
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

IAÇANÃ IANISKI WEBER

ENHANCING LIFETIME RELIABILITY OF MANYCORE
SYSTEMS THROUGH REINFORCEMENT
LEARNING-BASED TASK MANAGEMENT

Porto Alegre

2024

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

ENHANCING LIFETIME
RELIABILITY OF MANYCORE

SYSTEMS THROUGH
REINFORCEMENT

LEARNING-BASED TASK
MANAGEMENT

IAÇANÃ IANISKI WEBER

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Dr. Fernando Gehm Moraes

Porto Alegre
2024

IAÇANÃ IANISKI WEBER

ENHANCING LIFETIME RELIABILITY OF
MANYCORE SYSTEMS THROUGH

REINFORCEMENT LEARNING-BASED TASK
MANAGEMENT

This Doctoral Thesis has been submitted in
partial fulfillment of the requirements for the
degree of Ph. D. in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on 5th March, 2024.

COMMITTEE MEMBERS:

Prof. Dr. Márcio Eduardo Kreutz (PPgSC/UFRN)

Profª. Drª. Fernanda Gusmão de Lima Kastensmidt (PGMICRO/UFRGS)

Prof. Dr. Fabiano Passuelo Hessel (PPGCC/PUCRS)

Prof. Dr. Fernando Gehm Moraes (PPGCC/PUCRS - Advisor)

AGRADECIMENTOS

É com imenso prazer e gratidão que dedico estas palavras a todos que con-
tribuíram para a realização desta Tese.

Primeiramente, meu eterno agradecimento a meus pais, Jandir e Olga. Vocês
foram a base sólida sobre a qual construí minha jornada. Sem o amor, apoio e dedicação
incondicionais de vocês, este trabalho jamais teria se concretizado. Obrigado por tudo. Amo
vocês profundamente.

Expresso minha profunda gratidão à minha noiva, Gabriele, cujo apoio foi con-
stante durante meu doutorado. Nos momentos mais desafiadores, quando a tese parecia
uma barreira intransponível, foi seu amor, cuidado, compreensão e apoio que me susten-
taram. Meu coração transborda de gratidão por tudo que você tem sido e continua sendo
para mim. Obrigado, do fundo do coração. Te amo.

Um agradecimento especial ao meu orientador, Fernando Gehm Moraes, por sua
paciência, sabedoria e orientação preciosa ao longo desta jornada acadêmica. Sua confi-
ança e suporte foram fundamentais para meu crescimento e desenvolvimento.

Gostaria de agradecer ao Peludinho, meu leal amigo de quatro patas, minha gratidão
por sua companhia confortante, mesmo que a importância disso escape à sua compreen-
são.

Expresso minha sincera gratidão a alguns amigos especiais que me acompan-
haram nesta jornada acadêmica. Agradeço aos amigos e colegas que estiveram ao meu
lado desde o mestrado. Um agradecimento particular ao Rafael Faccenda, por todas as
conversas animadoras, conselhos valiosos, almoços compartilhados, e discussões sobre
nossos trabalhos. Sua amizade e apoio foram essenciais para mim. Devo minha gratidão
também ao Michael Jordan que, durante os primeiros meses do doutorado, me acolheu
generosamente em sua casa até que me estabelecesse em Porto Alegre.

Agradeço ao Caimi, Fochi, Alzemiro, Anderson Santana, Anderson Domingues,
Marcos, Cataldo, Ramon, Geaninne, Carlos, Nícolas e Matheus Ferronato: vocês não ape-
nas me acolheram no GAPH, mas também compartilharam histórias e ensinamentos. Obri-
gado por serem parte tão significativa desta etapa da minha vida.

Um agradecimento à Imperas, pela concessão do OVP, que foi crucial para o
desenvolvimento deste trabalho. Por último, mas não menos importante, minha profunda
gratidão à CAPES pelo financiamento deste projeto.

A todos vocês, meu coração está repleto de agradecimento. Cada gesto de apoio,
cada palavra de encorajamento e cada ato de bondade tiveram um impacto significativo na
conclusão desta Tese. Muito obrigado!

OTIMIZANDO A CONFIABILIDADE E VIDA ÚTIL DE SISTEMAS
MANYCORE POR MEIO DE GERENCIAMENTO DE TAREFAS BASEADO

EM APRENDIZADO POR REFORÇO

RESUMO

Esta pesquisa aborda o desafio de melhorar a confiabilidade ao longo do tempo em siste-
mas manycore, uma questão crítica em microeletrônica. O estado da arte atual em Técnicas
de Gerenciamento Térmico Dinâmico (DTM, do inglês, Dynamic Thermal Management) e
Gerenciamento Dinâmico de Confiabilidade (DRM, do inglês, Dynamic Reliability Manage-
ment) apresenta as seguintes lacunas: (i) subutilização do sistema em abordagens estáti-
cas ou adoção de heurísticas complexas; (ii) trabalhos que focam somente em temperatura
(DTM) ou confiabilidade (DRM); (iii) propostas que consideram poucos efeitos de envelhe-
cimento. O objetivo principal desta Tese é abordar a questão da degradação precoce em
sistemas manycore resultante de efeitos de desgaste acelerados por temperatura, abran-
gendo o desenvolvimento e a execução de estratégias para gerenciar tarefas de forma que
mitiguem esses efeitos. A afirmação central da Tese é que o gerenciamento de tarefas
baseado em aprendizado por reforço (RL, do inglês, Reinforcement Learning) pode me-
lhorar a confiabilidade de sistemas manycore ao longo do tempo. A pesquisa adota uma
abordagem inovadora utilizando um algoritmo de RL para gerenciamento de tarefas. Este
método envolve a construção de modelos para prever a degradação do sistema e modificar
dinamicamente as alocações de tarefas para minimizar o desgaste a longo prazo. A pes-
quisa utiliza simulações para verificar a eficácia dos modelos e algoritmos desenvolvidos.
A contribuição significativa desta Tese é a criação da "Heurística de Aprendizado Ciente
da Taxa de Falhas no Tempo para Alocação de Aplicações" (FLEA, do inglês, Failure In
Time-aware Learning Heuristic for Application Allocation), que gerencia temperatura e con-
fiabilidade concomitantemente. Os resultados mostram que a proposta FLEA reduz a taxa
de degradação do sistema em comparação com abordagens convencionais de gerencia-
mento de tarefas. Os resultados apresentam melhora na confiabilidade e no tempo de vida
útil do sistema. A FLEA representa um avanço no gerenciamento de sistemas, combinando
técnicas de aprendizado por reforço com estratégias de gerenciamento de tarefas para au-
mentar proativamente o tempo de vida útil. Esta Tese oferece direções de pesquisa no tema
do projeto e gerenciamento de manycores. Ela indica o caminho para o desenvolvimento
de modelos de aprendizado por reforço mais sofisticados para gerenciamento de sistemas.

Palavras-Chave: Sistemas Manycore, Confiabilidade, Aprendizado por Reforço, Gerencia-
mento de Temperatura, Gerenciamento de Confiabilidade.

ENHANCING LIFETIME RELIABILITY OF MANYCORE SYSTEMS
THROUGH REINFORCEMENT LEARNING-BASED TASK

MANAGEMENT

ABSTRACT

This research tackles the challenge of improving the lifetime reliability of manycore systems,
a critical issue in microelectronics. The current state-of-the-art in Dynamic Thermal Manage-
ment (DTM) and Dynamic Reliability Management (DRM) techniques present the following
gaps: (i) system underutilization in patterning approaches or adoption of complex heuristics;
(ii) works focusing only on temperature (DTM) or reliability (DRM); (iii) proposals considering
few aging effects. The primary goal of this Thesis is to address the issue of early degradation
in manycore systems resulting from temperature-amplified wear-out effects, encompassing
the development and execution of strategies to manage tasks in ways that mitigate these
effects. The central claim of the Thesis is that task management based on reinforcement
learning (RL) can enhance manycore systems lifetime reliability. The research adopts an
innovative approach using an RL algorithm for task management. This method involves
building models to predict system degradation and dynamically modifying task allocations to
minimize long-term wear. The research employs simulations to verify the effectiveness of the
developed models and algorithms. The significant contribution of this Thesis is the creation
of the "Failure In Time-aware Learning Heuristic for Application Allocation" (FLEA), which
manages temperature and reliability concomitantly. Results show that FLEA lowers the rate
of system degradation compared to conventional task management approaches. The re-
sults data present an enhancement in system reliability and lifetime. FLEA represents an
advancement in management, combining reinforcement learning techniques with task man-
agement strategies to proactively increase lifetime. This Thesis provides insights into the
design and management of manycores. It paves the way for developing more sophisticated
reinforcement learning models for systems management.

Keywords: Manycore Systems, Lifetime Reliability, Reinforcement Learning, Temperature
Management, Reliability Management.

LIST OF FIGURES

2.1 The layers of the Chronos-V manycore. Dotted borders indicate centralized
modules, while continuous borders delineate modules replicated across the
system. 34

2.2 Chronos-V manycore architecture: (a) General Purpose Processing Ele-
ments (GPPE) and Peripherals; (b) PE architecture. 36

2.3 Communication from a producer PE to a consumer PE (OS view). 38

2.4 Events diagram of the task migration protocol implemented in the Chronos-
V manycore. 39

2.5 Event diagram of the message passing protocol implemented in the Chronos-
V manycore. 40

2.6 Iterator and internal PE components interface. The Iterator has one “itera-
tion” connection to each router in the system. 44

2.7 Example of packets behavior after being sent in the same quantum. 44

2.8 Chronos-V and Memphis simulation effort. 46

3.1 Stacked layers in a typical Ceramic Ball Grid Array (CBGA) [Parry et al., 1998]. 49

3.2 (a) Partitioning of large-area layers (top view). (b) One block with its lateral
and vertical thermal resistances (side view). (c) A layer, such as the silicon
die, can be divided into an arbitrary number of blocks if detailed thermal
information is required (top view) [Huang et al., 2006]. 50

3.3 Variation of failure rate with time [Srinivasan et al., 2003]. 59

4.1 (a) Arrangement of 64 cores on physical floorplan.(b) Folded torus.(c) Phys-
ical and logical views [Yang et al., 2017b]. 67

4.2 (a) Thermal-aware mapping strategy.(b) Contention in SMART NoC [Liu
et al., 2018]. 69

4.3 This example illustrates the best-case and worst-case mappings in relation
to thermal constraints. The bold numbers at the top represent the power of
the active cores, measured in watts. The numbers at the bottom, enclosed
in parentheses, represent the core temperatures in °C [Pagani et al., 2014]. 70

4.4 Heterogeneous manycore setup used to evaluate seBoost proposal [Pagani
et al., 2015b]. 71

4.5 Illustration of TCTS algorithm [Li et al., 2018]. 74

4.6 Illustration of Blocks and Application Clusters with DRM (Dynamic Lifetime
Reliability Manager) [Rathore et al., 2018]. 76

4.7 Q-Learning Model Utilizing a Reliability-Aware Dark Silicon Framework: AVF
represents the Architecture Vulnerability Factor; SOFR denotes the Sum of
Failure Rates; EM stands for Electromigration; SER indicates the Soft Error
Rate; CPI means Cycles Per Instruction [Kim et al., 2017]. 77

4.8 Diagram of neighborhood node allocation including two subroutines: (1)
communication-biased mapping, suitable for communication-intensive ap-
plications, and (2) computation-biased mapping, ideal for computation-intensive
applications [Wang et al., 2018]. 78

4.9 The run-time reliability-aware resource manager [Haghbayan et al., 2023]. . 80

4.10 Infrared thermography system [Zhang et al., 2023]. 81

4.11 Effect of temperature (◦C) over the time in a PE and its neighbors [Castilhos
et al., 2016]. 83

4.12 Overview of the TEA Architecture. NI stands for Network Interface, MAC for
Multiply-Accumulate Unit, S for Slave, and M for Master [Silva et al., 2019]. . 84

5.1 Thermal shots of an 11x11 manycore system. Each thermal map corre-
sponds to the execution of τa (a), τb (b) and τc (c). The colors indicate
the temperature of the PEs, with warmer colors corresponding to higher
temperatures. 91

5.2 Thermal shot of an 11x11 manycore system executing a single task mapped
to PE(5,5), after 20 seconds. The colors indicate the temperature of the
PEs, with warmer colors meaning higher temperatures. 92

5.3 Thermal shot of an 11x11 manycore system executing four tasks. In (a), the
four tasks are orthogonal to central PE. In (b), the four tasks are diagonal to
the central PE. The colors indicate the temperature of the PEs, with warmer
colors meaning higher temperatures. 93

5.4 FIT estimation for the central PE (x = 5, y = 5), in idle state, in three different
conditions: (i) without any task being executed near it; (ii) with tasks allo-
cated in the PE border (Figure 5.3(a)); (iii) with tasks allocated diagonally to
the PE (Figure 5.3(b)). 94

5.5 Average power consumption of tasks (τm,n | m ∈ [1,7],n ∈ [1,Nm]). Tasks
are classified into three categories, p0 comprises tasks with average power
consumption up to 0.2mW , p1 tasks range from 0.2mW up to 0.4mW and
p2 includes tasks that consume over 0.4mW . 97

5.6 PE bin state (PBS) examples. The PE color indicates the task power cate-
gory (TPC) that is executing. (a) presents the PBS of each PE; (b) highlights
the PBS change after the admission of a new task p1 in the PE1,2. 99

5.7 The reward function r(∆FIT) used during the Q-table training. 100

5.8 Training flow diagram. The diagram is divided into three main processes;
the blue path presents the task-to-core selection process; the orange path
is the Q-table update process; and the red presents the temperature and
FIT estimation process. 101

5.9 The training platform loop - colored tiles correspond to the paths with the
same color in Figure 5.8. 102

5.10 Training ranking evolution of each PBS in the Q-table indexed by TPC 0. . . . 103

6.1 Task communication graphs for the new synthetic applications, where n rep-
resents the number of iterations in application execution. 110

6.2 FIT comparison between FLEA and FLEA+. The blue dotted line is the
FLEA+ with migration in the third quartile. The red dotted line is the FLEA+
with migration maximum FIT. 114

6.3 Heat maps comparison between different mapping and migration heuristics.
Scenario 14x14 computation 70%. 116

6.4 Violin-box plot of PEs temperatures during the execution of scenario 14x14
computation 70%. 118

6.5 Average Temperature reached by the manycore when executing the pro-
posed scenarios (Table 6.1) using different mapping and migration heuristics.120

6.6 Average Peak Temperature reached by the manycore when executing the
proposed scenarios (Table 6.1) using different mapping and migration heuris-
tics. 121

6.7 Average Hop Count between communicating tasks when executing the pro-
posed scenarios (Table 6.1) using different mapping and migration heuristics 123

6.8 Manycore FIT intensity map per evaluated wear-out effect in the scenario
14x14 computation 90%. 125

6.9 Manycore FIT intensity map per evaluated wear-out effect in the scenario
14x14 computation 50%. 126

6.10 Violin-box plot showing FIT distribution for 14x14 computation (a) 90% and
(b) 50% occupancy scenarios, respectively. 127

6.11 MTTF estimation when executing the proposed scenarios using different
mapping and migration heuristics. 128

6.12 Average temperature snapshot of a 20X20 system executing a compute-
intensive workload with 70% of system occupation. 130

6.13 Violin-box plots for of a 20X20 system executing a compute-intensive work-
load with 70% of system occupation. 131

B.1 FIT comparison between FLEA and FLEA+ in the 8x8 manycore. The blue
dotted line is the FLEA+ with migration third quartile. The red dotted line is
the FLEA+ with migration maximum FIT. 155

B.2 FIT comparison between FLEA and FLEA+ in the 14x14 manycore. The
blue dotted line is the FLEA+ with migration third quartile. The red dotted
line is the FLEA+ with migration maximum FIT. 156

C.1 8x8 MIXED1 50% - (a) average and peak temperatures; (b) average temper-
ature snapshot; (c) PE average temperature violin-box plot; (d) PE average
peak temperature violin-box plot. 157

C.2 8x8 MIXED1 50% - (a) Manycore FIT intensity map per evaluated effect; (b)
PE failure in time violin-box plot. 158

C.3 8x8 MIXED1 70% - (a) average and peak temperatures; (b) average temper-
ature snapshot; (c) PE average temperature violin-box plot; (d) PE average
peak temperature violin-box plot. 159

C.4 8x8 MIXED1 70% - (a) Manycore FIT intensity map per evaluated effect; (b)
PE failure in time violin-box plot. 160

C.5 8x8 MIXED1 90% - (a) average and peak temperatures; (b) average temper-
ature snapshot; (c) PE average temperature violin-box plot; (d) PE average
peak temperature violin-box plot. 161

C.6 8x8 MIXED1 90% - (a) Manycore FIT intensity map per evaluated effect; (b)
PE failure in time violin-box plot. 162

C.7 8x8 MIXED2 50% - (a) average and peak temperatures; (b) average temper-
ature snapshot; (c) PE average temperature violin-box plot; (d) PE average
peak temperature violin-box plot. 163

C.8 8x8 MIXED2 50% - (a) Manycore FIT intensity map per evaluated effect; (b)
PE failure in time violin-box plot. 164

C.9 8x8 MIXED2 70% - (a) average and peak temperatures; (b) average temper-
ature snapshot; (c) PE average temperature violin-box plot; (d) PE average
peak temperature violin-box plot. 165

C.10 8x8 MIXED2 70% - (a) Manycore FIT intensity map per evaluated effect; (b)
PE failure in time violin-box plot. 166

C.11 8x8 MIXED2 90% - (a) average and peak temperatures; (b) average temper-
ature snapshot; (c) PE average temperature violin-box plot; (d) PE average
peak temperature violin-box plot. 167

C.12 8x8 MIXED2 90% - (a) Manycore FIT intensity map per evaluated effect; (b)
PE failure in time violin-box plot. 168

C.13 8x8 COMPUTATION 50% - (a) average and peak temperatures; (b) average
temperature snapshot; (c) PE average temperature violin-box plot; (d) PE
average peak temperature violin-box plot. 169

C.14 8x8 COMPUTATION 50% - (a) Manycore FIT intensity map per evaluated
effect; (b) PE failure in time violin-box plot. 170

C.15 8x8 COMPUTATION 70% - (a) average and peak temperatures; (b) average
temperature snapshot; (c) PE average temperature violin-box plot; (d) PE
average peak temperature violin-box plot. 171

C.16 8x8 COMPUTATION 70% - (a) Manycore FIT intensity map per evaluated
effect; (b) PE failure in time violin-box plot. 172

C.17 8x8 COMPUTATION 90% - (a) average and peak temperatures; (b) average
temperature snapshot; (c) PE average temperature violin-box plot; (d) PE
average peak temperature violin-box plot. 173

C.18 8x8 COMPUTATION 90% - (a) Manycore FIT intensity map per evaluated
effect; (b) PE failure in time violin-box plot. 174

C.19 14x14 MIXED 50% - (a) average and peak temperatures; (b) average tem-
perature snapshot; (c) PE average temperature violin-box plot; (d) PE aver-
age peak temperature violin-box plot. 175

C.20 14x14 MIXED 50% - (a) Manycore FIT intensity map per evaluated effect;
(b) PE failure in time violin-box plot. 176

C.21 14x14 MIXED 70% - (a) average and peak temperatures; (b) average tem-
perature snapshot; (c) PE average temperature violin-box plot; (d) PE aver-
age peak temperature violin-box plot. 177

C.22 14x14 MIXED 70% - (a) Manycore FIT intensity map per evaluated effect;
(b) PE failure in time violin-box plot. 178

C.23 14x14 MIXED 90% - (a) average and peak temperatures; (b) average tem-
perature snapshot; (c) PE average temperature violin-box plot; (d) PE aver-
age peak temperature violin-box plot. 179

C.24 14x14 MIXED 90% - (a) Manycore FIT intensity map per evaluated effect;
(b) PE failure in time violin-box plot. 180

C.25 14x14 COMPUTATION 50% - (a) average and peak temperatures; (b) aver-
age temperature snapshot; (c) PE average temperature violin-box plot; (d)
PE average peak temperature violin-box plot. 181

C.26 14x14 COMPUTATION 50% - (a) Manycore FIT intensity map per evaluated
effect; (b) PE failure in time violin-box plot. 182

C.27 14x14 COMPUTATION 70% - (a) average and peak temperatures; (b) aver-
age temperature snapshot; (c) PE average temperature violin-box plot; (d)
PE average peak temperature violin-box plot. 183

C.28 14x14 COMPUTATION 70% - (a) Manycore FIT intensity map per evaluated
effect; (b) PE failure in time violin-box plot. 184

C.29 14x14 COMPUTATION 90% - (a) average and peak temperatures; (b) aver-
age temperature snapshot; (c) PE average temperature violin-box plot; (d)
PE average peak temperature violin-box plot. 185

C.30 14x14 COMPUTATION 90% - (a) Manycore FIT intensity map per evaluated
effect; (b) PE failure in time violin-box plot. 186

C.31 14x14 RANDOM - (a) average and peak temperatures; (b) average temper-
ature snapshot; (c) PE average temperature violin-box plot; (d) PE average
peak temperature violin-box plot. 187

C.32 14x14 RANDOM - (a) Manycore FIT intensity map per evaluated effect; (b)
PE failure in time violin-box plot. 188

LIST OF TABLES

2.1 Related work on manycore frameworks. 26

3.1 Thermal characteristics adopted by this work. 51

3.2 Average energy cost to execute a given instruction in the processor RV32IM
(28nm) executing with a certain voltage. 54

3.3 Router average power. Library C28SOI_SC_12 (28nm), 1.0V@1GHz, 25ºC
[Martins, 2018]. 55

3.4 Memory characterization. Library C28SOI_SC_12 (28nm), 1.0V@1GHz,
25ºC [Martins, 2018]. 57

4.1 State-of-art summary (DVFS: includes power- and clock-gating techniques). 87

5.1 Example of PE Bin State (PBS) Table . 98

6.1 Reliability and thermal evaluation scenarios. Column Total refers to the
simultaneously running tasks. 111

6.2 Comparison of MTTF between FLEA and FLEA+. 113

6.3 FLEA+ average temperature and average peak temperature comparison
against other heuristics . 122

6.4 FLEA+ hop count comparison against other heuristics. 124

6.5 FLEA+ with migration MTTF comparison against other heuristics. 128

LIST OF ACRONYMS

API – Application Programming Interface

APPrep – Application Repository

C – Capacitance

CBGA – Ceramic Ball Grid Array

CNI – Core Network Interface

CPI – Cycles per Instruction

CTG – Communicating Task Graphs

CTM – Compact Thermal Models

DMA – Direct Memory Access

DNN – Deep Neural Network

DPM – Dynamic Power Manager

DRM – Dynamic Reliability Management

DSSOCS – Domain-specific System-on-Chips

DTM – Dynamic Thermal Management

DTW – Dynamic Time Warping

DVFS – Dynamic Voltage and Frequency Scaling

DVS – Dynamic Voltage Scaling

EDA – Electronic Design Automation

EM – Electromigration

EV – Electron Volts

F – Frequency

FIT – Failure in Time

FET – Field Effect Transistor

FLEA – FIT-aware Learning Heuristic for Application Allocation

GHZ – Gigahertz

GPPE – General Purpose Processing Elements

GUI – Graphical User Interface

HC – Hot Carrier

IC – Integrated Circuit

ILP – Integer-Linear Programming

IP – Intellectual Property

IPCM – Intel’s Performance Counter Monitor

ISS – Instruction Set Simulator

J – Joule

K – Kelvin

LBRM – Lifetime Budgeting Reliability Management

LF – Longevity Framework

LUT – Lookup Table

M – Meter

MAC – Multiply and Accumulate

MCSOC – Manycore System on Chip

MF – Memory Factor

MIG – Migration

MILP – Mixed-Integer Linear Programming

MMR – Memory Mapped Register

MLP – Multi-Layer Perception

MPE – Manager PE

MTTF – Mean Time to Failure

NM – Nanometer

NBTI – Negative Bias Temperature Instability

NI – Network Interface

NOC – Network-on-Chip

MPE – Manager Processing Element

ODA – Observe-Decide-Act

OP – Open Platform

OS – Operating System

OVP – Open Virtual Platform

P – Power

PBS – PE bin state

PC – Program Counter

PE – Processing Element

PID – Proportional Integral and Derivative

PMCA – Programmable Manycore Accelerator

R – Resistance

RA – Reliability Aware

RC – Resistor-Capacitor

REA – Reliability Estimator Accelerator

RL – Reinforcement Learning

RM – Reliability-aware Mapping

RMS – Root Mean Square

RTL – Register Transfer Level

SDF – Standard Delay File

SEUS – Single-Event Upsets

SF – Stress Factor

SG – Specific Goal

SI – Silicon

SIO2 – Silicon Dioxide

SM – Stress Migration

SOC – System-on-Chip

SOFR – Sum-of-Failure-Rates

TASA – Threshold Accepting Simulated Annealing

TC – Thermal Cycling

TCF – Toggle Count Format

TCTS – Temperature Constrained Task Selection

TDP – Thermal Design Power

TDDB – Temperature Dependent Dielectric Breakdown

TEA – Temperature Estimator Accelerator

TPC – Task Power Category

TSP – Thermal Safe Power

V – Voltage

VF – Voltage-Frequency

VLSI – Very Large-scale Integration Systems

VRF – Vacancy Reliability Factor

W – Watt

CONTENTS

1 INTRODUCTION . 20

1.1 MOTIVATION . 21

1.2 THESIS STATEMENT . 22

1.3 OBJECTIVES . 22

1.4 ORIGINAL CONTRIBUTION . 23

1.5 DOCUMENT ORGANIZATION . 24

2 CHRONOS-V MANYCORE MODEL . 25

2.1 RELATED WORK ON MANYCORE FRAMEWORKS . 25

2.1.1 RTL PLATFORMS . 27

2.1.2 FPGA PLATFORMS . 28

2.1.3 ABSTRACT PLATFORMS . 30

2.1.4 DISCUSSION . 33

2.2 OVERVIEW OF THE CHRONOS-V MANYCORE LAYERS 34

2.2.1 HARDWARE LAYER . 35

2.2.2 OPERATING SYSTEM LAYER . 37

2.2.3 APPLICATION LAYER . 39

2.3 SIMULATION MODEL . 40

2.4 RESULTS - SIMULATION EFFORT . 45

2.5 CONCLUSION . 46

3 BACKGROUND KNOWLEDGE . 47

3.1 DARK SILICON . 47

3.2 TEMPERATURE . 48

3.2.1 SENSING . 48

3.2.2 TEMPERATURE ESTIMATION . 49

3.2.3 ENERGY ESTIMATION . 53

3.3 RELIABILITY . 57

3.3.1 MAJOR EFFECTS AFFECTING RELIABILITY . 60

3.3.2 RELIABILITY MODEL . 64

4 RELATED WORK . 67

4.1 FOTONOC . 67

4.2 DYNAMICALLY RECONFIGURABLE NOC . 68

4.3 TSP: THERMAL SAFE POWER . 70

4.4 SEBOOST . 71

4.5 M-OSCILLATING . 72

4.6 TCTS: TEMPERATURE CONSTRAINED TASK SELECTION 73

4.7 LF: LONGEVITY FRAMEWORK . 75

4.8 HARD AND SOFT ERROR-AWARE . 76

4.9 LBRM: LIFETIME BUDGETING RELIABILITY MANAGEMENT 78

4.10 RUN-TIME RESOURCE MANAGEMENT FOR MULTIPLE AGING MECHA-
NISMS . 79

4.11 HOT-TRIM . 81

4.12 LIGHTWEIGHT TEMPERATURE MODEL . 82

4.13 TEA: TEMPERATURE ESTIMATION ACCELERATOR . 83

4.14 STATE OF THE ART DISCUSSION . 85

5 REINFORCEMENT LEARNING-BASED TASK MAPPING 89

5.1 MOTIVATION . 89

5.1.1 THE HEATING BEHAVIOR . 90

5.1.2 THE HEATING INFLUENCE ON RELIABILITY . 93

5.1.3 SCALABILITY OF REINFORCEMENT LEARNING . 94

5.2 RESEARCH PROBLEM . 96

5.3 FLEA DEPLOYMENT . 96

5.3.1 TRAINING . 99

5.4 ACTUATION MECHANISMS AND DECISION HEURISTICS 103

5.4.1 APPLICATION ADMISSION . 104

5.4.2 TASK MAPPING . 106

5.4.3 TASK MIGRATION . 106

6 RESULTS . 109

6.1 EXPERIMENTAL SETUP . 109

6.2 FLEA+ . 110

6.2.1 FLEA+ EVALUATION . 112

6.2.2 FLEA+ EVALUATION CONCLUSION . 114

6.3 RESULTS EVALUATION . 115

6.3.1 TEMPERATURE EVALUATION . 115

6.3.2 HOP COUNT EVALUATION . 123

6.3.3 RELIABILITY EVALUATION . 124

6.3.4 SCALABILITY EVALUATION . 129

6.4 FINAL REMARKS . 131

7 CONCLUSIONS AND FUTURE WORK . 133

7.1 CONCLUSIONS . 133

7.2 FUTURE RESEARCH DIRECTIONS . 134

REFERENCES . 136

APPENDIX A – List of Publications . 153

APPENDIX B – FLEA and FLEA+ FIT Comparison . 155

APPENDIX C – Results . 157

C.1 8X8 MIXED 1 50% . 157

C.2 8X8 MIXED 1 70% . 159

C.3 8X8 MIXED 1 90% . 161

C.4 8X8 MIXED 2 50% . 163

C.5 8X8 MIXED 2 70% . 165

C.6 8X8 MIXED 2 90% . 167

C.7 8X8 COMPUTATION 50% . 169

C.8 8X8 COMPUTATION 70% . 171

C.9 8X8 COMPUTATION 90% . 173

C.10 14X14 MIXED 50% . 175

C.11 14X14 MIXED 70% . 177

C.12 14X14 MIXED 90% . 179

C.13 14X14 COMPUTATION 50% . 181

C.14 14X14 COMPUTATION 70% . 183

C.15 14X14 COMPUTATION 90% . 185

C.16 14X14 - RANDOM . 187

20

1. INTRODUCTION

In the initial phases of computing, single-core processors saw notable performance
gains. However, they reached limits in instruction-level parallelism and encountered signif-
icant power and temperature issues with increased frequencies. With the advent of tran-
sistor miniaturization, as predicted by Moore in 1965 [Moore, 1998], the industry transi-
tioned to a manycore approach [Sutter, 2005]. This shift addressed the growing need for
enhanced performance, leading to the development of systems with numerous Processing
Elements (PEs), known as manycore systems. Networks-on-Chip (NoCs) emerged as the
favored method for intra-chip communication, offering superior performance and scalability
compared to traditional bus or crossbar architectures in manycore contexts [Borkar, 2007].
These systems capitalize on task parallelism to boost overall performance.

The concept of power density in integrated circuits (ICs), defined as the power
dissipated per unit area, is of critical importance. Dennard’s scaling theory suggests that
reducing transistor size should stabilize power density, as lower operating voltages propor-
tionally decrease power consumption to the square of the voltage applied [Dennard et al.,
1974]. However, this trend predicted by Dennard has not been sustained. The failure to
scale down voltages proportionately with transistor gate length has increased power density,
contrary to expectations of stability [Bohr, 2007].

An increase in power density leads to higher heat generation per unit area. This
heat must be dissipated to prevent the chip from operating unreliably, aging prematurely, or
experiencing permanent failure should the temperature surpass certain thresholds. There-
fore, ICs must operate within a specified power budget to ensure safe functionality [Hagh-
bayan et al., 2014]. In modern manycore systems, running all PEs at full capacity is not
feasible without exceeding this power budget. As a result, certain parts of the chip must
remain inactive. This inactive portion is commonly referred to as dark silicon [Esmaeilzadeh
et al., 2011].

Additionally, a rise in power density can result in hotspots, a localized overheating.
These hotspots can develop when multiple PEs are active in a concentrated area, which
may arise even if the overall chip remains within its power budget. To address this issue, a
patterning approach has been proposed [Liu et al., 2018]. This strategy involves configuring
PEs in an alternating pattern of active and inactive (dark) cores, creating a chessboard-like
layout. This arrangement helps in mitigating the creation of hotspots.

The described patterning approach, while effective in reducing hotspots, introduces
disadvantages. These include the under-utilization of the system’s resources [Wen et al.,
2020] and an increase in hop count between tasks [Karkar et al., 2022], leading to higher ap-
plication latency. Thus, these limitations motivated researchers to explore alternative strate-

21

gies. The objective of these new strategies is to maximize resource utilization while adhering
to the thermal and power constraints imposed by the presence of dark silicon.

Dynamic Thermal Management (DTM) represents a prominent category of solution,
as demonstrated by numerous research works [Pagani et al., 2017, Wang et al., 2018, Ran-
jbar et al., 2019, Rahimipour et al., 2020, Silva et al., 2020, Kim et al., 2020, Pourmohseni
et al., 2022, Chen et al., 2023], among others. DTM techniques are designed to dynamically
modulate system activity and performance in compliance with temperature constraints. This
is achieved through strategies such as allocating tasks to PEs to prevent hotspot formation,
relocating tasks away from PEs that are overheating, and managing the workload in real-
time. Such approaches enable DTM to minimize system under-utilization while ensuring
compliance with established thermal and power limitations.

However, the long-term impact on system reliability is often not considered. To ad-
dress this issue, Dynamic Reliability Management (DRM) techniques have gained increasing
relevance [Das et al., 2016, Sahoo et al., 2019, Wang et al., 2018, Namazi et al., 2019, Hagh-
bayan et al., 2020, Rathore et al., 2021, Zhang et al., 2023]. These DRM schemes integrate
the consideration of a system’s lifetime reliability into their strategies. They enable decisions
that address immediate thermal problems and consider the overall lifetime of manycore sys-
tems. Incorporating reliability into the task management cost function poses a challenge
since estimating circuit degradation requires intensive computation, and adding reliability
sensors leads to an area overhead. As highlighted in [Sahoo et al., 2021], most studies have
not effectively demonstrated the scalability of their proposed methods with the increase in
the number of PEs.

1.1 Motivation

The pursuit of enhanced computational performance has given rise to manycore
systems, which house numerous PEs on a single die. This advancement, however, in-
troduces significant challenges in keeping system reliability and thermal efficiency. High
temperatures can adversely affect the lifetime of these systems by accelerating the aging
process in semiconductor devices. Consequently, developing robust and intelligent task
management solutions has become increasingly crucial to improve these systems’ lifetime
and dependability.

Reinforcement Learning (RL) presents an effective approach to address the com-
plexities associated with thermal and reliability challenges in manycore architectures. Un-
like static models or predefined heuristics, RL promotes the creation of task management
policies through iterative learning. These policies undergo continuous refinement during
their training phase and are theoretically guaranteed to converge [Watkins, 1989, Tsitsiklis,
1994, Even-Dar and Mansour, 2003]. This convergence leads to optimized decision-making

22

in the inference phase, effectively maintaining operational temperatures within safe thermal
limits and minimizing hardware wear-out.

The motivation for this Thesis is the challenge of devising a scalable approach
for managing reliability and thermal issues in manycore systems using the RL technique.
This Thesis integrates experimental simulations to assess and corroborate the effectiveness
of the proposed RL-based task management strategy in enhancing the lifetime reliability
of manycore systems. By exploring the interaction between thermal behavior and system
reliability, this research aims to lay the groundwork for developing future resilient, adaptive,
and efficient manycore architectures.

1.2 Thesis Statement

This thesis seeks to demonstrate the feasibility of developing scalable Dynamic
Thermal Management (DTM) and Dynamic Reliability Management (DRM) heuristics for
manycore systems with hundreds of PEs, executing a dynamic workload. The focus is on
achieving this with minimal computational overhead, utilizing a machine learning technique
of reinforcement learning (RL).

1.3 Objectives

The strategic objective of this Thesis is to specify, develop, validate, and optimize
lightweight management strategies (DTM and DRM) for manycore systems, using applica-
tion mapping and task migration as the main actuation strategies for these strategies.

The specific goals (SG) of the Thesis include:

SG1 Development of a manycore abstract platform. This platform should be parameteriz-
able and designed to interconnect the PEs through a NoC. It must offer accuracy at the
instruction level rather than at the clock level, ensuring that the behavior of the NoC
closely mirrors that observed at the RTL level. A crucial requirement for this platform is
efficient simulation time. This efficiency is imperative since evaluating temperature and
reliability requires simulating applications over extended periods, typically measured in
seconds.

SG2 Software environment for the platform that allows multitasking and dynamic workload
(i.e., admission of new applications at any time during the simulation). For this purpose,
a standard operating system, FreeRTOS, has been selected. This operating system
received inter-task communication and system management modules.

23

SG3 Research and develop a method for applying RL to system management. This includes
defining the state-action space, designing the reward function, and selecting the ap-
propriate learning parameters to guide the RL algorithm through its training phase until
it achieves convergence.

SG4 Development of a runtime management technique that utilizes the RL learned policy to
guide decisions in application allocation and task migration. Application allocation in-
volves two steps: (i) selecting a region of the system for executing the application, with
the selection based on the temperature of the PEs, using this temperature as a cost
function; (ii) mapping tasks within the chosen region, employing RL for this purpose.
Task migration is the actuation mechanism to reduce hotspots, thereby increasing the
system’s lifetime. Task migration also leverages the RL technique to redistribute tasks
in response to thermal events effectively.

SG5 Comparison of the proposed technique with state-of-the-art temperature and lifetime
reliability approaches.

SG6 Evaluate the scalability of the proposal with systems containing up to 400 PEs.

1.4 Original Contribution

The original contributions of this Thesis are:

1. A novel abstract manycore platform, named Chronos-V, that simulates manycore sys-
tems with dozens of PEs. It can perform simulations lasting seconds, thus enabling
system validation;

2. A novel RL-based reliability management technique called FLEA. It employs a lightweight
policy lookup table trained by a reinforcement learning algorithm at the design phase. It
utilizes the PE failure in time (FIT) to define a reward function to enhance the system’s
reliability.

Other contributions provided by this Thesis include:

• Adaptation of FreeRTOS to support dynamic workload and execution of applications
described as communicating task graphs (CTG);

• Power calibration method on the abstract platform;

• Adaptation of the temperature estimator module, TEA, initially developed in RTL, to the
abstract platform;

• Method of creating a Q-table (table used by the RL) for use in DTM and DRM;

24

• Lifetime reliability assessment considering a comprehensive set of aging effects;

• Implementation of state-of-the-art DTM and DRM techniques on the abstract platform.

1.5 Document Organization

This document is structured into seven Chapters. This first Chapter introduced the
motivation, Thesis statement, objectives, and original contributions.

• Chapter 2 details the Chronos-V manycore model, which is the first original contribu-
tion of the Thesis. This Chapter establishes the basis for understanding manycore
systems, the primary focus of this Thesis. It is positioned early in this document for
two reasons: firstly, to enable the evaluation of temperature and reliability, a manycore
model capable of long-duration simulations (seconds, and not milliseconds as in RTL
platforms) is essential. Secondly, it separates the platform infrastructure from the DTM
and DRM strategies. This Chapter fulfills SG1 and SG2.

• Chapter 3 provides the background knowledge for understanding the DTM and DRM
strategies. It covers topics such as Dark Silicon, runtime temperature estimation, and
reliability concerns in integrated circuits.

• Chapter 4 reviews relevant literature related to both DTM and DRM. This Chapter po-
sitions the Thesis in relation to the current state-of-the-art and identifies existing gaps
in the literature.

• Chapter 5 details the main original contribution of the Thesis, introducing a novel map-
ping technique named “Failure In Time-aware Learning Heuristic for Application Allo-
cation” (FLEA). FLEA, based on reinforcement learning (RL), is designed to improve
the lifetime reliability of manycore systems under dynamic workloads. This Chapter
fulfills SG3 and SG4.

• Chapter 6 comprehensively evaluates FLEA using the platform described in Chap-
ter 2. This Chapter evaluates temperature behavior, hop count between communicat-
ing tasks, and reliability assessment, comparing FLEA with state-of-the-art heuristics.
This Chapter fulfills SG5 and SG6.

• Chapter 7 concludes the Thesis and outlines potential directions for future research.

25

2. CHRONOS-V MANYCORE MODEL

This Chapter presents the design of Chronos-V1, the first original contribution of
this Thesis. Chronos-V is a simulation environment for manycore systems-on-chip (MC-
SoC) architectures, combining a RISC-V instruction-set simulator with an abstract 2D-mesh
Network-on-Chip (NoC) model. Its purpose is to aid developers in parallelizing hardware
and software development cycles, thus accelerating the time-to-market for new products.

Chronos-V offers to developers a software-centric model that allows for code iter-
ations and application testing in the early stages of product development. It accelerates
software development cycles and tackles system management challenges in MCSoC de-
signs. The platform provides developers with critical control features, including Dynamic
Voltage and Frequency Scaling (DVFS) and task allocation. Chronos-V integrates runtime
management techniques with observe-decide-act (ODA) capabilities to mitigate issues like
dark silicon and reliability degradation, as will be discussed in Chapter 5.

This Chapter is based on the publication:

Iaçanã Ianiski Weber, Angelo Elias Dal Zotto and Fernando Gehm Moraes
Chronos-V: a Manycore High-level Model with Support for Management Techniques
Analog Integrated Circuits and Signal Processing, vol. 117, pages 57–71. 2023.
https://link.springer.com/article/10.1007/s10470-023-02190-8

The Chapter begins with Section 2.1, exploring related works on manycore frame-
works such as Register Transfer Level (RTL) manycore platforms, FPGA-based platforms,
and abstract platforms. Section 2.2 provides a comprehensive overview of the Chronos-V
platform, explaining its three layers and their operation. Section 2.3 discusses the quantum-
based simulation model. Section 2.4 presents the evaluation of the platform, comparing it
with an RTL model. Section 2.5 concludes this Chapter.

2.1 Related Work on Manycore Frameworks

Due to the importance of simulation capability, several simulators with distinct sim-
ulation methodologies have been developed over the years. This section reviews and dis-
cusses manycore platforms for hardware exploration and software testing. The literature
presents manycore platforms with several design goals and features. Table 2.1 provides a
comparative summary of the efforts in the field, positioning our work in the last table row. The
respective works have been categorized into six key areas for a comprehensive analysis:

1Available at: https://github.com/iacanaw/Chronos-RISCV

https://link.springer.com/article/10.1007/s10470-023-02190-8
https://github.com/iacanaw/Chronos-RISCV

26

1. Simulation Level : This category reflects the degree of abstraction at which a certain
platform operates, ranging from detailed hardware models to higher-level approxima-
tions.

2. Platform Software: This is subdivided into User-Level and OS-Level simulation capa-
bilities. It highlights whether a platform is limited to simulating ’bare metal’ applications
(those running directly on hardware without an operating system) or if it supports sim-
ulation environments that include operating systems.

3. Heterogeneity : This indicates the system’s ability to integrate and leverage diverse
computational resources such as various processors or specialized peripherals, thus
reflecting its adaptability to different types of computational tasks.

4. Processor Architecture: This category presents the processor architectures for which
the framework has been tailored, showcasing the platform’s versatility or focus regard-
ing hardware design.

5. Peripheral Support : The framework can handle additional hardware components like
accelerators, UART, network interfaces, etc., which are essential for a complete system
simulation.

6. Communication Infrastructure: This aspect regards the methods by which PEs within
the platform communicate, being a vital feature for assessing the efficiency and scaling
capabilities of multi-processing environments.

Table 2.1: Related work on manycore frameworks.

Proposal
Simulation

Level

Platform

Software
Heterogeneity

Processor

Architecure
Peripheral Communication

RVNoC [Elmohr et al., 2018] RTL - Yes RISC-V Yes NoC

Memphis [Ruaro et al., 2019] RTL OS Yes Plasma Yes NoC

Savas et al. [Savas et al., 2020] RTL User Yes RISC-V No NoC

Khamis et al. [Khamis et al., 2022] RTL User Yes RISC-V Yes NoC

ProNoC [Monemi et al., 2017] FPGA User Yes Multiple Yes NoC

HERO [Kurth et al., 2018] FPGA OS Yes ARM and RISC-V No Bus and NoC

Chipyard [Amid et al., 2020] FPGA User Yes RISC-V Yes Bus and Crossbar

ANDROMEDA [Merchant et al., 2021] FPGA User No RISC-V No NoC

Kamaleldin et al. [Kamaleldin and Göhringer, 2021] FPGA User Yes RISC-V (32/64 bits) No NoC

Uhlendorf et al. [Uhlendorf et al., 2021] FPGA User No Nios II No NoC

Sniper [Carlson et al., 2011] Abstract Emulated OS No x86 No -

Subutai [Cataldo et al., 2018] Abstract1 OS No - No NoC

MPSoCSim [Real et al., 2016] Abstract OS Yes Multiple Yes NoC1

One-IPC [Uddin, 2017] Abstract User No Multiple No -

Prophet [Zhang et al., 2017] Abstract OS No - No NoC1

Mack et al. [Mack et al., 2020] Abstract User Yes Multiple Yes Shared Memory

FLECSim-SoC [Hotfilter et al., 2021] Abstract OS Yes RISC-V Yes Crossbar

This Work Abstract OS Yes RISC-V Yes NoC

1cycle-accurate simulation

27

2.1.1 RTL Platforms

Elmohr et al. [Elmohr et al., 2018] have developed the RVNoC framework, a tool
for constructing manycore models in synthesizable RTL language, leveraging the versatile
RI5CY core and the RISC-V architecture to facilitate the creation of customizable network on
chip (NoC) systems. RISC-V PEs are at the base of this framework, interconnecting them
and peripheral devices via the AXI4 bus, ensuring efficient communication and extensibility.
The RVNoC framework also employs configurable routers - adopting flit-based communica-
tion to efficiently manage network packets, which, the authors claim enhances the overall
latency and power consumption.

