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“Twenty years from now you will be more dis-
appointed by the things that you did not do
than by the ones you did do.”
(Mark Twain)
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Prevendo a percepção misteriosa em rostos humanos virtuais
por meio de técnicas de visão computacional

RESUMO

Atualmente, a crescente presença de agentes conversacionais e humanos
virtuais na vida cotidiana tem atraído a atenção de pesquisadores, especialmente
no campo da psicologia. A percepção de rostos humanos emerge como um tema
relevante e amplamente investigado, especialmente considerando a interação com
personagens virtuais. Recentemente, estudos têm explorado a percepção de hu-
manos virtuais, destacando a sensação de estranheza — ou desconforto — que
pode ser gerada por determinadas representações, conceito central na teoria do
Uncanny Valley (UV). Este fenômeno pode influenciar significativamente nossa dis-
criminação perceptiva e cognitiva, tornando essencial compreender os mecanismos
que o sustentam, a fim de mitigar sua ocorrência na modelagem de humanos virtu-
ais. O presente trabalho tem como objetivo examinar a relação entre características
faciais e o nível de conforto que os indivíduos experimentam ao interagir com per-
sonagens animados gerados por Computação Gráfica (CG). Para isso, propomos e
desenvolvemos modelos interpretáveis que identificam áreas específicas do rosto
que podem desencadear desconforto, permitindo aprimoramentos que tornem es-
sas representações mais agradáveis tanto visualmente quanto interativamente. O
modelo mais eficaz, que utiliza uma técnica ensemble, alcança uma acurácia de
80%. Os resultados deste estudo têm potencial para impactar diversas áreas, como
o desenvolvimento de jogos, agentes conversacionais e a indústria cinematográfica,
contribuindo para a criação de personagens que evitem provocar estranheza nos



usuários. Para validar nossas abordagens, realizamos experimentos com partici-
pantes, coletando dados quantitativos e qualitativos que sugerem que os modelos
propostos operam conforme o esperado. Dessa forma, buscamos não apenas avan-
çar no entendimento das interações com humanos virtuais, mas também fornecer
diretrizes práticas para a melhoria de suas características, promovendo experiên-
cias mais agradáveis e confortáveis.

Palavras-Chave: Percepção visual, Humanos virtuais, Conforto, Vale da estra-
nheza, Reconhecimento facial.



Predicting Uncanny Perception in Virtual Humans Faces through
Computer Vision Techniques

ABSTRACT

Currently, the increasing presence of conversational agents and virtual hu-
mans in everyday life has attracted the attention of researchers, especially in the
field of psychology. The perception of human faces has emerged as a relevant and
widely investigated topic, especially considering the interaction with virtual charac-
ters. Recently, studies have explored the perception of virtual humans, highlighting
the feeling of strangeness — or discomfort — that can be generated by certain repre-
sentations, a central concept in the Uncanny Valley (UV) theory. This phenomenon
can significantly influence our perceptual and cognitive discrimination, making it es-
sential to understand the mechanisms that support it in order to mitigate its occur-
rence in the modeling of virtual humans. The present work aims to examine the
relationship between facial features and the level of comfort that individuals experi-
ence when interacting with animated characters generated by Computer Graphics
(CG). To this end, we propose and develop interpretable models that identify spe-
cific areas of the face that can trigger discomfort, allowing improvements that make
these representations more pleasant both visually and interactively. The most effec-
tive model, which uses an ensemble technique, achieves an accuracy of 80%. The
results of this study have the potential to impact several areas, such as game devel-
opment, conversational agents, and the film industry, contributing to the creation of
characters that avoid causing strangeness in users. To validate our approaches, we
conducted experiments with participants, collecting quantitative and qualitative data



that suggest that the proposed models operate as expected. In this way, we seek
not only to advance the understanding of interactions with virtual humans, but also
to provide practical guidelines for improving their characteristics, promoting more
pleasant and comfortable experiences.

Keywords: Visual perception, Virtual humans, Comfort, Uncanny valley, Face Recog-
nition.
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1. INTRODUCTION

The Computer Graphics (CG) area has stood out in the sophisticated cre-
ation of environments and characters. The similarity to the real world surprises
both researchers and users in the area of entertainment and areas such as health,
law, among others. Assessing the perceived quality of image and video content is
important in processing this data in various applications such as movies, games,
but also platforms that use images to communicate relevant information [SRLZ14].
Such area of visual perception is highly complex, influenced by many factors, not
fully understood, and difficult to model and measure [BLBI13]. For these reasons,
subjective assessments are still widely used, in which a group of human viewers
qualitatively assesses the images/videos [TC14]. However, some problems may
require quantitative assessment when subjective analysis is not possible.

Shahid et al. [SRLZ14] present a literature review on reference-free image
and video quality assessment methods. The main objective is to classify and discuss
the advances in the field, focusing on approaches that do not require a reference im-
age or video to compare quality. It addresses the main challenges faced by these
methods, such as the lack of a universal standard for measuring perceived quality
in visual content. The authors categorize the assessment methods into different
classes, such as distortion-based, machine learning, and hybrid approaches. They
discuss how specific techniques, such as entropy, visual feature statistics, and tex-
ture analysis, can be applied to detect visual distortions and predict perceived qual-
ity. Authors also emphasize the importance of deep learning-based models, which
have shown promising results in dealing with different types of distortions in videos
and images. The research suggests that while much progress has been made, there
is room for improvement, especially in developing more robust and efficient models
that can handle a variety of distortions and adapt to different application contexts.

The perceptual problem we are interested in investigating in this study is
known as the Uncanny Valley theory. In the 1970s, Japanese robotics professor
Masahiro Mori realized that when human replicas behave very similarly but not
identically to real human beings, they provoke revulsion among human observers
because subtle deviations from human norms make them look frightening. He re-
ferred to this revulsion as a drop in familiarity and the corresponding increase in
strangeness as Uncanny Valley [Mor70]. In recent decades, Uncanny Valley has
come to be considered in CG characters, whose image analysis can be inspired by



32

the characteristics of the human visual system (HVS), as mentioned by Sanches et
al. [SCMV03]. The authors created a mechanism for extracting guidance resources
based on physiological studies of visual perception, seeking to capture the user’s
subjectivity in relation to the image. Prendinger [PMI05] defines that studying UV in
the context of Computer Graphics images is a relevant case study. It is generally
agreed that there are characters that cause a bad feeling even if the best tech-
niques are used, as well as characters that cause a good feeling even if advanced
techniques are not used, as described in [FdMM+12].

The primary research question of this work is whether the facial charac-
teristics of CG characters, represented through image features, can help determine
when these images provoke a sense of strangeness in human perception. Con-
verting human perception into quantitative data, however, presents a significant
challenge due to the complexity of human visual perception and the nuances in
interpreting facial expressions and proportions. The human ability to detect small
anomalies in faces is highly developed, making it challenging to replicate the sub-
tleties of movement, texture, and natural symmetry required for CG faces to appear
realistic. Even minor distortions can evoke the Uncanny Valley effect, where a face
appears almost human but triggers perceptual discomfort. Factors such as light-
ing, exaggerated expressions, or a lack of natural variation in microexpressions also
contribute to this discomfort, further complicating the process of modeling CG faces.
Additionally, each observer may interpret the same facial features differently, making
it complex and challenging to develop a model capable of predicting these percep-
tions.

To address this complexity, we propose and build several methods to test
the validity of our hypothesis that image features can correspond with human per-
ception. We introduce original machine learning approaches across four main sce-
narios. In the first scenario, we use the Support Vector Machine (SVM) [DMND+21b]
algorithm to categorize the results into two classes: (1) causes strangeness, or (2)
does not cause strangeness—essentially, i.e., a binary classification. In the sec-
ond scenario, we employ a voting classifier (VC) [ZZCY14] using the same algo-
rithms to extract features from the images again classifying CG character faces
into the two classes. In the third scenario, we fine-tune a Convolutional Neural
Network (CNN) to compare with the previous methods. Fine-tuning involves train-
ing a pre-trained model on a specific dataset, allowing it to leverage prior knowl-
edge (from ImageNet) and adjust its final layers to adapt to new data. The neural
networks chosen for this task were VGG16 [SZ15a], ResNet50 [SZ15b], and Mo-
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bileNet [HZC+17]. In the fourth scenario, we propose using image entropy and Sup-
port Vector Regression (SVR) [Fle09] techniques to calculate the Computed Comfort
Score (CCS) [DMdAAM22] , a new quantitative metric we propose to evaluate CG
faces, resulting in a comfort value. In addition to the whole face, we generate com-
fort values and test the methods within parts of the face of Virtual Humans to find
out which part generates more strangeness. We also tested the Voting Regressor
(VR) [PVG+11] technique as a fifth scenario for comparison with the SVR model. In
addition to the entropy techniques mentioned in the fourth scenario, we used feature
extraction algorithms such as Hu Moments.

Following this line of research, this thesis also aims to ensure the inter-
pretability of the best models suggested to evaluate the characteristics of CG char-
acters’ faces and identify possible discomforts in human perception. We used the
LIME tool, a technique that can help identify the most important features and their
contributions to the model’s result in any instance. In this way, we can inform possi-
bilities for adjustments in the areas that cause discomfort, with the aim of providing
a more pleasant perception for humans.

1.1 Research Problem

The topic addressed in this doctoral thesis aims to develop a model ca-
pable of evaluating the face of a CG character and detecting whether this face can
cause discomfort in human perception. The features that are extracted from the face
should help detect a pattern that identifies the regions on the face that can generate
strangeness in human perception.

Many studies evaluate the strangeness perceived by participants based on
subjective analyses, using forms and performing some statistical analyses based
on people’s responses, such as Ho et al. [HMP08], Tinwell et al. [TGNW11], Flach
et al. [FdMM+12], Victor et al. [AMDM21] among others. However, to our knowl-
edge, no studies propose the analysis of discomfort in CG characters, estimating
subjectivity perception based on computational methods and image characteristics.
Researchers such as Limano [Lim19] recognize this is a difficult problem because it
is not obvious what makes a particular image comfortable or uncomfortable for view-
ers. Indeed, it is easy for humans to judge quickly on images in seconds because
various factors are implicitly used in this process. These factors can be related to
the individual’s experience and training throughout life. Diel et al. [DL22] investi-
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gate how familiarity, orientation, and realism affect the perception of strangeness in
faces, focusing particularly on how these variables sensitize observers to facial dis-
tortions. The authors propose that greater familiarity, appropriate orientation, and a
high degree of realism increase the sensation of strangeness by making observers
more perceptive of imperfections and distortions in faces. Another study of Diel et
al. [DL24] revisits the uncanny valley concept, proposing a perspective in which the
effect is better represented as a moderated linear function rather than a nonlinear
curve. The authors argue that observers’ perceptual specialization amplifies the
perception of strangeness in facial distortions. Using an experimental approach,
participants were exposed to a series of images of faces varying in degree of dis-
tortion. Perceptual specialization was manipulated through training tasks that in-
creased participants’ sensitivity to facial features. MacDorman [Mac24] carried out
a meta-regression analysis to measure the relationship between the humanization
(and dehumanization) of artificial beings and the perception of eeriness. The results
showed that humanization had a non-significant effect on the eeriness. In this case,
dehumanization means reducing the anthropomorphic level (human characteristics)
of the artificial being and is a theory originating in the field of Psychology [KL22]. In
other words, a human being feels uncomfortable when the artificial being does not
have human characteristics. So, understanding how humans perceive and interpret
visual information is crucial for enhancing the realism, believability, and overall qual-
ity of VHs and environments, so that the audience (human beings) feel good and
comfortable. Furthermore, as MacDorman’s work showed the importance of human
characteristics in UV theory, it also shows how the stimulus is related to causing
strangeness or not. Considering that the stimulus that a VH has is important for the
perception of eeriness, some studies have used eye tracking to measure regions of
interest in VHs in relation to UV theory. Studies by Cheetham et al. [CW19], Schwind
et al. [SWH18], and Grebot et al. [GCdL+22] showed that regions of the nose, eyes,
and mouth are important areas for transmitting or not strangeness to those observ-
ing VHs. As CG progresses, the consideration of human perception will remain an
important aspect in creating more immersive and compelling virtual experiences.

