooper, About Face 2.0 [18]
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EVALUATION OF SYSTEM-LEVEL IMPACTS
OF A PERSISTENT MAIN MEMORY ARCHITECTURE

ABSTRACT

For almost 30 years, computer memory systems have been essentially the same: volatile, high speed
memory technologies like SRAM and DRAM used for cache and main memory; magnetic disks for
high-end data storage; and persistent, low speed flash memory for storage with low capacity/low
energy consumption requirements such as embedded/mobile devices. Today we watch the emergence
of new non-volatile memory (NVM) technologies that promise to radically change the landscape of
memory systems. In this work we assess system-level latency and energy impacts of a computer
with persistent main memory using PCRAM and Memristor. The experimental results support
the feasibility of employing emerging non-volatile memory technologies as persistent main memory,
indicating that energy improvements over DRAM should be significant. This study has also compared
the development and execution of applications using both a traditional filesystem design and a
framework specific of in-memory persistence (Mnemosyne). It concludes that in order to reap the
major rewards potentially offered by persistent main memory, it is necessary to take new programming
approaches that do not separate volatile memory from persistent secondary storage.

Keywords: Non-Volatile Memory; Persistent Main Memory; PCRAM; RRAM; Memristor.





AVALIAÇÃO DE IMPACTOS EM NIVEL DE SISTEMA
DE UMA ARQUITETURA DE MEMÓRIA PRINCIPAL PERSISTENTE

RESUMO

Por cerca de 30 anos, os sistemas de memória computacional têm sido essencialmente os mesmos:
tecnologias de memória volátil de alta velocidade como SRAM e DRAM utilizadas para caches e
memória principal; discos magnéticos para armazenamento persistente; e memória flash, persistente
e de baixa velocidade, para armazenamento com características de baixa capacidade e baixo consumo
de energia, tais como dispositivos móveis e embarcados. Hoje estão emergindo novas tecnologias de
memória não-volátil, que prometem mudar radicalmente o cenário de sistemas de memória. Neste
trabalho são avaliados impactos (em nível de sistema) de latência e energia supondo um computador
com memória principal persistente usando PCRAM e Memristor. Os resultados experimentais su-
portam a viabilidade de se empregar tecnologias emergentes de memória não-volátil como memória
principal persistente, indicando que as vantagens de consumo de energia com relação a DRAM de-
vem ser significativas. Esse estudo também compara o desenvolvimento de aplicações usando tanto
uma abordagem tradicional usando sistema de arquivos quanto utilizando um framework específico
para persistência em memória. Conclui-se que, para colher os principais benefícios potencialmente
oferecidos por memória principal persistente, é necessário utilizar novas abordagens de programação
que não estabelecem uma separação entre memória volátil e armazenamento secundário.
Palavras-chave: Memória não-volátil; Memória principal persistente; PCRAM; RRAM; Memristor.
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1. INTRODUCTION

For almost 30 years the memory hierarchy used in computer design has been essentially the same:
volatile, high speed memory technologies like SRAM and DRAM used for cache and main memory;
magnetic disks for high-end data storage; and persistent, low speed flash memory for storage with
low capacity/low energy consumption requirements, such as embedded/mobile devices [31].

Today we watch the emergence of new memory technologies under research that promise to
change significantly the landscape of memory systems. Non-Volatile Memory (NVM) technologies
such as Phase-Change RAM (PCRAM), Magnetic RAM (MRAM) and Resistive RAM (RRAM) will
possibly enable memory chips that are non-volatile, require low-energy and have density and latency
closer to current DRAM chips [13].

Even though most of these technologies are still in early prototyping stages, their expected
properties in terms of area, latency, energy and endurance are already estimated. Based on these
estimations, several papers have been published proposing practical applications for these new NVM
technologies. These papers provide initial insight on what the impacts on memory systems should be
if such technologies evolve to be competitive in the market. A survey of these studies was presented
in a previous work [52].

The memory system is one of the most critical components of modern computers. It has attained
a high level of complexity due to the many layers involved in memory hierarchy: application software,
operating system, cache, main memory and disk. Any relevant change in one level of the memory
hierarchy (such as the introduction of the aforementioned NVM technologies) can potentially impact
several other layers and overall system behavior. For this reason, it is essential to consider the
different possible scenarios for using these new memory technologies from a broad perspective.

The are several research projects in motion to create “Universal Memory” [52], a single memory
technology that could replace all different memory technologies of today (SRAM, DRAM, disk and
flash). It is not yet clear if the Universal Memory vision can be realized by NVM technologies
under research, but the creation of a byte-addressable, non-volatile solid state memory could make a
significant amount of persistent main memory available to computer systems, allowing to consolidate
these two different levels of the storage hierarchy - main memory and persistent storage - into a
single level, something that has never been possible before (at least not in mass scale). The advent
of main memory as the primary persistent storage can affect deeply the complete computing stack,
including application software, operating system, busses, memory system and its interaction with
other devices, such as processors and I/O adapters [58, 68]. In order to fully assess system-wide
impacts in latency, energy, heat, space and cost, it is required to take into account all these different
layers when modeling or simulating a hypotethical computer system with persistent main memory.

In this work we evaluate the impacts on latency and energy of a computer system with persistent
main memory, through the use of simulation. We simulate scenarios of systems using different
technologies for main memory (DRAM, PCRAM and Memristor) using a full-system architectural
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simulator (Virtutech Simics [42]), and compare the execution of worloads using both a typical
scenario using the filesystem as storage backend and an API specific for in-memory persistence
(Mnemosyne [69]).

Preliminary results were published in [51].
This work is organized in the following way:

• Chapter 2 presents the current technologies used in memory and storage hierarchy.

• Chapter 3 discusses the current organization of computer memory.

• Chapter 4 presents some of the emerging non-volatile memory technologies.

• Chapter 5 discusses the impacts of these emerging memory technologies concerning how they
can contribute to create computers with persistent main memory.

• Chapter 6 surveys tools for modeling/simulating systems with hypothetical new architec-
tures, especially where memory subsystem is concerned.

• Chapter 7 describes the evaluation methodology, results and analysis concerning the
execution of workloads in a simulated persistent main memory computer.

• Chapter 8 discusses potential perspectives for future research towards computation with
persistent main memory.

• Chapter 9 concludes this study summarizing the main findings of this research.
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2. CURRENT MEMORY TECHNOLOGIES

In order to discuss the emergent NVM technologies, it is necessary to start by summarizing the
current state of memory systems. This is a well-known subject, and we have extracted most of
the information present in this section from the comprehensive textbook Memory Systems: Cache,
DRAM, Disk by Bruce Jacob, Spencer W. Ng and David T. Wang [31] and Ulrich Drepper’s online
paper What Every Programmer Should Know About Memory [25].

2.1 Memory Hierarchy

An ideal memory system would be fast, cheap, persistent and big (highly dense). Until now,
all known memory/storage technologies address only some of these characteristics. Static RAM
(SRAM) is very fast, but it’s expensive, has low density and is not persistent. Dynamic RAM
(DRAM) has better densities and is cheaper (but still expensive) at the cost of being a little slower,
and it’s not persistent as well. Disks are cheap, highly dense and persistent, but very slow. Flash
memory is between DRAM and disk; it is a persistent solid-state memory with higher densities than
DRAM, but its write latency is much higher than the latter.

Fortunately, it is possible to design a memory system that incorporates all these different tech-
nologies in a single memory hierarchy. Such hierarchy allows the creation of a system that
approaches the performance of the fastest component, the cost of the cheapest component and
energy consumption of the most power-efficient component. This is possible due to a phenomenon
known as locality of reference, so named because memory references tend to be localized in time
and space. This can be so summarized:

• If you use something once, you are likely to use it again (temporal locality).

• If you use something once, you are likely to use its neighbor (spatial locality) [31].

This phenomenon can be exploited by creating different memory levels; the first levels are smaller and
more expensive, but have fastest access, and the other layers are progressively bigger and cheaper,
but have larger access times. Appropriate heuristics are then applied to decide which data will be
accessed more often and place them at the first levels, and move the data down on the hierarchy as
it ceases to be used frequently. Figure 2.1 depicts the concept of memory hierarchy.

For at least the last 30 years, we have been building memory hierarchies that rely on SRAM for
caches, DRAM for main memory and disk or flash as persistent storage. In the next sections we will
describe these technologies in more detail.
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Figure 2.1: Diagram illustrating the concept of memory hierarchy.

2.2 Processor Cache: SRAM

Caches are used to store frequently used information close to who needs it. They are used at
several layers of computer architecture, but probably the most important are processor caches. In
order to explore locality of reference, we need to place memory with very fast access close to the
processor. The result is that processor caches reside between the processor and main memory, as
depicted in Figure 2.2a.

Processor caches usually are transparent caches, meaning that the same addressing space is
shared between the cache and the backing storage. When the processor asks for the contents of a
specific memory address, these contents are first searched in the cache. If they are found (a cache
hit), they are immediately returned. If they are not found (a cache miss), the memory system
goes on to the next hierarchy level (e.g., main memory) and fetches the result. If there is a high
probability that the returned result will be used again in the future, it is stored in the cache as well.
Diverse heuristics can be used to manage cache content [31].

The speed of a cache is typically in inverse proportion to its size. This happens because the
more addresses a cache can contain, more search needs to be done in order to determine whether
there is a cache hit or miss. For this reason, modern computers have more than one cache level,
frequently up to 3 levels. It is also common to have a separate Level 1 cache for instructions and
another for data. Figure 2.2b shows a processor with such an organization. Since the same data can
reside in different cache levels (as well as in the backing storage), transparent caches use techniques
to ensure consistency between copies in these different levels.

Finally, it is important to mention that modern computers frequently have multi-processor,
multi-core and multi-thread architectures. Usually each core has its own Level 1 instruction and
data cache, and all cores in the same processor share Level 2 and 3 caches. Such organization
is depicted in Figure 2.2c. Please notice that this is not a rule: several architectures can explore
different organizations. This example is provided just as an illustration of an architecture commonly
found today [25].



29

Figure 2.2: Processor caches: logical organization. Extracted from Drepper, 2007 [25].

Figure 2.3: 6-T SRAM cell. Extracted from Drepper 2007 [25].

As we can see, processor caches have some distinctive requirements:

1. They need to be very fast.

2. They can be small (in fact, to a certain extent, they need to be small to save search time).

3. Since they are small, it is acceptable if their cost/bit is expensive when compared to other
components of memory hierarchy.

Today, the technology that best matches this set of requirements is Static Random Access
Memory (SRAM).

The most common SRAM cell design uses 6 transistors as shown in Figure 2.3. The cell core
is comprised of the four transistors M1 to M4 which form two cross-coupled inverters. They have
two stable states, representing 0 and 1. The state is stable as long as power on Vdd is available. If
access to the state of the cell is needed the word access line WL is raised. This makes the state of
the cell immediately available for reading on BL and B̄L. If the cell state must be overwritten the
BL and B̄L lines are first set to the desired values and then WL is raised [25].

SRAM has some properties that are important for our discussion:
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• The cell state is available for reading almost immediately once the word access line WL is
raised, making its access very fast.

• The SRAM cell is complex, requiring six transistors in the most common design. This takes up
space, and for this reason SRAM has lower densities than other technologies (such as DRAM).

• SRAM is more expensive in a cost/bit comparison.

• Maintaining the state of the cell requires constant power.

Essentially, SRAM is currently preferred for caches because it is very fast; the fact that it is less
dense and more expensive is not as relevant for processor caches as access speed.

2.3 Main Memory: DRAM

A computer program is comprised of a set of instructions, and it manipulates data while it is
being executed. The place where both instructions and data are loaded during program execution
is main memory. We have already seen that some of the most frequently used data are kept in
cache to lower access time, but most of the memory addressing space used by a program usually is
stored in main memory.

Almost every computer uses virtual memory, a technique that allows for an addressing space
greater than the actual main memory capacity. When there is a request for memory allocation
beyond main memory’s boundaries, page swapping is used to temporarily send to the backing
storage (usually disk or flash) a set of memory pages that is not immediately needed and reclaim
their space. When those pages are needed again, they are fetched from the backing storage in
exchange of another set of pages, and so on. Since this is an expensive process, page swapping is
avoided whenever possible.

Based on this understanding, we can devise some requirements for main memories:

1. They need to be big enough to hold most of the data needed by a program to execute (to
avoid paying too often the performance price of page swapping).

2. They can be slower than caches, since the most frequently used data are already being cached.

3. Their cost/bit needs to be lower than caches, since they need more capacity.

The technology that best fits into this description today is Dynamic Random Access Memory
(DRAM).

A typical DRAM cell has one transistor and one capacitor, as shown is Figure 2.4a. It keeps
its state in capacitor C. The transistor M is used to provide access to the state. To read the state
of the cell the access line AL is raised; this either causes a current to flow on the data line DL or
not, depending on the charge in the capacitor. To write to the cell the data line DL is appropriately
set and then AL is raised for a time long enough to charge or drain the capacitor. A DRAM cell
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Figure 2.4: a) DRAM cell and b) DRAM array organization. Extracted from Drepper 2007 [25].

Figure 2.5: A dual in-line memory module (DIMM) with two ranks of nine banks each.

is much simpler than a SRAM cell, allowing for greater memory density (being a smaller cell) and
lower manufacturing cost [25].

Despite these advantages, DRAM has a number of drawbacks when compared to SRAM. In
order to allow huge numbers of cells, the capacity of the capacitor must be low. It only takes a
short time for the capacity to dissipate, which is known as “charge leakage”. In order to address this
problem, DRAM cells must be refreshed frequently (every 64ms in most current DRAM devices).
This tiny charge also creates another issue: the information read from the cell is not immediately
usable, since the data line must be connected to a sense amplifier which can distinguish between a
stored 0 or 1. Finally, the capacitor is discharged by read operations, so every read operation must
be followed by an operation to recharge the capacitor. This requires time and energy [25].

DRAM cells are grouped together in arrays, as shown in Figure 2.4b. Each cell is at a cross-point
of a row and a column. Both a row and a column need to be selected in order to read the content
of that particular cell. Several arrays are read at the same time to provide the contents of a memory
word. This group of arrays ganged together are called banks. Banks are aggregated in hardware
modules called Dual In-line Memory Modules (DIMMs). Each DIMM has one or two ranks of
banks. Figure 2.5 shows a DIMM with two ranks of nine banks each [31].

The essential characteristics of DRAM can be thus summarized:

• DRAM cells are simple, allowing high densities at a low cost/bit (when compared to SRAM).
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• DRAM is slower than SRAM, yet still fast.

• Constant refreshes due to current leakage make DRAM power-consuming.

These properties make DRAM the best match for the main memory technology requirements previ-
ously listed.

2.4 Persistent Storage: Disk, Flash

Beyond using data during computations, there is need to store data even when computers are
turned off. The requirements for persistent storage can be so described:

1. It must be permanent, retaining data for several years without energy supply.

2. It must be very dense, allowing the storage of huge amounts of data in a tiny space.

3. Its cost/bit must be very low.

4. It is acceptable for persistent storage to be slower than main memory (given that it is the last
memory/storage hierarchy level).