The authors provided details about the Core Network Interface (CNI) as well as the
comprehensive simulation environment they’ve established for performance analysis. Their
implementation of CNI utilizes memory-mapped I/O for seamless core communication, with-
out the need to modify existing architectures. Moreover, the inclusion of traffic generation
tools and software controllers enables benchmarking across various network configurations.
The authors conclude that it is a powerful framework that doesn’t just facilitate the concep-
tion of MCSoC designs but also provides practical simulation data on critical performance
metrics such as latency and throughput, thereby facilitating the development process for
high-performance, low-power, NoC-based multiprocessor applications.

Ruaro et al. [Ruaro et al., 2019] introduce Memphis, a flexible and comprehen-
sive Electronic Design Automation (EDA) framework with a manycore model designed for
heterogeneous System-on-Chips (SoCs) at the RTL-level. Memphis employs PE tiles which
include processor, network interface, router, and memory. Notably, its hardware model, de-
signed in both SystemC and VHDL, is cycle-accurate, offering precise simulation and FPGA
prototyping capabilities. The framework is equipped with an extensive suite of graphical
debugging tools that provide an intuitive means for developers to gain insights into runtime
computational and communication events. The author’s goal is to position Memphis as a
versatile tool for both research pursuits and educational contexts, demonstrated by its utility
through various case studies that explore manycore generation, simulation, and debugging.

Memphis manycore model includes in its hardware configuration support for both
general-purpose processing cores and specialized peripherals. Its decentralized manage-
ment concept enables scalability by organizing the processing elements into clusters with
a dedicated manager for each, optimizing resource allocation and application deployment.
Additionally, the application model utilizes acyclic task graphs for defining communication
flows, with support for both real-time and best-effort tasks managed by a task scheduler us-
ing the Least Slack Time algorithm. Furthermore, the dynamic application injection protocol
ensures that new applications can be seamlessly integrated into the system at runtime.

28

Savas et al. [Savas et al., 2020] offer a robust approach for generating application-
specific manycore architectures with enhanced RISC-V processors, addressing the perfor-
mance demands of modern computing tasks that leverage parallelism and specialization.
The framework allows PEs customization by adding instruction extensions and custom ac-
celerators. It employs software tools to output synthesizable Verilog code, encompassing
PEs, NoC, and accelerators and validates system performance using a cycle-accurate emu-
lator. Developers must create applications using a high-level dataflow language. As outlined
in their work, Savas et al.’s framework integrates these accelerators with a 2D mesh NoC
using the open-source Rocket Chip generator. The use of a cycle-accurate emulator and the
generation of synthesizable Verilog code ensure that the platform can be effectively validated
for system performance.

Khamis et al. [Khamis et al., 2022] propose an emulation framework for explor-
ing manycore architectures, supporting both 2D and 3D NoCs configurations with RISC-V
processors. The framework automates the HDL and verification generation models. It en-
compasses processes such as compilation, simulation, synthesis, emulation, and perfor-
mance reporting, facilitating the creation and verification of manycore systems. The authors
use the AXI bus interface in the framework, offering connectivity for peripherals and allow-
ing for the replacement of processor tiles. The framework can handle real traffic patterns,
communicate through the AXI4 bus interface, and support scalability through its emulation
co-modeling approach.

2.1.2 FPGA Platforms

Monemi et al. [Monemi et al., 2017] present ProNoC, an integrated framework de-
signed for the rapid prototyping and validation of NoC-based MCSoC architectures specifi-
cally targeting FPGA devices. It incorporates advanced NoC features including support for
virtual channels, and virtual networks, as well as implementing a variety of routing algo-
rithms designed to optimize the NoC performance. Furthermore, ProNoC facilitates user
interaction via a graphical user interface (GUI), streamlining the development process of
MCSoC prototypes. ProNoC’s design also includes an adaptable NI that works seamlessly
with different processor cores and peripherals, a feature that promotes flexibility in MCSoC
designs. The NI, integrated with direct memory access (DMA) channels and optional error-
checking CRC32 codes, illustrates the authors’ concern for reliable NoC-based MCSoCs.
Additionally, the framework allows for integration with different peripherals, such as aeMB,
LatticeMicro32, UART modules, and Ethernet modules.

Kurth et al. [Kurth et al., 2018] introduce HERO, a heterogeneous manycore plat-
form on an FPGA. The platform includes a host processor (ARM Cortex-A) with a pro-
grammable manycore accelerator (PMCA) based on the RISC-V ISA to enhance process-

29

ing capabilities. The ARM processor, which works as the orchestrating host, manages the
PMCA, which contains a 2D mesh NoC of RISC-V cores configured in a multi-cluster design
to execute parallel operations with ultra-low power consumption. Through the interconnec-
tion, the host and PMCA share the main memory, promoting effective data exchange.

The HERO platform has a software stack that helps integrate the PMCA into the
host environment. It allows for the customized generation of machine code for ARM and
RISC-V ISAs from a single source, ensuring smooth operation. With the use of OpenMP
programming and shared virtual memory, developers can offload computational tasks to the
PMCA, resulting in fine-grained parallelism.

Amid et al. [Amid et al., 2020] introduce Chipyard, an integrated framework for the
agile development of manycore systems. The toolset supports the assembly of customizable
SoCs by providing composable, open-source intellectual property (IP) blocks and generat-
ing synthesizable RTL code. Chipyard’s RTL code can be verified through FPGA-based or
software-based simulation platforms, including VCS and Verilator, demonstrating the frame-
work’s practical applications for FPGA testing and simulation-based analysis. The Chipyard
environment offers configuration, system validation, and backend chip design. The use of
configurable RTL generators enables the creation of heterogeneous systems designed for
specific uses.

Merchant et al. [Merchant et al., 2021] present ANDROMEDA, a framework de-
signed for exploring design spaces in manycore systems. ANDROMEDA utilizes RISC-V
processing elements (PEs) connected through a NoC, enabling early-stage system explo-
ration and identification of application bottlenecks. The framework allows for experimentation
with different configurations to observe performance trade-offs. The performance parame-
ters of ANDROMEDA are verified using benchmarks like STREAM, matrix multiplication, and
N-body simulations on the Synopsys HAPS-80D Dual FPGA platform for emulation. Helping
designers to determine system configurations for efficient application execution. The base-
line model of ANDROMEDA is a 16-node 2D mesh network with additional cores for network
tasks. The manycore features a distributed memory model with configurable BRAM, optimiz-
ing local node memory access and minimizing external node interference. ANDROMEDA
allows users to input system parameters, which automatically creates the desired multicore
model. Users can change various elements, like cores, cache sizes, and network connec-
tions, among others. The authors claim that this approach enables quick prototyping and
performance adjustments, making it suitable for early system development without auto-
matic parameter tuning.

Kamaleldin et al. [Kamaleldin and Göhringer, 2021] describes a reconfigurable
platform that can be modified to work with a variety of applications. Its structure allows for
run-time reconfiguration to improve how well it performs based on what each application
needs. Authors claim that its high platform reusability, regardless of specific applications.
The platform uses different PEs that work with different RISC-V configurations, supporting

30

both 32- and 64-bit processors. These PEs are set up with shared and individual memory,
connected to the processor cores, which makes different memory arrangements possible.
The designer also may add custom accelerators using the bus interface. The platform ca-
pability for run-time reconfiguration is supported by a custom module, called dynamic partial
reconfiguration controller designed for changing the PE configurations during operation. Ini-
tial evaluations performed on a Xilinx Virtex Ultrascale+ FPGA demonstrate the performance
trade-offs and power efficiency that can be realized through varying the number of 32- or 64-
bit RISC-V tiles.

Uhlendorf et al. [Uhlendorf et al., 2021] introduce an MPSoC platform to evaluate
the performance of a NoC in FPGA contexts. The MPSoC contains 32-bit processors and an
MPI library. This environment aids in generating and analyzing NoC traffic. The platform’s
architecture consists of a supervisor computer and an FPGA-based MPSoC, including a
supervisor node, monitoring node, and several PEs, connected via a 2D mesh NoC. Addi-
tionally, a bus links the supervisor node and monitoring note to an external shared memory.
Each PE features an embedded processor, local memory, network interface, and peripher-
als. The monitoring node monitors the traffic between PEs and employs a hardware mutex to
regulate shared memory access. Communication uses an MPI library, allowing messaging
between processors. The authors validate the platform using a Cyclone V FPGA.

2.1.3 Abstract Platforms

Real et al. [Real et al., 2016], introduced MPSoCSim, a simulator using a SystemC-
based NoC for connecting heterogeneous MPSoC systems. The simulator provides a com-
prehensive tool for the modeling and evaluation of complex MPSoCs with an emphasis on
clustered architectures. Its simulation structure divides the system into tiles, each contain-
ing an Open Virtual Platforms (OVP) processor with dedicated memory for executable code,
stack operations, and dynamic storage management linked by a local bus system. These
tiles are designed for flexibility, allowing for variation in processor models, and are connected
through a common bus that grants access to shared memory used for communication within
the cluster. The NoC is parameterizable, allowing the user to configure its switching mech-
anisms and routing algorithms. Dynamic execution capabilities are incorporated, utilizing
compatible OVP processors that can operate different OS to simulate multi-application en-
vironments more realistically. These executions are further supported by control features
at the processor level, which contribute to application scheduling analysis. The simulation
capabilities have been corroborated through comparison with an actual hardware setup, con-
firming the simulator’s capability in precisely representing sophisticated clustered MPSoCs.

Uddin et al. [Uddin, 2017] introduce a high-level simulation framework, called
HLSim, for analyzing the performance of a microthreaded manycore architecture. Authors

31

claim that traditional cycle-accurate simulations for such complex architectures tend to run at
a "glacial pace", making the analysis of applications on multi-core systems impractical. The
authors address this by proposing a co-simulation environment that can simplify the interac-
tions within the pipeline of microthreaded cores and between various hardware components,
thereby creating an efficient design space exploration.

The HLSim is built in C++ and utilizes POSIX threads to execute a discrete-event
simulation. It distinguishes itself by decoupling the application and architecture models, al-
lowing independent modifications for performance optimization. The application model per-
forms the execution of microthreaded programs on the host machine while generating events
that estimate concurrency and computation workloads. These events are then processed by
the architecture model, which advances simulated time based on the cycles required by the
events, abstracting pipeline interactions. One special case of HLSim, the One-IPC HLSim,
that assumes a simplified execution model where each core executes one instruction per cy-
cle, regardless of the true instruction complexity or pipeline behavior. The authors validate
HLSim’s effectiveness by comparing its performance against a cycle-accurate simulation,
noting that while HLSim greatly increases simulation speed, it comes at the cost of reduced
accuracy.

Carlson et al. [Carlson et al., 2011] propose Sniper, which employs a different
approach called interval simulation, combining the accuracy of cycle-accurate simulation
and the speed of simpler one-IPC (Instruction Per Cycle) models. Interval simulation uses a
high-level analytical model based on the concept of intervals—periods between miss events
such as cache misses or branch mispredictions. Miss events are determined by simulators
of the branch predictor, memory hierarchy, cache coherence, and interconnection network,
while the analytical model calculates the timing for each interval. As a result, Sniper can
simulate the interactions within a multi-core system more quickly than cycle-accurate models
without significantly sacrificing accuracy, according to the Authors. Sniper is built on top of
Graphite [Miller et al., 2010], which can perform multi-core processor simulations by running
in them in parallel.

The GEM5 simulator, developed by Binkert et al. [Binkert et al., 2011b], is a com-
prehensive system architecture research framework that integrates the best features of M5
and GEMS [Martin et al., 2005] simulators to provide a highly configurable and flexible sim-
ulation tool. It supports various ISAs, including x86 and ARM, and it allows for running
unmodified Linux operating systems, thus facilitating the simulation of realistic scenarios.
The simulation framework is designed to balance speed and accuracy, with different CPU
models and memory system models to cater to diverse research needs. It presents multiple
capabilities such as system modes (System-call Emulation and Full-System), detailed mod-
els for cache coherence protocols, and flexible interconnection networks for on-chip network
studies. Building on the capabilities of GEM5, Cataldo et al. [Cataldo et al., 2018] introduce

32

Subutai, a hardware/software architecture that optimizes synchronization primitives over a
NoC to enhance the performance of parallel applications in MPSoCs.

Zhang et al. [Zhang et al., 2017] present Prophet, a parallel instruction-oriented
simulation framework designed to cover the limitations of conventional cycle-oriented many-
core system simulators. Based on the GEMS simulator [Martin et al., 2005] and BookSim
[Jiang et al., 2013], Prophet utilizes an instruction-oriented model that concentrates on the
effects of individual instructions on specific processor components. One of the core advan-
tages of Prophet is its speculative simulation technique, which is used to decouple the simu-
lation of private resources, such as core-specific caches, from that of shared resources, like
shared caches. The framework speculatively predicts interactions with shared resources,
thereby avoiding the need for constant synchronization and reducing the overhead that limits
the cycle-by-cycle simulations. This novel approach only incurs extra computational penal-
ties when the predictions fail to match the actual resource usage, known as mispredictions,
requiring corrective recalculations. The authors claim that the Prophet framework is distin-
guished by its ability to scale efficiently, enabling the simulation of thousands of cores with
minimal accuracy loss.

Mack et al. [Mack et al., 2020] present a flexible Linux-based emulation framework
designed for rapid pre-silicon evaluation and development of for Domain-specific System-
on-Chips (DSSoCs). The framework focus on challenges in DSSoC design encompassing
accelerator integration, resource management, and application development. It provides a
user-space runtime environment that enables the integration of novel accelerators, the im-
plementation of custom scheduling heuristics, and the development of user applications.
The emulation framework comprises three primary components: (i) an application handler,
(ii) a workload manager, and (iii) a resource manager. The application handler starts task-
graph representations of applications for the emulation. The workload manager maps tasks
into the PEs, based on user-selected policies, while the resource manager instantiates test
hardware configurations and coordinates task execution. The communication across differ-
ent PEs is performed through shared memory. The authors also provide a novel compilation
toolchain, enabling the automatic mapping of C code to DSSoC platforms.

Hotfilter et al. [Hotfilter et al., 2021] introduce FLECSim, a framework designed
to simulate a SoC featuring dedicated accelerators, processor units, and memory compo-
nents. The framework is flexible and allows the integration of new accelerator models. In
FLECSim, accelerators are implemented in SystemC, which enables cycle-accurate execu-
tion. The system also includes a RISC-V processor capable of running a Linux operating
system which can communicate with the accelerators for computation. FLECSim provides a
virtual platform that executes at the instruction-level, using a ISS to simulate the processor.
It employs deep neural network (DNN) accelerators described in SystemC. Each PE in the
proposed system is a DNN accelerator. The PEs and the RISC-V core are interconnected
through a crossbar switch that facilitates communication required for computation offloading

33

and control. The authors claim that FLECSim’s ability to simulate various configurations and
gather system metrics enhances its utility for exploring the design space of SoC architec-
tures.

2.1.4 Discussion

In recent years, there have been significant advancements in the design and simu-
lation of manycore systems, particularly focusing on RTL platforms, FPGA prototyping, and
abstract simulator frameworks. Each of these strategies has distinct characteristics that ad-
dress various aspects of manycore system development, from accuracy and complexity to
scalability and speed of simulation.

RTL platforms exhibit the highest simulation accuracy compared to abstract plat-
forms, allowing designers to measure system behavior precisely under specific workloads.
Elmohr et al. [Elmohr et al., 2018], for example, developed the RVNoC framework that
utilizes RISC-V processors and focuses on customizable NoC systems with features that
enhance latency and power consumption. Memphis [Ruaro et al., 2019] is another RTL
framework with a cycle-accurate hardware model and graphical debugging tools, that use a
custom OS. Excluding Memphis, with its MIPS-like processor (Plasma), all other frameworks
utilize RISC-V processors, highlighting the researchers’ interest in this open-source architec-
ture. These frameworks prioritize precise system measurements under specific workloads
and support a range of peripherals. These platforms are unanimous in the use of NoCs as
the communication infrastructure, with optimization being a primary objective. However, the
prevalent challenge with RTL-based simulation is the extensive computational time required,
which limits its practicality over extended periods [Calazans et al., 2003].

FPGA prototyping provides an alternative for validating manycore systems and
has seen contributions from several authors, such as [Monemi et al., 2017, Kurth et al.,
2018, Amid et al., 2020, Merchant et al., 2021, Kamaleldin and Göhringer, 2021, Uhlendorf
et al., 2021]. HERO [Kurth et al., 2018] is particularly interesting with its host processor and
PMCA, which supports multitasking by an OS. The frameworks that target FPGAs offer the
exploration of user-level applications and often demonstrate the ability to integrate diverse
peripherals, like Chipyard [Amid et al., 2020] and ProNoC [Monemi et al., 2017]. Some
works, do not allow heterogeneous systems limiting the design-space exploration, that is the
case for ANDROMEDA [Merchant et al., 2021] and Uhlendorft et al. [Uhlendorf et al., 2021].
Besides that, FPGA-based approaches suffer from the inherent limitation of computational
resources which limits the creation of PEs for building large-scale systems.

On the other end of the spectrum, abstract simulators like Sniper [Carlson et al.,
2011] and GEM5 [Binkert et al., 2011b] provide a compromise between accuracy and speed.
While they allow some degree of accuracy degradation, they greatly accelerate simulation

34

speeds, enabling the execution of entire operating systems, complex workload schedul-
ing, and system management. These simulators offer an effective platform for initial de-
sign space exploration and testing high-level concepts in manycore systems. For instance,
FLECSim [Hotfilter et al., 2021] is designed to integrate new accelerator models and sup-
port OS execution. They also can emulate OS behavior at a high level by adding delays that
mimic the real OS behavior in target systems [Carlson et al., 2011]. Nevertheless, abstract
simulators often offer limited support for peripherals and may not be suitable for precise
hardware-software co-verification due to their reduced accuracy.

In this Thesis, we introduce the Chronos-V platform, designed to simulate many-
core systems with a quantum simulation method that achieves instruction-level accuracy.
The system comprises RISC-V PEs interconnected through a 2D mesh NoC and supports
peripherals such as hardware accelerators. On the software side, FreeRTOS has been en-
hanced by integrating a communication API. This API eases task communication via the NoC
and incorporates system management support. The purpose of conducting long-term simu-
lations is twofold: firstly, to facilitate software development in the early stages of design; and
secondly, to investigate system management techniques. This investigation is conducted by
extending FreeRTOS, adding a management task in combination with dedicated hardware
accelerators.

2.2 Overview of the Chronos-V Manycore Layers

Figure 2.1 offers a general overview of the Chronos-V manycore layers.

Processing Element

Operating
System
Layer

Application
Layer

Hardware
Layer

...

System Call

FreeRTOS Commun.
Module

Monitoring
Module

Actuation
Module

Decision
Module

RISC-V Network
Interface Application

Repository

Interruption Memory-Mapped Register

Am
τm,1 τm,2
τm,3 τm,Nm

...

Local
Memory

Instruction
CounterRouter

A1
τ1,1 τ1,2
τ1,3 τ1,N1

...

A2
τ2,1 τ2,2
τ2,3 τ2,N2

...

A3
τ3,1 τ3,2
τ3,3 τ3,N3

...

Figure 2.1: The layers of the Chronos-V manycore. Dotted borders indicate centralized
modules, while continuous borders delineate modules replicated across the system.

35

The hardware layer consists of the physical components. The interface between the
hardware and OS layers is done through interrupt signals and Memory-Mapped Registers
(MMRs). The MCSoC comprises PEs connected via a NoC. Each PE contains a RISC-V
processor, local memory, a network interface, a NoC router, and an instruction counter. A
unique address identifies each PE’s location within the NoC. The Application Repository
(Apprep) is a peripheral that supplies the system with the required application binary code.

The OS layer employs FreeRTOS, an open-source real-time operating system re-
sponsible for managing tasks assigned to PEs. FreeRTOS received four additional modules:
Communication, Monitoring, Actuation, and Decision. The Communication Module acts as
an API for the Application Layer, facilitating MPI message exchange and communicating with
the NoC via drivers. The other modules facilitate ODA management functions.

The application layer contains general-purpose applications, A = {A1,A2, ...,AM}.
Each application Am is defined by the tuple {Dm,Sm, Im,Pm}, corresponding to the applica-
tion deadline, start time, number of iterations, and period. Application Am comprises Nm

tasks {τm,1,τm,2, ...,τm,Nm}. Each task is executed on a PE, with the PE address defined by a
mapping heuristic. Applications employ the MPI for communication, accessible to application
tasks via system calls that interact with the OS layer.

2.2.1 Hardware Layer

A manycore system can be classified as either heterogeneous or homogeneous,
which includes symmetric and asymmetric subtypes. Heterogeneous manycores utilize
cores with different architectures and organizations, such as general-purpose processors,
graphics processing units, and dedicated hardware accelerators [Esmaeilzadeh et al., 2012].
Symmetric homogeneous manycores comprise systems with all cores having identical ar-
chitecture and organization. Asymmetric manycores represent a subtype of homogeneous
systems where the cores share the same ISA but differ in their organization [Hill and Marty,
2008].

Chronos-V is a heterogeneous manycore, with two regions. The first is a sym-
metric region called General Purpose Processing Elements (GPPE), featuring processors
with the same architecture and organization dedicated to running general-purpose applica-
tions. The second region encompasses peripherals. Figure 2.2(a) illustrates the manycore
architecture, highlighting the GPPE and peripheral regions.

Figure 2.2(b) details on the PE architecture. The PE comprises five main mod-
ules: (i) an RV32IM processor, a 32-bit RISC-V with an integer multiply/divide extension;
(ii) local scratchpad memory; (iii) a NoC router; (iv) the instruction counter, which classifies
and counts executed instructions, this data is available through MMRs; (v) and a network
interface (NI) with direct memory access capability, which enables the processor to offload

36

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

M S S S S S S S

Application
Repository Peripheral 3 Peripheral 4

RISC-V
Core

Lo
ca

l M
em

or
y

NI

Router

M

S

Manager PE

Slave PE

Chronos-V top view

Processing Element

(a) (b)

General Purpose Processing
Elements (GPPE)

In
st

ru
ct

io
n

C
ou

nt
er

Peripheral 2

Figure 2.2: Chronos-V manycore architecture: (a) General Purpose Processing Elements
(GPPE) and Peripherals; (b) PE architecture.

data transfers between the NoC and local memory. An API at the OS level configures the NI
for packet reception and transmission, thus minimizing the processor’s overhead for packet
handling.

The dual-port local memory holds code and data, and its selection aimed to simplify
system complexity and reduce power consumption by eliminating the need for cache con-
trollers and the associated NoC traffic. The NoC router features wormhole packet switching,
2D-mesh topology, XY routing, round-robin arbitration, input buffering, and credit-based flow
control.

The instruction counter module categorizes and counts the executed instructions
to enable power and temperature estimations, as will be discussed in Section 3.2.2 and
3.2.3. This module is included in the system to support monitoring at the PE level when
specific management strategies that require it are employed. Periodically, the OS retrieves
the monitored information.

Peripherals provide specialized services for the system and applications, such as
hardware accelerators. The system must include at least one peripheral: the Apprep. The
Apprep informs the manager PE (MPE) when new applications must execute in the GPPE
area. The MPE, which runs the same OS as the other PEs and performs decision-making
functions like application mapping and task migration heuristics, decides each application
mapping and then instructs the Apprep the address to transmit each task’s binary code.

37

Subsequently, the Apprep transfers the tasks’ binary code to the mapped PEs in the GPPE
area. We also have implemented a peripheral for temperature estimation called TEA (Tem-
perature Estimation Accelerator), initially developed at the RTL level by Da Silva et al. [Silva
et al., 2019], to facilitate fine-grain thermal management.

2.2.2 Operating System Layer

Chronos-V adopts FreeRTOS [FreeRTOS, 2022], which allows tasks organized as
a collection of independent threads. We have extended FreeRTOS with four system mod-
ules:

• Communication Module – enables communication among tasks and modules mapped
to different PEs;

• Monitoring, Decision, and Actuation Modules – manage the system using the ODA
control method [Hoffmann et al., 2013].

FreeRTOS schedules general-purpose tasks and the system modules that execute
on the same PE. General-purpose tasks receive a lower scheduling priority compared to
system modules. Thus, each PE runs its instance of FreeRTOS, managing only the PE
on which it executes. The proposed architecture aims to be generic and modular at the
OS layer, providing designers with the flexibility to conduct experiments related to system
management by enabling easy replacement of system modules to suit their needs.

The Communication Module operates as follows:

• Upon receiving a packet, the module reads the packet header to identify its service (the
action the packet requires) and provides the appropriate address to write the packet
payload. A packet may contain user-level services, such as a request for data or
data delivery, or OS-level services, such as task start/stop commands, task allocation,
notification of task completion, and changes in the PE operating frequency, among
others.

• This module configures the MMRs and signals the NI to inject the packet into the NoC.
It allocates memory in the OS space to create the packet (including header, size, and
payload) and, after the NI injects the packet into the NoC, signals that the NI can
release the allocated memory to make space for new packets.

Figure 2.3 illustrates the communication from a producer PE to a consumer PE.
When the producer PE is ready to send a packet, the SendRaw() function configures the NI
to inject the packet into the NoC. The NI in the consumer PE interrupts the processor upon
packet header reception. The OS then configures the memory address to write the incoming
packet. Once written to memory, the packet becomes available to the task that is waiting for
its reception.

38

Producer PE Consumer PE

OS Layer
Lo

ca
l M

em
or

y
Sends a packet:

SendRaw(&header)

Hardware
Layer

header
size

payload

data&

Mem. Mapped Reg.
NI configuration

NI with DMA
Send

Local M
em

ory

header
size

payload

data &

NI with DMA
Receive

Interrupt

Mem. Mapped Reg.
NI configuration

Network on-Chip

Packet available to
read

Figure 2.3: Communication from a producer PE to a consumer PE (OS view).

The Monitoring Module activates periodically to gather local data that informs
the Decision Module. We define the monitoring window period at design time. Current
implementation of Chronos-V feature two monitoring sources:

The Instruction Counter Module classifies and counts the number of instructions
a PE executes during a monitoring window. We categorize instructions into seven groups
(register, immediate, branch, load, store, jump, and PC), providing a distinct counter for
each. This module also tracks the number of memory accesses. Embedded in the router,
the Router Counter Module tracks the number of flits passing through during a monitoring
window. Using this data, each PE periodically estimates its dynamic energy consumption,
further explained in Section 3.2.3.

The PEs periodically send their estimated energy consumption to TEA. After esti-
mating temperature, detailed at Section 3.2.2, TEA sends each PE temperature data to the
MPE, granting fine-grained temperature monitoring.

The Decision Module, running in the MPE, receives periodic raw monitoring data
from every PE. The management heuristic utilizes this data to make decisions in line with
design objectives. For instance, if the module observes a temperature violation or a rising
temperature trend in a PE, it may command the Actuation Module in that PE to migrate a
task or adjust the operating frequency. Application mapping also falls within the Decision
Module competences.

The Actuation Module, executing on each PE, including the MPE, performs ac-
tions as defined by the Decision Module. This includes task allocation, task migration, and
DVFS.

Upon receiving a task allocation packet, the Actuation Module allocates memory
for the incoming task, communicating the starting memory address to the NI for writing the

39

task’s object code sent by Apprep. Following the code reception, the OS schedules the task
for execution on the PE.

Figure 2.4 illustrates the task migration protocol. The Decision Module sends a
migration request packet (event 1) to the source PE (2). The source PE continues running
the task until it reaches a migration-safe state (3). The OS then stalls the task and transmits
a migration acknowledge (4) packet to the MPE. The MPE stalls all other tasks from the
same application (5-6) to prevent communications with the migrating task. Subsequently, the
MPE directs the source PE to transfer the task’s code and data to the target PE (7). Once
received by the target PE (8), the OS allocates the task, and the PE notifies the MPE of the
successful migration with a forward complete packet (9). Finally, the application resumes
through a task resume packet sent to every application task. This mechanism introduces
overhead to the application execution, as task suspension is necessary to preserve data
integrity during migration.

Manager PE Source PE Target PE Other Tasks

1
2

3

5
6

4

7
8

9
10

Migration Request

Migration Acknowledge

Migration Stall
Stall Acknowledge

Task Forward Forwarding

Forward Complete

Task Resume

 ti
m

e

M
ig

ra
tio

n
O

ve
rh

ea
d

10

Figure 2.4: Events diagram of the task migration protocol implemented in the Chronos-V
manycore.

DVFS is another actuation example supported by the platform. Modeled at an
abstract level, frequency, and voltage changes are simulated by modifying the simulation
quantum (explained in Section 2.3).

2.2.3 Application Layer

This layer corresponds to general-purpose applications. Communication Task Graph,
CTG (T ,E), models each application. Each vertex τi ∈ T represents a task, and each edge
eij ∈ E represents communication from τi to τj . Assuming that edges eij are modeled implic-
itly in τi , an application is represented as a set of tasks {τ1,τ2, ...,τ|T |}.

Those applications must be position-independent executables to allow multitasking
without virtual memory management support. The applications stored outside the MCSoC

40

computing fabric are deployed into the system through the Apprep. The Apprep communi-
cates with the MPE, which executes the task mapping protocol. After transmitting all tasks
to the selected PEs, the MPE releases the application execution. System calls make the
interface between tasks and the OS layer, allowing, for example, inter-task communication.

Figure 2.5 presents the message passing protocol. Each message exchange re-
quires two packets:

• message request, sent by the consumer task to the producer task, informing that the
task is ready to receive a message. After sending this packet, the consumer task
remains blocked, waiting for the message reception.

• message delivery, sent by the producer task after receiving the message request,
contains the message payload. This packet is sent immediately after the message

request if the message is already in the packet queue (Figure 2.5(a)). Otherwise,
the OS registers the request (pending request), transmitting the message once the
producer task generates it (Figure 2.5(b)).

Producer
Task

1
2

 ti
m

e

Consumer
Task

3
4

Message Request

Message Delivery

Producer
Task

1

Consumer
Task

2

4
Message Delivery

3

(a) (b)

Message goes to
the queue Pending request

Message Request

Figure 2.5: Event diagram of the message passing protocol implemented in the Chronos-V
manycore.

When a task finishes its execution, the OS blocks its scheduling and waits for the
consumption of packets stored in the packet queue. Next, the OS notifies the MPE and
releases the task memory. An application is considered finished by the MPE when it receives
the “concluded” packet from all tasks of the given application. This notification is important
to release data structures used by the decision module.

2.3 Simulation Model

We utilize the Open Virtual Platform (OVP) [Imperas, 2021] to create and simulate
the platform. We selected OVP for its scalability and flexibility. Scalability allows for the
simulation of large systems (e.g., 20x20 PEs) within a reasonable time frame (on the order
of hours), while flexibility simplifies the modeling of peripherals (e.g., hardware accelerators)
or the swapping of processors. OVP includes over 70 processor models, each supported by

41

a corresponding toolchain. The Chronos-V model preserves the temporal and spatial traffic
distributions when compared to the physical implementation [Lopes et al., 2021].

The simulation of the platform begins with a command line that includes eight pa-
rameters:

1. The simulation name, which facilitates the creation of a unique folder for the platform
configuration that can be reused for various applications;

2. The number of PEs in the X-coordinate;
3. The number of PEs in the Y-coordinate;
4. The simulation time, indicating the time at which the simulation must stop;
5. The management algorithm, if any;
6. The migration algorithm, if applicable;
7. The clustering algorithm, if applicable;
8. The scenario file with the set of applications to be executed. For each application, it is

possible to specify its start time, periodicity, and execution frequency.

Based on these parameters, the script configures the platform source code and
hardware description and creates a self-contained folder. Subsequently, the system compo-
nents are compiled. We can classify these components into two groups: (i) system compo-
nents, such as the NoC router, the Apprep, and the NI, which emulates the behavior of their
physical counterparts; and (ii) virtual components that facilitate system simulation, like the
iterator (discussed later).

The script generates a .tcl file encompassing instances of system components
and their interconnections, thus describing the system model. In this file, each processor
connects to every component comprising a PE. The NoC routers link to adjacent routers, and
the peripherals connect to the NoC edges. The iGen tool [Imperas, 2021] then processes the
.tcl file, creating a .c file that contains the description of the system interconnections using
the Open Platform (OP) API. Finally, it is compiled and linked to the system components and
to the instruction set simulator (ISS) to generate the actual system model.

On top of that, there is the simulation manager, named harness [Imperas, 2021],
responsible for instantiating the system model and providing stimulus to it (it acts as a test-
bench). OVP adopts a quantum-based simulation paradigm with instruction accuracy. This
means that the simulation time is divided into pieces, called quanta. The simulation engine
makes each processor execute the necessary instructions so that the processor advances
the time by a quantum. After that, synchronization occurs between the processors and the
simulation time is incremented by a quantum. Definition 1 defines the quantum parameter.

Definition 1. Quantum — the period that each processor executes. After the completion of
all processors’ quantum periods, the simulation advances the current time by one quantum,
restarting the sequence with the first processor.

42

To compute the quantum, we assume that the number of cycles per instruction
(CPI) is one. Equation 2.1 presents the computation of the quantum value.

quantum =
InstQ

CoreIPS
(2.1)

where: InstQ: number of instructions executed during the quantum period; CoreIPS: proces-
sor frequency, as the CPI is set to one.

Processor communication occurs through synchronization after every processor
has completed its quantum. To minimize data waiting time, InstQ must be optimized to
balance the trade-off between communication and computation. A small InstQ slows the
simulation due to frequent synchronizations, while large InstQ results in processors stalling
for data.

The number of instructions executed by one processor within the quantum dictates
the processor frequency. When all PEs have the same InstQ, the system operates at a
homogeneous frequency. Therefore, changing the number of InstQ of a given PE allows to
adjust its frequency. For instance, for a processor with CoreIPS=1GHz and InstQ=10,000,
the quantum equals 1e−5 seconds. Reducing a processor’s frequency to 500MHz requires
a InstQ equal to 5,000. This method simulates the effect of DVFS.

Algorithm 1 shows the simulation loop pseudo-code as defined in the harness.
The loop initiates by enabling each processor (Pid) to simulate a quantum period (lines 4
to 6). The simulate() function returns True on completion of a processor’s execution and
False otherwise. The processes can be parallelized, and the join() (line 7) waits for the
completion of all processes. Note that within the quantum execution, processors can only
access data in their local memory, including packets that the NI has received.

The iterator is an abstract system component that is essential in synchronizing
routers after all processors have executed. The iterator behavior is expressed in the pseudo-
code at lines 8 to 13. The process involves repeated calls to the iterate() function for each
router (Rid), sequentially progressing through the iterations. Each iteration allows a router
to send one flit forward to the next router in the path if it is available. The iterated loop
concludes when flits can no longer proceed due to traffic or unavailability for transmission.

The NI and the NoC router are modeled in C and rely on the “iteration” to properly
perform their behavior. When the router receives an “iteration” it evaluates if there is any flit
available within input buffers. If available, the router selects a buffer according to a round-
robin arbitration policy. The router executes the routing algorithm to find the destination
port for the selected buffer. If the destination port is available, the router connects the input
buffer to the output port. After performing the routing process, the router sends ahead one
flit of each buffer that is connected to some output port (flits may be blocked due to NoC
congestion). Those sent flits are stored in the neighbor input buffers or the NI internal buffer
if the packet destination is the local PE.

43

Algorithm 1: Simulation loop pseudo-code
Input: model , InstQ[N], quantum

1 SimulationTime← 0
2 iteration← 0

3 repeat
4 foreach Pid in model do
5 Finishedid = simulate(Pid , InstQ[id]).start())
6 end
7 join()

8 repeat
9 foreach Rid in model do

10 Syncronizedid = iterate(Rid , iteration)
11 end
12 iteration++

13 until Syncronizedid = True ∀ id

14 SimulationTime += quantum

15 until Finishedid = True ∀ id

The module iterator is responsible for controlling the flit transmission, evaluating
routers sequentially. An “iteration” enables flits to advance one hop. To avoid flits traversing
more than one hop, when the flit is sent ahead, it carries the current “iteration”. A new
“iteration” starts after evaluating the entire NoC. This process repeats up to InstQ times. The
transmission stops when every router does not have flits to transmit or flits or is blocked for
congestion reasons.

Figure 2.6 presents the NI and router interface with the processor, memory, and
iterator. The communication API provides functions to send and receive packets using this
infrastructure. The OS informs the packet address to be sent or received to the NI by using
memory-mapped registers and releases the processor during the communication with the
NoC. The following ports access these registers:

• address: at the system startup, the OS informs the address to store incoming packet
headers to the NI. During the system execution, the OS uses this register to inform the
NI about the address of a packet that has to be transmitted to another PE;

• statusTX : this register stores the transmission module status. If the read value is zero,
the processor may start a packet transmission;

• statusRX : this register is used by the OS to notify the NI that a packet reception is
complete, so a new packet can start to be received.

The NI rises interrupt signals to notify a packet transmission (intTX) or upon a
packet reception (intRX). The transmission interrupt handler removes the transmitted packet
from the local memory, opening space for new packets. This handler also checks if another
packet is queued, configuring the NI to transmit it. The reception interrupt handler is respon-

44

BUS

intRX

intTX

statusTX

statusRX

address

MREADMWRITE

Local Memory

portLocal

R
IS

C
-V

Network
Interface

memory-mapped register interruption signal packet net port bus port

ite
ra

tio
n

portNorth

portSouth

portEast

portWest

R
ou

te
r

Iterator

Figure 2.6: Iterator and internal PE components interface. The Iterator has one “iteration”
connection to each router in the system.

sible for reading the packet header and then identifying the packet service to perform the
required action before returning to the application.

Figure 2.7 exemplifies a 3x3 system with three packets being sent during the same
quantum: R6→R7; R0→R7; R2→R4. Each router is “iterated” sequentially, and, in the first
turn, the first flit of each packet advances one router (Figure 2.7(a), continuous lines). In
the next turn, R1 selects one of the two available packets to route, following the round-robin
policy, and forwards the flit from R0 while blocking the flow from R2. Also, NI7 receives the
packet from R6 and blocks the R7 local port. Thus, in the next turn the flow R0→ R7 stops
at the R7 south buffer, and flow R2→ R4 stays blocked at the R1 east port (Figure 2.7(b)).
At this point, no flit can be forwarded, and the simulation quantum ends by increasing the
simulated time by one quantum (line 14 of Algorithm 1). In the next quantum, NI7 interrupts
the processor to get a memory address to save the incoming packet, releasing the R7 local
port.

R6 R7 R8

R3 R4 R5

R1R0

NI7

R2

R6 R7 R8

R3 R4 R5

R1R0

NI7

R2

(a) (b)

blocked path due to unavailable port

Figure 2.7: Example of packets behavior after being sent in the same quantum.

Harness also provides assessing functions using the OP API. For example, the
“instruction counter” module is a monitor that generates a callback in the harness every time

45

the processor fetches a new instruction from memory. Inside the callback, the instruction is
identified and categorized. After that, it updates the instruction counter amount in the PE
memory, which is accessed periodically by the monitoring module to estimate the processor
energy consumption.

2.4 Results - Simulation Effort

In this section, we evaluate the simulation speedup by comparing the simulated per-
formance of the proposed abstract model against that of an RTL simulation. We performed
all simulations on a workstation equipped with an Xeon E-2246G@3.6 GHz processor (12
cores), 16GB DDR4 2666MHz dual-channel DRAM, and running Ubuntu 20.04.

How quickly can the manycore simulation run using an abstract platform model?
We compare the Chronos-V platform, running FreeRTOS, with a similar platform modeled at
the RTL level (SystemC) called Memphis [Ruaro et al., 2019], which runs an in-house op-
erating system on MIPS-like processors. Despite this, both platforms share the same NoC,
peripherals, and memory organization. This experiment measures the simulation effort, de-
fined as the time (in minutes) required to simulate one second of the system model.

The experiment encompasses (i) 9 system sizes ranging from 4 to 100 PEs; (ii) ex-
ecution times from 100ms to 1s across 10 scenarios; and (iii) a system load of 50%, mean-
ing a 64-PE system executes 32 tasks, with one task per PE. We evaluated the Chronos-V
platform across all 90 scenarios, while Memphis underwent evaluation in only 46 scenar-
ios due to longer simulation times. We excluded migration or management algorithms from
these experiments to focus solely on determining the simulation speedup of the Chronos-V
platform in comparison to the RTL model.

Each simulated scenario features various applications, including realistic bench-
marks such as MPEG encoding and decoding, pattern recognition, and Dijkstra’s short-
est path algorithm, besides three synthetic applications categorized by communication-
intensive, computation-intensive, and balanced workloads.

Figure 2.8 shows the average simulation effort for executing the proposed scenar-
ios. The Chronos-V simulation ranged from 2.36 min

s to 92.46 min
s for system sizes between

4 and 100 PEs, respectively. Memphis demanded between 147.9 min
s and 3,731.39 min

s for
the same system sizes. The speedup diminishes with increasing system size due to the
quantum-based simulation’s requirement of synchronizing all processors at the end of each
period (line 7 of Algorithm 1), a process that uses the 12 cores of the host machine in a multi-
threaded simulation. To give a concrete example, OVP took 1 hour and 30 minutes, while
the RTL model took 62 hours and 13 minutes to simulate a system with 100 PEs running 50
tasks simultaneously.

46

Figure 2.8: Chronos-V and Memphis simulation effort.

It is essential to recognize that these platforms serve different purposes. While
RTL simulation is cycle-accurate and is primarily used to validate manycore hardware, ab-
stract model simulation is intended for software development validation at both user and
management levels. Chronos-V’s unique characteristic is that it provides designers with
high simulation speeds and NoC behavior closely resembling the RTL model, including path
choices and congestion effects. This similarity allows designers to evaluate different scenar-
ios, such as: (i) identifying hotspots to improve task mapping; (ii) studying security-related
techniques, like detecting traffic anomalies that could indicate attacks; and (iii) exploring
thermal management techniques.

2.5 Conclusion

This Chapter presented the Chronos-V platform, a high-level NoC-based many-
core model. Several works in the literature present abstract models for manycore platforms,
seeking hardware and software design space exploration at early design stages with re-
duced simulation time. Our work also meets these goals, standing out by the modeling that
preserves the NoC behavior (routing and congestion) and by including management APIs
loosely coupled to the kernel. The proposed platform demonstrates up to 62 times faster
simulation time when compared to the RTL platform while still preserving the routing and
congestion characteristics of communication based on NoC. Therefore, the proposed high-
level model may help designers leverage the research in the field of NoC-based manycore
systems, including software and management techniques.

47

3. BACKGROUND KNOWLEDGE

As introduced in Chapter 1, the enhancement of single-core performance encoun-
tered limitations due to the constraints in exploiting instruction-level parallelism and the
penalties associated with increasing core frequency. To maintain the trajectory of perfor-
mance improvement, designers moved towards a multi-core and, subsequently, a manycore
paradigm. This evolution was facilitated by the ongoing reduction in transistor gate length,
as highlighted by Moore [Moore, 1998].

Reducing the size of transistors diminishes their capacitance, enabling faster switch-
ing at a lower power cost. Additionally, the miniaturization of transistor dimensions allows
their operation at reduced voltages, further decreasing power consumption. Dennard [Den-
nard et al., 1999] from IBM observed that both the power dissipation and area of transistors
scale at a consistent ratio. This observation implied that newer generations of integrated
circuit technology could keep a constant power density, defined as the power dissipated
per unit area. However, in practical applications, the power supply voltage does not scale
proportionally with device dimensions, diverging from the Dennard’s “law”. This discrep-
ancy arises from various system-related constraints, such as hot electron effects and short
channel effects, as discussed by Streetman [Streetman et al., 2016].

This Chapter is structured as follows.

1. Section 3.1 introduces the concept of Dark Silicon.

2. Section 3.2 discusses the need to estimate the temperature at runtime to ensure safe
operating conditions of the system. This section is divided into three parts: Sec-
tion 3.2.1 focuses on the use of sensors for temperature measurement; Section 3.2.2
presents the mathematical methods for temperature estimation; and Section 3.2.3 pro-
vides an overview of the energy estimation methodology, which is essential for the
accurate computation of the temperature at runtime.

3. Section 3.3 explores reliability issues related to integrated circuits. Section 3.3.1 dis-
cusses the major effects that influence reliability. These effects encompass various
failure mechanisms that can potentially compromise the integrity and performance of
integrated circuits. Section 3.3.2 introduces the sum-of-failure-rates (SOFR) model to
evaluate the overall system reliability.