The main hypothesis of this work is related to extracting features that can
be used to detect the strangeness perceived by humans. Although there are many
studies related to the Uncanny Valley theory, there seem to be many paths to ex-
plore in relation to human perception. Another concept that can be used to justify
our process is the quality of the perceptual image. The work of Lin et al. [LK11]
contributes to assessing the quality of images/videos in CG and animation by deal-
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ing with Perceptual Visual Quality Metrics (PVQMs). They suggest that modeling
human perception can play a crucial role in many CG tasks, as Tumblin and Fer-
werda [TF01] argue that the purpose of CG is to manage how humans perceive it
rather than merely controlling light.

Despite the significant progress made so far, no interpretable model has
been developed that can both detect awkwardness or discomfort in characters faces
and suggest improvements in designing by identifying expressive features, such as
facial proportions, cartooning effects, or facial movements. To address these chal-
lenges, we propose developing a model based on the extraction of relevant features
from characters faces to better understand and identify human perception. The main
and specific objectives of this thesis are outlined below.

1.2 Goals

The primary objective of this thesis is to develop a computational model
that extracts various features from the faces of CG characters to predict the sense
of strangeness that humans may perceive. By analyzing the predicted perceived
comfort and providing an explanation for such perceptions, designers can improve
the creation of CG characters for use in various fields, such as gaming, film, health-
care, and legal contexts. This ensures that interactions with these virtual agents will
be smoother and more natural, making people feel more comfortable, even during
potential interactions.

1.2.1 Specific Goals

In order to achieve the main goal, some specific goals are proposed, as
follows:

• Creation of Dataset with images/videos. It is composed of faces of virtual
humans that were subjectively evaluated by humans who perceived strangeness
in some of these characters and not in others. This dataset is composed of 40
characters and 13402 images

• Study of Image Feature Extraction Techniques. Here, we investigate many
techniques from face detection using Viola-Jones [VJ+01], OpenFace [BRM16]
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and MediaPipe [LTN+19] to other extractors such as Saliency ([JZW18]), Hu
Moments [ŽHR10], Histogram of Oriented Gradients (HOG) [DT05], Image En-
tropy [Spo96], Golden Ratio [SMS08], among others.

• Study of machine learning techniques. Many possible techniques could
be used. We used the Support Vector Machine (SVM) [Fle09], Support vec-
tor Regressor (SVR) algorithm also using Sklearn 1 and the voting classi-
fier [ZZCY14] and regressor [KS14] techniques. In this thesis, we also investi-
gated the Convolutional Neural Networks (CNNs). VGG16 [SZ15a], Resnet50 [SZ15b]
and MobileNet [HZC+17] were the neural networks chosen for this task.

• Proposal of metrics to compute the perceived comfort. While in some
of our studies, we investigate the binary classification of perceived comfort,
we also propose a way to estimate a perceived comfort value in the interval
[0;100].

• To produce texts and scientific contributions. We intend to produce new
ground in this challenging area through new publications.

1.3 Text Structure

The text is divided into six chapters. This chapter presents an introduction
to the subject of this thesis, presenting the research problem and its relevance, as
well as the goals of this work.

Chapter 2 present several works related to the theme of this thesis. Such
works involve concepts related to human perception, uncanny valley theory, ani-
mated CG characters, and perceptual image quality.

The Chapter 5 presents the proposed model with the goal of building a
computational model for assessing discomfort as perceived by humans.

Chapter 6 presents and discusses the experimental results achieved by
this work. Such results involve tests on each resource, as well as to find out if there
is an aim perception of discomfort equivalent to the subjective process of research
with the human being.

Finally, Chapter 7 concludes the work and presents the final considerations.

1https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html



2. RELATED WORK

This chapter presents some methods that borrow a theoretical foundation
for this thesis and are related to the goals this work aims to achieve.

The organization of the chapter is following described: First, we present a
concept of perception according to Tumblin and Ferwerda [TF01], then Section 2.1
discusses Mori’s theory of Uncanny Valley. Section 2.2 discusses the impact of
visual perception area on some industries. Shows some work that deals with the
strangeness of animated characters, with asynchronicity of eye movements, mouth
movements, audio, and visual being mentioned, among others.

In Section 2.3, we present some authors that work with methodologies
used in the literature on the perception of video/image quality.

The proposed concept of Tumblin and Ferwerda [TF01] is well suited for
this research:

“Perception connects our minds to the world around us. And the host of
processes that converts all the measurable physical stimuli that our bod-
ies receive into an awareness of our environment. Its inputs are physical
and measurable, but its outputs are purely psychological. Perception
gives us an immediate, moment-by-moment estimate of reality and pro-
vides the basics of where we are and what is happening around us—the
initial information needed to understand and interact with our environ-
ment. Perception is much more than a simple measurement of physical
stimulus. It is not a passive measurement of light, sound, pressure, or
chemical vapors that impinge on our sensory organs. It is a set of pro-
cesses that actively construct mental representations of the world from
raw, noisy, and incomplete sensory signals."

2.1 The Uncanny Valley Theory

In 1970, Masahiro Mori [Mor70], a pioneer in Japanese robotics, proposed
a hypothetical graph predicting that as a robot’s appearance becomes more human-
like, it also becomes more familiar and appealing—until it reaches a point where
subtle imperfections make the robot appear unsettling, just before achieving full hu-
man likeness. The examples tested are illustrations of Ishiguro’s [Ish06] Uncanny
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Valley theory. Mori [Mor70] associated the sense of eeriness with the robot’s appear-
ance and observed that as a robot’s resemblance to a human increased, it became
more familiar and pleasing to viewers. However, at a certain threshold (around 80%
human likeness), the robot was perceived as more strange than familiar. When a
robot’s appearance closely resembled a human, but still fell short, it triggered a neg-
ative emotional response in the viewer. Figure 2.1 shows a visualization of Mori’s
Theory, showing familiarity steadily increasing (y-axis) as perceived human resem-
blance increases (x-axis) and then sharply decreasing, causing the trough.

Figure 2.1: Mori’s theory of perceived familiarity as a function of human likeness
until the Uncanny Valley effect occurs. Source: Prakash et al. [PR15].

Regarding the psychology of the stranger, Freud [Lyd97] characterized the
strange as a feeling caused when it is impossible to detect whether an object is
animate or inanimate when encountering objects such as wax dolls. According to
Ho et al. [HMP08], the feeling of strangeness perceived in robots with human-like
appearance and animated characters can be a key factor in our perceptual and
cognitive discrimination.

For Tinwell et al. [TGNW11], the idea is like that of Ho et al. [HMP08], i.e.,
the phenomenon of Uncanny Valley means that the virtual characters are too similar
to humans, evoking a negative reaction to the observer, as they look and behave
differently from what would be considered a common pattern in human beings. In
the article by Prakash et al. [PR15], one of the main objectives was to investigate
people’s initial perceptions of robots when there is a lot of human similarity in the
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robot’s face. Even more so when the robot aims to assist in tasks commonly per-
formed by humans. The results showed that people’s perceptions of robot faces
vary as a function of the robots’ human resemblance. People tend to generalize and
create expectations about the behavior and capabilities of a human-looking robot.

2.2 Uncanny Valley and Computer Animation Industry

The Uncanny Valley study is not just concerned with the acceptance of
robots by humans. The animation and special effects industries are also con-
cerned that studios could lose money and audiences if audiences cannot relate to
CG characters in animations because of Uncanny Valley. According to Hanson et
al. [HOP+05], new challenges for computer animation and simulations include con-
textualization in conversations, human perceptions and environments, and having
control over motives or decisions. These needs are associated with today’s increas-
ingly improved graphic realism, which, as Prakash [PR15] says, makes humans
expect more realistic behavior.

Today, computer animation is increasingly used to address ethical and
moral issues in both the legal and medical professions and even for recruitment, as
Von Bergen et al. [Von10], have reported. Therefore, there was concern about eval-
uating the appearance and behavior of CG characters in the context of the Uncanny
Valley, which is associated with human likeness and has numerous applications,
as demonstrated by Tinwell et al. [TGNW11]. Through several studies in this area
of animation, some characteristics in CG characters already demonstrate greater
strangeness to the human being, as follows:

• Actions perceived as unnatural, such as rigid or abrupt movements, in the
study by Bailenson et al. [BSH+05];

• Lack of human similarity in the speech and facial expression of a character, in
the studies by Tinwell et al. [TGNW11];

• Perception of lip-sync error that may be voice before lip movement or vice
versa, according to studies by Gouskos et al. [Gou06]

The Uncanny Valley evoked by animated characters may have similar ori-
gins to any man-made objects that mimic life as we know it, such as realistic, human-
like but virtual characters. This nature of objects (animate or inanimate) may be
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perceived as less trustworthy, according to Kang [Kan09], as there is ignorance and
unpredictability in terms of expected behavior.

Schein et al. [SG15] investigate the relationship between mind perception,
the experience of the uncanny valley, and social and emotional responses to human-
like entities. This work explores how mind perception, or lack thereof, contributes to
this response. Through a series of experiments, they showed that eyes that appear
empty or devoid of life increase the feeling of uncanny, suggesting that mind percep-
tion is strongly linked to emotional responses to the uncanny valley. Furthermore,
the study relates this information to characteristics of the autism spectrum, where the
perception and interpretation of eyes and facial expressions can be different. People
with autism may experience the uncanny valley differently due to these differences
in mind perception. This suggests that variations in sensitivity to detecting the mind
through two eyes may significantly influence social and emotional responses.

Schwind et al. [SWH18] addresses the challenges of creating virtual char-
acters that avoid the uncanny valley effect. The authors explore several realistic
aspects of this phenomenon, discussing how small imperfections in highly important
people can lead to negative emotional responses. They highlight the financial im-
plications of this effect, citing examples such as the film Mars Needs Moms 1 and
video games such as L.A. Noire 2 and Mass Effect: Andromeda 3, which have faced
criticism and financial losses due to the disturbing design of their characters. The
research suggests several strategies for mitigating the uncanny valley effect. These
include focusing on beautiful realism in movements and expressions, as well as en-
suring consistent levels of detail across different aspects of character design. The
goal is to create characters that are stylized enough to avoid direct comparison to
real or realistic humans, or enough to avoid perceived errors that cause discomfort.

The work proposed by Flach et al. [FdMM+12] has the hypothesis of verify-
ing whether CG characters suffer from Uncanny Valley, as did the beings tested by
Mori [Mor70]. Based on this objective, when trying to analyze the results of the sub-
jectivity of the video/image quality in terms of the Uncanny Valley effect, the authors
selected and evaluated some characters, following some criteria such as:

• Human similarity of each character, with some being chosen with lesser and
greater human precision. Example: cartoons have little similarity;

1https://disney.fandom.com/wiki/Mars_Needs_Moms
2https://www.rockstargames.com/br/games/lanoire
3https://www.ea.com/pt-br/games/mass-effect/mass-effect-andromeda

https://disney.fandom.com/wiki/Mars_Needs_Moms
https://www.rockstargames.com/br/games/lanoire
https://www.ea.com/pt-br/games/mass-effect/mass-effect-andromeda


41

• If it is public knowledge, considering the origin of the character, which can be
a movie, a game or an unknown origin; and

• Restrictions on videos, the characters could not have strong emotions, they
should be in natural environments, with common clothes, to avoid perceptual
distortions.