It is important to notice that, in an ideal world, there would be no distinction between main memory
and persistent storage. If there was a single memory technology that could satisfy both the require-
ments for main memory and for persistent storage (requirements 1-3 above), there wouldn’t be a
separation between these two layers. Since there is still no such technology, we consider acceptable
the 4th requirement mentioned above.

There are two main technologies which match these characteristics today: disk and flash.

2.4.1 Disk

The most common storage technology today is theHard Disk Drive (HDD, or simply “disk”).
Magnetic disks have been around since the 50s, and they have been for a long time the preponderant
storage media. Most personal and enterprise computers employ disks as their persistent storage.

HDDs exploit the properties of ferromagnetic materials to retain magnetic fields. A typical HDD
(depicted in Figure 2.6) has one or more disk platters with a magnetic coat. Data is read/written
by a head device, that can induce or sense magnetism in the disk. A central axis, called spindle,
rotates the disk. Together with the actuator, which moves the head between the center and the
border of the disk, all disk surface can be reached by the head. HDDs also have circuitry to convert
disk data to electronic form and communicate with the computer’s I/O subsystem.

Disks have great areal density (bits/square inch) and a very low cost/bit, and for this reason
have been the most used persistent storage for a long time. Their drawbacks are related to the fact
that disks are mechanical devices with moving parts. Every time a block is accessed, the HDD needs
to rotate the spindle and move the actuator in order to place the head at the appropriate place. This
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Figure 2.6: Hard disk internals overview. Reproduced from [31].

takes significantly more time than for doing the same operation in a solid-state memory technology
such as SRAM or DRAM. In order to keep response times high, disks are kept continually spinning,
which consumes additional energy.

These are the main steps that contribute to the time needed to complete a random disk I/O:

1. Command overhead - the time needed by the disk drive’s microprocessor and electronics to
process and handle an I/O request. It can be sped up by disk caches.

2. Seek time - the time to move the read/write head from its current cylinder to the target cylin-
der of the next command. Because it is mechanical time, it is one of the largest contributors
to I/O time.

3. Rotational latency - the time it takes for the disk rotation to bring the start of the target
sector to the head. It is also mechanical time, being another major contributor for overall I/O
time.

4. Data transfer time - the time it takes to transfer data to/from the disk drive. It depends
on data rate and transfer size. There are two distinct relevant data rates: media data rate,
associated with how fast data can be transfered to and from the magnetic media, and interface
data rate, associated with how fast can data be transferred between the disk drive and the
host over the interface.

2.4.2 Flash

Flash memories, a type of non-volatile solid-state memory, have been built since the beginning of
the 80s and dominate some niche markets today. Flash is more limited than disk regarding capacity
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Figure 2.7: A typical north/southbridge layout. Extracted from
http://en.wikipedia.org/wiki/Southbridge_(computing).

and endurance, but has much lower power consumption and thus are very suitable for mobile and
embedded devices.

Flash cells are floating-gate devices that can be erased electrically. There are two major kinds of
flash memories: NOR and NAND. In NOR memory, each cell in a memory array is directly connected
to the wordlines and bitlines of the memory array. NAND memory devices are arranged in series
within small blocks. Thus, while NAND flash can inherently be packed more densely than NOR
flash, NOR flash offers significantly faster random access [13]. Due to cell density, NAND flash is
the preferred type for persistent storage.

Flash is faster than disk and consumes less energy. However, it has some drawbacks that prevent
it from replacing disks except for some niche applications: less density, higher cost/bit and lower
endurance [13].

Both disks and NAND flash are block devices. Typically they are not directly addressed by the
processor, like main memory, but their contents must be moved from persistent storage to memory
so the processor is able to manipulate them, and must be moved from memory to persistent storage
at the end of processing. This process is not transparent to the processor, and is usually managed
at Operating System (OS) level. Traffic between the processor and main memory (including off-chip
caches) is made through a high-speed memory controller bus, also known as northbridge. Access
to block devices is made through the slower I/O controller hub known as southbridge. Figure 2.7
shows the typical relationship between the processor, the northbridge and the southbridge.

2.5 Limitations of Current Memory Technologies

The memory subsystem has become one of the most important topics in computer design. As
Bruce Jacob [31] put it,

“The increasing gap between processor and memory speeds (...) is so severe we are
now one of those down-cycles where the processor is so good at number-crunching it
has completely sidelined itself; it is too fast for its own good, in a sense. (...) memory
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Table 2.1: Comparison of current memory/storage technologies: SRAM, DRAM, disk and NAND
flash. Cell size uses standard feature size (F 2)

subsystems design is now and has been for several years the only important design issue
for microprocessors and systems. Memory-hierarchy parameters affect system perfor-
mance significantly more than processor parameters (e.g., they are responsible for 2-10x
changes in execution time, as opposed to 2-10%)”

The high level of sophistication attained by modern memory systems is largely derived from the
process predicted by Gordon Moore in 1965 [47], known as Moore’s Law. It states that the number
of devices that can be integrated on a chip of fixed area would double every 12 months (later amended
to doubling every 18–24 months). Moore’s law was the driving force behind dramatic reductions in
unit cost for memory, enabling products of higher density and putting huge amounts of memory in
the hands of the consumer at much reduced cost. This behavior has made the prediction of near-
future product developments extremely reliable because the underlying device physics, materials,
and fabrication processes have all been scalable, at least until now [13]. Figure 2.1 summarizes the
main characteristics of current memory/storage technologies.

An important issue for the near future concerns DRAM approaching physical limits that might
limit its growth in the next decade, creating a “power wall”. DRAM must not only place charge in
a storage capacitor but must also mitigate sub-threshold charge leakage through the access device.
Capacitors must be suficiently large to store charge for reliable sensing and transistors must be
suficiently large to exert effective control over the channel. Given these challenges, manufacturable
solutions for scaling DRAM far beyond current limits is a challenge [36]. This fuels a concern with
the growing power demands of DRAM:

“For several decades, DRAM has been the building block of the main memories of
computer systems. However, with the increasing size of the memory system, a significant
portion of the total system power and the total system cost is spent in the memory
system. For example, (...) as much as 40% of the total system energy is consumed by
the main memory subsystem in a mid-range IBM eServer machine.” [53]

Disk density (and consequently capacity) is unlikely to face a similar scaling problem in the near
future, but the latency gap between DRAM and disk is an issue that would be worth to solve. As
Burr et al. put it,
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“The best-case access time of a magnetic HDD has remained fairly constant over
the past decade at approximately 3-5 milliseconds (...). A 3-GHz microprocessor will
execute nine million instructions while waiting for this data. In fact, an enormous part
of a modern computing system is designed expressly to hide or finesse this unpleasant
discrepancy in performance.” [13]

Flash also has its limitations as persistent storage:

“(...) the cost per gigabyte (GB) for flash memories is nearly 10x that of mag-
netic storage. Moreover, flash memories face significant scaling challenges due to their
dependence upon reductions in lithographic resolution as well as fundamental physical
limitations beyond the 22 nm process node, such as severe floating gate interference,
lower coupling ratio, short channel effects, and low electron charge in the floating gate.
Thus, to replace HDDs, alternative NVM technologies that can overcome the shortcom-
ings of NAND flash memories and compete on a cost per TB basis with HDDs must be
found.” [34]

...and as main memory:

“NAND flash has very limited number of write/erase cycles: 105 rewrites as opposed
to 1016 for DRAM. NAND flash also requires a block to be erased before writing into
that block, which introduces considerably extra delay and energy. Moreover, NAND
flash is not byte-addressable.” [79]

In a 2007 article, Barroso and Hölzle [6] proposed the notion of energy-proportional computing
and maintained that it should be a primary design goal for computer design. They argue that
datacenters are designed to keep server workload between 10-50% of their maximum utilization
levels. This is done to ensure that throughput and latency service-level agreements will be met and
that there will be room for handling component failures and planned maintenance. The problem is
that the region under 50% utilization is the lowest energy-efficient region of servers, due to static
power consumption (depicted in Figure 2.8a). As seen, memory/storage components consume both
dynamic power (used to change memory contents) and static power (used for data retention and
component availability). Static power used by SRAM and DRAM is used mostly for refreshes due
to power leakage; in disks, most static power is used to keep the disk spinning and ready to answer
requests with low latencies. As Barroso and Hölzle put it, “essentially, even an energy-efficient
server still consumes about half of its full power when doing virtually no work” [6]. This problem is
aggravated by the fact that the costs are not reflected only in the server electricity bill, but also in
energy for cooling the datacenter and infrastructure provisioning costs, that increase proportionally
to the server energy budget.

The authors of the article also mention that CPUs are the components that exhibit most energy-
proportional behavior today, and that the components that most contribute to less server energy
efficiency are, in this order, DRAM (50%), disk drives (25%) and networking switches (15%). A
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Figure 2.8: Relationship between power and energy-efficiency for a) current server behavior; b)
theoretical energy-proportional server behavior. Reproduced from Barroso and Hölzle 2007 [6].

machine with a dynamic power range of 90% could cut by one-half the energy used in datacenter
operations, due to its better energy efficiency in low-utilization regions, shown in figure 2.8b [6].

Due to all these limitations, there is intense research to create new alternatives of memory
technology that can address these problems and prevent a “power wall” from being reached. In
chapter 4 some of the most promising emerging technologies are presented. The next chapter
describes how current technologies are applied in today’s memory system organization.
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3. MEMORY SYSTEM ORGANIZATION

The previous chapter presented the main technologies used today for memory and storage. This
chapter describes how these technologies are employed in today’s memory system organization. This
is an important topic to understand, since the emerging technologies presented in chapter 4 will also
potentially impact memory system design and organization.

3.1 Overview

A typical PC organization is displayed in Figure 3.1, illustrating a two-way multiprocessor. This
system has the most common characteristics usually found in modern computers, and will be used
as a reference during the rest of this section.

Figure 3.1: A typical PC organization, showing a two-way multiprocessor, with each processor having
its own secondary cache. Extracted from [31].

Each of the two CPUs (Central Processing Units) has its own on-chip primary cache, also
known as L1 cache. In addition, each CPU also has access to an off-chip secondary cache (L2
cache) using a dedicated cache bus. Access to main memory is made through the memory
controller residing inside the north-bridge chipset. The north-bridge mediates the communication
between the processors and the DRAM memory modules through a DRAM bus. It also mediates
communication with the graphics co-processor through an AGP bus and I/O devices (such as the
disk controller and network interfaces) through a PCI bus. The north-bridge also is connected
to the south-bridge chipset, which has an I/O controller responsible for communicating with low
bandwidth I/O devices such as keyboard, mouse, etc. The disk controller communicates with
disks through a Serial ATA (SATA) bus.
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In the next section we will examine in more depth the main components of the memory system:
caches, main memory and disks.

3.2 Cache

Processor caches enhance overall system performance providing very fast access to small subsets
of memory data, expected to be accessed much more frequently than others. This is effective due
to a phenomenon known as locality of reference, so named because memory references tend to
be localized in time and space. This can be so summarized:

• If you use something once, you are likely to use it again (temporal locality);

• If you use something once, you are likely to use its neighbor (spatial locality).

Usually a processor cache is divided in three distinct areas: a data cache, an instruction cache and
a Translation Lookaside Buffer (TLB), used to speed up virtual-to-physical address translation
for both executable instructions and data. They usually are transparent caches, meaning that the
same addressing space is shared between the cache and the backing storage.

The data cache stores chunks of data that come from main memory, called cache blocks or
cache lines. Each cache line contains:

• a cache tag indicating the index of the cached data in main memory

• the status of the cache line, indicating if its data are clean (consistent with the value stored
in main memory) or dirty (recently written in cache but not in main memory)

• the cache data.

When the processor asks for the contents of a specific memory address, these contents are first
searched in the cache. If they are found (a cache hit), they are immediately returned. If they are
not found (a cache miss), the memory system goes on to the next hierarchy level (main memory)
and fetches the result. The proportion of accesses that result in a cache hit is known as the hit
rate. The time needed to discover whether a datum is cached or not is called the hit time.

Cache blocks can be grouped in sets of memory locations, and the number of blocks per set
is called cache associativity. Associativity is a trade-off. If there are x places to which the
replacement policy could have mapped a memory location, then to check if that location is in
the cache, x entries must be searched. Checking more places takes more power, chip area, and
potentially time. On the other hand, caches with more associativity suffer fewer misses, so that
the CPU wastes less time reading from the slow main memory. The following associativity schemes
exist:

• Direct-mapped - each set contains only one cache block. It has the best hit times but the
worst hit rates.
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Figure 3.2: Organization of a Static RAM (SRAM) processor cache using set-associative mapping.
Extracted from [31].

• Fully-associative mapping - there is a single set for all lines, i.e., any line can store the
contents of any memory location. This option has the best hit rates but the worst hit times.

• Set-associative mapping - this is a compromise between the direct-mapped and fully-
associative approaches. Each set contains n check blocks, usually 2, 4 or 8.

Figure 3.2 shows the organization of a Static RAM (SRAM) processor cache using set-associative
mapping.

In order to be efficient, caches must store memory locations that are frequently used. The
responsibility to decide what will be stored in the cache and what will not is called cache content-
management. Several distinct content-management heuristics exist; one of the most known is
Least Recent Usage (LRU), that keeps in the cache data most frequently used in the past.

Caches also need consistency-management, to ensure that the overall memory space, as
viewed by different processors and levels of the hierarchy, is consistent. This comprises three main
charges:

1. Keep the cache consistent with itself - ensure that a specific memory address has the
same value in the cache. This can be done by keeping just one copy of a given address or
use some coherency mechanism to update all copies of the same address whenever a change
happens.

2. Keep the cache consistent with the backing store - make sure that all values changed in
the cache get persisted in the backing store. Two policies can be employed: write-through,
where all changes in the cache are immediately applied to the backing store, and write-back,
where changes are applied initially only to the cache, and are written to the backing store at
some future point in time, usually when there is a block replacement.
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Figure 3.3: Basic organization of DRAM internals. Extracted from [31].

3. Keep the cache consistent with other caches - this is similar to the first charge, but
applies to different caches and cache levels. It is also handled in a similar way.

3.3 Main Memory

The description below, except when indicated, was obtained from [31].
A memory module is typically connected indirectly to a CPU through a memory controller.

In PC systems, the memory controller is part of the north-bridge chipset.
Memory cells are disposed on a grid called a memory array. Each cell stores a bit in the

intersection of a row and a column. Figure 3.3 shows a DRAM array. A set of memory arrays that
operate together are grouped in memory banks. The number of arrays in a bank determines the
data width of the memory device (e.g., 4 arrays indicate a x4 data width). Data widths range
from x2, x4 and x8 up to wider outputs of x16 and x32.

A memory chip, as represented in Figure 3.4, may contain several banks. Each memory chip
contains a row decoder and a column decoder which are used to select a particular bit of each
memory array. For each array there is a differential sense amplifier that senses the electrical
properties of the cell (e.g., voltage, charge) and converts it to a digital value (0 or 1). The output
of the sense amplifier is stored in a data buffer before it can be sent over the bus to the memory
controller.