3.1 Dark Silicon

The breakdown of the Dennard law has led to an increase in power density. A
higher power density means more heat is generated within the same chip area, increasing

48

the chip’s temperature. Exceeding a certain temperature threshold can cause unreliable op-
eration, accelerated degradation, and potentially permanent damage to the chip, as noted
by Kong et al. [Kong et al., 2012]. To guarantee safe operation without substantial alterations
to the cooling system, it is imperative to keep the chip’s temperature below a maximum safe
limit. For this purpose, a thermal design power (TDP) budget is established, often conser-
vatively estimated, potentially leading to underutilization of the chip’s capabilities [Rahmani
et al., 2016].

A portion of the chip must remain idle to maintain power dissipation within the TDP
limit; this inactive part is known as dark silicon [Esmaeilzadeh et al., 2011]. While dark
silicon limits the concurrent utilization of chip resources, it offers avenues for implementing
temperature management strategies and extending the chip’s lifetime [Gnad et al., 2015].
One strategy involves interleaving non-operational (dark) cores with active cores during task
allocation, which helps in reducing power density and subsequently lowering chip tempera-
ture [Rathore et al., 2018].

3.2 Temperature

The industry provides a TDP for integrated circuits to provide a safe operating
power level for systems. Cooling solutions are designed to dissipate heat up to this TDP
value, ensuring that the heat sink is appropriately sized and operating at the TDP does not
result in thermal problems. However, it is important to note that the TDP does not represent
the maximum achievable power. Instead, this power budget is an abstraction that allows
system designers to manage thermal violations indirectly [Rahmani et al., 2016].

In contrast to the static application of TDP, deploying Dynamic Thermal Manage-
ment (DTM) techniques offers a more adaptive approach. DTM interacts with the system
using various actuation mechanisms, such as clock gating, voltage and frequency scaling,
and enhancing fan speed. This strategy requires direct temperature monitoring; if the sys-
tem’s temperature exceeds a specific threshold, DTM activates to mitigate the temperature
increase [Jantsch et al., 2017].

3.2.1 Sensing

DTM techniques need temperature data, typically obtained through physical sen-
sors integrated into the chip. This integration approach for temperature sensors in many-
core systems is well-established and documented [Spiliopoulos et al., 2011, Benini et al.,
2012]. However, each additional temperature sensor substantially influences the area of
the chip and its power consumption [Ranieri et al., 2015]. Consequently, the deployment

49

of fine-grained physical sensing may pose a challenge in large systems encompassing over
a hundred PEs, as such systems would require a significant number of sensors, leading to
area and power demands scaling [Ditzel et al., 2021].

3.2.2 Temperature Estimation

An alternative to physical sensors for temperature measurement is using a thermal
model. Numerous efforts in full-chip and compact thermal modeling for microelectronic sys-
tems have been made [Wang and Chen, 2002, Su et al., 2003, Li et al., 2004, Cheng et al.,
1998]. However, these methods often oversimplify the thermal package modeling. Addi-
tionally, they are not entirely suitable for runtime estimation due to the significant computa-
tional effort they require. HotSpot [Huang et al., 2006] is a widely used tool that generates
thermal models, addressing package modeling more accurately and offering computational
efficiency. It is a methodology for creating Compact Thermal Models (CTMs) based on the
prevalent stacked-layer packaging approach in modern Very Large-scale Integration (VLSI)
systems.

CTMs enable relatively precise temperature predictions with minimal computational
effort at various abstraction levels [Sabry, 2003]. These models draw on the analogy be-
tween thermal and electrical phenomena [Bergman and Lavine, 2017], where heat flow
through a thermal resistance resembles electrical current flow, and the temperature differ-
ence is analogous to voltage. The thermal capacitance, dependent on the material’s specific
heat and heat absorption capacity, is analogous to electrical capacitance. A typical packag-
ing scheme in modern VLSI systems involves multiple stacked layers of different materials,
as illustrated in Figure 3.1. HotSpot’s thermal models conform to this packaging structure.

Figure 3.1: Stacked layers in a typical Ceramic Ball Grid Array (CBGA) [Parry et al., 1998].

50

To develop a CTM, HotSpot first identifies the different layers, their positions, and
adjacencies. Each layer is segmented into blocks, and a thermal resistance (R) is applied
between the center of a block (a node) and each neighboring edge to model heat trans-
fer between nodes. The silicon substrate layer, for instance, can be divided according to
architectural-level units or into regular grid cells, depending on the die-level design require-
ments. Larger layers, such as the heat sink, are partitioned as shown in Figure 3.2(a), with
the central part divided similarly to the die and additional resistances to model heat transfer
from the die’s border to the material and from the material’s border to the medium. In addition
to lateral heat transfer (Rlateral), each block also has vertical heat transfer to the next layer
modeled by a vertical resistance (Rvertical), as depicted in Figure 3.2(b). The thermal resis-
tances and capacitances are calculated based on block geometry and material properties
like specific heat and thermal conductance.

Figure 3.2: (a) Partitioning of large-area layers (top view). (b) One block with its lateral
and vertical thermal resistances (side view). (c) A layer, such as the silicon die, can be
divided into an arbitrary number of blocks if detailed thermal information is required (top
view) [Huang et al., 2006].

For transient temperature calculations, HotSpot employs a fourth-order Runge-
Kutta numerical method with an adaptive iteration count, providing quicker results than other
thermal simulations and suitability for preliminary VLSI design estimations. However, the
HotSpot algorithm does not offer real-time temperature estimation with the necessary time
resolution for DTM use [da Silva, 2021].

MatEx [Pagani et al., 2015a], similar to HotSpot, uses a thermal model based on
resistor-capacitor (RC) thermal networks to estimate chip temperatures based on power
consumption. Unlike HotSpot, MatEx uses matrix exponentials and linear algebra to solve
the first-order RC differential equations, providing a fast and accurate method for computing
transient temperature peaks for runtime use. MatEx estimates transient and peak tempera-
tures following changes in the system’s power state, allowing for variable durations of each
power state. It models the system’s thermal behavior using Equation 3.1.

51

CT ′+KT = P +TambKamb (3.1)

where:

• C = [ci ,j]NxN is the thermal capacitance between nodes i and j ;

• T ′ = [T ′i (t)]Nx1 denotes the first-order derivative of temperature at time t for each ther-
mal node;

• K = [ki ,j]NxN is the thermal conductances between nodes i and j ;

• T = [Ti(t)]Nx1 is the temperature at time t for each thermal node;

• P = [Pi(t)]Nx1 is the power consumption at time t by each thermal node;

• Tamb is the ambient temperature;

• Kamb = [ki]Nx1 is the thermal conductance between each thermal node and the ambi-
ent.

In the thermal model employed by MatEx, the system is represented by a network
comprising N thermal nodes. These nodes are interconnected through thermal conduc-
tances (K) and thermal capacitances (C). The ambient temperature (Tamb) is assumed to
be constant, and the power consumption (P) at each node represents the system’s heat
source. MatEx generates the capacitance and conductance matrices (C and K) based on
the physical characteristics of the chip, its packaging, and the cooling solution. The charac-
teristics adopted by this work are detailed in Table 3.1.

Table 3.1: Thermal characteristics adopted by this work.

Element Characteristic Value Element Characteristic Value

Chip
Thickness (m) 160×10−6

Heat Spreader

Side (m) 30×10−3

Conductivity (W/mK) 100 Thickness (m) 1×10−3

Specific Heat (J/m3K) 1.75×106 Conductivity (W/mK) 400

Heat Sink

Convection Capacitance (J/K) 140.4 Specific Heat (J/m3K) 3.55×106

Convection Resistance (K/W) 0.1
Interface Material

Thickness (m) 20×10−6

Side (m) 60×10−3 Conductivity (W/mK) 4
Thickness (m) 6.9×10−3 Specific Heat (J/m3K) 4×106

Conductivity (W/mK) 400 Temperatures Ambient Temperature (K) 318.15
Specific Heat (J/m3K) 3.55×106 Initial Temperature (K) 318.15

The MatEx tool uses linear algebra to solve matrix exponentials using eigenvalues
and eigenvectors. This process is computationally intensive, with a complexity of O(n3), but
it requires execution only once for a given floorplan. In the context of the system proposed
in Chapter 2, which has not been synthesized, there is an absence of floorplan data to
characterize the system accurately. We conducted a literature review to address this issue,
selecting the Celerity NoC-based manycore system [Rovinski et al., 2019] as a reference.

52

Celerity’s tiles, encompassing a total area of 15.25 mm2 and consisting of 496 tiles each with
a 5-stage, in-order RV32IM core and 4 KB of memory, provided a basis for calculating the
area per tile, which was found to be approximately 0.0307 mm2, with memory representing
∼55% of this area. For this work, the tile area was considered as 0.070756 mm2 which
corresponds to an increment in the memory area of 3.4× when compared to Celerity’s tile.

The hardware accelerator embedded in our system is named Temperature Estima-
tor Accelerator (TEA) and was proposed by Silva et al. [Silva et al., 2021]. It was developed
based on MatEx and is suitable for temperature estimation in complex manycore devices.

The standard MatEx algorithm calculates the steady-state temperature (Tsteady)
for a given power consumption using Equation 3.1. When the steady-state temperature is
reached, the first derivative of temperature becomes zero. Consequently, the steady-state
temperature is solely a function of conductance, as shown in Equation 3.2.

Tsteady = K−1P +K−1TambKamb (3.2)

Once the steady-state temperature has been computed, it is possible to calculate
the transient temperature (T) at any given time t using Equation 3.3.

T (t) = Tsteady +eSt (Tinit −Tsteady
)

(3.3)

where eSt represents the matrix exponential of S at the time interval t , and the matrix S is
defined as:

S =−C−1K (3.4)

However, for runtime temperature estimation, we only require the temperature at
fixed intervals, referred to as the monitoring window. In this scenario, for a fixed interval of t ,
the matrix eSt becomes constant. Consequently, the resulting equations that enable TEA to
estimate the temperature are:

Tsteadyi
=

N

∑
j=1

k−1
i ,j pj +Tamb (3.5)

Ti =
N

∑
j=1

MWexpi ,j

(
Tinitj −Tsteadyj

)
+Tsteady (3.6)

where:

• i and j are the indices of matrices and vectors;

• MWexp is the matrix exponential eSt for a fixed time interval, corresponding to the
selected monitoring window.

53

At design time, we extract the matrices K−1 and eSt from MatEx. These matrices
are loaded into the TEA’s internal memory at startup. The required amount of memory is
equal to NPENTN +N2

TN , where NPE is the number of processing elements (PEs) and NTN is
the number of thermal nodes. Experimentally, Silva et al. [Silva et al., 2021] discovered that
discretizing the matrix values into a 7-bit representation reduces the memory requirements
by approximately 78% while maintaining the estimation error below 1% compared to MatEx.
With the discretized values, TEA requires 119.72KB to perform temperature estimation for
81 PEs, and for 144 PEs, this value increases to 367.79KB. In addition to memory, TEA
also requires a 32-bit multiplier-accumulator, enabling it to estimate the temperatures of up
to 220 PEs with a monitoring window of 1 ms at a frequency of 1 GHz.

In this work, TEA was implemented at a higher abstraction level, modeled in C
language as an OVP peripheral. At runtime, it performs the following actions: (i) periodically
receives the power samples from the system’s PEs; (ii) computes the current temperature
of each PE using Equations 3.5 and 3.6; (iii) sends a packet with the estimated temperature
of each PE to the Manager PE (MPE).

3.2.3 Energy Estimation

The energy samples are generated periodically at runtime by each PE. Each PE
estimates its energy consumption based on three components: the processor, the router,
and the memory, as shown in Equation 3.7. The size of these components represents more
than 90% of the PE’s occupied area [Rovinski et al., 2019].

EPE = Eprocessor +Erouter +Emem (3.7)

Each PE calculates its own energy consumption, EPE , for the duration of the mon-
itoring window, a period with a pre-defined fixed length. To determine its power dissipation,
the PE multiplies EPE by the time elapsed in the monitoring window. The resultant value
quantifies the power dissipation of the PE during this interval. These power values, cal-
culated by each PE, are then sent to TEA. The TEA uses this information to estimate the
temperature of each PE, thereby providing an assessment of the system’s thermal state.

Processor Characterization

The estimation of the processor energy consumption is based on the energy ex-
pended to execute each instruction during a designated monitoring window. As detailed in
Chapter 2, each PE has an Instruction Counter (IC) module. This module is responsible
for monitoring, categorizing, and counting the instructions fetched by the processor. To de-

54

termine the average energy consumption per instruction, we used current measurements
provided in Fang’s research [Fang, 2021] combined with the power budget presented in the
Celerity design [Rovinski et al., 2019]. The resultant data, shown in Table 3.2, illustrates
the average energy cost associated while executing different types of instructions at various
voltage levels. The voltage/frequency configuration employed in this work is highlighted with
a bold line in the table.

Table 3.2: Average energy cost to execute a given instruction in the processor RV32IM
(28nm) executing with a certain voltage.

Voltage
(V)

Max. Frequency
(MHz)

Energy per Instruction (pJ)
BRANCH REG IMM LOAD STORE JUMP PC

0,98 1400 34,72 22,00 21,60 29,14 29,55 34,70 20,80
0,94 1350 33,98 21,53 21,14 28,52 28,93 33,96 20,36
0,88 1300 31,82 20,16 19,79 26,70 27,08 31,79 19,06
0,86 1250 31,09 19,70 19,34 26,10 26,46 31,07 18,62
0,8 1200 28,92 18,32 17,99 24,28 24,62 28,90 17,32

0,78 1100 28,20 17,87 17,54 23,67 24,00 28,18 16,89
0,76 1050 27,48 17,41 17,09 23,06 23,39 27,46 16,46
0,74 1000 26,75 16,95 16,64 22,45 22,77 26,73 16,02
0,72 900 26,03 16,49 16,19 21,85 22,16 26,01 15,59
0,7 850 25,31 16,03 15,74 21,24 21,54 25,29 15,16

0,68 750 24,58 15,57 15,29 20,63 20,93 24,57 14,73
0,66 700 23,86 15,12 14,84 20,03 20,31 23,84 14,29
0,64 650 23,14 14,66 14,39 19,42 19,69 23,12 13,86
0,62 550 22,42 14,20 13,94 18,81 19,08 22,40 13,43
0,6 500 21,69 13,74 13,49 18,21 18,46 21,68 12,99

It is important to note that the energy consumption obtained for the target processor
core (RV32IM) is comparable to the energy consumption reported by other works with similar
technology in the literature. For instance, Zaruba and Benini [Zaruba and Benini, 2019]
evaluated the instruction energy consumption in a 1.7GHz RV64GC in 22nm technology,
and Silva et al. [da Silva, 2021] assessed the instruction energy consumption for a 1GHz
Plasma (MIPS-like) in 28nm technology.

In this work, we categorize instructions into seven classes: (i) register instruc-
tions; (ii) immediate instructions; (iii) branch instructions; (iv) load instructions; (v) store
instructions; (vi) jump instructions; and (vii) program counter (PC) instructions. Equation 3.8
specifies the dynamic energy consumption of each processor based on the data acquired at
runtime.

Eprocessor =
nclass

∑
k=1

(
cI[k]x ,y ×Einst [k]

)
(3.8)

where:

• nclass: number of instruction classes;

• cI[k]x ,y : count of executed class-k instructions in PE x ,y ;

• Einst [k]: average energy consumption to execute a class-k instruction.

55

Router Characterization

The internal components of the router include input buffers, a crossbar, and control
logic. Consequently, router characterization involves stimulating all internal components
and providing a payload with a significant Hamming distance between flits to induce high
switching activity in the router’s logic gates. The router energy characterization consists of
four steps [Martins et al., 2014].

The power dissipation of a router is a function of the reception rate in the input
buffers [Ost et al., 2009]. Thus, the first step is to generate synthetic traffic (step 1) to
analyze the switching activity of the input buffers. The generated traffic flow consisted of
1,000 packets, each containing 32 flits, with a Hamming distance between flits exceeding
80%. Subsequently, logical synthesis (step 2) of a 5-port router was performed, resulting in
a netlist and a standard delay format (SDF) file. To account for the energy expended in data
transmission between routers, the wire capacitance between routers was set at 200fF per
1mm of metal 5.

In a 3x3 NoC simulation (step 3), the central router was replaced with the netlist
obtained in step 2. Each traffic scenario generated in step 1 produced a toggle count for-
mat (TCF) file, which contains the switching activity at the gate level. Finally, the power
analysis (step 4) of the TCF file yielded the average power consumption for two reception
rates: 100% for active mode and 0% for idle mode. During active mode, one flit is trans-
mitted in each clock cycle, whereas during idle mode, the input buffer is either empty or the
output is blocked, preventing any flit from advancing. Table 3.3 presents the router power
characterization for both operation modes.

Table 3.3: Router average power. Library C28SOI_SC_12 (28nm), 1.0V@1GHz, 25ºC [Mar-
tins, 2018].

Operation Mode Input Buffer
Power (µW)

Combinational Logic
Power (µW)

Leakeage
Power (µW)

Idle 799.72 525.09 1.646Active 1881.12 1896.38

Based on these power values, and knowing the number of buffers present in the
router (nbuffer), we can estimate the router’s energy consumption when it is forwarding one
flit (with one active buffer) using the following equation:

Ecycle
active =

[
(nbuffer −1)Pbuffer

idle +Pbuffer
active +Pcomb

active

]
T (3.9)

When no buffers are active, the router is considered to be in an idle state, which
affects the power consumption of the combinational circuitry. Thus, the energy expended by
the router in the idle state is estimated using the following equation:

Ecycle
idle =

[
nbuffer Pbuffer

idle +Pcomb
idle

]
T (3.10)

56

where:

• nbuffer : the number of buffers in the router; this number varies according to the PE’s
position in the network (central PEs have 5 buffers, edge PEs have 4, and corner PEs
have 3);

• Pbuffer
idle : the average power consumption of an idle buffer;

• Pbuffer
active : the average power consumption of an active buffer while transmitting a flit;

• Pcomb
active: the average power consumption of the combinational circuitry when active;

• Pcomb
idle : the average power consumption of the combinational circuitry when idle;

• T : the period used to characterize the router.

As discussed in Chapter 2, flits are sent to their destination only at the end of
each quantum. During the quantum execution, each sent packet remains waiting in the local
buffer, and when the quantum ends, every packet is dispatched to its destination via the NoC.
However, packets sent at the start of the quantum and those sent at the end will traverse the
NoC simultaneously. Consequently, in our router energy estimation, we assume that each
flit transmission occurs with only one active buffer, as described by Equation 3.11:

Erouter =
(

Ecycle
activenflits

)
+
(

Ecycle
idle

(
mwcycles−nflits

))
(3.11)

where:

• Ecycle
active: the amount of energy consumed by the router when transmitting flits;

• nflits: the number of flits that have traversed the router in the past monitoring window;

• Ecycle
idle : the amount of energy consumed by the router while in idle;

• mwcycles: the amount of cycles in one monitoring window.

Memory Characterization

Generally, a memory generator tool provides memories as black boxes within the
technology design kit, without an RTL model. The CACTI-P [Li et al., 2011] tool models
various memory types and generates estimations for access time, silicon area, and power.
It also supports Dynamic Voltage Scaling (DVS). CACTI-P enables the characterization of
the PE local memory’s energy consumption, which is configured as a 64KB scratchpad
memory with two ports. Table 3.4 displays the characterization data produced by CACTI-P.
The CACTI-P tool allows for some technology options (such as cell and peripheral circuits)
that differ from the industrial libraries of standard cells used previously. The technology

57

settings are calibrated to yield consistent results when compared with the processor and
router. In Table 3.4, the access time corresponds to the period used to characterize the
processor and router (1 ns), Eload is the dynamic read energy per access, and Estore is the
dynamic write energy per access.

Table 3.4: Memory characterization. Library C28SOI_SC_12 (28nm), 1.0V@1GHz, 25ºC
[Martins, 2018].

Access time (ns) Energy for Load
Eload (pJ)

Energy for Store
Estore(pJ)

0.369 93.96 134.97

In the implementation of this work, the memory energy estimation is achieved by
measuring the memory accesses made by the processor and the network interface with
direct memory access capabilities. The processor memory accesses are monitored by the
Instruction Counter.

Temperature estimation plays a central role in the proposed system’s monitoring
capabilities, facilitating the exploration of DTM techniques. However, as will be discussed in
Chapter 5, the proposed mapping algorithm does not directly depend on the PEs’ tempera-
ture. The primary objective of manycore thermal management is to maximize the system’s
performance while maintaining the chip within a certain temperature margin to prevent phys-
ical effects that could reduce the chip’s reliability.

3.3 Reliability

Advancements in technology are hastening the emergence of reliability issues and
contributing to the reduction of manycore system lifetimes. Reliability aims to ensure that
the system’s lifespan exceeds the targeted life expectancy and that the failure rate during
the system’s normal operational life remains below the targeted failure rate [Strong et al.,
2009]. Various environmental factors can impact the reliability of integrated circuits, includ-
ing voltage, temperature, rate of temperature change, current density, humidity, pressure,
mechanical stress, process variability, and radiation. Ensuring long-term reliability is a criti-
cal objective for all manufacturers [Srinivasan et al., 2003].

System failures arise from errors in system operation, which can be broadly classi-
fied into two categories: soft and hard errors [Strong et al., 2009]. Soft errors, also known
as transient faults or single-event upsets (SEUs), are caused by electrical noise or external
radiation rather than by design or manufacturing defects. The architecture community has
conducted extensive research to make manycores more resistant to soft errors. While most
research on soft errors has concentrated on memory, recent studies have started to address
errors in combinational logic. Soft errors can result in computation mistakes and data cor-
ruption, but they do not inflict permanent damage to the system and are not considered a

58

long-term reliability concern [Shivakumar et al., 2002]. On the other hand, hard failures,
which can lead to permanent manycore failure, are caused by defects in the silicon or met-
allization of the manycore package. As the rate of hard failures increases, the lifetime of the
manycore decreases inversely, indicating that hard failures are a significant determinant of
manycore long-term reliability. Hard failures can be divided into two subcategories: extrinsic
and intrinsic [Pecht et al., 2017].

Extrinsic failures typically decrease in frequency over time and are often the re-
sult of process or manufacturing defects. Contaminants on the silicon surface or surface
roughness, for example, can lead to dielectric breakdown [Abadeer et al., 1999]. Extrinsic
failures, such as shorts and open circuits in the interconnects due to incorrect metallization,
are primarily caused by the manufacturing process. The micro-architecture of the system
has minimal impact on the rate of extrinsic failures. Most of these failures can be detected
early in the manycore’s lifecycle. Burn-in and voltage screening are employed to identify
manycores with extrinsic failures. After manufacturing, manycores undergo testing at ele-
vated temperatures and voltages to accelerate the manifestation of extrinsic defects. This
screening process removes extrinsic flaws before distribution, thus reducing the early life
failure rate.

Intrinsic failures in manycore systems are linked to the gradual degradation of the
hardware (wear-out), occurring during operation under specified usage conditions. These
failures arise from factors inherent to the materials used in constructing the manycore, as
well as process parameters, wafer packaging, and the design of the manycore itself. If the
manufacturing process were devoid of any imperfections or errors, all failures in a manycore
system would be classified as intrinsic. Such failures tend to increase over time and are
typically caused by inherent defects in the materials of the manycore. It is crucial that these
failures do not happen during the device’s intended useful life when operated under speci-
fied conditions. Examples of intrinsic failures include time-dependent dielectric breakdown
(TDDB) in the gate oxides, electromigration in the interconnects, and thermal cycling and
cracking [Srinivasan et al., 2003].

The Bathtub Curve, shown in Figure 3.3, illustrates the long-term reliability of many-
cores as determined by the hard failure rate. It depicts the failure rate of manycores due to
hard failures over time. Generally, Z (t), the failure rate at time t , can be defined as the
probability of a unit failing at time t , given that it has survived up to that point.

The Bathtub Curve is composed of three distinct sections associated with infant
mortality (early life), useful life, and wear-out. Each section is characterized by different
causes of failure. Early life failures are attributed to extrinsic failures and are primarily due to
process and manufacturing defects, which decrease over time. Useful life failures are ran-
dom and can be caused by various factors, but these tend to be infrequent, and the failure
rate in this region is close to zero. Wear-out failures are intrinsic and result from material
constraints, which increase over time. Burn-in and voltage screening aim to eliminate many-

59

Figure 3.3: Variation of failure rate with time [Srinivasan et al., 2003].

cores with early life or extrinsic failures. Therefore, since the long-term reliability or lifetime
of a manycore is mainly dependent on wear-out or intrinsic failures, these processes are
critical for ensuring reliability.

There is considerable potential for enhancing long-term reliability from a manage-
ment perspective. However, it is becoming increasingly challenging for manycores to satisfy
performance and reliability margins, necessitating trade-offs among performance, cost, and
reliability. Substantial research has been devoted to techniques that can optimize energy,
thermal, and reliability performance by leveraging architectural features and adaptive capa-
bilities (for instance, [Yu et al., 2015, Rathore et al., 2016, Gou et al., 2018, Rathore et al.,
2019b, Silva et al., 2020, Yoo et al., 2022]). One of the challenges encountered by studies
that consider system reliability is the methodology used to evaluate the impact of the applied
heuristic.

Studies often estimate system reliability using the mean time to failure (MTTF)
metric [Ramachandran et al., 2008]. However, the calculation of MTTF in each study takes
into account a variety of factors. For instance, [Yu et al., 2015] considers three effects:
electromigration, gate oxide breakdown, and time-dependent dielectric breakdown, whereas
[Rathore et al., 2019b] takes into account process variation along with three effects: negative
bias temperature instability, electromigration, and hot carrier injection.

In our work, we will consider effects that are sensitive to the Arrhenius relation-
ship [Arrhenius, 1889], which originates from the dependency of chemical reaction rates on
temperature changes, thereby establishing a connection between manycore reliability and
operating temperature. Assuming all other conditions are constant, the lifetime, Tfailure, of a
manycore resulting from a failure mechanism is determined by Equation 3.12.

Tfailure ∝ e
Ea
kT (3.12)

where:

• Ea - activation energy of the failure mechanism in electron volts (eV);

60

• k - Boltzmann’s constant (8.62×10−5eV/K);

• T - operating temperature in Kelvin (K).

The value of Ea is directly related to the specific failure mechanism under consider-
ation. It is important to note that this model only accounts for the temperature dependence
of failure mechanisms and is valid only when all other parameters remain constant. This
approach cannot model failure mechanisms that are not influenced by temperature.

The Arrhenius model shows that the lifetime of a manycore decreases exponentially
with an increase in temperature, indicating that temperature directly impacts manycore relia-
bility. For example, hot spots on the manycore will lead to an accelerated rate of breakdown
in those areas of the system [Yang et al., 2017a]. With the ability to estimate the temperature
of each PE in the manycore simulator, as described in Section 3.2, we aim to identify ma-
jor effects that are directly related to temperature behavior to evaluate our reliability-aware
technique.

The metric used to evaluate reliability in our work is the mean time to failure (MTTF),
which can be considered the average life expectancy of the manycore. We assume that all
failure mechanisms have a constant failure rate in order to compute the MTTF. Although
this assumption is not entirely accurate—as a typical wear-out mechanism, as depicted in
Figure 3.3, will have a very low failure rate for an extended period before increasing sharply
(excluding infant mortality) - it still enables us to combine different failure mechanisms and
provide a unified MTTF. It is important to recognize that we are not modeling reliability as a
function of time. Our work is capable of comparing the system reliability of different manycore
management techniques and applications solely in terms of their MTTF.

Under the assumption of a constant failure rate, the mean time to failure (MTTF)
can be calculated as the inverse of the failure rate. The standard method of expressing
failure rates for semiconductor components is in Failures in Time (FIT) [Lala, 1996], which
represents the number of failures per 109 device hours. Consequently, if the FIT is a con-
stant, denoted as λ , then the MTTF, in hours, is given by:

MTTF =
1
λ

(3.13)

3.3.1 Major Effects Affecting Reliability

Electromigration (EM)

Electromigration is a well-studied and understood cause of failure in semiconductor
devices. Electromigration in aluminum and copper primarily occurs due to the movement of
conductor metal atoms within the interconnects, driven by momentum transfer from the elec-

61

tron current. The electrons impart some of their momentum to the metal atoms in the inter-
connect, creating an “electron wind” that results in a net flow of metal atoms in the direction
of electron flow. This can lead to a depletion of metal atoms in one area and an accumulation
in others. Consequently, voids may form and grow at sites of depletion, potentially leading
to open circuits, increased interconnect resistance, and other problems. Furthermore, extru-
sions can develop at accumulation sites, causing shorts between adjacent metal lines and
leading to circuit failure.

The model used for the FIT due to electromigration (λEM) is based on Black’s elec-
tromigration equation [Black, 1969]. After isolating only the architectural variables for a given
process, the FIT due to electromigration is modeled as:

λEM ∝
e

Ea
kT

V nf npn
(3.14)

where:

• Ea - activation energy;

• k - Boltzmann’s constant;

• T - operating temperature;

• n - empirically determined constant, varying from 1 to 2 depending on the interconnect
material; for our simulator, the value used is 1.1, which is relative to copper intercon-
nections [Chandrakasan et al., 2001];

• V - supply voltage;

• f - clock frequency;

• p - switching probability.

Stress Migration (SM)

Stress migration is similar to electromigration, where metal atoms in the intercon-
nects migrate due to mechanical stress. The primary causes of stress migration are intrinsic
stresses, which originate from distortions in the crystal lattice of the semiconductor sub-
strate, and thermo-mechanical stresses, which arise from the differing thermal expansion
rates of materials within the device [Passage et al., 2019].

The model for stress migration is based on thermo-mechanical stresses generated
by the varying thermal expansion rates of the device’s materials. The level of mechanical
stress is proportional to the difference between the current temperature (T) and the stress-
free temperature of the metal (T0), which is the temperature at which the metal was initially

62

deposited. Thus, any temperature deviation from the metal deposition temperature will in-
duce thermo-mechanical stresses. The equation used to estimate the FIT due to SM, λSM ,
is provided by [Srinivasan et al., 2003]:

λSM ∝ |T0−T |−ne
Ea
kT (3.15)

where:

• Ea - the activation energy;

• k - the Boltzmann’s constant;

• T - the operating temperature;

• T0 - the stress free temperature;

• n - an empirically determined constant, varying from 2 to 3.

Time Dependent Dieletric Breakdown (TDDB)

Time-dependent dielectric breakdown (TDDB) is a critical failure mechanism in
semiconductor devices. Over time, the gate dielectric weakens and ultimately fails upon
the creation of a conductive path through the dielectric material. Once this conductive path
forms between the gate and the substrate, it becomes impossible to regulate the current flow
between the drain and the source using a gate electric field. Consequently, this renders the
transistor device inoperative.

Manufacturers exercise extreme caution during the growth of the gate oxide to en-
sure its reliability and to avoid the incorporation of any impurities into the oxide. Historically,
issues with gate-oxide breakdown were primarily extrinsic rather than intrinsic.

Gate oxide reliability is affected by factors such as temperature, the voltage ap-
plied at the gate, and the electric field present at the gate. Researchers generally accept
that temperature significantly accelerates the degradation of gate-oxide reliability, and this
degradation follows a relationship that is more severe than the Arrhenius model suggests.
Various models have been developed to quantify TDDB degradation in terms of the electric
field strength, its inverse, and the applied gate voltage. The model adopted for this work
draws on the research by Wu et al. [Wu et al., 2002a, Wu et al., 2002b] from IBM. Wu et
al. performed extensive analytical and experimental studies on TDDB, collecting experimen-
tal data across a broad spectrum of oxide thicknesses, voltages, and temperatures. Their
work culminated in a unified TDDB breakdown model applicable to both current and future
generations of ultra-thin gate oxides. According to the model proposed by Wu et al., the
lifetime associated with TDDB for ultra-thin gate oxides not only depends on voltage but also
suffers from accelerated degradation with increased temperature, exceeding an exponential

63

rate. In [Srinivasan, 2006], the author merges Wu et al.’s model with a traditional Arrhenius
temperature-dependence approach, leading to the definition of TBBD FIT, λTBBD, model as
follows:

λTDDB ∝

(
1
V

)a−bT

e
A+B

T +CT
kT (3.16)

where a,b,A,B, and C are fitting parameters based on data from [Wu et al., 2002a], we
have:

• a = 78

• b =−0.081

• A = 0.759eV

• B = 66.8eV/K

• C =−8.37×10−4 eV/K

Thermal Cycling (TC)

Thermal cycling (TC) can cause fatigue failures. Each cycle accumulates perma-
nent damage until failure eventually occurs. Even the regular act of powering a device up
and down can result in damage. Solder joints, which form the interface between the pack-
age and the die, are the parts of the device most susceptible to damage. The package
undergoes thermal cycles that can manifest as large, low-frequency cycles, such as when
powering up or down or entering low power or standby mode; or as small, high-frequency
cycles that occur several times per second, resulting from changes in workload behavior
and context switching. Researchers employ the Coffin-Manson equation [JEDEC, 2016] to
model thermal cycles. This model allows the derivation of the FIT due TC equation:

λTC ∝

(
1

T −Tambient

)q
(3.17)

where:

• T represents the operating temperature;

• Tambient is the ambient temperature;

• q stands for the Coffin-Manson exponent, which is an empirically determined constant
with a value of 2.35 [JEDEC, 2016].

64

Negative Bias Temperature Instability (NBTI)

Negative bias temperature instability (NBTI) is an electrochemical reaction occur-
ring in p-FETs when the gate is negatively biased relative to the source and drain. This
usually happens when the gate input is low, and the output is high, leading to a buildup of
positive charges in the gate oxide. This buildup increases the transistor’s threshold volt-
age, thus reducing the gate overdrive (the difference between the supply voltage and the
threshold voltage). As a result, it can slow down the gate’s performance and may eventually
cause processor failure due to timing issues [Zafar, 2007]. NBTI exhibits strong positive
temperature and field dependence; it is exacerbated by higher temperatures on the chip due
to scaling. Moreover, scaling causes the gate oxide to thin out, intensifying the reliability
concerns associated with NBTI.

We based the adopted NBTI model on the research conducted by Zafar et al. from
IBM; it is a physics-based model verified through both new and previously published NBTI
failure data. Clearly, NBTI-induced lifetime degradation strongly correlates with temperature.
To calculate the FIT due to NBTI, λNBTI at a specific temperature, we use the following
equation:

λNBTI ∝

[(
ln
(

A

1+2e
B
kT

)
− ln

(
A

1+2e
B
kT
−C

))
T

e
−D
kT

] 1
β

(3.18)

where A,B,C,D, and β represent fitting parameters derived from the data in [Zafar, 2007]:

• A = 1.6328;

• B = 0.07377;

• C = 0.01;

• D =−0.06852;

• β = 0.3.

3.3.2 Reliability Model

Up to this point, we have presented the models used to estimate the FIT of each
specific failure mechanism considered in our system model. To assess the system’s overall
reliability or MTTF, we must combine the FITs of all individual failure mechanisms. In this
thesis, we employ two techniques for this integration. The first technique utilizes a simpler
method, the sum-of-failure-rates (SOFR) model, which facilitates its use during the train-
ing phase of our reinforcement learning algorithm. The second technique incorporates a

65

lognormal distribution model, which, despite being more complex and limiting its use dur-
ing training, offers greater accuracy. This technique is employed to calculate the results
presented in Chapter 6.

Sum-of-Failure-Rates - SOFR

Our manycore system’s fundamental building block is the PE, and its operational
integrity is required for the system’s functionality. In the absence of fault-tolerance mecha-
nisms, the potential failure of even a single PE makes the entire system inoperative. Con-
sequently, we characterize the manycore system as a series system, where the reliability is
dependent on the uninterrupted availability of all PEs. Assuming that the FIT of the i th PE of
our manycore is represented by λi . Then the system FIT, λsys, is expressed express through
the summation of the FIT of all individual PEs, Equation (3.19), as demonstrated in [Trivedi,
2016].

λsys =
n

∑
i=1

λi (3.19)

However, we do not possess the individual FIT for each PE; what has been esti-
mated is the FIT for each aging effect. Therefore, just as manycore is a series system of
PEs, we consider the PE to be a series system of its aging effects. In other words, if any of
the five effects (EM, SM, TDDB, TC, and NBTI) produce a failure, we declare that the PE has
failed. Let λik represent the FIT for the k th aging effect on the i th PE. We can then express
the FIT of the i th PE, λi , as the sum of the FITs for all individual wear-out effects, as shown
in Equation (3.20).

λik =
5

∑
k=1

λk (3.20)

Finally, we can combine Equation (3.19) and Equation (3.20) to derive the many-
core FIT, λsys, as a function of the aging effects on individual PEs. Assuming that the lifetime
follows an exponential distribution [Trivedi, 2016], we can conclude that the manycore MTTF,
denoted by MTTFsys, is calculated by Equation (3.21):

MTTFsys =
1

λsys
=

1

∑
n
i=1 ∑

5
k=1 λik

(3.21)

Equation 3.21 demonstrates that the manycore MTTF is inversely proportional to
the sum of all failure mechanisms’ rates for all components, which gives rise to the common
remark that “a system is weaker than its weakest lin” [Trivedi, 2016]. During the simulation,
we determine and store the system’s FIT rate at each monitoring interval.

66

The MTTF estimates were integrated into the Thermal Estimation Accelerator (TEA)
that was previously described in Section 3.2.2. Thus, after estimating each PE’s temperature
using the TEA at every monitoring interval, we also estimate the FIT for each PE. In Chapter
5, we will explore how we use this data to train a lightweight Q-learning table that assigns
tasks to the system to enhance the manycore MTTF.

Lognormal Distribution

The SOFR model for computing the MTTF requires the simplification that considers
every individual failure mechanism has an exponential lifetime distribution. However, this
assumption is not accurate because typical wear-out failure mechanisms typically exhibit a
low FIT rate at the beginning. The most accurate failure distribution for each mechanism
is still under debate; however, lognormal distributions are widely applicable for a variety of
wear-out mechanisms [Wan et al., 2020].

For calculating the total MTTF of our manycore system with a lognormal distribu-
tion assumption, we employed a method proposed by Srinivasan et al. [Srinivasan et al.,
2005] known as RAMP 2.0. This method uses a Monte Carlo simulation to integrate the ef-
fects of individual lognormal distributions across all wear-out mechanisms and components.
Given the complexity of the lognormal distribution combined with the large cross-product of
components and mechanisms, analytically determining manycore reliability is computation-
ally challenging. Srinivasan et al. suggest using a Monte Carlo simulation as a solution to
this problem. The Monte Carlo simulation is an algorithm that solves problems by generat-
ing appropriate random numbers and noting the proportion of numbers that satisfy specific
conditions or properties.

We employed this technique to calculate the system MTTF, MTTFsys, which we
present in the Results, Chapter 6, of this Thesis. Nevertheless, the following Chapter will
first review and discuss management strategies from the literature that address reliability
issues related to temperature fluctuations.

67

4. RELATED WORK

Dynamic Thermal Management (DTM) and Dynamic Reliability Management (DRM)
are important aspects of the manycore design. DTM concentrates on the efficient manage-
ment of heat generated by manycore circuits, whereas DRM aims at mitigating failures and
malfunctions in system components to extend the lifetime of manycore systems. DTM and
DRM are interlinked, as a robust thermal management system is imperative for ensuring
overall system reliability. In this Chapter, we present and discuss relevant literature related
to both DTM and DRM. Additionally, we explore their application in enhancing the perfor-
mance and reliability of electronic components in manycore systems.

4.1 FoToNoC

In their work, Yang et al. [Yang et al., 2017a, Yang et al., 2017b] introduce a hi-
erarchical management strategy for heterogeneous manycore systems using a folded torus
Network-on-Chip (FoToNoC). In the FoToNoC architecture, cores are interconnected in a
way that reduces communication latency and are organized into logically condensed virtual
clusters. The proposed architecture consists of a 64-core NoC), arranged in an 8x8 array of
tiles.

Figure 4.1(a) illustrates the physical arrangement of the cores on the platform, num-
bered from c1 to c64; (b) demonstrates how the connections between cores are arranged in
the folded torus; and (c) shows the distinction between the physical view and logical view of
the clusters.

(a) (b) (c)

Figure 4.1: (a) Arrangement of 64 cores on physical floorplan.(b) Folded torus.(c) Physical
and logical views [Yang et al., 2017b].

In the application mapping process, tasks are preferentially allocated to cores with
less communication delay, such as cores 1, 3, 5, and 19 in Figure 4.1(b). This strategy en-

68

ables a better distribution of heat across physically dispersed cores on the floorplan, hence
preventing the formation of hotspots.

In this architecture, there exist four types of cores. Each logical cluster contains
one core type, namely b (big cores with enhanced performance), M1, M2, and L (Little cores
with minimal energy consumption). These cores of different types are arranged physically
and logically, as depicted in Figure 4.1(c). The authors assume that at any given moment,
only one type of core or, in other words, one cluster will be powered on.

This study employs power models from the Alpha 21264 processor in 22-nm tech-
nology, as derived from mcpat09 [Li et al., 2009]. The simulation of the microarchitecture
uses GEM5 [Binkert et al., 2011a]. Mapping decisions are based on runtime transient and
peak temperature estimations provided by MatEx [Pagani et al., 2015a]. Results demon-
strate improved heat distribution, superior to contiguous cluster mapping, and better com-
munication delay compared to a standard torus network using decentralized mapping.

4.2 Dynamically Reconfigurable NoC

Liu et al. [Liu et al., 2018] propose a homogeneous manycore platform where
routers can be reconfigured to enable multi-hop bypass on the NoC, thus reducing commu-
nication latency between non-adjacent cores. The authors also propose an Integer-Linear
Programming (ILP) model based on this platform to investigate the network reconfiguration
architecture that applies task mapping with minimum network contention. With the ILP model
in place, they further introduce a heuristic, TopoMap, which is executed in polynomial time,
with minimal impacts on communication and application performance.

Additionally, the authors propose a thermal-aware task mapping strategy, taking
into account the Euclidean distance between cores. They assume that any processor lo-
cated next to active cores will likely remain dark, as depicted with cores 11, 18, 20, and 27
in Figure 4.2(a). Furthermore, as long as there are available cores meeting this require-
ment, task mapping to cores is restricted to those at least 2-hop away from active cores, as
shown in Figure 4.2(a). If no such cores are available, selection is among candidates that
will not cause a temperature violation. The authors demonstrate that this pattern of appli-
cation mapping can maintain thermal reliability in improved heat conditions, benefiting from
the alternating arrangement of active and dark cores.

The primary disadvantage of implementing mapping applications in physically de-
centralized cores is the increase in the communication distance. Typically, a packet transmis-
sion’s latency is directly proportional to both the distance it travels and the routing stages in
the routers. To overcome the latency issue, the authors introduce a mapping algorithm with
SMART NoC. SMART, a reconfigurable network, allows for single-cycle multi-hop bypass,

69

(a) (b)

Figure 4.2: (a) Thermal-aware mapping strategy.(b) Contention in SMART NoC [Liu et al.,
2018].

where flits can traverse multiple routers in one clock cycle, up to a HPCmax , representing the
flit’s maximum allowable hop count.

However, drawbacks persist, as SMART is susceptible to conflicts. Concurrent flits
must stop and buffer, as illustrated in Figure 4.2(b), where arrows of various colors demon-
strate data transmission between two processors, and a dotted ellipse in one link means
that the two transmissions conflict. Consequently, the authors propose Cont_Map, a com-
munication contention-aware task mapping where paths are analyzed to avoid transmission
overlap among tasks.

Finally, the authors propose a thermal-aware mapping algorithm that prevents con-
tention for SMART NoC, integrating both previously suggested mapping strategies. The
algorithm defines the task’s hop count from 2 to HPCmax , thus allowing the exploration of
all candidate cores while simultaneously compressing the search space. To retrieve tran-
sient temperatures of all cores and calculate chip peak temperature at runtime, this mapping
algorithm employs MatEx [Pagani et al., 2015a].

Simulation execution takes place using McPAT [Li et al., 2009] to gather power
data, and GEM5 [Binkert et al., 2011a] to simulate both communication and microarchitec-
ture. Results reveal a performance increase of up to 33.5% when contrasting the utilization
of SMART NoC with a traditional mesh NoC, primarily attributable to decreased latency and
contention rates. Additionally, authors noted a reduction in energy consumption when com-
paring the proposed architecture with a conventional mesh NoC and FoToNoC [Yang et al.,
2017b]. This reduction is mainly due to enhanced execution speed and communication effi-
ciency.

70

4.3 TSP: Thermal Safe Power

Pagani et al.[Pagani et al., 2017] introduced a novel power budget for manycore
systems to maximize power efficiency. This new approach serves as an alternative to the
conventional Thermal Design Power (TDP). TDP is a uniform power value, that serves to
prevent system complications arising from excessive temperatures. However, TDP tends
to lead to system under-utilization, especially when the mapping process results in system
hotspots.