After analyzing 12 characters, the authors [FdMM+12] observed the cre-
ation of the graph Figure 2.2.

Figure 2.2: This graph resulted from Flach et al. [FdMM+12] is similar to the original
curve of Mori’s Uncanny Valley [Mor70]. The vertical axis indicates the percentage
of people who felt comfortable with the characters, while the horizontal axis shows
the character’s resemblance to humans.

There are many studies conducted with CG characters to evaluate empathy
between human characters. The research by Prendinger et al. [PMI05] investigates
empathy between the virtual character and the human and shows, as a result, the
reduction of stress in the human’s perception, when developing activities with em-
pathetic characters. An example is medical training systems in which it is essential
that human characteristics are imitated with high precision in virtual characters, in
order to obtain positive responses from participants, as shown in the work of Robb
et al. [RKA+13]. The work of Dunsworth et al. [DA07] also shows that it is possi-
ble to generate an emotion in the participant when working with learning systems,
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having a relevant influence on memory retention. This shows that if a system can
extract emotions from a participant, then the probability of associating emotions with
activities can be relevant.

In the article by Araujo et al. [AMDM21], the authors conducted a percep-
tual study, which analyzed people’s perception of characters created using Com-
puter Graphics from different media (films, series, animations, simulations, among
others). The objective was to find out if people today feel more comfortable with
CG characters than people in the past. Araujo et al. replicated the work of Flach et
al. [FdMM+12], analyzing characters from different media. In addition, they included
current characters to compare perceptual data from 2012 and 2020. The results
show that, in some cases, people today are more comfortable with current char-
acters. However, the perception of comfort with old characters was similar in both
periods, indicating that characters from older technologies still generate comfort.
The figure 2.3 shows the virtual characters worked on by Araujo et al. [AMDM21].

Figure 2.3: All the characters used in the work of Flach et al. [FdMM+12] with Flach’s
order in (a), and Araujo’s order [AMDM21] in (b). Both blue and orange lines, in (a)
and (b), represent the percentages of comfort of each character in image and video,
as perceived in 2012. The green and yellow lines represent the same in (b), however,
evaluated in 2020. In addition, in (a), It can see the significant results (highlighted in
red) of the comparisons of the characters perceived in 2012 and 2020 (the results
related to images were above the lines, the results related to videos were below the
lines).

The study by Ho et al. [HM10] compares animated human characters and
robots, comprising a total of 10 videos. Five characters are animated, as shown in
Figure 2.4: (1) Final Fantasy: The Spirits Within, (2) The Incredibles and (3) The
Polar Express, (4) an Orville Redenbacher popcorn advertisement and (5) a tech-
nological demonstration of the video game Heavy Rain. In this study, characters (1)
and (3) are shown as generators of strangeness in human perception. Character (4)
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left some participants disturbed by the digital resurrection of entrepreneur Orville Re-
denbacher. Other participants accepted the character as a real person. Therefore,
the authors consider it relevant to explore demographic factors that can influence the
intensity of emotional responses. Therefore, according to the research, characters
(1), (3) and (4) would cause strangeness and characters (2) and (5) would not cause
the same feeling.

Figure 2.4: The five video clips on the top row contain computer-animated human
characters from the films (1) Final Fantasy: The Spirits Within, (2) The Incredibles,
and (3) The Polar Express, (4) an Orville Redenbacher popcorn advertisement, and
(5) a technology demonstration of the Heavy Rain video game. The remaining five
video clips contain (6) iRobot’s Roomba 570, (7) JSK Laboratory’s Kotaro, (8) Han-
son Robotics’s Elvis and (9) Eva, and (10) Le Trung’s Aiko, [HM10].

Katsiry et al. [KMT17] hypothesize that semi-realistic film characters are
more acceptable in Uncanny Valley, receiving a much higher weirdness rating than
other characters. Characters such as Beowulf and The Polar Express are included in
this list. Their goal is to include a comprehensive set of motion-capture animated film
characters in the semi-realistic animation category. This study is based on the input
of fifty-four participants, who were asked to rate five parts of films related to cartoons,
semi-realistic, and human-action films. Fifteen characters are used in this research,
of which 5 are semi-realistic, 5 are cartoons, and 5 are human characters. Only
the first 5 will be mentioned, such as Final Fantasy: The Spirits Within (“Aki Ross”),
Polar Express (nameless boy), Beowulf (“Beowulf”), Mars needs moms (“Milo”), The
Adventures of Tintin: The Secret of the Unicorn (“Tintin”), The Incredibles (“Mr. In-
credible”), Meet the Robinsons (“Lewis”), Cloudy with a Chance of Meatballs (“Flint
Lockwood”), Arthur Christmas (“Arthur Christmas”), Epic (“MK”). The results of the
research show that the more semi-realistic the character, the stranger it seems to
people. According to the research, of these 5 semi-realistic characters, Beowulf
and Polar Express were the ones that caused the most strangeness in the partici-
pants, but all 5 cause strangeness perceptually. The method used to evaluate the
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strangeness of the characters was through questionnaires to the participants and
was related to motion capture. In semi-realistic animated films, authors linked the
inclusion criteria to the fact that these films are fully computer-animated, utilize mo-
tion capture techniques, and intentionally strive for high levels of human likeness.
The decision to include motion capture animation as a criterion was based on the
observation that many films, such as The Polar Express, have faced common criti-
cism within the Uncanny Valley (UV) context due to their use of these techniques.

The study by MacDorman et al. [MGHK09] does not directly examine CG
characters resulting from films or videos. The goal of the study is to look for some
characteristics that can overcome the Uncanny Valley, trying to discover some of
its causes and propose design principles to help photorealistic human characters
escape the uncanny valley. Four studies are conducted dealing with facial propor-
tions, skin texture, and the level of detail of a computer-generated human character
that were varied to examine their effect on the perception of uncanny similarity. The
cause of UV indicated in the study refers to the involvement of affective and motor
processing that are simultaneously active in the perception of human-like forms. Al-
though the study by MacDorman et al. [MGHK09] does not refer to CG characters
in films and video games, which is the focus of our research, it cites many CG char-
acters in literature. The authors consider that computer graphics (CG) characters
are challenging our ability to discern what is human. They cite characters that were
created with the intention of making people uncomfortable, such as the CG charac-
ter Davy Jones from Pirates of the Caribbean: At World’s End, who was created to
be scary and seem supernatural. The same idea applies to the CG villain Gollum in
The Lord of the Rings trilogy. On the other hand, characters designed to look like
real people have been less convincing, such as the CG heroes in The Polar Express
and Final Fantasy: The Spirits Within. Through this study, we identified 4 characters
that are both unfamiliar to the audience and generally frightening.

According to the research by Geller et al. [Gel08], one of the methods they
analyze is motion capture (mocap). The authors define the essential idea of mocap
as being a way of tracking the actual movements of human performers, through the
use of dozens or hundreds of trackable points on their bodies, and then converting
the tracked data into vectors that effectively replicate their movements. The authors
consider that vectors can serve as automated or manual guides for traditional ani-
mation.

The opinion of Hal Hickel, the animation supervisor at Industrial Light &
Magic who worked on the Pirates of the Caribbean films, is presented in this study
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and indicates that mocap overcame virtually all of the extraneous effects in repli-
cating gross body movement. Hickel considers facial movement to be the most
problematic area of the body. In the 2002 film Harry Potter and the Chamber of
Secrets, he further improved the appearance of CG skin, giving it a realistic translu-
cency. According to Hickel, mocap eliminates the uncanny valley of body movement,
but still impairs the eyes and facial performance. The study by Geller et al. [Gel08]
points out some characters referenced in literature that scare people. In the film
The Polar Express 4, the authors show that there would be a need for filmmakers
to stylize their characters away from realism in order to make them effective. The
films Beowulf (Grendel) 5 and Lord of the Rings (Gollum) 6 show that a good way
to avoid the Uncanny Valley would be to change the proportions and structure of
a character. This is a justification for Gollum’s success, as he has large eyes and
a non-human face shape. Regarding Grendel in Beowulf, the authors’ justification
for not causing strangeness is that the character is disfigured and deformed. In this
way, the audience’s subconscious would consider him non-human. But when you
evaluate the character as human, the viewers realize what is missing.

MacGillivray et al.[Mac07] mapped popular animated characters, creating
graphs for image and movement. They explored how these elements influence em-
pathy, using Mori’s Uncanny Valley theory[Mor70] as a basis. The study analyzed
popular animations to understand the gap between what people see and what they
perceive, highlighting the importance of imagery, movement, and timing in evoking
empathy. The research also noted that while abstract symbols take time to decode,
perceived images are instantly understood, regardless of cultural background. The
study included characters such as Dumbo, Bugs Bunny, Bambi, and others. Of the
ten characters analyzed, only those from Polar Express and Final Fantasy caused
discomfort.

Yekti’s study [Yek15] compares the Uncanny Valley theory in 3D stop-motion
animation and 3D computer-generated (CG) animation, analyzing their aesthetics.
In stop-motion, the physical and tactile characteristics are related to real touch, ma-
terial and texture, while in 3D CG animation, these characteristics are linked to re-
alism and verisimilitude. The author discusses how imperfection in stop-motion is
seen as a charm, while in CG animation, technical flaws are perceived as defects,
often generating discomfort, exemplified by the films The Polar Express and Final

4https://www.warnerbros.com/movies/polar-express
5https://pt.wikipedia.org/wiki/Beowulf_(2007)
6https://www.warnerbros.com/movies/lord-rings-fellowship-ring

https://www.warnerbros.com/movies/polar-express
https://pt.wikipedia.org/wiki/Beowulf_(2007)
https://www.warnerbros.com/movies/lord-rings-fellowship-ring
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Fantasy 7. The study also addresses four films: Coraline 8 and Fantastic Mr. Fox
(stop-motion) 9, and The Adventures of Tintin 10 and Up 11 (CG), highlighting the un-
canny observed in scenes from The Adventures of Tintin, despite the use of motion
capture.

The study by Mustafa et al. [MGT+17] investigates Mori’s hypothesis that
uncanny effects increase with movement in computer graphics (CG) characters. Us-
ing electroencephalography (EEG), they analyzed the neural responses of partic-
ipants watching videos of CG characters and real humans. The results showed
clear differences in brain responses to highly realistic CG faces, such as Digital
Emily, compared to real humans, indicating an "uncanny" response. From these
responses, they trained a support vector machine (SVM) to categorize characters
based on EEG data, predicting whether they would be perceived as uncanny. The
study included realistic characters from games such as Detroit: Become Human 12

and tools such as the Virtual Human Toolkit.

Tinwell et al. [TGW10] study explores the relationship between the percep-
tion of uncanny in virtual characters and human-likeness in movement and sound
attributes, particularly in survival horror games. With 100 participants, videos of 12
virtual characters and one human were evaluated, and the results showed that ex-
aggerated movements and strange sounds accentuate the Uncanny Valley effect,
making the characters more frightening. The horror genre was highlighted as an
example of where uncanny can be purposefully exploited to provoke fear in play-
ers. Participants rated the characters on scales of 1 to 9, considering how human
and uncanny they seemed, as well as aspects such as voice synchronization and
lip movement. Characters were rated according to familiarity (characters 1 to 6 and
13) or uncanny (characters 7 to 12), with characters 2 and 3 on the threshold be-
tween these categories. The authors highlight how exaggerated facial expressions
or lack of synchrony between sound and movement can intensify the perception of
strangeness in virtual characters. Figure 2.5 shows the virtual characters and a real
human worked by Tinwell et al. [TGW10].