Figure 3.4: Logical organization of wide-out DRAMs. Extracted from [31].
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The most common form factor for memory modules is called DIMM (dual-inline memory mod-
ule), where multiple memory chips are placed in a single PCB (printed circuit board) with one or two
ranks of memory chips, each one in one side of the PCB. At the bottom of the DIMM there are sets
of pins used to communicate with the memory bus. A system can usually support several DIMMs,
and all of them are connected to the memory controller by a common memory bus. Figure 3.5
displays the relationship between memory arrays, banks, ranks, DIMMs and the memory controller
in a DRAM-based system.

Figure 3.5: DIMMs, ranks, banks and arrays in a DRAM system. Extracted from [31].

DRAM memory modules today are a commodity; any DRAM DIMM should be equivalent to
any other with similar specifications (width, capacity, speed, interface, etc.). The organization that
defines standards for DRAM memory modules is the JEDEC (Joint Electron Device Engineering
Council). The most common memory modules today follow the JEDEC standard for DDR (Double
Data Rate) SDRAM (Synchronous DRAM). This standard mandates the memory bus to be split
in 4 separate busses, each one with their own traces:

• Data - moves data words between the memory modules and the memory controller;

• Address - specifies the address to be read/written from/to the memory module;

• Control - sends commands from the memory controller to the memory module;

• Chip-Select - selects which memory module a command is being directed to.

Figure 3.6 shows a JEDEC-style memory bus organization. Each set of traces connecting a memory
controller to memory modules is called a channel. A memory controller can connect to modules
through one or more channels. Organizations with more channels provide more parallelism at the
expense of higher cost and complexity. Organizations with less channels are simpler and less expen-
sive, but can be a bottleneck for communication between the memory controller and the memory
modules. Synchronous DRAM (SDRAM) is so called because it uses the system clock to control
timing in the memory busses, exchanging data between a memory controller and a memory module
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in every system clock tick. Double Data Rate (DDR) SDRAMs are so named use a dual-edged
clock, transmitting data in both the rising and the falling edge of a clock tick. So for every clock
tick there is a memory bus beat.

The memory controller is responsible for receiving memory read/write requests from CPUs. These
memory transactions are persisted in one or more queues inside the memory controller before being
sent to the memory modules, and can be reordered by the memory controller to increase overall
efficiency. One common reordering strategy is write caching: read requests are typically critical
in terms of latency, but write requests are not; for this reason, read requests are usually prioritized
over write requests, as long as the functional correctness of programs is not violated.

Another main responsibility of the memory controller is translating the addressing scheme used
by the CPU (physical address) to the actual row/column address in a DRAM bank (DRAM
address). There are usually three distinct levels of memory addressing in a typical PC:

• Virtual Addresses - used by software applications and managed by the operating system,
and potentially larger than the physical memory available;

• Physical Addresses - a continuous representation of the physical memory available - this is
how the CPU addresses memory. The mapping from virtual to physical addresses is made by
the Operating System with help from the Translation Lookaside Buffer (TLB) contained in
the processor L1 cache;

• DRAM Addresses - the actual location of memory data in the memory modules, including
channel, rank, bank, row and column. The expansible nature of JEDEC-style memory makes
it possible for memory modules to be added/subtracted from the system. Since the memory
controller manages the current physical organization of memory modules, it is responsible for
the translation between physical addresses and DRAM addresses.

The memory controller is also responsible for refresh management of DRAM memories. DRAM
cells must be frequently refreshed due to capacitor power leakage. Memory controllers usually send
periodical refresh commands to the memory modules to avoid losing memory contents.

Figure 3.6: JEDEC-style memory bus organization, consisting of a memory controller and two
memory modules with a 16-bit data bus and an 8-bit address and command bus. Extracted from [31].

In order to do a memory read transaction, the following steps are typically followed:
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1. A CPU requests a memory read transaction to a memory controller.

2. The memory controller converts the transaction in to a sequence of memory commands (trans-
lating the physical address to a DRAM address) and queues them.

3. When the command is unqueued, the memory controller sends to the appropriate memory
module a Precharge (PRE) command. This sets the bitlines to a voltage level halfway
between 0 and 1, which is needed for the sense amplifier to detect the value in each capacitor
of a row.

4. The memory controller sends to the memory module a Row Address Strobe (RAS) com-
mand, which causes the contents of an entire row to be activated and placed at the sense
amplifier.

5. The memory controller sends to the memory module a Column Address Strobe (CAS)
command, which specifies which specific column from the row currently at the sense amplifier
should be moved to the data bus where it can be transferred to the memory controller.

6. Most of the current DRAM implementations don’t transfer just a single column, but a pre-
defined number of sequential columns. It saves bandwidth avoiding the need for the memory
controller to send several of CAS commands to fetch the value of a series of contiguous
columns. This is called a burst, and is a form of prefetching based on locality principles.
Memory modules can have a Programmable Burst Length set by the memory controller.

7. The memory controller sends back to the CPU the memory contents of the requested physical
address.

It is important to notice that some memory controllers reset the contents of the sense amplifier
after a CAS command, making it faster to read contents from a different row. This is called an
open-page row-buffer-management policy, and it is used more frequently in systems with more
processors and less temporal and spatial locality. Other memory controllers keep the sense amplifier
open after a CAS command, saving time and bandwidth if a new CAS command is issued against
the same row. This is called a closed-page row-buffer-management policy, and it is used in
systems with less processors and more temporal and spatial locality.

In open-page memory systems, when reading new column in a row already open, steps 3 and 4
(described above) are not needed. In both open-page and closed-page systems step 3 is not needed
if the memory bank is already precharged. A summary of these steps can be seen at Figure 3.7.

3.4 I/O

The I/O subsystem is responsible for communicating with persistent storage devices, including
disk drives and/or flash memory. As previously mentioned in section 3.1, this interaction occurs via
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Figure 3.7: Steps of a DRAM read. Extracted from [31].

the south-bridge chipset. Most of the communication essentially involves reading from or writing to
these devices through I/O commands. The most typical I/O commands have this basic structure:

1. Whether the command is a read or write operation;

2. The starting address for the command;

3. the number of sectors of data to be read or written.

The communication channel over which I/O requests are from the processor to the storage devices
and through which data transfers for reading/writing happen is called the storage interface. A
basic model for attaching an storage device to a computer system (also called “host”) is depicted
in Figure 3.8. The I/O bus has a higher latency compared to the memory bus. The host side
controller may have different names, depending on the system and interface (Host Bus Adapter,
Storage Controller, Disk Drive Adapter, etc.), but is always responsible for interfacing the host
communication with the storage devices. Each storage device (drive) has its own drive controller,
that directly controls the storage media (either disk or flash).

The communication between the host side controller and the drive controller is made through a
specific storage interface. Such interfaces usually are comprised of two layers: a lower layer, that
defines cables, connectors, electrical or optical signals and other transport procedures; and a higher
layer, that defines the protocol and set of commands that can be exchanged between the host and
the drive. This separation of layers allows different interfaces to share the same higher or lower level
layer. For instance, the ATA and SATA interfaces have the same higher layer, but the lower layer of
the first is parallel (in the sense that multiple signals are sent in parallel over multiple wires), and
the second is serial. The most usual interfaces in use today are the following:

• ATA - one of the first standardized interfaces, is still very common for being a low-cost option.
It is a parallel interface that allows up to 4 drives in a host controller.

• SATA - as the name implies, Serial ATA is the serial version of the ATA interface. It has
better performance than its parallel version.
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Figure 3.8: Model of a storage device (disk drive) attached to a host system via an interface.
Extracted from [31].

• SCSI - the Small Computer Systems Interface is a more advanced interface with functionalities
and features not available in ATA, and consequently higher cost. It is a parallel interface.

• SAS - stands for Serial Attached SCSI, and essentially is a serial interface based on the SCSI
protocol, for enhanced performance.

• FC - Fibre Channel is a high-end, feature-rich, serial interface. It is the most complex and
expensive of all, but presents far more performance and flexibility.

Caches play an important role in increasing storage device performance. Typically both the host
side controller and the drive controller have built-in caches. Main memory is also used to buffer
data read from storage devices, and can sometimes act as a cache, as the data being read is already
available in DRAM. Since storage devices are more efficient manipulating sequential data, the drive
cache is very important to amortize access time through prefetching mechanisms.

The next chapter will present the emerging non-volatile memory technologies being researched,
and chapter 5 discusses the impacts of these emerging memory technologies concerning how they
can contribute to create computers with persistent main memory.
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4. EMERGING MEMORY TECHNOLOGIES

Chapter 2 presented the current technologies used in memory hierarchy, discussed their limitations
and the arguments for the research of more efficient memory technologies. This chapter presents
the emerging memory technologies that can be an answer to these issues.

There are several new Non-Volatile Memory (NVM) technologies under research. One study [34]
lists 13 of such technologies: FRAM, MRAM, STTRAM, PCRAM, NRAM, RRAM, CBRAM, SEM,
Polymer, Molecular, Racetrack, Holographic and Probe. Most these technologies are in different
stages of maturity. Some of them are still in early research stages, others have working prototypes,
and some of them are already entering into commercial manufacturing.

In the present work, we will limit our study to three of these technologies: Phase-Change RAM,
Resistive RAM (including Memristors) and Magnetoresistive RAM (including Spin-Torque Transfer
RAM). All these fall into the category of the most actively researched today, are backed by solid
companies of the technology industry, and considered most promising of being commercially feasible.

For those who are interested in a more broad analysis of all different kinds of NVM under research,
the works of Burr et al. [13], and Kryder and Kim [34] can be consulted.

4.1 Phase-Change RAM (PCRAM)

Phase-Change Random Access Memory (also called PCRAM, PRAM or PCM) is currently the
most mature of the new memory technologies under research. It relies on some materials, called
phase-change materials, that exist in two different phases with distinct properties:

1. An amorphous phase, characterized by high electrical resistivity;

2. A crystalline phase, characterized by low electrical resistivity [56].

These two phases can be repeatedly and rapidly cycled by applying heat to the material. To make
it amorphous, it is melt-quenched using a high-power electrical pulse that is abruptly cut off. To
crystallize the material, it is heated above its crystallization temperature using a moderate power
pulse with a longer duration. Since the duration of this pulse varies according to the crystallization
speed of the material being used, this operation tends to dictate the writing speed of PCRAM.
Reflectivity can vary up to 30%, but resistivity changes can be as large as five orders of magnitude.
[13,56]

The principle of phase-change memory is known since the 1960s, but only recent discoveries
of phase-change materials with faster crystallization speeds led to the possibility of commercially
feasible memory technology. The most important materials are chalcogenides such as Ge2Sb2Te5

(GST), that can crystallize in less than 100 ns [56].
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Figure 4.1: Example of a phase-change memory cell. The current is forced to pass through the
phase-change material. Image obtained from [56].

Figure 4.1 shows a memory cell based on phase-change principles. The SET operation is achieved
by crystallizing the material and RESET by making it amorphous. Unlike Flash memory, PCRAM
can be switched from 0 to 1 and vice-versa without an ERASE operation.

Given the great difference in resistance, phase-change materials can be easily used to store binary
states per cell (single-level cell) and even more states (multi-level cell) [13, 36].

PCRAM is argued to be a scalable technology. As the feature density increases, phase-change
material layers become thinner and need less current for the programming operations. It has been
demonstrated to work in 20nm device prototype and is projected to scale down to 9nm. DRAM
presents challenges to scale down beyond 40nm [36,56].

As previously mentioned, the SET latency is the longest and determines the write performance.
Latencies of 150 ns for SET and 40 ns for RESET operations have been demonstrated. Write energy
is determined by the RESET operation, which dissipates 480 μW , while SET dissipates 90 μW .
The read latency is 48 ns and dissipates 40 μW . Both read and write latencies are several times
slower than DRAM, although only by tens of nanoseconds [36].

Endurance is bound to the number of writes. This happens because when current is injected into
a phase-change material, thermal expansion and contraction degrade the contacts, so that currents
are no more reliably injected into the cell. The current write endurance varies between 104 and 109

writes, but we can conservatively assume 108 as a reasonable reference value [36,79].
Today PCRAM is positioned as a Flash replacement. It offers great advantages over Flash,

but given the current limitations of access latency, energy consumption and endurance, further
development is required in order to employ it as a replacement for DRAM [36,37].

4.2 Resistive RAM (RRAM)

Despite the fact that PCRAM also uses resistance variances to store bit values, the term Re-
sistive RAM (RRAM) has been applied to a distinct set of technologies that explore the same
phenomenon. Essentially these technologies fall into one of two categories [13]:

1. Insulator resistive memories: based on bipolar resistance switching properties of some metal
oxides. The most important example is the memristor memory device, which will be further
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Figure 4.2: Relationship between current and voltage in a memristor, known as a “hysteresis loop”.
Extracted from Wang, 2008 [71].

described in more detail.

2. Solid-electrolyte memories: based on solid-electrolyte containing mobile metal ions sandwiched
between a cathode and an anode. Also known as Programmable Metallization Cell (PMC) or
Conductive Bridge RAM (CBRAM).

There is a long list of RRAM technologies [11, 13, 34, 77]. In this paper we will concentrate our
attention on thememristor, which is currently the most promising RRAM technology under research
[77].

4.2.1 Memristor

Since the 19th century, we have known three fundamental passive circuit elements: the resistor,
the inductor and the capacitor. In 1971, Leon Chua theorized the existence of a fourth passive
circuit element, which he called the memristor [15], but no actual physical device with memristive
properties could be constructed. In 2008, a group of scientists reported the invention of a device
that behaved as predicted for a memristor [62]. Later the same year, an article detailed how that
device could be used to create nonvolatile memories [77].

The property of memristors particularly relevant to memory devices is the nonlinear relationship
between current (I) and voltage (V), depicted on Figure 4.2. In the words of R. Stanley Williams,
the leader of the research team that invented the first memristor device:

“Memristor is a contraction of ’memory resistor’, because that is exactly its function:
to remember its history. A memristor is a two-terminal device whose resistance depends
on the magnitude and polarity of the voltage applied to it and the length of time that
voltage has been applied. When you turn off the voltage, the memristor remembers its
most recent resistance until the next time you turn it on, whether that happens a day
later or a year later. (...) The ability to indefinitely store resistance values means that
a memristor can be used as a nonvolatile memory.” [72]

This memristor device consisted of a crossbar of platinum wires with titanium dioxide (TiO2)
switches, as shown in Figure 4.3. Each switch consists of a lower layer of perfect titanium dioxide



52

Figure 4.3: How memristance works [72].

(TiO2), which is electrically insulating, and an upper layer of oxygen-deficient titanium dioxide
(TiO2−x), which is conductive. The size of each layer can be changed by applying voltage to the
top electrode. If a positive voltage is applied, the TiO2−xlayer thickness increases and the switch
becomes conductive (ON state). A negative voltage has the opposite effect (OFF state). This
behavior matches the hysteresis loop previously shown in Figure 4.2. [62, 72,77].

