

ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO MESTRADO EM

CIÊNCIA DA COMPUTAÇÃO

ANDREW RAFAEL FRITSCH

OVERLAPPING ERROR CORRECTION CODES ON TWO-

DIMENSIONAL STRUCTURES

Porto Alegre

2025

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL

SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

OVERLAPPING ERROR

CORRECTION CODES ON TWO-

DIMENSIONAL STRUCTURES

ANDREW RAFAEL FRITSCH

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements for
the degree of master’s in computer
science.

Advisor: Prof. Dr. César Augusto Missio Marcon

Porto Alegre

March 2025

ANDREW RAFAEL FRITSCH

OVERLAPPING ERROR CORRECTION CODES ON TWO-

DIMENSIONAL STRUCTURES

This Master Thesis has been submitted in

partial fulfillment of the requirements for the

degree of master’s in computer science, of the

Computer Science Graduate Program,

School of Technology of the Pontifical

Catholic University of Rio Grande do Sul

Sanctioned on March 2025.

COMMITTEE MEMBERS

Prof. Dr. César Marcon (PPGCC/PUCRS – Advisor)

Prof. Dr. Avelino Zorzo (PPGCC/PUCRS)

Prof. Dr. Eduardo Bezerra (PPGEEL/UFSC)

AGRADECIMENTOS

Agradeço ao professor e orientador César Marcon pela atenção e revisões que foram

imprescindíveis para o desenvolvimento deste trabalho.

Agradeço aos meus familiares pelo apoio durante essa jornada de dois anos de

mestrado.

Agradeço também ao Conselho Nacional de Desenvolvimento Científico e

Tecnológico (CNPq), o Ministério da Ciência, Tecnologia, Inovações e Comunicações

(MCTIC) e a Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) pelo apoio

financeiro, estrutural e tecnológico disponibilizados.

Sobreposição de Códigos de Correção de Erros em

Estruturas Bidimensionais

RESUMO

A crescente demanda por sistemas de comunicação altamente confiáveis impulsiona

a pesquisa e o desenvolvimento de algoritmos capazes de identificar e corrigir erros que

ocorrem durante a transmissão e o armazenamento de dados. Essa necessidade torna-se

ainda mais crítica em sistemas de difícil acesso ou de natureza sensível, como os utilizados

em aplicações espaciais, no transporte de passageiros e no setor financeiro. Nesse

contexto, os Códigos de Correção de Erros (Error Correction Codes – ECCs) são

ferramentas essenciais para garantir um certo nível de confiabilidade. Este trabalho propõe

uma técnica para aumentar a capacidade de correção dos ECCs por meio da sobreposição

de regiões de dados. A abordagem consiste em proteger uma mesma área de dados com

múltiplos ECCs organizados em uma estrutura bidimensional, permitindo inferências

lógicas que correlacionam os códigos e ampliam sua capacidade de detecção e correção

de erros. Mais especificamente, a sobreposição é caracterizada pela organização de

múltiplos ECCs cuja interseção abrange exclusivamente toda a região de dados. Para

avaliar a proposta, diferentes organizações de ECCs sobrepostos foram analisadas em

termos de capacidade de detecção e correção de erros, escalabilidade e confiabilidade. Os

resultados experimentais comprovam a eficácia da técnica e demonstram que a mesma

possui alto potencial de escalabilidade, reduzindo a necessidade de bits de redundância

em relação ao número de bits de dados. Além disso, comparações com abordagens do

estado da arte em ECC indicam a aplicabilidade da técnica em sistemas críticos que exigem

alta confiabilidade.

Palavras-chave: Código de Correção de Erro (ECC), Sobreposição de ECCs, Tolerância

a Falhas, Confiabilidade.

Overlapping Error Correction Codes on Two-Dimensional Structures

ABSTRACT

The growing demand for highly reliable communication systems drives research and

development of algorithms capable of identifying and correcting errors that occur during data

transmission and storage. This need becomes even more critical in hard-to-access or

sensitive systems, such as those used in space applications, passenger transportation, and

the financial sector. In this context, Error Correction Codes (ECCs) are essential tools for

ensuring a certain level of reliability. This work proposes a technique to enhance ECC error

correction capability through the overlapping of data regions. The approach consists of

protecting the same data area with multiple ECCs organized in a two-dimensional structure,

enabling logical inferences that correlate the codes and improve their error detection and

correction capabilities. More specifically, the overlapping is characterized by the

organization of multiple ECCs, whose intersection exclusively covers the entire data region.

To evaluate the proposal, different configurations of overlapping ECCs were analyzed in

terms of error detection and correction capability, scalability, and reliability. Experimental

results confirm the effectiveness of the technique and demonstrate its high scalability

potential, reducing the need for redundancy bits relative to the number of data bits.

Furthermore, comparisons with state-of-the-art ECC approaches indicate the applicability of

the technique in critical systems that require high reliability.

Keywords: Error Correction Code (ECC), ECC Overlapping, Fault Tolerance, Reliability.

LIST OF ABBREVIATIONS

1D One-Dimensional

1D-ECC One-Dimensional ECC

2D Two-Dimensional

2D-ECC Two-Dimensional ECC

BCH Bose-Chaudhuri-Hocquenghem

DMC Decimal Matrix Code

ECC Error Correction Code

EDC Error Detection Code

EMPC-SA Modified Product Code for Space Applications

eMRSC Extended Matrix Region Selection Code

EPC Extended Product Code

HVDB Horizontal-Vertical-Diagonal-Block

HVDD Horizontal-Vertical-Double-Bit Diagonal

IC Integrated Circuit

LPC Line Product Code

MBU Multiple Bit Upset

MC Mixed Code

MCU Multiple Cell Upset

MRSC Matrix Region Selection Code

MTTF Mean Time To Failure

PC Product Code

PCoSA Product Code for Space Applications

RM Reed-Muller

RTL Register-Transfer Level

S2E Straightforward 2D-ECC

SBU Single Bit Upset

SEC Single Error Correction

SECDED Single Error Correction - Double Error Detection

SEE Single Event Effect

SEFI Single Event Functional Interruption

SEL Single Event Latch-up

SET Single Event Transient

SEU Single Event Upset

SPC Single Parity Check

SRAM Static Random-Access Memories

TLC Triple-Level Cell

TMR Triple Modular Redundancy

UBER Uncorrectable Bit Error Rate

VHDL VHSIC Hardware Description Language

VHSIC Very High-Speed Integrated Circuits

LIST OF TABLES

Table 1. Example of even parity with a 9-bit codeword, consisting of a data byte

(Data) and a parity bit (P) (Source: Author). .. 26

Table 2. Relations between the codeword, syndrome bit vector, and error address

(Source: Author). ... 30

Table 3. Error types of based on the combination of Hamming and parity

syndromes (Source: Author). ... 32

Table 4. Comparative summary of important aspects of the presented works

(Source: Author). ... 57

Table 5. Number of combinations analyzed according to the ECC region and

number of simultaneous errors (Source: Author). .. 79

Table 6. Comparison of error correction rates for 2×Ham_2×2, 2×Ham_3×3, and

2×Ham_4×4, with an exhaustive injection of 1 to 8 errors in data regions,

check bits, and codestruct (Source: Author). ... 79

Table 7. Comparison of error detection rates for ECCs 2×Ham_2×2, 2×Ham_3×3,

and 2×Ham_4×4, with exhaustive injection of 1 to 8 errors in data, check

bits, and codestruct regions (Source: Author). ... 83

Table 8. Comparative table of values obtained from the logical synthesis of the

2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4 codes. For each code, data

on power dissipation, area consumption, and latency of encoders and

decoders were obtained (Source: Author). .. 88

Table 9. Comparative table with the same values as Table 8, but including

columns with partial and total average information (Source: Author). 88

Table 10. Comparative table with the values from Table 8 normalized by the

number of data area bits in each ECC (Source: Author). 89

Table 11. Redundancy costs for square data matrices ranging from 2×2 to 7×7;

green and red highlight the lowest (better) and highest (worst) scalability

results, respectively (Source: Author). ... 90

LIST OF FIGURES

Figure 1. Effect of a charged particle passing through a transistor junction: (a)

cylindrical track of electron-hole pairs; (b) funnel extending the depletion

region; (c) diffusion dominating the collection process; (d) resulting

current pulse (Source: adapted from [3]). .. 22

Figure 2. Percentage of MBU occurrences by technology node (nm) for SRAMs

(Source: [5]). .. 23

Figure 3. Probability of an MBU in memory words caused by radiation impact

(Source: adapted from [19]). .. 24

Figure 4. Reading and writing 4 data bits (b0 to b3) in memory using the parity code

stored in pw (Source: [5]). .. 26

Figure 5. Basic structures of (a) PC and (b) modified PC (Source: [18]). 33

Figure 6. Structure of the Matrix code for a 4x8 data set (X1 to X32); C1 to C8 and

D1 to D16 represent the row and column parity bits, respectively (Source:

[1]).. 35

Figure 7. 32-bit DMC organization treats each symbol as a decimal integer.

Horizontal redundant bits H are generated by adding selected symbols

per row, while vertical redundant bits V come from binary operations on

column bits (Source: [25]). ... 36

Figure 8. HVDD structure for an 8×8 data matrix; D1 to D11, V1 to V8, and H1 to H8

are diagonal, vertical, and horizontal redundant bits (Source: [48]). 37

Figure 9. 2D Structure of EG-LDPC with data bits Mij, row parity checks Rij, and

column parity checks Cij (Source: Adapted from [11]). 38

Figure 10. (a) Part of the HVPDH codestruct showing the grouping used to compute

the Hamming code, e.g., Hm11 to Hm41 protect bits D2, D6, D9, D13, D16,

D20, D27, and D31. (b) Part of the codestruct verifying horizontal parity (Hz)

and vertical parity (Vn) for the data matrix. (Source: [47]). 39

Figure 11. 2D codestruct with 31 data bits (X0-X31), 20 Hamming check bits (C0-C19),

and eight parity bits (P0-P7) (Source: [39]). .. 40

Figure 12. Codestruct of (a) Proposal 1 and (b) Proposal 2 (Source: [39]). 40

Figure 13. PCoSA structure with 16 data bits; the codestruct is divided into five

regions: data (D), row check bits for D (C1), column check bits for D and

C1 (C2), row parity for D, C1, and C2 (P1), and overall column parity (P2)

(Source: [14]). .. 41

Figure 14. (a) Structure and (b) data regions of the eMRSC(32,3,64) codestruct

(Source: [59]). .. 42

Figure 15. Interleaving technique illustrated with (a) four 4-bit data blocks encoded

into (b) four interleaved codewords organized in (c) a codestruct (Source:

[13]).. 43

Figure 16. Simulation results showing correction rates for the proposed

configurations using (a) only adjacent errors and (b) all combinations of

errors (Source: [13]). .. 44

Figure 17. (a) LPC codestruct and (b) LPC logical format used for ECC encoding

and decoding (Source: [15]). .. 45

Figure 18. Proposed structure of the Enhanced DMC (Source:[53]). 46

Figure 19. Correction vs. detection capability of TECED (Source: [6]). 47

Figure 20. Iterative AlgSE Algorithm. Compares the number of single errors found

in columns (SEc) with those found in rows (SEr), applying successive

iterative and interleaved rounds of Hamming correction for rows and

columns (Source: [16]). .. 48

Figure 21. Encoding structure of the 2D-ECC HVDB (Source: [69]). 49

Figure 22. Codestruct of EMPC-SA; D represents the 4×4 data matrix, R is the 4×3

row redundancy matrix using Ham(7,4), and e C is the 3×4 column

redundancy matrix using Ham(7,4) (Source: [32]). .. 50

Figure 23. High-occurrence error patterns (Source: Adapted from [32]). 51

Figure 24. Experimental setup employed to collect the error correction rates and

number of undetected errors (Source: [40]). .. 53

Figure 25. (a) nMatrix(16,32) organization Matrix code structure. 𝐷0 to 𝐷15, 𝐶0 to 𝐶11,

and 𝑃0 to 𝑃3 are data, check, and parity bits, respectively; (b)

nMatrix(16,32) interleaving format (Source: [20]). .. 55

Figure 26. Generic organization of a TPC as utilized in BFE-TPC (Source: [31]). 55

Figure 27. Three 2D-ECC organizations evaluated in the study; all configurations

include 16 data bits and 16 redundancy bits (Source: [21]). 56

Figure 28. Example traditional 2D-ECCs organization highlighting the intersection of

the second-row ECC with the second-column ECC, leading to the shared

encoding of the data bit D1,1 (Source: Author). .. 58

Figure 29. Encoding structure of the 2D-ECC HVDB, highlighting the three-

dimensional intersection of ECCs at bit D2,1 (Source: Adapted from [69]).

 ... 58

Figure 30. Example organization of the overlapped-ECCs. This figure highlights how

the entire second row of data (D1,0, D1,1, D1,2, D1,3) is protected by two

ECCs, with their parity bits represented by R (row-based ECC) and C

(column-based ECC) (Source: Author) .. 59

Figure 31. Example of a 2D-ECC codestruct with overlapping highlighting the entire

data sharing (D0,0-D3,3) by two ECCs, with check bits represented by the

letter C, and the crossing of the second column (D0,1, D1,1, D2,1, D3,1) with

the ECC represented by R0,1 – possibly a parity bit (Source: Author). 60

Figure 32. Example of an overlapped-ECC codestruct. This example highlights the

entire data sharing (D0,0-D3,3) by two ECCs, with check bits represented

by the letters C and R – possibly an extended Hamming code (Source:

Author). .. 61

Figure 33. An example of an overlapped-ECC - 2×Ham_2×2 codestruct (Source:

Author). .. 62

Figure 34. 2×Ham_3×3 codestruct (Source: Author). ... 62

Figure 35. 2×Ham_4×4 codestruct (Source: Author). ... 63

Figure 36. Standard address mapping of a 𝑯𝒂𝒎𝟕,𝟒 (Source: Author). 63

Figure 37. Possible data address permutations for the 𝑯𝒂𝒎𝟕,𝟒 code (Source:

Author). .. 63

Figure 38. Two 𝑯𝒂𝒎𝟕, 𝟒 codes (ECC_1 and ECC_2) detecting an error in data bit

𝒅𝟐, where each ECC assigns a different logical error address (Source:

Author). .. 64

Figure 39. Two 𝑯𝒂𝒎𝟕, 𝟒 codewords (ECC_1 and ECC_2) detecting errors in data

bits 𝒅𝟐 and 𝒅𝟑; the final error address is obtained using the XOR

operation on the individual error addresses (Source: Author). 64

Figure 40. A codestruct scenario with 4-bit error. ECC_1 has errors in 𝒅𝟎 and 𝒅𝟏,

while ECC_2 has errors in 𝒅𝟐 and 𝒄𝟎, but the compound error address

for both codes is 6 (Source: Author). ... 65

Figure 41. A codestruct scenario with 3-bit error. ECC_1 has errors in 𝒅𝟐 and 𝒅𝟐,

while ECC_2 has errors in 𝒅𝟑 and 𝒄𝟐, the compound error address for

both codes is 1 (Source: Author). .. 65

Figure 42. Two error scenarios, (a) and (b), produce the same combined

addressing, preventing the decoder from correctly identifying the actual

error (Source: Author). ... 65

Figure 43. Use of extended Hamming codes to improve error correction efficacy. (a)

presents a double-bit error in data, identified by the parity bit remaining

0, while (b) presents a double-bit error in parity bits, detected by the parity

bits being set to 1 (Source: Author). .. 66

Figure 44. Generalization of ECC overlapping based on the number of codewords.

(a) shows a basic structure with a single data area and a single

verification region. (b), (c), and (d) depict the same codeword from (a),

but with the addition of two, three, and four overlapping codeword

regions, respectively (Fonte: Autor). .. 67

Figure 45. Rectangular matrix organization for overlapping ECCs, providing the

same data area capacity as the 2×Ham_2×4 structure (Fonte: Autor). 68

Figure 46. Organization of the 2×Ham_3×3 code, where 𝐃𝟎…𝐃𝟖 represent the data

area, and 𝐂𝐨𝟎…𝐂𝐨𝟑, 𝐏𝐨 and 𝐂𝐢𝟎…𝐂𝐢𝟑, 𝐏𝐢 are the parity check bits

(Source: Author). ... 69

Figure 47. Block diagram of the 2×Ham_3×3 Encoder (Fonte: Autor). 70

Figure 48. Codestruct addressing for (a) OuterHam and (b) InnerHam (Fonte:

Autor). .. 70

Figure 49. Inclusion of a parity bit to protect data and parity check bits in the codes

(a) OuterHam and (b) InnerHam (Source: Author). .. 71

Figure 50. Block diagram of the 2×Ham_3×3 Decoder (Fonte: Autor). 72

Figure 51. Partial pseudocode of the 2×Ham_3×3 decoding algorithm (Fonte:

Autor). .. 76

Figure 52. Pseudocode of the flipBit and flipBits functions used in the

2×Ham_3×3 decoding algorithm (Fonte: Autor). .. 76

Figure 53. Methodology for collecting the error correction rates of the overlapped

ECCs. The figure shows that 72 simulations were generated, allowing

data collection for three regions of each ECC, considering an exhaustive

injection of patterns with 1 to 8 simultaneous errors (Source: Author). 78

Figure 54. Methodology used to compare the proposed ECC technology with three

state-of-the-art ECCs (Source: Author). ... 80

Figure 55. Codestructs of (a) Matrix, (b) PBD, (c) CLC, and (d) 2×Ham_4×4 (Source:

Author). .. 81

Figure 56. Error correction rates of the evaluated 2D-ECCs, considering 1 to 6 errors

exhaustively distributed across the codestructs (Source: Author). 81

Figure 57. Methodology employed to collect the error detection rates of the

overlapped ECCs. This figure, which is similar to Figure 53, shows that

72 simulations, allowing data collection for 3 regions of each ECC, with

exhaustive injection of patterns with 1 to 8 simultaneous errors (Source:

Author). .. 82

Figure 58. Methodology used to evaluate the reliability of memory areas protected

by the codes 2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4 (Source:

Author). .. 85

Figure 59. Reliability of the codes 2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4 over

a period of 20,000 days. The graph uses 𝝀 = 𝟏𝟎 − 𝟓 failures per bit per

day (Source: Author) .. 86

Figure 60. Methodology applied to obtain data on power dissipation, latency, and

area consumption for the overlapped ECCs explored in this work. The

encoder and decoder codes were described in VHDL for each ECC,

validated through simulation, and logically synthesized (Source: Author).

 ... 87

Figure 61. Methodology used to assess the scalability of the overlapped ECC case

study adopted in this work, along with the scalability of three state-of-the-

art ECCs. The analysis is entirely theoretical, based on the extrapolation

of data obtained from the literature (Source: Author). 89

SUMMARY

1. Introduction .. 19

1.1 General Objective .. 20

1.2 Specific Objectives ... 20

2. Theoretical Foundation .. 21

2.1 Concepts of Fault, Error, and Failure ... 21

2.2 Single Event Effect (SEE) .. 22

2.3 Error Correction Code (ECC) ... 24

2.4 Hamming Distance ... 25

2.5 Parity Code .. 26

2.6 Hamming Code .. 27

2.7 Extended Hamming Code .. 31

2.8 Two-Dimensional Error Correction Code (2D-ECC) ... 32

3. Related Work .. 34

3.1 Matrix-Based Codes for Adjacent Error Correction ... 35

3.2 Enhanced Memory Reliability Against Multiple Cell Upsets Using Decimal Matrix

Code .. 36

3.3 Low Redundancy Two-Dimensional Matrix-Based HVDB Code for Double Error

Correction .. 36

3.4 EG-LDPC Based 2-Dimensional Error Correcting Code for Mitigating MBUs of

SRAM Memories .. 37

3.5 Horizontal-Vertical Parity and Diagonal Hamming Based Soft Error Detection and

Correction for Memories ... 38

3.6 Correction of Adjacent Errors with Low Redundant Matrix Error Correction Codes 39

3.7 PCoSA: A product error correction code for use in memory devices targeting space

applications .. 41

3.8 Extended Matrix Region Selection Code: An ECC for adjacent Multiple Cell Upset

in memory arrays ... 42

3.9 Error Coverage, Reliability and Cost Analysis of Fault Tolerance Techniques for

32-bit Memories used on Space Missions .. 43

3.10 LPC: An Error Correction Code for Mitigating Faults in 3D Memories 44

3.11 A New Error Correcting Coding Technique to Tolerate Soft Errors 45

3.12 Multiple Bit Error Correction Codes for Memories in Satellites 46

3.13 TECED: A Two-Dimensional Error-Correction Codes Based Energy-Efficiency

SRAM Design .. 47

3.14 New Decoding Techniques for Modified Product Code Used in Critical Applications

 .. 47

3.15 Low Redundancy Two-Dimensional Matrix-Based HVDB Code for Double Error

Correction .. 49

3.16 EMPC-SA: Error Correction Scheme using Modified Product Code for Space

Applications ... 50

3.17 Fault tolerant micro-programmed control unit for SEU and MBU mitigation in space

based digital systems ... 51

3.18 Comparing structures of two-dimensional error correction codes 52

3.19 Novel Latin square matrix code of large burst error correction for MRAM

applications .. 53

3.20 nMatrix: A New Decoding Algorithm for the Matrix ECC ... 54

3.21 An Embedded Module of Enhanced Turbo Product Code Algorithm 55

3.22 Check-Bit Region Exploration in Two-Dimensional Error Correction Codes 56

3.23 Related Work Summary ... 57

4. Overlapping ECC Proposal ... 58

4.1 Introduction .. 58

4.1.1 The Proposed Overlapping ECC Approach .. 59

4.1.2 Encoding and Decoding Differences Between Crossed and Overlapping ECCs 59

4.1.3 Trade-offs and Practical Considerations ... 59

4.2 Analysis of Hamming Distance ... 60

4.3 Overlapping ECC Model Explored in This Work ... 60

4.3.1 Explored Overlapped-ECC Codestructs ... 62

4.4 Data Addressing in Overlapping ECCs .. 63

4.4.1 Addition of a Parity Bit in the Overlapping ECCs Explored ... 66

4.5 Generalization of the ECC Overlapping Technique .. 67

4.5.1 Number of Overlapping ECCs... 67

4.5.2 Homogeneity of Overlapping ECCs .. 68

4.5.3 Data Area Format .. 68

5. Details of the 2×Ham_3×3 Code .. 69

5.1 Codestruct Organization .. 69

5.2 Data Encoding ... 69

5.3 Decoding of the 2×Ham_3×3 Codestruct ... 72

5.3.1 Decoding Algorithm ... 75

6. Experimental Results ... 78

6.1 Error Correction ... 78

6.1.1 Error Correction Rate Comparison.. 80

6.2 Error Detection ... 82

6.3 Reliability ... 83

6.4 Power Dissipation, Area Consumption, and Latency .. 87

6.5 Scalability of the Overlapped-ECCs ... 89

7. Conclusions .. 92

8. Publications .. 94

9. References .. 95

10. Appendix A – Java Code for Simulating 2×Ham3×3 Code 101

11. Appendix B – VHDL Code for 2×Ham3×3 Synthesis 108

19

1. INTRODUCTION

Error correction and detection coding are methods used to handle errors in data

transmitted through communication channels. Together, they form error control coding,

crucial for properly functioning communication and storage systems. These techniques are

essential in the telecommunications revolution, the Internet, digital recording, and space

exploration. They are widely employed in devices such as compact discs, DVDs, hard

drives, memory systems, and cell phones. Error control coding is fundamental in the modern

information-based society, ensuring data integrity across various technologies and

applications [37].

In digital computing and telecommunications, information is almost always

represented in binary form as sequences of bits where values are defined as 0 or 1. To

transmit or store this information—which may include words, punctuation, or videos—via

analog or digital signals, communication in binary form always occurs during the process.

The content of this message, or encoded word, is organized into a logical format. To verify

the information’s correctness, it is necessary to evaluate the logical structure of the

information to ensure the completeness and integrity of the received content; this verification

relies on a method incorporating some redundancy [12][37].

An Error Correction Code (ECC) is commonly used to verify the integrity of stored or

transmitted/received information. Error identification and analysis are enabled through

coding and decoding techniques, allowing for validation whenever data is transmitted,

received, or accessed during memory read/write operations [30]. ECC is a fault-tolerance

technique widely used across a broad spectrum of applications, ranging from large-scale

systems, such as memory controllers in high-performance servers [65], to high-criticality

systems, such as satellites [66], and even in on-chip subsystems, such as transmission or

storage in networks-on-chip [44][55].

Defining efficacy as the capability of a system to achieve its intended goal and

efficiency as the cost of designing and operating the system, error detection, and correction

are key elements for assessing the efficacy of an ECC. Similarly, area consumption, power

dissipation, energy consumption, and latency are the primary elements for evaluating its

efficiency.

The first ECCs were independently designed, meaning that only one type of ECC was

applied to a specific data region. This approach resulted in low-complexity

encoding/decoding processes and limited error correction capabilities, but with higher

20

synthesis and operational efficiency [18]. Applying multiple ECCs to the same data region

enables error correction and detection information to be correlated. This correlation can

enhance the capacity to identify and correct errors during data transmission, reception, or

storage, thereby improving information reliability. A product code is a typical example of

ECC cross-correlation, where the correction capabilities of two independent ECCs are

combined through cross-verification in a Two-Dimensional (2D) organization [35][18].

Theoretically, infinite ECC correlations can be performed, leading to varying levels of

encoding/decoding complexity, different efficacies in error detection and correction, and

varying synthesis and operational efficiencies. Literature reviews indicate that cross-

correlation is the most common approach, where two ECCs protect the same data bit (e.g.,

product codes). However, no studies have explored ECCs with complete overlap of the data

region, which is the focus of this dissertation.

1.1 General Objective

The primary goal of this master’s dissertation is to research, explore, implement, and

validate ECCs with overlapping data regions to improve error correction and detection

efficacy while concurrently evaluating their efficiency, reliability, and scalability.

1.2 Specific Objectives

To achieve the main goal of this study, in addition to conducting an extensive review

of related works, the following specific objectives are proposed:

• Develop a framework to simulate various error patterns and evaluate the error

correction and detection efficacy of ECCs with overlapping data regions;

• Explore error patterns in ECC regions (data, redundancy, and both);

• Synthesize the selected ECCs and collect data on power dissipation, area

consumption, and latency;

• Define a fault model to assess the reliability of ECCs over time;

• Mathematically evaluate the scalability of the selected ECCs using metrics such as

efficacy and redundancy costs.

21

2. THEORETICAL FOUNDATION

This chapter presents the scientific foundations employed in this study, including fault,

error, and failure events, their causes, and the mechanisms used to mitigate these

occurrences.