7https://en.wikipedia.org/wiki/Final_Fantasy:_The_Spirits_Within
8https://www.laika.com/our-films/coraline
9https://pt.wikipedia.org/wiki/Fantastic_Mr._Fox

10https://www.tintin.com/en/videos/460/the-adventures-of-tintin-trailer-
11https://movies.disney.com/up
12https://www.quanticdream.com/en/detroit-become-human

https://en.wikipedia.org/wiki/Final_Fantasy:_The_Spirits_Within
https://www.laika.com/our-films/coraline
https://pt.wikipedia.org/wiki/Fantastic_Mr._Fox
https://www.tintin.com/en/videos/460/the-adventures-of-tintin-trailer-
https://movies.disney.com/up
https://www.quanticdream.com/en/detroit-become-human
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Figure 2.5: The videos include six realistic, human-like characters: (1) Emily Project
(2008a) (2) and the Warrior (2008b) by Image Metrics; (3) Mary Smith from Quantic
Dream’s technical demo, ’The Casting’ (2006); (4) Alex Shepherd from Silent Hill
Homecoming (Konami 2008); two avatars, (5) Louis and (6) Francis, from Left 4
Dead (Valve 2008); four zombie characters, (7) a Smoker, (8) The Infected, (9) The
Tank and (10) The Witch, from left 4 Dead; (11) a stylized human Chatbot character,
’Lillien’ (Daden Ltd. 2006); (12) a realistic, human-like zombie (’Zombie 1’) from the
video game, Alone in the Dark (Atari Inc. 2009); and (13) a real human, [TGW10].

2.3 Image Quality

Some areas define characteristics to analyze image quality, as presented
by Shahid et al. [SRLZ14]. For the image quality level to be determined, it is im-
portant to consider the application. For example, in the case of image compression
applications such as Nill et al. [Nil85], less traffic will be generated on the network,
taking up less storage space, with a reduction in quality. In the case of videos,
compression occurs through similarity analysis in neighboring frames.

Among the factors to be considered is the amount of colors, which has a
direct relationship with the viewer’s comfort. The consequence is a greater number
of bits of information to be transmitted. Assuming that the application is videocon-
ferencing, the use of grayscale does not harm the service provider. But for a TV
network, this quality would not be acceptable.

The image resolution must also be evaluated, which is related to the amount
of pixels between rows and columns, as Gu et al. [GLZ+15] discusses. Resource
that influences the shapes of the image, being natural for those who see them. The
fewer pixels, the more jagged the image, and the rounded shapes will lose quality
for lack of pixels. Again, it is necessary to evaluate the acceptable amount of pixels
between rows and columns, depending on the application.
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Finally, we must consider the number of frames per second, as Pinson et
al. [PW04] treats. Studies show that the minimum acceptable frame rate for a person
to assimilate the movements of a video as natural is 24 frames per second. For this
reason, providers need to decide the number of acceptable frames per second, as
is the case with TV movies, remote videos that need 24 or more frames per second.

2.3.1 Objective Image Quality Assessment

The purpose of Objective Image Quality is to design mathematical models
that can predict the quality of an image accurately and also in an automated way.
The proposed methods must be able to mimic the quality predictions indicated by
the average of human observers. According to Wang et al. [WB06], the methods
can be classified into three categories:

• Full-reference image quality assessment (FR-IQA): the reference image is fully
available. The scope of application of these metrics includes image compres-
sion, according to Ma et al. [MLN10], inclusion of watermark that can distort
the image, as Zhang et al. [ZLLN11] treated, and so on. against. Here are
some methods that are used:

– mean squared error (MSE): denotes the power of distortion, ie the differ-
ence between the reference and test images.

– structural similarity index (SSIM): assumes that the HVS is highly adapted
to extract structural information from a scene.

– multiscale structural similarity index (MS-SSIM): it is the same as the
SSIM but in multiple scales. The advantage of multiple scale methods
like MS-SSIM over single scale methods like SSIM is that in multiple scale
methods, image details at different resolutions and display conditions are
incorporated into the algorithm. of quality assessment.

– visual information fidelity (VIF): models natural images in the wavelet do-
main using Gaussian scale mixtures (GSMs).

– most apparent distortion (MAD): assumes that the HVS employs different
strategies when judging image quality.

– feature similarity index (FSIM): is based on the fact that HVS understands
an image mainly because of its low-level features, eg edges.
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• Reduced-reference image quality assessment (RR-IQA): only partial informa-
tion about the reference image is available. Several features are taken from
the reference image. These features are used as secondary information to
assess the quality of the test image. There are several applications, such as:
tracking the level of visual quality degradation of image and video data trans-
mitted by visual communication networks in real time. According to Rehman
et al. [RW12] this category can be classified into three methods:

– Methods based on the models of the image source: are statistical models
that capture low-level statistical features of natural images.

– Methods based on capturing image distortions: The methods in this cat-
egory are most useful when enough information about image distortions
is available.

– Methods based on the models of human visual system: in designing
methods in this category, physiological or psychophysical studies can be
used.

• No-reference image quality assessment (NRIQA): Neither the reference image
nor its resources are available for quality assessment. However, humans can
often efficiently assess the quality of a test image without using any reference
images. This is probably due to the fact that our brain contains a lot of infor-
mation about what an image should or should not look like in the real world,
according to Wang et al. [WB06].

According to Shahid et al. [SRLZ14], image quality metrics can also be
classified according to only a specific type of degradation, for example: blur, block
or touch. One can also take into account all possible signal distortions, i.e. various
types of artifacts. Here are some attributes:

• Sharpness determines the amount of detail an image can convey. The sharp-
ness of the system is affected by the lens (quality of design and fabrication,
focal length, aperture and distance from the center of the image) and sen-
sor (count of pixels and anti-aliasing filter). Can be affected by camera shake
(a good tripod can be helpful), focus accuracy, and atmospheric disturbances
(thermal effects and aerosols).

• Noise is estimated as the difference between the image and a median-filtered
version of the image.
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• Dynamic range (or exposure range) is the range of light levels that a camera
can capture. It is closely related to noise.

• Tone reproduction is the ratio between the luminance of the scene and the
brightness of the reproduced image.

• Contrast, also known as gamma, is the slope of the tone reproduction curve
in space. High contrast often involves loss of dynamic range - loss of detail or
clipping, in highlights or shadows.

• Color accuracy is an important but ambiguous image quality factor. Many view-
ers prefer enhanced color saturation; the most accurate color is not necessarily
the nicest. However, it is important to measure the color response.

• Distortion causes straight lines to curve. Can be problematic for architec-
tural photography and metrology (photographic applications involving mea-
surement). Distortion tends to be noticed on low-end cameras, including cell
phones and low-end DSLR lenses.

• Vignetting, or light falloff is the process of darkening images near the corners.
It can be significant with wide-angle lenses.

• Exposure accuracy can be an issue with fully automatic cameras and with
video cameras where there is little or no opportunity for tonal adjustment after
exposure. Some even have exposure memory. Exposure may change after
very bright or dark objects appear in a scene.

• Lateral chromatic aberration (LCA) causes colors to focus at different distances
from the center of the image. It is most visible near the corners of images.
LCA is worse with asymmetric lenses, including ultra-wide, true telephotos
and zooms. It is strongly affected by demosaicing.

• Lens flare is diffused light in lenses and optics caused by reflections between
lens elements and the inner lens body. This can cause image blurring (loss of
shadow detail and color), as well as "ghosting" images that can occur in the
presence of intense light sources in or near the field of view.

• Color moiré is an artificial color band that can appear in images with repetitive
patterns of high spatial frequencies, such as fabrics or fences. It is affected by
the sharpness of the lens, the anti-aliasing (low-pass) filter that smoothes the
image. It tends to be worse with sharper lenses.
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A review of methodologies used in the literature was carried out by Lévêque
et al. [LLB+18] on the perception of video/image quality. The author comments that
despite the continuous evolution in how to view content acquired, stored, accessed
by users, distortions still occur. In addition, Lévêque [LLB+18] also comments on
the perceptual quality in images and videos that can be affected by human influ-
encing factors that refer to human characteristics. They can be classified into two
categories:

• Low-level which refers to the processing of factors of physical, emotional and
mental influence of the human being.

• High-level which refers to the processing of demographic and socio-economic
influence factors.

Estimating subjectivity and perception in image quality, according to Schuyler
et al. [Smi] is useful in many areas. An example might be in creating CG characters.
If there is a precise measure, the entertainment industry can use this metric to avoid
the discomfort that the human being can feel in relation to a certain character.

For these reasons, we believe that using statistical characteristics of the im-
ages from the image quality area, treated in Liu et al. [LLHB14], can prove promising
in the assessment of comfort of the animated characters’ faces. Support vector re-
gression (SVR) is used to predict the average human opinion score on comfort with
these various NSS features as input.

Researchers acknowledge that this is a difficult problem, because it is not
obvious what makes a particular image comfort or discomfort to viewers. It is easy
for human beings to quickly judge images in seconds, because several factors are
implicitly used in this process, which are related to the individual’s experience and
formation throughout his life.

2.3.2 The Intersection of Image Quality and the Uncanny Valley Theory

Image quality and the Uncanny Valley theory are fundamental concepts
that address the viewer’s visual perception and emotional experience. While image
quality refers to the clarity, color fidelity, and other attributes that contribute to the vi-
sual appreciation of an image, the Uncanny Valley theory suggests that near-realistic
representations of humans can elicit a sense of eeriness or discomfort.
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Image quality is a crucial factor in the aesthetic experience, directly influ-
encing the viewer’s emotions. High-quality images generally generate positive emo-
tional responses, while low-quality images can result in disinterest or discomfort.
This phenomenon is closely related to the Uncanny Valley theory, which proposes
that as a digital representation approaches human realism, small imperfections be-
come more evident, causing aversion. When an image is near-realistic but has flaws,
the viewer’s frustration can be heightened, resulting in a negative visual experience.

In addition, both image quality and the Uncanny Valley theory have sig-
nificant implications for graphic design, robotics, and animation. In graphic design,
attention to image quality is essential to creating content that resonates with audi-
ences. Designers who ignore these aspects can inadvertently trigger the Uncanny
Valley by creating human representations that fail to capture the desired authentic-
ity. In robotics and animation, it is vital to find a balance between realism and style,
avoiding the emotional disconnect that the Uncanny Valley can create.

The connection between image quality and the Uncanny Valley also high-
lights the importance of aesthetic perception and emotional response. While image
quality focuses on technical elements, Uncanny Valley theory addresses the limita-
tions of similarity and the psychological effects of near-human representations. This
relationship highlights that, in any art form or technology, understanding and apply-
ing these concepts can improve viewer engagement and promote a more engaging
and satisfying experience.

For this reason, we believe that the relationship between image quality and
Uncanny Valley theory is a rich and relevant area for understanding visual and emo-
tional perception. Understanding how these concepts interact can not only improve
the quality of visual representations, but also contribute to the creation of more au-
thentic and engaging experiences across disciplines ranging from art to technology.
The quest for high-quality visual representations that avoid the Uncanny Valley trap
is therefore a significant and valuable challenge for creators and designers in the
contemporary world.

2.4 Chapter Considerations

This chapter has presented many works related to what is being proposed
in this thesis. A literature review was made to look for the most important and mod-
ern works on image quality in animated characters and the Uncanny Valley theory.
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Table 2.1 shows a summary of the works studied in each section. The
authors, the year and a brief information about the objective of the article are refer-
enced.