Titanium dioxide was used in the mentioned prototype, but several other oxides are known to
present similar bipolar resistive switching, and there are multiple research projects in motion to
explore these other materials for similar memory device implementations [11,13].

Memristive memory technology is less mature than PCRAM, and DIMM prototypes aren’t avail-
able yet, but there are already a few papers that predict some fundamental characteristics of such
memories [29,38].

Scalability is one aspect where memristor is most efficient. A cell density of 10 nm has been
achieved and a density between 4-5 nm is predicted for the next few years [38, 72]. Beyond that,
memristor memory devices can benefit from multi-level cell (MLC) storage and 3D die stacking,
which can greatly improve the overall density [11,29,38,72].

We haven’t found any report of actual read speeds, but they are expected to be faster than
DRAM speeds, which are around 10 ns. The write speed is 10 ns for a single cell; not as fast
as DRAM, which can do round-trip writes (including bus latency, addressing, transaction and data
return) in the same time [38].

The switching power consumption of memristor can be 20 times smaller than flash [29].
Another property of memristors is that they are made from common semiconductors that are

CMOS-compatible, and can easily be produced in existing semiconductor factories [13, 72].
The Achilles heel of memristor is endurance. The existing memristor prototypes have shown so

far an endurance of 105write cycles, and main memory devices need an endurance in the order of
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Table 4.1: Comparison between DRAM and RRAM (Memristor) metrics. Extracted from Lewis and
Lee [38].

Figure 4.4: A conceptual view of MTJ structure. (a) Anti-parallel (high resistance), which indicates
“1” state; (b) Parallel (low resistance), which indicates “0” state. Reproduced from Dong, 2008 [24].

1017. R. Stanley Williams believes this can be improved in the next years, but memristor devices, as
they are today, cannot be directly used for main memory. It could be used as a flash replacement,
for write-seldom, read-often devices such as FPGAs, and as part of hybrid main memory devices
using a combination of RRAM persistent storage and DRAM buffers [38].

Lewis and Lee published an interesting table comparing RRAM memristor against DRAM metrics,
that we show in Figure 4.1.

4.3 Magnetoresistive RAM (MRAM)

Magnetoresistive RAM (MRAM), sometimes called Magnetic RAM, is a memory technology that
explores a component calledMagnetic Tunnel Junction (MTJ). An MTJ, depicted on Figure 4.4,
consists of two ferromagnetic layers separated by an oxide tunnel barrier layer (e.g.,: MgO). One
of the ferromagnetic layers, called the reference layer, keeps its magnetic direction fixed, while
the other, called the free layer, can have its direction changed by means of either a magnetic field
or a polarized current. When both the reference layer and the free layer have the same direction,
the resistance of the MTJ is low. If they have different directions, the resistance is high. This
phenomenon is known as Tunneling Magneto-Resistance (TMR) [13,24,34].

MRAM is a relatively mature technology, but current implementations suffer from density and
energy constraints that seriously affect its capacity to compete with existing memory technologies
such as DRAM or Flash. An specific type of MRAM under development called STT-RAM has
a good chance to overcome these problems and position MRAM as a commercially feasible NVM
alternative [34]. In the next section we’ll explore STT-RAM in more detail.
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4.3.1 STT-RAM

Conventional MRAM (also called “toggle-mode” MRAM) uses a current induced magnetic field
to switch the MTJ magnetization. The amplitude of the magnetic field must increase as the size
of MTJ scales, which compromises MRAM scalability. Spin-Torque Transfer MRAM (STT-RAM)
technology tries to achieve better scalability by employing a different write mechanism based on spin
polarization [39].

Read/write latencies for STT-RAM are very fast. One study estimates a read latency of 5.5 ns,
faster than DRAM. The same study predicts slower write speeds, around 12.5 ns, but they are still
very fast [24].

Endurance is excellent, reaching figures above 1015cycles [39].
Regarding energy efficiency, STT-RAM cells consume around 0.026 nJ for reading and 2.833 nJ

for writing. This is a relatively high consumption, but it’s very favorable when compared to SRAM
and DRAM, since MRAM, as all other non-volatile memories, has very low energy leakage [24].

The less favorable aspect of STT-RAM is density. Its cells have less density than currently
achieved by DRAM. A comparison shows that while DRAM scale down to 6-8F 2, STT-RAM cur-
rently doesn’t scale below 37F 2, thus being 1.7 times less dense than DRAM. STT-RAM supports
MLC and 3D integration [24].

In 2005, Johan Åkerman published an article [54] proposing that MRAM could be the “universal
memory” technology that would render obsolete all other components of memory hierarchy (SRAM,
DRAM, disks, flash). Since then, papers on MRAM (including STT-RAM) often mention its possible
future as “universal memory”. In practice, due to MRAM current density limitations, it is not seen as
a real replacement for DRAM as main memory (not to mention disks). Current ideas focus on using
STT-RAM as an SRAM replacement for building cache memories, due to its excellent read/write
speeds, endurance, and much superior energy efficiency [24,39].

4.4 Comparison Between Memory Technologies

So far have seen the most promising NVM technologies. We will now draw a comparison between
each of one of them as well as against the main current memory hierarchy components: SRAM,
DRAM, disks and flash. In order to do this comparison, we will employ the following set of criteria:

1. Maturity: whether the technology is currently used in the market or it’s in early or later
research stages before being commercially mature.

2. Density: the number of memory cells per space unit, using standard feature size (F 2).

3. Read Latency: the speed of reading values from a memory cell.

4. Write Latency: the speed of writing values to a memory cell.

5. Endurance: the number of write cycles that a memory cell endures before eventually wearing
out.
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Table 4.2: Comparison of memory technologies. The colors indicate how well each technology scores
against the specified criteria. Green means a good score, red means a bad score, yellow is for scores
in between. Data gathered from [13,24,34,38,46,53].

6. Energy: energy spent per bit access. Related with dynamic power.

7. Static Power: whether power needs to be spent while not accessing the memory device. This
includes refreshing solid memory contents due to energy leakage or keeping disks spinning to
achieve lower access latencies.

8. Non-volatility: whether the memory technology is volatile or not.

Based on the data presented in the last sections of this work, table 4.2 compares the discussed
memory technologies against the defined set of criteria.

This concludes our survey of the new NVM technologies. The next chapter explores the potential
impacts of such technologies on persistent main memory systems.
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5. PERSISTENT MAIN MEMORY

The previous chapter presented the emerging NVM technologies under research. This chapter
explores potential applications of these technologies to computers with persistent main memory, as
well as implications in current memory system organization as described in chapter 3.

5.1 Persistent Main Memory Architectures

Main memory today is implemented almost exclusively using DRAM. Most of current non-
volatile main memory ideas involve the usage of PCRAM, alone or combined with other memory
technologies. Memristor is also considered a suitable replacement for DRAM, but since it is a less
mature technology, there are currently no published studies exploring this scenario. In this section,
the existing literature on persistent main memory architectures will be reviewed.

5.1.1 Pioneer Work: Flash-based Main Memory

In 1994, when flash memory was the only commercial NVM technology available, Wu and
Zwanenepoel [74] proposed a non-volatile main memory system using a hybrid implementation of
flash memory and SRAM. Their system was named “eNVy”. Despite the fact that eNVy didn’t use
the NVM technologies we are considering in the present study, their pioneer work was precursor of
several current proposed non-volatile main memory architecture, and thus worth mentioning.

They state that solid-state memories provide a factor of 100,000 improvement in access times
(100ns versus 10ms) over disk and had become cheap enough to allow for arrays of a few gigabytes,
although of one order of magnitude or more greater than the disk. They argue that a non-volatile
main memory system could greatly improve the performance of disk-bound applications with storage
needs limited to a few gigabytes, such as medium to small high performance databases. Such device
would bring several additional benefits:

“We argue that access to this permanent storage system should be provided by means of
word-sized reads and writes, just as with conventional memory. This interface simplifies
data access routines because there is no need to be concerned with disk block bound-
aries, optimizations for sequential access, or specialized disk “save” formats. Substantial
reductions in code size and in instruction pathlengths can result. For backwards com-
patibility, a simple RAM disk program can make a memory array usable by a standard
file system.” [74]

Flash memory has some drawbacks when compared to DRAM: memory cannot be updated in-
place (a whole block must be erased before it can be reprogrammed), memory writes are much
slower and endurance is more limited. To overcome these limitations, eNVy uses copy-on-write and
memory remapping to provide normal in-place update semantics and a battery-backed SRAM buffer
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Figure 5.1: Diagram of the high-level eNVy architecture. Extracted from Wu and Zwaenepoel [74].

to hide the latency of flash write access. They also propose a cleaning algorithm to reclaim space
in the flash array invalidated by copy-on-write operations. Figure 5.1 illustrates the high-level eNVy
architecture [74].

5.1.2 PCRAM As Main Memory

In the 36th International Symposium on Computer Architecture (ISCA) that took place at Austin
in 2009, two different papers proposed independent main memory systems based on PCRAM.

Improving latency, energy and endurance through buffer organization and partial writes

Lee et al. [36] point out that DRAM has inherent scalability limits that will be reached soon,
and propose a specific PCRAM array architecture to bring this technology within competitive range
against DRAM as main memory. They argue that the array design must address PCRAM’s weak
spots, such as write latency, high programming energy cost and finite endurance. In order to achieve
this goal, they propose two strategies, which they have evaluated through simulation:

1. Buffer organization: reorganizing a single, wide buffer into multiple, narrow buffers reduces
both energy costs and delay. Their proposed design involves four 512B-wide buffers instead
of a single 2048B-wide buffer. PCRAM delay penalties are reduced from 1.60x to 1.16x when
compared to DRAM.

2. Partial Writes: data modifications are tracked, propagating this information from the L1
cache down to the buffers at the memory banks. When a buffered row’s content is flushed
to the PCRAM array, only modified data is written. As the number of buffers increase, this
solution becomes more efficient. Using the four buffers described above, endurance improved
up to 5.6 years in the best case [36].

Improving endurance and energy consumption through 3D stacking

The work of Zhou et al. [79] tackles the same problems with a different circuit design proposal.
Their paper point out the energy issues that plague DRAM today and how NVM technologies such
as PCRAM can help overcoming them. They propose a 3D die stacked chip multiprocessor that
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puts together several processors and main memory on the same chip. This is difficult to achieve
with DRAM today because such design requires tight power and thermal constraints that aren’t fit
for memories with high power leakage. They evaluate that the energy efficiency of using PCRAM
in this design can be 65% better than DRAM.

Although PCRAM has very low static energy consumption, they acknowledge, on the other hand,
that PCRAM has endurance and dynamic power problems. In order to address these problems, they
propose the following actions:

1. Removing redundant bit-writes: in a typical DRAM implementation, a write updates the
contents of an entire row (also called a page), even when a single bit value changes. Changing
this behavior to write only the changed bits requires an additional read operation before
writing. This wouldn’t be an advantage for MRAM since both read/write operations have
similar latencies and energy consumption, but PCRAM reads are faster and more efficient
than writes, thus justifying this strategy. Simulations showed that endurance could increase
between 3x-4.5x using this technique.

2. Wear leveling through row shifting: memory updates typically have high locality, with
some specific sets of bits changing much more often. This creates “hot spots” that fail much
sooner than the rest. This can be addressed by periodically shifting the cells in a row to
even out the wear. Simulations showed that endurance can be improved around 3x with this
change.

3. Wear leveling through segment swapping: row shifting brings some improvements to
PCRAM, but not enough to achieve endurance to compete with DRAM. The problem is that
some rows are written more often than others, thus failing sooner. In addition, they propose an
additional wear leveling technique called segment swapping. It consists in periodically swapping
memory segments of high and low write accesses. Simulations indicate that endurance can
improve up to 10x by means of this change.

Their final conclusion is that using all these three techniques it is possible to increase the lifetime of
PCRAM main memory from 171 days to 13~22 years, while achieving energy savings of 65% when
compared to DRAM [79].

Combining both approaches

In 2010, the authors of both papers [36, 79] published an article together proposing the combi-
nation of both into a single approach [37].
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5.1.3 Hybrid PCRAM-DRAM Main Memory

Qureshi et al. hybrid approach

Another paper, by Qureshi et al. [53] was presented in the ISCA ’09, independently proposing a
main memory system using a combination of PCRAM and DRAM. The authors stress the importance
of overcoming DRAM’s charge issues that prevent the technology from scaling in future years. They
point out that PCRAM has the drawbacks of low endurance and slow access when compared to
DRAM. To address both issues, they propose a hybrid architecture where a DRAM buffer is placed
in the front of the main PCRAM storage, as depicted in Figure 5.2. They evaluate that a buffer of
3% of the size of the main storage can bridge the latency gap between DRAM and PCRAM.

In order to exploit this architecture, the following mechanisms are proposed:

1. Lazy-write organization: when a page fault is serviced, it is copied from disk to the DRAM
buffer only, without incurring the write penalty of PCRAM. When the page is evicted from
the DRAM buffer, if the page is dirty it is written to PCRAM storage. This helps decreasing
latency and improve endurance.

2. Line-level writes: to avoid writing a complete memory page (as DRAM does), only dirty
lines would be written in the PCRAM storage (this is similar to the “removing redundant
bit-writes” technique mentioned before). This improves endurance.

3. Fine-grained wear-leveling: since memories tend to have high locality, some pages are
written more often, and can wear out sooner than the rest. They propose a rotating mechanism
between pages in order to distribute wear more evenly (this is similar to “wear leveling through
segment swapping” mentioned earlier). This helps to increase endurance.

4. Page Level Bypass for write filtering: some applications not only do not benefit from
the proposed architecture, but can even unnecessarily wear out the PCRAM storage faster.
A typical example are streaming applications, which access a large amount of data with little
reuse. The authors propose a Page Level Bypass (PLB) bit that can be enable by the operating
system to indicate that the page should not be written to the PCM storage after eviction from
the DRAM buffer, but merely be discarded.

The authors point out that the combination of these techniques can improve memory lifetime of a
DRAM-PCRAM hybrid system from 3 years to 9.7 years. Simulations considering a 16-core system
with 8GB of main memory showed that the proposed architecture can reduce page faults by 5X and
provide a speedup of 3X with an area overhead of just 13% [53].

FLAM hybrid approach

In 2008 Mogul et al. [46] proposed a hybrid design for main memory combining NVM with
DRAM, with two variants: flash+DRAM and PCRAM+DRAM. Their main motivation is a main
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Figure 5.2: Hybrid DRAM-PCRAM main memory system. Reproduced from Qureshi et al. [53]

memory that has less cost per bit, lower power consumption and higher density. Non-volatility would
be an additional benefit. They call their proposal FLAM (flash+DRAM, although they consider a
scenario with PCRAM as well).