2.1 Concepts of Fault, Error, and Failure

Avizienis et al. [2] explain that a service is correct when it implements the functionality

defined for the system. A failure occurs when the service deviates from its definition. If the

service is understood as a sequence of states, then a failure implies that at least one state

deviates from its definition, and this deviation is called an error. The cause of an error is

referred to as a fault, which can be internal or external to the system. The presence of an

internal fault allows an external fault to affect the system, causing errors and potentially

resulting in subsequent failures. In most cases, a fault first causes an error in the service

state of a component that is part of the system’s internal state, while the external state

remains unaffected initially.

Consider a logical AND gate with two inputs as an example of a system component.

A grounded input (i.e., stuck at 0) represents a latent fault. An error occurs when both inputs

assume a logical value of 1, as the output value becomes 0 (due to the fault) instead of 1. A

failure arises if the system’s decision deviates from its specification due to the AND gate’s

result; otherwise, the error remains latent.

This study focuses on faults caused by physical factors [51], such as voltage

variations, temperature changes, radiation, magnetic fluctuations, electrical noise,

electromagnetic interference, and stress over time. Chabot et al. [5] classify faults into three

types based on their duration:

I. Permanent Fault – Caused by a physical event that affects the entire lifetime of the

system, such as a short circuit or an open circuit, which can only be corrected by

replacing the hardware;

II. Intermittent Fault – Occurs sporadically at irregular intervals. Intermittent faults are

often early indicators of potential permanent faults;

III. Transient Fault – Occurs randomly, primarily due to the impact of charged particles

[27]. This type of fault manifests as one or more bitflips and can be corrected without

hardware replacement.

22

In this study, we focus on addressing transient faults by employing mechanisms that

detect them and restore the system to its correct state.

2.2 Single Event Effect (SEE)

The downscaling of Integrated Circuits (ICs) enhances the computational power of

systems but also makes devices more susceptible to faults caused by radiation effects. One

of the most common fault-inducing phenomena in electronic circuits is the Single Event

Effect (SEE) — an electrical disturbance that alters the operation of a circuit. Charged

particles passing through transistor junctions can induce SEEs. The transistor’s behavior

depends on the ion charge at impact. Figure 1 illustrates how a highly charged ion affects a

transistor junction [3]: (a) the ion crosses the junction, generating a cylindrical track of highly

charged electron-hole pairs; (b) the charge imbalance induces the creation of a temporary

funnel; (c) when the funnel dissipates, the remaining ions are balanced through diffusion.

Figure 1. Effect of a charged particle passing through a transistor junction: (a) cylindrical track of

electron-hole pairs; (b) funnel extending the depletion region; (c) diffusion dominating the collection

process; (d) resulting current pulse (Source: adapted from [3]).

While SEEs are commonly observed in space applications due to solar radiation and

cosmic rays, at ground level, alpha particles (more prevalent) and neutrons can modify the

system state, causing transient and sometimes permanent faults [67]. Nicolaidis [42]

categorizes SEEs into types of faults based on their logical and physical scope:

I. Single Bit Upset (SBU) – An SEE affects a single bitflip in a single memory cell,

often synonymous with Single Event Upset (SEU);

II. Multiple Cell Upset (MCU) – An SEE alters two or more memory cells;

III. Multiple Bit Upset (MBU) – An SEE flips two or more bits within the same word;

IV. Single Event Transient (SET) – An SEE causes a voltage fault in a circuit;

23

V. Single Event Functional Interruption (SEFI) – An SEE disrupts functionality due

to interference with registers, clocks, resets, and others;

VI. Single Event Latch-up (SEL) – An SEE induces an abnormally high current,

requiring a power reset.

This study focuses solely on SEEs that result in transient faults such as SBU/SEU,

MCU, and MBU, excluding systemic faults.

Memories are susceptible to radiation, making SEE constantly threatening systems

exposed to charged particles. Designers must understand the most likely SEEs to mitigate

operational issues. Memory errors have been extensively analyzed over decades; studies

indicate that a significant fraction of these errors recur at the same address [62][63][64].

Furthermore, faults often cluster spatially and temporally, showing strong correlations [28].

The continuous scaling down of transistors aligns with Moore’s Law [38], introducing

the challenge of scaling faults [34][41]. Smaller transistors directly increase hardware

sensitivity to temporary errors, leading to higher MCU occurrences in modern technologies

[10]. Typically, a SEE affects a single bit (SBU); however, Figure 2 demonstrates the growing

presence of MBUs as technology scales down. For example, in SRAMs below 40 nm, more

than 40% of particle impacts result in MBUs due to reduced threshold voltages, lower

capacitances per transistor, and the smaller volume of transistors, which increases the

likelihood of a single SEE affecting multiple neighboring transistors [5].

Figure 2. Percentage of MBU occurrences by technology node (nm) for SRAMs (Source: [5]).

Gracia-Morán et al. [24] simulated SEEs in 45 nm memories under terrestrial radiation

levels. As illustrated in Figure 3, while SBUs predominate, MBUs represent nearly half of

the occurrences, including many double and triple errors.

24

Figure 3. Probability of an MBU in memory words caused by radiation impact (Source: adapted from

[19]).

2.3 Error Correction Code (ECC)

Various mechanisms exist to handle transient faults, applied at the hardware,

software, or hybrid levels. One example is modular redundancy, which can be implemented

in hardware and software. Triple Modular Redundancy (TMR) is a typical instance known

for its cost-benefit ratio [5]. Another example is temporal redundancy, implemented in

software, where the system state is periodically saved at checkpoints. In the event of an

error, the system can revert to a safe checkpoint [45]. This dissertation focuses on Error

Correction Code (ECC), a mechanism typically applied at the hardware level to achieve low

latency, making it suitable for real-time applications. However, ECC can also be

implemented in software when timing requirements are less critical.

ECC is composed of a structure that includes information and redundancy bits, along

with encoding and decoding algorithms, aiming to detect and correct errors. Depending on

its composition, this bit structure is called a codeword or a codestruct. While a codeword

represents a word consisting of a vector of data bits and a vector of check bits, a codestruct

is a collection of codewords, often organized in a matrix format. A single codeword or

codestruct enables the implementation of multiple ECCs, depending on the chosen

encoding and decoding methods, resulting in varying area and energy consumption, power

dissipation, and latency [18].

The history of ECCs dates to the early days of computing and telecommunications.

With increasing system complexity and growing demand for reliability, the need for effective

51,72%

23,52%

11,76%

5,88%
2,94%

1,47% 0,74% 0,37% 0,18%
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

1 2 3 4 5 6 7 8 9

M
B

U
 o

cu
rr

e
n

ce
 p

ro
b

ab
ili

ty

Number of bitflips in a word

25

error detection and correction methods became evident. In the 1940s, during the early

computing era, ECCs began to be explored with the advent of the first electronic computers.

Basic parity-check algorithms were used for error detection, but error correction capabilities

remained limited [54].

Advancements in information theory and coding led to the development of robust

ECCs, such as the Hamming code, which enabled error detection and correction in specific

contexts [26]. Continuous progress in error correction research eventually produced more

sophisticated codes, such as Reed-Solomon, widely used in modern storage and

transmission systems [50]. Today, ECCs are extensively implemented across a variety of

devices and technologies. The ongoing evolution of these codes aims to address the

challenges posed by increasingly complex systems and diverse technologies [50].

2.4 Hamming Distance

The Hamming Distance is the number of positions at which the corresponding bits of

two equal-length vectors differ. It is a metric that expresses the minimum number of errors

required to transform the content of one vector into another. The Hamming Distance

determines the error detection and correction limits of a code [37]. This distance is

exclusively related to the organization of data and check bits (i.e., codeword or codestruct),

with encoding and decoding algorithms serving as enablers to achieve the theoretical limits

defined by Hamming.

Let 𝑑 be the Hamming Distance. Then, (1) and (2) calculate the maximum number of

errors a code can correct 𝐸𝐶 or detect 𝐸𝐷 based on 𝑑 [37].

𝐸𝐶 = ⌊
𝑑 − 1

2
⌋ (1)

𝐸𝐷 = 𝑑 − 1 (2)

These equations are mutually exclusive, meaning a code can perform either error

correction 𝐸𝐶 or error detection 𝐸𝐷, but not simultaneously. To simultaneously perform error

detection and correction, (3) must replace (2). Consequently, 𝐸𝐷 is reduced for applications

that aim to correct and detect errors at the same time [18].

𝐸𝐷 = 𝑑 − 𝐸𝐶 − 1 (3)

26

2.5 Parity Code

A parity code adds a bit to a data vector, indicating the number of 1s or 0s in the

vector. For example, the parity encoder counts the number of data bits set to 1 in an even

parity code. If this number is even, the encoder sets the parity bit to 0; otherwise, it sets the

parity bit to 1. During data reading, the parity decoder checks whether the number of 1s

matches the expected parity to determine if the data is correct or corrupted. Table 1

illustrates an example of even parity validation.

Table 1. Example of even parity with a 9-bit codeword, consisting of a data byte (Data) and a parity

bit (P) (Source: Author).

Codeword Number of 1s in
the codeword

Error detected?
Data P

00000000 0 0 NO

10000001 1 3 YES

11100000 1 4 NO

10000000 1 2 NO

Parity errors are detectable only when an odd number of bits are corrupted.

Consequently, an even number of bit flips can remain undetected. Fortunately, SBUs are

the most common type of data corruption [52].

Parity bits are frequently used in memory modules, serial communications, and other

systems where error detection is important, but error correction is not critical [30].

The decoding algorithm sums all bits set to 1 using XOR (exclusive OR) logic on the

data vector. The logical result is compared to the stored parity bit. Figure 4 illustrates the

read and write operations; XOR logic is applied to all bits during a write operation (encoding),

and the result is stored as the parity bit. During a read operation (decoding), the stored parity

bit is compared to the XOR result of the data bits.

Figure 4. Reading and writing 4 data bits (b0 to b3) in memory using the parity code stored in pw

(Source: [5]).

Parity code is not technically an ECC but an Error Detection Code (EDC), with a

27

Hamming distance of 𝑑 = 2. Consequently, it has 𝐸𝐶 = 0 (no error correction) and 𝐸𝐷 = 1

(detection of 1 error). The code can detect an odd number of errors but cannot identify the

number of errors or their locations, making it incapable of error correction.

However, parity code is often presented as a foundational ECC, mainly because

many ECCs are composed of parity combined with other codes. The correlation of parity

codes enables the creation of error correction algorithms, as seen in 2D ECCs [18].

2.6 Hamming Code

Hamming was one of the first ECCs developed for computational systems to correct

SBUs, given that 𝑑 = 3 [18], resulting in 𝐸𝐶 = 1 and 𝐸𝐷 = 2. This attribute places Hamming

in the class of ECCs called Single Error Correction (SEC) codes. Let 𝑀 be the data vector

and 𝑘 the number of check bits; then 𝑁 represents the codeword, and the total number of

bits in the codeword is given by (4). The Hamming code is represented as 𝐻𝑎𝑚(|𝑁|, |𝑀|).

|𝑁| = |𝑀| + 𝑘 (4)

Additionally, the Hamming code must satisfy inequality (5) [37], which means that 𝑘

check bits generate 2𝑘 values. These values allow the identification of the error’s location

within the vector of check bits (referenced by 𝑘) and data bits (𝑀), as well as an error-free

condition (referenced by 1). The inequality is defined as “≥” because 𝑀 can represent a

vector with fewer bits, resulting in 2𝑘 values greater than the required number of addresses,

with the extra addresses discarded.

2k ≥ k + |M| + 1 (5)

Hamming encoding and decoding processes utilize identity, generation, and

verification matrices, as illustrated in the 𝐻𝑎𝑚(7,4) example below – an example of a

Hamming code that employs 3 check bits to protect 4 data bits. The square identity matrix

𝐼2𝑘−𝑘−1, of order 2𝑘 − 𝑘 − 1, and matrix 𝑄, covering the data addresses 011, 101, 110, and

111 in the event of an error, are described by (6) and (7), respectively.

𝐼2𝑘−𝑘−1 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] (6)

28

𝑄 = [

0 1 1
1 0 1
1 1 0
1 1 1

] (7)

The generator matrix 𝐺, used to initiate the Hamming encoding process, is

represented by (8), while (9) illustrates 𝐺(4,7).

G = [I2k−k−1 Q] (8)

G(4,7) = [

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

] (9)

Equation (10) describes the linear transformation that multiplies the data vector

𝑀(1,4) by the generator matrix 𝐺(4,7) to encode 𝐻𝑎𝑚(7,4) into the codeword 𝑁(1,7).

N = M × G (10)

For example, (11) illustrates that the vector 𝑀 = [1000] encoded with 𝐻𝑎𝑚(4,7)

results in the codeword 𝑁 = [1000011]. Note that the first four bits [1000] represent the data,

while the remaining three bits [011] are check bits.

𝑁 = [1 0 0 0] × [

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

] = [1 0 0 0 0 1 1] (11)

Decoding is the inverse encoding process, requiring examining whether the check

bits match the values obtained during encoding. Let 𝑄𝑇 be the transposed matrix of 𝐻 and

𝐼𝑘, the square identity matrix of order 𝑘, computed by (12) and (13), respectively. Then, (14)

computes the redundancy matrix 𝐻.

QT = [
0 1 1 1
1 0 1 1
1 1 0 1

] (12)

Ik = [
1 0 0
0 1 0
0 0 1

] (13)

29

H = [QTIk] = [
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

] (14)

Let 𝑁′ be the codeword read during the decoding process, such that 𝑁′ = 𝑁 in the

absence of errors. Then, 𝑁′𝑇 represents the transposed matrix of 𝑁′, as described in (15).

Equation (16) multiplies 𝐻 by 𝑁′𝑇 to compute the syndrome vector 𝑆[𝑠0 𝑠1 𝑠2]. Note that this

example produces 𝑆 = [000], as the matrices used in encoding (𝑁) and decoding (𝑁′) are

identical, indicating no errors.

N′T =

[

1
0
0
0
0
1
1]

 (15)

S = H × N′T = [
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

] ×

[

1
0
0
0
0
1
1]

= [0 0 0] (16)

Although the mathematical modeling of Hamming is based on matrix computation,

the encoding and decoding processes can also be performed using XOR logic (⊕).

Equations (17) to (19) illustrate, for the 𝐻𝑎𝑚(7,4) example, the calculations for the check

vector 𝐶[𝑐0 𝑐1 𝑐2] produced during encoding, which, along with the data 𝐷[𝑑0 𝑑1 𝑑2 𝑑3], can

be transmitted or stored.

c0 = d1 ⊕ d2 ⊕ d3 (17)

c1 = d0 ⊕ d2 ⊕ d3 (18)

c2 = d0 ⊕ d1 ⊕ d3 (19)

During decoding, a similar process is performed; the check vector is recomputed as

𝐶′[𝑐′0 𝑐′1 𝑐′2], now considering the received/read data vector 𝐷′[𝑑′0 𝑑′1 𝑑′2 𝑑′3], as shown in

(20) to (22).

30

c′0 = d′1 ⊕ d′2 ⊕ d′3 (20)

c′1 = d′0 ⊕ d′2 ⊕ d′3 (21)

c′2 = d′0 ⊕ d′1 ⊕ d′3 (22)

Additionally, (23) to (25) demonstrate that 𝑆 is computed during decoding through ⊕

operations between the bits of 𝐶 and 𝐶′.

s0 = c0 ⊕ c′0 (23)

s1 = c1 ⊕ c′1 (24)

s2 = c2 ⊕ c′2 (25)

In Hamming codes, the codeword bits are numbered consecutively, starting with bit

1 on the far left, followed by bit 2 immediately to its right, and so on. Also, check bits occupy

positions that are powers of 2 (i.e., 1, 2, and 4), while the remaining are data bits (i.e., 3, 5,

6, and 7). Thus, the codeword for 𝐻𝑎𝑚(7,4) is represented as 𝑁 = [
𝑐0 𝑐1 𝑑0 𝑐2 𝑑1 𝑑2 𝑑3

1 2 3 4 5 6 7
].

However, Hamming codewords are typically presented with data and check bits grouped,

as shown in the first column of Table 2. This table relates the eight possible syndromes to

their corresponding error addresses and identifies which bit in the codeword is erroneous.

Note that 𝑆 = [000] indicates no errors, while all other combinations correspond to the

addresses where errors occurred. The error address is derived by combining the weights of

the check bits, as illustrated in (26).

Error address = 4 × c2 + 2 × c1 + c0 (26)

Table 2. Relations between the codeword, syndrome bit vector, and error address (Source: Author).

Codeword 𝑆 Error address Bit with error

𝑁 = [𝑑0 𝑑1 𝑑2 𝑑3 𝑐0 𝑐1 𝑐2]

3 5 6 7 1 2 4
 𝑑𝑎𝑡𝑎 𝑏𝑖𝑡𝑠 𝑐ℎ𝑒𝑐𝑘 𝑏𝑖𝑡𝑠

[000] 0 Ø

[001] 1 [𝑐2]
[010] 2 [𝑐1]
[011] 3 [𝑑0]
[100] 4 [𝑐0]
[101] 5 [𝑑1]
[110] 6 [𝑑2]
[111] 7 [𝑑3]

31

For example, encoding the data vector 𝑀 = [1000] results in 𝐶 = [011] and,

consequently, the codeword 𝑁 = [1000 011]. Suppose an error occurs in the second data

bit (𝑑1), resulting in the codeword 𝑁′ = [1𝟏00011]. In this case, the recalculation of the check

bits produces 𝐶′ = [110], during decoding. Applying (24) to (26) generates a syndrome

vector 𝑆 = [101], indicating that two check bits have changed. Finally, using (17), it is

determined that the error address is 5, which corresponds to 𝑑1, as shown in Table 2.

Note that to protect larger data areas, the Hamming code can grow indefinitely while

maintaining a growth ratio close to the logarithm base 2. In all cases, it always retains the

characteristic of being a SEC code. Additionally, data areas can be protected using

Hamming combinations [19], which enhances error correction efficacy but increases

efficiency penalties due to the higher number of check bits.

2.7 Extended Hamming Code

The Extended Hamming Code is formed by adding a parity bit to the standard

Hamming code, increasing the Hamming distance to 𝑑 = 3 [18]. This enhancement allows

the code to correct one error (𝐸𝐶 = 1) and detect two errors (𝐸𝐷 = 2). Thus, the Extended

Hamming Code belongs to the class of ECCs known as Single Error Correction - Double

Error Detection (SECDED) [46].

The Extended Hamming Code is represented as 𝐸𝑥𝐻𝑎𝑚(|𝑁∗|, |𝑀|), where |𝑁∗| =

|𝑁| + 1, with 𝑁 being the codeword of the basic Hamming code and “1” referring to the

additional parity bit. In addition to the syndrome vector 𝑆, obtained by comparing the

computed and recomputed check bits, 𝐸𝑥𝐻𝑎𝑚(|𝑁∗|, |𝑀|) includes the parity syndrome 𝛿,

calculated by applying XOR between the parity bit generated during encoding (𝑝) and the

parity bit recalculated during decoding (𝑝′), as described in (27).

𝛿 = 𝑝 ⊕ 𝑝′ (27)

Let 𝒔 be the logical OR (˅) operation applied to all bits of 𝑆, as described in (28). Table

3 then describes the type of error based on the combination of the Hamming and parity

syndromes.

𝒔 = 𝑠0 ˅ 𝑠1 ˅ 𝑠2 (28)

32

Table 3. Error types of based on the combination of Hamming and parity syndromes (Source:

Author).

𝒔 𝛿 Type of error

0 0 No error

0 1 Single error in parity

1 0 Double error

1 1 Single error

Using an example like Section 2.6, 𝑀 = [1000] results in 𝑁∗ = [1000011𝟏], as parity

is calculated by considering all data and check bits, as illustrated in (29).

𝑝 = 𝑑0 ⊕ 𝑑1 ⊕ 𝑑2 ⊕ 𝑑3 ⊕ 𝑐0 ⊕ 𝑐1 ⊕ 𝑐2 (29)

In the occurrence of two errors in 𝑁∗ = [𝟎𝟏000111], the parity syndrome is zero (𝛿 =

0) and 𝒔 = 1 (𝑆 = [110]). The combination of 𝛿 and 𝒔 indicates a double error detection;

however, the positions of the errors are unknown, and therefore, 𝑁∗ cannot be corrected.

2.8 Two-Dimensional Error Correction Code (2D-ECC)

The scaling of integrated circuits increases their susceptibility to MBUs, requiring

more effective ECCs that, in turn, dissipate more power and consume more area and

energy. Additionally, a One-Dimensional ECC (1D-ECC) demands long redundancy

sequences to achieve high efficacy, especially for large data words [5]. Thus, a Two-

Dimensional Error Correction Code (2D-ECC) emerges as an efficient solution for handling

MBUs. Its format combines low-cost codes to achieve efficacy similar to 1D-ECCs without

overloading the codewords with redundancy bits.

A 2D-ECC is characterized by having data and/or redundancy bits in two dimensions,

typically referred to as rows and columns. This definition includes any 1D-ECC physically

organized into rows and columns within the 2D-ECC class. Consequently, Freitas et al. [18]

classify 2D-ECCs into four categories:

VII. Straightforward 2D-ECC (S2E) – A code organized in a 2D physical structure but

correcting errors using 1D algorithms.

VIII. Product Code (PC) – An ECC treated as a product of two codes, allowing the

construction of long codes from smaller ones.

IX. Extended Product Code (EPC) – A special case of PC that uses more than one

code per row and/or column.

33

X. Mixed Code (MC) – A 2D-ECC that contains at least one data or redundancy bit

whose modification impacts encoding in both dimensions but cannot be classified

as PC or EPC.

Let and β be the number of columns comprising the data and redundancy areas,

and ϑ and ε the number of rows comprising the data and redundancy areas, respectively,

such that γ = + β and θ = ϑ + ε. Then, each row and column of the PC is encoded using

the codes 𝐶1(γ,, 𝑑1) and 𝐶2(θ, ϑ, 𝑑2), respectively, forming the code 𝐶1 × 𝐶2. Any bitflip in

the data region disturbs the row and column of the corresponding bit. Figure 5(a) illustrates

the basic structure of the PC. Furthermore, PC adds a region containing check bits for the

check bits, increasing the Hamming distance and, consequently, the code’s correction

potential [37]. However, some codes implement the product code without including the

region of check bits for the check bits, aiming to reduce the redundancy costs. These codes

are referred to as modified PCs, as illustrated in Figure 5(b).

.α. .b.

Row check bit
region

Check on check
bit region

Data
region

Column check
bit region

ϑ

ε

θ

.γ.

.α. .b.

Row check bit
region

Data
region

Column check
bit region

ϑ

ε

θ

.γ.

(a) (b)

Figure 5. Basic structures of (a) PC and (b) modified PC (Source: [18]).

Several 2D-ECCs exist, such as Matrix [1], Decimal Matrix Code (DMC) [25],

Horizontal-Vertical-Double-Bit Diagonal (HVDD) [48], Product Code for Space Applications

(PCoSA) [14], Extended Matrix Region Selection Code (eMRSC) [56], and Line Product

Code (LPC) [15]. These 2D-ECCs are often compositions of basic ECCs, resulting in

heterogeneous structures. While they all employ cross-correlation of ECCs, none utilize the

data overlapped technique proposed in this work. Additionally, the 2D organizations

proposed in this study are not fully aligned with any classifications presented by Freitas et

al. [18], with the closest match being the MC code class.

34

3. RELATED WORK

This chapter presents a bibliographic review focusing on the analysis of 2D-ECCs

conducted using the following research platforms:

• IEEE Xplore (https://ieeexplore.ieee.org/)

• Elsevier (https://www.sciencedirect.com/)

• ACM (https://dl.acm.org/)

• MDPI (https://www.mdpi.com/)

Additionally, for greater comprehensiveness, Google search tools were also

employed, allowing the inclusion of articles from other research platforms.

To conduct the research, we based our work on the foundational use of ECC as an

error correction technique pioneered by Richard W. Hamming in his seminal 1950

publication, “Error Detecting and Error Correcting Codes”, in the Bell System Technical

Journal. Since then, hundreds of studies have explored ECC with various applications, such

as providing reliability for different communication media and data storage systems. Two-

dimensional codes (2D-ECC) also have a long history, with one of the earliest

implementations being the Product Code, introduced by Peter Elias in 1954 in his paper

“Error-Free Coding” published in the IRE Transactions on Information Theory.

To evaluate the level of innovation in our proposed approach and its relationship to

existing works, we initially conducted a broad exploratory search for error correction codes

that referenced concepts similar to what we term here as “overlapping”. These included

keywords such as “overlay,” “crossing,” and “sharing,” focusing primarily on the titles and

abstracts of articles without restricting the search to a specific starting date. This exploratory

search did not identify prior works proposing a methodology like ours.

We emphasize that the innovation in our proposal lies in the overlapping model,

where more than one independently encoded ECC protects the same data region.

Additionally, although the codes are encoded independently, they must be pre-related so

that their encodings have characteristics enabling enhanced error correction efficacy during

decoding. The distinct algorithmic organization and characteristics of our method prevented

it from being classified within any of the categories proposed by Freitas et al. [18]. Thus, we

classified the method as overlapping. Given these considerations, we conducted a detailed

search focusing solely on articles written in English and published since 2010. The search

for related articles was carried out using the query string:

https://www.sciencedirect.com/

35

(“Reliability” OR “Fault Tolerance” OR “Fault-Tolerant”) AND (“ECC 2D” OR “2D-

ECC” OR “Two-Dimensional Error Correction Code”).

A total of 97 articles were retrieved, and their abstracts and part of the text content

were analyzed to identify the primary techniques employed and the methods used for

algorithm validation. Notably, no studies employed the Overlapping Technique proposed

in this work. Consequently, we prioritized selecting highly cited articles, techniques, or ECCs

that were most comparable to the methods proposed here, as well as recent research.

3.1 Matrix-Based Codes for Adjacent Error Correction

Argyrides et al. [1] addressed the challenges of MCUs in memory systems caused by

technology scaling and radiation effects. The authors propose the Matrix-based 2D-ECC

that combines horizontal and vertical parity checks to correct adjacent bit errors efficiently.

This solution targets applications where conventional methods like interleaving and

Hamming codes fall short in handling closely spaced error patterns.

The proposed technique organizes data into a 2D matrix, applying parity bits along

rows and columns, as illustrated in Figure 6. This configuration allows the correction of up

to four adjacent bit errors within a word, possibly scaling to larger matrices, such as 8×8, to

address more complex error patterns. The design is tailored for environments with common

clustered MCUs, such as space applications and advanced SRAM memories, where

interleaving is not feasible due to physical constraints or performance trade-offs.

Figure 6. Structure of the Matrix code for a 4x8 data set (X1 to X32); C1 to C8 and D1 to D16 represent

the row and column parity bits, respectively (Source: [1]).