The next chapter presents the feature extraction algorithms used in this
work and which are widely used in Computer Vision. We describe the characteristics
of each algorithm. In addition, 3 interpretability models are shown to evaluate the
features relevant to the prediction made by our suggested models.
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3. BACKGROUND

This chapter presents some methods that borrow a theoretical foundation
for this thesis and are related to the goals this work aims to achieve.

The organization of the chapter is following described: First Section 3.1,
we present algorithms for feature extraction in computer vision, Second Section 3.2
the frameworks available for interpretability of generated models regardless of their
complexity.

The 3.1 section shows the algorithms for feature extraction in computer vi-
sion. It highlights articles that have already used these algorithms, including some
dealing with UV theory. We highlight the Hu Moments algorithm designed to capture
essential properties of a shape in an image, such as contour and intensity distribu-
tion. These moments are calculated from mathematical functions called geometric
moments. We made an analogy with the parts of the face based on the concepts of
Hu Moments because these algorithms presented significant results in the search
for trying to quantify human perceptual discomfort.

Finally, in Section 3.2 shows the frameworks available for interpretability of
generated models regardless of their complexity. We highlight LIME as the frame-
work used in our research and present the concepts that are used as a way of
interpreting its results.

3.1 Feature Extraction Algorithms

This section discusses the algorithms used for feature extraction. The ob-
jective is to extract relevant facial features for use in Machine Learning algorithms to
predict perceptual discomfort.

AUs (Action Units) are basic components of the FACS (Facial Action Cod-
ing System), developed by Paul Ekman et al. [EFE13], which describe individual
facial movements associated with human expressions. In Uncanny Valley detection,
AUs are used to analyze the naturalness and synchrony of facial movements in vir-
tual characters, helping to identify elements that cause discomfort or strangeness.

The study by Mäkäräinen et al. [MKT14] investigates the relationship be-
tween exaggerated facial expressions and the intensification of emotional percep-
tion, addressing the concept of the Uncanny Valley. They use AUs to measure and
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manipulate the facial expressions of virtual characters, focusing on the hypothe-
sis that the intensification of emotions, by exaggerating the expressions, can both
increase the perceived emotion and intensify the feeling of uncannyness. They con-
clude that, as facial expressions are exaggerated beyond certain natural limits, the
emotional effect perceived by observers can become disproportionate, leading to an
increase in the perception of uncannyness. This occurs especially when AUs do not
follow natural human patterns, creating discrepancies that generate discomfort. The
research demonstrates that there is a threshold between emotional intensification
and observer immersion, which can be broken when virtual facial expressions do
not correspond to the expected realism.

Another algorithm used is Entropy. Entropy has been used to study the
Uncanny Valley and the perception of strangeness in animation and robots. Entropy
is a measure of disorder or unpredictability in a system. In studies related to the Un-
canny Valley, entropy can be used to quantify variation in facial features, movements,
or behaviors of computer-generated characters or robots. When this variation de-
viates from what is perceived as natural in humans, it can generate a feeling of
discomfort or strangeness. Mustafa [MGT+17]’s study uses EEG to measure brain
responses to CG characters and uses signal analysis to attempt to predict the per-
ception of strangeness. Liu et al. [LLHB14]’s study identifies the different types of
distortions that affect the local entropy of images. Spatial and spectral entropy are
calculated to measure the probability distribution of pixel values and Discrete Cosine
Transform (DCT) coefficients, respectively.

The GLCM (Gray-Level Co-occurrence Matrix) technique is widely used in
the analysis of image textures. It is very useful for measuring textures and visual
patterns in images, which can be relevant for identifying visual characteristics that
increase or reduce the feeling of strangeness in digital or robotic characters. The
strangeness perceived in the Uncanny Valley often involves the lack of realism in
textures such as skin, hair and eyes, where GLCM could be used to measure the
difference between these textures and what is expected in real images. Studies
such as that of Shahid et al. [SRLZ14] show that this method can be used to identify
textures that are perceived as anomalous or degraded.

The Golden Ratio is a mathematical proportion that has been widely stud-
ied and used in art, architecture and design due to its pleasing aesthetics and visual
balance. The golden ratio is approximately 1.618. It is known for its presence in
many natural structures and classical works of art, and is often associated with a
sense of harmony and beauty. The application of the Golden Ratio in detecting
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and mitigating the uncanny effect is done in this research through Proportion anal-
ysis, used to analyze the proportion between different facial features. According to
Schmid et al. [SMS08], facial symmetry and neoclassical proportions play a central
role in the perception of beauty. More symmetrical faces that follow golden propor-
tions tend to be seen as more attractive.

Histograms of Oriented Gradients (HOG) [DT05] is a technique developed
to describe and detect objects based on the distribution of gradient orientations. The
most famous use of HOG [DT05] is in pedestrian detection, but the technique can be
applied to various computer vision tasks, including facial expression analysis. There
are no studies prior to this work that use this technique to assess facial discomfort.

Finally, we have another robust visual pattern descriptor and descriptor
known as Hu Moments [Hu62]. Like HOG [DT05], there are no studies in the liter-
ature that address this algorithm for discomfort assessment. However, it seems to
be a promising resource. Therefore, we performed a more detailed analysis of the
meaning of its vector and made an analogy with the human face due to the face that
we extensively used such technique in the present work. The research by Ming-Kuei
Hu et al. [Hu62] aims to present a methodology for robustly describing and recogniz-
ing visual patterns, independent of transformations such as rotation, translation, and
scaling. Ming-Kuei Hu et al. [Hu62] argues that these invariant features are crucial
for pattern recognition in practical scenarios, where objects may appear in different
orientations and sizes. Additional information about Hu Moments is available in the
Appendix 8.

3.2 Machine Learning Interpretability Models

Few machine learning interpretability models work with the technique known
as ensemble voting. It is part of the ensemble machine learning methods, where
multiple models are combined to improve the accuracy of predictions. In the spe-
cific case of ensemble voting, the predictions of the individual models are combined
through a vote (majority or weighted average) to determine the final prediction.

We evaluated SHAP [MHJ20] (SHaplay Additive exPlanation) and DALEX [BB21]
(Model Agnostic Language for Exploration and Explanation), both of which address
global and local model explainability by evaluating the entire test dataset and also
an instance of it.
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SHAP is based on Shapley values from cooperative game theory. This
provides a unified measure of feature importance that is consistent and reliable.
However, implementing SHAP can be more complex and computationally intensive,
especially for large datasets and complex models. Just like LIME, SHAP easily
integrates with various machine learning frameworks in Python, with the exception
of ensemble models.

DALEX is flexible and allows comparisons between models. Its biggest
weakness is that it is primarily available in R, which can limit its accessibility for
users more familiar with Python. Additionally, DALEX requires prior knowledge of
R’s machine learning libraries, which can represent a significant learning curve.

On the other hand, LIME [RSG16] (Local Interpretable Model Agnostic Ex-
planations) does not address global interpretability, only local interpretability. We
chose LIME for this study because we wanted to locally explain the parts of the
face that generate the comfort or discomfort prediction and also because we use
ensemble models.

LIME presents better performance in generating the surrogate model com-
pared to SHAP and DALEX. Furthermore, LIME makes interpreted data available
for collection, making manipulation more flexible for better interpretation of results.
Therefore, we were even able to generate the most important features globally from
the test dataset by collecting the feature importance for each instance. This way, we
can also have a global view of the most important features that can be found in both
the training and testing datasets, and we can compare the data. This flexibility does
not occur in the SHAP model or the DALEX model, which restricts information only
through graphics.

Therefore, we can also generate the most globally relevant features from
the test dataset by collecting the feature importance for each instance. LIME is con-
ceived as a model that seeks to emulate the behavior of a pre-existing model, called
a surrogate or surrogate model, in a local context. This surrogate model is trained
on a dataset derived from instances close to the one being interpreted, introducing
small variations in features or attributes, weighted according to their proximity to the
original instance.
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3.2.1 Interpretation of LIME (Local Interpretable Model-agnostic Explanations)

When using LIME (Local Interpretable Model-agnostic Explanations) [RSG16]
for interpretation for both classification and regression models, local explanations
are presented for a specific instance (an individual example). Interpretation varies
depending on the type of model, but follows a general approach to the elements of
LIME.

1. Local Explanation: LIME provides local explanations, that is, it explains why
a model made a specific prediction for a given instance. This is useful for
understanding the logic of the model at a more granular level.

2. Feature Importance Plot: Shows the main features that influenced the predic-
tion for the given instance. This plot is usually a horizontal bar with information
such as: Most Important Features - Features are listed on the Y-axis. Contri-
bution - The length of the bar on the X-axis indicates how much that feature
contributed to the prediction. Sign - The direction of the bar (to the right or
left) indicates whether the feature contributed to the positive or negative class.
Numeric Value - There may be a value associated with each feature, indicat-
ing its quantitative influence on the prediction. For example, a high, positive
value for a feature means that that feature had a strong positive contribution
to the predicted class. Interpretation - Bars to the right usually indicate that
the feature influenced the prediction for either the positive class or the pre-
dicted class. Bars to the left indicate that the feature negatively influenced
the predicted class (or favored another class). Bar length - The length of the
bar reflects the magnitude of the influence. The longer the bar, the more that
feature contributed to the model’s final decision.

3. Explanation Table: LIME often also provides a table that details: Feature name
(or a range of values, if it is a continuous feature). Feature weight: The quanti-
tative value of the feature’s contribution to the decision. Conditional prediction:
Depending on the input value, the table can show how changing the feature’s
value impacts the probability of belonging to a given class.

4. Natural Language Explanation: LIME can generate explanations in text form.
This text usually follows the pattern of "If feature1 has value X, then the prob-
ability of class being Y increases/decreases by Z%". This makes it easier for
non-experts to interpret.
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5. Classification Probabilities: In addition to the explanations, LIME can provide
predicted probabilities for each class in the model. This allows you to see how
"confident" the model was in its prediction. You might have a table or graph
with the probabilities associated with each class, showing, for example, that
the model predicted class "A" with 80

Figure 3.1 shows an example of a binary classification model that predicts
whether a movie will have a high or low rating with a probability of 0.10 for the low
rating class and a probability of 0.90 for the high rating class. The output from
LIME shows one instance of the test data rather than the entire test set. The output
explains how the model arrived at its prediction for that particular instance, given the
specific feature values for that data point.

In the graph on the right, LIME shows the value for each feature for the
data point we provided, with a vote count of 159, a revenue of 12,800,000, a runtime
of 149.00, a release year of 1959, a number of genres of 2, and a popularity of 9.46.
The output also shows the thresholds for each feature that the model used to make
its prediction, such as a vote count threshold of 253.75, a revenue threshold of 0.00
to 14, and a runtime threshold of 115.00.

According to the probability distribution in the middle graph, the ML model
believes that there is a probability of 0.1 that this data point belongs to the low-rated
class. It shows that without the “vote count 253.75”, the probability of this data point
belonging to the low-rated class would be 0.1–0.03 = 0.07, as the numerical values
attached to each feature show the probability contribution to the prediction and the
probability distribution shown on the left.

Figure 3.1: Example LIME output for an instance in a binary classification model
that predicts whether a movie will be rated high or low.

As an example, we can think of a model for classifying facial expression
images that predicts that an image represents “happiness.” LIME could make small
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changes to the image (such as removing parts of the face) and observe how these
changes affect the model’s prediction. If removing the eyes significantly reduces
the probability of “happiness,” LIME will fit a local model that gives a high (positive)
weight to the “eyes” feature, indicating that this feature was crucial to the prediction
of “happiness”.