FLAM address space would be divided into different regions:

1. NVM: directly mapped for reading, but the CPU cannot write directly in this region.

2. DRAM copy buffer (CB): can be both read and written by the CPU.

3. Control registers: accessed via the standard System Management Bus.

Since the CPU cannot write directly into the NVM area, there is a migration mechanism that allows
for data written in the DRAM buffer region (CB) to be migrated to the NVM region. When the
CPU requests a CB page Pd to be copied to an NVM page Pn, the copy can be made in background
without stalling the CPU. When the copy is done, the memory controller signals the OS that can
then remap the corresponding virtual page from Pd to Pn. Their solution assumes that the choice
of which pages will be stored in CB or NVM regions is made by the Operating System (OS), which
has better information to make this choice.

FLAM addressable space is divided in a DRAM region, that can be both directly read/written
by the CPU, and a NVM region, that the CPU can read but cannot write directly - instead, it needs
to issue a request to the memory controller for copying a page from the DRAM region to the NVM
region. The criteria for deciding where to place a page is based on its estimated-time-to-next-write
(ETTNW): pages with a short ETTNW should be placed at the DRAM region, and pages with a
long ETTNW should be placed at the NVM region. The authors of the proposal argue that the OS
should be the responsible for deciding which pages will be placed in each region, since it has some
privileged information to support this decision. These are the different pieces of information that
can help the OS to establish the ETTNW of a page:

• Page type: some page types, like stack pages and non-file pages shared between two pro-
cesses, are bad candidates for NVM region. Others, such as code pages, are better candidates.

• File type: files such as executables, libraries, network shares are mostly read-only and can be
good candidates for NVM region.
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• File reference modes: some OSs, like Microsoft Windows, have a “temporary file” flag that
can be applied to files. Flags like this are a good indicator of files that should not be placed
at the NVM region.

• Application-supplied page attributes: certain large, memory-hungry applications (e.g.,:
databases) could be adapted to provide coarse ETTNW values for the OS.

• File usage history: the OS can track the actual time-to-next-write (TTNW) of all files and
use these historical data to estimate the ETTNW for each file.

• Page usage history: in theory the OS could do the same tracking at page level. In practice,
it would probably consume a great portion of DRAM to achieve this, which would be against
the point of using FLAM (to save DRAM).

Preliminary experiments were conducted using a micro-architectural simulator to verify if a signif-
icant part of main memory could be migrated to NVM without hurting overall system performance.
In other words, they tried to establish if a significant portion of main memory is used during long
times just for reading and not for writing, using real workloads. The results varied depending on
the workload, but they found that at least half of the main memory contents stay long periods
without being written (above 15 secs), which points out that the proposed solution is worth further
exploration [46].

5.2 Hardware Impacts

Independently of the specific architecture that is chosen, a system with persistent storage col-
lapsed into main memory would have impacts in several aspects, from a hardware perspective:

• Timing: the latency for reading/writing NVM cells tends to be higher than DRAM. On the
other hand, without the need to access high-latency block devices, the overall performance
should be dramatically increased for most applications.

• Energy: DRAM today accounts for about 30% of the energy consumption of a server, and
disk is responsible for another 10% [6]. These components consume both dynamic power (used
to change data) and static power (used for data retention and component availability). Static
power used by DRAM is consumed mostly for memory refreshes, and can account for more
than half of the total power consumption [79]; in disks, most static power is used to keep the
disk spinning and ready to answer requests with low latencies. Static power consumption has
also the disadvantages of increasing with the memory size and not being energy-proportional,
i.e., it is constant over time instead of proportional to the workload [6]. Typically, NVM
technologies have higher dynamic power consumption than DRAM, but negligible static power
consumption. Some studies project that NVM can increase overall memory energy efficiency
up to 65% [52]. The precise order of magnitude of the energy savings obtained through the
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removal of disks and replacement of DRAM by NVM is not yet known, but based on these
facts, it is expected to be considerable.

• Heat: heat and energy are two intertwined subjects. Heat emission tends to be proportional to
energy dissipation. Today, air conditioning is the dominant solution to cool datacenter servers.
Air conditioning, in turn, is another major power consumer. Its components, including CRACs
(Computer Room Air Conditioning), chillers and humidifiers, account for about 45% of the
total datacenter power consumption [6]. Roughly speaking, in a datacenter today for each
dollar spent to power a server another dollar is spent to cool it. Since energy and heat are so
interconnected, thermal efficiency should also be very positively affected by NVM adoption.

• Space: space is one of the less studied aspects related with the adoption of NVM. The volume
occupied by the internal components of servers is likely to be significantly impacted. Magnetic
disks have higher areal density (bits/square inch) than solid state memory, but require several
components such as spindle, head, actuator and motor that make disk drives bulky units. The
volume taken by storage media is relevant both for mobile devices and datacenters with high
server density. The authors are not aware of any existing study estimating the impact of NVM
on space.

• Cost: cost of NVM-based systems is another aspect not studied so far. Specifically for
datacenters, Barroso and Holzle [6] proposed a cost model that considers the Total Cost of
Ownership (TCO) of the datacenter as being composed of datacenter depreciation, datacen-
ter operational expenses, server depreciation and server operational expenses. Their study
demostrates that the electricity bill is one of the major costs of a datacenter operation, and
the superior energy efficiency of NVM should have a positive effect on it. On the other hand,
the cost/bit of solid-state memory today is much higher than disks: the cost of 1 MB of
DRAM is about $0.05, while 1 MB of disk costs about $0.0003 [26]. We still don’t have
market prices for NVM, but it is expected that their cost/bit will also be higher than disk,
possibly by a significative factor. This is another area pending study.

Looking at all discussed aspects, it becomes clear that the impact of NVM-based persistent memory
cannot be adequately evaluated at component or subsystem level, but requires a holistic assessment.

Different architectural approaches can be employed. The first proposals for the application of
NVM technologies evaluated the individual replacement of existing memory hierarchy levels (such
as processor cache, main memory and persistent storage) by NVM counterparts, with gains of
performance and efficiency at subsystem level [52]. Most of these proposals do not imply a radical
redesign of computing systems as a whole, but localized changes to specific subsystems. The
advantage of this approach is avoiding disruption on existing standards, with the limitation of not
exploiting the full potential of these technologies.

More recently, proposals for more radical system redesigns started being published. A good
example is the architecture of Nanostores [59], that proposes parallel systems with a massive number
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of low-cost processors co-located with non-volatile data stores. This system is targeted for data-
centric workloads, such as search, sort and video transcoding. Systems such as these have the
potential for more sophisticated uses of NVM technology, but depart more radically from existing
standards, which probably will result in later adoption.

5.3 Software Impacts

The effects of persistent main memory systems are not limited to hardware, but potentially
affect software significantly as well. In early 1980s, a research group led by Malcolm Atkinson [4]
observed that most traditional programming languages provide separate abstractions for handling
short-term and long-term data: short-term data is typically stored in memory, and manipulated
using concepts such as arrays, records, sets, monitors and abstract data types (a.k.a objects), while
long-term data is typically stored in file systems or database management systems (DBMS), and
manipulated through file abstractions or DBMS models, such as the relational, hierarchical, network
and functional models. The existence of two different view of data presents two problems, according
to Atkinson et al. [4]:

1. In a typical program, about 30% of the code is concerned with transferring data to and from
files or a DBMS. Is it necessary to spend effort in writing, maintaining and executing this
code, and the quality of the application programs may be impaired by the mapping between
the program’s form of data and the form used for the long storage medium.

2. Data type protection offered by programming language is often lost across this mapping. The
structure that might have been exploited in a program to aid comprehension is neither apparent
nor protected and is soon lost.

In order to solve these problems, they propose that from a programmer’s standpoint there should
be no differences in the way that short-term and long-term data are manipulated, using single-level
storage abstractions. Towards this goal, they proposed the concept of orthogonal persistence that
was extensively explored in several research initiatives during the decades of 1980 and 1990, including
both programming languages and operating systems. The works of Alan Dearle et al. [19, 21]
provide a good overview of this topic. Despite its pioneer vision, this body of research didn’t reach
mainstream adoption in the computing industry due to the complexity and performance penalties of
automatically mapping a single-level storage abstraction into a multi-level storage hierarchy (memory
and disk/flash).

The advent of non-volatile memory persistence is expected to allow single-level storage systems
with persistent memory, thus restoring interest in orthogonal persistence and other single-level stor-
age abstractions. In a machine with persistent memory, it is even expected that such abstractions will
reduce complexity and enable substantial performance improvements [16,69]. We have knowledge of
three persistent memory APIs being researched: Mnemosyne [69], NV-heaps [16], and CDDS [66].



65

Figure 5.3: Mnemosyne architecture. Extracted from [69].

5.3.1 Mnemosyne

Mnemosyne [69] proposes an abstraction of persistent memory to be made available by operating
systems to applications. This abstraction enables programmers to make in-memory data structures
persistent without converting it to serialized formats. Direct access also reduces latency because
it bypasses many software layers including system calls, file systems and device drivers. It uses
transactional memory constructs in order to ensure consistency. Mnemosyne’s goals are providing a
simple interface for the programmer, ensure consistency across modifications and being compatible
with existing commodity processors.

Mnemosyne provides a low-level programming interface, similar to C, for accessing persistent
memory. It supports three main abstractions:

1. Persistent memory regions — segments of virtual memory mapped to non-volatile memory.
Regions can be created automatically to hold variables labeled with the keyword pstatic
or allocated dynamically. Persistent regions are virtualized by swapping non-volatile memory
pages into a backing file.

2. Persistence primitives — low-level operations that support consistently updating data.

3. Durable memory transactions — mechanism that enables consistent in-place updates of arbi-
trary data structures.

Mnemosyne architecture can be seen at Figure 5.3.
The Linux virtual memory system is extended by a region manager, responsible for memory

management in the non-volatile space address. A list of the virtual pages allocated in persistent
memory is maintained in a persistent mapping table. The region manager reconstructs persistent
regions when the OS boots. Persistent pages are swapped to backing files, mapped using a variation
of the mmap system call.

Mnemosyne provides persistence primitives of distinct abstraction levels, as depicted in Table 5.1.
At the lowest level, there are hardware primitives to allow storing and flushing data into persistent
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Table 5.1: Summary of Mnemosyne’s programming interface. Extracted from [69].

memory. At a higher level, variables can be automatically assigned to be persisted, both statically
(through the pstatic declaration) and dynamically (being allocated/freed with pmalloc/pfree).
A the highest level, all code inside an atomic block has transactional properties. Mnemosyne
uses write-ahead redo logging to ensure the atomicity of transactions, and exposes its log API so
application code can also make use of it for their own purposes.

The code below is an example of using Mnemosyne with static variables. Every time the program
executes, the value of the integer variable flag will switch between 0 and 1.

#include <stdio.h>
#include <mnemosyne.h>
#include <mtm.h>
MNEMOSYNE_PERSISTENT int flag = 0;
int main (int argc, char const *argv[]) {

printf("flag: %d", flag);
MNEMOSYNE_ATOMIC {

if (flag == 0) { flag = 1; }
else { flag = 0; }

}
printf(" --> %d\n", flag); return 0;

}

This second example shows a simple hash table being manipulated with dynamic variables.

#include <mnemosyne.h>
#include <mtm.h>
MNEMOSYNE_PERSISTENT hash = NULL;
main() {

if (!hash) {
pmalloc(N*sizeof(*bucket), &hash);

}
}
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update_hash(key, value) {
lock(mutex);
MNEMOSYNE_ATOMIC {

pmalloc(sizeof(*bucket), &bucket);
bucket->key = key;
bucket->value = value;
insert(hash, bucket);

}
lock(mutex);

}

The performance of applications such as OpenLDAP and Tokyo Cabinet (a key-value store) using
Mnemosyne’s persistent memory increased by 35–117 percent when compared to Berkeley DB or
flushing the data to disk [69].

The implementation of Mnemosyne consists of a pair of libraries and a small set of modifications
to the Linux kernel for allocating and virtualizing non-volatile memory pages. It runs on conventional
processors.

The purpose of Mnemosyne is to reduce the cost of making data persistent, since current
programs devote large bodies of code to handling file system and/or database access. On the other
hand, Mnemosyne is proposed not as a replacement for files, but as a fast mechanism to store
moderate amounts of data; thus, applications should still use files for interchanging data and for
compatibility between program versions when internal data-structure layouts change.

5.3.2 NV-heaps

Non-volatile Memory Heaps (NV-heaps) [16] is a persistent object system implemented specifi-
cally for non-volatile memory technologies such as PCM and MRAM. It was designed concurrently
with Mnemosyne. NV-heaps was designed to present the following properties:

1. Pointer safety — it prevents programmers, to the extent possible, from inadvertently cor-
rupting their data structures by pointer misuse or memory allocation errors.

2. Flexible ACID transactions—NV-heaps supports multiple threads accessing common data,
and provides consistency across system failures.

3. Familiar interface — the programming interface is similar to the familiar interface for pro-
gramming volatile data.

4. High performance — it was designed to explore as much as possible the speed of the
underlying persistent memory hardware.

5. Scalability — NV-heaps scale to datastructures up to many terabytes.
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NV-heaps proposes the following abstractions:

• NV-heaps — non-volatile heaps that are managed as files by a memory-based ordinary file
system (which provides naming, storage management and access control), and that can be
mapped by the framework directly into the program space address.

• Persistent objects — objects that inherit from a superclass provided by the framework
(NVObject), and can be persisted to NV-heaps.

• Root pointer — every NV-heap has a root pointer from which all objects reachable are
persisted.

• Smart pointers — smart pointers are needed to reference persistent objects. NV-heaps
uses these pointers to do reference counting and manage object locks. Two types of pointers
are supported: V-to-NV (volatile references to non-volatile data) and NV-to-NV (non-volatile
references to non-volatile data).

• Transactions — programmers explicitly define the boundaries of transactions with ACID
properties.

The example below exemplifies the removal of a value k from a persistent linked list.

class NVList : public NVObject {
DECLARE_POINTER_TYPES(NVList);

public:
DECLARE_MEMBER(int, value);
DECLARE_PTR_MEMBER(NVList::NVPtr, next);

};
void remove(int k) {

NVHeap * nv = NVHOpen("foo.nvheap");
NVList::VPtr a = nv->GetRoot<NVList::NVPtr>();
AtomicBegin {

while(a->get_next() != NULL) {
if (a->get_next()->get_value() == k) {

a->set_next(a->get_next()->get_next());
}
a = a->get_next();

}
} AtomicEnd;

}

The NVList class extends NVObject, thus being persistent. The DECLARE_POINTER_TYPES,
DECLARE_MEMBER and DECLARE_PTR_MEMBER macros declare the smart pointer types for NV-to-
NV (NVList::NV_Ptr) and V-to-NV (NVList::V_Ptr) and declare two fields. The declarations
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generate private fields in the class and public accessor functions (e.g., get_next() and set_next()
that provide access to data and perform logging and locking).

The program invokes NVHOpen to open an NV-heap and retrieves the root pointer. The block
delimited by AtomicBegin/AtomicEnd atomically iterates through the nodes of the linked list and
removes the one equals to k.

NV-heaps is implemented as a C++ library under Linux. NV-heaps are created as regular files,
and mapped to to the application’s virtual address using mmap().

5.3.3 CDDS

The Consistent and Durable Data Structures (CDDS) [66] concept is proposed to allow atomic
memory updates using commodity processors. It does not involve new abstractions for programming,
but is a technique that can be used to implement efficient atomic memory updates without requiring
logging or hardware changes.