Experimental evaluations demonstrated the matrix-based codes’ superiority over

traditional ECCs like Hamming and Reed-Muller (RM) [37] codes. For a 32-bit codestruct,

the proposed method achieves a 675× improvement in memory reliability compared to

Hamming codes and a 38× improvement compared to Reed-Muller codes for distance-1

errors. When expanded to distance-3 errors, the reliability gains are even more pronounced,

with memory Mean Time To Failure (MTTF) significantly extended. Cost analysis revealed

that while the proposed codes require more redundant bits than Hamming codes, their fault

36

coverage and efficiency make them a compelling choice for critical systems.

3.2 Enhanced Memory Reliability Against Multiple Cell Upsets Using

Decimal Matrix Code

Guo et al. [25] focused on addressing the increasing challenge of MCUs in memories,

especially in radiation-prone environments, leading to the development of a novel Decimal

Matrix Code (DMC) that employs a decimal algorithm for error detection and correction,

which enhances the fault tolerance of memories while minimizing performance overhead.

Figure 7 depicts that DMC organizes data into a 2D logical matrix structure, with rows

and columns protected by redundant bits generated through decimal integer addition (for

rows) and binary operations (for columns). This dual-layered approach allows the correction

of up to five errors per word while requiring a reasonable number of redundant bits. The

study emphasizes the encoder-reuse technique, which integrates the encoding process into

the decoding circuitry, significantly reducing area and circuit complexity.

DMC demonstrated a significantly higher MTTF and lower delay overhead than

established codes like Hamming and Matrix codes. However, DMC requires more redundant

bits than its counterparts, which is a trade-off for its superior error correction capabilities.

The researchers argue that the higher correction capability justifies the additional

redundancy, particularly for applications in high-reliability environments, such as aerospace

and high-performance computing, where fault tolerance is critical.

Figure 7. 32-bit DMC organization treats each symbol as a decimal integer. Horizontal redundant

bits H are generated by adding selected symbols per row, while vertical redundant bits V come from

binary operations on column bits (Source: [25]).

3.3 Low Redundancy Two-Dimensional Matrix-Based HVDB Code for

Double Error Correction

Rahman et al. [48] proposed the Horizontal-Vertical-Double-Bit Diagonal (HVDD)

parity method to mitigate soft errors in memory systems. The HVDD methodology employs

37

a 2D-matrix structure for data and redundant bits, allowing for parallel calculation of

horizontal, vertical, and diagonal parity during encoding and decoding; Figure 8 exemplifies

an 8×8 HVDD. Double-bit diagonal parity enables the detection and correction of up to three-

bit errors in any combination, significantly improving over traditional single and double-bit

error correction codes. This approach ensures that, even in complex error patterns, most

errors can be effectively identified and corrected.

Figure 8. HVDD structure for an 8×8 data matrix; D1 to D11, V1 to V8, and H1 to H8 are diagonal, vertical,

and horizontal redundant bits (Source: [48]).

Compared to Hamming and Bose-Chaudhuri-Hocquenghem (BCH) [36][31] codes,

the HVDD technique provides a superior trade-off between error correction capability and

implementation cost. Experimental evaluations validated HVDD’s robustness, showing it

can detect and correct all possible three-bit errors while maintaining a high code rate of

70.33%. This makes HVDD a viable solution for high-reliability applications where

minimizing bit overhead is critical. The methodology is especially beneficial for real-time

systems and memory architectures where error correction must be fast and efficient.

3.4 EG-LDPC Based 2-Dimensional Error Correcting Code for Mitigating

MBUs of SRAM Memories

Erozan e Çavuş [11] proposed a 2D-ECC architecture utilizing Low-Density Parity

Check codes based on Euclidean Geometry (EG-LDPC) combined with Single Parity Check

(SPC) as a solution to the issue of MBUs in SRAMs. EG-LDPC codes were selected for their

superior capabilities in detecting and correcting multiple errors and low-complexity

decoders, making them particularly suitable for fault-tolerant memory applications.

38

The proposed architecture employs an EG-LDPC(15, 7, 5) code, where a 15-bit

codestruct is divided into 7 data bits (Mij) and 8 check bits (Rij). Additionally, the 7×5 data

matrix is validated by column parities (Cij), exemplifying the application of a 2D code. This

setup is organized into a two-dimensional matrix structure to reduce decoding complexity.

The decoding process follows a standard matrix procedure tailored for 2D structures, as

illustrated in Figure 9.

Figure 9. 2D Structure of EG-LDPC with data bits Mij, row parity checks Rij, and column parity checks

Cij (Source: Adapted from [11]).

The decoding algorithm uses pre-calculated one- and two-bit error combinations and

their corresponding syndromes stored in a lookup table. At the start of decoding, syndrome

values for each row and the first seven columns (data columns) are simultaneously

calculated. Any non-zero syndromes are compared against the pre-saved values to identify

a matching syndrome pattern. If a row syndrome is identified, it is cross-referenced with the

corresponding column syndrome, representing a convergence of ECCs for error correction.

This approach achieves an error correction coverage of over 95% for up to 4 errors

and 100% error detection for up to 2 errors. The authors demonstrate that their method

significantly improves error correction and detection capabilities compared to other two-

dimensional codes. They conclude that 2D architectures based on EG-LDPC codes offer a

robust solution for mitigating MBUs in SRAM technologies, highlighting their potential for

enhanced fault tolerance in modern memory systems.

3.5 Horizontal-Vertical Parity and Diagonal Hamming Based Soft Error

Detection and Correction for Memories

Raha, Vinodhini, and Murty [47] designed the Horizontal-Vertical Parity and Diagonal

Hamming (HVPDH) 2D-ECC. Figure 10 illustrates the HVPDH codestruct, which consists of

32 data bits (D0-D31) protected by 28 check bits organized into three sets: (i) 4 horizontal

39

parity bits (Hz0-Hz3), (ii) 8 vertical parity bits (V0-V7), and (iii) 16 Hamming bits grouped

diagonally (Hm11-Hm44).

(a) (b)

Figure 10. (a) Part of the HVPDH codestruct showing the grouping used to compute the Hamming

code, e.g., Hm11 to Hm41 protect bits D2, D6, D9, D13, D16, D20, D27, and D31. (b) Part of the codestruct

verifying horizontal parity (Hz) and vertical parity (Vn) for the data matrix. (Source: [47]).

The research emphasizes the increasing necessity for efficient error correction codes

due to the prevalence of MCUs in modern memory systems. Simulation tests, conducted

using Verilog HDL, validated the HVPDH’s error detection and correction capabilities. The

HVPDH can detect up to 8-bit errors and correct all combinations of up to 2-bit errors and

most combinations of 3- to 5-bit errors. These correction rates are competitive compared to

other ECC methods, such as the Decimal Matrix Code (DMC) [25].

This design demonstrates a robust and scalable solution for fault tolerance in memory

systems, particularly in environments prone to high error rates. The combination of

horizontal, vertical, and diagonal error correction provides an advanced approach to

mitigating the challenges MCUs pose.

3.6 Correction of Adjacent Errors with Low Redundant Matrix Error

Correction Codes

Moran et al. [39] designed two low-redundancy 2D-ECCs to correct adjacent error

patterns. Both codes exhibit the same error correction capabilities but differ in redundancy

levels. The authors analyzed the impact of these low-redundancy designs on area overhead,

power consumption, and delay. The proposed ECCs were compared with the Matrix code

[1], as illustrated in Figure 11.

The two proposed 2D-ECCs were evaluated based on error patterns and their

corresponding correction capabilities: (i) Horizontal Adjacent Errors – 100% correction was

achieved for 1 to 3 errors across all proposals, with decreasing coverage for 4 to 8 errors;

40

(ii) Vertical Adjacent Errors – all errors up to 3 bits were corrected, but coverage dropped

significantly for 6 or more errors; (iii) Square Adjacent Errors – 100% correction was

achieved for 2×2 patterns, but coverage decreased for 3×3 and 4×4 patterns.

Figure 11. 2D codestruct with 31 data bits (X0-X31), 20 Hamming check bits (C0-C19), and eight parity

bits (P0-P7) (Source: [39]).

Proposal 1, shown in Figure 12(a), provides robust coverage for horizontal and

square error patterns with less redundancy than the Matrix code [1]. Its Hamming-based

verification bits (C) protect more data bits (X) per check bit, reducing redundancy and

offering a more efficient balance between performance and overhead. In contrast, Proposal

2, illustrated in Figure 12(b), uses 16 check bits (C) to cover the same data area (X). This

results in a higher redundancy level compared to Proposal 1 but requires simpler encoding

circuitry, leading to lower area, power, and delay overheads.

(a) (b)

Figure 12. Codestruct of (a) Proposal 1 and (b) Proposal 2 (Source: [39]).

The redundancy levels across the codes were quantified as follows: (i) the Matrix

code exhibits 87.50% redundancy with 28 check bits, (ii) Proposal 2 achieves 50%

redundancy with 16 check bits, and (iii) Proposal 1 achieves the lowest redundancy at 25%

with 8 check bits. These percentages reflect the proportion of additional bits required to

implement the ECC relative to the total number of bits. The authors concluded that

Proposals 1 and 2 outperform the Matrix code in horizontal and square error scenarios,

offering significantly reduced area overhead, power consumption, and latency.

Both proposals were developed using a methodology called Flexible Unequal Error

Control (FUEC), which allows for the automatic generation of an efficient parity-check matrix.

The proposed ECCs improve error coverage compared to the Matrix code and substantially

41

reduce redundancy and associated overheads. The paper concludes by emphasizing the

significance of the results for enhancing fault tolerance and reliability in memory systems.

3.7 PCoSA: A product error correction code for use in memory devices

targeting space applications

Freitas et al. [14] introduced the Product Code for Space Applications (PCoSA), an

ECC designed to address radiation-induced errors in memory systems used in space

environments. PCoSA combines Hamming codes and parity bits applied to rows and

columns, achieving a 2D-ECC structure. This design ensures high fault tolerance and error

detection capabilities, which is particularly suited for environments where reliability is

paramount.

The core structure of PCoSA(64, 16) encodes a 16-bit data word into 64 bits,

comprising 16 data bits, 12 row-check bits, 7 row-parity bits, 21 column-check bits, and 8

column-parity bits. This configuration results in a minimum Hamming distance of 16, allowing

for robust error detection and correction. The code demonstrated high correction rates for

error patterns containing up to 7 bitflips in simulated memory scenarios. The combination of

row and column redundancy enhances PCoSA’s ability to detect and correct multi-bit errors,

outperforming other ECCs like Matrix and Reed-Muller codes.

Figure 13. PCoSA structure with 16 data bits; the codestruct is divided into five regions: data (D), row

check bits for D (C1), column check bits for D and C1 (C2), row parity for D, C1, and C2 (P1), and overall

column parity (P2) (Source: [14]).

The scalability of PCoSA was explored by extending its configurations to protect

larger memory words, such as PCoSA(256, 121) and PCoSA(1024, 676). These extended

formats maintain the same detection and correction capabilities while reducing the

redundancy rate from 75% to as low as 33.98%.

Simulation results highlighted superior performance for PCoSA, with a 100%

42

detection rate for all tested error patterns. For correction capabilities, PCoSA achieved 100%

for up to three bitflips and over 80% for four bitflips, significantly outperforming other

evaluated ECCs. Furthermore, the reliability analysis showed that PCoSA maintains high

system dependability over time, making it a suitable choice for space applications where

long-term memory integrity is critical.

Despite its advantages, the synthesis cost analysis revealed trade-offs. The PCoSA

encoder and decoder modules exhibited higher area consumption and power dissipation

compared to other ECCs, such as PBD. However, the increased reliability and error

correction performance justify these costs in critical applications like space missions.

3.8 Extended Matrix Region Selection Code: An ECC for adjacent

Multiple Cell Upset in memory arrays

Silva et al. [59] introduced the Extended Matrix Region Selection Code (eMRSC), a

2D-ECC designed to enhance reliability in memory systems, particularly against MCUs. The

eMRSC is an evolution of the Matrix Region Selection Code (MRSC) [56], expanding its

capabilities from handling 16-bit data to 32-bit data, and comes in two main configurations:

eMRSC(32,3,64) and eMRSC(32,7,56). These configurations differ in the number of regions

they utilize for error correction and the redundancy they require, offering trade-offs between

correction capability and implementation cost. The structure of eMRSC divides data and

redundancy into regions, enabling localized error detection and correction within defined

spatial groupings. This is particularly effective for correcting adjacent errors, the most

common MCU pattern in memory devices. Figure 14(a) and (b) illustrate the structure and

the three data regions of eMRSC(32,3,64).

(a) (b)

Figure 14. (a) Structure and (b) data regions of the eMRSC(32,3,64) codestruct (Source: [59]).

Key features of eMRSC include the ability to address adjacent error patterns using a

matrix-based approach to syndromes and redundancy bits, and an algorithmic process that

selects error-prone regions for correction. The eMRSC(32,3,64) prioritizes robust correction

capability with larger regions, while the eMRSC(32,7,56) minimizes redundancy overhead

43

by dividing the matrix into smaller regions.

The article presented extensive experimental results comparing eMRSC to other

ECCs, such as Matrix [1], Orthogonal Latin Squares (OLS) [9], and Decimal Matrix Code

(DMC) [25]. eMRSC outperforms these codes in error correction capability and MTTF,

particularly in scenarios involving multiple adjacent errors. While eMRSC(32,3,64)

demonstrates superior error correction in more aggressive scenarios, eMRSC(32,7,56)

offers efficiency for applications where lower redundancy is acceptable.

3.9 Error Coverage, Reliability and Cost Analysis of Fault Tolerance

Techniques for 32-bit Memories used on Space Missions

Freitas et al. [13] analyzed fault tolerance techniques for 32-bit memories used in

space missions, focusing on error correction rates, reliability, and implementation costs. The

study evaluates seven schemes with and without interleaving, including Extended

Hamming, Reed-Muller (RM) [37], and Triple Modular Redundancy (TMR) [5]. Bit

interleaving, illustrated in Figure 15, is a technique that transforms an MBU into SBUs

distributed across multiple codewords. This technique achieves maximum effectiveness

when the physical MBU size is less than or equal to the specified interleaving scheme.

Figure 15. Interleaving technique illustrated with (a) four 4-bit data blocks encoded into (b) four

interleaved codewords organized in (c) a codestruct (Source: [13]).

Figure 16 presents simulation results showing that the interleaving technique yields

higher correction rates for adjacent errors, as these errors are distributed across other

codewords through interleaving. However, when errors occur in all positions of the

codestruct, the correction rates are independent of interleaved. Additionally, the results

reveal that RM is the most reliable for up to 3 or 4 errors, depending on the error pattern

injected during the simulation. On the other hand, TMR achieves high correction rates for

up to 10 adjacent errors.

44

(a) (b)

Figure 16. Simulation results showing correction rates for the proposed configurations using (a) only

adjacent errors and (b) all combinations of errors (Source: [13]).

3.10 LPC: An Error Correction Code for Mitigating Faults in 3D Memories

Freitas et al. [15] proposed the Line Product Code (LPC), a modified product-type

ECC designed to address the reliability challenges of 3D memories, which are increasingly

susceptible to faults due to transistor scaling and environmental factors like radiation and

heat. LPC incorporates Hamming and parity codes across rows and columns, leveraging a

matrix-based organization to enhance error correction capacity while minimizing

redundancy overhead. This makes LPC particularly suitable for critical applications such as

space memory systems.

Figure 17(a) illustrates the LPC codestruct, composed of 16 data bits (D0 to D15), 16

extended Hamming code bits for rows (CR0 to CR11 along with PR0 to PR3), and another 16

extended Hamming code bits for columns (CC0 to CC11 along with PC0 to PC3). Figure 17(b),

however, presents the logical format used for encoding and decoding. This new figure

includes row and column syndrome bits and the SEr, DEr, SEc, and DEc bits, which indicate

whether single or double errors occurred in the rows or columns.

Experimental results validate LPC’s reliability and efficiency, showing its capacity to

correct up to 20-bit flips within a data field under extreme error scenarios. Furthermore, LPC

balances error correction rates and implementation costs with a redundancy rate of 66.7%,

enabling robust performance for high-fault environments. The lightweight decoding

algorithms reduce synthesis costs, making LPC a cost-effective solution for advanced

memory technologies.

The study also highlights LPC’s adaptability for use in diverse memory architectures,

including on-die ECC integration, enhancing memory reliability while maintaining

transparency to controllers. By addressing the unique fault patterns of 3D memory stacks,

LPC sets a precedent for heterogeneous ECC models tailored to varying error

45

susceptibilities across memory layers.

(a)

(b)

Figure 17. (a) LPC codestruct and (b) LPC logical format used for ECC encoding and decoding

(Source: [15]).

3.11 A New Error Correcting Coding Technique to Tolerate Soft Errors

Sen et al. [53] proposed an enhancement to the Decimal Matrix Code (DMC) [25] to

improve memory reliability by reducing processing time and information overhead.

Simulations demonstrate that the proposed technique outperforms various existing ECCs

regarding MCU detection and correction capabilities, making it suitable for critical

applications. The proposed Enhanced DMC seeks to improve correction and detection

capabilities while minimizing overhead in redundant bits, a critical factor in high-density

memory applications.

The Enhanced DMC employs a 2D structure for encoding and decoding, arranging

data into a matrix format. Figure 18 displays the data bits are grouped into symbols, each

consisting of 4 bits, and organized into a logical M1×M2 symbol matrix. Redundant bits are

calculated using successive XOR operations horizontally and vertically, with further decimal

additions applied to generate vertical check bits. This design ensures better error correction

rates than the original DMC while using fewer redundant bits. For example, while the original

DMC uses 36 redundant bits for a 32-bit data word, the Enhanced DMC reduces this to 32

46

redundant bits, achieving improved coding efficiency.

Figure 18. Proposed structure of the Enhanced DMC (Source:[53]).

During decoding, the Enhanced DMC identifies errors by generating syndrome bits

through XOR operations on the horizontal and vertical check bits. The proposed method

achieves 100% correction capability for up to five erroneous bits in a data word. The

correction rate gradually decreases for more than five errors but remains superior to

competing ECCs.

The article emphasizes that the Enhanced DMC also reduces the processing

overhead compared to its predecessors. The method ensures faster operation by simplifying

the encoding and decoding processes, which is critical in real-time systems. Furthermore,

the authors highlight that the Enhanced DMC offers a competitive edge by achieving a

higher error correction rate with fewer redundant bits than similar ECC methods.

3.12 Multiple Bit Error Correction Codes for Memories in Satellites

Tejas, Kumar, and Sunita [66] proposed a 2D-ECC called Vertical Parity and Diagonal

Hamming (VPDH). This hybrid code builds upon the theoretical foundation of HVPDH [47]

by reorganizing 4 parity bits. The VPDH codestruct protects 32 data bits using 16 diagonal

Hamming bits, 8 vertical parity bits, and 4 diagonal parity bits.

The VPDH encoder and decoder were simulated and synthesized using the Xilinx

Vivado tool with a 180nm standard cell library in implementation and testing. Automated

tests evaluated the VPDH's error correction capabilities by simulating errors ranging from 1

to 5 bits. Results demonstrated that VPDH corrects approximately 30%, 24%, and 6% more

3-bit, 4-bit, and 5-bit errors, respectively, compared to HVPDH while maintaining similar bit

overhead and power dissipation.

The authors conclude that VPDH is an effective solution for space applications,

balancing error correction capability, area consumption, delay, and power dissipation. This

makes it a promising approach for environments where reliability and efficiency are critical.

47

3.13 TECED: A Two-Dimensional Error-Correction Codes Based Energy-

Efficiency SRAM Design

Chen et al. [6] proposed the Two-Dimensional Error-Correction Codes Based Energy-

Efficiency SRAM Design (TECED) method to design SRAMs using 2D-ECCs. TECED

focuses on balancing latency, energy consumption, and area constraints in the context of

increasing chip scaling and operational frequencies while enhancing memory reliability

against soft errors. By utilizing 2D-ECCs, TECED improves energy efficiency and reduces

hardware costs, offering higher performance and reliability.

Compared to conventional Hamming codes, the TECED method employs horizontal

and vertical memory word encoding with parity techniques, optimizing error detection unit

usage and minimizing energy consumption. However, specific characteristic errors remain

undetectable, as shown in Figure 19.

Figure 19. Correction vs. detection capability of TECED (Source: [6]).

The authors highlight that while the proposed method uses well-known techniques,

the key contribution lies in its memory access architecture, which provides significant energy

efficiency advantages and reduced impact in error-free scenarios. This makes TECED a

valuable approach for modern SRAM design, where energy efficiency and reliability are

critical considerations.

3.14 New Decoding Techniques for Modified Product Code Used in

Critical Applications

Freitas et al. [16] explored advancements in error correction algorithms of the

previous 2D-ECC work – LPC [15]. This new work introduces innovative decoding

strategies, namely the Single Error (AlgSE) and Double Error (AlgDE) correction algorithms,

which leverage LPC’s unique structure to improve error correction efficiency.

The LPC organizes data and parity bits in a matrix format, enabling cross-references

48

between rows and columns to identify and correct errors. The study employs Ham(8,4)

codes for LPC’s underlying structure, achieving a minimum Hamming distance of 7. This

configuration allows LPC to correct up to three-bit errors and detect three simultaneously,

potentially handling more errors depending on their distribution. The AlgSE, displayed in

Figure 20, utilizes iterative processes and heuristics to optimize correction capabilities, such

as prioritizing rows or columns with the highest error counts.

Figure 20. Iterative AlgSE Algorithm. Compares the number of single errors found in columns (SEc)

with those found in rows (SEr), applying successive iterative and interleaved rounds of Hamming

correction for rows and columns (Source: [16]).

Experimental results demonstrate that LPC achieves a high correction rate,

effectively mitigating MCUs in scenarios with significant radiation exposure. Integrating

AlgSE and AlgDE in decoding processes ensures a robust approach to handling single- and

double-bit errors. The paper highlights trade-offs between correction efficacy and

implementation costs, such as redundancy overhead and computational latency.

Applications for LPC include memory systems in space missions and other

environments prone to high radiation. LPC minimizes redundancy costs without sacrificing

performance by focusing on data bits for correction and recalculating redundancy from

these. These findings position LPC as a practical solution for fault tolerance in critical

electronic systems, balancing high error correction capacity and efficient resource utilization.

49

3.15 Low Redundancy Two-Dimensional Matrix-Based HVDB Code for

Double Error Correction

Yuqi, Xi, and Tang [69] proposed the Horizontal-Vertical-Diagonal-Block (HVDB)

code to protect memories from MCUs caused by radiation at nanometric levels. This 2D-

ECC uses parity information in horizontal, vertical, and diagonal directions within data blocks

arranged in a two-dimensional matrix to detect and correct 2-bit errors, requiring low

redundancy and minimal decoding overhead.

The decoding algorithm leverages parity syndromes to detect and correct errors. The

proposed matrix codes organize k data bits into k1×k2 matrices. For example, the authors

illustrate a 64-bit data word arranged in an 8×8 matrix to apply the proposed algorithm. Other

matrices with similar structures are also used for error correction. Figure 21 demonstrates

the 8×8 data matrix, which is analyzed by horizontal (h0-h7), vertical (v0-v7), and diagonal

(d0-d7) lines. Each line computes the parity of eight data bits, except for diagonals, where all

but the main diagonal are computed using two lines. For instance, the parity bit d2 is obtained

using the XOR of bits D0,6, D1,7, D2,0, D3,1, D4,2, D5,3, D6,4, and D7,5.

Figure 21. Encoding structure of the 2D-ECC HVDB (Source: [69]).

The authors suggest that matrix structures similar to those in Figure 21 can be

adapted for error correction in other configurations based on specific requirements. The

flexibility in matrix sizing allows adaptation to the characteristics of the target system.

The HVDB does not guarantee 100% correction for all 2-bit error cases. While the

method can correct up to 2-bit errors, the exact effectiveness depends on specific conditions

and error distributions. Nevertheless, the authors conclude that HVDB is an efficient 2D-

50

ECC for memory error correction, particularly in radiation-prone environments. It offers lower

redundancy and faster decoding speeds than other matrix-based methods, making it a

viable choice for critical applications.

3.16 EMPC-SA: Error Correction Scheme using Modified Product Code

for Space Applications

J. Magalhães et al. [32] designed the Modified Product Code for Space Applications

(EMPC-SA) to address radiation-induced errors in critical space applications. The EMPC-

SA employs 24 redundancy bits to protect 16 data bits. Experimental results demonstrate

that for three-bit errors, the EMPC-SA performs competitively with the CLC code [4][57] and

outperforms Matrix [1] and PBD [23] codes. Under more severe error conditions, specifically

with four-bit flips, the EMPC-SA achieves a higher error correction rate than CLC-A [58][60].

However, it falls behind OPCoSA [17] and TBEC-RSC [61]. Notably, the EMPC-SA exhibits

lower redundancy than OPCoSA and implements error correction only when bit flips are

entirely contained within the data matrix. This limitation highlights opportunities for

improvement, particularly in handling bit flips that occur at the intersections of data and parity

bit regions.

The authors adopted a codestruct with fewer bits than traditional product codes,

omitting the verification region for check bits. The 2D-ECC is implemented with 16 data bits,

comprising 12 row check bits and 12 column check bits, as illustrated in Figure 22.

Figure 22. Codestruct of EMPC-SA; D represents the 4×4 data matrix, R is the 4×3 row redundancy

matrix using Ham(7,4), and e C is the 3×4 column redundancy matrix using Ham(7,4) (Source: [32]).

Experimental results show that the EMPC-SA achieved 100% error correction for

specific patterns of up to four errors when these patterns were entirely contained within the

51

data matrix. Using a commercial error evaluation tool, the authors evaluated the

effectiveness of EMPC-SA with 36 high-occurrence error patterns (Figure 23) obtained

through neutron particle strike simulations [49].

Figure 23. High-occurrence error patterns (Source: Adapted from [32]).

The authors placed error patterns in all feasible regions and intersections within the

data matrix to determine correction rates. This iterative process tested all potential positions

for the detected error bits. The results were categorized based on whether the error source

was entirely within, partially, or outside the data region. This analysis allowed the evaluation

of how EMPC-SA handles different error configurations and the conditions under which it

achieves 100% error correction.

The testing methodology comprehensively assesses EMPC-SA’s performance under

varied error conditions, enabling a robust comparison of its effectiveness against other error

correction codes. This makes EMPC-SA a promising candidate for improving fault tolerance

in space-critical memory systems.

3.17 Fault tolerant micro-programmed control unit for SEU and MBU

mitigation in space based digital systems

Deepanjali and Noor [8] introduced a novel ECC methodology to mitigate both SEUs

and MBUs. The study minimizes hardware complexity and latency while maintaining a

consistent code rate. It is particularly suitable for space-based digital systems where

radiation-induced faults are a significant concern.