In contrast, the proposed metric, the Thermal Safe Power (TSP), considers the
unique power capacity of each core and takes into account the arrangement of active/dark
cores, rather than evaluating the system’s power as a whole. Figure 4.3 presents two map-
pings of six active cores within a 4x4 manycore system, where the TSP is 80◦C. In the
worst-case mapping scenario, the maximum core power is lower than that in the best-case
scenario due to the surrounding temperature. With the pattern mapping, active cores can
operate at higher power levels as it reduces heat conduction from nearby active cores.

Notably, all cores do not necessarily reach the maximum temperature. Hence,
there is potential for performance enhancement, implying that some cores might have the
capacity to consume more power. While this adaptable technique is described as a function
of power, it abstracts the specific method (e.g., DVFS) applied to adjust the power.

Figure 4.3: This example illustrates the best-case and worst-case mappings in relation to
thermal constraints. The bold numbers at the top represent the power of the active cores,
measured in watts. The numbers at the bottom, enclosed in parentheses, represent the core
temperatures in °C [Pagani et al., 2014].

The study’s evaluation process involves a simulation platform using GEM5 [Binkert
et al., 2011a], McPAT [Li et al., 2009], and HotSpot [Huang et al., 2006]. The authors com-
pared the computed TSP values for unique mappings with constant power budgets applica-
ble to the entire system. The results demonstrated that utilizing TSP as a power constraint
enhanced total performance in the majority of cases. However, the authors found that em-

71

ploying a single power budget for the entire system could yield superior results in some
cases, primarily because cores may not have an exact speed step that fulfills the TSP value.

4.4 seBoost

Pagani et al. [Pagani et al., 2015b] introduced a selective boosting technique for
heterogeneous manycore systems, called seBoost. The primary goal of this technique is to
establish an efficient runtime boosting mechanism that satisfies the runtime requirements of
applications. It aims to achieve minimum performance losses for the applications operating
on the non-boosted cores. This technique is based on prior knowledge of power profiles
for each thread and application across all voltage and frequency (VF) pairs. Utilizing this
data, the algorithm aims to identify the optimal combination of VF pairs for both the boosted
and non-boosted cores to maintain the system’s temperature below the critical level. This
approach requires runtime temperature monitoring as the temperature is required. The algo-
rithm calculates both steady and transient temperatures to verify VF configuration amongst
cores.

Figure 4.4: Heterogeneous manycore setup used to evaluate seBoost proposal [Pagani
et al., 2015b].

This work employs a heterogeneous architecture with 72 cores, which are divided
into 24 high-performance Alpha cores, 16 simple Alpha cores, 16 ARM A15, and 16 energy-
efficient ARM A7. The evaluation of this architecture relies on the use of GEM5 [Binkert
et al., 2011a], McPAT [Li et al., 2009], HotSpot [Huang et al., 2006], and the measurement of
traces on a commercial platform which employs ARM’s big.LITTLE architecture. The authors
compare the proposed strategy with Intel’s Turbo Boost technology and a simple boosting
method that throttles down the non-boosted cores to their lowest frequencies.

The results indicate that if the performance boosting requirement is feasible, given
an initial temperature vector, both the proposed technique and the simple boosting method

72

can meet the requirements 100% of the time. However, with the simple boosting technique,
the non-boosted application may experience unnecessary performance losses. When using
Turbo Boost, the non-boosted cores reach higher average performance, but in most cases,
Turbo Boost doesn’t meet the runtime requirements for the boosted cores throughout the
entire boosting interval. Given that Turbo Boost has no knowledge of the application’s per-
formance requirement, it can set VF levels higher than necessary. This can lead to reaching
the critical temperature before the end boosting interval, triggering the control mechanism
and consequently degrading the performance.

4.5 M-Oscillating

Sha et al. [Sha et al., 2018] propose a frequency oscillation-based technique to
maximize the throughput performance of multi-core platforms while ensuring the peak tem-
perature constraint. The proposed technique is based on two concepts: step-up schedule
and m-Oscillating schedule. The proposed technique focuses on periodic schedules that
can deliver steady and sustainable performance.

The paper discusses the importance of this technique by assuming that each pro-
cessor features discrete running modes, and previous works focused on solving the through-
put maximization problem by assuming that the speed of each core can be continuously and
instantaneously varied. Based on previous work, one method to maintain the peak tem-
perature constraint is to use the first discrete speed available below the calculated in the
maximization problem, which is named in the paper as LNS (lower neighboring method).
However, the results of this technique might be overly pessimistic when the available speed
level is limited. To improve this technique, they propose an algorithm that searches all speed
combinations to find one that can maximize the throughput without exceeding the temper-
ature threshold, called EXS (exhaustive search). The main limitation of LNS and EXS is
that each core can only execute one single speed, and the slack in temperature cannot be
filled by raising the speed of any core due to the possible violation of the maximum allowed
temperature.

Based on the limitations of LNS and EXS, the goal of this work is to maximize the
throughput of a multi-core platform, where the processors have available discrete frequen-
cies, using a periodic schedule of two or more frequencies to use the temperature slack to
improve performance. To define this schedule, the Authors first define the step-up sched-
ule, which is basically a periodic schedule with multiple state intervals where the processing
speed (VF levels) increases at each interval. Based on a step-up schedule the authors de-
fine a m-Oscilating schedule, which is a method to determine the length of the period for the
periodic schedule.

73

The m-Oscilating schedule is derived from a step-up schedule by scaling down
each interval length by m. The Authors prove that the smaller the period is (higher m),
the higher the throughput can be achieved. Considering different values of m, the total
dynamic energy consumption and the average temperature remain constant, but the peak
temperature tends to reduce with higher values of m. The main drawback of using higher
values of m is the transition overhead to change VF settings on a processor, so the Authors
take this overhead into consideration when defining the schedule.

This work uses its own temperature estimation model to define the stepup schedule
which ensures that the temperature will not exceed the critical one. The algorithm constructs
possible schedules and determines the highest temperatures to verify if the peak tempera-
ture constraint is guaranteed. The experimental results use different numbers of cores, up to
9, and possible voltage levels, up to 5. The proposed technique is simulated on hypothetical
configurations of Alpha 21264 cores using power parameters from McPAT [Li et al., 2009]
simulator and temperatures collected from HotSpot [Huang et al., 2006]. Results show an
average improvement of 11% in performance when comparing the proposed technique with
the EXS, which only allows the use of a single speed for each core.

4.6 TCTS: Temperature Constrained Task Selection

Li et al. [Li et al., 2015, Li et al., 2018] proposed a simplified thermal model, pre-
dicting steady temperatures in manycore systems given task-to-core mapping and power
consumption rates of the tasks. They integrated a mixed-integer linear programming (MILP)
model with the thermal model, for achieving the optimal task assignment that results in the
lowest chip peak temperature. If the optimal task-to-core assignment stays within the safe
temperature limit, they further propose a temperature-constrained task selection (TCTS) al-
gorithm aimed at optimizing performance within the safe temperature threshold.

The mapping algorithm requires several inputs, including the computation demand
of the tasks set for mapping, the available voltage and frequency levels of the system, the
power consumption of the cores operating at each frequency, and the thermal model of the
system. To achieve runtime temperature estimation, the authors propose a simplified version
of the HotSpot [Huang et al., 2006] thermal model which necessitates scaling factors. These
scaling factors need calibration through repeated executions of the HotSpot with random
power samples to reduce the error caused by this simplified model. The algorithm uses the
proposed thermal model to minimize the system peak temperature, searching for the best
task-to-core assignment by solving the MILP formulation.

Finally, this work proposes the TCTS algorithm, exemplified in Figure 4.5. The
purpose of this algorithm is to select the best set of tasks that can be completed in the
system without crossing the safe temperature threshold. This precaution applies even when

74

the optimal mapping discovered by the MILP algorithm surpasses the peak temperature of
the safe constraint.

Figure 4.5: Illustration of TCTS algorithm [Li et al., 2018].

The methodology behind the TCTS algorithm relies on a greedy selection process.
It delays tasks with higher computing demands until it reaches a critical point. This point,
depicted in Phase 1 of Figure 4.5, is where all remaining tasks can be maintained within
the thermal constraint. Beyond this point, the algorithm tries to discard tasks with lesser
performance demands to maximize the system’s throughput within the safe temperature
limit. This is presented in Phase 2 of Figure 4.5. The authors provide evidence in the paper
to prove that this greedy algorithm also determines the optimal solution to define which tasks
require delay in order to use the system at its full capacity.

The results in this paper primarily illustrate the accuracy of the thermal model. They
also serve to compare the MILP-based mapping with random and continuous mapping, by
measuring the peak temperature achieved by each mapping for each computation demand.
In comparison with results extracted from HotSpot [Huang et al., 2006] simulations, the
proposed thermal model results show a maximum error of 0.31°C in temperature prediction.

The mapping results have taken into consideration a system with 16 Alpha 21364
cores arranged in a 4x4 grid, with McPAT [Li et al., 2009] estimating the power consump-
tion of tasks. These results indicate an average temperature reduction of 2.98°C when
comparing the proposed technique with random mapping, and 4.59°C when compared with
continuous mapping. This shows that TCTS has enabled the execution of more tasks within
the safe temperature limit.

75

4.7 LF: Longevity Framework

Rathore et al. [Rathore et al., 2016] propose a task mapping technique that con-
strains performance to enhance lifetime reliability by mitigating negative-bias temperature
instability (NBTI) and taking into account on-chip process variation. The approach begins at
design time, where the Threshold Accepting Simulated Annealing (TASA) algorithm [Dueck
and Scheuer, 1990] is used to identify a Pareto-optimal mapping that maximizes the mean
time to failure (MTTF) while satisfying throughput constraints. In simpler terms, the TASA
algorithm helps to map tasks to cores in a way that not only extends the maximum MTTF
but also meets throughput requirements.

At runtime, the strategy proactively reassigns tasks from aging hotspots to healthier
cores that can meet the performance constraints, thereby accommodating them. Sensors
in situ monitor core aging due to NBTI [Singh et al., 2011]. The researchers conducted
experiments on a 16-core manycore system with process variations, and the results show
that the design-time optimization leads to improvements of up to 54% in lifetime. Moreover,
the runtime phase ensures that the MTTF remains above the levels achieved during the
design-time phase.

Rathore et al. [Rathore et al., 2018, Rathore et al., 2019b] proposed HiMap, a dy-
namic, hierarchical mapping approach designed to maximize the lifetime reliability of many-
core systems. This approach also satisfies performance, power, and thermal constraints.
HiMap is both process variation-aware and aging-aware. It efficiently determines the op-
timal mapping and placement of dark cores to boost the system’s lifetime reliability while
adhering to performance, thermal, and power constraints, employing a two-level hierarchical
strategy.

The first level identifies a cluster of cores suitable for mapping an application. At
the second level, the approach ensures uniform aging within the cluster. It accomplishes
this by assigning threads that cause more aging to relatively healthier cores. Additionally,
the strategy utilizes dark cores interleaved within the cluster for thermal mitigation. The
authors focus solely on aging due to electron migration (EM), as it represents one of the
primary aging phenomena in manycore systems.

Rathore et al. introduce the Longevity Framework (LF) in [Rathore et al., 2021].
The LF combines the previously suggested hierarchical mapping approach, HiMap, with
per-core Voltage-Frequency (VF) selection. The per-core VF selector utilizes the principle
that selecting the minimum frequency level capable of meeting a task’s performance re-
quirements when mapping to a core optimizes for aging minimization and lifetime reliability
maximization.

The manycore system consists of several cores grouped into blocks for managing
the complexity and scalability of mapping exploration (see Figure 4.6(a), which depicts a 64-

76

Figure 4.6: Illustration of Blocks and Application Clusters with DRM (Dynamic Lifetime Reli-
ability Manager) [Rathore et al., 2018].

core system with 2x2 sized blocks). These blocks are organized hierarchically into clusters,
and the system maps the threads of an application to these clusters (as shown in Figure
4.6(b), where 4 clusters have 4 applications mapped onto them). In-site sensors measure
the temperature on each core. One of the cores runs the DRM (Dynamic Lifetime Reliability
Manager) application, which conducts the mapping exploration at the end of each epoch,
in parallel with application execution. The DRM evaluates aging and Mean Time to Failure
(MTTF) at the close of every epoch, considering factors such as core process variation,
temperature, and aging. Additionally, it maintains an aging database that includes per-core
aging data, frequency, and health status.

The authors performed experiments using the Snipersim manycore simulator [Heir-
man et al., 2012], which was interfaced with the McPAT power simulator [Li et al., 2009], the
Hotspot thermal simulator [Zhang et al., 2015], and tools for aging and MTTF assessment.
They updated the Hotspot leakage model to include a process variation-aware adaptation
of the temperature-dependent leakage model presented in [Chaturvedi et al., 2012]. They
conducted the experiments on systems with 64 and 256 Nehalem cores and used applica-
tions from [Woo et al., 1995] and [Bienia et al., 2008]. They compared the results with two
aging-aware mapping approaches: Hayat [Gnad et al., 2015] and Reliability-aware Mapping
(RM) [Haghbayan et al., 2016]. The authors claim that their results for the 64- and 256-core
systems validate HiMap’s effectiveness and demonstrate significant improvements over the
current state-of-the-art.

4.8 Hard and Soft Error-aware

Kim et al. [Kim et al., 2017] propose new techniques for optimizing energy use
and extending the lifetime of emerging dark silicon manycore microprocessors, taking into
account both long-term reliability effects, such as hard errors, and transient soft errors. They
utilize a proposed physics-based electromigration (EM) reliability model [Huang et al., 2014]
to predict reliability issues caused by EM. To enhance EM-induced lifetime and save energy,

77

they employ an adaptive Q-learning-based method, which is well-suited for dynamic runtime
operations due to its ability to provide cost-effective, yet high-quality solutions. Additionally,
they use a mixed-integer linear programming (MILP) method, which often results in better
solutions at higher computational costs. To increase the microprocessors’ lifetime, they
implement actions such as DVFS and power gating.

Figure 4.7: Q-Learning Model Utilizing a Reliability-Aware Dark Silicon Framework: AVF
represents the Architecture Vulnerability Factor; SOFR denotes the Sum of Failure Rates;
EM stands for Electromigration; SER indicates the Soft Error Rate; CPI means Cycles Per
Instruction [Kim et al., 2017].

Figure 4.7 presents the Q-learning reliability-aware lifetime/energy optimization frame-
work. The framework comprises an environment that houses the manycore system, along
with the Q-learning algorithm that serves as the learning agent. This learning agent ac-
quires the state of the environment, computes the penalty function, and then determines the
subsequent action to take. The authors evaluated the proposal by using the Sniper simula-
tor ([Heirman et al., 2012]) designed for manycore systems, with two benchmarks: PARSEC
([Bienia et al., 2008]) and SPLASH-2 ([Woo et al., 1995]). For power estimation, they utilized
McPAT ([Li et al., 2009]), and to model thermal effects, they employed HotSpot ([Zhang et al.,
2015]). The authors claim that their proposed methods effectively optimize performance and
lifetime in a 64-core system while considering both soft and hard reliability constraints.

78

4.9 LBRM: Lifetime Budgeting Reliability Management

Wang et al. [Wang et al., 2018] propose a runtime application mapping scheme
called Lifetime Budgeting Reliability Management (LBRM). This scheme employs a borrow-
ing strategy to enhance the throughput of manycore systems within a given lifetime con-
straint. They begin by categorizing applications into two groups: communication-intensive
and computation-intensive. Following classification, they map communication-intensive ap-
plications to tight, near-square regions to reduce communication costs. In contrast, they
distribute computation-intensive applications across dispersed regions to prevent core over-
stressing (see Figure 4.8).

Figure 4.8: Diagram of neighborhood node allocation including two subroutines: (1)
communication-biased mapping, suitable for communication-intensive applications, and (2)
computation-biased mapping, ideal for computation-intensive applications [Wang et al.,
2018].

The implementation of the borrowing strategy involves a two-level controller that
uses application mapping to manage the lifetime reliability and performance. This controller
decides whether the incoming application is mapped or enqueued. At the first level, the
long-term controller organizes applications into batches, with each batch holding up to N
applications. Upon the arrival of a new application, the controller adds it to the current batch
if it has fewer than N applications; otherwise, the application goes into the next batch.

At the second level, the short-term controller determines the timing and method for
mapping the next application in the current batch. Each controller bases its decisions on the
lifetime budget allocated to each core. The long-term controller will only release the next
batch if the system’s total budget is positive. Meanwhile, the short-term controller considers
each core’s budget when selecting the mapping position and deciding when to release it.

79

The experiments were performed using an in-house manycore simulator. The
power consumption was modeled with McPAT [Li et al., 2009]. They applied the HotSpot
thermal model [Zhang et al., 2015], assuming the existence of in-situ thermal sensors. For
calculating the aging rate, they utilized CALIPER [Bolchini et al., 2014]. To evaluate the
proposed mapping schemes, they employed both synthetic (DAGGEN [Suter, 2013]) and
realistic (video processing applications [Bertozzi et al., 2005]) task graphs. The LBRM pro-
posal was compared with the state-of-the-art lifetime-constrained scheme named DSMR
[Haghbayan et al., 2016], as well as the lifetime-agnostic runtime mapping called MAPPRO
[Haghbayan et al., 2015]. Their experimental results revealed that, in comparison to the
state-of-the-art lifetime-constrained mapping, the proposed mapping scheme enhances the
throughput of manycore systems by an average of 26% for synthetic task graphs and by
20% for realistic task graphs, all the while maintaining lifetime reliability within the estab-
lished constraints.

4.10 Run-time Resource Management for Multiple Aging Mechanisms

Haghbayan et al. [Haghbayan et al., 2020] proposed a thermal-cycling-aware dy-
namic reliability management (DRM) approach for shared memory manycore systems run-
ning multi-threaded applications. This approach is novel because it incorporates Thermal
Cycling (TC) awareness—unlike past approaches that focused solely on adhering to the
power budget to prevent aging effects.

Haghbayan et al., in [Haghbayan et al., 2023], incorporate the Electromigration
(EM) effect in their work. In this paper, the authors propose a lifetime reliability-aware run-
time resource manager for conflicting requirements in both the short-term and long-term.
The authors highlight that resource assignment decisions can have immediate effects on
performance and power consumption, but may not have an immediate impact on lifetime
reliability, which changes slowly over time. They also argue that mitigating only one aging
mechanism, such as EM, may negatively affect other mechanisms, such as TC.

The architecture, shown in Figure 4.9, integrates with the operating system run-
ning on top of the manycore and includes four main modules: the RA Mapping unit, RA
Scheduling unit, RA Dynamic Power Manager (DPM) unit, and the new Reliability Analysis
unit. The Reliability Analysis unit estimates the aging status of cores based on tempera-
ture measurements and a stochastic lifetime reliability model. The other modules, referred
to as Reliability-Aware (RA) units, use this information along with performance and power
consumption considerations to make resource allocation decisions.

Reliability Analysis unit estimates the reliability status of each core in the archi-
tecture at the current time w.r.t. the two considered aging mechanisms (EM and TC). This
module receives the temperatures of each core as inputs, provided by temperature sensors

80

Figure 4.9: The run-time reliability-aware resource manager [Haghbayan et al., 2023].

at a fixed sample rate of 2 Hz. Reliability values are estimated once every long-term period
(from 1 up to 2 hours).

The identifies a region of cores that are proximal in the grid to be used for the
execution of a new application, associating this region to the incoming application, which is
also known as a cluster. This is performed whenever there is a new application waiting in
the request queue and some idle core is available. Otherwise, it is postponed until some
running application terminates and releases occupied cores, making them available for an
application waiting in the execution request list. The heuristic uses three affinity metrics to
define the application cluster, (i) Stress Factor (SF), (ii) Vacancy Reliability Factor (VRF),
and (iii) Memory Factor (MF).

The SF (Stress Factor) is a per-core metric that estimates the impact of aging on
every individual core due to the execution of a newly incoming application. The authors
calculate this value by performing a weighted sum that considers each aging mechanism.
This calculation is based on the steady-state temperature estimation for the application that
is about to execute on the system. To obtain the temperature estimation at runtime, the au-
thors use a state-of-the-art technique [Zhang et al., 2018], a multi-layer perceptron (MLP).
The MLP takes into account the current system map and the application’s features, such
as the number of integer and floating-point instructions and the number of accesses and
misses in L1/L2 caches, among other characteristics known in advance. The VRF mea-
sures how evenly distributed the idle cores are within a candidate cluster; a lower dispersion
signifies a preferable cluster configuration. Lastly, the MF is a metric designed to place
memory-intensive applications close to the memory access routers. Less memory-intensive
applications can be located farther away from these routers.

81

Experimental results demonstrate that the proposed approach improves the aver-
age Mean Time To Failure (MTTF) by at least 17% for EM and 20% for TC while maintaining
the same performance level and ensuring adherence to the power budget.

4.11 Hot-Trim

Zhang et al. [Zhang et al., 2023] present a DRM and DTM framework, Hot-Trim,
specifically designed for multicore processors. The framework aims to enhance thermal per-
formance and reliability by considering hotspots developed at runtime due to task workload.
The authors claim that traditional DTM techniques, which rely on on-chip thermal sensors,
may not fully capture the true distribution of hotspots, leading to less-than-optimal resource
management decisions. Hot-Trim addresses this gap by employing a machine learning-
based model to map and predict the occurrence of hotspots in real-time, allowing better task
allocation and migration decisions using the trained model.

The paper takes into consideration three VLSI wear-out effects: Electromigration
(EM), Negative Bias Temperature Instability (NBTI), and Hot Carrier Injection (HCI). Authors
consider these mechanisms to be central as they affect the overall lifetime of multicore pro-
cessors. For accurate modeling and simulation of these effects, the authors use LifeSim
[Rohith et al., 2018], an open-source tool.

Furthermore, the researchers employed a thermography system to measure the
temperature of the processor cores, presented in Figure 4.10. This allows them to collect
spatially precise thermal data that, when compared to sensing temperatures, reveals that
sensor-provided temperatures can significantly differ from the hottest points within cores.

Figure 4.10: Infrared thermography system [Zhang et al., 2023].

82

The proposed Hot-Trim framework has two key components: a detector model for
within-core hotspot prediction and a management controller that makes task allocation. The
detector model uses metrics from Intel’s Performance Counter Monitor (IPCM) and the ther-
mography data to train the multi-layer perceptron (MLP) neural network to predict the power
dissipation considering the monitoring data. To perform task allocation, Hot-Trim introduces
a heuristic algorithm that distributes tasks to preserve core reliability and manage temper-
ature. Tasks that induce higher power peaks at hotspots have the highest priority and are
allocated to cores to minimize wear-out effects.

The authors validated Hot-Trim efficacy on an Intel Core i7 quad-core processor,
with benchmark suites PARSEC-3.0 and SPLASH-2 driving the analysis. Compared to con-
ventional methods, such as Linux’s default scheduler and temperature-based task mapping,
Hot-Trim can lower temperatures and enhance the reliability of the processor.

4.12 Lightweight Temperature Model

Castilhos et al. [Castilhos et al., 2016] propose a lightweight, software-based run-
time temperature model for manycore systems. The model simplifies the HotSpot [Huang
et al., 2006] model, enabling it to run on an embedded processor while aiming to minimize
performance overhead. This model is designed for dynamic temperature management in
manycore systems during runtime, prioritizing execution time, and accepting some loss of
precision. The authors implemented and tested the model on a NoC based system provid-
ing cycle-accurate RTL description and featuring integrated power monitoring [Martins et al.,
2014].

The thermal characterization of the target platform comes from the HotSpot RC
model. In this work, the temperature calibration process makes four key assumptions to
obtain a simplified model. The calibration process begins with observing the heat flow when
maximum power is applied to a PE. Figure 4.11 shows the measured temperature changes
over time in a PE and its neighboring units. From the observed heat flow, researchers con-
clude: (i) a processor’s thermal influence primarily affects its immediate lateral and diagonal
neighbors, and (ii) thermal inertia is constrained within a 100 ms timeframe (20-time win-
dows of 5 ms each). They additionally note that (iii) temperature and power have a linear
relationship, allowing for the discretization of power values into intervals and assigning a cor-
responding temperature to each. Finally, they make the assumption (iv) to use only integer
values rather than floating-point numbers, which enables faster computations.

They discretize and store the transient temperature and power behavior of each
application in a lookup table (LUT) for the target PE and its direct neighbors. To estimate
a PE’s temperature, they record all the power consumption values over a transient effect
window (20 samples) and then query the thermal behavior LUTs to determine the impact of

83

Figure 4.11: Effect of temperature (◦C) over the time in a PE and its neighbors [Castilhos
et al., 2016].

each sample. The author calculates the final estimated temperature for each PE by adding
the transient effect of the target processor, which pertains to its power consumption, to the
effects of all neighboring PEs, considering their power consumption.

The model produced is simple, requiring moderate memory, and capable of running
fast enough, allowing real-time temperature monitoring in manycore systems. It has been
tested using various configurations, up to 36 cores. Researchers simulated the proposed
technique on a publicly available NoC-based MPSoC [Carara et al., 2009], incorporating a
clock cycle-accurate model developed in SystemC. For a system with 36 PEs, the model
can estimate temperatures in just 0.35ms when running at 100MHz. When compared with
the HotSpot model, the proposed model has an average error of 3.52%, with the maximum
error reaching 10%.

4.13 TEA: Temperature Estimation Accelerator

Silva et al. [Silva et al., 2019] proposed a fine-grained (core-level) temperature
monitoring system for manycore systems, which includes a hardware accelerator to estimate
the system’s temperature. Each core’s thermal estimation requires centralized computation
due to the inherent data dependency caused by the influence of neighboring temperatures
on the thermal models. Therefore, power monitoring samples from all cores must be col-
lected simultaneously before estimating the temperature. The power monitoring method is
hierarchical to minimize traffic on the NoC. Each core sends its power information to its re-
spective manager, which then forwards it to the Temperature Estimation Accelerator (TEA).

84

The TEA computes the temperature of each core and sends the estimated temperature data
to the global manager.

Figure 4.12 presents the TEA architecture, which contains six main modules. The
Network Interface (NI) handles packet reception, identifies the sender, saves power data in
the correct location, and assembles packets with the resultant temperature to send to the
manager. The Temperature Registers (Temp) store the steady and current temperature of
every thermal node, while the Power Registers (Power) store the received power samples.
The Multiply-Accumulate (MAC) is an arithmetic module that performs the thermal estima-
tion. The Matrices Memory stores the thermal model matrices. Additionally, TEA includes
two finite-state machines that facilitate interaction with the NI and MAC.

Figure 4.12: Overview of the TEA Architecture. NI stands for Network Interface, MAC for
Multiply-Accumulate Unit, S for Slave, and M for Master [Silva et al., 2019].

The experiments were conducted on an in-house manycore system described with
cycle-accurate precision in SystemC. The results were compared with HotSpot [Zhang et al.,
2015], showing an average error of 0.02 degrees and a maximum error of 0.2 degrees. This
technique paved the way for our work by enabling run-time accurate temperature monitoring.

In [Silva et al., 2020], the author proposes a dynamic thermal management (DTM)
strategy based on a Proportional-Integral-Derivative (PID) control loop. This PID control
loop uses temperature measurements provided by TEA. The author suggests three thermal-
aware policies leveraging the PID: (i) application admission, (ii) task mapping, and (iii) task
migration. These policies aim to prevent hotspots during application execution. The author
evaluates their approach against patterned mapping [Yang et al., 2017b, Liu et al., 2018]
and MORM [Martins et al., 2019], showing that their proposed heuristics achieve a reduction
of up to 6.8% in the peak system temperature for scenarios involving high workloads—a
notable gain in managing temperature challenges.

85

4.14 State of the Art Discussion

Most of the works reviewed propose strategies to mitigate power density issues
in manycore systems. Five of these studies [Pagani et al., 2017, Yang et al., 2017a, Yang
et al., 2017b, Liu et al., 2018, Mohammed et al., 2020] introduce architectures that employ
a dark silicon patterning approach. This technique involves mapping tasks in a chessboard
pattern, which enhances heat transfer between dark (inactive) and active cores. Additionally,
these studies describe a communication strategy that helps minimize the impact of spread
mapping on network latency. However, these works depend on complex temperature predic-
tions calculated by MatEx to make real-time mapping decisions. This dependency may slow
down the scheduler by tens of milliseconds. While the patterning approach can lead to sys-
tem underutilization, the results presented in Chapter 6 of this Thesis demonstrate that our
proposal successfully reduces the peak average temperature compared to the patterning
approach.

Boosting techniques also appear in research concerning thermal management, as
seen in [Pagani et al., 2015b]. Moreover, M-Oscilating [Sha et al., 2018] is a solution that
mitigates the problem of having a limited number of speed steps to control the power con-
sumption of tasks. In this work, no boosting technique is applied because our method inher-
ently considers the highest voltage-frequency (VF) combination. This approach enhances
the application performance, and our mapping and migration ensure a uniform thermal dis-
tribution.

Control theory, as presented by [Silva et al., 2020], offers a viable approach to
DTM. The PID control loop allows the system manager to take into account the current tem-
perature, historical temperature, and temperature trends of each PE. By incorporating these
elements into the heuristic for task allocation/migration, the system manager can reduce
peak temperatures and, consequently, enhance system reliability, according to the authors’
claims. However, the main drawback of this approach is that it requires continuous com-
putation of a PID score for each PE at runtime, thereby compromising the scalability of the
technique.

Several related studies suggest the use of dynamic reliability management (DRM)
[Wang et al., 2018, Rathore et al., 2019b, Liu et al., 2019, Rathore et al., 2021, Hagh-
bayan et al., 2020, Haghbayan et al., 2023, Zhang et al., 2023]. DRM strategies employ
the expected lifetime, derived from a theoretical model, as the primary metric for system
management. Some DRM research accounts for thermal cycling as a controllable metric
[Haghbayan et al., 2020], while others focus on electromigration [Kim et al., 2017], and
others also consider the time-dependent dielectric breakdown [Liu et al., 2019, Haghbayan
et al., 2023] or on negative bias temperature instability [Rathore et al., 2019b, Zhang et al.,

86

2023]. Only one work accounts for process variation [Rathore, 2020] and one for hot carry
injection [Zhang et al., 2023].

It is noteworthy that [Liu et al., 2019] recommended an offline mixed-integer linear
programming (MILP) method, and [Haghbayan et al., 2020, Haghbayan et al., 2023] claim
for a more conventional heuristic approach to address thermal cycling issues. On the other
hand, three works have introduced learning techniques for system management [Kim et al.,
2017, Rathore et al., 2019b, Zhang et al., 2023]. Zhang et al. propose the use of an
MLP neural network to predict the hotspot formation due to task consumption of resources.
Rathore et al. propose a Q-learning approach with a fixed search space; her heuristic selects
if the application will be mapped into fast or slow cores in a heterogeneous system to reduce
the aging without penalizing the performance. The contact with those authors is the main
source of inspiration for the FLEA heuristic, presented in Chapter 5.

Other related works do not focus on DRM or DTM proposals [Castilhos et al.,
2016, Silva et al., 2021], which have collaborated for this study. Castilhos et al. [Castil-
hos et al., 2016] introduce a lightweight temperature estimation model that is also used
in application mapping. However, this model is not scalable because its execution time is
O(n2), where n represents the number of Processing Elements (PEs). Within the premises
of the estimation model, Castilhos et al. further observe heat dissipation around a given PE;
a topic that receives additional discussion during the FLEA motivation in Section 5.1.1. Ad-
ditionally, Silva et al. propose a key component utilized in this study: the Thermal Estimation
Accelerator (TEA), which estimates the temperature of each core at runtime.

Table 4.1 summarizes the works reviewed and classifies them according to the
design goals for power, temperature, or reliability management. The first column lists the
authors and their references. The second column details each work’s design goal. The
third column differentiates how the proposed architecture acquires temperature data. The
fourth column itemizes the management techniques employed to achieve these objectives,
identifying whether each technique utilizes DVFS, mapping, and migration. The fifth column
lists the reliability-related effects considered in the work. Lastly, the sixth column outlines
the experimental setup that the authors employed to simulate the architecture for their ex-
periments.

Most studies use high-level architectural models with tools such as GEM5, Nocu-
lator, or Snipersim, which emulate the instruction set and communication structure of the
target architecture, and McPAT, to evaluate processor power consumption. These high-level
models are prevalent in computer architecture research; however, they make assumptions
that can limit their effectiveness in power management strategies. Notably, these models do
not account for the variable power consumption behavior of each task, even when operating
at the same voltage and frequency. This oversight can lead to significant errors in power
prediction, as noted by [Xi et al., 2015]. Additionally, the accuracy of power consumption
data related to processors and NoC is a concern with these models. To mitigate these ac-

87

Table 4.1: State-of-art summary (DVFS: includes power- and clock-gating techniques).

Autor Design Goals
Temperature Actuation

Aging Effects Modeling
Sensor Estimation DVFS Mapping Migration

Lei Yang 1

[Yang et al., 2017a]

[Yang et al., 2017b]

Peak Temperature

Communication Latency
X X X X -

McPAT(Power)

GEM5(Architecture)

MatEx(Temperature)

Weichen Liu

[Liu et al., 2018]

Peak Temperature

Communication Latency

Communication Contention

X X -

McPAT(Power)

GEM5(Architecture)

MatEx(Temperature)

Santiago Pagani

[Pagani et al., 2017]

[Pagani et al., 2015b]

Peak Temperature

Power Bugdet
X X X -

Custom Thermal Model

McPAT(Power)

GEM5(Architecture)

HotSpot(Temperature)

Shi Sha

[Sha et al., 2018]

Temperature Constraint

Performance
X X X -

Custom Thermal Model

McPAT(Power)

HotSpot(Temperature)

Mengquan Li

[Li et al., 2015]

[Li et al., 2018]

Temperature Constraint X X X -

Custom Thermal Model

McPAT(Power)

HotSpot(Evaluation)

Vijeta Rathore

[Rathore et al., 2016]

[Rathore et al., 2018]

[Rathore et al., 2019b]

[Rathore et al., 2021]

Lifetime reliability

Power Budget

Performance

X X X X

Process Variation

NBTI

EM

McPAT(Power)

Snipersim(Architecture)

HotSpot(Temperature)

Taeyoung Kim

[Kim et al., 2017]

Lifetime reliability

Energy
X X EM

McPAT(Power)

Snipersim(Architecture)

HotSpot(Temperature)

Liang Wang

[Wang et al., 2018]

Lifetime reliability

Performance
X X EM

McPAT(Power)

CALIPER(Aging)

HotSpot(Temperature)

Mohammad Haghbayan

[Haghbayan et al., 2020]

[Haghbayan et al., 2023]

Lifetime reliability

Performance
X X X X

EM

TC

Noculator(Architecture)

McPAT(Power)

Multi-layer Perception(Temperature)

Jinwei Zhang

[Zhang et al., 2023]

Temperature Management

Lifetime Reliability
ML Model X X

EM

NBTI

HCI

Real System

IPCM(Power)

Thermography

LifeSim(Reliability)

Guilherme Castilhos

[Castilhos et al., 2016]

Lightweight Software for

Temperature Estimation
X X -

Custom Thermal Model

Cycle-accurate simulation

Low level power analysis

HotSpot(Evaluation)

Alzemiro da Silva

[Silva et al., 2019]

[Silva et al., 2020]

Temperature Monitoring

Thermal Management
X X X X -

Cycle-accurate simulation

Low level power analysis

Proposal

Temperature Constraint

Performance

Lifetime reliability

X X X X

EM

SM

TDDB

TC

NBTI

Abstract simulation (OVP)

Long time simulation

Accelerator(Temperature)

MatEx(Reference Model)

curacy concerns, our platform was developed based on Memphis [Ruaro et al., 2019], an
in-house manycore platform at RTL-level, allowing for the characterization of the router and
instructions energy consumption.

In terms of obtaining real-time temperature data, most DTM research relies on
some form of temperature estimation. At the same time, studies focusing on DRM tend to
assume that temperature is available through in-situ sensors. We observe two exceptions;
firstly, [Zhang et al., 2023] employs a thermography system capable of precisely acquiring
temperature from the die. And in [Haghbayan et al., 2023], that employs a multi-layer per-

88

ception (MLP) solution to estimate the temperature of PEs in software. The major issue with
temperature estimation is that it is often not scalable. Even the MLP solution has scalability
limitations, with an estimated overhead of 0.57 ms for each prediction, resulting in a total
delay of 344.1 ms to perform the 600 predictions necessary to allocate a single applica-
tion, as reported in the example scenario [Zhang et al., 2018]. This constant thermal status
monitoring, which plays a crucial role in system management, is frequently overlooked in
related literature. As will be discussed in Chapter 5 and shown in Chapter 6, our proposal,
once trained, can perform mappings without considering temperature, showing similar re-
sults to management techniques that have temperature information. However, temperature
estimation is still necessary to enable migrations.

After reviewing the current state-of-the-art for DTMs and DRMs, we identified the
following gaps in the existing literature:

• Although some studies suggest a patterning approach that could avoid system utiliza-
tion, others depend on complex heuristics intended for design-time execution, which
require deep foreknowledge of the workload. We found no studies offering a lightweight
heuristic, as patterning, capable of efficiently handling workloads that occupy more
than 50% of the system while interleaving active and inactive cores cannot seamlessly
avoid hotspot creation.

• The works we reviewed specialize either in thermal management or in reliability man-
agement. None of the works propose thermal management with a lifetime reliability
analysis. Furthermore, other studies consider on average only two aging effects.

The following Chapter introduces the heuristics we employ to manage applications
within the system. These heuristics aim to maintain the system temperature within the pre-
scribed limits and reduce chip degradation caused by various wear-out effects, thereby ad-
dressing the gaps identified earlier.

89

5. REINFORCEMENT LEARNING-BASED TASK MAPPING

This Chapter presents the second and main original contribution of this Thesis.
The proposed mapping technique, Failure In Time-aware Learning Heuristic for application
Allocation (FLEA), is based on reinforcement learning (RL) and aims to enhance the lifetime
reliability of manycores when executing dynamic workloads. FLEA employs a lookup table
trained at design time to facilitate the task-to-core assignment, thereby addressing the critical
aspect of lifetime reliability. The system manager uses FLEA during application mapping and
task migration processes. It is worth noting that while other mapping strategies discussed
in [Silva et al., 2020] and [Rathore et al., 2019a] can also handle dynamic workloads, they
need continuous computation to update the PID scores or tables that guide the mapping
strategy.

Part of this Chapter was published at:

Iaçanã Ianiski Weber, Vitor Balbinot Zanini and Fernando Gehm Moraes.
FLEA - FIT-Aware Heuristic for Application Allocation in manycores based on Q-Learning.
In Proceedings of the Brazilian Symposium on Computing Systems Engineering (SBESC) 2023.
http://dx.doi.org/10.1109/SBESC60926.2023.10324296

This Chapter is structured as follows. Section 5.1 provides insight into the research
motivation, presenting the driving forces behind the development of the FLEA technique.
Section 5.2 formally defines the research problem that FLEA seeks to address. In Sec-
tion 5.3, the methodology employed to solve the identified problem is comprehensively de-
scribed.

5.1 Motivation

Managing the manycore system temperature is crucial for enhancing system life-
time reliability [da Silva, 2021]. Several proposals have emerged in the literature that use
machine learning techniques, particularly Reinforcement Learning (RL), for Dynamic Ther-
mal Management (DTM). Das et al. [Das et al., 2014] employ Q-learning to build a Q-table
that indexes system states representing all possible task arrangements within the system.
However, a significant challenge arises due to the exponential growth of the action space
as the system size increases, rendering their proposal unscalable. In contrast, Rathore et
al. [Rathore et al., 2019b] present an alternative approach by creating a Q-table with a
fixed action space. They classify applications based on power, temperature, and computa-
tion requirements, and RL is used to train the Q-table for optimal decision-making regarding
whether an application should run on a high or low-frequency core to maximize system
health. Nonetheless, Rathore’s method relies on embedded sensors in each core to pro-

http://dx.doi.org/10.1109/SBESC60926.2023.10324296

90

vide real-time data to the learning algorithm, potentially limiting scalability by requiring these
hardware components and potentially hindering the scalability of the manycore system.

These works have inspired our research question: Is it feasible to develop a lightweight
and scalable reliability-aware mapping algorithm that operates independently of sensing
data? To answer this question, our solution has been driven by three fundamental con-
siderations:

I. the heating behavior (Section 5.1.1) within a specific Processing Element (PE) can be
attributed directly to two primary factors: (i) the amount of power dissipated by the PE,
and (ii) the thermal conduction emanating from neighboring PEs.

II. the numerous wear-out effects (Section 5.1.2) are intricately linked to the system’s
temperature.

III. the use of reinforcement learning (Section 5.1.3) as a scalable approach to establish
a connection between power consumption and task mapping, focusing on enhancing
system reliability.

5.1.1 The Heating Behavior

The heat generated by a specific PE during the execution of a given task is a func-
tion of the power dissipation of that PE. We periodically estimate the energy expended by
each PE, resulting in the power dissipation of the PE, which is determined by three distinct
components: (i) the energy consumed during memory accesses; (ii) the energy expended
on local communication with the NoC router, and the transmission of packets through the
PE, and (iii) the energy consumed by the RISC-V core responsible for executing task in-
structions. Figure 5.1 illustrates the resulting temperature after 20 seconds of executing
three tasks (τa,τb, and τc) mapped to the central PE (x = 5, y = 5) within an 11x11 many-
core configuration. It is important to note that the relative average power consumption of
each task follows the order: Pτ(a) < Pτ(b) < Pτ(c).

Figure 5.1(a) reveals a subtle temperature difference, wherein the central PE regis-
ters an approximate 1.5°C increase in temperature compared to the surrounding PEs. This
temperature distinction becomes more relevant in Figure 5.1(b), where the central PE ex-
hibits an average temperature elevated by 5°C relative to its counterparts. Finally, in Figure
5.1(c), the central PE demonstrates an average temperature of 8°C higher than the sur-
rounding PEs. Those scenarios demonstrate that the temperature is directly affected by the
task power consumption being executed in the PE.

It is essential to consider that the heat generated by a PE during task execution
dissipates in three dimensions. This thermal behavior is captured by Equation 5.1, which

91

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

50

52

54

56

58

60

62

64

Te
m

pe
ra

tu
re

 (°
C

)

(a)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

50

52

54

56

58

60

62

64

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

50

52

54

56

58

60

62

64

Te
m

pe
ra

tu
re

 (°
C

)

(c)

Figure 5.1: Thermal shots of an 11x11 manycore system. Each thermal map corresponds
to the execution of τa (a), τb (b) and τc (c). The colors indicate the temperature of the PEs,
with warmer colors corresponding to higher temperatures.

characterizes the heat dissipation of a homogeneous body emitting thermal energy [Lien-
hard, 2006].

1
α

∂u
∂ t

=

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂z2

)
+

1
k

q (5.1)

where:

• u = u(x ,y ,z, t) is the temperature as a function of space and time;

•
∂u
∂ t

is the rate of change of temperature at a point over time;

•
∂ 2u
∂x2 ,

∂ 2u
∂y2 , and

∂ 2u
∂z2 are the second spatial derivatives (thermal conductions) of tem-

perature in the x , y , and z directions respectively;

• α ≡ k
cpρ

is the thermal diffusivity, which is a material-specific quantity depending on the
thermal conductivity k , the specific heat capacity cp, and the mass density ρ;

• q = q(x ,y ,z, t) is the heat generation function for each point in the space and time.
This value is positive and nonzero when the PE is turned on and zero if the PE is in an
off state.

The thermal model of a manycore system is not homogeneous and must consider
different parts, such as the heat spreader, the heat sink, the interface material, the heat gen-
erated at each PE, the temperature exchange with the environment, and other elements that
affect the temperature. Each of those parts is considered a homogeneous body, modeled
by Equation 5.1. Huang et al. [Huang et al., 2006] propose a solution based on RC thermal
networks to solve the first-order differential equation that models the iterations between the
manycore system and its cooling solution. Pagani et al. [Pagani et al., 2015a] further en-
hanced this solution, introducing a fast polynomial-time algorithm to efficiently compute all
transient temperatures from input power traces for any given time resolution without losing

92

accuracy. Finally, Alzemiro et al. [da Silva, 2021] proposed a hardware peripheral called
Temperature Estimator Accelerator (TEA). TEA considers a fixed sampling rate for power
traces, allowing it to solve the temperature problem for manycore systems at execution time
with an estimated error as low as 1%. As discussed in Chapter 2, we can simulate the
manycore and feed it with temperature estimations at runtime with the TEA embedded into
our simulator.

Several works [Pagani et al., 2015a, Pagani et al., 2014, Li et al., 2015, Li et al.,
2018, Silva et al., 2019, Yang et al., 2017a] highlight that when tasks are mapped to contigu-
ous regions, it may generate a hotspot in the system. Figure 5.2 presents a 11x11 system
executing one single task that is mapped in the central PE. The task is executing a simple
Bubble sort algorithm, without any communication. Warmer colors mean higher tempera-
tures. The central PE, that is executing the task, is running at 1GHz and every other PE is
in an idle state, running at 100MHz. The thermal shot presents the temperature of each PE
after executing for 20 seconds.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

54 54 54 54 54

54 55 56 55 54

54 56 62 56 54

54 55 56 55 54

54 54 54 54 54

52

50

52

54

56

58

60

62

64

Te
m

pe
ra

tu
re

 (°
C

)

Figure 5.2: Thermal shot of an 11x11 manycore system executing a single task mapped
to PE(5,5), after 20 seconds. The colors indicate the temperature of the PEs, with warmer
colors meaning higher temperatures.