A CDDS is built by maintaining a limited number of versions of the data structure with the
constraint that an update should not weaken the structural integrity of an older version and that
updates are atomic.

The biggest challenge behind keeping consistency while modifying memory contents is that the
memory management unit (MMU) of modern processors queues memory operations (reads and
writes) and can reorder them in order to access physical memory more efficiently. This is not a
problem for volatile memory because a power loss would reset all memory contents, but can leave
non-volatile memory in an inconsistent state. There are no processor primitives that a program can
issue in order to specify the boundaries of atomic transactions.

The Intel x86 processor architecture specifies an mfence instruction that ensures every load and
store instruction preceding it in program is globally visible before any further load or store executes.
However, it only guarantees visibility, and not that the operations are actually committed to physical
memory, and in the correct order. The clflush instruction invalidates a cache line, ensuring that it
is written to physical memory. In order to emulate the semantics of an inexistent flush operation
that would commit a set of operations to physical memory before starting another transaction,
CDDS executes mfence and then a clflush in all cache lines of all modified memory regions. This
ensures that it is possible to atomically write 8 byte sequences that can coupled with versioning of
data structures to create CDDS.

Internally, a CDDS maintains the following properties:

• There exists a version number for the most recent consistent version. This is used by any
thread which wishes to read from the data structure.

• Every update to the data structure results in the creation of a new version.

• During the update operation, modifications ensure that existing data representing older ver-
sions are never overwritten. Such modifications are performed by either using atomic opera-
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tions or copy-on-write style changes.

• After all the modifications for an update have been made persistent, the most recent consistent
version number is updated atomically.

Garbage collection must take place eventually to reclaim space used by obsolete versions of the
CDDS. In the event of a failure in the middle of a CDDS update, during the recovery process a
“forward garbage collection” takes place where all update operations executed after the most recent
consistent version are discarded.

The proponents of the CDDS concept implemented a B-tree and modified the Redis in-memory
distributed key-value store (KV store) to use it as backing storage. The resulting KV store (called
Tembo) was demonstrated to increase throughput by 194%–256% when compared to a two-level
KV store (Apache Cassandra).
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6. MEMORY SYSTEM MODELING

The previous chapters presented the current state of memory systems, the emerging NVM tech-
nologies under research and how they can be applied to persistent main memory computers. In order
to evaluate the potential impacts of such computers, it is useful to use system models. The purpose
of this chapter is to describe the main techniques employed to model memory systems, including
analytical models and various forms of simulation. It also includes a survey of techniques used so
far for modeling non-volatile memory systems.

6.1 Overview

In their book Simulation Modeling and Analysis [35], Law & Kelton list the different ways that
can be used to study a system (Figure 6.1):

• Experiment with the actual system vs. experiment with a model of the system - experimenting
with the actual system yields the most accurate results, but often cannot be done because
a) it does not exist yet; b) it is too expensive or disruptive on the existing system. For this
reason, it’s far more usual to work with a model of the system.

• Physical model vs. mathematical model - both physical andmathematical models are useful
to obtain a better understanding of the reality being modeled, but due to cost and feasibility
constraints, mathematical models are much more usual than physical models.

• Analytical solution vs. simulation - the most accurate type of mathematical model is the
analytical solution, where the problem at hand is captured as a set of closed-form math-
ematical equations (e.g., in the d = rt example, if we know both the distance and velocity,
we can obtain the time using t = d/r). Unfortunately, some problems are too complex to be
realistically modeled as an analytical solution. In these cases, a simulation is used, where the

Figure 6.1: Taxonomy of the ways to study a system. Extracted from [35].
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model is numerically exercised for the inputs in question to check how they affect the output
measures of performance [35].

Simulators can also be categorized in relation to their scope (microarchitectural or full-system) and
input (trace-driven or execution-driven):

• Microarchitectural vs. full-system simulation -microarchitectural simulators can emulate the
functionality and timing model of a microprocessor and its related devices, and can execute
simple programs compiled for the target platform; full-system simulators simulate a whole
computer system, and can boot a complete operating system [42].

• Trace-driven vs. execution-driven - in trace-driven simulation a sequence of instructions is
captured from a real system and then used as input for the simulator; in execution-driven
simulation, the programs are compiled for the simulator platform and executed directly over
the simulator [50].

All these different means of studying a system are used to evaluate memory systems in general, and
were recently used to investigate non-volatile memory systems.

In the next sections, different models and simulators used to evaluate memory systems are
described in more detail.

6.2 Analytical Models

6.2.1 CACTI

CACTI is an analytical model for caches. It integrates cache and memory access time, cycle
time, area, leakage, and dynamic power models. Its first version was published in 1996 [73]; since
then it has been continually upgraded [49, 57, 60, 64], and is currently in version 6.5, published in
2009 [65].

CACTI accepts different inputs to characterize the system being modeled, such as cache size,
line size, associativity, number of banks, and several others. Given these parameters, it applies
a series of relatively simple equations that constitute the model. These equations are described
in [49,57,60,64,65,73]. As output, comprehensive information on time, power and area is returned.
The source code for CACTI is available at http://www.hpl.hp.com/research/cacti/ , and is available
as a web application as well in the same web site.

This model was used to assess latency, power and area of non-volatile caches in [24,61,63].

6.2.2 Memristor Analytical Model

In [29] there is a description of a series of closed-form equations that model a memristive memory
device, at memory bank level.
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6.2.3 SPICE

SPICE (Simulation Program with Integrated Circuit Emphasis) is an analog electronic circuit sim-
ulator [67]. It is maintained by the Electrical Engineering department of the University of California
at Berkeley, and can be found at http://bwrc.eecs.berkeley.edu/classes/icbook/spice/.

It is used to model circuits containing electrical components such as resistors, capacitors, induc-
tors, voltage and current sources, transmission lines and semiconductor devices.

SPICE was used to validate the CACTI model [73]. In [8,10,78] there is a description of equations
modeling SPICE memristor devices. The modeling for SPICE MRAM cells can be found at [27,28].
SPICE was used to model basic circuits for MRAM caches [63] and PCRAM main memory [79].

6.2.4 NVSim

NVSim is an integrated time, power and area model for PCRAM, MRAM and ReRAM-based
cache and main memory systems. It also models SRAM, DRAM and eDRAM. It is available at
http://sourceforge.net/projects/nvsim/ and is an evolution of PCRAMsim [23].

NVSim usage is very similar to CACTI (described in section 6.2.1), but adds support for non-
volatile memories.

6.3 Microarchitectural Simulators

As previously mentioned, microarchitectural simulators can emulate the functionality and timing
model of a specific subsystem, such as a microprocessor and its related devices; they can execute
simple programs compiled for the target platform or process traces captured from a real system, but
they cannot boot a complete operating system [42]. In the sections below, a brief presentation of
some microarchitectural simulators used to simulate memory systems is given.

6.3.1 DRAMSim

DRAMSim [70] is a cycle accurate trace-driven DRAM memory simulator. It simulates DRAM
memory controller, bus and DIMM modules. It was created at the University of Maryland and is
available as open-source from http://www.ece.umd.edu/dramsim/.

DRAMSim does not simulate processors, but can be used integrated in a complete system
simulator such as GEMS (see section 6.4.2).

It is used to simulate PCRAM in [79].

6.3.2 McPAT

McPAT [40, 41] is an integrated power, area, and timing modeling framework to support com-
prehensive design space exploration for multicore and manycore processor configurations. At the
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microarchitectural level, McPAT includes models for the fundamental components of a chip mul-
tiprocessor, including in-order and out-of-order processor cores, networks-on-chip, shared caches,
integrated memory controllers, and multiple-domain clocking.

At the circuit and technology levels, McPAT supports critical-path timing modeling, area model-
ing, and dynamic, short-circuit, and leakage power modeling for each of the device types forecast in
the ITRS roadmap including bulk CMOS, SOI, and double-gate transistors. It can model components
inside the memory subsystem, such as memory controllers, arrays and interconnect busses.

McPAT has a flexible XML interface to facilitate its use with performance simulators. It can be
used together with M5.

6.3.3 SESC

SESC is a microarchitectural simulator that can work in both execution-driven and trace-driven
modes. It was developed by the i-acoma research group at the University of Illinois at Urbana-
Champaign, and is available as open-source at http://sourceforge.net/projects/sesc/.

SESC supports a MIPS processor. It supports different modes with distinct detail levels, so it is
possible to choose between more speed or accuracy. SESC is modeled in C++ and can be easily
extended.

It is one of the simulators most employed to model non-volatile memories, being used in [17,30,
36,61].

6.3.4 SimpleScalar

SimpleScalar is an execution-driven microarchitectural simulator. It can emulate the Alpha,
PISA, ARM, and x86 instruction sets. It was released as an open-source distribution in 1995 and is
available at http://www.simplescalar.com [5, 12].

Being a microarchitectural simulator, it enables the user to compile C or FORTRAN benchmark
programs to the SimpleScalar target architecture and experiment with processor and memory hier-
archy characteristics, measuring functionality and time measurements. It focus on single processor
systems.

SimpleScalar was used to model MRAM memory in [24].

6.4 Full-System Simulators

A full-system simulator models a whole computer system, and can boot a complete operating
system [42]. In the next sections, some of the main full-system simulators used to simulate memory
systems are presented.
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6.4.1 COTSon

COTSon [1] is a full-system simulator developed by HP Labs and AMD. It uses AMD’s SimNow as
functional simulator and adds timing simulation using statistical sampling approaches that can trade
accuracy for speed. It favors speed in order to enable larger sets of data to be collected. COTSon’s
goal is to measure the performance of a full system composed of hundreds of multicore, multiproces-
sor nodes, including the full software stack and all the system devices like network cards or disks, in
an affordable amount of time. COTSon is available at http://sites.google.com/site/hplabscotson/.

SimNow [7], the functional simulator at the core of COTSon, simulates x86 and AMD64 pro-
cessors. It runs only on AMD Athlon-64 or Opteron processors.

6.4.2 GEMS

General Execution-driven Multiprocessor Simulator (GEMS) [45] is a simulation toolset built on
top of Simics (see section 6.4.3) to evaluate the performance of multiprocessor hardware systems
commonly used as database and web servers. It was created by the University of Winsconsin and is
available at http://www.cs.wisc.edu/gems/. It focus on accurate performance modeling and relies
on Simics for correctness details.

6.4.3 Simics

Simics [42] is an execution-driven full-system simulator. It was originally developed by the
Swedish Institute of Computer Science, then moved for commercial development through a spin-off
company called Virtutech, and was recently acquired by Intel’s Wind River systems. It can be found
at http://www.virtutech.com/.

Simics simulates several processors and architectures, including UltraSparc, Alpha, x86, x86-64
(Hammer), PowerPC, IPF (Itanium), MIPS, and ARM. It runs in Linux (x86, PowerPC, and Alpha),
Solaris/ UltraSparc, Tru64/Alpha, and Windows 2000/x86. Simics can be used for microprocessor
design, memory studies, device development and operating system development.

It was used to simulate PCRAM and MRAM in [63,79].

6.4.4 M5

M5 [9] is an execution-driven full-system simulator. It was developed at the University of Michi-
gan and is free software/open source and can be found at http://www.m5sim.org. Beyond usual
system simulation, M5 was explicitly designed for accurate network simulation.

M5 can boot unmodified versions of Linux 2.4/2.6, FreeBSD, HP/Compaq Tru64 Unix, and the
L4Ka::Pistachio microkernel.

It was used for modeling PCRAM in [22].
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Figure 6.2: The HASTE system. A single 8x PCIe 1.1 endpoint connects for FPGAs to the host
system, each controlling access to DDR2 DRAM modules. Extracted from [14].

6.5 Hardware Simulators

A simulator implemented in hardware constitutes a physical model of the device being evaluated.
They are more expensive to build in terms of time and cost than software simulators, and are less
flexible; but once they are available, experiments are much faster and accurate. As the usage
of programmable logic circuits such as FPGAs (Field Programmable Gate Arrays) becomes more
widespread, hardware simulation tends to be more common.

6.5.1 HASTE

HASTE (High-performance Advanced Storage Technology Emulator) [14] is a hardware simulator
of non-volatile memory devices connected on the PCIe bus.

It uses DDR2 DRAM modules to store information and FPGAs to simulate the behavior of either
PCRAM or STT-MRAM. The main components of HASTE can be seen in Figure 6.2. HASTE is
presented, and used to evaluate the impact of NVMs in several applications, in [14].

This concludes our survey of modeling techniques and tools. In the next chapter, some of these
techniques are applied in order to evaluate computers with persistent main memory.
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7. EXPERIMENTAL EVALUATION OF PERSISTENT MAIN MEMORY

This chapter explains the methodology used to create an experiment to explore the system-level
impacts of persistent main memory, the workloads that were utilized and presents an analysis of the
final results.

7.1 Experimental Setup

In this section there is a description of the different aspects of the experimental setup used in
this study, including simulation target system, tools and models.

7.1.1 Simulation Target System

In order to fully assess system-wide impacts in latency and energy, it is required to take into
account all the different hardware and software layers when modeling or simulating a hypotethical
computer system with persistent main memory.

For this reason, a full-system simulator was chosen for the present study, where a complete system
booting a Linux Operating System was simulated using Simics [42]. The simulated computer has
a standard x86 64-bit (Hammer) processor, with 4 GB of memory and 20 GB of disk space. The
detailed system characteristics can be seen at Table 7.1.

Simics was chosen for being a high-quality, easy-to-use and widely adopted full-system simulator
with availability of academic licenses. It can boot an operating system and allows for fine-grained
instrumentation of all physical memory accesses made by the processor. This experimental setup
enables us to evaluate the overall latency impact of a computer with persistent memory, both with
PCRAM and Memristor technologies.

The less realistic aspect of the modeled system is the CPU clock (20 MHz); this configuration
was motivated by time constraints while executing the simulated scenarios, since Simics execution
time increases significantly at higher clock speeds. Nonetheless, we believe that the simulated
system is adequate enough to explore the relative differences in latency and energy when comparing
disk-based versus persistent memory-based workloads.

7.1.2 Memory Technology Scenarios

The memory latency and energy parameters are set to simulate three different scenarios: DRAM,
PCRAM and Memristor. The latency values at device-level were derived from [36, 37, 55]. The
energy parameters were obtained using CACTI [65] (for DRAM) and NVSim [23] (for PCRAM and
Memristor). The technology-dependent parameters used in the experiment are displayed on Table
7.2.
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Table 7.1: Experimental target configuration setup.

Processor x86-64 (Hammer) 20 MHz (single-core)
L1 Cache Size: 16 Kb (D-cache) + 16 Kb

(I-cache)
Associativity: 4-way (D-cache),
2-way (I-cache)
Penalty: picosseconds
Replacement policy: LRU

L2 Cache Size: 512 Kb
Associativity: 8x
Penalty: 10 ns
Replacement policy: LRU

Main Memory Size: 4096 MB
Penalty: technology-dependent

Disk 20 GB
OS Fedora Core release 5 (Bordeaux)

Kernel: 2.6.15-1.2054_FC5

Table 7.2: Technology parameters for DRAM, Memristor and PCRAM.