The proposed ECC, known as the SYMmetric Segmented Code (SYMSEG), is

designed for fault mitigation in the control words of a Micro-Programmed Control Unit

(MPCU). This code uses a symmetric segmentation approach, dividing control words into

52

smaller segments. Each segment includes parity bits, while additional check bits are

computed using XOR operations to enhance robustness. The design ensures that adjacent

MBUs within a segment can be corrected while random errors across segments can be

detected.

The encoded control words of SYMSEG are expanded by adding check and parity

bits, which improve fault tolerance without significantly increasing overhead. The

methodology is particularly effective for high-speed on-chip memory applications and has

been implemented and validated on a LEON3 processor. Its utility is further demonstrated

in space and radiation-intensive environments, where fault resilience is crucial.

The ECC exhibited superior fault mitigation to traditional ECCs, such as the Hamming

and Reed-Solomon codes. Its performance metrics highlight its ability to balance error

correction and detection with moderate resource use. For instance, implementing SYMSEG

on FPGA hardware results in a 1.66% increase in logic usage compared to standalone

systems, which is a reasonable trade-off for its enhanced fault-tolerant capabilities.

The research also addressed the limitations of Hamming codes in mitigating MBUs

and avoids the high latency associated with iterative codes like Turbo and LDPC. However,

its ability to correct random MBUs is limited when errors span across different segments of

the control word, which remains a notable limitation. Despite this, the proposed ECC offers

a promising solution for applications requiring robust fault tolerance with minimal latency,

particularly in mission-critical environments such as space exploration.

3.18 Comparing structures of two-dimensional error correction codes

Muniz et al. [40] explored various 2D-ECC organizations and analyzed their

performance in error correction and detection rates, scalability, and synthesis costs. The

study investigated the increasing susceptibility of ICs to bitflips due to device miniaturization

and explored the role of 2D-ECCs in ensuring fault tolerance in modern systems.

Four specific 2D-ECC organizations employ combinations of parity, and Hamming

codes organized in a matrix format are evaluated —N×4p, N×ExHam, N×Ham_p, and

N×Ham2_2p. The N×ExHam employs Extended Hamming codes for each row, classified as

SECDED. The N×4p utilizes parities of rows, columns, and diagonals for error detection and

correction. The N×Ham_p incorporates row-wise Hamming encoding combined with column

parities, allowing for selective double error corrections. Lastly, N×Ham2_2p combines row

and column parity checks with Hamming encoding across two rows, offering trade-offs

53

between error correction efficacy and implementation complexity.

Figure 24 shows the configuration used to collect data on the corrected error rate and

the number of undetected error scenarios. Exhaustive errors ranging from 1 to 16 were

injected into the data, check, and entire codestruct regions for the four organizations.

48

D0,0 D0,1 D0,2 D0,3

D1,0 D1,1 D1,2 D1,3

D2,0 D2,1 D2,2 D2,3

D3,0 D3,1 D3,2 D3,3

Pp0 Pp1 Pp2 Pp3

Pc0 Pc1 Pc2 Pc3

Pr0

Pr1

Pr2

Pr3

Ps0

Ps1

Ps2

Ps3

Error
correction

rate

Simulation

N×4p

N×Ham_p

N×ExHam

×

1

3

× 96

Number of
undetected

errors
× 192

N
u

m
b

e
r

of
 E

rr
o

rs
(1

 ..
. 8

, .
..

16
)

Error Pattern
(All combinations)

Assessed region
(data, check bit,

code struct)

8/
16

24/48

48

N×Ham2_2p

24

48

24

48

D0,0 D0,1 D0,2 D0,3

D1,0 D1,1 D1,2 D1,3

D2,0 D2,1 D2,2 D2,3

D3,0 D3,1 D3,2 D3,3

C0,0 C0,1 C0,2 P0

C1,0 C1,1 C1,2 P1

C2,0 C2,1 C2,2 P2

C3,0 C3,1 C3,2 P3 24
24/48

D0,0 D0,1 D0,2 D0,3

D1,0 D1,1 D1,2 D1,3

D2,0 D2,1 D2,2 D2,3

D3,0 D3,1 D3,2 D3,3

C0,0 C0,1 C0,2

C1,0 C1,1 C1,2

C2,0 C2,1 C2,2

C3,0 C3,1 C3,2

Pc0 Pc1 Pc2 Pc3

24

24/48

D0,0 D0,1 D0,2 D0,3

D1,0 D1,1 D1,2 D1,3

D2,0 D2,1 D2,2 D2,3

D3,0 D3,1 D3,2 D3,3

C0,0 C0,1 C0,2

C1,0 C1,1 C1,2

Pc0 Pc1 Pc2 Pc3

C0,3

C1,3

Pr0

Pr1

Pr2

Pr3

24/48

Figure 24. Experimental setup employed to collect the error correction rates and number of

undetected errors (Source: [40]).

Experimental results highlighted differences in error correction rates depending on

the error location (data or check bit regions) and the code organization. While cross-

checking ECCs like N×Ham_p and N×Ham2_2p offer improved data area error correction

rates, independent codes like N×ExHam demonstrate superior performance in check bit

areas. Scalability metrics indicate that redundancy costs remain low as the data matrix size

increases, underscoring the efficiency of these 2D-ECC designs for large-scale applications.

Finally, the paper concludes with a synthesis analysis revealing trade-offs between

area consumption, power dissipation, and decoding latency among the evaluated ECCs.

3.19 Novel Latin square matrix code of large burst error correction for

MRAM applications

Jin et al. [29] introduced the Latin Square Matrix (LSM) code, a 2D-ECC developed

to address the challenges of large burst errors in Magnetic Random Access Memory

(MRAM) systems. MRAM is increasingly utilized in modern computing due to its non-

volatility, high speed, and low power consumption. However, it remains vulnerable to MBUs

caused by radiation and other environmental factors.

The proposed LSM code leverages the structure of orthogonal Latin squares to

54

encode and decode data. A typical implementation organizes 16 information bits into a 6-

order Latin square and adds 12 parity bits to provide robust protection against up to 5-bit

burst errors. Encoding involves calculating horizontal and vertical parity bits using XOR

operations, while decoding uses syndromes derived from these parity bits to identify

erroneous positions precisely. This design ensures unique error syndromes for each burst

error pattern, enabling precise correction.

The LSM code achieves superior error correction with significantly lower hardware

overhead when compared to LDPC; i.e., the area consumption and power dissipation of

LSM are reduced by over 40%. Furthermore, the error correction capability of LSM codes

can be scaled by increasing the order of the Latin square, allowing it to correct larger burst

errors with minimal additional parity bits.

The authors synthesized LSM code using Verilog HDL and validated it through

extensive fault injection simulations. The evaluation highlights the LSM code’s efficient

trade-off between reliability and hardware overhead, with applications extending to high-

density MRAM in embedded systems and space exploration.

3.20 nMatrix: A New Decoding Algorithm for the Matrix ECC

Freitas et al. [20] developed the nMatrix 2D-ECC to address reliability issues in

electronic memory systems, especially in critical applications such as space missions. This

code is based on the existing Matrix ECC [1]. However, it introduces a more efficient

decoding algorithm that improves error correction capacity and reduces implementation

costs, albeit with slight decoder delay and area trade-offs.

nMatrix retains the original Matrix structure, protecting memory data with redundancy

bits distributed in rows and columns. It enhances the error correction rates for multiple

adjacent bitflips in specific scenarios compared to Matrix and other ECCs, such as eMRSC

[59] and DMC [25]. The code supports various configurations, such as 16-bit and 32-bit data

versions and incorporates techniques like interleaving to mitigate MBUs. Figure 25(a)

illustrates the organization of nMatrix(16,32) – 16 data bits and 16 redundancy bits –

highlighting the data areas and check bits (parity and Hamming). Figure 25(b) demonstrates

the same nMatrix organization, focusing on the proposed bit interleaving approach.

Experimental results highlight that nMatrix has better error correction for more

complex error patterns, higher reliability over extended operational periods, and superior

energy efficiency compared to its counterparts. While its correction efficacy for large-scale

55

adjacent errors does not surpass all alternatives, its balance between performance and

hardware cost positions it as a robust choice for applications requiring enhanced fault

tolerance.

(a) (b)

Figure 25. (a) nMatrix(16,32) organization Matrix code structure. 𝐷0 to 𝐷15, 𝐶0 to 𝐶11, and 𝑃0 to 𝑃3 are

data, check, and parity bits, respectively; (b) nMatrix(16,32) interleaving format (Source: [20]).

3.21 An Embedded Module of Enhanced Turbo Product Code Algorithm

Luo et al. [31] proposed the Bit-Flipping Enhanced Turbo Product Code (BFE-TPC)

for protecting NAND flash memory applications. Figure 26 illustrates the generic

organization of a Turbo Product Code (TPC), which is characterized as a product code that

includes three check areas in addition to the data area. The BFE-TPC version is optimized

to avoid overloading the check areas. The authors do not specify the composition of each

check region but only provide the total number of check and data bits.

Figure 26. Generic organization of a TPC as utilized in BFE-TPC (Source: [31]).

BFE-TPC employs Bose-Chaudhuri-Hocquenghem (BCH) [36] codes along rows and

columns. A key feature of BFE-TPC is incorporating a bit-flipping technique within its

decoding algorithm, which enhances error correction capabilities for uncorrectable

submatrices in high error-rate conditions.

The BFE-TPC encoder processes input data row-wise, combining binary matrix

56

multiplication and polynomial division logic for rows and columns, respectively. The BFE-

TPC decoder integrates an embedded processor to manage bit-flipping operations, which

reduces uncorrectable errors in challenging scenarios. Prototyped using FPGA technology,

the BFE-TPC achieves high throughput with significant reductions in hardware area and

latency compared to LDPC implementations.

Experimental results demonstrate that BFE-TPC meets industry standards for

Uncorrectable Bit Error Rate (UBER) at levels up to 10-15 in Triple-Level Cell (TLC) NAND

flash memory.

3.22 Check-Bit Region Exploration in Two-Dimensional Error Correction

Codes

Freitas et al. [21] delved into the efficacy of various 2D-ECCs, particularly examining

their performance in correcting errors in the check-bit region. The dimensions of the

codewords of the 2D-ECCs vary based on the specific 2D-ECC applied, with configurations

designed to maximize reliability while minimizing redundancy overhead.

Figure 27 demonstrates how the authors explored the trade-off of increasing the

number of check regions to protect the same 16-bit data area (D0 to D15). While Figure 27(a)

organization represents a Straightforward 2D-ECC, with 4 redundancy bits protecting 4 data

bits per row, Figure 27(b) introduces a modified product code by intersecting row and column

redundancies. Finally, Figure 27(c) extends this approach by incorporating an additional

diagonal redundancy check.

Figure 27. Three 2D-ECC organizations evaluated in the study; all configurations include 16 data bits

and 16 redundancy bits (Source: [21]).

The study emphasizes the need to optimize 2D-ECC structures to balance correction

rates for data and check bit regions, given the growing challenges MBUs pose in modern

57

memory systems. One of the paper’s key findings is the differential error correction

performance between the data and check bit regions. While codes like Matrix excel in

protecting the data region, their effectiveness in the check bit region is relatively lower. On

the other hand, certain codes tailored to provide additional redundancy in the check bit

region achieve a more balanced error correction rate across both regions, making them

suitable for environments with high MBU occurrences.

The paper discusses synthesizing these codes for hardware technologies like SRAM

and DRAM. Simulation results demonstrate that these codes provide a good trade-off

between error correction capability, area consumption, and power dissipation. The research

underscores the importance of optimizing redundancy distribution to enhance the overall

efficacy of 2D-ECCs in protecting both data and check bit regions.

3.23 Related Work Summary

Table 4 aims to provide the reader with an overview of the main characteristics of the

2D-ECC works presented in this chapter. This allows the reader to understand how the

proposed work relates to others and highlights its innovative nature.

Table 4. Comparative summary of important aspects of the presented works (Source: Author).

Work Year Classification Application
Data area

(bits)
Redundancy
area (bits)

Fault injection
method

CMOS technology

Argyrides et al. [1] 2010 Mixed Code Generic 32, 64 24, 32 Adjacent -

Guo et al. [25] 2014 Mixed Code Memory 32 36 Random 180 nm

Rahman et al. [48] 2015 Mixed Code Memory 64 27 Exhaustive -

Erozan, Çavuş [11] 2015 Product Code Memory 32 47 Adjacent *

Raha, Vinodhini, Murty [47] 2017 Mixed Code Memory 32 28 Random -

Moran et al. [39] 2018 Mixed Code Memory 32 28 Adjacent 45 nm

Freitas et al. [14] 2020 Extended Product Code Space 16 32 Exhaustive 65 nm

Silva et al. [59] 2020 Mixed Code Critical 32, 32 64, 57 Adjacent 65 nm

Freitas et al. [13] 2020 Product Code Space 32 32 Adjacent, exhaustive 65 nm

Freitas et al. [15] 2021 Product Code Space 16 48 Adjacent 65 nm

Sen et al. [53] 2021 Extended Product Code Critical 32 32 Random -

Tejas et al. [66] 2022 Mixed Code Space 32 28 Random 180 nm

Chen et al. [6] 2022 Product Code Memory 64 16 - 40 nm

Freitas et al. [16] 2022 Product Code Space 16 32 Exhaustive 65 nm

Yuqi et al. [69] 2023 Product Code Memory 64 28 Random -

Magalhães et al. [32] 2023 Product Code Space 16 24 Specific standards -

Deepanjali and Noor [8][7] 2024 Straightforward 2D-ECC Space 32 19 Adjacent, random 40 nm

Muniz et al. [40] 2024
Straightforward 2D-ECC
Mixed Code

 16 16 Exhaustive 28 nm

Jin et al. [29] 2024 Mixed Code Memory 16, 16 28, 30 Random 65 nm

Freitas et al. [20] 2024 Mixed Code Generic 16, 32 16, 32 Exhaustive 65 nm

Luo et al. [31] 2024 Product Code Memory
65664, 16416,

8192
11826, 1980,

1024
Random 28 nm, *

Freitas et al. [21] 2024
Straightforward 2D-ECC
Product Code

Generic 16, 16, 16 16, 32, 48 Adjacent, exhaustive 65 nm

This work 2025 Overlapping Memory 4, 9, 16 8, 10, 12 Exhaustive 28 nm

“–“ work does not provide information on the subject.

“*” the synthesis was performed for a technology other than CMOS.

58

4. OVERLAPPING ECC PROPOSAL

This chapter presents the fundamental concepts underlying the overlapping

technique, including a mathematical analysis of its error correction potential and the

expansion of the proposed approach.

4.1 Introduction

A review of the literature has shown that two-Dimensional (2D) approaches exploit

the crossing of ECCs, ensuring that each bit in a data or parity matrix is encoded by two or

more ECCs, as illustrated in Figure 28. These approaches enable researchers to develop

cross-verification algorithms, enhancing both error detection and correction capabilities.

D0,0 D0,1 D0,2 D0,3 C0,0 C0,1 C0,2

D1,0 D1,1 D1,2 D1,3 C1,0 C1,1 C1,2

D2,0 D2,1 D2,2 D2,3 C2,0 C2,1 C2,2

D3,0 D3,1 D3,2 D3,3 C3,0 C3,1 C3,2

R0,0 R0,1 R0,2 R0,3
R1,0 R1,1 R1,2 R1,3
R2,0 R2,1 R2,2 R2,3

Figure 28. Example traditional 2D-ECCs organization highlighting the intersection of the second-row

ECC with the second-column ECC, leading to the shared encoding of the data bit D1,1 (Source: Author).

Figure 28 exemplifies a 4×4 data matrix, where each row and column contain 4 data

bits, resulting in 16 data bits (D0,0 to D3,3). This data region is protected by three parity bits

per row and per column. For instance, the column D0,0 to D3,0 is protected by the parity

column R0,0 to R2,0, while the row D1,0 to D1,3 is protected by C1,0 to C1,2.

Figure 29. Encoding structure of the 2D-ECC HVDB, highlighting the three-dimensional intersection

of ECCs at bit D2,1 (Source: Adapted from [69]).

At each intersection point, ECC algorithms can leverage error correction opportunities

59

from each intersecting ECC, both independently and jointly, typically through an iterative

process. This crossing structure results in a logically multidimensional organization, but for

all practical implementations, ECCs are physically arranged in a 2D format. For example, in

Figure 21, the data bit D2,1 is logically protected by a three-dimensional ECC structure

composed of v₁, h₂, and d₁, but it is implemented as a 2D layout.

4.1.1 THE PROPOSED OVERLAPPING ECC APPROACH

The proposed approach extends ECC coverage by overlapping ECCs, ensuring that

the same data region is protected by two or more ECCs. Figure 30 illustrates this overlapping

structure, where verification areas are rearranged by superimposing an additional row of

ECCs over a data row.

R0,0 R0,1 R0,2 D0,0 D0,1 D0,2 D0,3 C0,0 C0,1 C0,2

R1,0 R1,1 R1,2 D1,0 D1,1 D1,2 D1,3 C1,0 C1,1 C1,2

R2,0 R2,1 R2,2 D2,0 D2,1 D2,2 D2,3 C2,0 C2,1 C2,2

R3,0 R3,1 R3,2 D3,0 D3,1 D3,2 D3,3 C3,0 C3,1 C3,2

Figure 30. Example organization of the overlapped-ECCs. This figure highlights how the entire

second row of data (D1,0, D1,1, D1,2, D1,3) is protected by two ECCs, with their parity bits represented by

R (row-based ECC) and C (column-based ECC) (Source: Author)

4.1.2 ENCODING AND DECODING DIFFERENCES BETWEEN CROSSED AND OVERLAPPING ECCS

The encoding of overlapping ECCs is performed independently for each overlapping

code, just as in the crossed ECC approach. However, the key difference emerges during

decoding, particularly when an error is detected.

The overlapping approach increases the sharing of data bits compared to the

crossing approach, creating new opportunities for error detection and correction. However,

this comes at the cost of higher decoding complexity, requiring a trade-off analysis between

increasing error detection and correction efficacy and reducing efficiency due to higher

latency, power consumption, and area overhead.

4.1.3 TRADE-OFFS AND PRACTICAL CONSIDERATIONS

It is important to note that power dissipation and latency increase significantly in the

presence of errors since, upon error detection, the decoder activates the correction circuitry.

This conditional impact on performance makes the proposed approach suitable for a broad

range of high-speed applications, particularly in scenarios with sporadic error incidence.

60

4.2 Analysis of Hamming Distance

The overlapping of ECCs is characterized by the independent encoding, while

decoding can be performed either independently or combined. Because of this model, the

total Hamming distance of the codestruct is obtained by summing the distances of each

individual codeword. The overlapping codewords evaluated in this study employ extended

Hamming coding, which has a minimum distance of 4 [37]. In isolation, these codes would

be capable of correcting 1 error and detecting 3 errors, as stated in Equations (1) and (2) of

Section 2.4. However, by summing the distances, code overlapping results in a total

distance of 8, allowing for the detection of up to 7 errors and the correction of up to 3 errors.

It is important to note that these values represent theoretical limits of correction and

detection imposed by the logical combination of all encoding possibilities. However,

evaluating all possible cases is not a practical solution, especially as the number of the

codeword bits increases significantly.

This work proposes an intermediate solution, employing an algorithm limited to

correcting and detecting 2 and 4 errors, respectively. This approach provides a balanced

trade-off between efficacy and efficiency. Moreover, in cases where no errors are detected,

the decoding latency remains like the encoding latency, enabling high-frequency to read and

write operations. The values described here are presented in Chapter 6.

4.3 Overlapping ECC Model Explored in This Work

The ECC overlapping model is broad, as there are numerous possibilities for

combining error correction methods and organizing data and check bits. For example, Figure

31 shows a 2D codestruct that combines two ECCs (e.g., Hamming) sharing the same data

area (D0,0-D3,3) with a vector-type ECC, where each bit serves as a column parity check.

D0,0 D0,1 D0,2 D0,3 C0,0 C0,1 C0,2 C0,3 C0,5

D1,0 D1,1 D1,2 D1,3 C1,0 C1,1 C1,2 C1,3 C1,4

D2,0 D2,1 D2,2 D2,3

D3,0 D3,1 D3,2 D3,3

R0,0 R0,1 R0,2 R0,3

Figure 31. Example of a 2D-ECC codestruct with overlapping highlighting the entire data sharing (D0,0-

D3,3) by two ECCs, with check bits represented by the letter C, and the crossing of the second column

(D0,1, D1,1, D2,1, D3,1) with the ECC represented by R0,1 – possibly a parity bit (Source: Author).

The codestruct illustrated in Figure 32 is a modified version of Figure 31, where the

61

ECC that verifies data columns is removed, and an additional check bit is added to the rows.

One possible implementation is that each ECC is an extended Hamming code, and both

ECCs protect (overlap) the same data area. Note that the codestruct in Figure 32 has two

fewer bits than the one in Figure 31, potentially allowing for distinct decoding algorithms that

explore the trade-offs between effectiveness and efficiency.

D0,0 D0,1 D0,2 D0,3 C0,0 C0,1 C0,2 C0,3 C0,5 R0

D1,0 D1,1 D1,2 D1,3 C1,0 C1,1 C1,2 C1,3 C1,4 R1

D2,0 D2,1 D2,2 D2,3

D3,0 D3,1 D3,2 D3,3

Figure 32. Example of an overlapped-ECC codestruct. This example highlights the entire data sharing

(D0,0-D3,3) by two ECCs, with check bits represented by the letters C and R – possibly an extended

Hamming code (Source: Author).

This model employs the extended Hamming code to protect the data area D0,0-D3,3,

with double overlapping, as two extended Hamming codes cover the same area. However,

it is possible to overlap other codes, such as the Decimal Matrix Code (DMC), as explained

in Section 3.2.

Although this work focuses on extended Hamming codes and their double

overlapping, where two codes protect the same area, additional code overlaps could be

applied, incorporating three or more verification levels with different ECC schemes.

The main advantage of the extended Hamming code lies in its double-error detection

capability, as discussed in Section 2.7, enhancing the reliability of data transmission and

storage. While it does not increase storage capacity (the number of data bits remains the

same), it significantly improves error protection, making the system more trustable. When

two extended Hamming codes cover the same data area in a crosswise manner, additional

redundancies improve the ability to detect and correct complex errors, such as:

• In a simple error correction system, each extended Hamming code functions

independently within its axis (e.g., one for rows and another for columns).

• This approach allows for single-error correction in any direction and enhanced

detection of multiple errors, as the crossing enables error identification in multiple

positions that would otherwise remain undetected or uncorrected by a single code.

• The cross-checking mechanism prevents single-fault propagation, increasing

reliability.

• With global parity, there is additional redundancy across both axes, making it more

likely to detect errors that would bypass a single extended Hamming code.

62

4.3.1 EXPLORED OVERLAPPED-ECC CODESTRUCTS

Three overlapping ECC models were explored, each utilizing only two overlapping

codes. These ECCs were applied to 2×2, 3×3, and 4×4 matrices.

2×Ham_2×2 Structure

The 2×2 matrix, as illustrated in Figure 33, consists of an extended Hamming code,

which has three check bits and one global parity bit protecting four data bits – 𝐸𝑥𝐻𝑎𝑚(8,4).

This matrix is overlapped by two 𝐸𝑥𝐻𝑎𝑚(8,4) and is referred to in this work as 2×Ham_2×2.

D D Co0 Co1 Co2 Po

D D Ci0 Ci1 Ci2 Pi

Figure 33. An example of an overlapped-ECC - 2×Ham_2×2 codestruct (Source: Author).

The 2×Ham_2×2 structure includes (i) Co0...Co2 outer Hamming check bits; (ii) Po

Global parity bit for protecting both data and check bits; (iii) Ci0...Ci2 inner Hamming check

bits; (iv) Pi internal parity bit; and (v) D data area.

2×Ham_3×3 Structure

Figure 34 displays the second model that explores a 3×3 data area, consisting of nine

data bits and four check bits. This matrix is overlapped by two 𝐸𝑥𝐻𝑎𝑚(14,9) and is referred

to in this work as 2×Ham_3×3.

D D D Co0 Co1 Co2 Co3 Po

D D D Ci0 Ci1 Ci2 Ci3 Pi

D D D

Figure 34. 2×Ham_3×3 codestruct (Source: Author).

The 2×Ham_3×3 structure includes (i) Co0…Co3 outer Hamming check bits; (ii) Po

Global parity bit for protecting both data and check bits; (iii) Ci0…Ci3 inner Hamming check

bits; (iv) Pi internal parity bit; and (v) D data area, containing nine data bits. Reminder that

four Hamming check bits can protect up to eleven data bits.

2×Ham_4×4 Structure

The third model contains 16 data bits in a 4×4 data area, protected by five check bits,

using an extended Hamming code; i.e., 𝐸𝑥𝐻𝑎𝑚(22,16), as depicted in Figure 35. This matrix

is overlapped by two 𝐸𝑥𝐻𝑎𝑚(22,16) and is referred to in this work as 2×Ham_4×4. Note that

five check bits can potentially cover 26 data bits, performing a 𝐸𝑥𝐻𝑎𝑚(32,26).

63

D D D D Co0 Co1 Co2 Co3 Co4 Po

D D D D Ci0 Ci1 Ci2 Ci3 Ci4 Pi

D D D D

D D D D

Figure 35. 2×Ham_4×4 codestruct (Source: Author).

The 2×Ham_4×4 structure includes (i) Co0…Co4 outer Hamming check bits; (ii) Po

Global parity bit for protecting both data and check bits; (iii) Ci0…Ci4 inner Hamming check

bits; (iv) Pi internal parity bit; and (v) D data area, containing 16 data bits. Reminder that five

Hamming check bits can protect up to 26 data bits.

4.4 Data Addressing in Overlapping ECCs

The overlapping ECC examples used in this work employ Hamming coding, which

allows data bits to be addressed by multiple combinations of parity bits. Each combination

is designed to identify errors that may occur in both data bits and parity bits.

For instance, the standard 𝐻𝑎𝑚(7,4) code uses 3 parity bits to protect 4 data bits

(𝑑0 …𝑑4), in addition to the 3 parity bits (𝑐0 …𝑐2). As illustrated in Figure 36, the addresses

1, 2, and 4 correspond to the parity bits, while the data bits are assigned addresses 3, 5, 6,

and 7 – which are, in fact, combinations of the parity bit addresses. Additionally, when no

error is detected, the error address is set to zero.

[𝑑0 𝑑1 𝑑2 𝑑3 𝑐0 𝑐1 𝑐2]

3 5 6 7 1 2 4
 𝑑𝑎𝑡𝑎 𝑏𝑖𝑡𝑠 𝑐ℎ𝑒𝑐𝑘 𝑏𝑖𝑡𝑠

Figure 36. Standard address mapping of a 𝑯𝒂𝒎(𝟕, 𝟒) (Source: Author).

Although 𝐻𝑎𝑚(7,4) coding assigns the addresses 3, 5, 6, and 7 to the data bits, these

bits can be logically arranged in any of the 24 possible permutations of these four addresses

(i.e., 4! combinations), as partially illustrated in Figure 37.