The heat generated by the central PE is transferred through thermal conduction
to the adjacent PEs. This phenomenon becomes evident when we observe PEs far from
the central PE, such as PE(10, 10), which has a temperature of 51.98°C. PEs closer to the
central PE have higher temperatures, such as 56.26°C for the four orthogonal neighbors.
We observed a smaller thermal difference when comparing the temperatures of the PEs
located diagonally to the central PE. This behavior is expected, as the distance between the
midpoints of the diagonal PEs is greater than that between the midpoints of the orthogonal
PEs.

Figure 5.3 provides a visual representation of the thermal effects caused by four
tasks, using the Bubble sort task, which was previously used. These tasks are allocated

93

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

55 57 58 57 55

57 61 67 61 57

58 67 65 67 58

57 61 67 61 57

55 57 58 57 55

52

50

52

54

56

58

60

62

64

Te
m

pe
ra

tu
re

 (°
C

)

(a)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

56 58 57 58 56

58 65 61 65 58

57 61 60 61 57

58 65 61 65 58

56 58 57 58 56

52

50

52

54

56

58

60

62

64

Te
m

pe
ra

tu
re

 (°
C

)

(b)

Figure 5.3: Thermal shot of an 11x11 manycore system executing four tasks. In (a), the
four tasks are orthogonal to central PE. In (b), the four tasks are diagonal to the central
PE. The colors indicate the temperature of the PEs, with warmer colors meaning higher
temperatures.

around the central PE in two distinct configurations: (a) {[6,5], [5,4], [5,6], [4,5]} with tasks
mapped orthogonally to the central PE, and (b) {[4,4], [4,6], [6,6], [6,4]} with tasks mapped
diagonally to the central PE. These two scenarios have a temperature difference of 5.25°C
in the central PE. In scenario (a), the central PE’s temperature surpasses that depicted in
Figure 5.2, even if the central PE is in an idle state. This difference arises due to the heat
conducted from the four tasks surrounding the central PE. In scenario (a), these tasks form
a contiguous area in contact with the central PE, promoting significant heat conduction.
Conversely, in scenario (b), where the tasks are diagonally positioned relative to the central
PE, the area of contact with the PE emitting heat is reduced, resulting in a comparatively
lower temperature increase. This observation motivates the exploration of techniques to
optimize the topological distribution of tasks within the manycore architecture to enhance its
thermal performance.

5.1.2 The Heating Influence on Reliability

In Section 3.3.1, we introduced the five wear-out effects considered in this work.
These effects encompass Electromigration (EM), Stress Migration (SM), Time-Dependent
Dielectric Breakdown (TDDB), Thermal Cycling (TC), and Negative Bias Temperature Insta-
bility (NBTI). Each of these effects is characterized by a mean-time-to-failure (MTTF) equa-
tion in which temperature directly influences the wear-out rate. To show this correlation, we
evaluated both scenarios presented in Figure 5.3 and assessed a PE operating in an idle

94

state without any load in its vicinity. By employing the aging models associated with these
effects, we derived estimations for the failures in time (FIT) attributable to the respective
aging mechanisms. The outcome of this analysis is presented graphically in Figure 5.4.

EM SM TDDB TC NBTI
0

1

2

3

4

5

N
or

m
al

iz
ed

 F
ai

lu
re

s
in

 T
im

e
(F

IT
)

Without near Load
Border Load
Diagonal Load

Figure 5.4: FIT estimation for the central PE (x = 5, y = 5), in idle state, in three different
conditions: (i) without any task being executed near it; (ii) with tasks allocated in the PE
border (Figure 5.3(a)); (iii) with tasks allocated diagonally to the PE (Figure 5.3(b)).

Figure 5.4 illustrates three distinct scenarios. The first scenario (i) depicts the
manycore system operating in an idle state without executing tasks. Scenarios (ii) and (iii)
correspond to the configurations outlined in Figure 5.3, with four tasks executing near the
central PE, positioned either orthogonally or diagonally to it, respectively. The graph demon-
strates that the increase in temperature directly impacts the number of failures experienced
by the device. The effect of the temperature increase varies, with a 28% increment for
TDDB and a 192% increase for TC when comparing scenarios (ii) and (iii). Even if the eval-
uated PE remains in an idle state, the heat generated by nearby PEs influences its reliability
degradation. However, estimating the FIT at runtime may represent a significant cost to the
manycore manager as every effect must be applied to each PE at every monitoring window.
Even with FIT information available, to our knowledge, there is no management technique
available that considers the FIT value in its cost function.

5.1.3 Scalability of Reinforcement Learning

Artificial neural networks (ANNs) have been explored in the context of manycore
systems; however, the task mappings obtained through supervised learning have shown
limited scalability. This limitation arises from the requirement of building a training dataset,
which can be particularly challenging to acquire for manycore systems. In contrast, unsuper-

95

vised learning is not a suitable alternative in this context, as its primary application is data
classification rather than task mapping. As a promising alternative, Q-learning emerges as a
model-free reinforcement learning technique that does not hinge on the availability of a train-
ing dataset, thereby offering more flexibility in the learning process. Furthermore, Q-learning
allows for optimizing reward functions, a feature well-suited for addressing manycore aging
concerns. Nevertheless, the scalable implementation of Q-learning for manycore systems
needs further exploration [Rathore, 2020].

Several RL-based resource management methods have been proposed in the lit-
erature, such as those discussed in Wang et al. [Wang et al., 2011], which present an
RL-based dynamic power management technique of selective sleep and running state of
the cores. Additionally, Lin et al. [Lin et al., 2014] proposed an RL-based technique for
managing power in a hybrid electric vehicle. Among these, Das et al. [Das et al., 2014] and
Rathore et al. [Rathore et al., 2019a] are the only ones that address the maximization of
lifetime reliability and perform task mapping. Therefore, they are the most relevant to the
proposed technique and thus were selected for motivational analysis.

Reinforcement Learning (RL) maintains a policy with the state-action pairs and
an associated objective score for each pair. In Das et al. [Das et al., 2014], the authors
consider the potential mappings as the action space, which can rapidly increase in size
given its exponential relation to the number of tasks and cores in a manycore system. To
mitigate this, Rathore et al. [Rathore et al., 2019a] consider the state space comprising a
set of application categories. With this arrangement, the action space is given by two times
the number of application categories, a constant figure.

Therefore, as the manycore system size increases, the solution proposed by Das
et al. [Das et al., 2014] grows exponentially with the number of cores because it creates a
new state-action pair for each possible mapping available. On the other hand, the solution
proposed by Rathore et al. [Rathore et al., 2019a] remains constant, at a small value. It
does not prune the action space, being smaller simply by construction. Unlike Das et al., it
does not define the mappings as its actions; instead, it considers certain mapping heuristics
as the actions.

Unlike both solutions, our proposal also does not generate all possible mappings,
as proposed by Das et al. because the scale is not feasible. Furthermore, our proposal
also differs from that presented by Rathore et al., as our Q-table will not say which heuristic
should be applied. Instead, our idea is based on classifying the available PEs for mapping
according to the task we want to map and the number of tasks allocated closer to the PE.

In this context, this Thesis combines hardware and software approaches to develop
a dynamic management solution. This solution incorporates a policy table, trained using Q-
learning, and a temperature monitoring system. The solution aims to efficiently manage
the manycore systems with dynamic workloads to increase reliability by decreasing system
aging.

96

5.2 Research Problem

As we discussed in Section 3.3, the Mean Time to Failure (MTTF) is an indicator
of system reliability. There are several methods for computing the MTTF. In this Thesis,
we employ two methods: (i) the sum of failure rates (SOFR), which considers the Failures
In Time (FIT) to be exponentially distributed over time, detailed at page 65, and (ii) the
lognormal distribution of FIT, detailed at page 66. Despite the differences in computation,
both methods take into account the FIT of each PE. In either method, the MTTF is inversely
proportional to the FIT of the PEs.

The objective of our management technique is to develop mapping and migra-
tion heuristics aimed at minimizing the FIT for each PE, thereby maximizing the system’s
lifetime reliability, denoted as MTTFsys. These heuristics must also satisfy the temperature
constraint Tx ,y ≤ Tthreshold ∀(x ∈ [1,X],y ∈ [1,Y]), where Tthreshold is the threshold tempera-
ture defined by the system designer.

5.3 FLEA Deployment

This section introduces the original contribution of this Thesis, designated as FIT-
aware Learning Heuristic for application Allocation (FLEA). The Q-learning algorithm is em-
ployed as the Reinforcement Learning (RL) method, selected for its simplicity and model-free
characteristic, meaning it operates without requiring a model of the environment. Compara-
tive analysis reveals that Q-learning outperforms other model-free RL algorithms like Monte
Carlo control and SARSA in key metrics: it has the lowest Root Mean Square (RMS) error,
highest speed of convergence, and largest average total reward return, according to Li et al.
[Li, 2023].

FLEA adds a lookup table in the manager PE, named Q-table. The Q-learning
populates the Q-table. The mapping and migration heuristics use the Q-table values (named
Q-values).

The Q-table is a matrix with r rows and c columns used to select the location of a
given task for the mapping and migration heuristics. Each row is addressed by the power
consumed by the task, or “task power category” (TPC), according to Definition 2. Each
column of the Q-table is indexed by a value defined by the thermal influence of the neighbors
of a given PE, named PE bin-state (PBS), according to Definition 3. The Q-learning training
phase determines the r ×c Q-values.

When a task arrives for allocation or is selected for migration, during the inference
phase, the manager PE traverses the manycore, calculating the PBS for each PEx ,y . The
manager PE accesses the Q-table using the task TPC as row index and the PEx ,y PBS as

97

column index. While it is traversing, it finds the available PE with the highest Q-value, which
is selected as the task destination.

Definition 2. Task Power Category (TPC) - Tasks are grouped into discrete classes accord-
ing to their average power profile. The power profile is obtained by running each application
multiple times in the manycore without any other applications running in the system and
without multitasking.

Figure 5.5 exemplifies the process of defining the TPC of each task. In the x-axis,
we have each task available, named τm,n where m is the application number (in this example,
the application set has seven applications), and n is the task number (in this example, each
task has up to eight tasks). The y-axis presents the average power consumption measured
in Watts (W). The graph shows the average power consumption of a set of 38 tasks.

1,
1

1,
2

1,
3

1,
4

1,
5

1,
6

1,
7

1,
8

2,
1

2,
2

2,
3

2,
4

3,
1

3,
2

3,
3

3,
4

4,
1

4,
2

5,
1

5,
2

5,
3

5,
4

5,
5

5,
6

6,
1

6,
2

6,
3

6,
4

6,
5

6,
6

6,
7

7,
1

7,
2

7,
3

7,
4

7,
5

7,
6

7,
7

Task

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

Po
w

er
 (W

)

Task Power Categories

p0
p1
p2

Figure 5.5: Average power consumption of tasks (τm,n | m ∈ [1,7],n ∈ [1,Nm]). Tasks are
classified into three categories, p0 comprises tasks with average power consumption up to
0.2mW , p1 tasks range from 0.2mW up to 0.4mW and p2 includes tasks that consume over
0.4mW .

In our example, tasks are grouped by the average power consumption in three
categories named p0, p1, and p2. Tasks with an average power consumption of up to 0.2mW
were assigned to p0, tasks with average power consumption ranging from 0.2mW up to
0.4mW comprise the p1 category, and tasks p2 encompass all tasks that consume over
0.4mW .

The key idea of grouping tasks is to generalize tasks with similar power consump-
tion requirements into a single entity, reducing the model complexity [Krishnan et al., 2022].
For the sake of simplification, in the previous example, the TPC groups were defined without
any particular method. However, during the experiments, we employed the k -means clus-
tering [Hartigan and Wong, 1979] to define the TPC groups. This way, each task’s TPC is
defined as the group with the nearest power consumption mean.

98

Definition 3. PE bin state (PBS) – is an index in the bin state table that represents the
distribution of tasks within the sphere of influence around a given PE. The sphere of influence
comprises the neighbor PEs surrounding a given PE.

The bin state table is defined at design time. It is constructed by generating the set
of every possible distribution of task power categories (TPC) within the defined sphere of in-
fluence. Exemplifying, the construction of the bin state table considered in our experiments
was done as follows: Firstly, the sphere of influence was defined to encompass only the
PEs that border the PEx ,y , because they represent the dominant source of outside heat in
the PEx ,y (as observed in Section 5.1.1). Therefore, in our example, the sphere of influence
of PEx ,y considers the set: {PEx+1,y , PEx ,y+1, PEx−1,y , and PEx ,y−1}. Next, every possi-
ble arrangement of tasks executing within the sphere of influence is generated, discarding
equivalent arrangements. Equivalent arrangements aggregate combinations of tasks that
irradiate the same amount of heat to the PE, i.e. the heat influence of a task executing
at north, south, east, or west is the same. One example of equivalent arrangements is
{p0,λ ,λ ,λ}, {λ ,p0,λ ,λ}, {λ ,λ ,p0,λ}, and {λ ,λ ,λ ,p0}, (where λ means a idle PE) there-
fore, in any of those situations the PBS will be considered the same. Finally, with a sphere
of influence considering the four bordering PEs and with three TPCs, we have a total of 35
possible PBS, every one of which is listed in Table 5.1.

Table 5.1: Example of PE Bin State (PBS) Table

∑p0 ∑p1 ∑p2 PBS ∑p0 ∑p1 ∑p2 PBS

0 0 0 0 1 0 3 18
0 0 1 1 1 1 0 19
0 0 2 2 1 1 1 20
0 0 3 3 1 1 2 21
0 0 4 4 1 2 0 22
0 1 0 5 1 2 1 23
0 1 1 6 1 3 0 24
0 1 2 7 2 0 0 25
0 1 3 8 2 0 1 26
0 2 0 9 2 0 2 27
0 2 1 10 2 1 0 28
0 2 2 11 2 1 1 29
0 3 0 12 2 2 0 30
0 3 1 13 3 0 0 31
0 4 0 14 3 0 1 32
1 0 0 15 3 1 0 33
1 0 1 16 4 0 0 34
1 0 2 17 - - - -

Table 5.1 presents the PE bin state table. The first three columns contain the sum
of neighboring PEs for TPCs p0, p1, p2. Given that each PE has a maximum of 4 neighbors
per PE, the maximum sum of these three columns is equal to 4. The fourth column is the
PE bin state index, or PBS.

99

Figure 5.6(a) presents a manycore with 25 cores arranged in a 5x5 mesh. Each
PE is colored gray if it is idle (not executing any task) or with a color according to its TPC.
Each PE contains its address (x , y) and current PBS. Consider PE2,2 in Figure 5.6(a). The
PBS of PE2,2 is 10 because {∑p0,∑p1,∑p2} = {0,2,1}. In Figure 5.6(b), we may observe
the effect in PBS after the allocation of a new task with TPC p1 at PE1,2, changing the PE2,2

PBS from 10 to 13 (now {∑p0,∑p1,∑p2}= {0,3,1}). Besides that we also observe changes
in the PBS of PE1,3 (19→ 22), PE0,2 (5→ 9), and PE1,1 (9→ 12).

0,4
15

1,4
20

2,4
19

3,4
5

4,4
1

0,3
16

1,3
19

2,3
19

3,3
7

4,3
0

0,2
5

1,2
15

2,2
10

3,2
0

4,2
7

0,1
5

1,1
9

2,1
0

3,1
10

4,1
15

0,0
5

1,0
5

2,0
5

3,0
15

4,0
5

Legend

λ (idle)

p0

p1

p2

0,4
15

1,4
20

2,4
19

3,4
5

4,4
1

0,3
16

1,3
22

2,3
19

3,3
7

4,3
0

0,2
9

1,2
15

2,2
13

3,2
0

4,2
7

0,1
5

1,1
12

2,1
0

3,1
10

4,1
15

0,0
5

1,0
5

2,0
5

3,0
15

4,0
5

(a) (b)

x,y
PBS

Task Power
Category

Figure 5.6: PE bin state (PBS) examples. The PE color indicates the task power category
(TPC) that is executing. (a) presents the PBS of each PE; (b) highlights the PBS change
after the admission of a new task p1 in the PE1,2.

5.3.1 Training

During the training phase, the Q-learning algorithm updates its Q-values. Upon
completing this phase, the Q-table contains the scores for the most favorable places to
allocate tasks and is ready for the inference phase. Equation 5.2 corresponds to the update
function used during the training phase.

Qnew (p,s)← (1−α)Q(p,s)+α[r(∆FITx ,y)+ γ max
P

Q(P,s)] (5.2)

where the new value (Qnew(p,s)) for the pair TPC (p) and PBS (s) is given by the sum of
three factors:

• (1−α)Q(p,s): represents the current value for the pair (p,s);

• αr(∆FITx ,y): the reward is a function of the FIT variation in the last evaluated pe-
riod (weighted by the learning rate α - the learning rate controls how fast the method
modifies its estimates).

100

• αγQ(p,s): the maximum value of Q for tasks with the same TPC (p = P) (weighted by
the learning rate α and discount factor γ - the discount factor determines the impor-
tance of future rewards).

The learning rate (α) in the adopted approach operates in two phases. Initially, it is
set to a high constant value (α = 0.1) to facilitate rapid adaptations in the Q-table. Once the
table reaches a predetermined number of iterations, α is linearly reduced to zero. It is im-
portant to note that each update to a specific score in the Q-table, indexed by a {TPC, PBS}
pair, does not provide insights about other pairs, underscoring the importance of exploring a
diverse set of mappings, also known as the trained population [Powell, 2022]. As α reaches
zero, the algorithm ceases to learn, consolidating the Q-table and thereby concluding the
training process. The need to gradually reduce α arises from the necessity for the Q-table
to converge in stochastic environments [Even-Dar and Mansour, 2001]. The environment
is inherently stochastic due to the exclusion of several variables from the Q-table model;
identical actions may yield different outcomes. For instance, assigning two similar tasks to
PEs with identical PBS values will produce different results if the initial temperatures of the
PEs differ, such as 50◦C and 60◦C.

The discount factor (γ) serves as a balancing mechanism to weigh the significance
of immediate versus future rewards, thereby influencing the degree to which future outcomes
affect present decisions. Generally, the setting of γ is context-dependent, tailored to the level
of environmental uncertainty. In environments characterized by high uncertainty, a higher
γ value is usually adopted, signifying a diminished influence of current actions on future
outcomes [Ris-Ala, 2023]. In our training framework, we set γ at a constant value of 0.35.

The reward function, denoted as r(∆FITx ,y), is presented in Figure 5.7. It is de-
signed to boost the selection of PBSs that lower the PE FIT. Specifically, PBSs causing
a decrease in FIT (x-axis) receive higher rewards (y-axis), promoting their corresponding
Q-values. On the contrary, those who cause an increase in FIT get reduced rewards, main-
taining their associated Q-values at lower levels.

400 200 0 200 400
FIT

0

50

100

150

200

r(
FI

T)

Reward function

Figure 5.7: The reward function r(∆FIT) used during the Q-table training.

101

Training occurs in the design phase using an epsilon-greedy learning policy [Pow-
ell, 2022], as depicted in Figure 5.8. Applications arrive at the system randomly, and the
manager PE determines a mapping policy for each task. With an ε probability, the manager
PE allocates the task to a random PE; with a 1− ε probability, the manager PE accesses
the Q-table to select the optimal PE available. This involves computing the PBS for every
available PE and then scanning the Q-table for the highest Q-value based on the TPC and
PBS. Using the ε factor ensures comprehensive exploration of the state space. Once the
location has been chosen, tasks are assigned to the designated PE. Every 1 ms, the plat-
form evaluates each PE’s temperature and FIT as outlined in Section 2. Concurrently, the
manager initiates the Q-table update process. A PE is considered stable if its PBS remains
unaltered over the preceding 50 ms (experimentally obtained), indicating that no tasks were
placed within its sphere of influence. If stability persists over this duration, rewards are allo-
cated based on FIT variation, leading to the computation of Qnew(p,s), where s represents
the PBS and p denotes the TPC executing in the PE (Equation 5.2).

Ramdomly arriving application

Calculate available
PEs current PBS

Selects a random
available PE

Selects highest score
PE in the Q-table

with probability 1-ϵ

Every 1ms interval

Q-tableAllocate task

Estimate
Temperature

and FIT

 for each PE

Manycore Model

 for each occupied PE

Register current PE FIT
&

Reset the stability
counter

Reward assignment
r(ΔFIT)

Computes

 for each application task

Compute a random
mapping probability p

p<ϵwith probability ϵ

PBS has changed?

Stable for ≥50ms?

No

Yes

Yes

Next PE
No

Figure 5.8: Training flow diagram. The diagram is divided into three main processes; the
blue path presents the task-to-core selection process; the orange path is the Q-table update
process; and the red presents the temperature and FIT estimation process.

102

The Chronos-V platform, as described in Chapter 2, can conduct Q-table training.
However, to facilitate extensive simulations of thermal behavior over prolonged periods and
to enable comprehensive experimentation with the training process, we developed an aux-
iliary platform in C++ that yields a simulation speed-up factor of up to 20,000 compared to
Chronos-V (OVP platform). This specialized training platform1 performs temperature and
FIT estimations based on the average power consumption metrics obtained from the OVP
platform. Importantly, the average power consumption used in these estimations is consis-
tent with that used in the Task Power Category, as defined in Definition 2. An overview of
the training platform’s simulation loop is presented in Figure 5.9.

Fo
r e

ac
h

PE

FIT
Estimation

Temperature
Estimation

Initialization

 < Occupation Threshold

 ≥ Occupation Threshold
Occupation?

Mapping new
task

Time Increment
(1ms)

Remove
Finished Tasks

 No

 Yes α = 0? Finish
Simulation

Learning
Process

Figure 5.9: The training platform loop - colored tiles correspond to the paths with the same
color in Figure 5.8.

The training platform is essentially a 2D array with an average power value at each
PE’s position. If the PE is occupied, the average power value of a task is placed in that posi-
tion; if the PE is idle, the average power of in idle state PE is considered. After initialization,
a verification is conducted to identify whether the system has the desired occupation. If not,
a new task is mapped using the epsilon-greedy allocation (blue path depicted in Figure 5.8).
Once the new task has been mapped or if the occupation has reached the threshold, the
Q-learning processor begins, which follows the orange path indicated in Figure 5.8. Sub-
sequently, the temperature and the FIT are calculated for each of the manycore PEs, and
the simulation time is incremented by 1 ms. If the learning rate reaches zero (alpha = 0),

1Available at: https://github.com/iacanaw/Chronos_HighLevel

https://github.com/iacanaw/Chronos_HighLevel

103

the simulation stops as the training is concluded. Otherwise, the loop restarts. After com-
pleting the training, the Q-table is saved, and we can import the Q-values into the system,
which is ready to execute workloads using the learned Q-table in the mapping and migration
heuristics.

Figure 5.10 depicts the evolution of rankings during the training phase, displaying
35 PE bin-states (PBS) for Task Power Category (TPC) 0. These PBS are ranked from the
least favorable (rank 1) to the most favorable (rank 35). The figure includes 30 evenly spaced
snapshots of these rankings to illustrate their progression throughout the training period.
Notably, considerable shifts in rankings occur during the initial 20 snapshots. Subsequently,
the ranks largely stabilize and converge towards fixed positions until the end of the training.
This observed behavior correlates with the two-stage learning rate (α), which initiates its
decrease around the twentieth snapshot.

0 5 10 15 20 25 30
Sample

0

5

10

15

20

25

30

35

PB
S

R
an

k

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Q-table - Task Power Category 0

PE
 b

in
 s

ta
te

s
(P

B
S)

Figure 5.10: Training ranking evolution of each PBS in the Q-table indexed by TPC 0.

5.4 Actuation Mechanisms and Decision Heuristics

The actuation mechanisms are the means through which FLEA interfaces with the
system. Understanding the actuation mechanisms is crucial to understanding the decisions
in the development behind the FLEA heuristics. It should be noted that these mechanisms
are distributed across various levels of hierarchy in alignment with the hierarchical struc-
ture of the reference platform. The actuation mechanisms use protocols presented in Sec-
tion 2.2.2.

104

5.4.1 Application Admission

Application admission is an actuation mechanism encoded in the manager PE soft-
ware. Incoming applications reach the system through the Application Repository (Apprep)
peripheral. The manager PE receives a service packet from the Apprep informing that an ap-
plication needs to be allocated. This triggers the application admission process, which will
search for a cluster with available resources for the incoming application. When resources
are scarce, the selected cluster may encompass the entire system. If the manager PE can
find a cluster, the application is admitted into the system.

The cluster search process seeks a continuous region with an amount of available
PEs (i.e., with resources to run a task) at least equal to two times the number of application
tasks. The rationale for this choice is to reduce the search space to select where the applica-
tion will execute and at the same time, reduce the number of hops between communicating
tasks. Mapping communicating tasks close to each other reduces spatial fragmentation,
avoiding performance degradation due to increased hop count and traffic congestion [Li
et al., 2019]. The cluster is not exclusively allocated to a single application, meaning other
tasks may already be running on it. The selection of the cluster is based on which has the
lowest temperature. As already detailed, the TEA provides this information to the manager
PE. However, in a manycore system where this information is unavailable at run-time, the
heuristic may select a cluster based on a different criterion, such as the number of tasks
already running on the cluster. Algorithm 2 details the application admission procedure.

Algorithm 2 receives two inputs: (i) the application reference, denoted as app, and
(ii) PE_info, which contains data related to the PEs. Initially, the algorithm computes the
minimum cluster side size (line 1) to ensure a space at least twice the size needed for
the application’s tasks. It then assesses the availability of system resources to receive the
incoming application. If there is no available space for the application, the candidate cluster
size is set to zero (line 3), and the algorithm ends (line 37), indicating the inability to find a
suitable cluster and, therefore, rejecting the application admission.

If the search window size exceeds any system dimension, the search ends, return-
ing an infinite cluster side size, which means that the cluster encompasses the entire system
(lines 7-9). The algorithm uses a sliding window search, initializing the candidate tempera-
ture to infinity (line 11). If the candidate temperature remains infinite after both inner loops, it
indicates an absence of an appropriate cluster, prompting the search to increase the window
side (line 34) and continue.

The algorithm’s main loops (lines 12-13) identify the bottom-left corner of the search
window. Before any window analysis, the temperature and available PEs are reset (lines 14-
15). Subsequent nested loops (lines 16-17) analyze each PE within the window, adding tem-
perature data (line 18) and quantifying available PEs (lines 19-21). If the analyzed window

105

Algorithm 2: Application Admission
Input: app, PE_info
Output: cl_candidate

1 window_side←ceil(
√

2app.n_tasks)
2 if ∑

DIMX−1
x=0 ∑

DIMY−1
y=0 PE [x][y].slots ≤ app.n_tasks then

3 cl_candidate.side← 0
4 end
5 else
6 do
7 if window_side ≥ DIMX ∨window_side ≥ DIMY then
8 cl_candidate.side← ∞

9 break
10 end
11 cl_candidate.temp← ∞

12 for x ← 0 to DIMX −window_side do
13 for y ← 0 to DIMY −window_side do
14 window_temp← 0
15 window_slots← 0
16 for i ← x to window_side do
17 for j ← y to window_side do
18 window_temp+= PE_info[i][j].temp
19 if PE [i][j].is_available() then
20 window_slots++
21 end
22 end
23 end
24 if window_slots ≥ 2app.n_tasks then
25 if window_temp < cl_candidate.temp then
26 cl_candidate.temp← window_temp
27 cl_candidate.x ← x
28 cl_candidate.y ← y
29 cl_candidate.side← window_side
30 end
31 end
32 end
33 end
34 window_side++

35 while cl_candidate.temp = ∞

36 end
37 return cl_candidate

meets the spatial requirements and has a lower temperature than any previously identified
candidates, it becomes the new candidate cluster (lines 24-31).

After examining all windows, the window size is incremented (line 34) to execute
the next iteration, as no window could receive the required number of tasks. However, if
the candidate cluster’s temperature is finite, it indicates that a suitable cluster has been
identified, thereby terminating the search (line 35) and returning the located cluster (line 37).

106

It should be emphasized that the decision criterion for selecting clusters in the
algorithm was the cluster temperature. However, when temperature data is unavailable to the
system manager, other alternatives may be used for cluster formation. These alternatives
may include the occupation of the cluster or the total period during which the PEs remained
idle.

5.4.2 Task Mapping

The allocation of application tasks to the PEs within a cluster is called Task Map-
ping. The manager PE executes this actuation mechanism, using the trained policy table,
Q-table. After the task mapping heuristic, the task allocation protocol starts, as previously
described in Section Section 2.2.2.

The FLEA task mapping starts after the admission step of the application. The task
mapping algorithm is repeated for each application task. Algorithm 3 presents the FLEA task
mapping. The algorithm receives as input: (i) task; (ii) q_table; (iii) app and (iv) PE_info.

The mapping process starts by defining the highest score as zero (line 1). After
that, the two loops will iterate over every position within the cluster (lines 2-3). If a given PE
is available (line 4), its score is obtained by consulting the Q-table (line 5), indexed by the
PE bin state (from Definition 3) and the task power category (from Definition 2). If the PE
score exceeds the prior highest score (line 6), then the highest score and the target PE are
updated (lines 7-8). If more than one PE presents the same highest Q-value (line 10), the
manager PE selects the PE that minimizes the hop count between other application tasks
(lines 11-22). After repeating this verification for each PE in the cluster, the algorithm returns
the PE with the highest Q-table score.

5.4.3 Task Migration

The actuation mechanism of moving a task from a source PE to a target PE is
defined as task migration. This mechanism is also executed by the manager PE and uses
the trained Q-table. The migration protocol adopted in our platform was previously detailed
in Section 2.2.2.

The task migration decision process is triggered at each monitoring window (1 ms,
experimentally obtained) using the temperature estimation from TEA. The migration heuristic
actively looks for a thermal violation considering a pre-defined thermal threshold Tth. Upon
detecting a thermal violation, the manager PE identifies the PE with the highest temperature
above Tth, selecting the task running on it for migration. The inputs for Task Migration (Algo-
rithm 4) are: (i) task; (ii) q_table; (iii) app; (iv) PE_info; (v) T_th - temperature threshold.

107

Algorithm 3: Task Mapping
Input: task , q_table, app, PE_info
Output: target_PE

1 high_score← 0
2 for x ← app.cluster .x to app.cluster .x +app.cluster .side do
3 for y ← app.cluster .y to app.cluster .y +app.cluster .side do
4 if PE_info[x][y].is_available() then
5 score = q_table[PE_info[x][y].PBS][task .TPC]
6 if high_score < score then
7 high_score← score
8 target_PE ←{x ,y}
9 end

10 else if high_score = score then
11 hop_countA← 0
12 hop_countB ← 0
13 foreach allocated_task from app do
14 hop_countA+=∆(x ,allocated_task .x)
15 hop_countA+=∆(y ,allocated_task .y)
16 hop_countB+=∆(target_PE .x ,allocated_task .x)
17 hop_countB+=∆(target_PE .y ,allocated_task .y)
18 end
19 if hop_countA < hop_countB then
20 high_score← score
21 target_PE ←{x ,y}
22 end
23 end
24 end
25 end
26 end
27 return target_PE

After selecting the task that has to migrate, the heuristic starts by creating a list
(available_PE) with all the PEs that have a task slot available within the expanded applica-
tion cluster (lines 1-6). The expanded application cluster (e_cluster) considers PEs that are
in the cluster’s outer border (e.g. a cluster starting at {3, 4} with side equal to 3 encompasses
9 PEs, its expanded cluster starts at {2, 3} and has side equal to 5, encompassing 25 PEs),
which are considered to create additional migration opportunities. The PE list is sorted by
temperature (line 9) and the algorithm starts to search for the PE with the highest score in
the Q-table (lines 11-17). Similarly to the task mapping process, the score is obtained by
consulting the Q-table (line 12), indexed by the PE bin state (from Definition 3) and the task
power category (from Definition 2). The algorithm evaluates the 50% available PEs (line 11)
looking for the one with the highest score. This method corresponds to making a trade-off
between current temperature and Q-table score. If more than one PE presents the same
highest score, naturally select the PE with the lowest temperature.

108

Algorithm 4: Task Migration
Input: task , q_table, app, PE_info
Output: target_PE

1 available_PE ← /0
2 for x ← app.e_cluster .x to app.e_cluster .x +app.e_cluster .side do
3 for y ← app.e_cluster .y to app.e_cluster .y +app.e_cluster .side do
4 if PE_info[x][y].is_available() then
5 available_PE .add(PE_info[x][y])
6 end
7 end
8 end
9 available_PE .sort_by_temp()

10 high_score← 0
11 for i ← 0 to available_PE .length/2 do
12 score = q_table[available_PE [i].PBS][task .TPC]
13 if high_score < score then
14 high_score← score
15 target_PE ←{available_PE [i].x ,available_PE [i].y}
16 end
17 end
18 return target_PE

Note that each migration implies an execution overhead for the application because
the migration protocol requires multiple synchronization packets to transfer the task memory
content to its new PE. Thus, a mapping heuristic that can minimize the total number of
migrations is essential to optimize the application performance.

109

6. RESULTS

This Chapter presents the results of the proposed heuristics applied in the refer-
ence OVP architecture (Chapter 2). Section 6.1 outlines the experimental setup employed
in the evaluations. Section 6.2 presents an improvement in the FLEA configuration - FLEA+.
The core of the Chapter, Section 6.3, includes a detailed evaluation of the temperature be-
havior for the heuristics (Section 6.3.1), the hop count between communicating tasks (Sec-
tion 6.3.2), reliability assessment (Section 6.3.3), and a scalability analysis (Section 6.3.4).
Section 6.4 concludes this Chapter.

6.1 Experimental Setup

To evaluate the heuristics, we used a set of benchmarks available on the Memphis
platform [Ruaro et al., 2019] and developed four synthetic applications during this work.

The applications adapted from the Memphis platform include:

1. Dijkstra (DIJ), with 7 tasks;

2. Dynamic Time Warping (DTW), with 6 tasks;

3. Synthetic producer/consumer application (PRODCONS), with 2 tasks.

We designed new applications as a set of pipeline tasks where each task performs
a varying amount of computation. Figure 6.1 illustrates these applications:

1. Synthetic application α (ALPHA), with 4 tasks;

2. Synthetic application β (BETA), with 4 tasks;

3. Synthetic application γ (GAMMA), with 8 tasks;

4. Synthetic application double pipeline (DPIPE), with 7 tasks.

We created sixteen scenarios to evaluate the thermal and reliability behavior as-
sociated with different management techniques. Table 6.1 presents the scenarios. Each
scenario has a unique tag for easy reference during this Chapter. We classified the scenar-
ios according to three criteria:

• Manycore size: 64, and 196 PEs;

• Workloads: computation-intensive or a mix of computation- and communication-intensive
tasks. Computation-intensive scenarios include mainly CPU-bound tasks, while mixed
scenarios include an equal distribution of communication- and CPU-bound tasks;

110

10 2 3

1

n nn

Application Alpha / Beta

10 2 3n nn

Application Gamma

4567

n

nn

n

1

Application Double Pipeline

master

A1 A2 A3

B3B2B1

n

n

n

nn

1

1

n

Figure 6.1: Task communication graphs for the new synthetic applications, where n repre-
sents the number of iterations in application execution.

• Occupancy: system occupancy refers to the percentage of PEs in use at any time
during the scenario’s execution, with levels ranging from 50% to 90%.

We also proposed an additional scenario in which applications arrive randomly into
the system. In the “random” scenario a maximum of three applications of the same type can
execute at any time. In this scenario, the occupancy fluctuates over time due to applications
having varying numbers of tasks.

These scenarios were executed in the Chronos-V platform (Chapter 2). We com-
pare our management strategies with a Grouped mapping, a patterning [Liu et al., 2018]
mapping, and a PID approach [Silva et al., 2020]. Grouped and patterning manage ap-
plications without considering any feedback from the system. PID approach considers the
temperature in its cost function, using task migration dynamically.

6.2 FLEA+

Before comparing FLEA to other DTM and DRM strategies, this Section details a
modification to the FLEA heuristic and evaluates its impact – FLEA+. We increased the

111

Table 6.1: Reliability and thermal evaluation scenarios. Column Total refers to the simulta-
neously running tasks.

Scenario Applications

Manycore Size Workload Occ. (%) Tag DIJ DTW PRODCONS ALPHA BETA GAMMA DPIPE Total

8x8

MIXED1

50 A5 4 3 3 32

70 A7 6 5 4 48

90 A9 7 7 4 58

MIXED2

50 B5 2 5 2 32

70 B7 2 1 7 2 1 46

90 B9 3 1 9 3 57

COMPUTATION

50 C5 8 32

70 C7 9 1 44

90 C9 10 2 56

14x14

MIXED

50 D5 5 5 1 7 98

70 D7 6 10 3 9 137

90 D9 6 13 8 11 177

COMPUTATION

50 E5 24 96

70 E7 34 136

90 E9 44 176

RANDOM ∼ F 3 3 3 3 3 3 3 ∼

number of PE bin states (PBS) to capture additional optimization opportunities previously
dismissed by the algorithm.

Originally, the selection process had an inherent bias towards PEs on the manycore
edge. These edge PEs were more likely to be in a beneficial PBS due to their reduced num-
ber of neighboring PEs. The initial set of 35 states, detailed in Table 5.1, considers only the
four directly adjacent PEs to the target PE. These adjacent PEs are essential as they most
significantly influence the target PE’s temperature. However, this approach had limitations.
For instance, a PE with all eight surrounding positions unused is a better candidate than
one with four diagonally used positions. The original 35-PBS framework did not distinguish
between such scenarios.

To consider this scenario, we expanded the number of PBS to reflect a wider range
of PE configurations, including those with diagonal neighbors. This enhancement enables
the heuristic to recognize different spatial arrangements of PEs, increasing the options for
task allocation decisions.

Initially, our plan included accounting for all eight surrounding PEs, categorizing
them into diagonal and lateral PEs. This modification would increase the number of possible
states from 35 to 1,225. Such an increase, while comprehensive, would require significantly
higher training times due to the complexity of randomly reaching many of these states.

Considering these constraints, we opted for a different approach, categorizing the
PEs into three groups. This new strategy aims to balance the need for different spatial
arrangements of PE configurations with training time and algorithmic complexity.

112

1. The first category addresses scenarios where two or more tasks with high power con-
sumption (TPC 2) are diagonally placed in relation to the center PE.

2. The second category focuses on situations with two or more tasks with medium power
consumption (TPC 1) located diagonally to the PE.

3. The third category considers the edge PEs of the manycore system.

Adding these three new categories into the PBS enhances the FLEA heuristic,
resulting in 140 states. This total comprises the original 35 states and an additional 35 for
the three newly introduced categories. This expansion enables the recognition of new spatial
configurations surrounding each PE, thereby allowing the learning algorithm to optimize task
allocations more effectively and accurately.

Chapter 5 detailed the methodology for the training process, which is conducted
on a high-level training platform. It is important to note that introducing these changes in
the PBS does not modify the training process. The training process still applies the same
principles and mechanisms, remaining adaptable to these modifications.

6.2.1 FLEA+ Evaluation

This section compares the original FLEA heuristic, as detailed in Chapter 5, and
the modified version, referred to as FLEA+, which incorporates the expanded PBS table.
This comparison aims to assess the impact of the expanded PBS on the heuristic’s perfor-
mance and effectiveness in task allocation and system management. Both heuristics were
evaluated using the scenarios presented in Table 6.1.

Performance was assessed using three metrics: (i) Mean Time to Failure (MTTF),
(ii) average temperature, and (iii) average peak temperature. MTTF is a crucial metric in-
dicating the expected duration before a potential failure, which is particularly relevant as
both FLEA and FLEA+ were optimized for MTTF maximization through reinforcement learn-
ing. The average temperature metric evaluates the overall thermal load of the system. In
contrast, the average peak temperature metric reflects the highest temperatures observed,
crucial for maintaining the system within safe operational thresholds.

Table 6.2 presents a detailed comparison of MTTF, average temperature, and av-
erage peak temperature for FLEA and FLEA+, with migration enabled.

Examining the MTTF data in the table, we observe marginal efficiency improve-
ments in FLEA+ compared to the original FLEA heuristic. For instance, in the scenario
labeled “8x8 Computation 50%”, FLEA+ exhibits a 4.4% enhancement in MTTF relative to
FLEA. Conversely, in the “14x14 Mixed 90%” scenario, FLEA+ underperforms by 1.4% com-
pared to FLEA. On average, FLEA+ demonstrates a 1% higher MTTF across all evaluated
scenarios than its predecessor, FLEA.

113

Table 6.2: Comparison of MTTF between FLEA and FLEA+.
MTTF (years) Average Temp. (°C) Avg. Peak Temp. (°C)

Workload Occupancy (%) Algorithm
8x8 14x14 8x8 14x14 8x8 14x14

FLEA 7.88 4.35 66.30 66.63 77.13 76.36
50

FLEA+ 7.92 4.33 66.31 66.91 75.96 76.03
FLEA 5.24 3.20 73.69 72.06 84.31 85.09

70
FLEA+ 5.19 3.18 74.00 72.39 83.49 84.02
FLEA 3.94 2.87 79.04 74.31 88.73 86.68

MIXED

90
FLEA+ 3.93 2.83 79.06 74.47 88.60 85.72
FLEA 5.04 2.58 73.67 76.49 84.73 82.63

50
FLEA+ 5.26 2.59 72.89 76.37 83.72 82.44
FLEA 4.30 1.67 77.42 84.18 86.51 95.04

70
FLEA+ 4.36 1.70 77.06 83.82 86.10 94.10
FLEA 3.53 1.04 80.81 93.04 90.51 101.41

COMPUTATION

90
FLEA+ 3.40 1.07 81.67 92.51 90.68 101.07

Concerning the average temperatures observed in the comparative study of FLEA
and FLEA+, results reveal only minor variations. The most notable difference occurs in
the “8x8 Computation 50%” scenario, where FLEA+ maintains an average temperature that
is 0.78°C lower than that of the original FLEA heuristic. Conversely, in the “14x14 Mixed
70%” scenario, FLEA exhibits superior performance by keeping an average temperature of
0.33°C cooler than FLEA+. Across all tested scenarios, the average temperature variation
is minimal, generally within a narrow margin of less than 0.1°C when comparing the two
methodologies. Regarding peak temperatures, the variation stayed under 1°C, with an aver-
age difference of approximately 0.6°C.

Appendix B presents a violin-box plot for each scenario that compares the FIT of
both FLEA and FLEA+ with and without migration. The graphical representation showcases
the distribution of system FIT values, with each simulation depicted by a figure spanning
from the minimum to the maximum FIT recorded. The width of the figure at various FIT
levels indicates the density of PEs at those values, aiding in the identification of outliers. The
white bar within each plot represents the interquartile range, stretching from the first to the
third quartile. The median FIT value is marked by a black dot within this white bar, indicating
that half of the PEs have FIT values below this point and half above it. Two scenarios from
the appendix were chosen to present the differences between FLEA and FLEA+ and are
depicted in Figure 6.2.

The violin-box plots contain blue and red dotted lines delimiting the region corre-
sponding to the 25% of PEs with the highest FIT values in the FLEA+ (MIG) heuristic. Some
observations can be drawn from these plots:

• The reduction in FIT values when migration (MIG) is employed highlights the relevance
of this actuation mechanism. This demonstrates that enabling migration in the heuris-
tics notably affects FIT values, thereby influencing the overall reliability of the system;

114

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)
1000

2000

3000

4000

5000

6000

7000
Fa

ilu
re

s
in

 1
09

ho
ur

s

(a) 8x8 Computation 50%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)

5000

6000

7000

8000

9000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(b) 14x14 Computation 70%

Figure 6.2: FIT comparison between FLEA and FLEA+. The blue dotted line is the FLEA+
with migration in the third quartile. The red dotted line is the FLEA+ with migration maximum
FIT.

• In the “8x8 Computation 50%” (Figure 6.2(a)) scenario, it is observed that FLEA (MIG)
has a greater number of PEs with FIT values exceeding the worst FIT in FLEA+ (MIG).
This observation explains the 4.4% enhancement in MTTF observed with FLEA+ in
this scenario. Generally, FLEA+ shows a better performance in terms of FIT values
compared to FLEA;

• In scenario “14x14 Computation 70%” (Figure 6.2(b)), we observe outliers in FLEA
(MIG), which slightly impacts the MTTF.

6.2.2 FLEA+ Evaluation Conclusion

The modifications implemented in FLEA to enhance reliability management demon-
strated that the heuristic, as initially conceived, manages MTTF accordingly. Regarding
FLEA+, two significant costs are incurred due to the increased PBS size:

1. The increase in the Q-table is significant. The Q-table size has been increased from a
35-position, 8-bit vector to a configuration comprising 140 positions.