DRAM Memristor PCRAM
Read Latency (ns) 50 100 50
Write Latency (ns) 48 100 150
Read Energy (nJ) 3.4539 0.5729 27.1833
Write Energy (nJ) 3.4475 1.3475 1.3501

Refresh Power (mW) 0.0867 0 0
Feature Size (nm) 45 45 45

Both PCRAM and Memristor memory technologies are fit to be used as persistent main memory,
and considered in the present study. MRAM currently has limitations in density that prevent it of
being a good candidate for persistent main memory (as described in chapter 4), thus it was not
considered in this study.

The simulated system was configured with the specified latency and energy parameters for each
scenario. No other significant changes were applied. This setup enables us to exercise variations
in the memory technology parameters in a very simple commodity system. We believe that future
systems with persistent main memory will have different characteristics, such as a much larger
memory size (comparable to current hard disks) and different physical memory organization, since
JEDEC’s DDRx does not support hundreds of Gigabytes. Our purpose is not to propose a radical
depart from current architectures, but to have a first-order approximation of the impact of persistent
main memory in current designs. In addition, a system without radical changes will probably be a
necessary step in the evolution of NVM adoption. Such a simple system allows us to understand
the changes with a single element variation: the memory technology used in the main memory.

The workload scenarios were executed in a server with 32 Xeon 2.4 GHz cores, 64 GB of memory
and 115 GB of local storage.
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7.1.3 Energy Model

In order to estimate the overall energy consumption of each memory technology, we use an
energy model that considers two separate elements:

1. Dynamic energy - the energy consumed in order to read/write memory addresses.

2. Refresh energy - the energy consumed to keep the memory contents alive. It is only relevant
for DRAM, since PCRAM and Memristor don’t need refresh due to their own persistent nature.

Subthreshold power leakage is a third important component of the total energy consumption.
NVM should have leakage at least similar to DRAM, or probably better, since idle memory banks
can be turned off without losing its contents. We will not consider leakage in this study due to the
lack of published information on the leakage of memristor memory devices at this moment.

It should be noted that the energy model covers only main memory, not considering other
subsystems (including disks/flash).

7.2 Experimental Workloads

The main goal concerning workload selection was to enable a comparison between a traditional
implementation using files as persistent storage and a framework specific for in-memory persistence.

As framework for memory persistence, Mnemosyne [69] was chosen because it is the only existing
framework available as open-source between the alternatives that match the desired characteristics
for the experiment (the other alternatives were presented on Chapter 5).

7.2.1 Workload Task

As workload for comparing the performance of both a traditional implementation using files and
an implementation using Mnemosyne for persistent memory storage, we have chosen the task of
indexing and searching terms in a set of text documents. This particular workload has been
chosen for a number of reasons:

1. It’s a critical real-world task, performed both in personal computers (e.g. e-mail search) and
huge parallel machines (e.g. web search).

2. Depends critically from persisted data, that can be easily held either in memory or in files.

3. It is a well-known task, with abundantly available litterature.

Our first choice was to adapt a popular and comprehensive open source library: CLucene
(http://clucene.sourceforge.net/), a C++ version of the Apache Lucene (http://lucene.apache.org)
search engine API originally written in Java. After examining CLucene’s code, we concluded that
the effort to adapt it would be beyond the scope of this research project, due to its complexity,
richness of features and file-oriented design.
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Given the unfeasibility of adapting an existing library, our choice was to create a basic search
engine from scratch, using concepts presented in [43]. The features of our search engine implemen-
tation can be thus summarized:

• Generates inverted index of plain text files.

• Uses Blocked Sort-Based Indexing (BSBI) for file-based storage.

• Uses a Red-Black Tree data structure for persistent memory storage.

• Allows boolean retrieval of documents by term.

The search engine does not implement more sophisticated features such as index compression,
document scoring or stemming.

7.2.2 Corpus

The corpus (set of input textual data) used in the experiment consisted in Shakespeare complete
works, obtained as a set of plain text files from the University of Sydney (http://sydney.edu.au/engineering/it/~m
It consists in a set of 44 documents with total size of 7.372 KB containing 24.427 distinct terms.

For each memory technology, the search engine was exercised in three distinct scenarios:

1. Index Generation — the task of reading the complete corpus and generating an inverted
index, either in memory or disk.

2. Search 1 (simple) — the task of searching the index for a given term (“Brutus").

3. Search 2 (intersection) — the task of searching the index for two given terms (“Brutus"
and “Calpurnia") and intersecting the results (logical “AND").

7.2.3 Workload Design and Implementation

The search engine is organized around three main subsystems:

1. Index and Search Algorithms — the common algorithms used for indexing and searching
terms, independently of the persistent storage.

2. File-based Storage— a set of classes implementing storage in the file system using Blocked
Sort-Based Indexing (BSBI).

3. In-memory Storage — a set of classes implementing storage in-memory using a Red-Black
Tree persisted using Mnemosyne.

The following subsections describe each one of these subsystems.
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Figure 7.1: UML class diagram of index and search subsystem.

Index and Search Algorithms

This subsystem contains common algorithms used for indexing and searching terms, indepen-
dently of the persistent storage (file system or in-memory). The main classes that comprise this
subsystem are depicted on Figure 7.1, and described below:

• DocumentIndexer — class responsible for indexing a set of documents and returning a
corresponding InvertedIndex.

• InvertedIndex — one of the main classes of the search engine, it represents the invertex
index itself. In order to search the index, the search_term() methods should be called
by application code. It uses internally a decorator for implementing the actual index/search
routines, and this decorator implements either a file-system backend (FSBackend) or an in-
memory persistence version (NVMBackend).

• Document — class representing a document, with its ID, name and contents.

• SearchResults — set of documents returned by InvertedIndex::search_term().

File-based Storage (BSBI)

This subsystem implements storage in the file system using Block Sort-Based Indexing (BSBI).
The concept of BSBI is described with details in [43]. For each document and each term unique
numeric IDs are assigned. The index stores in a file a pair termID/docID for every document that
contains a given term. A set of files containing such pairs compose the BSB Index. The contents
of the files are always sorted by termID, in order to make the queries more efficient (only the files
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Figure 7.2: Merging in blocked sort-based indexing. Two blocks (“postings lists to be merged") are
loaded from disk into memory, merged in memory (“merged postings lists") and written back to
disk. We show terms instead of termIDs for better readability. Extracted from [43].

Figure 7.3: UML class diagram of file-based storage subsystem.

containing the desired terms are scanned when a query is issued). The BSBI concept is depicted in
Figure 7.2.

The main classes that comprise this subsystem are depicted on Figure 7.3, and described below:

• FSBackend — this is the decorator class which realizes most of the methods defined by the
class InvertedIndex using BSBI files as backend.

• BSBIndex — class that models a set of BSBI files internally used by FSBackend.

• BSBIFileReader — helper class to assist BSBIndex in reading BSBI files.

In-memory Storage (Mnemosyne)

This subsystem implements in-memory storage using a Red-Black Tree and the Mnemosyne
framework. The main classes that comprise this subsystem are depicted on Figure 7.4, and described
below:
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Figure 7.4: UML class diagram of persistent memory storage subsystem.

• NVMBackend — this is the decorator class which realizes most of the methods defined by
the class InvertedIndex using BSBI files as backend.

• NVMTermInfo — class that represents a term with an associated set of documents.

The actual implementation of the Red-Black Tree that is used as persistent memory structure
is not implemented in C++, but in C. It is a modified version of the open-source Red-Black Tree
provided at http://www.mit.edu/~emin/source_code/red_black_tree/index.html.

The main changes required by Mnemosyne are essentially two:

1. Ensure that all C data structures that must be persisted are allocated with the Mnemosyne
function pmalloc():

char* key = (char*) pmalloc(sizeof(char) * len);

2. Ensure that all C++ objects that will be persisted use the Mnemosyne function pmalloc()
in the new() operator implementation:

/**
* Operator new using pmalloc for persistent heap allocation (Mnemosyne).
*/

void *operator new(size_t num_bytes) {
void* result;
result = pmalloc(num_bytes);
return result;

}

7.2.4 Development Metrics

The search engine was implemented using the development environment described in table 7.3.
Table 7.4 displays the main metrics related with development size, complexity and effort. Each

metric is described here:
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Table 7.3: Workload Development Environment

Tool Version
Operating System Ubuntu 9.10 (Karmic Koala)

Compiler Intel C Compiler (ICC) Prototype Edition 4.0 20100806
Mnemosyne Mnemosyne 0.1 usermode

IDE Eclipse for C/C++ Indigo Release

• LOC (Lines of Code) — the number of lines of code, excluding comments and empty lines.

• Comments — the number of lines of comments.

• # Classes — the number of classes.

• Dev. Hours — the amount of development hours spent in each subsystem. Since the Red-
Black Tree code was obtained from an open-source implementation, the time spent in this
component is relative to integration into the search engine and adaptations necessary to make
it persistent with Mnemosyne.

These metrics were chosen to allow a comparison of the distinct scenarios in terms of development
efficiency. The number of lines of code and comments help understanding the software size. The
number of classes when compared with the number of lines of code can be used as an indicator of
complexity. The number of development hours informs the effort applied to develop each scenarios.
These metrics are important for the inference of some of the analyses presented later on this chapter.

7.2.5 Development Challenges

The main challenges faced using Mnemosyne (which should be applicable to most in-memory
persistence frameworks) can be so described:

1. All objects must override the new() operator to use pmalloc()— in order to be persisted
using Mnemosyne, all C++ objects must override the new() operator to use pmalloc().
In concrete terms, it prevents the programmer from using any C++ frameworks without
modifying its source code. This makes it unpractical to use essential frameworks, such as the
Standard Template Library (STL). While porting the search engine, all references to STL’s
string type had to be converted to char* in order to be persisted.

2. Data cannot be reused/shared between different programs— this is possibly the great-
est challenge for in-memory persistence frameworks: how to enable data in a given memory
area to be bound to different programs, potentially using distinct programming languages. In
the search engine created for this study, the data stored in the BSBI files could be reused
by other programs written in diverse languages, but the data persisted in memory through
Mnemosyne can only be used by the program which created it.
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Table 7.4: Workload development: size and effort metrics

Scope LOC Comments # Classes Dev. Hours
Total 1783 1166 13 77 hours

Index & Search 603 348 7 30 hours
File System 499 429 3 35 hours
In-Memory 241 34 3 8 hours

Red-Black Tree 440 355 N/A 4 hours

7.3 Execution Results and Analysis

Each scenario was exercised three times and the variation between the execution results was
negligible, as expected. The running time for each execution ranged between a few minutes and
around 10 hours.

The execution times for each scenario are shown in Table 7.5. As expected, there is a degradation
of performance in Memristor and PCRAM compared to DRAM. Most of the deviations are between
7–32% slower than DRAM. Some scenarios presented a huge difference (e.g. Search 2 Mem),
but it is more likely that these are distortions caused by the experimental environment than actual
differences. The fact that not only the application workload, but a complete OS with all its standard
daemons was running in background contributes to some of these differences. This trade-off was
consequence of our choice of evaluating a more realistic software environment.

Although Memristor is considered here 2x slower than DRAM and PCRAM write latency 3x slower
than DRAM, the average overall system performance impact is less steep. This is consistent with
the results published in similar studies [22,36,37,53,79]. The main factor behind this phenomenon
is the high rate of L1 and L2 cache hits in a typical workload (the cache hits can be seen at Table
7.6).

A consequence of these observations is that main memory using Memristor or PCRAM cells still
need processor caches in order to avoid severe performance penalties. Design proposals for persistent
caches are explored in [24,33,75,76].

As expected, the workloads using persistent memory are dramatically faster than their counter-
parts using disk for persistence. Indexing the input text files using in-memory persistence is more
than 3.5x faster than using disk for the index. The difference for loading the index is remarkably
8.3 × 105x faster using memory persistence. The search time in memory is in average more than
53x faster than its disk counterpart.

The main impact of non-volatile memories is on the energy footprint of main memory, which
is significantly smaller in non-volatile technologies than DRAM. The detailed energy consumption
results for each workload/technology can be seen on Table 7.7. Using memristor with in-memory
persistence consumes 20x less memory energy than using memristor main memory with filesystem,
and 80x less memory energy than using DRAM/Disk with a filesystem approach.

When comparing Memristor and PCRAM as base technology for persistent main memory, we
observe that PCRAM has a slight advantage regarding speed of execution, but Memristor is signifi-
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Table 7.5: Execution times for experimental workloads, in seconds. Time deviation of Memristor
and PCRAM relative to DRAM are shown as percentage (%).

DRAM Memristor PCRAM
Index Mem 1913.51 2703.35 (41%) 2519.02 (32%)
Index Disk 6900.45 8535.59 (24%) 7193.05 (4%)

Index Load Mem 0.00061 0.00066 (7%) 0.00064 (3%)
Index Load Disk 384.11 538.05 (40%) 488.44 (21%)
Search 1 Mem 0.25637 0.27713 (8%) 0.13794 (-46%)
Search 1 Disk 21.98 27.64 (26%) 28.97 (32%)
Search 2 Mem 0.02339 1.03386 (4420%) 1.22842 (5252%)
Search 2 Disk 23.62 31.33 (33%) 33.69 (43%)

Table 7.6: Cache hits during experimental workloads.

L1 Read L1 Write L2 Read L2 Write
Index Mem 94.63% 93.55% 94.73% 99.91%
Index Disk 93.35% 78.08% 95.02% 99.87%

DRAM Search 1 Mem 95.86% 73.29% 92.04% 99.76%
Search 1 Disk 94.75% 82.85% 94.11% 99.83%
Search 2 Mem 95.69% 74.93% 92.68% 99.77%
Search 2 Disk 94.76% 83.03% 94.21% 99.83%
Index Mem 94.59% 93.64% 94.81% 99.91%

Memristor Index Disk 93.46% 80.07% 94.83% 99.87%
Search 1 Mem 95.75% 74.98% 92.41% 99.77%
Search 1 Disk 94.72% 85.74% 94.38% 99.85%
Search 2 Mem 95.55% 77.00% 92.89% 99.78%
Search 2 Disk 94.72% 85.90% 94.47% 99.85%
Index Mem 94.61% 93.63% 94.78% 99.91%
Index Disk 93.36% 87.79% 95.13% 99.86%

PCRAM Search 1 Mem 95.71% 74.89% 92.56% 99.77%
Search 1 Disk 94.69% 84.99% 94.30% 99.85%
Search 2 Mem 95.53% 77.55% 92.89% 99.79%
Search 2 Disk 94.69% 84.95% 94.33% 99.85%

cantly superior from the energy savings standpoint.
Another major benefit of using in-memory persistence is relative to application development and

complexity. Table 7.4 shows that developing using in-memory persistence produces less than half
lines of code and is more than 4x faster to develop than using disk.