 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑

3 5 6 7 5 3 6 7 6 5 3 7 7 5 6 3
3 5 7 6 5 3 7 6 6 5 7 3 7 5 3 6
3 6 5 7 5 6 3 7 6 3 5 7 7 6 5 3
3 6 7 5 5 6 7 3 6 3 7 5 7 6 3 5
3 7 5 6 5 7 3 6 6 7 5 3 7 3 5 6
3 7 6 5 5 7 6 3 6 7 3 5 7 3 6 5

Figure 37. Possible data address permutations for the 𝑯𝒂𝒎(𝟕, 𝟒) code (Source: Author).

64

This flexibility in mapping physical and logical addresses allows the same error to

have different addresses depending on the overlapping ECC used. Figure 38 illustrates an

error in bit 𝑑2, where two 𝐻𝑎𝑚(7,4) codes (ECC_1 and ECC_2) identify the error at different

logical addresses.

 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒄𝟎 𝒄𝟏 𝒄𝟐 Error address
ECC_1 3 5 6 7 1 2 4 6
ECC_2 6 3 7 5 1 2 4 7

Figure 38. Two 𝑯𝒂𝒎(𝟕, 𝟒) codes (ECC_1 and ECC_2) detecting an error in data bit 𝒅𝟐, where each

ECC assigns a different logical error address (Source: Author).

As discussed in Section 2.6, Hamming coding employs the exclusive OR (XOR)

operation to generate the address of an error within a codeword. Consequently, when

multiple errors occur, the error address is computed as the XOR of the addresses of the

individual bit errors. This means that multiple errors in overlapping ECCs may be assigned

distinct addresses, depending on how the data bits are mapped.

For example, consider the same 𝐻𝑎𝑚(7,4) codewords as in Figure 39, but now with

errors in bits 𝑑2 and 𝑑3. For ECC_1, these correspond to errors at addresses 6 and 7,

whereas for ECC_2, they correspond to addresses 7 and 5. Applying the XOR operation

between 6 and 7 and between 7 and 5 results in addresses 1 and 2, respectively. Assuming

no other double-error combination generates the same address pair, this pattern could be

used as an identifier for a double-error correction algorithm.

 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒄𝟎 𝒄𝟏 𝒄𝟐 Error address

ECC_1
(decimal) 3 5 6 7 1 2 4 1

(hexa) 011 101 110 111 001 010 100 001

ECC_2
(decimal) 6 3 7 5 1 2 4 2

(hexa) 110 011 111 101 001 010 100 010

Figure 39. Two 𝑯𝒂𝒎(𝟕, 𝟒) codewords (ECC_1 and ECC_2) detecting errors in data bits 𝒅𝟐 and 𝒅𝟑; the

final error address is obtained using the XOR operation on the individual error addresses (Source:

Author).

However, in some cases, different error combinations may result in the same XOR-

generated address, making it difficult for a decoder to correctly infer the positions of the

errors. For example, both error pairs (3,5) and (5,7) produce the same address 6 when XOR

is applied (Figure 40). This ambiguity could lead to incorrect bit modifications, potentially

corrupting correctly stored data in a code structure. To address this, a mapping strategy is

required to distribute logical addresses across overlapping ECCs in a way that ensures

65

unique addresses for all targeted error patterns.

 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒄𝟎 𝒄𝟏 𝒄𝟐 Error address

ECC_1
(decimal) 3 5 6 7 1 2 4 6

(hexa) 011 101 110 111 001 010 100 110

ECC_2
(decimal) 6 3 7 5 1 2 4 6

(hexa) 110 011 111 101 001 010 100 110

Figure 40. A codestruct scenario with 4-bit error. ECC_1 has errors in 𝒅𝟎 and 𝒅𝟏, while ECC_2 has

errors in 𝒅𝟐 and 𝒄𝟎, but the compound error address for both codes is 6 (Source: Author).

Figure 40 illustrates a scenario with four errors—an extremely aggressive case in

which more than half of the codestruct bits are corrupted. However, less aggressive

scenarios can still result in the same address for both codewords, as seen in the three-error

case shown in Figure 41.

 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒄𝟎 𝒄𝟏 𝒄𝟐 Error address

ECC_1
(decimal) 3 5 6 7 1 2 4 1

(hexa) 011 101 110 111 001 010 100 001

ECC_2
(decimal) 6 3 7 5 1 2 4 1

(hexa) 110 011 111 101 001 010 100 001

Figure 41. A codestruct scenario with 3-bit error. ECC_1 has errors in 𝒅𝟐 and 𝒅𝟐, while ECC_2 has

errors in 𝒅𝟑 and 𝒄𝟐, the compound error address for both codes is 1 (Source: Author).

Finally, scenarios with double errors are also susceptible to the generation of non-

unique addresses. In the proposed code overlay approach, such scenarios occur only with

codes larger than 𝐻𝑎𝑚(7,4). However, to help the reader visualize the issue, Figure 42

presents an encoding where the bit order in ECC_2 has been altered—meaning that the

parity bits of ECC_1 and ECC_2 are not arranged in the same order.

(a)

 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒄𝟎 𝒄𝟏 𝒄𝟐 Error address
ECC_1 (decimal) 3 5 6 7 1 2 4 6

 (hexa) 011 101 110 111 001 010 100 110
ECC_2 (decimal) 6 3 7 5 1 2 4 5

 (hexa) 110 011 111 101 001 010 100 101

(b)

 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒄𝟎 𝒄𝟏 𝒄𝟐 Error address
ECC_1 (decimal) 3 5 6 7 1 2 4 6

 (hexa) 011 101 110 111 001 010 100 110
ECC_2 (decimal) 6 3 5 7 2 1 4 5

 (hexa) 110 011 111 111 010 010 100 101

Figure 42. Two error scenarios, (a) and (b), produce the same combined addressing, preventing the

decoder from correctly identifying the actual error (Source: Author).

66

Therefore, a double error affecting the bits 𝑑0 and 𝑑1, as well as another affecting the

bits 𝑑3 and 𝑐0, results in the same composite address (6 and 5) for both scenarios. This

ambiguity in addressing prevents the decoder from correctly determining which double error

should be corrected.

To prevent scenarios where the decoder cannot accurately determine the number of

errors to be corrected, it is crucial to perform a preprocessing step that ensures the

generation of unique composite addresses for the overlaid ECCs. In the specific cases of

the codes analyzed in this work, this task was carried out for the 2×Ham_3×3 and

2×Ham_4×4 codes.

4.4.1 ADDITION OF A PARITY BIT IN THE OVERLAPPING ECCS EXPLORED

Figure 39 illustrates an encoding scheme in which errors in bits 𝑑2 and 𝑑3 result in

the composite addresses 1 and 2, representing a double-bit error. However, a double-bit

error in parity bits 𝑐0 and 𝑐1 of ECC_1 and ECC_2, respectively, would also generate the

same addresses (1 and 2). This ambiguity prevents the decoder from correctly inferring the

actual location of the double error.

To resolve this issue, a parity bit was added to each overlapping ECC, effectively

replacing the standard Hamming codes with extended Hamming codes. In this approach,

parity operates independently within each code, allowing for the differentiation of double-bit

errors as described above.

Figure 43(a) and (b) illustrate how this differentiation is achieved using even parity to

identify the number of errors present. In Figure 43(a), the parity bit remains 0, indicating that

no odd number of errors has occurred. Conversely, in Figure 43(b), the parity bit is set to 1,

signaling the presence of an odd number of errors, distinguishing between different error

cases.

(a) 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒄𝟎 𝒄𝟏 𝒄𝟐 𝒑 Error address

ECC_1* 3 5 6 7 1 2 4 0 1
ECC_2* 6 3 7 5 1 2 4 0 2

(b) 𝒅𝟎 𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒄𝟎 𝒄𝟏 𝒄𝟐 𝒑 Error address

ECC_1* 3 5 6 7 1 2 4 1 1
ECC_2* 6 3 7 5 1 2 4 1 2

Figure 43. Use of extended Hamming codes to improve error correction efficacy. (a) presents a

double-bit error in data, identified by the parity bit remaining 0, while (b) presents a double-bit error in

parity bits, detected by the parity bits being set to 1 (Source: Author).

67

4.5 Generalization of the ECC Overlapping Technique

This section discusses the generalization of the ECC overlapping technique proposed

in this work. To explore this concept, we examine generalizations regarding the number of

overlapping ECCs, their heterogeneity, and the format of the protected data region.

4.5.1 NUMBER OF OVERLAPPING ECCS

The proposed technique is highly scalable and can be extended to support multiple

simultaneous overlaps within the same data area. The resulting structure consists of a single

data region protected by multiple distinct sets of parity bits.

Figure 44(a – d) illustrates cases in which the same data area is protected by one to

four ECCs. Overlapping occurs when two or more ECCs are applied to the same data region.

Check bitData
 ECC_2

ECC_1DataECC_3

(a) (c)

ECC_2

ECC_1Data

 ECC_2

ECC_1DataECC_3

ECC_4

(b) (d)

Figure 44. Generalization of ECC overlapping based on the number of codewords. (a) shows a basic

structure with a single data area and a single verification region. (b), (c), and (d) depict the same

codeword from (a), but with the addition of two, three, and four overlapping codeword regions,

respectively (Fonte: Autor).

These overlapping codewords can be conceptualized as “layers” covering the data

area, each with its own set of control bits based on different coding perspectives.

The application of multiple simultaneous codes not only leverages the scalability of

the technique, but also demonstrates its adaptability to practical scenarios where

redundancy and reliability are essential requirements. Consequently, multi-overlapping

ECCs enhance error correction in critical data regions, offering new possibilities for reliable

communication and storage systems.

68

4.5.2 HOMOGENEITY OF OVERLAPPING ECCS

In the general case of overlapping ECCs, each code can have a different encoding

nature, leading to a heterogeneous overlapping approach. For example, in Figure 44(b),

ECC_1 could be an extended Hamming code, while ECC_2 could be a decimal-based error

correction code, as illustrated in Section 3.2. This characteristic expands the range of

possible combinations, allowing for flexible trade-offs between error correction effectiveness

and code efficiency. However, it is important to note that this work focuses exclusively on

homogeneous ECCs.

4.5.3 DATA AREA FORMAT

A square matrix structure facilitates the scalability and optimization of the proposed

technique, as it allows for efficient data and parity bit distribution, as discussed in Section

4.3. However, the technique does not require data to be organized as a matrix, and if

matrices are used, they do not necessarily need to be square. For example, Figure 45

presents a rectangular matrix organization, which maintains the same data capacity as the

2×Ham_4×4 structure.

D D D D D D D D Co0 Co1 Co2 Co3 Co4 Po

D D D D D D D D Ci0 Ci1 Ci2 Ci3 Ci4 Pi

Figure 45. Rectangular matrix organization for overlapping ECCs, providing the same data area

capacity as the 2×Ham_2×4 structure (Fonte: Autor).

69

5. DETAILS OF THE 2×HAM_3×3 CODE

This section provides a detailed explanation of the structure of the 2×Ham_3×3 code,

including its encoding and decoding functions, as well as the blocks that implement the

encoder and decoder. For conciseness, the 2×Ham_2×2 and 2×Ham_4×4 codes are not

detailed in this document; however, they follow a similar construction logic. Java and VHDL

implementations of these codes are available on GitHub at

https://github.com/AndrewARF/OVERLAPPING-ERROR-CORRECTION-CODES-ON-

TWO-DIMENSIONAL-STRUCTURES

5.1 Codestruct Organization

Figure 46 illustrates the basic elements of the 2×Ham_3×3 code, which consists of a

9-bit data area (D0…D8) and two 5-bit parity check vectors (Co0…Co3, Po and Ci0 …Ci3,

Pi), encoded using extended Hamming codes, forming a codestruct of 19 bits. These parity

check vectors independently encode the same data area (D0…D8), characterizing the

overlapping of ECCs.

D0 D1 D2 Co0 Co1 Co2 Co3 Po

D3 D4 D5 Ci0 Ci1 Ci2 Ci3 Pi

D6 D7 D8

Figure 46. Organization of the 2×Ham_3×3 code, where 𝐃𝟎…𝐃𝟖 represent the data area, and

𝐂𝐨𝟎 … 𝐂𝐨𝟑, 𝐏𝐨 and 𝐂𝐢𝟎… 𝐂𝐢𝟑, 𝐏𝐢 are the parity check bits (Source: Author).

To facilitate the description of the overlapping ECCs, we define:

• OuterHam - the red-coded ECC, which contains the parity bits Co0…Co3 and Po;

• InnerHam - the blue-coded ECC, which contains the parity bits Ci0…Ci3 and Pi.

5.2 Data Encoding

Figure 47 illustrates a block diagram implementing the encoding process of the

2×Ham_3×3 code. The encoder receives the data area as input, represented in the figure

as the “Data matrix”, and simultaneously generates the OuterHam and InnerHam using two

distinct Hamming generators and two parity generators with the same encoding scheme.

These Hamming generators differ because their encoding depends on the data addressing

analysis described in Section 4.4. This analysis results in multiple unique combinations that

https://github.com/AndrewARF/OVERLAPPING-ERROR-CORRECTION-CODES-ON-TWO-DIMENSIONAL-STRUCTURES
https://github.com/AndrewARF/OVERLAPPING-ERROR-CORRECTION-CODES-ON-TWO-DIMENSIONAL-STRUCTURES

70

enable the decoder to infer the necessary bit corrections for double-error scenarios.

Encoder

Hamming
generator

Parity
generator

Hamming
code

Parity
bit

Hamming
generator

Parity
generator

Hamming
code

Parity
bit

Data matrix

Outer code

Inner code

D D D
D D D
D D D

Po

Pi

Co1Co0 Co3Co2

Ci1Ci0 Ci3Ci2

Figure 47. Block diagram of the 2×Ham_3×3 Encoder (Fonte: Autor).

As discussed in Section 4.4, we chose not to analyze three-error combinations in this

work. However, we highlight that this remains a possibility for future research, as both the

2×Ham_3×3 and 2×Ham_4×4 codes are protected by an extended Hamming scheme that

allows encoding a larger amount of data.

For the 2×Ham_3×3 case, four parity check bits are used, allowing for 24 possible

combinations, one of which corresponds to the error-free state (zero errors), leaving 15 valid

error states. Since each independent ECC in the 2×Ham_3×3 structure has its own 4-bit

verification, 11 combinations remain for addressing data errors. Given that the data area

contains only 9 bits, two additional combinations remain unused. These extra combinations

expand the number of unique solutions for two-error correction and create room for solutions

that provide at least partial protection against three-error cases. While these solutions may

not cover all possible three-error combinations, they enhance the overall error correction

efficacy of the code.

The execution of the data addressing analysis algorithm resulted in the addresses

shown in Figure 48(a) and (b) for the OuterHam and InnerHam codes, respectively.

Dados Co0 Co1 Co2 Co3 Po

11 13 3 8 4 2 1 -

10 12 5

14 6 15

Dados Ci0 Ci1 Ci2 Ci3 Pi

9 7 14

13 10 12 8 4 2 1 -

5 3 15

(a) (b)

Figure 48. Codestruct addressing for (a) OuterHam and (b) InnerHam (Fonte: Autor).

Because of this addressing, Equations (30) to (33) and Equations (34) to (37)

describe the encoding of the parity check bits for OuterHam and InnerHam, respectively.

71

Co0 = D0 ⊕ D1 ⊕ D3 ⊕ D4 ⊕ D6 ⊕ D8 (30)

Co1 = D1 ⊕ D4 ⊕ D6 ⊕ D8 (31)

Co2 = D2 ⊕ D3 ⊕ D6 ⊕ D8 (32)

Co3 = D0 ⊕ D1 ⊕ D2 ⊕ D5 ⊕ D8 (33)

Ci0 = D0 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ D5 ⊕ D8 (34)

Ci1 = D2 ⊕ D3 ⊕ D4 ⊕ D5 ⊕ D8 (35)

Ci2 = D1 ⊕ D2 ⊕ D4 ⊕ D7 ⊕ D8 (36)

Ci3 = D0 ⊕ D1 ⊕ D3 ⊕ D6 ⊕ D7 ⊕ D8 (37)

To clarify and illustrate the effect of Hamming codes on addressing, note that the

parity check bits Co3 and Ci3 have a weight of 1, meaning they serve as parity bits for all

odd-numbered addresses. Specifically:

• OuterHam – Co3 verifies D0, D1, D2, D5 and D8;

• InnerHam – Ci3 verifies D0, D1, D3, D6, D7 and D8.

Another example is address 15, which is obtained through an exclusive OR (⊕)

operation on all four parity check bits. For both codes, address 15 corresponds to the logical

position D8, meaning D8 is involved in the composition of all parity check bits for both

OuterHam and InnerHam.

Finally, both overlapping ECCs use extended Hamming encoding, which requires the

inclusion of an additional parity bit, as illustrated in Figure 49(a) and (b). This bit, which is

not addressed by the Hamming code, functions as a wrapper encapsulating the Hamming-

protected codewords. Consequently, the parity bits Po and Pi, computed in Equations (39)

and (40), respectively, provide protection for all data and check bits.

D0 D1 D2 Co0 Co1 Co2 Co3 Po

D3 D4 D5

D6 D7 D8

D0 D1 D2

D3 D4 D5 Ci0 Ci1 Ci2 Ci3 Pi

D6 D7 D8

(a) (b)

Figure 49. Inclusion of a parity bit to protect data and parity check bits in the codes (a) OuterHam and

(b) InnerHam (Source: Author).

72

Po = D0 ⊕ D1 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ D5 ⊕ D6 ⊕ D7 ⊕ D8 ⊕ Co0 ⊕ Co1 ⊕ Co2 ⊕ Co3 (38)

Pi = D0 ⊕ D1 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ D5 ⊕ D6 ⊕ D7 ⊕ D8 ⊕ Ci0 ⊕ Ci1 ⊕ Ci2 ⊕ Ci3 (39)

5.3 Decoding of the 2×Ham_3×3 Codestruct

Figure 50 illustrates the block organization for decoding the 2×Ham_3×3 codestruct.

The decoder outputs the potentially corrected data area along with signals indicating

whether errors were detected and/or corrected.

Decoder

+L
sCiq

Codestruct

Encoder

(recompute
parity and
check bits)

Syndrome
computation

Syndrome
computation

+L

sCo1
sCo0

sCo3
sCo2

Address
computation

Address
computation

sCi1
sCi0

sCi3
sCi2

ErrAddo

ErrAddi

sCoq

SEo

DEo

Error
type

SEi

DEi

Error
type

SE and DE
correction
algorithms

ROM

rCo1rCo0 rCo3rCo2

rCi1rCi0 rCi3rCi2

co1co0 co3co2

ci1ci0 ci3ci2

d d d
d d d
d d d

po

pi

D D D
D D D
D D D

Error
detected

Error
corrected

sPi

sPo

rPi

rPo

Figure 50. Block diagram of the 2×Ham_3×3 Decoder (Fonte: Autor).

The decoding includes an encoding circuit that recalculates the parity bits (rPo and

rPo) and check bits (rCo0… rCo3 and rCi0… rCi3) based on the data area stored in the

codestruct for both OuterHam and InnerHam. Thus, Equations (40) to (49) correspond to

(30) to (39) from the encoding. To distinguish decoding from encoding, the codestruct bits

are represented using lowercase letters in the decoding equations. These bits are the same

as those used in encoding but may have been affected by storage or transmission errors.

rCo0 = d0 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d6 ⊕ d8 (40)

rCo1 = d1 ⊕ d4 ⊕ d6 ⊕ d8 (41)

rCo2 = d2 ⊕ d3 ⊕ d6 ⊕ d8 (42)

73

rCo3 = d0 ⊕ d1 ⊕ d2 ⊕ d5 ⊕ d8 (43)

rCi0 = d0 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d8 (44)

rCi1 = d2 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d8 (45)

rCi2 = d1 ⊕ d2 ⊕ d4 ⊕ d7 ⊕ d8 (46)

rCi3 = d0 ⊕ d1 ⊕ d3 ⊕ d6 ⊕ d7 ⊕ d8 (47)

rPo = d0 ⊕ d1 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d6 ⊕ d7 ⊕ d8 ⊕ co0 ⊕ co1 ⊕ co2 ⊕ co3 (48)

rPi = d0 ⊕ d1 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d6 ⊕ d7 ⊕ d8 ⊕ ci0 ⊕ ci1 ⊕ ci2 ⊕ ci3 (49)

The recalculated parity check and parity bits are compared with their counterparts in

the codeword, producing syndrome bits, as defined in (50) to (59). Notably, the syndromes

are computed using a single XOR operation (⊕), as a syndrome bit takes the logical value

1 (TRUE) whenever the recalculated bit differs from its corresponding bit in the codestruct.

sCo0 = rCo0 ⊕ co0 (50)

sCo1 = rCo1 ⊕ co1 (51)

sCo2 = rCo2 ⊕ co2 (52)

sCo3 = rCo3 ⊕ co3 (53)

sCi0 = rCi0 ⊕ ci0 (54)

sCi1 = rCi1 ⊕ ci1 (55)

sCi2 = rCi2 ⊕ ci2 (56)

sCi3 = rCi3 ⊕ ci3 (57)

sPo = rPo ⊕ po (58)

74

sPi = rPi ⊕ pi (59)

The information in Table 3 enables the identification of errors and the classification of

whether they are single errors (SE), double errors (DE), or a single parity bit error. Analyzing

Table 3 requires combining the Hamming syndrome bits from both OuterHam and

InnerHam. This unification is performed using a logical OR (˅) operation on all syndrome

bits, generating the sCoq and sCiq bits, as described in (60) and (61).

sCoq = sCo0 ˅ sCo1 ˅ sCo2 ˅ sCo3 (60)

sCiq = sCi0 ˅ sCi1 ˅ sCi2 ˅ sCi3 (61)

The signals DEo, SEo, DEi and SEi are obtained using (64), (65), (68) and (69). It is

important to note that the decoding method used in this work does not rely on the parity error

information described in Equations (63) and (67). This is because the information from the

other fields is already enough to achieve the full double-error correction capability. However,

it is worth mentioning that parity error information can be useful in mitigating more

aggressive scenarios, such as triple errors. Nevertheless, this work focuses exclusively on

single and double errors.

No error in outer Hamming = sCoq̅̅ ̅̅ ̅̅ ˄ sPo̅̅ ̅̅ ̅ (62)

Parity error in outer Hamming = sCoq̅̅ ̅̅ ̅̅ ˄ sPo (63)

DEo = sCoq ˄ sPo̅̅ ̅̅ ̅ (64)

SEo = sCoq ˄ sPo (65)

No error in inner Hamming = sCiq̅̅ ̅̅ ̅̅ ˄ sPi̅̅ ̅̅ (66)

Parity error in inner Hamming = sCiq̅̅ ̅̅ ̅̅ ˄ sPi (67)

DEi = sCiq ˄ sPi̅̅ ̅̅ (68)

SEi = sCiq ˄ sPi (69)

75

The error address calculations for OuterHam (ErrAddo) and InnerHam (ErrAddi) are

obtained by summing the values of each Hamming syndrome, as described in the arithmetic

equations (70) and (71).

ErrAddo = sCo0 × 8 + sCo1 × 4 + sCo2 × 2 + sCo3 (70)

ErrAddi = sCi0 × 8 + sCi1 × 4 + sCi2 × 2 + sCi3 (71)

Each overlapped ECC obtains the error detection information (ErrDet) by applying a

logical OR operation to all syndrome bits, as described in (72). Meanwhile, the error

correction information is determined according to the single and double error correction

algorithms.

ErrDet = sCoq ˅ sCiq ˅ sPo ˅ sPi (72)

5.3.1 DECODING ALGORITHM

Figure 51 presents a partial pseudocode of the 2×Ham_3×3 decoding algorithm. The

algorithm stores whether an error has been detected in the Boolean variable

errorDetected and then proceeds with the following verification steps:

1. Single-error detection in OuterHam;

2. Single-error detection in InnerHam;

3. Double-error detection, using a procedure that combines both codes.

It is important to note that these procedures are executed only if an error address is

different from 0.

integer OuterTab[] ← {-1, 12, 11, 2, 10, 5, 7, -1, 9, -1, 3, 0, 4, 2, 6, 8}

integer InneTab[] ← {-1, 12, 11, 7, 10, 6, -1, 1, 9, 0, 4, -1, 5, 3, 2, 8}

boolean decoding() {

 errorDetected ← sPo ˅ sPi ˅ sCoq ˅ SCiq

 if(ErrAddo = 0 ˅ ErrAddi = 0)
 return errorDetected

 if(SEo = TRUE) {

 flipBit(outerTab[ErrAddo])

 return errorDetected

 }

 if(SEi = TRUE) {

 flipBit(innerTab[ErrAddi])

 return errorDetected

 }

76

 if(DEo = TRUE ˄ DEi = TRUE) {
 if(ErrAddo = 1) {

 if(ErrAddi = 4)

 flipBits(11, 10)

 else if(ErrAddi = 10)

 flipBits(14, 15)

 else if(ErrAddi = 13)

 flipBits(13, 12)

 }

 else if(ErrAddo = 2) {

 if(ErrAddi = 8)

 flipBits(13, 15)

 else if(ErrAddi = 15)

 flipBits(12, 14)

 }

...

 else if(ErrAddo = 15) {

 if(ErrAddi = 1)

 flipBits(10, 5)

 if(ErrAddi = 4)

 flipBits(3, 12)

 }

 }

 return errorDetected

}

Figure 51. Partial pseudocode of the 2×Ham_3×3 decoding algorithm (Fonte: Autor).

Single-error correction is performed using the flipBit function, illustrated in Figure

52. This function receives the physical address of the erroneous bit and uses OuterTab

and InnerTab to map it to the appropriate location. For double-error correction, the process

involves a combination of the error addresses (ErrAddo and ErrAddi) to determine the logical

addresses of the two bits that will be passed to the flipBits function.

flipBit(integer pos) {

 if(pos ≠ -1)

 D[pos] ← D[pos] = 0 ? 1 : 0

}

flipBits(integer addA, integer addB) {

 integer posA ← outerTab[addA]

 if(posA ≠ -1)

 D[posA] ← D[posA] = 0 ? 1 : 0

 integer posB ← outerTab[addB]

 if(posB ≠ -1)

 D[posB] ← D[posB] = 0 ? 1 : 0

}

Figure 52. Pseudocode of the flipBit and flipBits functions used in the 2×Ham_3×3 decoding

algorithm (Fonte: Autor).

Both OuterTab and InnerTab represent the mapping between logical and physical

addresses of the codeword bits. The algorithm is designed to correct only the data area,

77

meaning that logical addresses 1, 2, 4, and 8 are marked as -1, as they correspond to the

physical positions of parity check bits. Additionally:

• Logical address 0 is reserved to indicate no error detected;

• Logical addresses 7 and 9 in OuterTab and 6 and 11 in InnerTab are unused.