2. The computational cost associated with identifying the PBS for a PE has also in-
creased. This increment considers 8 neighboring PEs instead of the previous 4.
However, this increase in computational load occurs only once for each task alloca-
tion/migration in the system and solely for PEs within the task’s sphere of influence.
Despite this increase, the computational cost remains low due to the evaluation involv-
ing 8 PEs instead of 4.

115

Results from simulations indicate minimal differences in (i) MTTF, (ii) average tem-
perature, and (iii) average peak temperature between the original FLEA and FLEA+.
However, a significant finding from the FIT plots reveals that the top 25% of PEs with
the highest FITs in FLEA+ (MIG) consistently exhibit lower FITs than their counterparts
in the original FLEA (MIG). Thus, we use FLEA+ in the next section, which compares
our approach against other DTM and DRM heuristics.

6.3 Results Evaluation

This section presents the simulation results for various mapping strategies, includ-
ing Grouped mapping, pattern mapping [Liu et al., 2018], PID mapping [Silva et al., 2020],
and our proposed FLEA+ heuristic. We made simulations for all scenarios detailed in Sec-
tion 6.1 and compiled a series of graphs and metrics for each. Throughout this section,
we highlight specific metrics and compare them using graphical and tabular representations
to support our analysis. For an extensive visual presentation of each simulation scenario,
please refer to Appendix C. This appendix includes a thorough collection of graphical data,
encompassing:

1. The temporal evolution of average and peak temperatures;

2. Heat map snapshots that illustrate the per-PE average temperature;

3. Violin-box plots offering a statistical view of the average temperatures;

4. Violin-box plots offering a statistical view of peak temperatures;

5. Violin-box plots offering a statistical view of FIT rates;

6. Comprehensive heat maps that plot per-PE FIT rates, attributable to various wear-out
effects as well as the total FIT.

6.3.1 Temperature Evaluation

Figure 6.3 provides a heat map that depicts the thermal behavior of a 14x14 many-
core system over time under various management algorithms. This Figure visually repre-
sents the average temperature of each PE within the manycore. The figure includes four
snapshots, evenly distributed over the simulation period, to represent each evaluated man-
agement heuristic. In the manycore grid, each tile corresponds to a specific PE, with colors
indicating the average temperature during the snapshot period, as denoted by the labels on
the figure’s left side. This graphical approach enables quick identification of thermal patterns
and hotspots within the system.

116

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
00

 to
 0

.3
7

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
38

 to
 0

.7
6

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
77

 to
 1

.1
4

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1.
15

 to
 1

.5
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

Figure 6.3: Heat maps comparison between different mapping and migration heuristics.
Scenario 14x14 computation 70%.

Figure 6.3 shows that the Grouped heuristic has the worse thermal distribution. The
Grouped heuristic has as its main goal reducing the hops between communicating tasks,
thereby improving communication efficiency. Note that this goal, hop reduction, is the cri-
terium adopted by most mapping heuristics. A significant drawback of this heuristic is the
under-utilization of certain areas of the manycore, indicated by the blue (coldest) regions.
While the Grouped strategy reduces hop count, it also creates thermal hotspots, as seen
in the figure’s red (hottest) regions. Thus, this heuristic demonstrates a trade-off between
decreased hop count and thermal hotspots.

Contrasting with the Grouped heuristic, the Pattern mapping heuristic is designed
to allocate tasks in an alternating pattern, as a chessboard, to distribute heat evenly across
the manycore. However, in this scenario, with a 70% occupancy, achieving a perfect alter-
nating allocation is unfeasible, resulting in hotspots where heat accumulation becomes more
pronounced. This situation highlights the constraints of the Pattern heuristic in high task den-
sity scenarios, indicating its limited effectiveness in uniformly managing thermal load under
such conditions. Figure C.25, which presents a 50% occupancy, shows that the Pattern can
achieve a good thermal distribution, which corresponds to the limit of the Pattern mapping
heuristic.

The PID heuristic computes a Proportional-Integral-Derivative (PID) score for each
PE at every monitoring window. Task allocation is then directed toward PEs with the most
favorable scores. In the initial phase of the simulation, ranging from 0 to 370 milliseconds,

117

there is a tendency for tasks to be predominantly allocated at the edges of the manycore.
This initial pattern is due to the lack of thermal history required for computing accurate PID
scores. However, as the simulation progresses and thermal data accumulates, task alloca-
tion under the PID heuristic becomes more balanced. This results in a uniform heat distribu-
tion across the many core surfaces in later snapshots, illustrating the heuristic’s adaptability
and effectiveness in managing thermal load over time.

We observe that PID without task migration capability reveals more thermal hotspots
than seen with the Pattern heuristic. This phenomenon occurs because, in the PID ap-
proach, once a region is identified as favorable based on its PID score, several tasks may be
allocated in this region, leading to increased heat generation in that area. However, the sce-
nario changes significantly when observing the performance of PID with migration capability.
Task migration in PID is activated when a PE is detected to be overheating. Tasks are relo-
cated to areas with more advantageous PID scores. This dynamic and responsive strategy
helps in mitigating the creation of hotspots. By continually adjusting task locations based
on current thermal conditions and PID scores, the PID heuristic with migration capability
achieves an effective thermal distribution.

Observing the thermal behavior of FLEA+, it clearly produces more hotspot regions
than those observed in the Pattern and PID strategies. In FLEA+, the temperature impacts
the mapping process in the cluster selection, corresponding to the selection of the region
for application mapping. Once the region is set, temperature no longer plays a role, and the
task-to-core selection heuristic adopts a mapping strategy that chooses a PE consulting the
Q-table using the available PBS within the cluster and the TPC that is being allocated. Since
there is no task migration in the basic configuration, any suboptimal decisions taken during
the initial mapping remain uncorrected. This lack of flexibility increases the hotspots, leading
to the imbalanced thermal distribution observed in the manycore.

The migration capability enables FLEA+ to adapt by migrating tasks from overheat-
ing PEs to cooler locations, using real-time thermal data provided by TEA. Consequently,
we observe that FLEA+ ensures that the average temperature of PEs remains cooler than
that of other management strategies while sustaining the same workload.

The adaptive behavior of FLEA+ with migration illustrates its effectiveness in han-
dling thermal management. This is particularly noteworthy given that its training used a
reward function related to reliability rather than temperature. By allowing for task migration
response to violating thermal conditions, FLEA+ lowers the average PE temperature and
mitigates the formation of thermal hotspots.

Figure 6.4 presents violin-box plots for the same scenario (14x14 computation 70%)
that represent the thermal amplitude within the manycore, effectively illustrating the distri-
bution of temperatures across its PEs. These plots provide a comprehensive view of the
thermal distribution, with each violin-box plot spanning from the minimum to the maximum
temperature. The width of each plot correlates with the density of PEs at specific tempera-

118

tures, aiding in identifying temperature outliers. Within each plot, a white bar represents the
interquartile range, extending from the first quartile (the 25th percentile) to the third quartile
(the 75th percentile). The median temperature is denoted by a black line within this white
bar, indicating the temperature below which half of the PEs fall and above which the other
half is situated. Additionally, the plots feature two dashed lines, red and blue, that facilitate
a comparative analysis between different heuristics against FLEA+ with migration. The red
line corresponds to the maximum temperature observed in FLEA+, while the blue line marks
the temperature at the third quartile. These lines delineate the temperature spread of the
hottest 25% of PEs, providing a clear reference for evaluating the effectiveness of various
thermal management strategies in the manycore environment.

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(a) Average Temperature

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

110

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

(b) Average Peak Temperature

Figure 6.4: Violin-box plot of PEs temperatures during the execution of scenario 14x14
computation 70%.

The violin plots in Figure 6.4 reveal specific details related to thermal management.
For example, in Figure 6.4(a) - average temperature:

119

• The PID thermal management presents outliers, identified as a single PE with an aver-
age temperature of around 93°C (PID) and 90°C (PID MIG). In both cases, this outlier
is the Manager PE (MPE), responsible for computing the PID scores. These PEs
with higher temperatures (MPEs) can be observed in Figure 6.3 in the top-left corner,
exhibiting a slightly redder hue than its surroundings, confirming the complementary
nature of these visualizations.

• The hottest PEs under FLEA+ MIG are cooler than 75% of the PEs managed by the
Pattern and PID. This indicates a more efficient thermal management in FLEA+ MIG.
When compared to PID MIG, the difference becomes less pronounced. However, the
temperature analysis still shows that most (75%) of PEs managed by PID MIG are
warmer than the hottest PE in the top quartile managed by FLEA+ MIG. This com-
parison underscores the effectiveness of FLEA+ MIG in maintaining lower tempera-
tures across the manycore. Furthermore, when migration is not incorporated, FLEA+
demonstrates a less effective thermal distribution than the Pattern and PID strategies,
regardless of whether they include migration features. This observation highlights the
significant role of task migration in enhancing the thermal performance of management
heuristics like FLEA+.

The average peak temperature (Figure 6.4(b)) for this scenario shows that for the
25% of the PEs with the highest peak temperature, almost 100% of the PEs in the Pat-
tern/PID/PID MIG heuristics are in this range. This is another result confirming the efficiency
of FLEA+ MIG in thermal management.

These insights provide input for managing thermal profiles in manycore systems.
They highlight the importance of task allocation and migration in sustaining performance and
reliability over time, considering the harmful effects of excessive heat on electronic compo-
nents. Thus, it is evident that while some heuristics may perform effectively under specific
conditions, the versatility and adaptability of FLEA+ with task migration are essential for bal-
ancing workload and temperature distribution, ensuring the prolonged operational integrity
of manycore systems.

The previous discussion focused on the temperature evaluation of one scenario
among the 16 referenced in Table 6.1. Figures 6.5 and 6.6 present the average temperature
and peak temperature compiled from each scenario. These scenarios are identified by their
respective tags. Those starting with A, B, and C correspond to 8x8 manycore configurations,
while the tags beginning with D, E, and F denote 14x14 manycore setups. Numbers after
the letters, 5-7-9, corresponds to the system occupancy - 50%, 70%, and 90%.

Figure 6.5 shows the clear relationship between workload and temperature. The
difference in average temperatures for different heuristics in the same scenario remains
within a range of 5°C at most. Important notes related to this graph:

120

• The average temperatures for different heuristics in the same scenario are close since
the workload is the same;

• For scenarios in larger systems and higher computational load (E5-E7-E9) it is ob-
served that FLEA+ MIG presents a reduction in the average temperature;

• The average temperature graph does not provide information related to thermal hotspots,
justifying the plotting of thermal maps and the violin-box plots presented previously.

A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F
60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

Average Temperature

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

Figure 6.5: Average Temperature reached by the manycore when executing the proposed
scenarios (Table 6.1) using different mapping and migration heuristics.

Figure 6.6 presents the average peak temperatures. Important notes related to this
graph:

• As expected, the Grouped mapping presents the highest values;

• Scenarios with an occupancy of 50% (A5, B5, C5, D5, E5) have the Pattern mapping
with the lowest average peak temperature, given that with this occupancy, the heuristic
can evenly distribute the load on the PEs by interspersing used and unused PEs;

• FLEA+ (with and without migration) maintained the average peak temperature in all
scenarios below the other management techniques (except in relation to Pattern in
scenarios A5, B5, and C5);

• The PID could not minimize the average peak temperature in D5 scenario and PID and
FLEA+ were unable to minimize it in E5.

Figures 6.5 and 6.6 present absolute temperature values. Table 6.3 helps to com-
pare the (a) average temperature and (b) average peak temperature of FLEA+ MIG against
other heuristics. The table employs a color-coding scheme with shades of green and red.
The shades of green indicate a thermal advantage for FLEA+ MIG, while red tones a thermal
disadvantage. From the Table 6.3(a), we may highlight that:

121

A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F
70

80

90

100

110
Te

m
pe

ra
tu

re
 (°

C
)

Average Peak Temperature

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

Figure 6.6: Average Peak Temperature reached by the manycore when executing the pro-
posed scenarios (Table 6.1) using different mapping and migration heuristics.

• FLEA+ MIG consistently shows a thermal advantage in most scenarios, as indicated
by the predominance of green shading across the scenarios. In particular, for high
occupancy levels (A9, C9, E9);

• FLEA+ MIG provides larger average temperature reductions than heuristics without
actuation (Grouped, Pattern), with differences reaching -4.84°C for scenario E9;

• The thermal advantage of FLEA+ MIG is especially pronounced in CPU-bound work-
loads (scenarios C# and E#), with differences reaching -2.86°C and -4.39°C when
compared to the PID and Pattern heuristics;

• It is also noticeable that FLEA+ becomes more efficient than other heuristics as the
occupancy increases.

• Nevertheless, there are instances where FLEA+ MIG does not outperform other heuris-
tics. The red shading in the table denotes these cases. However, the overall thermal
profile of FLEA+ MIG is competitive, as illustrated by the average column.

Further considering Table 6.3(b), which compares the average peak temperature,
we note that:

• The Grouped mapping heuristic significantly underperforms across all scenarios against
every other heuristic, with the greatest thermal disadvantage reaching 10.73°C over
FLEA+ MIG.

• The Pattern mapping, on the other hand, demonstrates a mixed efficacy presenting a
scenario where the average peak temperature was 9.21ºC smaller than FLEA+ MIG
and other scenarios that underperform, reaching 3.48ºC over our heuristic. It suc-
cessfully provides a thermal advantage by evenly distributing the workload in only half-
occupied systems (A5, B5, C5, D5, E5). However, this advantage diminishes as the

122

Table 6.3: FLEA+ average temperature and average peak temperature comparison against
other heuristics

(a) Average Temperature

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

(avg temp)

0,00 -0,22 -1,28 0,30 0,17 -0,50 -0,91 -1,42 -2,25 0,51 0,16 -0,15 -1,93 -3,94 -4,84 -0,30
0,03 -0,13 -1,09 0,34 0,42 -0,26 -0,89 -1,36 -2,29 -0,13 -0,01 -0,20 -1,93 -3,52 -4,39 -0,59
-0,48 -0,74 -1,71 -0,10 -0,41 -0,54 -1,47 -1,94 -2,86 -0,01 -0,20 -0,43 -1,77 -3,57 -4,39 -0,68
-0,58 -0,41 -1,27 -0,47 -0,23 -0,81 -1,15 -1,17 -2,07 -0,18 0,01 -0,25 -1,06 -1,95 -1,33 -0,46
0,02 -0,20 -1,20 0,48 -0,11 -0,60 -0,90 -1,40 -2,24 0,25 -0,31 -0,32 -1,97 -3,81 -4,42 -0,44

(% hop)

36,1 27,0 47,6 -4,2 -2,0 13,0 29,0 29,2 42,5 -55,1 -16,2 -51,0 0,0 -5,6 -31,4 -55,4
-17,2 -27,0 -0,7 -19,0 -46,7 -4,5 -23,5 -28,5 -12,5 -91,8 -100,6 -96,7 -73,1 -170,3 -132,4 -124,0
-15,4 -13,2 5,7 -1,7 -15,4 3,3 -14,0 -22,0 -13,0 -85,0 -102,5 -80,7 -174,8 -178,7 -162,5 -133,4
-24,9 -23,4 -1,1 -26,6 -25,6 1,4 -24,8 -32,9 -11,5 -114,1 -106,1 -100,0 -171,4 -179,1 -179,1 -143,9
30,5 18,6 3,2 30,5 4,0 4,9 19,2 16,3 6,4 17,6 16,2 5,1 -0,4 4,4 6,1 5,1

-10,73 -4,72 -3,38 -6,22 -4,77 -1,95 -8,67 -7,37 -1,81 -9,77 -6,71 -5,45 -9,09 -9,62 -4,77 -7,04
1,96 0,56 -1,81 1,13 0,31 -0,35 2,95 -0,12 -1,08 1,59 -1,54 -1,22 9,21 -3,48 -2,49 0,73
-7,12 -1,05 -0,81 -1,44 -1,09 -0,76 -0,67 -1,92 -1,09 -3,71 -2,13 -1,17 1,60 -3,24 -2,11 -1,73
-3,10 -0,35 -0,41 -1,21 -0,65 -0,64 0,23 -1,61 -0,85 -2,75 -1,09 -0,75 1,21 -2,57 -0,22 -1,46
-2,48 0,33 -0,88 -1,69 -0,88 -0,77 -2,65 -0,85 -1,00 0,25 -1,20 -0,08 -1,54 -1,60 -2,49 0,26

(MTTF)

26,39 12,33 14,25 14,25 11,16 5,87 31,18 28,44 14,12 19,95 17,61 16,96 39,55 42,94 28,04 17,52
1,01 2,12 10,69 -0,47 -2,33 1,57 -0,38 7,57 13,82 1,81 0,31 1,06 -7,73 17,06 19,63 2,96
11,62 4,05 8,14 1,77 2,33 2,35 4,37 9,86 13,24 1,36 1,26 1,77 -6,36 16,47 19,63 2,16
5,68 2,12 6,11 3,42 0,93 3,52 2,28 5,96 10,00 1,13 0,00 0,71 -10,00 10,00 6,54 1,08
1,64 0,96 7,12 1,88 1,86 3,33 10,46 7,57 11,76 -1,13 2,52 1,77 12,73 17,06 19,63 1,08

-1,09
-1,03
-1,37
-0,86
-1,12

3,9
-56,3
-58,0
-67,9
12,2

-6,34
0,37
-1,78
-0,98
-1,17

21,54
4,38
6,12
3,23
6,61

(avg peak temp)

(b) Average Peak Temperature

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

(avg temp)

0,00 -0,22 -1,28 0,30 0,17 -0,50 -0,91 -1,42 -2,25 0,51 0,16 -0,15 -1,93 -3,94 -4,84 -0,30
0,03 -0,13 -1,09 0,34 0,42 -0,26 -0,89 -1,36 -2,29 -0,13 -0,01 -0,20 -1,93 -3,52 -4,39 -0,59
-0,48 -0,74 -1,71 -0,10 -0,41 -0,54 -1,47 -1,94 -2,86 -0,01 -0,20 -0,43 -1,77 -3,57 -4,39 -0,68
-0,58 -0,41 -1,27 -0,47 -0,23 -0,81 -1,15 -1,17 -2,07 -0,18 0,01 -0,25 -1,06 -1,95 -1,33 -0,46
0,02 -0,20 -1,20 0,48 -0,11 -0,60 -0,90 -1,40 -2,24 0,25 -0,31 -0,32 -1,97 -3,81 -4,42 -0,44

(% hop)

36,1 27,0 47,6 -4,2 -2,0 13,0 29,0 29,2 42,5 -55,1 -16,2 -51,0 0,0 -5,6 -31,4 -55,4
-17,2 -27,0 -0,7 -19,0 -46,7 -4,5 -23,5 -28,5 -12,5 -91,8 -100,6 -96,7 -73,1 -170,3 -132,4 -124,0
-15,4 -13,2 5,7 -1,7 -15,4 3,3 -14,0 -22,0 -13,0 -85,0 -102,5 -80,7 -174,8 -178,7 -162,5 -133,4
-24,9 -23,4 -1,1 -26,6 -25,6 1,4 -24,8 -32,9 -11,5 -114,1 -106,1 -100,0 -171,4 -179,1 -179,1 -143,9
30,5 18,6 3,2 30,5 4,0 4,9 19,2 16,3 6,4 17,6 16,2 5,1 -0,4 4,4 6,1 5,1

-10,73 -4,72 -3,38 -6,22 -4,77 -1,95 -8,67 -7,37 -1,81 -9,77 -6,71 -5,45 -9,09 -9,62 -4,77 -7,04
1,96 0,56 -1,81 1,13 0,31 -0,35 2,95 -0,12 -1,08 1,59 -1,54 -1,22 9,21 -3,48 -2,49 0,73
-7,12 -1,05 -0,81 -1,44 -1,09 -0,76 -0,67 -1,92 -1,09 -3,71 -2,13 -1,17 1,60 -3,24 -2,11 -1,73
-3,10 -0,35 -0,41 -1,21 -0,65 -0,64 0,23 -1,61 -0,85 -2,75 -1,09 -0,75 1,21 -2,57 -0,22 -1,46
-2,48 0,33 -0,88 -1,69 -0,88 -0,77 -2,65 -0,85 -1,00 0,25 -1,20 -0,08 -1,54 -1,60 -2,49 0,26

(MTTF)

26,39 12,33 14,25 14,25 11,16 5,87 31,18 28,44 14,12 19,95 17,61 16,96 39,55 42,94 28,04 17,52
1,01 2,12 10,69 -0,47 -2,33 1,57 -0,38 7,57 13,82 1,81 0,31 1,06 -7,73 17,06 19,63 2,96
11,62 4,05 8,14 1,77 2,33 2,35 4,37 9,86 13,24 1,36 1,26 1,77 -6,36 16,47 19,63 2,16
5,68 2,12 6,11 3,42 0,93 3,52 2,28 5,96 10,00 1,13 0,00 0,71 -10,00 10,00 6,54 1,08
1,64 0,96 7,12 1,88 1,86 3,33 10,46 7,57 11,76 -1,13 2,52 1,77 12,73 17,06 19,63 1,08

-1,09
-1,03
-1,37
-0,86
-1,12

3,9
-56,3
-58,0
-67,9
12,2

-6,34
0,37
-1,78
-0,98
-1,17

21,54
4,38
6,12
3,23
6,61

(avg peak temp)

occupancy increases. In every scenario, on average it was the only heuristic that pre-
sented better results for peak temperature than FLEA+ MIG (0.37ºC);

• Enabling migration reduced, on average, the peak temperature difference reached by
PID heuristic of 0.8°C (from 1.78°C to 0.98°C). However, PID and PID MIG under-
perform against FLEA+ in almost every scenario, with peak temperature difference
reaching up to 7.12°C;

• Even without migration, FLEA+ could produce an average peak temperature reduction
compared to Grouped and PID, only losing to Pattern and PID MIG. Enabling FLEA+
migration produces an average reduction of 1.17°C in the average peak temperature.

This temperature evaluation demonstrates the effectiveness of DTM methods with
actuation mechanisms, specifically task migration, in managing thermal profiles. Al-
though the absolute temperature differences across scenarios are minimal, thermal
maps and violin-box plots reveal the importance of spatial temperature assessment.
These graphs illustrate how heuristics like PID MIG and FLEA+ MIG successfully min-
imize thermal hotspots. We observed that heuristics requiring continuous metric cal-
culations, as in the case of PID, tend to create a thermal hotspot in the PE performing
these computations, adversely affecting the system MTTF. Additionally, the consis-
tency of FLEA+ MIG in controlling the average peak temperature is a significant finding.
Therefore, this initial set of results highlights the effectiveness of FLEA+ MIG in ther-
mal management regarding absolute temperature values and the spatial distribution of
temperature across the manycore system.

123

6.3.2 Hop Count Evaluation

As previously mentioned, the hop count is a critical metric for mapping because it
represents the average distance between communicating tasks. A lower hop count reduces
NoC traffic and congestion due to concurrent data flows. Although the OVP platform accu-
rately models the behavior of the NoC, including its arbitration and routing algorithm, similar
to an RTL model, it fails to replicate the effect of network traffic. Therefore, analyzing this
parameter proves essential.

Figure 6.7 illustrates the average hop count for communicating tasks across all sim-
ulated scenarios (Table 6.1). The Grouped mapping, despite bringing communicating tasks
closer together, presents high hop number values in several scenarios. The reason for this
issue is the mapping fragmentation. At the end of applications and the insertion of new ones
with a different number of tasks, the new tasks may be mapped to noncontinuous regions.
The Grouped average hop number is 3.37, with a standard deviation of 1.24. For FLEA+ and
FLEA+ MIG, these values are 3.02/3.42 (average values) and 0.72/0.66 (standard deviation).
These values show that FLEA+ can reduce the average distance between communicating
tasks due to the clustering process, and the low standard deviation value demonstrates the
scalability of the approach in the face of different system sizes and workloads.

A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F
0

2

4

6

8

10

H
op

 c
ou

nt

Average Hop Count

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

Figure 6.7: Average Hop Count between communicating tasks when executing the proposed
scenarios (Table 6.1) using different mapping and migration heuristics

In 8x8 systems (A#, B#, and C#), the hop count increases with the system occu-
pancy without showing high values (≈4). Note the patterning heuristic in cases B7 and B9,
where the hop count is higher than other heuristics due to how this heuristic maps tasks
(interleaving free and used PEs).

The behavior is distinct in 14x14 systems (D#, E#, and F). Given the larger search
space, pattern, and PID heuristics excessively increase the hop count. The PID heuristic

124

searches for PEs with a lower PID score considering the entire system, which increases the
hop count.

Our proposed approach, FLEA+, inherently minimizes the hop count due to adopt-
ing a clustering technique for mapping tasks. The hop count stays below 4 in most scenarios,
except for scenarios A9 and B9. It is important to note that migration increases the hop count
as tasks may migrate to the expanded cluster, outside of their initial clusters, with the goal
of preventing hotspots and enhancing MTTF.

Table 6.4 provides a comparative analysis of hop count between FLEA+ MIG and
other heuristics, highlighting the differences in percentages. The values shaded in green,
which are negative, indicate the hop count reduction achieved by FLEA+ MIG in comparison
to the corresponding heuristic. Conversely, the values shaded in red, which are positive,
showcase the increases in hop count when FLEA+ MIG is compared with other heuristics.

Table 6.4: FLEA+ hop count comparison against other heuristics.

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

(avg temp)

0,00 -0,22 -1,28 0,30 0,17 -0,50 -0,91 -1,42 -2,25 0,51 0,16 -0,15 -1,93 -3,94 -4,84 -0,30
0,03 -0,13 -1,09 0,34 0,42 -0,26 -0,89 -1,36 -2,29 -0,13 -0,01 -0,20 -1,93 -3,52 -4,39 -0,59
-0,48 -0,74 -1,71 -0,10 -0,41 -0,54 -1,47 -1,94 -2,86 -0,01 -0,20 -0,43 -1,77 -3,57 -4,39 -0,68
-0,58 -0,41 -1,27 -0,47 -0,23 -0,81 -1,15 -1,17 -2,07 -0,18 0,01 -0,25 -1,06 -1,95 -1,33 -0,46
0,02 -0,20 -1,20 0,48 -0,11 -0,60 -0,90 -1,40 -2,24 0,25 -0,31 -0,32 -1,97 -3,81 -4,42 -0,44

(% hop)

36,1 27,0 47,6 -4,2 -2,0 13,0 29,0 29,2 42,5 -55,1 -16,2 -51,0 0,0 -5,6 -31,4 -55,4
-17,2 -27,0 -0,7 -19,0 -46,7 -4,5 -23,5 -28,5 -12,5 -91,8 -100,6 -96,7 -73,1 -170,3 -132,4 -124,0
-15,4 -13,2 5,7 -1,7 -15,4 3,3 -14,0 -22,0 -13,0 -85,0 -102,5 -80,7 -174,8 -178,7 -162,5 -133,4
-24,9 -23,4 -1,1 -26,6 -25,6 1,4 -24,8 -32,9 -11,5 -114,1 -106,1 -100,0 -171,4 -179,1 -179,1 -143,9
30,5 18,6 3,2 30,5 4,0 4,9 19,2 16,3 6,4 17,6 16,2 5,1 -0,4 4,4 6,1 5,1

-10,73 -4,72 -3,38 -6,22 -4,77 -1,95 -8,67 -7,37 -1,81 -9,77 -6,71 -5,45 -9,09 -9,62 -4,77 -7,04
1,96 0,56 -1,81 1,13 0,31 -0,35 2,95 -0,12 -1,08 1,59 -1,54 -1,22 9,21 -3,48 -2,49 0,73
-7,12 -1,05 -0,81 -1,44 -1,09 -0,76 -0,67 -1,92 -1,09 -3,71 -2,13 -1,17 1,60 -3,24 -2,11 -1,73
-3,10 -0,35 -0,41 -1,21 -0,65 -0,64 0,23 -1,61 -0,85 -2,75 -1,09 -0,75 1,21 -2,57 -0,22 -1,46
-2,48 0,33 -0,88 -1,69 -0,88 -0,77 -2,65 -0,85 -1,00 0,25 -1,20 -0,08 -1,54 -1,60 -2,49 0,26

(MTTF)

26,39 12,33 14,25 14,25 11,16 5,87 31,18 28,44 14,12 19,95 17,61 16,96 39,55 42,94 28,04 17,52
1,01 2,12 10,69 -0,47 -2,33 1,57 -0,38 7,57 13,82 1,81 0,31 1,06 -7,73 17,06 19,63 2,96
11,62 4,05 8,14 1,77 2,33 2,35 4,37 9,86 13,24 1,36 1,26 1,77 -6,36 16,47 19,63 2,16
5,68 2,12 6,11 3,42 0,93 3,52 2,28 5,96 10,00 1,13 0,00 0,71 -10,00 10,00 6,54 1,08
1,64 0,96 7,12 1,88 1,86 3,33 10,46 7,57 11,76 -1,13 2,52 1,77 12,73 17,06 19,63 1,08

-1,09
-1,03
-1,37
-0,86
-1,12

3,9
-56,3
-58,0
-67,9
12,2

-6,34
0,37
-1,78
-0,98
-1,17

21,54
4,38
6,12
3,23
6,61

(avg peak temp)

This table may be summarized as follows:

• Grouped, Pattern, and PID are not scalable in terms of hop number;

• The adoption of the clustering approach ensures a reduced average hop number,
bringing scalability to FLEA+ (avg. hop number: 3,02; standard deviation: 0,72);

• The adoption of migration in FLEA+ to improve MTTF penalizes on average 12.2%
the hop number (avg. hop number: 3,42; standard deviation: 0,66), but note that the
largest penalties occur in systems with a small occupancy (A5, B5) where the heuristic
has a larger number of PEs to explore.

6.3.3 Reliability Evaluation

The reliability evaluation begins by analyzing the impact of each wear-out effect on
the FIT. Specifically, we focus on the FIT graph for a 14x14 manycore with 90% occupancy,
detailed in Figure 6.8. For a comprehensive view of FIT data across other scenarios, please
refer to Appendix C. It is important to note that the FIT values are relative to a baseline value
established for each wear-out effect. During our experiments, we used this baseline value
equal to 800 for all wear-out effects.

125

0
1
2
3
4
5
6
7
8
9

10
11
12
13

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

SM

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TD
D

B

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TC

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

N
B

TI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6.8: Manycore FIT intensity map per evaluated wear-out effect in the scenario 14x14
computation 90%.

The graph shows the intensity of various wear-out effects, including electromigra-
tion (EM), stress migration (SM), time-dependent dielectric breakdown (TDDB), thermal cy-
cling (TC), and negative bias temperature instability (NBTI). Upon initial observation of the
FIT graph, some trends become apparent. Notably, the FIT values associated with SM, TC,
and EM are of the greatest magnitude.

A divergence in the EM effect is observed on the MPE, located in the top-left cor-
ner, under the PID heuristic. The FIT intensity for EM on this specific PE is significantly
higher than the EM FIT values of other PEs within the manycore. This difference is due to
the continuous computational load on the MPE, as it consistently executes the PID score
calculations for each PE. This processing load on the MPE increases its vulnerability to EM.
Consequently, the FIT rate for EM on the MPE is elevated, creating a reliability bottleneck
within the system.

Figure 6.9, presents the FIT distribution14x14 computation at 50% occupancy. In
this Figure, under the Pattern heuristic, we observe a chessboard pattern distribution across
the PEs within the manycore. As the system’s occupancy does not exceed 50%, it success-
fully interleaves the PEs, achieving an even distribution of FIT values throughout the system.
This pattern efficiently mitigates concentrated wear-out as it evenly spreads the workload.

The chessboard distribution is intriguingly replicated under the FLEA+ heuristic,
both with and without migration capabilities. This replication indicates that the reinforcement

126

0
1
2
3
4
5
6
7
8
9

10
11
12
13

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

SM

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TD
D

B

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TC

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

N
B

TI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6.9: Manycore FIT intensity map per evaluated wear-out effect in the scenario 14x14
computation 50%.

learning algorithm in FLEA+ has learned a FIT minimization strategy akin to the Pattern.
By rewarding reductions in FIT, the reinforcement learning process converged on a wear-
leveling approach similar to the manually designed chessboard pattern. This convergence
validates the effectiveness of Pattern mapping and demonstrates the capability of reinforce-
ment learning techniques to discover and apply complex strategies autonomously.

Violin-box plots have been used to enhance the visualization of the FIT distribution.
Figure 6.10(a) and (b) display the FIT distribution graphs for the scenarios illustrated in
Figures 6.8 and 6.9.

Referring to the 90% occupancy scenario in Figure 6.10(a), we corroborate the
findings from the earlier figure. Generally, the top 25% PEs with the highest FIT values in
FLEA+ MIG are lower than the most worn 75% of PEs under static mapping techniques
(Grouped, Pattern, PID, and FLEA+ without migration). Even in comparison to PID MIG, it is
observable that nearly all PEs fall within the range of the top 25% highest FIT PEs of FLEA+
MIG.

The graphical representation provided by the violin-box plots facilitates a more pre-
cise identification of outlier PEs. Figure 6.10(a), Pattern heuristic, outliers with relatively low
FIT values are observable, corresponding to the MPE. The MPE, having a lower manage-
ment load and spending considerable idle time, exhibits a scenario inverse to that observed

127

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
2500

5000

7500

10000

12500

15000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(a) 14x14 computation 90%

Grouped Pattern PIDTM PIDTM (MIG) FLEA+ FLEA+ (MIG)

2000

4000

6000

8000

10000

12000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(b) 14x14 computation 50% (without clustering)

Figure 6.10: Violin-box plot showing FIT distribution for 14x14 computation (a) 90% and (b)
50% occupancy scenarios, respectively.

in the PID heuristic. In the case of the PID heuristic, an outlier is detected with a compara-
tively high FIT value due to PID score computation.

Figure 6.10(b) exhibits the FIT distribution from the experiment using the scenario
14x14 computation with 50% occupancy. The violin-box plot illustrates how the FLEA+
heuristic mirrors the chessboard organization inherent to the Pattern strategy.

We also observe the impact of task migration in Figure 6.10. By comparing FLEA+
and FLEA+ MIG, the task migration reduces the number of PEs with high FIT values. The
median FIT value for PEs under FLEA+ MIG is lower, showing that migration reduces PE
wearing.

Figure 6.11 displays visually the MTTF values of each simulated scenario (Table
6.1). The MTTF was estimated using a Monte Carlo simulation technique proposed by
Srinivasan et al. [Srinivasan et al., 2005], as previously described in Section 3.3.2.

Analyzing the MTTF graph, Figure 6.11 we may note that:

• Systems with an 8x8 configuration (scenarios A#, B#, and C#) exhibit a higher MTTF
compared to their 14x14 (scenarios D#, E#, and F), due to fewer cores at risk of failure.
It should be remembered that our reliability analysis assumes a series model where

128

A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F
0

2

4

6

8

10
M

TT
F

(y
ea

rs
)

Mean Time to Failure

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

Figure 6.11: MTTF estimation when executing the proposed scenarios using different map-
ping and migration heuristics.

the system is considered failed if any PE fails, as there is no fault tolerance mechanism
in place.

• An increase in system occupancy directly impacts reliability, leading to a reduced MTTF
as occupancy levels rise. This trend is evident when comparing scenarios with the
same workload, such as A5, A7, and A9.

• Grouped mapping consistently shows the poorest MTTF across all scenarios.

• Pattern and PID exhibit MTTFs close to those of FLEA+ MIG in several instances.

Table Table 6.5 consolidates the MTTF results. The table entries represent the
percentage difference, with positive values indicating how much better FLEA+ MIG performs
than other heuristics. Negative values, on the other hand, mean scenarios where FLEA+
MIG performs worse.

Table 6.5: FLEA+ with migration MTTF comparison against other heuristics.

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

Heuristic Scenarios Average
A5 A7 A9 B5 B7 B9 C5 C7 C9 D5 D7 D9 E5 E7 E9 F

Grouped
Pattern

PID
PID (MIG)

FLEA

(avg temp)

0,00 -0,22 -1,28 0,30 0,17 -0,50 -0,91 -1,42 -2,25 0,51 0,16 -0,15 -1,93 -3,94 -4,84 -0,30
0,03 -0,13 -1,09 0,34 0,42 -0,26 -0,89 -1,36 -2,29 -0,13 -0,01 -0,20 -1,93 -3,52 -4,39 -0,59
-0,48 -0,74 -1,71 -0,10 -0,41 -0,54 -1,47 -1,94 -2,86 -0,01 -0,20 -0,43 -1,77 -3,57 -4,39 -0,68
-0,58 -0,41 -1,27 -0,47 -0,23 -0,81 -1,15 -1,17 -2,07 -0,18 0,01 -0,25 -1,06 -1,95 -1,33 -0,46
0,02 -0,20 -1,20 0,48 -0,11 -0,60 -0,90 -1,40 -2,24 0,25 -0,31 -0,32 -1,97 -3,81 -4,42 -0,44

(% hop)

36,1 27,0 47,6 -4,2 -2,0 13,0 29,0 29,2 42,5 -55,1 -16,2 -51,0 0,0 -5,6 -31,4 -55,4
-17,2 -27,0 -0,7 -19,0 -46,7 -4,5 -23,5 -28,5 -12,5 -91,8 -100,6 -96,7 -73,1 -170,3 -132,4 -124,0
-15,4 -13,2 5,7 -1,7 -15,4 3,3 -14,0 -22,0 -13,0 -85,0 -102,5 -80,7 -174,8 -178,7 -162,5 -133,4
-24,9 -23,4 -1,1 -26,6 -25,6 1,4 -24,8 -32,9 -11,5 -114,1 -106,1 -100,0 -171,4 -179,1 -179,1 -143,9
30,5 18,6 3,2 30,5 4,0 4,9 19,2 16,3 6,4 17,6 16,2 5,1 -0,4 4,4 6,1 5,1

-10,73 -4,72 -3,38 -6,22 -4,77 -1,95 -8,67 -7,37 -1,81 -9,77 -6,71 -5,45 -9,09 -9,62 -4,77 -7,04
1,96 0,56 -1,81 1,13 0,31 -0,35 2,95 -0,12 -1,08 1,59 -1,54 -1,22 9,21 -3,48 -2,49 0,73
-7,12 -1,05 -0,81 -1,44 -1,09 -0,76 -0,67 -1,92 -1,09 -3,71 -2,13 -1,17 1,60 -3,24 -2,11 -1,73
-3,10 -0,35 -0,41 -1,21 -0,65 -0,64 0,23 -1,61 -0,85 -2,75 -1,09 -0,75 1,21 -2,57 -0,22 -1,46
-2,48 0,33 -0,88 -1,69 -0,88 -0,77 -2,65 -0,85 -1,00 0,25 -1,20 -0,08 -1,54 -1,60 -2,49 0,26

(MTTF)

26,39 12,33 14,25 14,25 11,16 5,87 31,18 28,44 14,12 19,95 17,61 16,96 39,55 42,94 28,04 17,52
1,01 2,12 10,69 -0,47 -2,33 1,57 -0,38 7,57 13,82 1,81 0,31 1,06 -7,73 17,06 19,63 2,96
11,62 4,05 8,14 1,77 2,33 2,35 4,37 9,86 13,24 1,36 1,26 1,77 -6,36 16,47 19,63 2,16
5,68 2,12 6,11 3,42 0,93 3,52 2,28 5,96 10,00 1,13 0,00 0,71 -10,00 10,00 6,54 1,08
1,64 0,96 7,12 1,88 1,86 3,33 10,46 7,57 11,76 -1,13 2,52 1,77 12,73 17,06 19,63 1,08

-1,09
-1,03
-1,37
-0,86
-1,12

3,9
-56,3
-58,0
-67,9
12,2

-6,34
0,37
-1,78
-0,98
-1,17

21,54
4,38
6,12
3,23
6,61

(avg peak temp)

An analysis of Table 6.5 reveals that the FLEA+ MIG heuristic yields an average
improvement of 21.54% in MTTF over the Grouped heuristic. Compared to the Pattern
heuristic, the average enhancement is 4.38%, indicating that while FLEA+ MIG offers ben-
efits, but the extent of improvement varies significantly depending on the specific scenario.
This variation ranges from a decrease of 7.73% in scenario E5 to an increase of 19.63% in

129

E9. Compared to the PID heuristic, FLEA+ MIG shows an average improvement of 6.12%,
and a 3.23% improvement against PID MIG.

These results demonstrate the efficiency of FLEA+ MIG to maximize MTTF in scenar-
ios with higher workloads and larger system dimensions.

6.3.4 Scalability Evaluation

In the evaluation of the scalability aspects of different heuristics, we consider both
time complexity which deals with how processing time increases with input size, and space
complexity which considers the amount of memory used.

The Grouped and Pattern heuristics exhibit time complexity of O(1). This behavior
is due to their operation mechanism that involves querying a priority address table indexed by
an incremented pointer with each allocation. It also indicates that their spatial complexity is
O(nPES), where nPES represents the number of PEs since the space required is proportional
to the number of entries which is dependent on the number of PEs.

Regarding the PID heuristic, it can be stated that the time complexity to perform a
task allocation is O(nPES) because it requires searching through an unordered list to deter-
mine which PE has the optimal PID score. However, the calculation of the PID score also
has a complexity of O(nPES) and must be executed within each monitoring window. Thus,
there is an upper bound on the scalability of the PID heuristic’s execution imposed by the
size of the monitoring window. If the PID score for each PE cannot be computed within the
monitoring window’s duration, the heuristic’s functionality is compromised. Additionally, the
spatial resources required by the PID approach exceed those of the previous heuristics since
it involves maintaining a thermal history of 10 monitoring windows for each PE. Nonetheless,
its asymptotical spatial complexity remains O(nPES).

The scalability of the FLEA algorithm must be assessed in two stages. The first
stage involves the cluster selection process that occurs once for the allocation of each ap-
plication. As this involves a sliding window search iterated once over the entire dimension of
the manycore, its complexity is O(nPES). Following the cluster selection, the task allocation
starts, where the search is restricted within the chosen cluster, leading to a complexity of
O(len(cluster)), with len(cluster) representing the size of the cluster. In terms of spatial de-
mands, the heuristic requires only the trained policy table, which has a constant size, leading
to a space complexity of O(1).

To test their scalability, we simulated a 20x20 system with 400 PEs executing
computation-intensive workloads with 70% system utilization. Figure 6.12 displays temper-
ature snapshots for all tested management heuristics. It reveals that the thermal distribution

130

created by the Pattern heuristic generates several hotspots; as previously discussed, its
ability to distribute heat drops significantly when system utilization exceeds 50%.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.
00

 to
 0

.2
6

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.
27

 to
 0

.5
3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.
54

 to
 0

.8
0

0 1 2 3 4 5 6 7 8 910111213141516171819

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

0.
81

 to
 1

.0
7

0 1 2 3 4 5 6 7 8 910111213141516171819 0 1 2 3 4 5 6 7 8 910111213141516171819 0 1 2 3 4 5 6 7 8 910111213141516171819 0 1 2 3 4 5 6 7 8 910111213141516171819 0 1 2 3 4 5 6 7 8 910111213141516171819

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

Figure 6.12: Average temperature snapshot of a 20X20 system executing a compute-
intensive workload with 70% of system occupation.

Furthermore, we observe that migration assists in reducing the heat concentration
for both PID and FLEA+ heuristics. Figures 6.13(a) and 6.13(b) present the average temper-
ature and FIT distributions, respectively, through violin-box plots. These figures allow us to
compare the thermal distribution more effectively. Comparing Pattern to the FLEA+, almost
50% of the PEs using Pattern present average temperatures higher than those seen in the
hottest PE managed by FLEA+.

Additionally, about 75% of PEs managed by PID and 50% of those with PID with
migration reach temperatures within the hottest 25% range for FLEA+. Outliers in both PID
management techniques result from intense and periodic computing in the MPE to deter-
mine the system’s PID score. This simulation demonstrates that even with a doubling of the
number of PEs, 196 to 400, we keep the thermal and FIT management capacity.

Overall, the evaluation reveals that the Grouped and Pattern heuristics maintain a
constant time complexity, while the scalability of the PID heuristic is limited by the size of
the monitoring window. The FLEA algorithm demonstrates an intermediate time complexity,
which depends on the cluster size following the initial selection process, while maintaining
constant spatial demands. It is clear that while the Grouped and Pattern heuristics offer
excellent scalability with constant time complexity and predictable resource requirements,
the PID heuristic has potential limitations due to its reliance on the monitoring window size.
The FLEA algorithm emerges as a compromise solution, enabling scalability while efficiently

131

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(a) PE average temperature violin-box plot

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

2500

5000

7500

10000

12500

15000

17500

Fa
ilu

re
s

in
 1

09
ho

ur
s

(b) PE failure in time violin-box plot.

Figure 6.13: Violin-box plots for of a 20X20 system executing a compute-intensive workload
with 70% of system occupation.

allocating resources within clusters. This analysis helps in understanding the advantages
and disadvantages of each heuristic as systems expand, encompassing both processing
capabilities and memory resources.