Explanations can vary depending on the samples chosen for analysis, which
can help identify patterns in groups of data that the model uses to make predictions.
This type of interpretation allows for a better understanding of which variables influ-
ence the model’s decision-making for each individual sample, both in classifiers and
regression models.

LIME Interpretation in the Classification Model

In a classification model [Chr20], the goal is to explain the prediction of a
specific class for a given sample. The explanation is based on the importance of
the features in determining the probability of a specific class being chosen by the
model. Here are the steps to interpret:

• Bar chart (local explanations): Each bar represents a feature, and the length
of the bar indicates how much this feature contributes to the prediction of the
selected class (usually positive or negative). If the model is binary, LIME will
show the contribution to one of the classes.

• Color of the bars: Generally, positive bars (orange) indicate that the feature
increases the probability of the sample being classified in the class in question,
while negative bars (blue) indicate that the feature reduces this probability.

• Weight of the features: Longer bars indicate features with greater impact on
the prediction. The visual interpretation allows to identify the most relevant
variables for the model in the prediction of that specific instance.

LIME Interpretation in Regression Model

For regression models[GMR+18], LIME attempts to explain how features
contribute to the predicted value of a given continuous output variable. Instead of
explaining the probability of a class, it focuses on the predicted value (such as price,
grade, etc.). Here are the steps to interpret:
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• Bar chart (local explanations): As in the classification model, the bars repre-
sent the impact of the features, but here the impact is on the predicted value
(continuous), not on a class. The bars can be positive or negative, indicating
whether the feature is increasing or decreasing the predicted value.

• Feature weight: Features with longer bars indicate that they had a greater
impact on the predicted final value. Features that pull the value up appear with
positive bars and those that pull it down appear with negative bars.

3.3 Chapter Considerations

This chapter has presented the contribution of the extraction of features
from CG images using computer vision techniques, primarily the Hu Moments algo-
rithm, and analyzing image quality that, based on subjective evaluation, evokes a
sense of the uncanny, as studied in the Uncanny Valley (UV) theory. We also show
three frameworks widely used in the literature. We highlight the reason for choos-
ing to work with LIME in the evaluation of results. We present an example of the
interpretability of the chosen model.

The main question is to investigate whether image characteristics on the
faces of CG characters can help define when and where images can cause uncanny
perception. This work is expected to contribute to the entertainment industry (games
and movies) through recommendations and analyses that can serve to improve the
experience and enhance the perception of CG characters.

The next chapter presents the two datasets used in this research, as well as
the proposed models, describing their characteristics and how they are assembled
to work together to achieve the objectives of this work.



4. DATASETS

In this chapter we discuss two datasets used in the present research. Sec-
tion 4.1 refers to dataset GT1 which is based on the work of Araujo et al. [AMFK+19]
and Flach et al. [FdMM+12]. Section 4.2 deals with the dataset we created by
searching for new characters that cause discomfort in literature research and which
we will call GT2.

4.1 Dataset GT1

Our character selection, initially, is based on the work of Araujo et al. [AMFK+19]
and Flach et al. [FdMM+12], who analyzed, with human subjects, the perception of
comfort when observing characters created with CG (films, games, and computer
simulations). It was used images and videos of the same 10 characters from Flach,
as shown in Figure 4.1 as being all letters a), (c), (e), (g), (i), (k), (m), (o), (q), (s),
(u) . It was also included more recent CG characters, as proposed by Araujo et
al. [AMFK+19] shown in Figure 4.1 he remaining letters To ensure the variation of
human likeness present in the Uncanny Valley, some of the chosen characters rep-
resent a human being in a caricatured way (q), (s) and (u), and and others are more
realistic, such as (m), (n ), (v), (r), (k) in Figure 4.1.

To obtain human perceptions of realism and comfort (variables necessary
to construct the X and Y axes of the Uncanny Valley graph), a questionnaire was
created in the work of Araújo et al. [ADM21]: i) Q1 - "How realistic is this character?",
with three Likert scales of responses ("Unrealistic", "Moderately realistic", and "Very
realistic") for perceived realism; ii) Q2 - "Do you feel any discomfort (strangeness)
when looking at this character?", with answers "YES" and "NO" to perceived comfort;
and iii) Q3 - "In which parts of the face do you feel the most strangeness?", with mul-
tiple choice ("eyes", "mouth", "nose", "hair", "others" and "I do not feel discomfort").
The authors used Google Forms and recruited participants on social media. They
randomly presented characters to participants through images and short videos.
The subjects would then answer questions. A total of 119 participants responded to
the questionnaire, of which 42% were women and 58% were men, with 77.3% being
under 31 years old and 33.7% being 31 or older.
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Figure 4.1: All characters used in this dataset called GT1. Characters (a), (c), (e),
(g), (i), (k), (m), (o), (q), (s), (u) used in Flach et al. [FdMM+12]. The remaining
characters are chosen by Araujo et al [AMFK+19]. The characters with rectangular
frame in red caused discomfort in the empirical research carried out.

In the present work, we used 19 videos out of 22 (one short film for each
character illustrated in Figure 4.1) from the work of Victor et al. [ADM21] and re-
moved those frames that did not contain the face of the character to be analyzed.
This process resulted in 5,730 images. It is important to mention that characters (d),
(g) and (j) were not included in the analysis because there was no detection of the
face or parts of the face. After selecting the 19 characters, this research considered
as ground truth the response to Q1 to determine the level of perceived realism, Q2
to determine the percentage of perceived comfort, and Q3 to evaluate the parts of
the face that generate the most strangeness. To categorize the characters into dif-
ferent levels of realism, the average scores of the responses to Q1 were used, so
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that each character has an average realism value, according to the study by Victor
et al. [ADM21].

Three levels of realism were also used to divide the characters, as sug-
gested in the work of Victor et al. [ADM21]. This division was used in the study of
Dal Molin et al. [DMdAAM22]. Below are the three groups:

• Unrealistic characters, with average realism values ≤ 1.5;

• Moderately realistic characters, with average realism values ≤ 2.5; and

• Very realistic characters, with realism values > 2.5. The comfort value for each
character was calculated by the percentage of “NO” (discomfort) responses to
question Q2.

This dataset was used in two previous studies. Firstly, the features were
extracted from images based on Hu Moments (Hum) and Histogram Oriented Gra-
dient (Hog), and the Support Vector Machine (SVM) model was used to provide
binary classification [DMND+21b], described in Section 5.1.1. In a second study by
Dal Molin et al. [DMdAAM22], the perceived comfort estimation was performed using
spatial and spectral entropy and used the Support Vector Regressor (SVR) model to
provide the CCS (Computing Comfort Score - a metric we propose to estimate the
perceived comfort), described in Section 5.2.1.

4.2 Dataset GT2

Since we considered 19 characters (GT1) not many, we conducted a sys-
tematic literature review (SLR) to search for more characters. The objective was to
find characters reported as causing (or not) a feeling of strangeness in human per-
ception to increase the dataset GT1. We identified additional animated characters
that have been studied. A total of 12 articles covering the literature from 2007 to
2023 were evaluated for their examination of UV theory in animated characters, as
detailed in Table 4.1.

Based on the systematic literature review (SLR), we identified 21 charac-
ters that have been reported to cause feelings of strangeness in people. Table 4.1
shows the characters and their classification according to the articles referring to
the period from 2007 to 2023. All characters involved in each article were reported,
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and the strangeness classification was identified in the analyses. Many charac-
ters are repeated in these articles. Other characters were already part of the GT1
dataset. We selected 21 characters indicated in more than one article as causing
strangeness.

We then combined the selected 21 characters with the 19 characters from
the GT1 dataset (Section 4.1), creating a new dataset called GT2. To establish
a ground truth for the perception of strangeness among these 40 characters, we
conducted a new questionnaire using the Qualtrics platform 1, as presented later.
We deemed it appropriate to integrate all characters and exclude the results from
the ground truth to ensure consistency in our research. Additionally, this new study
was valuable for assessing whether the discomfort associated with these characters
has persisted over time, given that the 19 characters in question are from works
produced in 2012 and 2019.

Reference Year CG characters studied Cause strangeness

[Mac07] 2007

1. Dumbo
2. Bugs bunny
3. Bamby
4. Gosth in the machine
5. Pinnochio’s Fairy GodMothers
6. King and queen em Shrek
7. Polar Express children
8. Final Fantasy
9. Pirates of Caribbean
10. Reality SFX

No
No
No
No
No
No
Yes
Yes
No
No

[MGHK09] 2009

1. Final Fantasy: The Spirits Within
2. Davy Jones from Pirates of
the Caribbean: At World’s End
3. Polar Express
4. Gollum in The Lord of the Rings trilogy

Yes
Yes

Yes
Yes

1https://pucrs.qualtrics.com

https://pucrs.qualtrics.com
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Table 4.1 continued from previous page
Reference Year CG characters studied Cause strangeness

[HM10] 2010

1. Final Fantasy: The Spirits Within
(“Aki Ross”)
2. The Incredibles
3. The Polar Express
4. An advertisement for Orville Redenbacher
popcorn
5. A technology demonstration of the
video game Heavy Rain

Yes

No
Yes
Yes

No

[TGW10] 2010

1. The Emily Project (2008a)
2. The Warrior (2008b) by Image Metrics
3. Quantic’s Mary Smith the Dream
technical demo,
’The Casting’ (2006)
4. Alex Shepherd from Silent Hill
Homecoming (Konami 2008);
two avatars
5. Louis, from Left 4 Dead (Valve 2008)
6. Francis, from Left 4 Dead (Valve 2008)
7. Four zombie characters
8. The Smoker
9. The Infected
10. The Tank and
11. The Witch, from left 4 Dead
12. A stylized human Chatbot character,
’Lillien’ (Daden Ltd. 2006)
13. A realistic, human-like zombie (’Zombie 1’)
from the video game, Alone in the
Dark (Atari Inc. 2009) The real human.