These addresses remain free because the four parity bits in this code can protect up

to 11 data bits, while the data area contains only 9 bits (see Section 4.4).

Finally, parity check bits do not need correction, since they can be recomputed from

an error-free data area.

The flipBits function internally implements OuterTab, as the decoding function

passes addresses from this vector. However, it is important to note that the function could

also be implemented using InnerTab, requiring only an address remapping. For example,

in the case where ErrAddo = 1 and ErrAddi = 4, the OuterTab addresses 11 and 10

are modified. These correspond to InnerTab addresses 9 and 13, respectively, as seen in

Figure 48(a) and (b).

78

6. EXPERIMENTAL RESULTS

This chapter presents the experiments designed to explore the potential and validate

the overlapping ECC technique. We worked with the overlapped ECCs 2×Ham_2×2,

2×Ham_3×3, and 2×Ham_4×4, and used data available in the literature to compare them

with other ECCs designed for similar purposes. Specifically, the chapter is divided into six

sections: (6.1) exploration of the error correction capability of the proposed codes for various

scenarios, as well as a comparison of one of these ECCs with other state-of-the-art ECCs;

(6.2 and 6.3) exploration of the error detection capability and reliability of the proposed

codes. Additionally, we provide a mathematical description of how to evaluate ECC reliability

over time; (6.4) synthesis of the encoders and decoders of the proposed ECCs to obtain

data on area consumption, power dissipation, and latency, enabling an understanding of

their physical characteristics in a 28nm CMOS technology; and finally, (6.5) scalability

analysis of the proposed technique for the specific implementation case chosen (extended

Hamming) and comparison with the theoretical scalability of other state-of-the-art ECCs.

6.1 Error Correction

Figure 53 illustrates the research methodology adopted in the set of experiments

concerning the analysis of the error correction capability of the three explored codes to

validate the overlapping ECC technique: 2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4.

2×Ham_2×2

2×Ham_3×3

2×Ham_4×4

+ x

1

1

1

Error injection 1...8

8

Data, check bit and

codestruct area

3

72
Software

simulation tool3 72Java

description
3

Error correction rate

Figure 53. Methodology for collecting the error correction rates of the overlapped ECCs. The figure

shows that 72 simulations were generated, allowing data collection for three regions of each ECC,

considering an exhaustive injection of patterns with 1 to 8 simultaneous errors (Source: Author).

The analysis of the error correction rate employed an exhaustive error injection model

ranging from 1 to 8 errors for each region of interest in the codestruct. These regions include

isolated data bits, isolated check bits, and all bits within the codestruct. The number of

79

evaluation combinations increases significantly with the number of bits in the evaluated

region and the number of errors, as illustrated in Table 5.

Table 5. Number of combinations analyzed according to the ECC region and number of

simultaneous errors (Source: Author).

Number
of errors

Error correction rate on region (%)

Data Check bits Codestruct

2×2 3×3 4×4 2×2 3×3 4×4 2×2 3×3 4×4

1 4 9 16 8 10 12 12 19 28

2 6 36 120 28 45 66 66 171 378

3 4 84 560 56 120 220 220 969 3276

4 1 126 1820 70 210 495 495 3876 20475

5 0 126 4368 56 252 792 792 11628 98280

6 0 84 8008 28 210 924 924 27132 376740

7 0 36 11440 8 120 792 792 50388 1184040

8 0 9 12870 1 45 495 495 75582 3108105

Legend: 2×2, 3×3 and 4×4 are abbreviations of 2×Ham_2×2, 2×Ham_3×3 and 2×Ham_4×4, respectively

We described the encoders and decoders of the overlapped ECCs in Java and

implemented a parameterizable simulation environment, allowing the injection of a variable

number of errors into controlled regions of each ECC. Table 6 presents the percentage of

corrected errors for all evaluated ECCs (2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4)

across three regions (data, check bits, and codestruct), considering an exhaustive injection

of 1 to 8 accumulated errors in the region of interest.

Table 6. Comparison of error correction rates for 2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4, with

an exhaustive injection of 1 to 8 errors in data regions, check bits, and codestruct (Source: Author).

Number
of errors

Error correction rate on region (%)

Data Check bits Codestruct

2×2 3×3 4×4 2×2 3×3 4×4 2×2 3×3 4×4

1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

3 0.00 0.00 0.00 100.00 100.00 100.00 40.45 24.87 19.57

4 0.00 0.00 0.00 91.43 90.00 90.30 17.78 9.11 5.09

5 - 0.00 0.00 71.43 69.84 73.11 8.84 3.56 1.99

6 - 0.00 0.00 53.57 56.67 64.94 3.57 1.04 0.87

7 - 0.00 0.00 62.50 61.67 67.30 1.01 0.28 0.19

8 - 0.00 0.00 100.00 75.56 69.49 0.20 0.11 0.03

Legend: 2×2, 3×3 and 4×4 are abbreviations of 2×Ham_2×2, 2×Ham_3×3 and 2×Ham_4×4, respectively
 “-“ uncollected value

The results show that the proposed algorithm achieves 100% correction for up to two

errors, regardless of the affected region. As described in Chapters 4 and 5, the explored

algorithmic proposal does not handle corrections beyond two errors in the data area,

80

justifying the results with zero correction starting from three errors. The "-" representation in

the column of the 2×Ham_2×2 code appears because the data area is limited to 4 bits,

making it impossible to generate 5 or more errors. Additionally, the explored algorithms can

correct up to three errors when these errors are concentrated only in the check bits region.

Although this scenario may seem of lesser interest—since the main goal is to protect data—

for larger codes where scalability significantly reduces the check bits region, designers may

choose to implement this region using more expensive and less radiation-sensitive memory

(i.e., radiation-hardened memory [43]), thus achieving greater reliability.

As discussed in the decoding algorithms detailed in the example in Chapter 5, it is

possible to increase the correction rate for the data area, but at the cost of larger hardware,

higher power dissipation and latency. However, this evaluation is part of future studies.

6.1.1 ERROR CORRECTION RATE COMPARISON

To fairly evaluate the error correction capability of the overlapped technique against

other state-of-the-art ECCs, we used the criterion of maintaining the same number of data

bits while exploring different codestructs. Figure 54 illustrates the methodology employed to

conduct this experiment.

2×Ham_4×4 x1

Error injection 1...6

6

Codestruct area

1

6

Software

simulation tool
6Java

description
1

Error correction rate
PBD

Matrix

CLC

+

1

1

1

3 Data extraction

18

+

6

24

Figure 54. Methodology used to compare the proposed ECC technology with three state-of-the-art

ECCs (Source: Author).

Initially, we selected recent ECCs from the literature that had similar objectives (i.e.,

protecting critical system data) and provided experimental results under the same error

81

scenarios (i.e., exhaustive injection). The research identified three ECCs: Matrix [1], CLC

[57] and PBD [23]—all 2D-ECCs protecting 16 data bits—which allowed us to compare them

with the 2×Ham_4×4 code. Figure 55 illustrates the codestructs of these four ECCs,

enabling the reader to better understand the employed approach.

(a) (b)

(c) (d)

Figure 55. Codestructs of (a) Matrix, (b) PBD, (c) CLC, and (d) 2×Ham_4×4 (Source: Author).

As a common verification scenario for error correction capability, all ECCs presented

results from an exhaustive exploration of 1 to 6 errors across the entire codestruct.

Therefore, we selected the corresponding data from the 2×Ham_4×4 code, which can be

visualized in the last column of Table 6.

Figure 56. Error correction rates of the evaluated 2D-ECCs, considering 1 to 6 errors exhaustively

distributed across the codestructs (Source: Author).

D0,0 D0,1 D0,2 D0,3 C0 C1 C2

D1,0 D1,1 D1,2 D1,3 C3 C4 C5

D2,0 D2,1 D2,2 D2,3 C6 C7 C8

D3,0 D3,1 D3,2 D3,3 C9 C10 C11

P0 P1 P2 P3

D0,0 D0,1 D0,2 D0,3 R0,0 R0,1 R0,2 R0,3 Pr0

D1,0 D1,1 D1,2 D1,3 R1,0 R1,1 R1,2 R1,3 Pr1

D2,0 D2,1 D2,2 D2,3 R2,0 R2,1 R2,2 R2,3 Pr2

D3,0 D3,1 D3,2 D3,3 R3,0 R3,1 R3,2 R3,3 Pr3

D0,0 D0,1 D0,2 D0,3 C0 C1 C2 Pr0

D1,0 D1,1 D1,2 D1,3 C3 C4 C5 Pr1

D2,0 D2,1 D2,2 D2,3 C6 C7 C8 Pr2

D3,0 D3,1 D3,2 D3,3 C9 C10 C11 Pr3

Pc0 Pc1 Pc2 Pc3 Pc4 Pc5 Pc6 Pc7

D0,0 D0,1 D0,2 D0,3 Ce0 Ce1 Ce2 Ce3 Ce4 Pe

D1,0 D1,1 D1,2 D1,3 Ci0 Ci1 Ci2 Ci3 Ci4 Pi
D2,0 D2,1 D2,2 D2,3

D3,0 D3,1 D3,2 D3,3

100

19.6

5.1
2.0 0.9

100

91.8

68.3

40.7

21.1

9.5

78.6

53.1

26.6

9.3

62.9

22.9

12.9

4.5
2.4

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Er
ro

r c
or

re
ct

io
n

ra
te

Number of errors

2×Ham_4×4 CLC Matrix PBD

82

Figure 56 illustrates the error correction rates of the four ECCs. The results show that

2×Ham_4×4 meets the goal of recovering from up to two errors anywhere in the codestruct,

whereas the other ECCs cannot achieve 100% correction for two errors in any codestruct

position. On the other hand, the approach adopted by 2×Ham_4×4 penalizes correction for

three or more errors, significantly reducing its correction rate. It is important to note that

different ECCs employ distinct encoding and decoding structures and algorithms, resulting

in varying costs in terms of area consumption, power dissipation, and latency, which are not

evaluated here. However, the structures shown in Figure 55 reveal that 2×Ham_4×4 has

the lowest redundancy cost, requiring only 12 bits, while Matrix, PBD, and CLC require 16,

20, and 24 redundancy bits, respectively. This characteristic is further examined in the next

sections.

6.2 Error Detection

Figure 57 illustrates the set of experiments conducted to analyze the error detection

capability of the 2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4 codes. Although presented

separately, Figure 57 is almost identical to Figure 53, except that the results analyzed

pertain to detection rather than correction. In fact, it is the same set of simulations but with

new data.

2×Ham_2×2

2×Ham_3×3

2×Ham_4×4

+ x

1

1

1

Error injection 1...8

8

Data, check bit and

codestruct area

3

72
Software

simulation tool3 72Java

description
3

Error detection rate

Figure 57. Methodology employed to collect the error detection rates of the overlapped ECCs. This

figure, which is similar to Figure 53, shows that 72 simulations, allowing data collection for 3 regions

of each ECC, with exhaustive injection of patterns with 1 to 8 simultaneous errors (Source: Author).

The results of the experiment set are illustrated in Table 7. The main insight provided

by Table 7 is the ability of the 2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4 codes to detect

at least error patterns with up to four simultaneous errors in any region. Combining this

characteristic with correction capability, we can define these codes as belonging to the

DECQED (Double Error Correction, Quadruple Error Detection) class, which is uncommon

83

but highlights the potential of the proposed approach for handling critical systems. While

error correction may often be more desirable to designers as it allows the system to operate

with the received data, error detection is crucial for ensuring the reliability of read

information. Additionally, if an error situation is detected, the system can request the

information retransmission or re-reading.

Table 7. Comparison of error detection rates for ECCs 2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4,

with exhaustive injection of 1 to 8 errors in data, check bits, and codestruct regions (Source: Author).

Number
of errors

Error detection rate on region (%)

Data Check bits Codestruct

2×2 3×3 4×4 2×2 3×3 4×4 2×2 3×3 4×4

1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

5 - 100.00 100.00 100.00 100.00 100.00 99.49 99.92 99.98

6 - 100.00 99.90 100.00 100.00 100.00 99.35 99.90 99.97

7 - 100.00 100.00 100.00 100.00 100.00 99.49 99.91 99.98

8 - 100.00 99.88 100.00 100.00 100.00 99.80 99.91 99.98

Legend: 2×2, 3×3 and 4×4 are abbreviations of 2×Ham_2×2, 2×Ham_3×3 and 2×Ham_4×4, respectively
 “-“ uncollected value

The results in Table 7 also suggest that the proposed codes have a high capacity for

detecting error patterns in any evaluated region, with the worst-case detection efficiency

being 99.35%. Additionally, it is possible to identify 100% error detection for all error patterns

occurring exclusively in the check bits region. It is important to note that error patterns with

1 to 8 simultaneous errors do not cover all possible cases, meaning that patterns with a

higher number of simultaneous errors could result in lower detection rates. This is a potential

area for future research, but if confirmed, it would support the use of radiation-hardened

memory [43] exclusively in the data area. Here, the reasoning is the inverse of that presented

in Section 6.1, as the goal is to obtain correct data or at least determine the presence of

errors in the read information. Furthermore, for smaller codes, such as 2×Ham_2×2, there

are only 4 data bits for 8 check bits.

6.3 Reliability

Reliability is directly related to the ability to identify, correct, and prevent errors in

memory systems, especially in critical scenarios such as space missions or resource-

constrained systems. Different methods and metrics can be adopted to assess system

reliability. This work is based on the model presented by Freitas et al. [14], which addresses

84

reliability aspects in the context of ECC-protected memories over time. More specifically,

the authors explore the Mean Time To Failure (MTTF) metric and how it is used to evaluate

the effectiveness of ECC in memory exposed to error occurrences over time. The authors

employ probabilistic mathematical models to study fault injection over time and the eventual

ability of the code to correct these faults. For better comprehension, we present part of the

mathematical modeling below.

Freitas et al. [14] use the Poisson binomial distribution, a discrete probability

distribution, described in Equation (73), which calculates the probability 𝑃𝑛
𝑖 of i errors

occurring in a memory word with 𝑛 bits.

𝑃𝑛
𝑖 = (

𝑛

𝑖
) × 𝑝𝑖 × (1 − 𝑝)𝑛−𝑖 (73)

The fundamental considerations of a binomial distribution are: (i) each trial has only

two possible outcomes, success or failure (a binomial situation known as a Bernoulli trial);

in this case, whether a failure occurred or not; (ii) the probabilities of success 𝑝𝑖 and failure

(1 − 𝑝)𝑛−𝑖 in each trial are independent of other trials; (iii) the variable of interest is the

number of successes i (errors) in 𝑛 trials (bits where the error can occur). Considering the

probabilities of success 𝑝(𝑡)𝑖 and failure (1 − 𝑝(𝑡))𝑛−𝑖 over a time interval 𝑡, these can be

represented by Equations (74) and (75), respectively.

𝑝(𝑡)𝑖 = (1 − 𝑒−𝜆𝑡)𝑖 (74)

(1 − 𝑝(𝑡))𝑛−𝑖 = 𝑒−𝜆𝑡(𝑛−𝑖) (75)

Equations (74) and (75) use the parameter 𝜆, measured in failures per bit per day, as

an indicator of error occurrence severity in the experimental scenario. For instance,

considering a satellite 𝑆 in space orbit or during launch from Earth, 𝜆 is potentially higher

when 𝑆 enters orbit due to the absence of Earth’s magnetic field, which otherwise reduces

exposure to various cosmic radiations. Substituting (74) and (75) into (73), now considering

the binomial distribution 𝑃(𝑡)𝑛
𝑖 over time 𝑡, we obtain Equation (76).

𝑃𝑛
𝑖(𝑡) = (

𝑛

𝑖
) × (1 − 𝑒−𝜆𝑡)𝑖 × 𝑒−𝜆𝑡(𝑛−𝑖) (76)

Additionally, Equation (77) shows the probability 𝑁𝑛
𝑖 (𝑡) of errors occurring that do not

affect system operation at a given time 𝑡.

85

𝑁𝑛
𝑖 (𝑡) = ∑𝑃𝑛

𝑖(𝑡)

𝜎

𝑖=1

 × ℇ(𝑖) (77)

𝑁𝑛
𝑖 (𝑡) assumes that all errors occurring up to time 𝑡 can be corrected by some

mechanism (e.g., an ECC decoder). Here, 𝜎 represents the accumulated number of errors,

and ℇ(𝑖) is the error correction rate for 𝑖 errors. We use 𝜎 within the range of 1 to 8

accumulated errors since these values are available in the last three columns of Table 6 for

each of the three evaluated codes. A more precise probability value for 𝑁𝑛
𝑖 (𝑡) tends to be

higher, as it includes the sum over the entire range of errors (not just those evaluated in this

work). However, it is worth noting that these values are quite small, as ECCs’ correction

capability significantly reduces for more than 8 errors.

Equation (78) presents the calculation of ECC reliability 𝑟𝑛(𝑡) for a codestruct of 𝑛 bits

over time 𝑡, considering both the probability of system operation being affected and not being

affected. Equation (78) expands into Equation (79) when incorporating Equation (77).

𝑟𝑛(𝑡) = 1 − 𝑃𝑛(𝑡) + 𝑁𝑛
𝑖 (𝑡) (78)

𝑟𝑛(𝑡) = 1 − 𝑃𝑛(𝑡) + ∑𝑃𝑛
𝑖(𝑡)

𝜎

𝑖=1

 × ℇ(𝑖) (79)

Finally, the MTTF metric considers the sum of all reliability values over time, as

described in Equation (80). Note that our experiments illustrate only 𝑟𝑛(𝑡).

𝑀𝑇𝑇𝐹 = ∫ 𝑟𝑛(𝑡) dt
∞

0

 (80)

Figure 58 illustrates the methodology employed to evaluate the reliability of systems

protected by the three proposed codes (2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4).

63
Reliability (rn(t))

results

Error correction rate ()
(2×Ham_2×2,

2×Ham_3×3,

2×Ham_4×4)

and

1...8 erros (i)

Reliability exploration tool24

Time (t) variation

(1...20000 days, step 1000 days)

21

Reliability parameters ()

1

Figure 58. Methodology used to evaluate the reliability of memory areas protected by the codes

2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4 (Source: Author).

86

For this experiment, we implemented a tool to calculate reliability values over the first

20,000 days of operation, starting from the first day with a time step of 1,000 days.

Additionally, we adopted 𝜆 = 10−5, based on [14], which means a probability of one bit failing

every 10,000 days. Note that as 𝑛 increases, the probability of failures also increases due

to the higher number of bits in the codestruct.

The experiment, illustrated in Figure 59, resulted in 63 reliability evaluation points,

with 21 points for each explored ECC.

Figure 59. Reliability of the codes 2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4 over a period of 20,000

days. The graph uses 𝝀 = 𝟏𝟎−𝟓 failures per bit per day (Source: Author)

The results show that reliability degradation depends on the number of bits and the

error correction rate. Since error correction rates are nearly identical, codes with more bits

are more penalized, degrading their reliability more rapidly.

Reliability information can be used to define a scrubbing rate [68] depending on the

employed ECC. Scrubbing is a technique that employs periodic reads at predefined intervals

to prevent errors from accumulating beyond the point where codestruct correction is no

longer possible. For the evaluated codes, the technique considers that ECCs can recover

100% of cases with up to 2 errors. Thus, a system that controls reliability should reduce read

intervals for the 2×Ham_4×4 code, while spacing them out for the 2×Ham_2×2 code. This

provides insights for balancing ECC efficiency and effectiveness, as using scrubbing

increases power consumption. The exploration of scrubbing periods, focusing on integrating

the ECC overlapping technique for satellite memory protection, is part of future work.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2500 5000 7500 10000 12500 15000 17500 20000

Re
lia

bi
lit

y
(%

)

Time (days)

2xHam_4x4

2xHam_3x3

2xHam_2x2

87

6.4 Power Dissipation, Area Consumption, and Latency

Figure 60 presents the methodology used to evaluate operational and manufacturing

costs, i.e., power dissipation, area consumption, and latency, for the 2×Ham_2×2,

2×Ham_3×3, and 2×Ham_4×4 codes.

6

6

6

2×Ham_2×2

2×Ham_3×3

2×Ham_4×4

+

2

2

2

Synthesis tool

(Genus)6 VHDL description 6

Power dissipation

Latency

Area consumption

Simulation tool

(Modelsim)

66

Figure 60. Methodology applied to obtain data on power dissipation, latency, and area consumption

for the overlapped ECCs explored in this work. The encoder and decoder codes were described in

VHDL for each ECC, validated through simulation, and logically synthesized (Source: Author).

We described the encoding and decoding circuits in RTL VHDL1 for each overlapped

ECC using purely combinational circuits. The complete set of VHDL descriptions is available

on GitHub (https://github.com/Andrewarf/overlapping-error-correction-codes-on-two-

dimensional-structures); additionally, “Appendix B – VHDL Code for 2×Ham3×3 Synthesis”

contains the description of the 2×Ham_3×3 code. This low-level description allows synthesis

tools to correctly infer the circuits implementing the ECC encoders/decoders.

Since the circuit descriptions were manually created based on their Java

implementations, we included a validation step through VHDL simulation. For this validation,

we used the ModelSim tool, which allowed us to verify various data encoding patterns, error

injection, and subsequent codestruct decoding. Once the six VHDL descriptions were

validated (one encoding circuit and one decoding circuit for each of the three ECCs), we

proceeded with logical synthesis for a 28nm CMOS technology under normal operating

conditions. Table 8, containing the synthesis results, shows that the increased complexity

of the decoder significantly impacts area consumption, power dissipation, and latency. One

of the main reasons is that the encoder is a subset of the decoder, as observed in Figure 47

and Figure 50, which clearly justifies the increase in consumed area and dissipated power.

1 RTL VHDL– VHSIC (Very High Speed Integrated Circuits) Hardware Description Language,

Register-Transfer Level is a language for describing digital circuits at the register transfer level.

https://github.com/AndrewARF/OVERLAPPING-ERROR-CORRECTION-CODES-ON-TWO-DIMENSIONAL-STRUCTURES
https://github.com/AndrewARF/OVERLAPPING-ERROR-CORRECTION-CODES-ON-TWO-DIMENSIONAL-STRUCTURES

88

Table 8. Comparative table of values obtained from the logical synthesis of the 2×Ham_2×2,

2×Ham_3×3, and 2×Ham_4×4 codes. For each code, data on power dissipation, area consumption, and

latency of encoders and decoders were obtained (Source: Author).

Metric
2×Ham_2×2 2×Ham_3×3 2×Ham_4×4

Encoder Decoder Encoder Decoder Encoder Decoder

Area (um2) 35.7 140.5 80.4 371.8 146.5 778.0

Power (uW) 2.1 9.3 4.7 24.0 9.7 47.9

Latency (ps)
Error not detected

333.0
419.7

522.0
683.4

751.0
961.3

Error detected 841.0 1508.0 2073.0

Table 9 displays that, on average, the areas of the decoders are 4.6 times larger than

that of the encoders, while the decoders dissipate more than 4.8 times the power of the

encoders. Latency varies depending on the decoding result. If the decoder detects an error,

it must execute the error correction algorithm, which has an average latency 2.7 times higher

than that of the encoder. However, if no error is detected, the decoder can abort the process

much earlier, reducing operational latency. Notably, these values were obtained through

logical synthesis, which does not have the same accuracy and precision as physical

synthesis. However, physical synthesis is part of a set of experiments planned for future

work, along with the analysis of encoders and decoders for other state-of-the-art ECCs, such

as Matrix [1], CLC [57] and PBD [23], which were discussed in Section 6.1.1.

Table 9. Comparative table with the same values as Table 8, but including columns with partial and

total average information (Source: Author).

Metric
2×Ham_2×2 2×Ham_3×3 2×Ham_4x4 Total

average Encoder Decoder Average Encoder Decoder Average Encoder Decoder Average

Area (um2) 35.7 140.5 3.94 80.4 371.8 4.62 146.5 778 5.31 4.62

Power (uW) 2.1 9.3 4.43 4.7 24 5.11 9.7 47.9 4.94 4.82

Latency
(ps)

N. det.
333.0

419.7 1.26
522.0

683.4 1.31
751.0

961.3 1.28 1.28

Det. 841.0 2.53 1508.0 2.89 2073.0 2.76 2.72

Another aspect analyzed is the increase in synthesis costs with the expansion of the

data area, both for encoders and decoders. For this case, we generated Table 10, which

normalizes the values in Table 8 based on the number of data bits in each ECC, i.e., 4, 9,

and 16 for the 2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4 ECCs, respectively.

The values in Table 10 present two trends of interest to designers. The first trend is

the increase in area consumption and power dissipation as the code scales, both for the

encoder and the decoder. The only observed exception is the power dissipation of the

2×Ham_2×2 decoder compared to the 2×Ham_3×3 decoder, which shows a slight reduction

from 0.53 µW to 0.52 µW. This trend suggests an increase in costs when scaling the codes.

89

Table 10. Comparative table with the values from Table 8 normalized by the number of data area bits

in each ECC (Source: Author).

Metric
2×Ham_2×2 2×Ham_3×3 2×Ham_4×4

Encoder Decoder Encoder Decoder Encoder Decoder

Area (um2) 8.93 35.13 8.93 41.31 9.16 48.63

Power (uW) 0.53 2.33 0.52 2.67 0.61 2.99

Latency (ps)
Error not detected

83.25
104.93

58.00
75.93

46.94
60.08

Error detected 210.25 167.56 129.56

On the other hand, the second trend is a reduced latency, which increases the

operating frequency of read and write circuits, opening the possibility for developing high-

speed ECCs. It is important to note that these two verified trends should be explored with a

greater variation in scale to obtain values with higher statistical significance. This analysis

can be conducted in future studies.

6.5 Scalability of the Overlapped-ECCs

The scalability of an ECC reflects variations in effectiveness and efficiency due to

changes in the data protection area. A scalable ECC maintains its effectiveness (e.g., error

correction and detection rates) while preserving or improving its efficiency (e.g., energy

consumption or area usage). Figure 61 shows the methodology used to evaluate scalability.

2×Ham_2×2

2×Ham_3×3

2×Ham_4×4

+

1

1

1

24

6

Theoretical scalability analysis

Scalability results

2×Ham_5×5

2×Ham_6×6

2×Ham_7×7

1

1

1

PBDMatrix CLC

+

11

3

Data extraction

1

18

Figure 61. Methodology used to assess the scalability of the overlapped ECC case study adopted in

this work, along with the scalability of three state-of-the-art ECCs. The analysis is entirely theoretical,

based on the extrapolation of data obtained from the literature (Source: Author).

90

This section employs the evaluated overlapped ECC model (i.e., using two extended

Hamming codes to protect the same data region), conducting a theoretical analysis of

square data matrices ranging from 4 to 49 bits. Additionally, we use the same 2D-ECCs

presented in Section 6.1.1 (i.e., Matrix [1], CLC [57] and PBD [23]) to compare with state-

of-the-art ECCs with similar requirements. It is essential to highlight that this section is purely

theoretical and does not involve the implementation of all the codes described here.