6.4 Final Remarks

This Chapter evaluated DTM and DRM heuristics, using the reference manycore,
with a particular focus on the FLEA+ heuristic. The experimental setup, encompassing six-
teen scenarios, provided robust thermal and reliability evaluations. The results offer insights
into the efficacy of the FLEA+ heuristic alongside other mapping strategies like Grouped,
Pattern, and PID mappings.

A significant finding is the enhanced wear-leveling capability of the FLEA+ heuris-
tic, especially when migration is enabled. The lower FIT values observed in the top quartile
of PEs under FLEA+ MIG, compared to the original FLEA, show its superiority in mitigat-
ing wear-out. This aspect is crucial in prolonging the lifetime of manycores, ensuring their
reliability. The violin-box plots further reinforced these findings, providing a clear and com-
prehensive view of PE FIT distribution across the various scenarios.

132

Regarding thermal management, FLEA+ MIG demonstrated a consistent thermal
advantage across most scenarios, particularly at higher occupancy levels. This proves its
efficient thermal management capabilities, which are essential in keeping the operational
integrity and performance of manycores.

Results also highlighted the scalability challenges associated with other heuristics
like Grouped, Pattern, and PID mappings, particularly in terms of hop count. FLEA+ MIG
reduced hop count compared to these heuristics, indicating its better scalability. This aspect
is critical in larger manycores, where efficient data transfer and communication are pivotal.

Despite its strengths, FLEA+ is not without its weaknesses. Compared to Pattern
and Grouped, a potential drawback is the increased computational cost of identifying the
PBS for a PE. However, it only occurs once for each task allocation/migration. Furthermore,
the effectiveness of the Pattern mapping in half-occupied systems suggests that FLEA+
might benefit from further optimization in scenarios with varying occupancy levels.

In conclusion, the FLEA+ heuristic emerges as an effective approach for managing
thermal and reliability aspects in manycore. Its ability to enhance wear-leveling, manage
thermal behavior efficiently, and scale effectively in hop count makes it a valuable tool in
manycore system management. The findings contribute to the existing body of knowledge
and pave the way for more resilient and efficient manycore systems in the future.

133

7. CONCLUSIONS AND FUTURE WORK

This Chapter presents the conclusions drawn from the research presented in this
Thesis and offers recommendations for future work.

7.1 Conclusions

The Thesis statement, presented in the Introduction, declares that developing and
applying scalable Dynamic Thermal Management (DTM) and Dynamic Reliability Manage-
ment (DRM) strategies for manycore systems is feasible using a Reinforcement Learning
(RL) technique. The research, development, and evaluation conducted in this Thesis have
significantly contributed to this domain. A novel technique named FLEA was introduced,
integrating reliability-aware RL into system-level task management. This integration aims to
enhance the lifetime reliability of manycore systems.

We developed an abstract manycore platform, Chronos-V, to enable the deploy-
ment of the management heuristics. Chronos-V was a fundamental tool for executing, de-
veloping, and testing the RL-based management strategy. The platform was created with
customizable hardware, integrating an Instruction Set Simulator (ISS) with high-level models
of routers, memory, peripherals, and the Temperature Estimator Accelerator (TEA), initially
described at the RTL level.

On the software side, we expanded the FreeRTOS with a message-passing in-
terface and three management modules – monitoring, decision, and actuating. A periodic
process monitors the temperature, with each PE estimating its energy consumption and
transmitting this data to the TEA peripheral. TEA then computes the temperature of each
PE and sends this information to the manager PE (MPE). The MPE executes the decision-
making heuristics, including application mapping, task migrations, and dynamic voltage and
frequency scaling. The actuation occurs at the PE level.

The proposed management technique, FLEA, proved effective through a policy
lookup table trained with Q-learning, an RL technique. The main advantage of using Q-
learning is its model-free ability to create a trial-and-error task allocation strategy during the
design phase based on reliability feedback, leading to significant improvements in reliability
and efficiency. The adoption of Q-learning makes the framework flexible in terms of the cost
function to optimize, making it possible to add other aging effects simply by modifying the
training process.

Comparative analysis and extensive simulations demonstrated that the RL-based
task management strategy outperforms existing methods in thermal and reliability perfor-
mance in the proposed scenarios. The results indicated that the heuristic based on a lookup

134

table effectively controlled the mean and peak temperatures, achieving a better spatial tem-
perature distribution across the manycore. FLEA also significantly mitigated temperature-
related wear-out effects, showing an average MTTF improvement of 4.38% over Pattern,
6.12% over PID, and 3.23% over PID with migration, thus extending the expected manycore
lifetime.

The effectiveness of this RL-based approach not only corroborates the Thesis
statement but also lays the foundation for future research into the reliability management of
manycore systems. In summary, this Thesis demonstrates the effectiveness and practicality
of RL-based strategies in improving the lifetime reliability of manycore systems. Through
simulations and systematic comparisons with existing techniques, this research shows that
an RL-based task management approach represents a significant advance in managing
manycore’ thermal and reliability constraints, thus validating the hypothesis proposed in the
thesis statement.

7.2 Future Research Directions

Moving forward from the research presented in this Thesis, the Chronos-V platform
and the FLEA heuristic offer different paths to advance the research. The following points
outline potential future works that could significantly extend this research:

• Optimization of Chronos-V Platform: Continued platform development may address
the identified bottlenecks in the Chronos-V model. The performance profiling has in-
dicated that our manycore model currently achieves an average of ∼50% utilization
on each host machine core. Optimizing the simulator’s code and refactoring critical
sections, such as the “iterator”, could improve the parallelization efficiency, leading to
faster and more scalable parallel simulations.

• Graphical User Interface (GUI) for Chronos-V: Designing and implementing a GUI
would assist in real-time analysis and monitoring of simulations. As highlighted in [Ru-
aro and J. M. Martin, 2022], a GUI can significantly accelerate manycore development.

• FLEA Evaluation with Multitasking: Adapting the FLEA heuristic to handle multitask-
ing scenarios presents a research challenge. Currently, FLEA queries the Q-table by
indexing the Task Power Category (TPC) and PE bin state (PBS). The challenge lies in
determining the PBS for a PE with multitasking PEs neighboring. One solution could
involve using the PE’s capability to estimate its power consumption, using an average
value to infer an equivalent TPC for that PE.

• DVFS using FLEA: Incorporating DVFS strategies into the FLEA heuristic stands as
another actuation knob to further enhance thermal behavior and reliability. This topic

135

requires research into modeling a scalable actuation space in which reinforcement
learning can relate task deadlines to the PEs’ speed.

• Development of a Reliability Estimator Accelerator (REA): Similarly to the devel-
opment of the peripheral Thermal Estimation Accelerator (TEA) [Silva et al., 2019], a
REA could enable online learning capabilities. The system can continuously maintain
the reinforcement learning training by calculating the Failure in Time (FIT) in real-time.
This poses an engineering challenge, requiring the implementation of aging models in
hardware at the RTL level and assessing their area, power impact, and scalability for
larger systems.

• Re-Evaluation of Q-learning Learning Rate (Alpha) for Online Training: With the
shift to online training, leveraged by an REA module, the learning rate decay applied
in the Q-learning training requires reconsideration. Rather than tending towards zero
as during design-time training presented in this Thesis, another decay rate, or possibly
a dynamic adjustment strategy, will need to be determined. Besides that, another
important piece of information is establishing how long the system must train before
achieving adequate performance with an uninitialized policy table.

• Validation of FLEA on RTL-Level Platform Simulation: To assess the practical ap-
plicability and accuracy of the FLEA heuristic in detail, it is essential to apply the Q-
table for mapping on a platform modeled at the RTL-level and evaluate temperature
and reliability results. The simulation at this lower abstraction level—with clock cycle
accuracy—will validate the FLEA heuristic under more realistic and granular conditions.

• Real-System Evaluation with Thermal Imaging: Testing the heuristics on actual
hardware platforms and performing thermal evaluations via thermal imaging, as de-
tailed in the literature [Zhang et al., 2023], would provide invaluable data. This step
would ground the theoretical models and identify unforeseen practical constraints and
opportunities for further refinement.

In summary, this set of future works promises to advance the current state-of-the-
art dynamic thermal and reliability management systems. Such advancements would have
far-reaching implications for many applications, from high-performance computing to sus-
tainable and resilient electronic device operation.

136

REFERENCES

[Abadeer et al., 1999] Abadeer, W. W. B., Bagramian, A., Conkle, D. W., Griffin, C. W.,
Langlois, E., Lloyd, B. F., Mallette, R. P., Massucco, J. E., McKenna, J. M., Mittl,
S. W., and Noel, P. H. (1999). Key measurements of ultrathin gate dielectric reliabil-
ity and in-line monitoring. IBM Journal of Research and Development, 43(3):407–416.
https://doi.org/10.1147/rd.433.0407.

[Amid et al., 2020] Amid, A., Biancolin, D., Gonzalez, A., Grubb, D., Karandikar, S., Liew, H.,
Magyar, A., Mao, H., Ou, A. J., Pemberton, N., Rigge, P., Schmidt, C., Wright, J. C., Zhao,
J., Bachrach, J., Shao, Y. S., Nikolic, B., and Asanovic, K. (2020). Invited: Chipyard - An In-
tegrated SoC Research and Implementation Environment. In ACM/IEEE Design Automa-
tion Conference (DAC), pages 1–6. https://doi.org/10.1109/DAC18072.2020.9218756.

[Arrhenius, 1889] Arrhenius, S. (1889). Uber die Reaktionsgeschwindigkeit bei der Inversion
von Rohrzucker durch Säuren. Zeitschrift für physikalische Chemie, 4(1):226–248. https://
doi.org/10.1515%2Fzpch-1889-0416.

[Benini et al., 2012] Benini, L., Flamand, E., Fuin, D., and Melpignano, D. (2012). P2012:
Building an ecosystem for a scalable, modular and high-efficiency embedded computing
accelerator. In IEEE Design, Automation Test in Europe Conference (DATE), pages 983–
987. https://doi.org/10.1109/DATE.2012.6176639.

[Bergman and Lavine, 2017] Bergman, T. L. and Lavine, A. S. (2017). Fundamentals of
Heat and Mass Transfer. John Wiley & Sons, 8th edition. 992p.

[Bertozzi et al., 2005] Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S.,
Benini, L., and De Micheli, G. (2005). NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip. IEEE Transactions on Parallel and Distributed Systems,
16(2):113–129. https://doi.org/10.1109/TPDS.2005.22.

[Bienia et al., 2008] Bienia, C., Kumar, S., Singh, J. P., and Li, K. (2008). The PARSEC
benchmark suite: Characterization and architectural implications. In International Con-
ference on Parallel Architectures and Compilation Techniques (PACT), pages 72–81.
https://doi.org/10.1145/1454115.1454128.

[Binkert et al., 2011a] Binkert, N. et al. (2011a). The Gem5 Simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7. https://doi.org/10.1145/2024716.2024718.

[Binkert et al., 2011b] Binkert, N. L., Beckmann, B. M., Black, G., Reinhardt, S. K., Saidi,
A. G., Basu, A., Hestness, J., Hower, D., Krishna, T., Sardashti, S., Sen, R., Sewell,

https://doi.org/10.1147/rd.433.0407
https://doi.org/10.1109/DAC18072.2020.9218756
https://doi.org/10.1515%2Fzpch-1889-0416
https://doi.org/10.1515%2Fzpch-1889-0416
https://doi.org/10.1109/DATE.2012.6176639
https://doi.org/10.1109/TPDS.2005.22
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/2024716.2024718

137

K., Altaf, M. S. B., Vaish, N., Hill, M. D., and Wood, D. A. (2011b). The gem5 simu-
lator. ACM SIGARCH Computer Architecture News, 39(2):1–7. https://doi.org/10.1145/
2024716.2024718.

[Black, 1969] Black, J. (1969). Electromigration—A brief survey and some recent re-
sults. IEEE Transactions on Electron Devices, 16(4):338–347. https://doi.org/10.1109/
T-ED.1969.16754.

[Bohr, 2007] Bohr, M. (2007). A 30 Year Retrospective on Dennard’s MOSFET Scaling
Paper. IEEE Solid-State Circuits Society Newsletter, 12(1):11–13. https://doi.org/10.1109/
N-SSC.2007.4785534.

[Bolchini et al., 2014] Bolchini, C., Carminati, M., Gribaudo, M., and Miele, A. (2014). A
lightweight and open-source framework for the lifetime estimation of multicore systems.
In IEEE International Conference on Computer Design (ICCD), pages 166–172. https://
doi.org/10.1109/ICCD.2014.6974677.

[Borkar, 2007] Borkar, S. (2007). Thousand Core Chips: A Technology Perspective.
In ACM/IEEE Design Automation Conference (DAC), pages 746–749. https://doi.org/
10.1145/1278480.1278667.

[Calazans et al., 2003] Calazans, N. L. V., Moreno, E. I., Hessel, F., da Rosa, V. M., Moraes,
F., and Carara, E. (2003). From VHDL Register Transfer Level to SystemC Transaction
Level Modeling: A Comparative Case Study. In IEEE Symposium on Integrated Circuits
and Systems Design (SBCCI), page 355. https://doi.org/10.1109/SBCCI.2003.1232853.

[Carara et al., 2009] Carara, E. A., Oliveira, R. P. d., Calazans, N. L. V., and Moraes, F. G.
(2009). HeMPS - a Framework for NoC-based MPSoC Generation. In IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1345–1348. https://doi.org/10.1109/
ISCAS.2009.5118013.

[Carlson et al., 2011] Carlson, T. E., Heirman, W., and Eeckhout, L. (2011). Sniper: ex-
ploring the level of abstraction for scalable and accurate parallel multi-core simulation.
In ACM Conference on High Performance Computing Networking, Storage and Analysis
(SC), pages 52:1–52:12. https://doi.org/10.1145/2063384.2063454.

[Castilhos et al., 2016] Castilhos, G., Moraes, F. G., and Ost, L. (2016). A lightweight
software-based runtime temperature monitoring model for multiprocessor embedded sys-
tems. In IEEE Symposium on Integrated Circuits and Systems Design (SBCCI), pages
1–6. https://doi.org/10.1109/SBCCI.2016.7724040.

[Cataldo et al., 2018] Cataldo, R., Fernandes, R., Martin, K. J. M., Sepúlveda, J., Susin,
A. A., Marcon, C. A. M., and Diguet, J. (2018). Subutai: distributed synchronization prim-
itives in NoC interfaces for legacy parallel-applications. In ACM/IEEE Design Automation
Conference (DAC), pages 83:1–83:6. https://doi.org/10.1145/3195970.3196124.

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/T-ED.1969.16754
https://doi.org/10.1109/T-ED.1969.16754
https://doi.org/10.1109/N-SSC.2007.4785534
https://doi.org/10.1109/N-SSC.2007.4785534
https://doi.org/10.1109/ICCD.2014.6974677
https://doi.org/10.1109/ICCD.2014.6974677
https://doi.org/10.1145/1278480.1278667
https://doi.org/10.1145/1278480.1278667
https://doi.org/10.1109/SBCCI.2003.1232853
https://doi.org/10.1109/ISCAS.2009.5118013
https://doi.org/10.1109/ISCAS.2009.5118013
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/SBCCI.2016.7724040
https://doi.org/10.1145/3195970.3196124

138

[Chandrakasan et al., 2001] Chandrakasan, A. P., Bowhill, W. J., and Fox, F. (2001). Design
of high-performance microprocessor circuits. Wiley-IEEE press, 1st edition. 584p.

[Chaturvedi et al., 2012] Chaturvedi, V., Huang, H., Ren, S., and Quan, G. (2012). On
the fundamentals of leakage aware real-time DVS scheduling for peak temperature min-
imization. Journal of Systems Architecture, 58(10):387–397. https://doi.org/10.1016/
j.sysarc.2012.08.002.

[Chen et al., 2023] Chen, K., Liao, Y., Chen, C., and Wang, L. (2023). Adaptive Machine
Learning-Based Proactive Thermal Management for NoC Systems. IEEE Transactions
on Very Large Scale Integration Systems, 31(8):1114–1127. https://doi.org/10.1109/
TVLSI.2023.3282969.

[Cheng et al., 1998] Cheng, Y., Raha, P., Teng, C., Rosenbaum, E., and Kang, S. (1998).
ILLIADS-T: an electrothermal timing simulator for temperature-sensitive reliability diagno-
sis of CMOS VLSI chips. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17(8):668–681. https://doi.org/10.1109/43.712099.

[da Silva, 2021] da Silva, A. H. L. (2021). Dynamic Thermal Management For Noc-based
Many-core Systems. PhD thesis, Pontifical Catholic University of Rio Grande do Sul,
PPGCC. 115p.

[Das et al., 2016] Das, A., Al-Hashimi, B. M., and Merrett, G. V. (2016). Adaptive and Hierar-
chical Runtime Manager for Energy-Aware Thermal Management of Embedded Systems.
ACM Transactions in Embedded Computing Systems, 15(2):24:1–24:25. https://doi.org/
10.1145/2834120.

[Das et al., 2014] Das, A., Shafik, R. A., Merrett, G. V., Al-Hashimi, B. M., Kumar, A., and
Veeravalli, B. (2014). Reinforcement learning-based inter-and intra-application thermal
optimization for lifetime improvement of multicore systems. In ACM/IEEE Design Automa-
tion Conference (DAC), pages 1–6. https://doi.org/10.1145/2593069.2593199.

[Dennard et al., 1999] Dennard, R. H., Gaensslen, F. H., Yu, H., Rideout, V. L., Bassous,
E., and Leblanc, A. R. (1999). Design Of Ion-implanted MOSFET’s with Very Small
Physical Dimensions. Proceedings of the IEEE, 87(4):668–678. https://doi.org/10.1109/
jproc.1999.752522.

[Dennard et al., 1974] Dennard, R. H., Gaensslen, F. H., Yu, H.-N., Rideout, V. L., Bassous,
E., and LeBlanc, A. R. (1974). Design of ion-implanted MOSFET’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268. https://doi.org/10.1109/
JSSC.1974.1050511.

[Ditzel et al., 2021] Ditzel, D. R. et al. (2021). Accelerating ML Recommendation with over a
Thousand RISC-V/Tensor Processors on Esperanto’s ET-SoC-1 Chip. In IEEE Hot Chips
Symposium (HCS), pages 1–23. https://doi.org/10.1109/HCS52781.2021.9566904.

https://doi.org/10.1016/j.sysarc.2012.08.002
https://doi.org/10.1016/j.sysarc.2012.08.002
https://doi.org/10.1109/TVLSI.2023.3282969
https://doi.org/10.1109/TVLSI.2023.3282969
https://doi.org/10.1109/43.712099
https://doi.org/10.1145/2834120
https://doi.org/10.1145/2834120
https://doi.org/10.1145/2593069.2593199
https://doi.org/10.1109/jproc.1999.752522
https://doi.org/10.1109/jproc.1999.752522
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/HCS52781.2021.9566904

139

[Dueck and Scheuer, 1990] Dueck, G. and Scheuer, T. (1990). Threshold accepting: a gen-
eral purpose optimization algorithm appearing superior to simulated annealing. Journal of
Computational Physics, 90(1):161–175. https://doi.org/10.1016/0021-9991(90)90201-B.

[Elmohr et al., 2018] Elmohr, M. A., Eissa, A. S., Ibrahim, M., Khamis, M., El-Ashry, S.,
Shalaby, A., Abdelsalam, M., and El-Kharashi, M. W. (2018). RVNoC: A Framework for
Generating RISC-V NoC-Based MPSoC. In Euromicro International Conference on Par-
allel, Distributed and Network-based Processing (PDP), pages 617–621. https://doi.org/
10.1109/PDP2018.2018.00103.

[Esmaeilzadeh et al., 2011] Esmaeilzadeh, H., Blem, E. R., Amant, R. S., Sankaralingam,
K., and Burger, D. (2011). Dark Silicon and the End of Multicore Scaling. In ACM Inter-
national Symposium on Computer Architecture (ISCA), pages 365–376. https://doi.org/
10.1145/2000064.2000108.

[Esmaeilzadeh et al., 2012] Esmaeilzadeh, H., Blem, E. R., Amant, R. S., Sankaralingam,
K., and Burger, D. (2012). Dark Silicon and the End of Multicore Scaling. IEEE Micro,
32(3):122–134. https://doi.org/10.1109/MM.2012.17.

[Even-Dar and Mansour, 2001] Even-Dar, E. and Mansour, Y. (2001). Learning Rates for
Q-Learning. In European Conference on Computational Learning Theory (EuroCOLT),
page 589–604. https://doi.org/10.1007/3-540-44581-1_39.

[Even-Dar and Mansour, 2003] Even-Dar, E. and Mansour, Y. (2003). Learning Rates for
Q-learning. Journal of Machine Learning Research, 5:1–25. http://jmlr.org/papers/v5/
evendar03a.html.

[Fang, 2021] Fang, G. Y. L. (2021). Instruction-Level Power Consumption Simulator for Mod-
eling Simple Timing and Power Side Channels in a 32-bit RISC-V Micro-Processor. Mas-
ter’s thesis, Massachusetts Institute of Technology (MIT). 140p.

[FreeRTOS, 2022] FreeRTOS (2022). Real-time Operating System for Microcontrollers.
http://www.freertos.org/, March 2024.

[Gnad et al., 2015] Gnad, D., Shafique, M., Kriebel, F., Rehman, S., Sun, D., and Henkel, J.
(2015). Hayat: harnessing dark silicon and variability for aging deceleration and balancing.
In ACM/IEEE Design Automation Conference (DAC), pages 180:1–180:6. https://doi.org/
10.1145/2744769.2744849.

[Gou et al., 2018] Gou, C., Benoit, A., Chen, M., Marchal, L., and Wei, T. (2018). Reliability-
Aware Energy Optimization for Throughput-Constrained Applications on MPSoC. In IEEE
International Conference on Parallel and Distributed Systems (ICPADS), pages 1–10.
https://doi.org/10.1109/PADSW.2018.8644620.

https://doi.org/10.1016/0021-9991(90)90201-B
https://doi.org/10.1109/PDP2018.2018.00103
https://doi.org/10.1109/PDP2018.2018.00103
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1109/MM.2012.17
https://doi.org/10.1007/3-540-44581-1_39
http://jmlr.org/papers/v5/evendar03a.html
http://jmlr.org/papers/v5/evendar03a.html
http://www.freertos.org/
https://doi.org/10.1145/2744769.2744849
https://doi.org/10.1145/2744769.2744849
https://doi.org/10.1109/PADSW.2018.8644620

140

[Haghbayan et al., 2015] Haghbayan, M.-H., Kanduri, A., Rahmani, A.-M., Liljeberg, P.,
Jantsch, A., and Tenhunen, H. (2015). Mappro: Proactive runtime mapping for dy-
namic workloads by quantifying ripple effect of applications on networks-on-chip. In
IEEE/ACM International Symposium on Networks-on-Chip (NOCS), pages 26:1–26:8.
https://doi.org/10.1145/2786572.2786589.

[Haghbayan et al., 2023] Haghbayan, M. H., Miele, A., Mutlu, O., and Plosila, J.
(2023). Run-Time Resource Management in CMPs Handling Multiple Aging Mecha-
nisms. IEEE Transactions on Computers, 72(10):2872–2887. https://doi.org/10.1109/
TC.2023.3272800.

[Haghbayan et al., 2016] Haghbayan, M.-H., Miele, A., Rahmani, A. M., Liljeberg, P., and
Tenhunen, H. (2016). A lifetime-aware runtime mapping approach for many-core systems
in the dark silicon era. In IEEE Design, Automation Test in Europe Conference (DATE),
pages 854–857. https://ieeexplore.ieee.org/document/7459428/.

[Haghbayan et al., 2020] Haghbayan, M. H., Miele, A., Zou, Z., Tenhunen, H., and Plosila, J.
(2020). Thermal-Cycling-aware Dynamic Reliability Management in Many-Core System-
on-Chip. In IEEE Design, Automation Test in Europe Conference (DATE), pages 1229–
1234. https://doi.org/10.23919/DATE48585.2020.9116325.

[Haghbayan et al., 2014] Haghbayan, M.-H., Rahmani, A.-M., Weldezion, A. Y., Liljeberg, P.,
Plosila, J., Jantsch, A., and Tenhunen, H. (2014). Dark silicon aware power management
for manycore systems under dynamic workloads. In IEEE International Conference on
Computer Design (ICCD), pages 509–512. https://doi.org/10.1109/ICCD.2014.6974729.

[Hartigan and Wong, 1979] Hartigan, J. A. and Wong, M. A. (1979). Algorithm AS 136: A
k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):100–108. https://doi.org/10.2307/2346830.

[Heirman et al., 2012] Heirman, W., Carlson, T., and Eeckhout, L. (2012). Sniper: Scalable
and accurate parallel multi-core simulation. In ACM Conference on High Performance
Computing Networking, Storage and Analysis (SC), pages 91–94. https://doi.org/10.1145/
2063384.2063454.

[Hill and Marty, 2008] Hill, M. D. and Marty, M. R. (2008). Amdahl’s Law in the Multicore
Era. Computer, 41(7):33–38. https://doi.org/10.1109/MC.2008.209.

[Hoffmann et al., 2013] Hoffmann, H., Maggio, M., Santambrogio, M. D., Leva, A., and Agar-
wal, A. (2013). A generalized software framework for accurate and efficient management
of performance goals. In International Conference on Embedded Software (EMSOFT),
pages 19:1–19:10. https://doi.org/10.1109/EMSOFT.2013.6658597.

https://doi.org/10.1145/2786572.2786589
https://doi.org/10.1109/TC.2023.3272800
https://doi.org/10.1109/TC.2023.3272800
https://ieeexplore.ieee.org/document/7459428/
https://doi.org/10.23919/DATE48585.2020.9116325
https://doi.org/10.1109/ICCD.2014.6974729
https://doi.org/10.2307/2346830
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1109/EMSOFT.2013.6658597

141

[Hotfilter et al., 2021] Hotfilter, T., Höfer, J., Kreß, F., Kempf, F., and Becker, J. (2021).
FLECSim-SoC: A Flexible End-to-End Co-Design Simulation Framework for System on
Chips. In International System-on-Chip Conference (SOCC), pages 83–88. https://doi.org/
10.1109/SOCC52499.2021.9739212.

[Huang et al., 2006] Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron,
K., and Stan, M. R. (2006). HotSpot: A Compact Thermal Modeling Methodology for
Early-Stage VLSI Design. IEEE Transactions on Very Large Scale Integration Systems,
14(5):501–513. https://doi.org/10.1109/TVLSI.2006.876103.

[Huang et al., 2014] Huang, X., Yu, T., Sukharev, V., and Tan, S. X.-D. (2014). Physics-
based electromigration assessment for power grid networks. In ACM/IEEE Design Au-
tomation Conference (DAC), pages 80:1–80:6. https://doi.org/10.1145/2593069.2593180.

[Imperas, 2021] Imperas (2021). Open Virtual Platforms - the source of Fast Processor
Models & Platforms. http://www.ovpworld.org/, March 2024.

[Jantsch et al., 2017] Jantsch, A., Dutt, N., and Rahmani, A. M. (2017). Self-awareness in
systems on chip—a survey. IEEE Design & Test, 34(6):8–26. https://doi.org/10.1109/
MDAT.2017.2757143.

[JEDEC, 2016] JEDEC (2016). Failure mechanisms and models for semiconductor devices.
Technical report, Committee for Wafer-level Reliability.

[Jiang et al., 2013] Jiang, N., Becker, D. U., Michelogiannakis, G., Balfour, J. D., Towles,
B., Shaw, D. E., Kim, J., and Dally, W. J. (2013). A detailed and flexible cycle-
accurate Network-on-Chip simulator. In IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 86–96. https://doi.org/10.1109/
ISPASS.2013.6557149.

[Kamaleldin and Göhringer, 2021] Kamaleldin, A. and Göhringer, D. (2021). Design For
Agility: A Modular Reconfigurable Platform for Heterogeneous Many-Core Architectures.
In International Conference on Field-Programmable Logic and Applications (FPL), pages
265–266. https://doi.org/10.1109/FPL53798.2021.00050.

[Karkar et al., 2022] Karkar, A., Dahir, N., Mak, T., and Tong, K.-F. (2022). Thermal and
performance efficient on-chip surface-wave communication for many-core systems in dark
silicon era. ACM Journal on Emerging Technologies in Computing Systems, 18(3):49:1–
49:18. https://doi.org/10.1145/3501771.

[Khamis et al., 2022] Khamis, M., El-Ashry, S., Abdelsalam, M., El-Kharashi, M. W., and
Shalaby, A. (2022). Emulation and verification framework for MPSoC based on NoC
and RISC-V. Design Automation for Embedded Systems, 26(3):133–159. https://doi.org/
10.1007/s10617-022-09265-1.

https://doi.org/10.1109/SOCC52499.2021.9739212
https://doi.org/10.1109/SOCC52499.2021.9739212
https://doi.org/10.1109/TVLSI.2006.876103
https://doi.org/10.1145/2593069.2593180
http://www.ovpworld.org/
https://doi.org/10.1109/MDAT.2017.2757143
https://doi.org/10.1109/MDAT.2017.2757143
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1109/FPL53798.2021.00050
https://doi.org/10.1145/3501771
https://doi.org/10.1007/s10617-022-09265-1
https://doi.org/10.1007/s10617-022-09265-1

142

[Kim et al., 2017] Kim, T., Sun, Z., Chen, H.-B., Wang, H., and Tan, S. X.-D. (2017). Energy
and lifetime optimizations for dark silicon manycore microprocessor considering both hard
and soft errors. IEEE Transactions on Very Large Scale Integration Systems, 25(9):2561–
2574. https://doi.org/10.1109/TVLSI.2017.2707401.

[Kim et al., 2020] Kim, Y. G., Kim, M., Kong, J., and Chung, S. W. (2020). An Adaptive Ther-
mal Management Framework for Heterogeneous Multi-Core Processors. IEEE Transac-
tion on Computers, 69(6):894–906. https://doi.org/10.1109/TC.2020.2970062.

[Kong et al., 2012] Kong, J., Chung, S. W., and Skadron, K. (2012). Recent thermal man-
agement techniques for microprocessors. ACM Computing Surveys, 44(3):13:1–13:42.
https://doi.org/10.1145/2187671.2187675.

[Krishnan et al., 2022] Krishnan, S., Lam, M., Chitlangia, S., Wan, Z., Barth-Maron, G.,
Faust, A., and Reddi, V. J. (2022). QuaRL: Quantization for Fast and Environmentally Sus-
tainable Reinforcement Learning. Transactions on Machine Learning Research, 2022:1–
23. https://openreview.net/forum?id=xwWsiFmUEs.

[Kurth et al., 2018] Kurth, A., Capotondi, A., Vogel, P., Benini, L., and Marongiu, A. (2018).
HERO: an open-source research platform for HW/SW exploration of heterogeneous many-
core systems. In Workshop on AutotuniNg and aDaptivity AppRoaches for Energy Efficient
Systems (ANDARE@PACT), pages 5:1–5:6. https://doi.org/10.1145/3295816.3295821.

[Lala, 1996] Lala, P. K. (1996). Practical digital logic design and testing. Prentice-Hall, Inc,
1st edition. 420p.

[Li et al., 2019] Li, B., Wang, X., Singh, A. K., and Mak, T. (2019). On Runtime Com-
munication and Thermal-Aware Application Mapping and Defragmentation in 3D NoC
Systems. IEEE Transactions on Parallel and Distributed Systems, 30(12):2775–2789.
https://doi.org/10.1109/TPDS.2019.2921542.

[Li et al., 2018] Li, M., Liu, W., Yang, L., Chen, P., and Chen, C. (2018). Chip tempera-
ture optimization for dark silicon many-core systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 37(5):941–953. https://doi.org/10.1109/
TCAD.2017.2740306.

[Li et al., 2015] Li, M., Yi, J., Liu, W., Zhang, W., Yang, L., and Sha, E. H.-M. (2015). An effi-
cient technique for chip temperature optimization of multiprocessor systems in the dark sil-
icon era. In IEEE International Conference on High Performance Computing and Commu-
nications (HPCC), pages 688–693. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.59.

[Li et al., 2004] Li, P., Pileggi, L. T., Asheghi, M., and Chandra, R. (2004). Efficient full-chip
thermal modeling and analysis. In IEEE International Conference on Computer-Aided
Design (ICCAD), pages 319–326. https://doi.org/10.1109/ICCAD.2004.1382594.

https://doi.org/10.1109/TVLSI.2017.2707401
https://doi.org/10.1109/TC.2020.2970062
https://doi.org/10.1145/2187671.2187675
https://openreview.net/forum?id=xwWsiFmUEs
https://doi.org/10.1145/3295816.3295821
https://doi.org/10.1109/TPDS.2019.2921542
https://doi.org/10.1109/TCAD.2017.2740306
https://doi.org/10.1109/TCAD.2017.2740306
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.59
https://doi.org/10.1109/ICCAD.2004.1382594

143

[Li et al., 2009] Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and Jouppi,
N. P. (2009). McPAT: An integrated power, area, and timing modeling framework for mul-
ticore and manycore architectures. In IEEE International Microarchitecture Symposium
(MICRO), pages 469–480. https://doi.org/10.1145/1669112.1669172.

[Li et al., 2011] Li, S., Chen, K., Ahn, J. H., Brockman, J. B., and Jouppi, N. P. (2011).
CACTI-P: Architecture-level modeling for SRAM-based structures with advanced leakage
reduction techniques. In IEEE International Conference on Computer-Aided Design (IC-
CAD), pages 694–701. https://doi.org/10.1109/ICCAD.2011.6105405.

[Li, 2023] Li, S. E. (2023). Reinforcement learning for sequential decision and optimal con-
trol. Springer, 1st edition. 492p.

[Lienhard, 2006] Lienhard, John H. IV; Lienhard, J. H. V. (2006). A heat transfer textbook.
Phlogiston, 3th edition. 760p.

[Lin et al., 2014] Lin, X., Wang, Y., Bogdan, P., Chang, N., and Pedram, M. (2014). Rein-
forcement learning based power management for hybrid electric vehicles. In IEEE Inter-
national Conference on Computer-Aided Design (ICCAD), pages 32–38. https://doi.org/
10.1109/ICCAD.2014.7001326.

[Liu et al., 2018] Liu, W., Yang, L., Jiang, W., Feng, L., Guan, N., Zhang, W., and Dutt, N. D.
(2018). Thermal-aware Task Mapping on Dynamically Reconfigurable Network-on-Chip
based Multiprocessor System-on-Chip. IEEE Transactions on Computers, 67(12):1818 –
1834. https://doi.org/10.1109/TC.2018.2844365.

[Liu et al., 2019] Liu, W., Yi, J., Li, M., Chen, P., and Yang, L. (2019). Energy-Efficient Appli-
cation Mapping and Scheduling for Lifetime Guaranteed MPSoCs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(1):1–14. https://doi.org/
10.1109/TCAD.2018.2801242.

[Lopes et al., 2021] Lopes, G., Weber, I. I., Marcon, C. A. M., and Moraes, F. G. (2021).
Chronos: An Abstract NoC-based Manycore with Preserved Temporal and Spatial Traffic
Distribution. In IEEE Latin America Symposium on Circuits and System (LASCAS), pages
1–4. https://doi.org/10.1109/LASCAS51355.2021.9459124.

[Mack et al., 2020] Mack, J., Kumbhare, N., Krishnakumar, A., Ogras, Ü. Y., and Akoglu,
A. (2020). User-Space Emulation Framework for Domain-Specific SoC Design. In In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages
44–53. https://doi.org/10.1109/IPDPSW50202.2020.00016.

[Martin et al., 2005] Martin, M. M. K., Sorin, D. J., Beckmann, B. M., Marty, M. R., Xu, M.,
Alameldeen, A. R., Moore, K. E., Hill, M. D., and Wood, D. A. (2005). Multifacet’s general

https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1109/ICCAD.2014.7001326
https://doi.org/10.1109/ICCAD.2014.7001326
https://doi.org/10.1109/TC.2018.2844365
https://doi.org/10.1109/TCAD.2018.2801242
https://doi.org/10.1109/TCAD.2018.2801242
https://doi.org/10.1109/LASCAS51355.2021.9459124
https://doi.org/10.1109/IPDPSW50202.2020.00016

144

execution-driven multiprocessor simulator (GEMS) toolset. ACM SIGARCH Computer
Architecture News, 33(4):92–99. https://doi.org/10.1145/1105734.1105747.

[Martins et al., 2019] Martins, A. L., da Silva, A. H. L., Rahmani, A. M., Dutt, N., and Moraes,
F. G. (2019). Hierarchical adaptive Multi-objective resource management for many-
core systems. Journal of Systems Architecture, 97:416–427. https://doi.org/10.1016/
j.sysarc.2019.01.006.

[Martins, 2018] Martins, A. L. d. M. (2018). Multi-Objective Resource Management for
Many-core Systems. PhD thesis, Pontifical Catholic University of Rio Grande do Sul,
PPGCC. 147p.

[Martins et al., 2014] Martins, A. L. M., Silva, D. R. G., Castilhos, G. M., Monteiro, T. M., and
Moraes, F. G. (2014). A method for NoC-based MPSoC energy consumption estimation.
In IEEE International Conference on Electronics, Circuits and Systems (ICECS), pages
427–430. https://doi.org/10.1109/ICECS.2014.7050013.

[Merchant et al., 2021] Merchant, F., Sisejkovic, D., Reimann, L. M., Yasotharan, K., Grass,
T., and Leupers, R. (2021). ANDROMEDA: An FPGA Based RISC-V MPSoC Exploration
Framework. In International Conference on VLSI Design (VLSID), pages 270–275. https://
doi.org/10.1109/VLSID51830.2021.00051.

[Miller et al., 2010] Miller, J. E., Kasture, H., Kurian, G., III, C. G., Beckmann, N., Celio, C.,
Eastep, J., and Agarwal, A. (2010). Graphite: A distributed parallel simulator for mul-
ticores. In IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 1–12. https://doi.org/10.1109/HPCA.2010.5416635.

[Mohammed et al., 2020] Mohammed, M. S., Al-Kubati, A. A., Paraman, N., Ab Rahman, A.
A.-H., and Marsono, M. (2020). DTaPO: Dynamic thermal-aware performance optimiza-
tion for dark silicon many-core systems. Electronics, 9(11):1–18. https://doi.org/10.3390/
electronics9111980.

[Monemi et al., 2017] Monemi, A., Tang, J. W., Palesi, M., and Marsono, M. N. (2017).
ProNoC: A low latency network-on-chip based many-core system-on-chip prototyp-
ing platform. Microprocessors and Microsystems, 54:60–74. https://doi.org/10.1016/
j.micpro.2017.08.007.

[Moore, 1998] Moore, G. E. (1998). Cramming More Components Onto Integrated Circuits.
Proceedings of the IEEE, 86(1):82–85. https://doi.org/10.1109/jproc.1998.658762.

[Namazi et al., 2019] Namazi, A., Safari, S., Mohammadi, S., and Abdollahi, M. (2019).
SORT: Semi Online Reliable Task Mapping for Embedded Multi-Core Systems. ACM
Transactions on Modeling and Performance Evaluation of Computing Systems, 4(2):11:1–
11:25. https://doi.org/10.1145/3322899.

https://doi.org/10.1145/1105734.1105747
https://doi.org/10.1016/j.sysarc.2019.01.006
https://doi.org/10.1016/j.sysarc.2019.01.006
https://doi.org/10.1109/ICECS.2014.7050013
https://doi.org/10.1109/VLSID51830.2021.00051
https://doi.org/10.1109/VLSID51830.2021.00051
https://doi.org/10.1109/HPCA.2010.5416635
https://doi.org/10.3390/electronics9111980
https://doi.org/10.3390/electronics9111980
https://doi.org/10.1016/j.micpro.2017.08.007
https://doi.org/10.1016/j.micpro.2017.08.007
https://doi.org/10.1109/jproc.1998.658762
https://doi.org/10.1145/3322899

145

[Ost et al., 2009] Ost, L., Guindani, G. M., Indrusiak, L. S., Reinbrecht, C., da Rosa, T. R.,
and Moraes, F. (2009). A high abstraction, high accuracy power estimation model
for networks-on-chip. In IEEE Symposium on Integrated Circuits and Systems Design
(SBCCI), pages 1–6. https://doi.org/10.1145/1601896.1601936.

[Pagani et al., 2015a] Pagani, S., Chen, J., Shafique, M., and Henkel, J. (2015a). MatEx:
efficient transient and peak temperature computation for compact thermal models. In
IEEE Design, Automation Test in Europe Conference (DATE), pages 1515–1520. https://
doi.org/10.7873/DATE.2015.0328.

[Pagani et al., 2017] Pagani, S., Khdr, H., Chen, J., Shafique, M., Li, M., and Henkel,
J. (2017). Thermal Safe Power (TSP): Efficient Power Budgeting for Heterogeneous
Manycore Systems in Dark Silicon. IEEE Transanctions of Computers, 66(1):147–162.
https://doi.org/10.1109/TC.2016.2564969.

[Pagani et al., 2014] Pagani, S., Khdr, H., Munawar, W., Chen, J.-J., Shafique, M., Li, M.,
and Henkel, J. (2014). TSP: Thermal Safe Power - Efficient power budgeting for many-
core systems in dark silicon. In IEEE International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 1–10. https://doi.org/10.1145/
2656075.2656103.

[Pagani et al., 2015b] Pagani, S., Shafique, M., Khdr, H., Chen, J.-J., and Henkel, J.
(2015b). seBoost: selective boosting for heterogeneous manycores. In IEEE International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pages 104–113. https://doi.org/10.1109/CODESISSS.2015.7331373.

[Parry et al., 1998] Parry, J., Rosten, H., and Kromann, G. (1998). The development of
component-level thermal compact models of a C4/CBGA interconnect technology: the
Motorola PowerPC 603 and PowerPC 604 RISC microprocessors. IEEE Transactions on
Components, Packaging, and Manufacturing Technology, 21(1). https://doi.org/10.1109/
95.679039.

[Passage et al., 2019] Passage, J. M., Azhari, N., and Lloyd, J. R. (2019). Stress Migration
Followed by Electromigration Reliability Testing. In IEEE International Reliability Physics
Symposium IRPS, pages 1–5. https://doi.org/10.1109/IRPS.2019.8720473.

[Pecht et al., 2017] Pecht, M. G., Radojcic, R., and Rao, G. (2017). Guidebook for managing
silicon chip reliability. CRC press, 1st edition. 224p.

[Pourmohseni et al., 2022] Pourmohseni, B., Wildermann, S., Smirnov, F., Meyer, P. E., and
Teich, J. (2022). Task Migration Policy for Thermal-Aware Dynamic Performance Opti-
mization in Many-Core Systems. IEEE Access, 10:33787–33802. https://doi.org/10.1109/
ACCESS.2022.3162617.

https://doi.org/10.1145/1601896.1601936
https://doi.org/10.7873/DATE.2015.0328
https://doi.org/10.7873/DATE.2015.0328
https://doi.org/10.1109/TC.2016.2564969
https://doi.org/10.1145/2656075.2656103
https://doi.org/10.1145/2656075.2656103
https://doi.org/10.1109/CODESISSS.2015.7331373
https://doi.org/10.1109/95.679039
https://doi.org/10.1109/95.679039
https://doi.org/10.1109/IRPS.2019.8720473
https://doi.org/10.1109/ACCESS.2022.3162617
https://doi.org/10.1109/ACCESS.2022.3162617

146

[Powell, 2022] Powell, W. B. (2022). Reinforcement Learning and Stochastic Optimization:
A Unified Framework for Sequential Decisions. John Wiley & Sons, 1st edition. 1136p.

[Rahimipour et al., 2020] Rahimipour, S., Flayyih, W. N., Kamsani, N. A., Hashim, S. J.,
Stan, M. R., and Rokhani, F. Z. (2020). Low-Power, Highly Reliable Dynamic
Thermal Management by Exploiting Approximate Computing. IEEE Transactions on
Very Large Scale Integration Systems, 28(10):2210–2222. https://doi.org/10.1109/
TVLSI.2020.3012626.

[Rahmani et al., 2016] Rahmani, A. M., Liljeberg, P., Hemani, A., Jantsch, A., and Ten-
hunen, H. (2016). The Dark Side of Silicon. Springer, 1st edition.

[Ramachandran et al., 2008] Ramachandran, P., Adve, S. V., Bose, P., and Rivers, J. A.
(2008). Metrics for Architecture-Level Lifetime Reliability Analysis. In IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages 202–
212. https://doi.org/10.1109/ISPASS.2008.4510752.

[Ranieri et al., 2015] Ranieri, J., Vincenzi, A., Chebira, A., Atienza, D., and Vetterli,
M. (2015). Near-Optimal Thermal Monitoring Framework for Many-Core Systems-on-
Chip. IEEE Transactions on Computers, 64(11):3197–3209. https://doi.org/10.1109/
TC.2015.2395423.

[Ranjbar et al., 2019] Ranjbar, B., Nguyen, T. D. A., Ejlali, A., and Kumar, A. (2019). On-
line Peak Power and Maximum Temperature Management in Multi-core Mixed-Criticality
Embedded Systems. In Euromicro Conference on Digital System Design (DSD), pages
546–553. https://doi.org/10.1109/DSD.2019.00084.