No
Yes
Yes

No

No
No
Yes
Yes
Yes
Yes
Yes
Yes

No
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Table 4.1 continued from previous page
Reference Year CG characters studied Cause strangeness

[DFH+12] 2012

1. Unknown virtual human
2. Obama’s cartoon
3. The Incredibles
4. Unknow virtual human
5. Beowulf
6. Heavy rain
7. Rango
8. Cloudy with a chance of metalballs
9. Unknown virtual human
10. Unknown virtual human \end{itemize}

Yes
No
No
Yes
No
Yes
No
No
Yes

Yes

[Per14] 2014 Digital Ira
Considered a
little strange

[Yek15] 2015

1. Coraline (2009)
2. Fantastic Mr. Fox (2009)
3. The Adventure of Tintin (2011)
4. Up (2009) \end{itemize}

No
No
Yes
No

[KMT17] 2017

1. Final Fantasy: The Spirits Within
(“Aki Ross”)
2. Polar Express (unnamed boy)
3. Beowulf (“Beowulf”)
4. The Adventures of Tintin: The Secret of
the Unicorn (“Tintin”)
5. The Incredibles (“Mr. Incredible”)
6. Meet the Robinsons (“Lewis")
7. Cloudy with a Chance of Meatballs
(“Flint Lockwood”)
8. Arthur Christmas (“Arthur Christmas”)
9. Epic (“MK”)
10. Mars needs moms (“Milo”)

Yes

Yes
Yes
No

No
No
No

No
No
Yes

[MGT+17] 2017

1. Digital Emily
2. Digital Ira
3. Kara de Detroit: Become Human
4. ’Ernst’ de Squadron 2
5. ’HeadTech’ de Janimation

No
No
Yes
Yes
Yes
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Table 4.1 continued from previous page
Reference Year CG characters studied Cause strangeness

[HM17] 2017

1. Doctor Aki Ross from the film Final Fantasy:
The Spirits Within (2001)
2. Billy, the baby from “Tin Toy” (1988)
3. An unnamed man from Phil Rice’s
“Apology” (2008)
4. Orville Redenbacher from a
popcorn commercial (2007)
5. Mary Smith from “Heavy Rain:
The Casting” (2006)
6. Five robots \item Roomba 570 (iRobot)
7. Kotaro (JSK, University of Tokyo)
8. Jules (Hanson Robotics)
9. Animatronic Head (David Ng)
10. Aiko (Le Trung), and two humans
11. A man and
12. A woman

No

Yes
Yes

No

No

No
No
No
No
No
No
No
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Table 4.1 continued from previous page
Reference Year CG characters studied Cause strangeness

[AMDM21] 2021

1. Unknown virtual human
2. Unknown virual human
3. Unknown virtual human
4. The incredible I
5. Obama’s Cartoon
6. Unknown virtual human
7. Cloudy with a chance of metalballs
8. Beowulf
9. Heavy rain
10. Rango
11. Unreal 4 Engine
12. Alita
13. How to train your dragon 2
14. Thor Ragnarok
15. Rogue One
16. Love, death and robots
17. Moana
18. Overkill’s the walking dead
19. Spider-Verse
20. Unreal 4 Engine
21. The incredibles 2
22. Unreal 4 Engine

Yes
No
Yes
No
No
Yes
No
No
Yes
No
No
yes
No
No
No
No
No
No
No
No
No
No
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Table 4.1 continued from previous page
Reference Year CG characters studied Cause strangeness

[dAACM23] 2023

1. The Incredibles 2
2. Soul
3. Arcane
4. GTA San Andreas
5. The Walking Dead from Telltale
6. Encanto
7. Spider-Verse
8. Moana
9. True Crime New York City
10. Obama’s Cartoon
11. GTA V
12. Mortal Kombat 11
13. Fifa 19
14. Call of Duty Black Ops 2
15. Horizon Zero Down
16. MetaHuman Creato

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

Table 4.1: The table presents perceptual data acquired through human responses,
which address the strangeness of CG characters in films, games and VHs from 2007
to 2023.

4.3 Survey answered by subjects

As already stated, we selected 21 characters from Table 4.1 and 19 more
characters from dataset GT1, discussed in Section 4.1, resulting in 40 characters.
The literature classified nineteen characters as causing strangeness for people and
21 as not causing it, as reported in the researched literature. Figure 4.2 shows
the 21 characters included in our research in addition to the 19 characters from
Figure 4.1.

We applied a subjective evaluation to calculate a comfort score. The goal
was to obtain perceived comfort on a continuous scale, such as “How uncomfortable
is this character for you?”. A regression model is ideal in this case, as it allows for
greater precision when estimating a range of values. The greater granularity in pre-
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Figure 4.2: 21 characters collected from literature and used for human evaluation
together with the 19 characters from Figure 4.1. The literature considers the char-
acters outlined in red to cause strangeness.

dictions allows for predictions of different intensities or intermediate values, whereas
a binary classification (comfortable/uncomfortable) is restricted to two categories. In
problems where it is important to know how much a variable affects the outcome,
and not just whether or not it does, regression provides more information.

The questionnaire was created on the Qualtrics platform. We asked two
questions, following the research line of Flach et al [FdMM+12]. The questions
asked are as follows: Q1 - “Do you feel any discomfort (strangeness) when look-
ing at this character?”, with answers “YES” and “NO” to perceived comfort; and
when answered “YES”, Q2 - “In which parts of the face do you feel discomfort?”,
with multiple choice (“eyes”, “mouth”, “nose”, “hair”, “others” and “Others”). There
were 44 participants aged between 18 and over 60, and the survey was available
for four days. In Q2, participants could choose only one part of the face that stood
out the most: hair, forehead, eyes, nose, mouth and chin, if they felt any discomfort
when looking at the character. Table 4.2 shows the results of this survey.
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Figure 4.3 shows the 40 characters classified according to the research
carried out in Qualtrics platform. This dataset is balanced by class (comfortable and
uncomfortable) and by characters, as 19 characters cause strangeness/discomfort,
and 21 are considered comfortable. However, there is no balance in relation to the
number of frames (9495 frames from uncomfortable characters and 3907 from com-
fortable ones). For this reason, we balanced the GT2 dataset of frames in relation
to class and characters. We randomly selected frames of characters that generate
strangeness, because it is the class with the largest number of frames. We balanced
the number of frames between the two classes. In this way, we were able to obtain
4192 frames of characters that generate discomfort with 3907 frames of the com-
fortable class, leaving the dataset balanced by the number of total frames per class,
totaling 8099 frames.

The survey demographics show a balance of participants in the age groups
of 18 to 20 years, 21 to 29 years, 40 to 59 years, representing 25%, 22.73% and
27.27% of the total respectively. The majority of respondents have higher education
(52.27%), indicating a highly qualified audience. The distribution of designated sex
reveals a balance between genders, with a slight predominance of males (56.81%).
As for the area of activity, the technology sector (54.54%) stands out, suggesting
that the survey attracted an audience interested in technology-related issues.

The results of the current survey using the Quatrics tool, which we call
(GT2), were analyzed in comparison with the previous survey (GT1) and the sys-
tematic literature review (SLR). Below, we present the agreement between the re-
spondents regarding the characters treated.

Figure 4.3 shows the 40 characters (GT2), with the first 19 corresponding
to the GT1 dataset and the rest being the SLR characters.

1. Agreement between GT1 and GT2:

• Agree: 14 characters (73.68%)

• Disagree: 5 characters (26.32%)

The current survey (GT2) shows a significant level of agreement among
the participants, with 73.68% of the characters expressing agreement, compared to
26.32% who disagreed.

2. Agreement between GT2 and SLR:

• Agree: 12 characters (57.14%)
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[1] [2] [3] [4] [5] [6]

[7] [8] [9] [10] [11]

[12] [13] [14] [15] [16]

[17] [18] [19] [20] [21]

[22] [23] [24] [25] [26]

[27] [28] [29] [30] [31]

[32] [33] [34] [35] [36]

[37] [38] [39] [40]

Figure 4.3: The characters with a red frame indicate discomfort perceived by the
participants, totaling 21. The remaining 19 characters are considered comfortable.

• Disagree: 9 characters (42.86%)

Compared to the long-term reference, the level of agreement decreased to
57.14%, while disagreement increased to 42.86
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The data reveal an interesting trend: while the previous survey (GT1) pre-
sented a high rate of agreement (73.68%), the current survey (GT2) presents a re-
duction in this number (57.14%) in relation to RSL. This suggests a possible change
in the opinions or perceptions of the respondents over time. The increase in the
disagreement rate, from 26.32% to 42.86%, may also indicate a greater diversity of
opinions among the current participants.

These results are important to understand the evolution of opinions and
may guide future actions and research on the topic addressed.



5. PROPOSED MODEL

This chapter aims to present five models proposed in this research. The
first and second models propose a binary classification using the SVM algorithm
and the Voting Classifier methods to infer whether the character’s face will cause
strangeness/discomfort to people or not. In the third one, we fine-tune VGG16 to
evaluate whether a Convolutional Neural Network can predict, through a binary clas-
sification, the perception of strangeness compared to the subjective human classi-
fication. The fourth and fifth models propose a method to calculate the perceived
comfort represented through a continuous value. We call this value CCS (Computed
Comfort Score), which represents a percentage of strangeness for the character’s
face and uses the SVR algorithm and the Voting Regressor method. We detail the
models below.

5.1 Binary Classification Models

We propose three binary models to classify CG faces to infer whether the
character will cause people to feel strange/discomfort or not. Section 5.1.1 deals
with the model that uses the support vector machine (SVM) 1, while section 5.1.2
uses the features of the voting classifier (VC) 2. We also propose in section 5.1.3 the
fine-tuning of a CNN to compare with the methods mentioned in the last sections.

5.1.1 SVM Binary Classification Model

Figure 5.1 shows the overview of the SVM model. First, the Haar Cascade
method is used to detect the faces and parts of the face, such as eyes, eyebrows,
mouth, jaw. The descriptors Hu Moments and Hog are used to generate the vec-
tor of characteristics of the entire face and parts of the face. The saliency function
shows a part of the face that stands out to extract features with the descriptors. We
use the Principal Component Analysis (PCA) to reduction of dimensionality to de-
fine the most relevant variables of the vector of characteristics. Finally, the Support

1https://scikit-learn.org/stable/modules/svm.html
2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html

https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
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Vector Machine (SVM) model is used for the binary classification of the detected
faces. It presented each step of our model in Figure 5.1. It is worth mentioning
that for this first model the data set with the initial 19 characters was used as ex-
plained in Section 4.2. Then we retrain the model with the 40 characters as shown
in Section 4.2.

Pre-Processing Data

We performed three main processes in order to prepare data to be used
in our classification method: A) face detection and B) saliency detection and C) Hu
and HOG feature extraction, as detailed next. We implemented our method using
OpenCV [How13], scikit-learn [VdWSNI+14] and dlib [Ros17] in this process.

(A) Face detection

The method used for face detection was proposed by Paul Viola and Michael
Jones [VJ+01]. This method detects a face and also finds the parts of the face. In
the latter case, eight parts, such as the mouth, middle of the mouth, right and left
eyes, right and left eyebrows, nose, and jaw, as shown in Figure 5.2. The image is
discarded if no face is detected. Haar Cascade [VJ+01] algorithm provides a good
result in detecting the faces of characters created in CG, although it was created
for detecting human faces. The only character with no face detected was from the
movie Incredibles 2, as shown in (u), in Figure 4.1.

(B) Saliency detection

We compute the saliency map of each frame from the first 19 characters of
the GT2 dataset described in Section 4.2. The visual salience method used in this
work is based on the difference between the center and the image’s outline. It is a
form of extraction that highlights the regions in the image that attract the attention
of human beings, as studied by Jia et al. [JZW18] and You et al. [YPG10]. It gener-
ated the feature descriptors presented next in images with and without the extracted
salience to assess its usefulness in detecting images that present strangeness
to human perception. The method used was the Fine Grained saliency from the
OpenCV [How13] library with the default parameters.
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Figure 5.1: Our classification model detects the face of the animated character,
extracts the facial features through the Hu Moments and Hog algorithms, with and
without the saliency function. PCA is used to reduce the dimensionality of the feature
vector. Finally, SVM classifies whether the character will generate discomfort or not.

Features Extraction

In this step, we use the Hu Moments [ŽHR10] and the Histogram of Ori-
ented Gradients (HOG) [DT05], as they are two algorithms widely used in the area
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Figure 5.2: Parts of the face detected by Haar Cascade: (1) jaw, (2) nose, (3) right
eye brow, (4) right eye, (5) inner mouth, (6) mouth, (7) left eye brow, (8) left eye

of computer vision. So far, no references have been found in the literature regarding
their use for detecting strangeness perception.

Hu Moments is used with its default parameters [ŽHR10], implemented
using OpenCV3 [How13]. This descriptor generates seven moments regardless
of image size. The other descriptor used was the Histogram of Oriented Gradi-
ents (HOG) [DT05]. We consider the detection window with gradient voting into
9 orientation bins and 64x64 pixels blocks of 1x1 pixel cells, generating the de-
scriptor of the image characteristics to be used. It implemented hog using scikit-
learn [VdWSNI+14]. This descriptor generates a feature vector depending on the
size of the image. Principal Component Analysis (PCA) [WC06] was used to detect
the most relevant variables between the characteristic vectors of HOG and Hu Mo-
ments, defining in 95% the sum of the variables’ accuracy as being relevant. For
model training, the two combinations of variables were tested - using PCA and not
using PCA - and the results are compared.