Beyond the three overlapped ECCs extensively discussed throughout this work (i.e.,

2×Ham_2×2, 2×Ham_3×3, and 2×Ham_4×4), we analyzed the codestruct designs of three

additional ECCs: 2×Ham_5×5, 2×Ham_6×6, and 2×Ham_7×7, aiming to extend the

theoretical scalability analysis. The design of these three new ECCs follows the same model

as the previous ones, expanding the Hamming protection areas to accommodate the growth

of data areas. The choice of square matrices was made to maintain a consistent form factor.

Regarding the Matrix, CLC, and PBD ECCs, we first analyzed and understood the formation

rules of each ECC before scaling them to sizes equivalent to the overlapped ECCs. Notably,

the choice of square data matrices allowed for perfect scaling of these 2D-ECCs available

in the literature, ensuring a fair comparison between all ECCs.

To evaluate scalability, we used redundancy cost (𝑟𝑐) as a metric that divides the

number of check bits (#𝑐𝑏) by the total number of bits in the codestruct (#𝑐𝑠), as expressed

in Equation (81). The scalability results are illustrated in Table 11.

𝑟𝑐 =
#𝑐𝑏

#𝑐𝑠

(81)

Table 11. Redundancy costs for square data matrices ranging from 2×2 to 7×7; green and red

highlight the lowest (better) and highest (worst) scalability results, respectively (Source: Author).

Data
matrix

N
Overlapped ECC Matrix PBD CLC

#cb #cs rc #cb #cs rc #cb #cs rc #cb #cs rc

2×2 4 8 12 0.67 8 12 0.67 5 9 0.56 14 18 0.78

3×3 9 10 19 0.53 12 21 0.57 12 21 0.57 19 28 0.68

4×4 16 12 28 0.43 16 32 0.50 20 36 0.56 24 40 0.60

5×5 25 12 37 0.32 25 50 0.50 32 57 0.56 35 60 0.58

6×6 36 14 50 0.28 30 66 0.45 45 81 0.56 41 77 0.53

7x7 49 14 63 0.22 35 84 0.42 62 111 0.56 47 96 0.49

The results reveal that the proposed overlapped technique is the ECC with the

highest potential, scaling efficiently while significantly reducing redundancy costs. Even for

very small data matrices, overlapped ECCs ranked second, alongside the Matrix code.

Despite the lower cost of 2×2 PBD matrix, its poor scalability results in worse performance

91

than CLC for size 6×6 or larger square matrices.

Isolated scalability results only indicate the cost of each ECC. However, when

combined with effectiveness results, such as the error correction rates presented in Section

6.1.1, they provide designers with significant insights into the benefits and trade-offs of each

choice, helping evaluate whether the project requirements are met. Specifically for the

evaluated ECCs, we highlight that the scaling of overlapped ECCs results in a smaller

storage area than other 2D-ECCs, directly impacting memory area consumption and energy

efficiency. Additionally, the error correction rates presented in Section 6.1.1, combined with

the smaller number of bits in the codestructs, suggest that our proposed method may

achieve higher reliability levels over time. Confirming this hypothesis requires further

studies, which are planned for future research.

92

7. CONCLUSIONS

The study on overlapped ECCs allowed us to evaluate their effectiveness in error

detection and correction across matrices of different sizes, considering factors such as

correction and detection rates, long-term reliability, area consumption, power dissipation,

and latency.

The experimental results demonstrated that, for single and double errors, the

proposed code overlapping technique achieves a 100% correction rate in both the parity

check area and the data area, ensuring high reliability. However, as the number of errors

increases, the correction effectiveness drops significantly. For triple and quadruple errors,

the correction rate remains high in the parity check area but becomes zero in the data area.

When five or more errors occur, the correction rate drops drastically, highlighting the

limitations of the proposed approach.

It is important to emphasize that the technique is not mathematically limited to

correcting only double errors; this is a limitation of the error correction algorithm applied to

the technique. Research into more efficient correction algorithms is part of future work.

Additionally, error detection is significantly higher, reaching 100% or nearly 100% in

all analyzed scenarios, ensuring that all cases up to four errors are correctly identified.

The long-term reliability was analyzed for data areas of 4 (2×Ham_2×2), 9

(2×Ham_3×3), and 16 (2×Ham_4×4) bits. As expected, larger matrices exhibited greater

degradation due to an increased number of failure points. In this regard, smaller matrices

performed better. For example, the 2×Ham_2×2 code maintained a reliability above 60%

after 20,000 days, whereas the 2×Ham_4×4 code suffered sharper degradation, with

reliability dropping to around 20% in the same period.

The analysis of area consumption, power dissipation, and latency revealed that matrix

size directly impacts these factors. The encoder circuit grew by a factor of four, while the

decoder circuit increased by more than five times when transitioning from 2×Ham_2×2 to

2×Ham_4×4. Power consumption followed the same trend, being approximately five times

higher for the larger matrix. Latency also increased significantly, particularly in the decoder,

where the processing time in error-free scenarios was 2.5 times longer for 2×Ham_4×4

compared to 2×Ham_2×2.

Based on these results, we conclude that the matrix size selection depends on

system constraints and requirements:

93

2×Ham_2×2 proved to be the most efficient option in terms of hardware consumption

and longevity, making it ideal for applications requiring long-term reliability with area and

power constraints.

2×Ham_4×4, while offering stronger short-term protection, comes with a higher

computational cost and greater long-term degradation.

2×Ham_3×3 represents a balance between these two extremes, making it a viable

choice for systems requiring a trade-off between performance, reliability, and efficiency.

Additionally, it is crucial to emphasize that the latency and power dissipation of the

decoders are very similar to those of the encoders in scenarios without detected errors. This

means that decoder complexity is only noticeable in the presence of errors, potentially

reducing operational time.

Finally, comparisons with other ECCs of similar capacity demonstrate that the

proposed technique is highly promising, featuring a lower relative bit consumption cost while

achieving 100% correction for up to two random errors.

94

8. PUBLICATIONS

Throughout this master’s dissertation, two scientific papers related to the proposed

work were written and accepted for publication. These papers are in the references [40] and

[22] and listed below:

• A. Muniz, L. Mazzoco, W. Savaris, E. Pissolatto, T. Beneditto, A. Fritsch, J. Silveira,

C. Marcon, “Comparing Structures of Two-Dimensional Error Correction Codes”,

Microelectronics Reliability, vol. 161, pp. 115481:1-9, Oct. 2024.

• A. Fritsch, W. Savaris, A. Muniz, G. Borba, R. Girardi, J. Silveira, C. Marcon

“Overlapped Error Correction Codes in Two-Dimensional Structures”, Proceedings of

the IEEE CASS Latin American Symposium on Circuits and Systems (LASCAS), pp.

1-6, 2025.

Additionally, a third paper detailing this work is currently being prepared, with plans

for submission to IEEE Transactions on VLSI (TVLSI).

The tools used to obtain the results presented in this dissertation are publicly

available on GitHub at https://github.com/andrewarf/overlapping-error-correction-codes-on-

two-dimensional-structures .For completeness and ease of understanding, the Java code

used for evaluating error detection and correction effectiveness is provided in “Appendix A

– Java Code for Simulating 2×Ham3×3 Code”, while the VHDL code used for synthesis data

collection is included in “Appendix B – VHDL Code for 2×Ham3×3 Synthesis”.

https://github.com/AndrewARF/OVERLAPPING-ERROR-CORRECTION-CODES-ON-TWO-DIMENSIONAL-STRUCTURES
https://github.com/AndrewARF/OVERLAPPING-ERROR-CORRECTION-CODES-ON-TWO-DIMENSIONAL-STRUCTURES

95

9. REFERENCES

[1] C. Argyrides, P. Reviriego, D. Pradhan, J. Maestro, “Matrix-based codes for adjacent error

correction”, IEEE Transactions on Nuclear Science, v. 57, n. 4, pp. 2106-2111, Aug. 2010.

[2] A. Avizienis, J. Laprie, B. Randell, C. Landwehr, “Basic concepts and taxonomy of

dependable and secure computing”, IEEE Transactions on Dependable and Secure

Computing, v. 1, n. 1, pp. 11-33, Jan.-Mar. 2004.

[3] R. Baumann, “Soft errors in advanced computer systems”, IEEE Design & Test of

Computers, v. 22, n. 3, pp. 258-266, May-Jun. 2005.

[4] H. Castro, J. Silveira, A. Coelho, F. Silva, P. Magalhães, O. Lima, “A Correction Code for

Multiple Cells Upsets in Memory Devices for Space”, Proceedings of IEEE International New

Circuits and Systems Conference (NEWCAS), pp. 1-6, 2016.

[5] A. Chabot, I. Alouani, R. Nouacer, S. Niar, “A Memory Reliability Enhancement Technique

for Multi Bit Upsets”, Journal of Signal Processing Systems, v. 93, pp. 439-459, Apr. 2021.

[6] Z. Chen, Y. Zhao, J. Lu, B. Liang, X. Chen, C. Li, “TECED: A Two-Dimensional Error-

Correction Codes Based Energy-Efficiency SRAM Design”, Electronics, v. 11, n. 1638, pp.1-

10, May 2022.

[7] Clarivate - Web of Science. “Error Correction Code Works”. Available at

//www.webofscience.com/wos/woscc/analyze-results/bde814d7-0d8c-46c2-b975-

e6a84f0d7bb4-c7d8b7fe, access on Jan. 2024.

[8] S. Deepanjali, M. Noor, “Fault tolerant micro-programmed control unit for SEU and MBU

mitigation in space based digital systems”, Microelectronics Reliability, v. 155, pp. 115360:1-

14, Apr. 2024.

[9] J. Dénes, A. Keedwell, “Chapter 1 - Introduction & Chapter 2 - Transversals and Complete

Mappings”, In Annals of Discrete Mathematics, v. 46, pp. 1-42, 1991.

[10] A. Dixit, A. Wood, “The impact of new technology on soft error rates”, Proceedings of the

International Reliability Physics Symposium (IRPS), pp. 5B.4.1-5B.4.7, 2011.

[11] A. Erozan, E. Çavuş, “EG-LDPC Based 2-Dimensional Error Correcting Code for Mitigating

MBUs of SRAM Memories”, Proceedings of the FPGAWorld Conference (FPGAWorld), pp.

21-26, 2015.

[12] R. Fernandes, C. Marcon, R. Cataldo, J. Sepúlveda, “Using Smart Routing for Secure and

Dependable NoC-based MPSoCs”, IEEE/ACM Transactions on Networking (TNET), vol. 28,

no. 3, pp. 1158-1171, Jun. 2020.

[13] D. Freitas, D. Mota, D. Simões, C. Lopes, R. Goer, C. Marcon, J. Silveira, J. Mota, “Error

Coverage, Reliability and Cost Analysis of Fault Tolerance Techniques for 32-bit Memories

used on Space Missions”, Proceedings of the International Symposium on Quality Electronic

Design (ISQED), pp 250-255, 2020.

96

[14] D. Freitas, D. Mota, R. Goerl, C. Marcon, F. Vargas, J. Silveira, J. Mota, “PCoSA: A Product

Error Correction Code for use in Memory Devices Targeting Space Applications”, Integration,

the VLSI Journal, v. 74, pp 71-80, Sep. 2020.

[15] D. Freitas, D. Mota, C. Marcon, J. Silveira, J. Mota, “LPC: An Error Correction Code for

Mitigating Faults in 3D Memories”, IEEE Transactions on Computers, v. 70, n. 11, pp. 2001-

2012, Nov. 2021.

[16] D. Freitas, C. Marcon, J. Silveira, L. Naviner, J. Mota, “New Decoding Techniques for

Modified Product Code used in Critical Applications”, Microelectronics Reliability, v. 128, pp.

114444:1-14, Jan. 2022.

[17] D. Freitas, J. Silveira, C. Marcon, L. Naviner, J. Mota, “OPCoSA: an Optimized Product Code

for space applications”, Integration, v. 84, pp. 131-141, May 2022.

[18] D. Freitas, C. Marcon, J. Silveira, L. Naviner, J. Mota, “A Survey on Two-Dimensional Error

Correction Codes Applied to Fault-Tolerant Systems”, Microelectronics Reliability, v. 139, n.

114826, pp. 1-16, Dec. 2022.

[19] D. Freitas, D. Mota, C. Lopes, D. Simões, J. Silveira, J. Mota, C. Marcon, “Exploration and

Analysis of Combinations of Hamming Codes in 32-bit Memories”, arXiv preprint

arXiv:2306.16259, Jul. 2023.

[20] D. Freitas, L. Naviner, J. Mota, J. Silveira, C. Marcon, D. Mota, A. Coelho, “nMatrix: A New

Decoding Algorithm for the Matrix ECC”, Proceedings of the Latin-American Symposium on

Dependable and Secure Computing (LADC), pp. 220-230, 2024.

[21] D. Freitas, D. Mota, D. Coelho, H. Fontinele, A. Coelho, J. Silveira, L. Naviner, J. Mota, C.

Marcon, “Check-Bit Region Exploration in Two-Dimensional Error Correction Codes”, IEEE

Access, v. 12, pp. 131830-131841, Sep. 2024.

[22] A. Fritsch, W. Savaris, A. Muniz, G. Borba, R. Girardi, J. Silveira, C. Marcon “Overlapped

Error Correction Codes in Two-Dimensional Structures”, Proceedings of the IEEE CASS

Latin American Symposium on Circuits and Systems (LASCAS), pp. 1-6, 2025.

[23] R. Goerl, P. Villa, L. Poehls, E. Bezerra, F. Vargas, “An efficient EDAC approach for handling

multiple bit upsets in memory array”, Microelectronics Reliability, v. 88-90, pp. 214-218, Sep.

2018.

[24] J. Gracia-Morán, L. Saiz-Adalid, D. Gil-Tomás, P. Gil-Vicente, “Improving Error Correction

Codes for Memory-Cell Upsets in Space Applications”, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, v. 26, n. 10, pp. 2132-2142. Oct. 2018.

[25] J. Guo, L. Xiao, Z. Mao, Q. Zhao, “Enhanced memory reliability against multiple cell upsets

using decimal matrix code”, IEEE Transaction on Very Large-Scale Integration (VLSI)

Systems, v. 22, n. 1, pp. 127-135, Jan. 2014.

[26] R. Hamming, “Error detecting and error correcting codes”, The Bell System Technical

Journal, v. 29, n. 2, pp. 147-160, 1950.

97

[27] M.-C. Hsueh, T. Tsai, R. Iyer, “Fault injection techniques and tools”, Computer, v. 30, n. 4,

pp. 75-82, Apr. 1997.

[28] A. Hwang, I. Stefanovici, B. Schroeder, “Cosmic rays don’t strike twice: understanding the

nature of DRAM errors and the implications for system design”, Proceedings of the

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pp. 111-122, 2012.

[29] H. Jin, X. Xu, Z. Wang, S. Chen, J. Guo, B. Wang, “Novel Latin square matrix code of large

burst error correction for MRAM applications”, Microelectronics Reliability, v. 162, pp.

115505:1-5, Sep. 2024.

[30] S. Lin, D. Costello, “Error Control Coding”, Pearson, 1983, 603p.

[31] J. Luo, Y. Shen, B. Huang, M. Etzkorn, H. Chen, C. Yu, “An Embedded Module of Enhanced

Turbo Product Code Algorithm”, IEEE Embedded Systems Letters, v. 16, n. 4, pp. 509-512,

Dec. 2024.

[32] J. Magalhães, D. Freitas, O. Júnior, C. Marcon, “EMPC-SA: Error Correction Scheme using

Modified Product Code for Space Applications”, Proceedings of the Brazilian Symposium on

Computing Systems Engineering (SBESC), pp. 103-107, 2023.

[33] P. Magalhães, O. Alcântara, J. Silveira. “PHICC: An Error Correction Code for Memory

Devices”, Proceedings of the Symposium on Integrated Circuits and Systems Design

(SBCCI), pp. 1-6, 2019.

[34] C. Marcon, “Modelos para o Mapeamento de Aplicações em Infra-estruturas de

Comunicação Intrachip”, Ph.D. Thesis, Pós-Graduação em Ciência da Computação (PGCC)

/ Universidade Federal do Rio Grande do Sul (UFRGS), 2005, 192p.

[35] C. Marcon, R. Fernandes, R. Cataldo, F. Grando, T. Webber, A. Benso, L. Poehls, “Tiny

NoC: A 3D Mesh Topology with Router Channel Optimization for Area and Latency

Minimization”, Proceedings of the International Conference on VLSI Design (VLSID) and

International Conference on Embedded Systems (ICES), pp. 228-233, 2014.

[36] J. Massey, “Step-by-step decoding of the Bose-Chaudhuri-Hocquenghem codes”, IEEE

Transactions on Information Theory, v. 11, n. 4, pp. 580-585, Oct. 1965.

[37] T. Moon, “Error Correction Coding: Mathematical Methods and Algorithms”, Wiley, 2020,

992p.

[38] G. Moore, “Cramming more components onto integrated circuits”, Reprinted from Electronics

(1965), IEEE Solid-State Circuits Society Newsletter, v. 11, n. 3, pp. 33-35, Sep. 2006.

[39] J. Moran, L. Adalid, J. Calvo, P. Vicente, “Correction of Adjacent Errors with Low Redundant

Matrix Error Correction Codes”, Proceedings of the Latin-American Symposium on

Dependable Computing (LADC), pp. 107-113, 2018.

[40] A. Muniz, L. Mazzoco, W. Savaris, E. Pissolatto, T. Beneditto, A. Fritsch, J. Silveira, C.

Marcon, “Comparing Structures of Two-Dimensional Error Correction Codes”,

Microelectronics Reliability, v. 161, pp. 115481:1-9, Oct. 2024.

98

[41] P. Nair, D.-H. Kim, M. Qureshi, “ArchShield: architectural framework for assisting DRAM

scaling by tolerating high error rates”, Proceedings of the Annual International Symposium

on Computer Architecture (ISCA), pp. 72-83, 2013.

[42] M. Nicolaidis, “Soft Errors in Modern Electronic Systems”, Springer Science, 2001, 318p.

[43] H.-G. Park, S.-H. Jo, “Low-Power Radiation-Hardened Static Random Access Memory with

Enhanced Read Stability for Space Applications”, Applied Sciences, v. 14, n. 23, pp. 10961:1-

12, Nov. 2024.

[44] A. Pinheiro, D. Tavares, F. Silva, J. Silveira, C. Marcon, “Optimized Buffer Protection for

Network-on-Chip based on Error Correction Code”, Microelectronics Journal, v. 100, pp.

104799:1-11, Jun. 2020.

[45] D. Pradhan, N. Vaidya, “Roll-forward checkpointing scheme: a novel fault-tolerant

architecture”, IEEE Transactions on Computers, v. 43, n. 10, pp. 1163-1174, Oct. 1994.

[46] M. Qureshi, Z. Chishti, “Operating SECDED-based caches at ultra-low voltage with FLAIR”,

Proceedings of the IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), pp. 1-11, 2013.

[47] P. Raha, M. Vinodhini, N. Murty, “Vertical Parity and Diagonal Hamming Based Soft Error

Detection and Correction for Memories”, Proceedings of the International Conference on

Computer Communication and Informatics (ICCCI), pp. 1-5, 2017.

[48] S. Rahman, M. Sadi, S. Ahammed, J. Jurjens, “Soft error tolerance using Horizontal-Vertical-

Double-Bit diagonal parity method”, Proceeding of the International Conference on Electrical

Engineering and Information and Communication Technology (ICEEICT), pp. 21-23, 2015.

[49] P. Rao, M. Ebrahimi, R. Seyyedi, M. Tahoori, “Protecting SRAM-based FPGAs against

multiple bit upsets using erasure codes”, Proceedings of the ACM/EDAC/IEEE Design

Automation Conference (DAC), pp. 1-6, 2014.

[50] I. Reed, G. Solomon, “Polynomial codes over certain finite fields”, Journal of the Society for

Industrial and Applied Mathematics, v. 8, n 2., pp. 300-304, 1960.

[51] S. Rehman, M. Shafique, J. Henkel, “Reliable software for unreliable hardware: A cross layer

perspective”, Springer, 2016, 237p.

[52] B. Schroeder, E. Pinheiro, W. Weber, “DRAM Errors in the Wild: A Large-Scale Field Study”,

Communications of the ACM, v. 54, n. 2, pp. 100-107, Feb. 2011.

[53] P. Sen, M. Sadi, N. Ashab, D. Rossi, “A New Error Correcting Coding Technique to Tolerate

Soft Errors”, Proceedings of the International Conference on Electronics, Communications

and Information Technology (ICECIT), pp. 1-4, 2021.

[54] C. Shannon, “A Mathematical Theory of Communication”, Bell System Technical Journal, v.

27, n. 3, pp. 379-423, 623-656, Jul.-Oct.1948.

[55] F. Silva, W. Magalhães, J. Silveira, J. Ferreira, P. Magalhães, O. Lima, “Evaluation of Multiple

Bit Upset Tolerant Codes for NoCs Buffering”, Proceedings of the IEEE Latin American

Symposium on Circuits & Systems (LASCAS), pp. 1-4, 2017.

99

[56] F. Silva, W. Freitas, J. Silveira, O. Lima, F. Vargas, C. Marcon, “An Efficient, Low-cost ECC

Approach for Critical-application Memories”, Proceedings of the Symposium on Integrated

Circuits and Systems Design (SBCCI), pp. 198-203, 2017.

[57] F. Silva, J. Silveira, J. Silveira, C. Marcon, F. Vargas, O. Lima, “An Extensible Code for

Correcting Multiple Cell Upset in Memory Arrays”, Journal of Electronic Testing - Theory and

Applications (JETTA), vol. 34, pp. 417-433, Jul. 2018.

[58] F. Silva, A. Muniz, J. Silveira, C. Marcon, “CLC-A: An Adaptive Implementation of the Column

Line Code (CLC) ECC”, Proceedings of the Symposium on Integrated Circuits and Systems

Design (SBCCI), pp. 1-6, 2020.

[59] F. Silva, W. Freitas, J. Silveira, C. Marcon, F. Vargas, “Extended Matrix Region Selection

Code: An ECC for adjacent Multiple Cell Upset in memory arrays”, Microelectronics

Reliability, v. 106, pp. 113582:1-9, Mar. 2020.

[60] F. Silva, A. Muniz, M. Stefani, J. Silveira, C. Marcon, “Expanding Column Line Code Adaptive

(CLC-A) for Protecting 32-and 64-Bit Data”, IEEE Design & Test, vol. 39, no. 2, pp. 15-22,

Apr. 2022.

[61] F. Silva, A. Pinheiro, J. Silveira, C. Marcon, “A Triple Burst Error Correction Based on Region

Selection Code”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 31,

n. 8, pp. 1214-1222, Aug. 2023.

[62] V. Sridharan, D. Liberty, “A study of DRAM failures in the field”, Proceedings of the

International Conference on High Performance Computing, Networking, Storage and

Analysis (SC), pp. 1-11, 2012.

[63] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, S. Gurumurthi, “Feng shui of

supercomputer memory: Positional effects in DRAM and SRAM faults”, Proceedings of the

International Conference on High Performance Computing, Networking, Storage and

Analysis (SC), pp. 1-11, 2013.

[64] V. Sridharan, N. DeBardeleben, S. Blanchard, K. Ferreira, J. Stearley, J. Shalf, S.

Gurumurthi, “Memory errors in modern systems: The good, the bad, and the ugly”,

Proceedings of the International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pp. 297-310, 2015.

[65] M. Stefani, C. Marcon, F. Silva, J. Silveira, “Memory Controller with Adaptive ECC for

Reliable System Operation”, Proceedings of the 2023 SBC/SBMicro/IEEE/ACM Symposium

on Integrated Circuits and Systems, pp. 1-6, 2023.

[66] B. Tejas, K. Kumar, M. Sunita, “Multiple Bit Error Correction Codes for Memories in

Satellites”, Proceedings of the IEEE International conference for Convergence in Technology

(I2CT), pp. 1-6, 2022.

[67] R. Velazco, P. Fouillat, R, Reis, “Radiation effects on embedded systems”, Springer, 2007,

259p.

[68] Y. Yigit, L. Maglaras, M. Ferrag, N. Moradpoor, G. Lambropoulos, “Reliability Analysis of

100

Fault Tolerant Memory Systems”, Proceedings of the South-East Europe Design Automation,

Computer Engineering, Computer Networks and Social Media Conference (SEEDA-

CECNSM), pp. 1-6, 2023.

[69] H. Yuqi, L. Xi, T. Tang, “Low Redundancy Two-Dimensional Matrix-Based HVDB Code for

Double Error Correction”, Proceedings of the International Conference on Communication

Engineering and Technology (ICCET), pp. 1-6, 2023.

101

10. APPENDIX A – JAVA CODE FOR SIMULATING 2×HAM3×3 CODE

This appendix presents four Java files used to validate the 2×Ham3×3 code and to

extract data on error detection and correction effectiveness:

• CodeStruct.java – Defines the class that implements the encoding for both the outer

Hamming and inner Hamming codes. We emphasize that, to simplify the textual

description of Chapter 5, we chose to present the data as a one-dimensional vector.

However, the Java implementation uses a two-dimensional matrix, resulting in a slight

difference between the textual description and the code implementation;

• CodeStructWithError.java – Contains methods and data structures used in the

decoder, as well as a routine for inserting errors at specific positions;

• Decoder.java – Has the decoding algorithm, partially described in 5.3.1; and

• MainSystem.java – Includes routines for exploring error positioning, generating a

specified number of errors, and performing exhaustive error generation.