These results support the case for not only replacing current hardware designs using NVM, but
also take different approaches at software level, such as in-memory persistence. However, in order to
successfully replace traditional file-system or database approaches, it is necessary to have in-memory
persistence frameworks that allow sharing data seamlessly between different programs and languages,
as the current approaches do. This is a still pending research problem, and the next chapter will
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Table 7.7: Energy consumption of experimental workloads, in J.

Dynamic (J) Refresh (J) Total (J)
Index Mem 15.693 165.901 181.594
Index Disk 29.793 598.269 628.062

DRAM Search 1 Mem 0.152 0.022 0.174
Search 1 Disk 3.329 34.975 38.304
Search 2 Mem 0.174 0.002 0.176
Search 2 Disk 3.345 35.585 38.929
Index Mem 16.262 0.000 16.262

Memristor Index Disk 8.235 0.000 8.235
Search 1 Mem 0.035 0.000 0.035
Search 1 Disk 0.861 0.000 0.861
Search 2 Mem 0.041 0.000 0.041
Search 2 Disk 0.862 0.000 0.862
Index Mem 83.912 0.000 83.912
Index Disk 35.417 0.000 35.417

PCRAM Search 1 Mem 0.833 0.000 0.833
Search 1 Disk 19.100 0.000 19.100
Search 2 Mem 0.975 0.000 0.975
Search 2 Disk 19.001 0.000 19.001

discuss the previous research concerning this topic and suggest themes for future investigation.
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8. FUTURE RESEARCH PERSPECTIVES

As presented in the previous chapters, there are several advantages in using persistent main
memory instead of separating the memory hierarchy in volatile main memory and persistent storage.
Disks are widely employed today not for any goal-directed design rationale, but for the fact that
today’s technology standards make them extremely cost-effective, and it has been so since the be-
ginning of commercial computing. As Alan Cooper [18] pointed out, “Disks do not make computers
better, more powerful, faster, or easier to use. Instead, they make computers weaker, slower, and
more complex. (...) Wherever disk technology has left its mark on the design of our software, it
has done so for implementation purposes only, and not in the service of users or any goal-directed
design rationale."

But decades of separation between volatile main memory and persistent storage have left deep
marks in computer design, including hardware, basic software and application software. If the
emerging memory technologies fulfill their promise of enabling persistent main memory, several
layers of computer design will be affected.

Changing hardware, operating systems and programming languages internal implementation can
be challenging for computer scientists and engineers, but they potentially have a mild impact on ap-
plication software, when compared to conceptual changes in programming languages. Nonetheless,
we believe that in order to reap the major rewards potentially offered by persistent main mem-
ory, it will be necessary to change the way application developers approach programming. Current
programming interfaces have separate abstractions for handling memory (data structures) and sec-
ondary storage (files, databases). A good deal of development effort is directed towards moving
data between these two layers; a seminal study estimates around 30% [4]; our own observations
during this study show that developing using in-memory persistence produces less than half lines of
code and is more than 4x faster to develop than using disk. In order to employ unified abstractions
that model a single-level storage system, thus avoiding unnecessary effort, we need to change the
programming interfaces. There are some options for the interface style, including orthogonal per-
sistence, transactional memory, persistent stores and non-volatile heaps, and it is possible for these
different styles to coexist at different levels (for instance, it is possible for a high-level object-oriented
database to be implemented over persistence heaps).

Fortunately, the concept of abstracting away the difference between memory layers in program-
ming languages is not a new idea. An extensive research has been conducted during more than
30 years to craft the concept of “orthogonal persistence" to that end. In order to make progress
towards this goal, we suggest that this body of research must be revisited. In the next section, we
will review the major topics regarding the evolution of this concept.
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8.1 Orthogonal Persistence

In early 1980s, a research group led by Malcolm Atkinson proposed the concept of orthogonal
persistence [4]. They observe that most programming languages provide separate abstractions for
handling short-term and long-term data: short-term data is typically stored in memory, and manipu-
lated using concepts such as arrays, records, sets, monitors and abstract data types (a.k.a objects),
while long-term data is typically stored in file systems or database management systems (DBMS),
and manipulated through file abstractions or DBMS models, such as the relational, hierarchical,
network and functional models. The existence of two different view of data presents two problems,
according to Atkinson et al.:

1. In a typical program, about 30% of the code is concerned with transferring data to and from
files or a DBMS. Is it necessary to spend effort in writing, maintaining and executing this
code, and the quality of the application programs may be impaired by the mapping between
the program’s form of data and the form used for the long storage medium.

2. Data type protection offered by programming language is often lost across this mapping. The
structure that might have been exploited in a program to aid comprehension is neither apparent
nor protected and is soon lost.

In order to solve these problems, they propose that from a programmer’s standpoint there should
be no differences in the way that short-term and long-term data are manipulated. In other words,
persistence should be an orthogonal property of data, independent of data type and the way in which
data is manipulated, thus the term orthogonal persistence. During the decades of 1980 and 1990,
this concept was explored in several research initiatives, including both programming languages and
operating systems. The works of Alan Dearle et al. [19,21] provide a good overview of this research,
and the following sections were largely based on these texts.

The complexity of mapping application data as represented in memory to either files or databases
and vice-versa has been described as an impedance mismatch, and has been described as The
Vietnam of Computer Science. Orthogonally persistent object systems propose to solve this problem
by supporting a uniform treatment of objects irrespective of their types by allowing values of all types
to have whatever longevity is required. The benefits of orhogonal persistence can be summarized
as [21]:

• improving programming productivity from simpler semantics;

• avoiding ad hoc arrangements for data translation and long-term data storage;

• providing protection mechanisms over the whole environment;

• supporting incremental evolution; and

• automatically preserving referential integrity over the entire computational environment for
the whole life-time of an application.
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Atkinson and Morrison [3] identified three principles that, if applied, would yield orthogonal persis-
tence:

1. The Principle of Persistence Independence: the form of a program is independent of
the longevity of the data it manipulates. Programs look the same whether they manipulate
short-term or long-term data.

2. The Principle of Data Type Orthogonality: all data objects should be allowed the full
range of persistence irrespective of their type. There are no special cases where objects are
not allowed to be long-lived or are not allowed to be transient.

3. The Principle of Persistence Identification: the choice of how to identify and provide
persistent objects is orthogonal to the universe of discourse of the system. The mechanism
for identifying persistent objects is not related to the type system.

These principles were applied in different degrees in several experimental programming languages
and operating systems. The next sections present information on these initiatives.

8.1.1 Orthogonal Persistence and Programming Languages

PS-algol

The first language to provide orthogonal persistence was PS-algol [4,21]. It extended the existing
S-algol language, providing persistence by reachability, where the identification of data to be
persisted is made by reachability from a persistent root. Later, experience would show that this
mechanism, also known as transitive persistence, is the only one that can be used to implement
orthogonal persistence in languages that support references. It added the following abstractions to
S-algol:

• Tables — associative stores (hash maps). A few functions are added to handle tables, such
as s.lookup, which retrieves a value associated with a key in a table, and s.enter, which
creates an association between a key and a value. Strictly speaking, tables are not directly
related with persistence, but are useful abstractions that were not originally part of S-algol.

• Databases— the roots of persistence in PS-algol, containing a pointer to a table. Everything
referenced directly or indirectly by this table (including other tables) is identified as persistent.
Databases can be dynamically created, and are manipulated through the open.database and
close.database functions.

• Transactions boundaries — explicitly defined by the commit and abort functions.

In order to give a flavour of the language, two examples will be provided. The first example opens a
database called “addr.db” and places a person object into a table associated with the key “addr.table”
found at its root. When commit is called, the persistence of all objects reachable from the root is
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ensured, including the updated table, the person object and the address object referenced by the
person object.

structure person(string name, phone; pntr addr)
structure address(int no ; string street, town)
let db = open.database("addr.db", "write")
if db is error.record

do { write "Can’t open database"; abort }
let table = s.lookup("addr.table", db)
let p = person("al", 3250,

address(76, "North St", "St Andrews"))
s.enter("al", table, p)
commit

The second example opens the same database, retrieves the same person object and writes out their
phone number:

structure person(string name, phone; pntr addr)
structure person (string name, phone; pntr addr)
let db = open.database("addr.db", "read")
if db is error.record

do { write "Can’t open database"; abort }
let table = s.lookup("addr.table", db)
let p = s.lookup("al", table)
if p = nil then write "Person not known"
else write "phone number: ", p(phone)

A second version of PS-algol considered procedures as data objects, this allowing both code and
data to be persisted. PS-algol had no support for concurrency (other than at database level), which
often caused problems.

Napier88

Napier88 [21, 48] consisted not only of a language, but a complete self-contained persistent
system, incorporating the whole language support within a strongly typed persistent store. It provides
a pre-populated strongly typed stable store containing libraries for handling concurrency, distribution
and user transactions, and a complete programming environment. Figure 8.1 displays the layered
architecture of the Napier88 system.

Napier88 borrows from PS-algol the notion of persistence by reachability from a persistent root,
but adds capabilities of dynamic type coercion, allowing the programmer to explicitly specify the
type that a value being read from the persistent store will assume in the current context. This can
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be visualized in the following example, that extracts a value from the persistent store, projects it
into the person type and changes its name and address:

type person is structure (name, address : string)
let ps = PS()
project ps as X onto
person:

begin
X(name) := "Ronald Morrison"
X(address) := "St Andrews"

end
default: {}

In the first line, the person type is declared. The PS() procedure, that returns the root of the
persistent store, is then called and assigned to the variable ps. The ps variable is coerced to the
type person. If this coercion is successful, a code block is executed to set the name and address
of these types to constant values. If the coercion is not successful, the default option is executed
(in this particular case, in case of failure the program does nothing). In order for the type coercion
to be successful, the root of the persistent store must contain a pointer to data that can be cast to
the person type.

The main additions that Napier88 introduces over PS-algol are listed below [21]:

• the infinite union type any, which facilitates partial and incremental scpecification of the
structure of the data;

• the infinite union type environment, which provides dynamically extensible collections of
bindings;

• parametric polymorphism, in a style similar to Java generics and C++ templates;

• existentially quantified abstract data types;

• a programming environment, with graphical windowing library, object browser, program editor
and compiler, implemented as persistent objects withing the store;

• support for hyper-code, in which program source code can contain embedded direct references
to extant objects;

• support for structural reflection, allowing a program to generate new program fragments and
integrate those into itself.
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Figure 8.1: Napier88 layered architecture. Extracted from [48].

Persistent Java

During the second half of the 1990s, several orthogonally persistent versions of Java have been
implemented.

Malcolm Atkinson and Mick Jordan led the creation of a prototype called PJama [2] which
was the base for the definition of the Orthogonal Persistence for Java (OPJ) specification [32]. It
implements persistence by reachability from the same roots used during garbage collection (the set
of live threads and the static variables of the set of loaded classes) and from explicit persistent roots.
The complete Java Virtual Machine (JVM) is checkpointed periodically, and its execution may be
resumed in an arbitrary moment of the future from one of these checkpoints. The Runtime class
is augmented with two methods: checkpoint, to explicitly generate a checkpoint and continue
execution afterwards, and suspend to generate a checkpoint and then stop JVM execution.

Some of the most notable limitations/challenges of the PJama implementation are:

1. Handling of bulk types — There is no query language for the manipulation of large object
collections.

2. Conflict with traditional Java programming constructs — Java is based in some concepts
that follow a traditional programming approach and are somewhat conflicting with orthogonal
persistence principles, such as the transient keyword definition, the extensive usage of native
code (via Java Native Interface - JNI) for windowing frameworks and handling of external
resources, such as files and network-related structures.

3. Program evolution — in OPJ/PJama, once one object is created, its class cannot be changed.
This presents serious challenges for program evolution.

ANU-OPJ [44] implemented persistence transparently through the dynamic manipulation of byte-
codes. All objects reachable from the roots using during garbage collection were considered persistent
and stored in the Shore storage manager.

Persistent Java was implemented in the Grasshopper operating system [20]. Grasshopper sup-
ported persistence at operating system level, so no modifications were made to the Java language
or virtual machine. All state was persisted in this implementation.



95

8.1.2 Limitations of Orthogonal Persistence

It is important to notice that orthogonal persistence does not imply the presence of persistent
main memory. In fact, the systems that so far implemented experimentally orthogonal persistence
handled internally the movement between memory and secondary storage, removing this burden
from the programmer at the cost of increasing the integral complexity of these systems. The price
paid in performance by doing so is one of the most significant reasons that prevented orthogonally
persistent systems from becoming a mainstream technology. However, the introduction of persistent
main memory solves this problem, since there are no more two different storage levels to be handled
by the applications and the operating system.

The existence of different abstractions for short-term and long-term data representation and
storage is not a fundamental necessity of programming languages, but an accidental result of the
current technology that mandate the separation of fast, small, volatile main memory from slow,
abundant, nonvolatile secondary storage. If these two different layers could be collapsed into a
single fast, abundant and nonvolatile storage device, orthogonal persistence would become a very
appropriate abstraction to model data handling.

It is important to notice that certain data should explicitly be volatile, including sensitive data
(such as passwords and encryption keys), and persistent software systems need to be able to safely
address these needs. It is also necessary to have safeguards preventing a persistent system to reach
an inconsistent state from which it cannot be recovered.
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9. CONCLUSION

In this work we presented a preliminary evaluation of workloads in a hypothetical computer with
persistent main memory, through the use of experimental models and simulations, aiming to identify
the major system-level impacts of persistent main memory in latency and energy.

It was observed that main memory using Memristor or PCRAM cells still need processor caches
in order to avoid severe performance penalties. Overall performance of non-volatile technologies in
main memory is similar to current DRAM results.

The main impact of non-volatile memories is on the energy footprint of main memory, which is
significantly smaller in non-volatile technologies than DRAM.

The great challenge of using such technologies as main memory is their low endurance. Wear
leveling techniques such as those described in [36,37,53,79] are expected to contribute positively.

The experimental results support the feasibility of employing emerging non-volatile memory tech-
nologies as persistent main memory. Many architectural changes are required in order to replace
a three-level storage hierarchy (caches, main memory, disk) by a two-level hierarchy (caches, main
memory), including memory devices, memory subsystem organization and operating system sup-
port, but our preliminary study, considering only changes in the memory technology, indicates that
performance penalties should be mild and energy improvements should be significant.

This study has also compared the development and execution of applications using both a
traditional filesystem design and a framework specific of in-memory persistence (Mnemosyne). We
concluded that in order to reap the major rewards potentially offered by persistent main memory, it is
necessary to take new programming approaches that do not separate volatile memory from persistent
secondary storage. Current programming interfaces have separate abstractions for handling memory
(data structures) and secondary storage (files, databases), and a good deal of development and
processing effort is directed towards moving data between these two layers. Our observations during
this study show that developing using in-memory persistence produces less than half lines of code
and is more than 4x faster to develop than using disk.

We suggest that future research efforts should consider revisiting the concept of orthogonal per-
sistence in order to create programs that are better suited to a persistent main memory architecture.
The major challenges currently are related with finding appropriate mechanisms for sharing data
between different programs and programming languages.
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