[Rathore, 2020] Rathore, V. (2020). Scalable Techniques for Extending Lifetime Reliability
of Manycore Systems. PhD thesis, School of Computer Science & Engineering, Nanyang
Technological University. 254p.

[Rathore et al., 2018] Rathore, V., Chaturvedi, V., Singh, A. K., Srikanthan, T., Rohith, R.,
Lam, S.-K., and Shaflque, M. (2018). HiMap: A hierarchical mapping approach for
enhancing lifetime reliability of dark silicon manycore systems. In IEEE Design, Au-
tomation Test in Europe Conference (DATE), pages 991–996. https://doi.org/10.23919/
DATE.2018.8342153.

[Rathore et al., 2019a] Rathore, V., Chaturvedi, V., Singh, A. K., Srikanthan, T., and
Shafique, M. (2019a). LifeGuard: A reinforcement learning-based task mapping strategy
for performance-centric aging management. In ACM/IEEE Design Automation Conference
(DAC), pages 1–6. https://doi.org/10.1145/3316781.3317849.

[Rathore et al., 2019b] Rathore, V., Chaturvedi, V., Singh, A. K., Srikanthan, T., and
Shafique, M. (2019b). Towards Scalable Lifetime Reliability Management for Dark Silicon

https://doi.org/10.1109/TVLSI.2020.3012626
https://doi.org/10.1109/TVLSI.2020.3012626
https://doi.org/10.1109/ISPASS.2008.4510752
https://doi.org/10.1109/TC.2015.2395423
https://doi.org/10.1109/TC.2015.2395423
https://doi.org/10.1109/DSD.2019.00084
https://doi.org/10.23919/DATE.2018.8342153
https://doi.org/10.23919/DATE.2018.8342153
https://doi.org/10.1145/3316781.3317849

147

Manycore Systems. In IEEE International Symposium on On-Line Testing and Robust
System Design (IOLTS), pages 204–207. https://doi.org/10.1109/IOLTS.2019.8854454.

[Rathore et al., 2021] Rathore, V., Chaturvedi, V., Singh, A. K., Srikanthan, T., and Shafique,
M. (2021). Longevity Framework: Leveraging Online Integrated Aging-Aware Hierar-
chical Mapping and VF-Selection for Lifetime Reliability Optimization in Manycore Pro-
cessors. IEEE Transactions on Computers, 70(7):1106–1119. https://doi.org/10.1109/
TC.2020.3006571.

[Rathore et al., 2016] Rathore, V., Chaturvedi, V., and Srikanthan, T. (2016). Performance
constraint-aware task mapping to optimize lifetime reliability of manycore systems. In
ACM Great Lakes Symposium on VLSI (GLVLSI), pages 377–380. https://doi.org/10.1145/
2902961.2902996.

[Real et al., 2016] Real, M. M., Wehner, P., Rettkowski, J., Migliore, V., Lapotre, V.,
Göhringer, D., and Gogniat, G. (2016). MPSoCSim extension: An OVP simulator for the
evaluation of cluster-based multi and many-core architectures. In International Conference
on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS),
pages 342–347. https://doi.org/10.1109/SAMOS.2016.7818370.

[Ris-Ala, 2023] Ris-Ala, R. (2023). Fundamentals of Reinforcement Learning. Springer, 1st
edition. 88p.

[Rohith et al., 2018] Rohith, R., Rathore, V., Chaturvedi, V., Singh, A. K., Thambipillai, S.,
and Lam, S.-K. (2018). LifeSim: A lifetime reliability simulator for manycore systems. In
IEEE Computing and Communication Workshop and Conference (CCWC), pages 375–
381. https://doi.org/10.1109/CCWC.2018.8301711.

[Rovinski et al., 2019] Rovinski, A., Zhao, C., Al-Hawaj, K., Gao, P., Xie, S., Torng, C.,
Davidson, S., Amarnath, A., Vega, L., Veluri, B., Rao, A., Ajayi, T., Puscar, J., Dai, S.,
Zhao, R., Richmond, D., Zhang, Z., Galton, I., Batten, C., Taylor, M. B., and Dreslinski,
R. G. (2019). Evaluating Celerity: A 16-nm 695 Giga-RISC-V Instructions/s Manycore
Processor With Synthesizable PLL. IEEE Solid-State Circuits Letters, 2(12):289–292.
https://doi.org/10.1109/LSSC.2019.2953847.

[Ruaro et al., 2019] Ruaro, M., Caimi, L. L., Fochi, V., and Moraes, F. G. (2019). Memphis:
a framework for heterogeneous many-core SoCs generation and validation. Design Au-
tomation for Embedded Systems, 23(3-4):103–122. https://doi.org/10.1007/s10617-019-
09223-4.

[Ruaro and J. M. Martin, 2022] Ruaro, M. and J. M. Martin, K. (2022). ManyGUI: A Graphi-
cal Tool to Accelerate Many-Core Debugging Through Communication, Memory, and En-
ergy Profiling. In System Engineering for Constrained Embedded Systems (DroneSE and
RAPIDO), page 39–46. https://doi.org/10.1145/3522784.3522791.

https://doi.org/10.1109/IOLTS.2019.8854454
https://doi.org/10.1109/TC.2020.3006571
https://doi.org/10.1109/TC.2020.3006571
https://doi.org/10.1145/2902961.2902996
https://doi.org/10.1145/2902961.2902996
https://doi.org/10.1109/SAMOS.2016.7818370
https://doi.org/10.1109/CCWC.2018.8301711
https://doi.org/10.1109/LSSC.2019.2953847
https://doi.org/10.1007/s10617-019-09223-4
https://doi.org/10.1007/s10617-019-09223-4
https://doi.org/10.1145/3522784.3522791

148

[Sabry, 2003] Sabry, M.-N. (2003). Compact thermal models for electronic systems. IEEE
Transactions on Components and Packaging Technologies, 26(1):179–185. https://
doi.org/10.1109/TCAPT.2002.808009.

[Sahoo et al., 2021] Sahoo, S. S., Ranjbar, B., and Kumar, A. (2021). Reliability-aware re-
source management in multi-/many-core systems: A perspective paper. Journal of Low
Power Electronics and Applications, 11(1):7. https://doi.org/10.3390/jlpea11010007.

[Sahoo et al., 2019] Sahoo, S. S., Veeravalli, B., and Kumar, A. (2019). A Hybrid Agent-
based Design Methodology for Dynamic Cross-layer Reliability in Heterogeneous Embed-
ded Systems. In ACM/IEEE Design Automation Conference (DAC), page 38. https://
doi.org/10.1145/3316781.3317746.

[Savas et al., 2020] Savas, S., Ul-Abdin, Z., and Nordström, T. (2020). A framework to gen-
erate domain-specific manycore architectures from dataflow programs. Microprocessors
and Microsystems, 72. https://doi.org/10.1016/j.micpro.2019.102908.

[Sha et al., 2018] Sha, S., Wen, W., Ren, S., and Quan, G. (2018). M-Oscillating: Perfor-
mance Maximization on Temperature-Constrained Multi-Core Processors. IEEE Trans-
actions on Parallel and Distributed Systems, 29(11):2528–2539. https://doi.org/10.1109/
TPDS.2018.2835474.

[Shivakumar et al., 2002] Shivakumar, P., Kistler, M., Keckler, S. W., Burger, D., and Alvisi, L.
(2002). Modeling the Effect of Technology Trends on the Soft Error Rate of Combinational
Logic. In IEEE International Conference on Dependable Systems and Networks (DSN),
pages 389–398. https://doi.org/10.1109/DSN.2002.1028924.

[Silva et al., 2020] Silva, A. L. d., del Mestre Martins, A. L., and Moraes, F. G. (2020).
Mapping and Migration Strategies for Thermal Management in Many-Core Systems.
In IEEE Symposium on Integrated Circuits and Systems Design (SBCCI), pages 1–6.
https://doi.org/10.1109/SBCCI50935.2020.9189933.

[Silva et al., 2019] Silva, A. L. d., Martins, A. L. d. M., and Moraes, F. G. (2019). Fine-
grain Temperature Monitoring for many-core Systems. In IEEE Symposium on In-
tegrated Circuits and Systems Design (SBCCI), pages 1–6. https://doi.org/10.1145/
3338852.3339841.

[Silva et al., 2021] Silva, A. L. d., Weber, I. I., Martins, A. L. d. M., and Moraes, F. G. (2021).
Hardware Accelerator for Runtime Temperature Estimation in Many-Cores. IEEE Design
& Test, 38(4):62–69. https://doi.org/10.1109/MDAT.2021.3068914.

[Singh et al., 2011] Singh, P., Karl, E., Blaauw, D., and Sylvester, D. (2011). Compact
degradation sensors for monitoring NBTI and oxide degradation. IEEE Transactions

https://doi.org/10.1109/TCAPT.2002.808009
https://doi.org/10.1109/TCAPT.2002.808009
https://doi.org/10.3390/jlpea11010007
https://doi.org/10.1145/3316781.3317746
https://doi.org/10.1145/3316781.3317746
https://doi.org/10.1016/j.micpro.2019.102908
https://doi.org/10.1109/TPDS.2018.2835474
https://doi.org/10.1109/TPDS.2018.2835474
https://doi.org/10.1109/DSN.2002.1028924
https://doi.org/10.1109/SBCCI50935.2020.9189933
https://doi.org/10.1145/3338852.3339841
https://doi.org/10.1145/3338852.3339841
https://doi.org/10.1109/MDAT.2021.3068914

149

on Very Large Scale Integration Systems, 20(9):1645–1655. https://doi.org/10.1109/
TVLSI.2011.2161784.

[Spiliopoulos et al., 2011] Spiliopoulos, V., Kaxiras, S., and Keramidas, G. (2011). Green
governors: A framework for Continuously Adaptive DVFS. In IEEE International Green
Computing Conference and Workshops (IGCC), pages 1–8. https://doi.org/10.1109/
IGCC.2011.6008552.

[Srinivasan, 2006] Srinivasan, J. (2006). Lifetime Reliability Aware Microprocessors. PhD
thesis, University of Illinois. 92p.

[Srinivasan et al., 2003] Srinivasan, J., Adve, S. V., Bose, P., Rivers, J., and Hu, C.-K.
(2003). RAMP: A model for reliability aware microprocessor design. Technical report,
IBM. 26p.

[Srinivasan et al., 2005] Srinivasan, J., Adve, S. V., Bose, P., and Rivers, J. A. (2005). Ex-
ploiting Structural Duplication for Lifetime Reliability Enhancement. In ACM International
Symposium on Computer Architecture (ISCA), pages 520–531. https://doi.org/10.1109/
ISCA.2005.28.

[Streetman et al., 2016] Streetman, B. G., Banerjee, S., et al. (2016). Solid State Electronic
Devices. Pearson, 7th edition. 596p.

[Strong et al., 2009] Strong, A. W., Wu, E. Y., Vollertsen, R.-P., Sune, J., La Rosa, G., Sul-
livan, T. D., and Rauch III, S. E. (2009). Reliability wear-out mechanisms in advanced
CMOS technologies. Wiley-Blackwell, 1st edition. 624p.

[Su et al., 2003] Su, H., Liu, F., Devgan, A., Acar, E., and Nassif, S. R. (2003). Full chip
leakage estimation considering power supply and temperature variations. In IEEE Sym-
posium on Low Power Electronics and Design (ISLPED), pages 78–83. https://doi.org/
10.1145/871506.871529.

[Suter, 2013] Suter, F. (2013). Daggen: A synthetic task graph generator. https://github.com/
frs69wq/daggen, March 2024.

[Sutter, 2005] Sutter, H. (2005). The free lunch is over: A fundamental turn toward con-
currency in software. Dr. Dobb’s Journal, 30(3):202–210. https://www.cs.utexas.edu/~lin/
cs380p/Free_Lunch.pdf.

[Trivedi, 2016] Trivedi, K. S. (2016). Probability and Statistics with Reliability, Queuing and
Computer Science Applications. John Wiley & Sons, 2nd edition. 880p.

[Tsitsiklis, 1994] Tsitsiklis, J. N. (1994). Asynchronous Stochastic Approximation and Q-
Learning. Machine Learning, 16(3):185–202. https://doi.org/10.1007/BF00993306.

https://doi.org/10.1109/TVLSI.2011.2161784
https://doi.org/10.1109/TVLSI.2011.2161784
https://doi.org/10.1109/IGCC.2011.6008552
https://doi.org/10.1109/IGCC.2011.6008552
https://doi.org/10.1109/ISCA.2005.28
https://doi.org/10.1109/ISCA.2005.28
https://doi.org/10.1145/871506.871529
https://doi.org/10.1145/871506.871529
https://github.com/frs69wq/daggen
https://github.com/frs69wq/daggen
https://www.cs.utexas.edu/~lin/cs380p/Free_Lunch.pdf
https://www.cs.utexas.edu/~lin/cs380p/Free_Lunch.pdf
https://doi.org/10.1007/BF00993306

150

[Uddin, 2017] Uddin, M. I. (2017). One-IPC high-level simulation of microthreaded many-
core architectures. The International Journal of High Performance Computing Applica-
tions, 31(2):152–162. https://doi.org/10.1177/1094342015584495.

[Uhlendorf et al., 2021] Uhlendorf, R., Silva, E., Viel, F., and Zeferino, C. (2021). An MPI-
based MPSoC Platform in FPGA. IEEE Latin America Transactions, 19(4):697–705.
https://doi.org/10.1007/s10617-022-09265-1.

[Wan et al., 2020] Wan, B., Wang, Y., Su, Y., and Fu, G. (2020). Reliability Evaluation
of Multi-Mechanism Failure for Semiconductor Devices Using Physics-of-Failure Tech-
nique and Maximum Entropy Principle. IEEE Access, 8:188154–188170. https://doi.org/
10.1109/ACCESS.2020.3031022.

[Wang et al., 2018] Wang, L., Lv, P., Liu, L., Han, J., Leung, H.-F., Wang, X., Yin, S.,
Wei, S., and Mak, T. (2018). A Lifetime Reliability-Constrained Runtime Mapping for
Throughput Optimization in Many-Core Systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 38(9):1771–1784. https://doi.org/10.1109/
TCAD.2018.2855168.

[Wang and Chen, 2002] Wang, T. and Chen, C. C. (2002). 3-D Thermal-ADI: a linear-
time chip level transient thermal simulator. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 21(12):1434–1445. https://doi.org/10.1109/
TCAD.2002.804385.

[Wang et al., 2011] Wang, Y., Xie, Q., Ammari, A. C., and Pedram, M. (2011). Deriving
a near-optimal power management policy using model-free reinforcement learning and
Bayesian classification. In ACM/IEEE Design Automation Conference (DAC), pages 41–
46. https://doi.org/10.1145/2024724.2024735.

[Watkins, 1989] Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis,
King’s College, Cambridge United Kingdom. 234p.

[Wen et al., 2020] Wen, S., Wang, X., Singh, A. K., Jiang, Y., and Yang, M. (2020). Per-
formance optimization of many-core systems by exploiting task migration and dark core
allocation. IEEE Transactions on Computers, 71(1):92–106. https://doi.org/10.1109/
TC.2020.3042663.

[Woo et al., 1995] Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A.
(1995). The SPLASH-2 programs: Characterization and methodological considera-
tions. ACM SIGARCH Computer Architecture News, 23(2):24–36. https://doi.org/10.1145/
223982.223990.

[Wu et al., 2002a] Wu, E., Sune, J., Lai, W., Nowak, E., McKenna, J., Vayshenker, A.,
and Harmon, D. (2002a). Interplay of voltage and temperature acceleration of ox-

https://doi.org/10.1177/1094342015584495
https://doi.org/10.1007/s10617-022-09265-1
https://doi.org/10.1109/ACCESS.2020.3031022
https://doi.org/10.1109/ACCESS.2020.3031022
https://doi.org/10.1109/TCAD.2018.2855168
https://doi.org/10.1109/TCAD.2018.2855168
https://doi.org/10.1109/TCAD.2002.804385
https://doi.org/10.1109/TCAD.2002.804385
https://doi.org/10.1145/2024724.2024735
https://doi.org/10.1109/TC.2020.3042663
https://doi.org/10.1109/TC.2020.3042663
https://doi.org/10.1145/223982.223990
https://doi.org/10.1145/223982.223990

151

ide breakdown for ultra-thin gate oxides. Solid-State Electronics, 46(11):1787–1798.
https://doi.org/10.1016/S0038-1101(02)00151-X.

[Wu et al., 2002b] Wu, E. Y., Nowak, E. J., Vayshenker, A., Lai, W. L., and Harmon, D. L.
(2002b). CMOS scaling beyond the 100-nm node with silicon-dioxide-based gate di-
electrics. IBM Journal of Research and Development, 46(2.3):287–298. https://doi.org/
10.1147/rd.462.0287.

[Xi et al., 2015] Xi, S. L., Jacobson, H., Bose, P., Wei, G.-Y., and Brooks, D. (2015). Quan-
tifying sources of error in McPAT and potential impacts on architectural studies. In IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages
577–589. https://doi.org/10.1109/HPCA.2015.7056064.

[Yang et al., 2017a] Yang, L., Liu, W., Guan, N., Li, M., Chen, P., and Edwin, H. (2017a).
Dark silicon-aware hardware-software collaborated design for heterogeneous many-core
systems. In IEEE Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 494–499. https://doi.org/10.1109/ASPDAC.2017.7858371.

[Yang et al., 2017b] Yang, L., Liu, W., Jiang, W., Li, M., Chen, P., and Sha, E. H.-M. (2017b).
Fotonoc: A folded torus-like network-on-chip based many-core systems-on-chip in the
dark silicon era. IEEE Transactions on Parallel and Distributed Systems, 28(7):1905–
1918. https://doi.org/10.1109/TPDS.2016.2643669.

[Yoo et al., 2022] Yoo, J., An, T., Oh, C., Cho, Y., Lee, H., Im, Y., Kim, M., and Kim, M. (2022).
Thermal-Aware Optimization of SoC Floorplan with Heterogenous Multi-Cores. In IEEE
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic
Systems (iTherm), pages 1–6. https://doi.org/10.1109/iTherm54085.2022.9899498.

[Yu et al., 2015] Yu, J., Zhou, W., Yang, Y., Zhang, X., and Yu, Z. (2015). Many-Core Pro-
cessors Granularity Evaluation by Considering Performance, Yield, and Lifetime Relia-
bility. IEEE Transactions on Very Large Scale Integration Systems, 23(10):2043–2053.
https://doi.org/10.1109/TVLSI.2014.2359076.

[Zafar, 2007] Zafar, S. (2007). A Model for Negative Bias Temperature Instability in Oxide
and High κ pFETs. In IEEE Symposium on VLSI Circuits (VLSI), pages 1–5. https://
doi.org/10.1109/ICICDT.2007.4299550.

[Zaruba and Benini, 2019] Zaruba, F. and Benini, L. (2019). The Cost of Application-Class
Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V
Core in 22-nm FDSOI Technology. IEEE Transactions on Very Large Scale Integration
Systems, 27(11):2629–2640. https://doi.org/10.1109/TVLSI.2019.2926114.

[Zhang et al., 2023] Zhang, J., Sadiqbatcha, S., and Tan, S. X. (2023). Hot-Trim: Thermal
and Reliability Management for Commercial Multicore Processors Considering Workload

https://doi.org/10.1016/S0038-1101(02)00151-X
https://doi.org/10.1147/rd.462.0287
https://doi.org/10.1147/rd.462.0287
https://doi.org/10.1109/HPCA.2015.7056064
https://doi.org/10.1109/ASPDAC.2017.7858371
https://doi.org/10.1109/TPDS.2016.2643669
https://doi.org/10.1109/iTherm54085.2022.9899498
https://doi.org/10.1109/TVLSI.2014.2359076
https://doi.org/10.1109/ICICDT.2007.4299550
https://doi.org/10.1109/ICICDT.2007.4299550
https://doi.org/10.1109/TVLSI.2019.2926114

152

Dependent Hot Spots. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 42(7):2290–2302. https://doi.org/10.1109/TCAD.2022.3216552.

[Zhang et al., 2018] Zhang, K., Guliani, A., Memik, S. O., Memik, G., Yoshii, K., Sankaran,
R., and Beckman, P. H. (2018). Machine Learning-Based Temperature Prediction for Run-
time Thermal Management Across System Components. IEEE Transactions on Parallel
and Distributed Systems, 29(2):405–419. https://doi.org/10.1109/TPDS.2017.2732951.

[Zhang et al., 2015] Zhang, R., Stan, M. R., and Skadron, K. (2015). Hotspot 6.0: Validation,
Acceleration and Extension. Technical report, University of Virginia. 8p.

[Zhang et al., 2017] Zhang, W., Ji, X., Lu, Y., Wang, H., Chen, H., and Yew, P.
(2017). Prophet: A Parallel Instruction-Oriented Many-Core Simulator. IEEE Transac-
tions on Parallel and Distributed Systems, 28(10):2939–2952. https://doi.org/10.1109/
TPDS.2017.2700307.

https://doi.org/10.1109/TCAD.2022.3216552
https://doi.org/10.1109/TPDS.2017.2732951
https://doi.org/10.1109/TPDS.2017.2700307
https://doi.org/10.1109/TPDS.2017.2700307

153

APPENDIX A – LIST OF PUBLICATIONS

Journal Publications
WEBER, IAÇANÃ IANISKI; DAL ZOTTO, ANGELO ELIAS; MORAES, FERNANDO G.
Chronos-V: a Many-core High-level Model with Support for Management Techniques.
ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, Volume 117, pages 57–71, 2023.
https://link.springer.com/article/10.1007/s10470-023-02190-8

DA SILVA, ALZEMIRO LUCAS; WEBER, IACANA IANISKI; MARTINS, ANDRE LUIS DEL MESTRE; MORAES,
FERNANDO G.
Hardware Accelerator for Runtime Temperature Estimation in Many-cores.
IEEE Design & Test, v. 38(4), p. 62-69, 2021.
https://ieeexplore.ieee.org/document/9386103

Conference Publications
WEBER, IAÇANÃ IANISKI; ZANINI, VITOR BALBINOT; MORAES, FERNANDO G.
FLEA - FIT-Aware Heuristic for Application Allocation in Many-Cores based on Q-Learning.
In: SBESC, 2023
https://ieeexplore.ieee.org/document/10324296

WEBER, IACANA IANISKI; DALZOTTO, ANGELO ELIAS; MORAES, FERNANDO G.
A High-level Model to Leverage NoC-based Many-core Research.
In: SBCCI, 2022
https://ieeexplore.ieee.org/document/9893235

SILVA, ALZEMIRO; WEBER, IACANA; MARTINS, ANDRE LUIS DEL MESTRE; MORAES, FERNANDO G.
Reliability Assessment of Many-Core Dynamic Thermal Management.
In: ISCAS, 2022
https://ieeexplore.ieee.org/document/9937286

SILVA, ALZEMIRO; WEBER, IACANA; DEL MESTRE MARTINS, ANDRE LUIS; MORAES, FERNANDO G.
Dynamic Thermal Management in Many-Core Systems Leveraged by Abstract Modeling.
In: ISCAS, 2021
https://ieeexplore.ieee.org/document/9401414

LOPES, G.; WEBER, IACANA; MARCON, C.; MORAES, FERNANDO G.
Chronos: an Abstract NoC-based Manycore with Preserved Temporal and Spatial Traffic Distribution.
In: LASCAS, 2021
http://dx.doi.org/10.1109/LASCAS51355.2021.9459124

WEBER, IACANA; DE OLIVEIRA, LEONARDO; CARARA, EVERTON; MORAES, FERNANDO G.
Reducing NoC Energy Consumption Exploring Asynchronous End-to-end GALS Communication.
In: SBCCI, 2020
https://ieeexplore.ieee.org/document/8533228
not related to the Thesis subject

https://link.springer.com/article/10.1007/s10470-023-02190-8
https://ieeexplore.ieee.org/document/9386103
https://ieeexplore.ieee.org/document/10324296
https://ieeexplore.ieee.org/document/9893235
https://ieeexplore.ieee.org/document/9937286
https://ieeexplore.ieee.org/document/9401414
http://dx.doi.org/10.1109/LASCAS51355.2021.9459124
https://ieeexplore.ieee.org/document/8533228

154

WEBER, IACANA; MARCHEZAN, GEANINNE; CAIMI, LUCIANO; MARCON, CESAR; MORAES, FERNANDO G.
Open-Source NoC-Based Many-Core for Evaluating Hardware Trojan Detection Methods.
In: ISCAS, 2020
https://ieeexplore.ieee.org/document/9180578
not related to the Thesis subject

https://ieeexplore.ieee.org/document/9180578

155

APPENDIX B – FLEA AND FLEA+ FIT COMPARISON

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)

1500

2000

2500

3000

3500

Fa
ilu

re
s

in
 1

09
ho

ur
s

(a) MIXED1 - 50%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)
1000

1500

2000

2500

3000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(b) MIXED2 - 50%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)
1000

2000

3000

4000

5000

6000

7000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(c) COMPUTATION - 50%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)

2500

3000

3500

4000

4500

Fa
ilu

re
s

in
 1

09
ho

ur
s

(d) MIXED1 - 70%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)

2000

2500

3000

3500

4000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(e) MIXED2 - 70%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)

3000

4000

5000

6000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(f) COMPUTATION - 70%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)

3000

4000

5000

6000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(g) MIXED1 - 90%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)

3000

4000

5000

6000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(h) MIXED2 - 90%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)

4000

5000

6000

7000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(i) COMPUTATION - 90%

Figure B.1: FIT comparison between FLEA and FLEA+ in the 8x8 manycore. The blue
dotted line is the FLEA+ with migration third quartile. The red dotted line is the FLEA+ with
migration maximum FIT.

156

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)
2500

3000

3500

4000

4500

5000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(a) COMPUTATION - 50%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)

1500

2000

2500

3000

3500

Fa
ilu

re
s

in
 1

09
ho

ur
s

(b) MIXED1 - 50%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)

5000

6000

7000

8000

9000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(c) COMPUTATION - 70%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)
1500

2000

2500

3000

3500

4000

4500

Fa
ilu

re
s

in
 1

09
ho

ur
s

(d) MIXED1 - 70%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)

8000

9000

10000

11000

12000

13000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(e) COMPUTATION - 90%

FLEA FLEA (MIG) FLEA+ FLEA+ (MIG)
2000

3000

4000

5000

Fa
ilu

re
s

in
 1

09
ho

ur
s

(f) MIXED1 - 90%

Figure B.2: FIT comparison between FLEA and FLEA+ in the 14x14 manycore. The blue
dotted line is the FLEA+ with migration third quartile. The red dotted line is the FLEA+ with
migration maximum FIT.

157

APPENDIX C – RESULTS

C.1 8x8 MIXED 1 50%

(a)

60

80

100 86.7°C

65.1°C

Grouped

60

80

100
74.0°C

65.3°C

Pattern

60

80

100 83.1°C

65.7°C

PID

60

80

100
79.0°C

65.8°C

PID (MIG)

60

80

100
78.4°C

65.3°C

FLEA+

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

60

80

100
75.9°C

65.3°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0

1

2

3

4

5

6

7

0.
00

 to
 0

.5
0

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

0.
51

 to
 1

.0
2

0

1

2

3

4

5

6

7

1.
03

 to
 1

.5
3

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1.
54

 to
 2

.0
5

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.1: 8x8 MIXED1 50% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temperature violin-
box plot; (d) PE average peak temperature violin-box plot.

158

(a)

0

1

2

3

4

5

6

7

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

SM

0

1

2

3

4

5

6

7

TD
D

B

0

1

2

3

4

5

6

7

TC

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

N
B

TI

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
1000

2000

3000

4000

5000

6000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.2: 8x8 MIXED1 50% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

159

C.2 8x8 MIXED 1 70%

(a)

60

80

100 88.2°C

73.0°C

Grouped

60

80

100 82.9°C

73.1°C

Pattern

60

80

100 84.5°C

73.5°C

PID

60

80

100 83.8°C

73.2°C

PID (MIG)

60

80

100 83.2°C

73.1°C

FLEA+

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
60

80

100 83.4°C

72.9°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0

1

2

3

4

5

6

7

0.
00

 to
 0

.5
0

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

0.
51

 to
 1

.0
1

0

1

2

3

4

5

6

7

1.
02

 to
 1

.5
2

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1.
53

 to
 2

.0
3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.3: 8x8 MIXED1 70% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temperature violin-
box plot; (d) PE average peak temperature violin-box plot.

160

(a)

0

1

2

3

4

5

6

7

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

SM

0

1

2

3

4

5

6

7

TD
D

B

0

1

2

3

4

5

6

7

TC

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

N
B

TI

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

2000

3000

4000

5000

6000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.4: 8x8 MIXED1 70% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

161

C.3 8x8 MIXED 1 90%

(a)

60

80

100 92.0°C

79.1°C

Grouped

60

80

100 90.4°C

78.9°C

Pattern

60

80

100 89.3°C

79.4°C

PID

60

80

100 88.9°C

79.0°C

PID (MIG)

60

80

100 89.5°C

79.1°C

FLEA+

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
60

80

100 88.4°C

77.7°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0

1

2

3

4

5

6

7

0.
00

 to
 0

.5
0

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

0.
51

 to
 1

.0
1

0

1

2

3

4

5

6

7

1.
02

 to
 1

.5
1

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1.
52

 to
 2

.0
2

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.5: 8x8 MIXED1 90% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temperature violin-
box plot; (d) PE average peak temperature violin-box plot.

162

(a)

0

1

2

3

4

5

6

7

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

SM

0

1

2

3

4

5

6

7

TD
D

B

0

1

2

3

4

5

6

7

TC

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

N
B

TI

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
2000

3000

4000

5000

6000

7000

8000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.6: 8x8 MIXED1 90% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

163

C.4 8x8 MIXED 2 50%

(a)

60

80

100
81.8°C

63.6°C

Grouped

60

80

100
74.4°C

63.6°C

Pattern

60

80

100
76.9°C

64.0°C

PID

60

80

100
76.6°C

64.3°C

PID (MIG)

60

80

100
77.2°C

63.5°C

FLEA+

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

60

80

100
75.5°C

64.0°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0

1

2

3

4

5

6

7

0.
00

 to
 0

.5
0

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

0.
51

 to
 1

.0
2

0

1

2

3

4

5

6

7

1.
03

 to
 1

.5
3

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1.
54

 to
 2

.0
4

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.7: 8x8 MIXED2 50% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temperature violin-
box plot; (d) PE average peak temperature violin-box plot.

164

(a)

0

1

2

3

4

5

6

7

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

SM

0

1

2

3

4

5

6

7

TD
D

B

0

1

2

3

4

5

6

7

TC

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

N
B

TI

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

1000

2000

3000

4000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.8: 8x8 MIXED2 50% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

165

C.5 8x8 MIXED 2 70%

(a)

60

80

100 85.3°C

68.7°C

Grouped

60

80

100
80.2°C

68.5°C

Pattern

60

80

100
81.5°C

69.2°C

PID

60

80

100
81.0°C

69.0°C

PID (MIG)

60

80

100
81.4°C

69.1°C

FLEA+

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

60

80

100
80.4°C

68.9°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0

1

2

3

4

5

6

7

0.
00

 to
 0

.5
0

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

0.
51

 to
 1

.0
1

0

1

2

3

4

5

6

7

1.
02

 to
 1

.5
2

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1.
53

 to
 2

.0
3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.9: 8x8 MIXED2 70% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temperature violin-
box plot; (d) PE average peak temperature violin-box plot.

166

(a)

0

1

2

3

4

5

6

7

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

SM

0

1

2

3

4

5

6

7

TD
D

B

0

1

2

3

4

5

6

7

TC

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

N
B

TI

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
1000

2000

3000

4000

5000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.10: 8x8 MIXED2 70% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

167

C.6 8x8 MIXED 2 90%

(a)

60

80

100 86.7°C

73.4°C

Grouped

60

80

100 85.1°C

73.2°C

Pattern

60

80

100 85.5°C

73.4°C

PID

60

80

100 85.3°C

73.7°C

PID (MIG)

60

80

100 85.6°C

73.6°C

FLEA+

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
60

80

100 84.7°C

72.9°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0

1

2

3

4

5

6

7

0.
00

 to
 0

.5
0

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

0.
51

 to
 1

.0
1

0

1

2

3

4

5

6

7

1.
02

 to
 1

.5
2

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1.
53

 to
 2

.0
3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.11: 8x8 MIXED2 90% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temperature
violin-box plot; (d) PE average peak temperature violin-box plot.

168

(a)

0

1

2

3

4

5

6

7

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

SM

0

1

2

3

4

5

6

7

TD
D

B

0

1

2

3

4

5

6

7

TC

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

N
B

TI

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

2000

3000

4000

5000

6000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.12: 8x8 MIXED2 90% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

169

C.7 8x8 COMPUTATION 50%

(a)

75

100 92.4°C

72.5°C

Grouped

75

100 80.8°C

72.7°C

Pattern

75

100 84.3°C

73.2°C

PID

75

100 83.5°C

72.9°C

PID (MIG)

75

100 86.4°C

72.7°C

FLEA+

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

75

100 83.7°C

71.8°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0

1

2

3

4

5

6

7

0.
00

 to
 0

.5
0

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

0.
51

 to
 1

.0
1

0

1

2

3

4

5

6

7

1.
02

 to
 1

.5
2

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1.
53

 to
 2

.0
3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.13: 8x8 COMPUTATION 50% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average tempera-
ture violin-box plot; (d) PE average peak temperature violin-box plot.

170

(a)

0

1

2

3

4

5

6

7

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

SM

0

1

2

3

4

5

6

7

TD
D

B

0

1

2

3

4

5

6

7

TC

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

N
B

TI

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

2000

4000

6000

8000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.14: 8x8 COMPUTATION 50% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

171

C.8 8x8 COMPUTATION 70%

(a)

60

80

100 93.5°C

77.2°C

Grouped

60

80

100 86.2°C

77.3°C

Pattern

60

80

100 88.0°C

77.7°C

PID

60

80

100 87.7°C

77.0°C

PID (MIG)

60

80

100 86.9°C

77.4°C

FLEA+

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
60

80

100 86.0°C

75.9°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0

1

2

3

4

5

6

7

0.
00

 to
 0

.5
0

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

0.
51

 to
 1

.0
1

0

1

2

3

4

5

6

7

1.
02

 to
 1

.5
2

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1.
53

 to
 2

.0
3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.15: 8x8 COMPUTATION 70% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average tempera-
ture violin-box plot; (d) PE average peak temperature violin-box plot.

172

(a)

0

1

2

3

4

5

6

7

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

SM

0

1

2

3

4

5

6

7

TD
D

B

0

1

2

3

4

5

6

7

TC

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

N
B

TI

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

2000

4000

6000

8000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.16: 8x8 COMPUTATION 70% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

173

C.9 8x8 COMPUTATION 90%

(a)

80

100 92.5°C

82.7°C

Grouped

80

100 91.8°C

82.8°C

Pattern

80

100 91.7°C

83.2°C

PID

80

100 91.4°C

82.4°C

PID (MIG)

80

100 91.7°C

82.7°C

FLEA+

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

80

100 90.2°C

80.3°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0

1

2

3

4

5

6

7

0.
00

 to
 0

.5
0

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

0.
51

 to
 1

.0
1

0

1

2

3

4

5

6

7

1.
02

 to
 1

.5
1

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1.
52

 to
 2

.0
2

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.17: 8x8 COMPUTATION 90% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average tempera-
ture violin-box plot; (d) PE average peak temperature violin-box plot.

174

(a)

0

1

2

3

4

5

6

7

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0

1

2

3

4

5

6

7

SM

0

1

2

3

4

5

6

7

TD
D

B

0

1

2

3

4

5

6

7

TC

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

N
B

TI

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

3000

4000

5000

6000

7000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.18: 8x8 COMPUTATION 90% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

175

C.10 14x14 MIXED 50%

(a)

60

80

100 87.2°C

65.6°C

Grouped

60

80

100
75.9°C

66.3°C

Pattern

60

80

100 81.0°C

66.1°C

PID

60

80

100
79.8°C

66.3°C

PID (MIG)

60

80

100
77.2°C

65.9°C

FLEA+

0.2 0.4 0.6 0.8 1.0 1.2 1.4

60

80

100
77.3°C

66.2°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
00

 to
 0

.3
8

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
39

 to
 0

.7
6

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
77

 to
 1

.1
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1.
16

 to
 1

.5
4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.19: 14x14 MIXED 50% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temperature
violin-box plot; (d) PE average peak temperature violin-box plot.

176

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

SM

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TD
D

B

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TC

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

N
B

TI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
1000

2000

3000

4000

5000

6000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.20: 14x14 MIXED 50% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

177

C.11 14x14 MIXED 70%

(a)

60

80

100 90.7°C

71.8°C

Grouped

60

80

100 85.5°C

72.0°C

Pattern

60

80

100 85.9°C

72.2°C

PID

60

80

100 85.0°C

72.0°C

PID (MIG)

60

80

100 85.2°C

72.3°C

FLEA+

0.2 0.4 0.6 0.8 1.0 1.2 1.4
60

80

100 84.0°C

72.0°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
00

 to
 0

.3
7

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
38

 to
 0

.7
6

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
77

 to
 1

.1
4

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1.
15

 to
 1

.5
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.21: 14x14 MIXED 70% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temperature
violin-box plot; (d) PE average peak temperature violin-box plot.

178

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

SM

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TD
D

B

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TC

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

N
B

TI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
1000

2000

3000

4000

5000

6000

7000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.22: 14x14 MIXED 70% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

179

C.12 14x14 MIXED 90%

(a)

60

80

100 91.1°C

74.2°C

Grouped

60

80

100 86.9°C

74.3°C

Pattern

60

80

100 86.5°C

74.5°C

PID

60

80

100 86.2°C

74.3°C

PID (MIG)

60

80

100 85.7°C

74.4°C

FLEA+

0.2 0.4 0.6 0.8 1.0 1.2 1.4
60

80

100 85.5°C

74.1°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
00

 to
 0

.3
8

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
39

 to
 0

.7
7

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
78

 to
 1

.1
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1.
16

 to
 1

.5
4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.23: 14x14 MIXED 90% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temperature
violin-box plot; (d) PE average peak temperature violin-box plot.

180

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

SM

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TD
D

B

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TC

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

N
B

TI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

2000

3000

4000

5000

6000

7000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.24: 14x14 MIXED 90% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

181

C.13 14x14 COMPUTATION 50%

(a)

75

100

125
100.9°C

77.6°C

Grouped

75

100

125

82.6°C

77.7°C

Pattern

75

100

125

90.2°C

77.5°C

PID

75

100

125
90.5°C

76.8°C

PID (MIG)

75

100

125
93.4°C

77.7°C

FLEA+

0.2 0.4 0.6 0.8 1.0 1.2 1.4

75

100

125
91.9°C

75.7°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
00

 to
 0

.3
8

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
39

 to
 0

.7
7

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
78

 to
 1

.1
6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1.
17

 to
 1

.5
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.25: 14x14 COMPUTATION 50% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temper-
ature violin-box plot; (d) PE average peak temperature violin-box plot.

182

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

SM

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TD
D

B

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TC

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

N
B

TI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

2000

4000

6000

8000

10000

12000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.26: 14x14 COMPUTATION 50% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

183

C.14 14x14 COMPUTATION 70%

(a)

75

100

125
103.7°C

87.3°C

Grouped

75

100

125
97.6°C

86.9°C

Pattern

75

100

125
96.7°C

86.9°C

PID

75

100

125
96.5°C

85.3°C

PID (MIG)

75

100

125
95.7°C

87.2°C

FLEA+

0.2 0.4 0.6 0.8 1.0 1.2 1.4

75

100

125
93.9°C

83.4°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
00

 to
 0

.3
7

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
38

 to
 0

.7
6

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
77

 to
 1

.1
4

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1.
15

 to
 1

.5
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

110

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.27: 14x14 COMPUTATION 70% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temper-
ature violin-box plot; (d) PE average peak temperature violin-box plot.

184

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

SM

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TD
D

B

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TC

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

N
B

TI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

2000

4000

6000

8000

10000

12000

14000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.28: 14x14 COMPUTATION 70% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

185

C.15 14x14 COMPUTATION 90%

(a)

75

100

125
105.8°C

96.9°C

Grouped

75

100

125
103.5°C

96.4°C

Pattern

75

100

125
102.7°C

96.4°C

PID

75

100

125
101.1°C

93.4°C

PID (MIG)

75

100

125
103.5°C

96.5°C

FLEA+

0.2 0.4 0.6 0.8 1.0 1.2 1.4
75

100

125
101.0°C

92.0°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
00

 to
 0

.3
7

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
38

 to
 0

.7
5

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
76

 to
 1

.1
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1.
14

 to
 1

.5
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

110

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.29: 14x14 COMPUTATION 90% - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temper-
ature violin-box plot; (d) PE average peak temperature violin-box plot.

186

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

SM

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TD
D

B

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TC

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

N
B

TI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
2500

5000

7500

10000

12500

15000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.30: 14x14 COMPUTATION 90% - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

187

C.16 14x14 - RANDOM

(a)

60

80

100 89.3°C

69.2°C

Grouped

60

80

100 81.6°C

69.6°C

Pattern

60

80

100 83.6°C

69.6°C

PID

60

80

100 83.6°C

69.4°C

PID (MIG)

60

80

100 82.1°C

69.4°C

FLEA+

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

60

80

100 82.2°C

68.9°C

FLEA+ (MIG)

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

(b)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
00

 to
 0

.4
5

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
46

 to
 0

.9
2

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0.
93

 to
 1

.3
8

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1.
39

 to
 1

.8
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 (°
C

)

(c) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Av
er

ag
e

Te
m

pe
ra

tu
re

 in
 °

C

(d) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
50

60

70

80

90

100

Pe
ak

 T
em

pe
ra

tu
re

 in
 °

C

Figure C.31: 14x14 RANDOM - (a) average and peak temperatures; (b) average temperature snapshot; (c) PE average temperature violin-
box plot; (d) PE average peak temperature violin-box plot.

188

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

E
M

Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

SM

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TD
D

B

0
1
2
3
4
5
6
7
8
9

10
11
12
13

TC

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8
9

10
11
12
13

N
B

TI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (b) Grouped Pattern PID PID (MIG) FLEA+ FLEA+ (MIG)
1000

2000

3000

4000

5000

Fa
ilu

re
s

in
 1

09
ho

ur
s

Figure C.32: 14x14 RANDOM - (a) Manycore FIT intensity map per evaluated effect; (b) PE failure in time violin-box plot.

	Introduction
	Motivation
	Thesis Statement
	Objectives
	Original Contribution
	Document Organization

	Chronos-V Manycore Model
	Related Work on Manycore Frameworks
	RTL Platforms
	FPGA Platforms
	Abstract Platforms
	Discussion

	Overview of the Chronos-V Manycore Layers
	Hardware Layer
	Operating System Layer
	Application Layer

	Simulation Model
	Results - Simulation Effort
	Conclusion

	Background Knowledge
	Dark Silicon
	Temperature
	Sensing
	Temperature Estimation
	Energy Estimation

	Reliability
	Major Effects Affecting Reliability
	Reliability Model

	Related Work
	FoToNoC
	Dynamically Reconfigurable NoC
	TSP: Thermal Safe Power
	seBoost
	M-Oscillating
	TCTS: Temperature Constrained Task Selection
	LF: Longevity Framework
	Hard and Soft Error-aware
	LBRM: Lifetime Budgeting Reliability Management
	Run-time Resource Management for Multiple Aging Mechanisms
	Hot-Trim
	Lightweight Temperature Model
	TEA: Temperature Estimation Accelerator
	State of the Art Discussion

	Reinforcement Learning-Based Task Mapping
	Motivation
	The Heating Behavior
	The Heating Influence on Reliability
	Scalability of Reinforcement Learning

	Research Problem
	FLEA Deployment
	Training

	Actuation Mechanisms and Decision Heuristics
	Application Admission
	Task Mapping
	Task Migration

	Results
	Experimental Setup
	FLEA+
	FLEA+ Evaluation
	FLEA+ Evaluation Conclusion

	Results Evaluation
	Temperature Evaluation
	Hop Count Evaluation
	Reliability Evaluation
	Scalability Evaluation

	Final Remarks

	Conclusions and Future work
	Conclusions
	Future Research Directions

	References
	Appendix A – List of Publications
	Appendix B – FLEA and FLEA+ FIT Comparison
	Appendix C – Results
	8x8 MIXED 1 50%
	8x8 MIXED 1 70%
	8x8 MIXED 1 90%
	8x8 MIXED 2 50%
	8x8 MIXED 2 70%
	8x8 MIXED 2 90%
	8x8 COMPUTATION 50%
	8x8 COMPUTATION 70%
	8x8 COMPUTATION 90%
	14x14 MIXED 50%
	14x14 MIXED 70%
	14x14 MIXED 90%
	14x14 COMPUTATION 50%
	14x14 COMPUTATION 70%
	14x14 COMPUTATION 90%
	14x14 - RANDOM