CodeStruct.java

public class CodeStruct {

 public int D[][] = new int[3][3];

 public int Co[] = new int[4];

 public int Ci[] = new int[4];

 public int Po, Pi;

 public CodeStruct(int D[][]) throws Exception {

 for(int r=0; r<this.D.length; r++)

 for(int c=0; c<this.D[0].length; c++)

 this.D[r][c] = D[r][c];

 encodeOuterHamming(Co);

 Po = encodeHammingParity(Co);

 encodeInnerHamming(Ci);

 Pi = encodeHammingParity(Ci);

 }

 protected void encodeInnerHamming(int ham[]) {

 ham[0] = D[0][0] ^ D[0][2] ^ D[1][0] ^ D[1][1] ^ D[1][2]^ D[2][2];

 ham[1] = D[0][1] ^ D[0][2] ^ D[1][0] ^ D[1][2] ^ D[2][0] ^ D[2][2];

 ham[2] = D[0][1] ^ D[0][2] ^ D[1][1] ^ D[2][1] ^ D[2][2];

 ham[3] = D[0][0] ^ D[0][1] ^ D[1][0] ^ D[2][0] ^ D[2][1] ^ D[2][2];

 }

 protected void encodeOuterHamming(int ham[]) {

 ham[0] = D[0][0] ^ D[0][1] ^ D[1][0] ^ D[1][1] ^ D[2][0] ^ D[2][2];

 ham[1] = D[0][1] ^ D[1][1] ^ D[1][2] ^ D[2][0] ^ D[2][1] ^ D[2][2];

 ham[2] = D[0][0] ^ D[0][2] ^ D[1][0] ^ D[2][0] ^ D[2][1] ^ D[2][2];

 ham[3] = D[0][0] ^ D[0][1] ^ D[0][2] ^ D[1][2] ^ D[2][2];

 }

102

 protected int encodeHammingParity(int ham[]) {

 int parity = ham[0];

 for(int k=1; k<ham.length; k++)

 parity = parity ^ ham[k];

 for(int j=0; j<this.D.length; j++) {

 for(int k=0; k<this.D[0].length; k++)

 parity = parity ^ D[j][k];

 }

 return parity;

 }

 public boolean isEqual(CodeStruct ecc) {

 for(int k=0; k<3; k++) {

 for(int j=0; j<3; j++)

 if(D[k][j] != ecc.D[k][j])

 return false;

 return true;

 }

}

CodeStructWithError.java

public class CodeStructWithErrror extends CodeStruct {

 public int recCo[] = new int[4];

 public int recCi[] = new int[4];

 public int recPo, recPi;

 public int sCo[] = new int[4];

 public int sCi[] = new int[4];

 public int sPo, sPi;

 public int sCoq, sCiq;

 public int EArO, EArI;

 public boolean DErO, DErI;

 public boolean SErO, SErI;

 public CodeStructWithErrror(CodeStruct iCode, int err[]) throws Exception {

 super(iCode.D);

 setErrorPattern(err);

 recomputeControlVariables();

 }

 public void recomputeControlVariables() {

 recomputeCheckBitsAndParity();

 computeSyndromes();

 computeErrorAddress();

 computeSE_DE();

 }

 public void recomputeCheckBitsAndParity() {

 encodeOuterHamming(recCo);

 recPo = encodeHammingParity(Co);

 encodeInnerHamming(recCi);

 recPi = encodeHammingParity(Ci);

 }

 public void computeSyndromes() {

 for(int k=0; k<sCi.length; k++)

 sCi[k] = Ci[k] == recCi[k] ? 0 : 1;

 sPi = Pi == recPi ? 0 : 1;

 for(int k=0; k<sCo.length; k++)

 sCo[k] = Co[k] == recCo[k] ? 0 : 1;

 sPo = Po == recPo ? 0 : 1;

 sCiq = (sCi[0]==1 || sCi[1]==1 || sCi[2]==1 || sCi[3]==1) ? 1 : 0;

 sCoq = (sCo[0]==1 || sCo[1]==1 || sCo[2]==1 || sCo[3]==1) ? 1 : 0;

 }

103

 public void computeErrorAddress() {

 EArO = sCo[0] * 8 + sCo[1] * 4 + sCo[2] * 2 + sCo[3];

 EArI = sCi[0] * 8 + sCi[1] * 4 + sCi[2] * 2 + sCi[3];

 }

 public void computeSE_DE() {

 SErI = sCiq==1 && sPi==1;

 DErI = sCiq==1 && sPi==0;

 SErO = sCoq==1 && sPo==1;

 DErO = sCoq==1 && sPo==0;

 }

 private void setErrorPattern(int errorPattern[]) throws Exception {

 for(int k = 0; k < errorPattern.length; k++)

 setError(errorPattern[k]);

 }

 private static int invertBit(int value) {

 return value == 0 ? 1 : 0;

 }

 private void setError(int errorPosition) throws Exception {

 int row, column;

 if(errorPosition < 9) {

 row = errorPosition / 3;

 column = errorPosition % 3;

 D[row][column] = invertBit(D[row][column]);

 }

 else if(errorPosition >= 9 && errorPosition < 13) {

 errorPosition -= 9;

 Co[errorPosition] = invertBit(Co[errorPosition]);

 }

 else if(errorPosition == 13) {

 Po = invertBit(Po);

 }

 else if(errorPosition >= 14 && errorPosition < 18) {

 errorPosition -= 14;

 Ci[errorPosition] = invertBit(Co[errorPosition]);

 }

 else if(errorPosition == 18) {

 Pi = invertBit(Pi);

 }

 else

 throw new Exception("Error position = " + errorPosition);

 }

}

Decoder.java

public class Decoder {

 static int outerRowTab[] = {-1,-1,-1,0,-1,1,2,-1,-1,-1,1,0,1,0,2,2};

 static int outerColumnTab[] = {-1,-1,-1,2,-1,2,1,-1,-1,-1,0,0,1,1,0,2};

 static int innerRowTab[] = {-1,-1,-1,2,-1,2,-1,0,-1,0,1,-1,1,1,0,2};

 static int innerColumnTab[] = {-1,-1,-1,1,-1,0,-1,1,-1,0,1,-1,2,0,2,2};

 static void flitDoubleError(CodeStructWithErrror ecc, int posA, int posB) {

 int rowA = outerRowTab[posA];

 int columnA = outerColumnTab[posA];

 int rowB = outerRowTab[posB];

 int columnB = outerColumnTab[posB];

 ecc.D[rowA][columnA] = ecc.D[rowA][columnA]==0 ? 1 : 0;

 ecc.D[rowB][columnB] = ecc.D[rowB][columnB]==0 ? 1 : 0;

 }

104

 public static boolean decoding(CodeStructWithErrror ecc) {

 boolean detErr;

 detErr = ecc.sPo!=0||ecc.sPi!=0||ecc.EArO!=0||ecc.EArI!=0 ? true:false;

 if(ecc.EArO == 0 || ecc.EArI == 0)

 return detErr;

 if(ecc.SErO) {

 int row = outerRowTab[ecc.EArO];

 int column = outerColumnTab[ecc.EArO];

 if(row!=-1 && column!=-1)

 ecc.D[row][column] = ecc.D[row][column]==0 ? 1 : 0;

 ecc.recomputeControlVariables();

 return detErr;

 }

 if(ecc.SErI) {

 int row = innerRowTab[ecc.EArI];

 int column = innerColumnTab[ecc.EArI];

 if(row!=-1 && column!=-1)

 ecc.D[row][column] = ecc.D[row][column]==0 ? 1 : 0;

 ecc.recomputeControlVariables();

 return detErr;

 }

 if(ecc.DErO && ecc.DErI) {

 if(ecc.EArO==1) {

 if(ecc.EArI==4)

 flitDoubleError(ecc, 11, 10);

 else if(ecc.EArI==10)

 flitDoubleError(ecc, 14, 15);

 else if(ecc.EArI==13)

 flitDoubleError(ecc, 13, 12);

 }

 else if(ecc.EArO==2) {

 if(ecc.EArI==8)

 flitDoubleError(ecc, 13, 15);

 else if(ecc.EArI==15)

 flitDoubleError(ecc, 12, 14);

 }

 else if(ecc.EArO==3) {

 if(ecc.EArI==2)

 flitDoubleError(ecc, 13, 14);

 else if(ecc.EArI==5)

 flitDoubleError(ecc, 12, 15);

 else if(ecc.EArI==15)

 flitDoubleError(ecc, 5, 6);

 }

 else if(ecc.EArO==4) {

 if(ecc.EArI==6)

 flitDoubleError(ecc, 11, 15);

 else if(ecc.EArI==8)

 flitDoubleError(ecc, 10, 14);

 }

 else if(ecc.EArO==5) {

 if(ecc.EArI==2)

 flitDoubleError(ecc, 10, 15);

 else if(ecc.EArI==12)

 flitDoubleError(ecc, 11, 14);

 else if(ecc.EArI==13)

 flitDoubleError(ecc, 3, 6);

 }

 else if(ecc.EArO==6) {

 if(ecc.EArI==2)

 flitDoubleError(ecc, 3, 5);

 else if(ecc.EArI==7)

 flitDoubleError(ecc, 10, 12);

 else if(ecc.EArI==14)

 flitDoubleError(ecc, 11, 13);

 }

105

 else if(ecc.EArO==7) {

 if(ecc.EArI==3)

 flitDoubleError(ecc, 11, 12);

 else if(ecc.EArI==10)

 flitDoubleError(ecc, 13, 10);

 }

 else if(ecc.EArO==8) {

 if(ecc.EArI==6)

 flitDoubleError(ecc, 14, 6);

 else if(ecc.EArI==7)

 flitDoubleError(ecc, 11, 3);

 else if(ecc.EArI==11)

 flitDoubleError(ecc, 13, 5);

 }

 else if(ecc.EArO==9) {

 if(ecc.EArI==3)

 flitDoubleError(ecc, 3, 10);

 else if(ecc.EArI==6)

 flitDoubleError(ecc, 12, 5);

 else if(ecc.EArI==12)

 flitDoubleError(ecc, 6, 15);

 }

 else if(ecc.EArO==10) {

 if(ecc.EArI==3)

 flitDoubleError(ecc, 5, 15);

 else if(ecc.EArI==9)

 flitDoubleError(ecc, 12, 6);

 }

 else if(ecc.EArO==11) {

 if(ecc.EArI==4)

 flitDoubleError(ecc, 13, 6);

 else if(ecc.EArI==9)

 flitDoubleError(ecc, 5, 14);

 }

 else if(ecc.EArO==12) {

 if(ecc.EArI==1)

 flitDoubleError(ecc, 3, 15);

 else if(ecc.EArI==14)

 flitDoubleError(ecc, 10, 6);

 }

 else if(ecc.EArO==13) {

 if(ecc.EArI==10)

 flitDoubleError(ecc, 11, 6);

 else if(ecc.EArI==11)

 flitDoubleError(ecc, 3, 14);

 }

 else if(ecc.EArO==14) {

 if(ecc.EArI==5)

 flitDoubleError(ecc, 11, 5);

 else if(ecc.EArI==9)

 flitDoubleError(ecc, 13, 3);

 }

 else if(ecc.EArO==15) {

 if(ecc.EArI==1)

 flitDoubleError(ecc, 10, 5);

 if(ecc.EArI==4)

 flitDoubleError(ecc, 3, 12);

 }

 ecc.recomputeControlVariables();

 }

 return detErr;

 }

}

106

MainSystem.java

public class MainSystem {

 private static int numErrors, initialElement = 0, numElements = 19;

 private static long numberOfDecodigns = 0, numberOfErrorsDetected = 0;

 private static long errorsAfterDecoding = 0;

 private static CodeStruct initialCode;

 private static CodeStructWithErrror eccWithErrors;

 static void errGen(int errIdx, int errPat[], int elemIdx) throws Exception {

 if(errIdx == numErrors) {

 eccWithErrors = new CodeStructWithErrror(initialCode, errPat);

 if(Decoder.decoding(eccWithErrors)==true)

 numberOfErrorsDetected++;

 numberOfDecodigns++;

 if(!initialCode.isEqual(eccWithErrors))

 errorsAfterDecoding++;

 return;

 }

 if(elemIdx >= numElements)

 return;

 errPat[errIdx] = elemIdx;

 errGen(errIdx+1, errPat, elemIdx+1);

 errGen(errIdx, errPat, elemIdx+1);

 }

 private static void setInitialCode() throws Exception {

 int D[][] = { {0, 0, 0},

 {0, 0, 0},

 {0, 0, 0},};

 initialCode = new CodeStruct(D);

 }

 private static void printTestIdentification() {

 System.out.println("#Errors=" + numErrors);

 }

 private static void printResults() {

 System.out.println("NumberOfDecodigns = " + numberOfDecodigns);

 System.out.println("\tErrorsDetected = " + numberOfErrorsDetected);

 System.out.println("\tErrorsAfterDecoding = " + errorsAfterDecoding);

 }

 private static void setNumberOfErrors(int nE) {

 numErrors = nE;

 }

 private static void resetSimulationData() {

 numberOfDecodigns = 0;

 numberOfErrorsDetected = 0;

 errorsAfterDecoding = 0;

 }

 private static void setErrorInterval(int inicio, int fim) {

 initialElement = inicio;

 numElements = fim;

 }

 public static void main(String[] args) throws Exception {

 setInitialCode();

 setErrorInterval(0, 19);

 for(int numberOfErrors=1; numberOfErrors<=8; numberOfErrors++) {

 setNumberOfErrors(numberOfErrors);

 printTestIdentification();

 resetSimulationData();

 errGen(0, new int[numErrors], initialElement);

 printResults();

 }

 }

}

107

The setInitialCode method initializes the data area with an arbitrary bit sequence

and properly encodes the ECCs.

The setErrorInterval method defines the range [start, end) where errors may

occur. To analyze errors in specific areas, the method should be set as follows: [0, 9) for

errors in the data area; [9, 19) for errors in the parity check area of both Hamming codes;

[0, 19) for evaluating errors across the entire codestruct.

The number of errors to be evaluated is controlled by the loop variable

numberOfErrors. In each iteration, the algorithm sets an internal variable numErrors

using the setNumberOfErrors method. Then, the resetSimulationData method

resets some decoding control variables to ensure that changes from one iteration do not

affect subsequent results.

Finally, the algorithm calls the recursive method errGen, which explores all possible

error patterns of size numErrors within the address range defined by

setErrorInterval.

The recursiveness of errGen allows for an exhaustive exploration of all possible error

patterns applied to the initial codestruct (initialCode). When recursion reaches a pattern

with the same number of errors as numErrors, the CodeStructWithError function

receives pattern and initialCode to generate a new codestruct with errors, referred to as

eccWithErrors.

Subsequently, eccWithErrors is decoded using the approach proposed in this

work via the decoding method from the Decoder class, producing a potentially corrected

eccWithErrors. Additionally, the numberOfDecodings counter is incremented.

The final step of the method, once recursion ends, is to verify the decoding

effectiveness by comparing eccWithErrors with initialCode. If the two structures

differ, the errorsAfterDecoding variable is incremented, indicating that decoding has

failed.

108

11. APPENDIX B – VHDL CODE FOR 2×HAM3×3 SYNTHESIS

This appendix contains three VHDL files with the code used to obtain area, latency,

and power data:

• Encoder.vhd – Defines the entity-architecture pair for the encoder circuit, as

illustrated in Figure 47;

• Decoder.vhd – Defines the entity-architecture pair for the decoder circuit, as

illustrated in Figure 50;

• Matrix_package.vhd – Contains the single and double addressing vectors stored in

ROM, used in the decoder illustrated in Figure 50. Note that the implementation

described in Java as a sequence of if-else statements (Section 5.3.1 and

Decoder.java in “Appendix A – Java Code for Simulating 2×Ham3×3 Code” has been

replaced by a sparse matrix).

Encoder.vhd

===

-- Computes Hamming for the data bit positioning defined in the outer ECC

===

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity OuterHamming is

 Port (D : in std_logic_vector(0 to 8); -- 9-bit data array

 ECC : out std_logic_vector(0 to 3) -- 4-bit outer ECC array

);

end OuterHamming;

architecture OutHam of OuterHamming is

begin

 ECC(0) <= D(0) xor D(1) xor D(3) xor D(4) xor D(6) xor D(8);

 ECC(1) <= D(1) xor D(4) xor D(5) xor D(6) xor D(7) xor D(8);

 ECC(2) <= D(0) xor D(2) xor D(3) xor D(6) xor D(7) xor D(8);

 ECC(3) <= D(0) xor D(1) xor D(2) xor D(5) xor D(8);

end OutHam;

===

-- Computes Hamming for the data bit positioning defined in the inner ECC

===

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity InnerHamming is

 Port (D : in std_logic_vector(0 to 8); -- 9-bit data array

 ECC : out std_logic_vector(0 to 3) -- 4-bit outer ECC array

);

end InnerHamming;

109

architecture InnHam of InnerHamming is

begin

 ECC(0) <= D(0) xor D(2) xor D(3) xor D(4) xor D(5) xor D(8);

 ECC(1) <= D(1) xor D(2) xor D(3) xor D(5) xor D(6) xor D(8);

 ECC(2) <= D(1) xor D(2) xor D(4) xor D(7) xor D(8);

 ECC(3) <= D(0) xor D(1) xor D(3) xor D(6) xor D(7) xor D(8);

end InnHam;

===

-- Calculates the parity bit of all data bits along with an ECC

===

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Parity is

 Port (D : in std_logic_vector(0 to 8); -- 9-bit data array

 ECC: in std_logic_vector(0 to 3); -- 4-bit ECC array

 par: out std_logic -- parity bit

);

end Parity;

architecture Parity of Parity is

begin

 par <= ECC(0) xor ECC(1) xor ECC(2) xor ECC(3) xor D(0) xor D(1) xor

 D(2) xor D(3) xor D(4) xor D(5) xor D(6) xor D(7) xor D(8);

end Parity;

===

-- Calculates the parity bit of all data bits along with an ECC

===

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Encoder is

 Port (D : in std_logic_vector(0 to 8); -- 9-bit data array

 Co: out std_logic_vector(0 to 3); -- 4-bit outer ECC array

 Ci: out std_logic_vector(0 to 3); -- 4-bit inner ECC array

 Po: out std_logic; -- parity bit of outer codeword

 Pi: out std_logic -- parity bit of inner codeword

);

end Encoder;

architecture Encoder of Encoder is

 signal CoTmp: std_logic_vector(0 to 3);

 signal CiTmp: std_logic_vector(0 to 3);

begin

 OutH: entity work.OuterHamming port map(D => D, ECC => CoTmp);

 OutP: entity work.Parity port map(D => D, ECC => CoTmp, par => Po);

 InH: entity work.InnerHamming port map(D => D, ECC => CiTmp);

 InP: entity work.Parity port map(D => D, ECC => CiTmp, par => Pi);

 Co <= CoTmp;

 Ci <= CiTmp;

end Encoder;

Decoder.vhd

===

-- Compute Syndromes

===

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

110

entity Syndromes is

 Port (

 C, RC: in std_logic_vector(0 to 3); -- Read and recomputed Hamming

 P, RP: in std_logic; -- Read and recomputed Parity

 sC: out std_logic_vector(0 to 3); -- Hamming Syndromes

 sP: out std_logic -- Parity Syndromes

);

end Syndromes;

architecture Syndromes of Syndromes is

begin

 sC(0) <= '0' when C(0) = RC(0) else '1';

 sC(1) <= '0' when C(1) = RC(1) else '1';

 sC(2) <= '0' when C(2) = RC(2) else '1';

 sC(3) <= '0' when C(3) = RC(3) else '1';

 sP <= '0' when RP = P else '1';

end Syndromes;

===

-- Compute SE_DE

===

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity SE_DE is

 Port (

 sCq, sP: in std_logic;

 SEr, DEr: out std_logic

);

end SE_DE;

architecture SE_DE of SE_DE is

begin

 SEr <= '1' when (sCq = '1' and sP = '1') else '0';

 DEr <= '1' when (sCq = '1' and sP = '0') else '0';

end SE_DE;

===

-- Compute scalar of Hamming syndromes

===

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity ScalarHamSyn is

 Port (

 sC: in std_logic_vector(0 to 3);

 sCq: out std_logic

);

end ScalarHamSyn;

architecture ScalarHamSyn of ScalarHamSyn is

begin

 sCq <= '1' when sC(0) = '1' or sC(1) = '1' or sC(2) = '1' or sC(3) = '1';

end ScalarHamSyn;

===

-- Compute Error Address

===

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

111

entity ErrorAddress is

 Port (

 sC: in std_logic_vector(0 to 3);

 EAr: out integer

);

end ErrorAddress;

architecture ErrorAddress of ErrorAddress is

begin

 EAr <= to_integer(unsigned(sC));

 -- sC(0) * 16 + sC(1) * 8 + sC(2) * 4 + sC(3) * 2 + sC(4);

end ErrorAddress;

===

-- Decoder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use work.matrix_package.ALL;

entity Decoder is

 Port (

 D: in std_logic_vector(0 to 8); -- 16-bit data array input

 Co: in std_logic_vector(0 to 3); -- 4-bit outer ECC array

 Ci: in std_logic_vector(0 to 3); -- 4-bit inner ECC array

 Po: in std_logic; -- parity bit of outer codeword

 Pi: in std_logic; -- parity bit of inner codeword

 Dout: out std_logic_vector(0 to 8); -- 16-bit data array output

 ErrorDet : out std_logic

);

end Decoder;

architecture Decoder of Decoder is

 signal RCi, RCo: std_logic_vector(0 to 3); --Hamming/Parity recomputed signals

 signal RPi, RPo: std_logic;

 signal sPi, sPo: std_logic; --Syndrome signals

 signal sCi, sCo: std_logic_vector(0 to 3);

 signal sCiq, sCoq: std_logic;

 signal SErI, SErO: std_logic; --Single and Double Error flags

 signal DErI, DErO: std_logic;

 signal EArO, EArI: integer; --Inner and Outer Error Addresses

 signal Dtemp, DtempSEI, DtempSEO, DtempDE: std_logic_vector(0 to 8);

 signal addISE, addOSE, addIDE, addODE: integer;

 signal errPos: error_positions;

begin

 OutHamRec: entity work.OuterHamming port map(D => D, ECC => RCo);

 InnHamRec: entity work.InnerHamming port map(D => D, ECC => RCi);

 ErrorDet <= (RCo(0) or RCo(1) or RCo(2) or RCo(3)) or

 (RCi(0) or RCi(1) or RCi(2) or RCi(3));

 OutParRec: entity work.Parity port map(D => D, ECC => Co, par => RPo);

 InnParRec: entity work.Parity port map(D => D, ECC => Ci, par => RPi);

 entity work.Syndromes port map(C=>Ci,RC=>RCi,P=>Pi,RP=>RPi,sC=>sCi,sP=>sPi);

 entity work.Syndromes port map(C=>Co,RC=>RCo,P=>Po,RP=>RPo,sC=>sCo,sP=>sPo);

 InnScalHamSyn: entity work.ScalarHamSyn port map(sC => sCi, sCq => sCiq);

 OutScalHamSyn: entity work.ScalarHamSyn port map(sC => sCo, sCq => sCoq);

 InnSE_DE: entity SE_DE work.port map(sCq=>sCiq,sP=>sPi,SEr=>SErI,DEr=>DErI);

 OutSE_DE: entity SE_DE work.port map(sCq=>sCoq,sP=>sPo,SEr=>SErO,DEr=>DErO);

112

 InnErrAdd: entity work.ErrorAddress port map(sC => sCi, EAr => EArI);

 OutErrAdd: entity work.ErrorAddress port map(sC => sCo, EAr => EArO);

 errPos <= doubleErrorMap(EArO, EArI) when DErI = '1' and DErO = '1'

 else (x"00", x"00");

 addIDE <= to_integer(errPos(0)) when DErI = '1' and DErO = '1' else -1;

 addODE <= to_integer(errPos(1)) when DErI = '1' and DErO = '1' else -1;

 addISE <= to_integer(innerAddTab(EArI)) when SErI = '1' else -1;

 addOSE <= to_integer(outerAddTab(EArO)) when SErO = '1' else -1;

 GenerateSEI: for k in 0 to 8 generate

 DtempSEI(k) <= not D(k) when k = addISE else D(k);

 DtempSEO(k) <= not D(k) when k = addOSE else D(k);

 DtempDE(k) <= not D(k) when k = addIDE or k = addODE else D(k);

 end generate;

 Dtemp <= DtempSEI when SErI = '1' else

 DtempSEO when SErO = '1' else

 DtempDE when DErI = '1' and DErO = '1' else

 D;

 Dout <= Dtemp when EArI /= 0 and EArO /= 0 else D;

end Decoder;

Matrix_package.vhd

===

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

package matrix_package is

 type error_positions is array (0 to 1) of signed(7 downto 0);

 type signed_array is array (0 to 15) of signed(7 downto 0);

 type error_map is array (0 to 15, 0 to 15) of error_positions;

 constant outerAddTab : signed_array :=

 (

 to_signed(-1, 8), to_signed(-1, 8), to_signed(-1, 8), to_signed(2, 8),

 to_signed(-1, 8), to_signed(5, 8), to_signed(7, 8), to_signed(-1, 8),

 to_signed(-1, 8), to_signed(-1, 8), to_signed(3, 8), to_signed(0, 8),

 to_signed(4, 8), to_signed(1, 8), to_signed(6, 8), to_signed(8, 8)

);

 constant innerAddTab : signed_array :=

 (

 to_signed(-1, 8), to_signed(-1, 8), to_signed(-1, 8), to_signed(7, 8),

 to_signed(-1, 8), to_signed(6, 8), to_signed(-1, 8), to_signed(1, 8),

 to_signed(-1, 8), to_signed(0, 8), to_signed(4, 8), to_signed(-1, 8),

 to_signed(5, 8), to_signed(3, 8), to_signed(2, 8), to_signed(8, 8)

);

 constant doubleErrorMap : error_map :=

 (

 -- Row 0

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

113

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 1

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(0, 8), to_signed(3, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(6, 8), to_signed(8, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(1, 8), to_signed(4, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 2

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(1, 8), to_signed(8, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(4, 8), to_signed(6, 8)) -- Column 15

),

 -- Row 3

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(1, 8), to_signed(6, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(4, 8), to_signed(8, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

114

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(5, 8), to_signed(7, 8)) -- Column 15

),

 -- Row 4

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(0, 8), to_signed(8, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(3, 8), to_signed(6, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 5

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(3, 8), to_signed(8, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(0, 8), to_signed(6, 8)), -- Column 12

 (to_signed(2, 8), to_signed(7, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 6

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(2, 8), to_signed(5, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(3, 8), to_signed(4, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(0, 8), to_signed(1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 7

 (

115

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(0, 8), to_signed(4, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(1, 8), to_signed(3, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 8

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(6, 8), to_signed(7, 8)), -- Column 6

 (to_signed(0, 8), to_signed(2, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(1, 8), to_signed(5, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 9

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(2, 8), to_signed(3, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(4, 8), to_signed(5, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(7, 8), to_signed(8, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 10

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(5, 8), to_signed(8, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

116

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(4, 8), to_signed(7, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 11

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(1, 8), to_signed(7, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(5, 8), to_signed(6, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 12

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(2, 8), to_signed(8, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(3, 8), to_signed(7, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 13

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(0, 8), to_signed(7, 8)), -- Column 10

 (to_signed(2, 8), to_signed(6, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

117

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 14

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 4

 (to_signed(0, 8), to_signed(5, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(1, 8), to_signed(2, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

),

 -- Row 15

 (

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 0

 (to_signed(3, 8), to_signed(5, 8)), -- Column 1

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 2

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 3

 (to_signed(2, 8), to_signed(4, 8)), -- Column 4

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 5

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 6

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 7

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 8

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 9

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 10

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 11

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 12

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 13

 (to_signed(-1, 8), to_signed(-1, 8)), -- Column 14

 (to_signed(-1, 8), to_signed(-1, 8)) -- Column 15

)

);

end matrix_package;

118