Training, Testing and Validation Process

To perform the training, test, and validation, we organized the dataset as
the procedure described in algorithm 5.1. We use leave-p-out cross-validation,
where p = 2, i.e. using p observations as the validation set and the remaining ob-
servations as the training set. This is repeated in all ways to cut the original sample
onto a validation set of p observations and a training set.

3https://opencv.org/

https://opencv.org/
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i=1; j=1;
while i<Number_UV_characters> do

while j<Number_NotUV_characters> do
SetTestingData(i,j);
RemainingImgs=SelecImgs(i,j);
SetTrainingData(70%,RemainingImgs);
SetValidationData(30%,RemainingImgs);
PerformTrainingTest(TrainingData,ValidationData);
PerformValidation(TestingData);

end

end

Algorithm 5.1: Data Strategy

The testing data corresponds to a pair of images where one character gen-
erates strangeness (i at Algorithm 5.1) and another character do not generate it (j).
Then, remaining images compose the training and validation datasets.

We used the Support Vector Machine (SVM) [Fle09] model with three differ-
ent kernels: linear, Radial-basis function (RBF) and polynomial. It also made a tun-
ing of the hyperparameters through Grid Search using kernels RBF and polynomial.
It implemented the SVM model using Sklearn 4. The values used in the Grid Search
parameters for the RBF kernel are for the gamma vector = [0.3 ∗ 0.001.0.001.3 ∗
0.001] and for the variable C = [50., 100., 200.].

With the Polynomial kernel the gamma values are showed in the vector
[0.001, 0.01], the degree variable with the values [2, 3, 4] and the parameter coef0
which is a kernel projection parameter, the values [0.5, 1].

We stored obtained results in a .csv file, showing if the entire face or parts
of the face (as defined earlier) was used, as well as whether salience and PCA were
used. It also showed the SVM model and the chosen kernel. Then, the values
of precision, recall, F1 score, accuracy and time spent are also stored to further
facilitate the selection of the main model.5

4https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
5These data will be available upon request with the authors.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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5.1.2 Voting Classifier Model

VotingClassifier [PVG+11] is an ensemble learning method available in Python’s
scikit-learn [VdWSNI+14] library. It combines the predictions of multiple models
(classifiers) to improve overall predictive performance. Instead of relying on a single
model, VotingClassifier aggregates the predictions of multiple classifiers and uses
a vote (or weighted average) to decide the final class. There are two main types of
voting in VotingClassifier:

• Hard Voting: Each model makes a prediction, and the final class is decided
by a majority vote. That is, the class most frequently predicted by the models
is the chosen class.

• Soft Voting: Instead of counting votes, the probabilities of each class are
summed, and the class with the highest sum of probabilities is chosen. This
only works if the classifiers can predict probabilities.

We use the Voting Classifier [PVG+11] with the Soft Voting type with the
GT2 dataset . The classifiers used in this work and their respective parameters are:

• MLPClassifier(max_iter = 1000),

• LogisticRegression(max_iter = 1000),

• ExtraTreesClassifier(),

• DecisionTreeClassifier(),

• RandomForestClassifier(),

• GaussianNB(),

• KNeighborsClassifier(),

• SVC(probability=True),

• AdaBoostClassifier(),

• XGBClassifier(use_label_encoder=False), and

• CatBoostClassifier(logging_level=’Silent’).
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We adopted the same algorithms to extract features from images in the
Section 5.1.1, focusing in this case on specific regions of the face (forehead, eyes,
nose, mouth, chin). We use the 40 characters from the GT2 dataset . We segmented
the face into five distinct areas: forehead, eyes, nose, mouth and chin using the
landmarks detected in the Mediapipe tool [LTN+19]. This approach was adopted to
investigate which parts of the face can generate more frightening characteristics and
whether the subjective evaluation agrees with this.

As previously established, Voting Classifier (VC) models were applied to
the training dataset and the test dataset, which contains only one character at a
time. In each run of the experiment, for each feature and in each training dataset, 6
models were created due to data standardization techniques (3 methods: standard-
ization, normalization and logarithmic transformation) and dimensionality reduction
(2 YES/NO possibilities). Among the techniques used, standardization is the Stan-
dardScaler function, which adjusts the data so that they have zero mean and unit
standard deviation; normalization, which adjusts the data values to a specific range,
usually [0, 1]; and logarithmic transformation, which aims to reduce the range of
data values. For each technique, there was the possibility of activating it or not in
the combination of techniques.

In addition, dimensionality reduction was implemented through Principal
Component Analysis (PCA) and Random Forest (RF). In fact, in combinations where
PCA is not applied, we tested RF to identify the three most relevant features of each
region of the face 6. The combination of these approaches allowed the creation of
a wide variety of models, ensuring that the most relevant features were used in the
classification process and providing a robust basis for evaluating the effectiveness
of the different techniques used. We used F1-Score values as evaluation metrics.

Our methodology is depicted in Figure 5.3 and aims to use image tech-
nologies to predict human comfort perception of virtual human faces. While the
method proposed in Section 5.1.1 used SVM (Support Vector Machine) algorithm
to estimate the comfort perceived by people with respect to the entire virtual faces,
we use Voting Classifier [PVG+11] to classify the comfort of parts of the faces. In
addition, we propose to include the explainability investigation of our results using
LIME [RSG16].

6As mentioned before, we tested RF with 1, 2 and 4 most relevant features, but the method
performed best with 3 features
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Pre-Processing Data

We perform four main processes to prepare the GT2 dataset to be used in
our method:

(A) Face detection

To detect the face, we use the OpenFace [BRM16] framework.

(B) Cropping of Facial Regions

To cut out regions of the face (forehead, eyes, nose, mouth, and chin),
we use the Mediapipe [LTN+19], which contains many more reference points (468
landmarks) available to carry out this process of cutting out parts of the face than
OpenFace, which has only 68 landmarks.

Features Extract

After the detection and cropping phase of face regions, we extract features
using the Hu Moments [ŽHR10] with the default settings, and HOG [DT05] algo-
rithms setting the parameters orientations=9, pixels_per_cell=( 64, 64), cells_per_block=(1,
1) and block_norm=’L2-Hys’. Hu Moments extracts a feature vector of 7 positions.
For HOG, we adopted the size mentioned in the Section 5.1.1, which is 9. There-
fore, when utilizing Hu Moments, we generate a feature vector of size 7 for each
facial part, resulting in a total of 35 features for the entire face. Conversely, employ-
ing HOG yields a 9-sized vector for each facial region, summing up to 45 features.
Lastly, combining Hu Moments with HOG results in 80 facial features, with 16 fea-
tures dedicated to each facial part.

(A) Reduce the complexity for dimensionality

To reduce the complexity, we can use PCA [PVG+11] for dimensionality
reduction. For each region of the face, we performed a PCA using the Hu Moments
or HOG vectors or the combination of both, generating a dimensionality reduction of
5 features, one for each part of the face, whose names are forehead, eyes, nose,
mouth, and chin. When PCA was not used, we used Random Forest (RF) to select
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the 3 most important variables from each region. Indeed, we tested with only 1, 2
and 4 variables with RF, but 3 was the best choice for our results.

Training the voting classifier model

Finally, we use the voting classifier [PVG+11], which is a machine learning
method that trains on a set of several models and predicts an output (class) based
on the highest probability of the class chosen as output. The idea is, instead of
creating separate dedicated models and finding the accuracy of each of them, we
create a single global model that trains on the specific ones and predicts based
on the combined majority of votes for each production class. We use 11 machine
learning algorithms as described in section 5.1.2.

5.1.3 Training and Testing using CNNs

We also propose fine-tuning a CNN to compare with the methods men-
tioned in the last sections, using the 40 characters from the GT2 dataset . Fine-
tuning is a technique that involves training a pre-trained model (ImageNet) on a
specific dataset. This model leverages the pre-trained model’s prior knowledge and
adjusts its final layers to adapt to a new dataset. VGG16 [SZ15a], Resnet50 [SZ15b],
and MobileNet [HZC+17] were the neural networks chosen for this task.

In this experiment, we created two datasets for the training stage of the
3 CNNs. The first dataset was composed of the ground truth information of the
face parts (defined in Table 4.2), that is, each character classified as strange and
the parts of the face that the subjects considered the strangest (5 classes 7: eyes,
mouth and Comfort). The second training dataset, referring to the entire face, con-
sidering only the binary classification of the face as comfortable or uncomfortable.
Afterward, both datasets were divided into three: training (70%), validation (20%),
and testing (10%). This study also utilized the validation dataset to select and fine-
tune ImageNet 8 parameters. To avoid bias, we trained 40 CNNs with 40 versions
of the dataset GT2 , each time removing the character that should be tested. Each
training was performed with batch sizes of 32 and 50 epochs. For model compila-
tion, ADAM was utilized as the optimizer. The training process was developed in

7We included only two parts because there was no occurrence of faces with discomfort in the
forehead, nose, chin region

8https://www.image-net.org/

https://www.image-net.org/
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Figure 5.3: Overview of our model in Section 5.1.2: It starts with face detection, if
there is a face, then it checks the 5 regions (ROIs - forehead, eyes, nose, mouth
and chin) of the face. Then we extract features from the face parts (ROIs) using
Hu Moments and HOG algorithms. PCA can be used to reduce the dimensionality
of the feature vector and optionally we also test Random Forest. Finally, the voting
classifier predicts whether the character will generate discomfort or not.

Python with the Keras library and backend with Tensorflow4. It was conducted on a
PC running Windows 10 Pro, an Intel Core i5 6600K 3.5GHz, 32GB Memory RAM
2400MHz, 480GB SSD NVME m.2, and a GPU RTX 3070 8GB. Training took an
average of 3 hours and 31 minutes for each Convolutional Neural Network (VGG16,
Resnet50, and MobileNet), totaling approximately 11 hours.
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5.2 The Computed Comfort Score (CCS) Metric

As mentioned previously, we propose the Computed Comfort Score (CCS)
metric that aims to estimate the comfort perceived by humans, automatically using
the SVR algorithm. For the SVR model, we used the GT2 dataset (Section 4.2)
with 19 characters and the 40 characters. We also created another model using the
ensemble voting regressor method to compare the results between the proposed
models. In this VR model, we used 40 characters from GT2 dataset (Section 4.2).
We considered naming the comfort estimated by the models CCS. The next sections
detail the methods.

5.2.1 Support Vector Regressor (SVR) Model

This section discusses the model trained using the Support Vector Regres-
sion (SVR) algorithm. We introduce the CCS (Computed Comfort Score) metric to
estimate the probable comfort/discomfort value of a certain virtual human face. In
this model, we use local spatial and spectral entropy to extract features and show
its relevance when compared to the subjects evaluation. We initially used the first
19 characters from the GT2 dataset (Section 4.2). We later retrained the model with
the 40 characters from the GT2 dataset.

Pre-Processing Data

The overview of our method, illustrated in Figure 5.4, is inspired on pro-
posed by Liu et al. in [LLHB14] for natural photographic images. In order to verify
whether CG images contain pixels that exhibit strong dependencies in space and fre-
quency, which carry relevant information about an image, we implemented a model
that could extract characteristics from spatial and spectral entropy.

We implemented our method using OpenCV [How13], scikit-learn [VdWSNI+14]
and dlib [Ros17].
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Figure 5.4: The overview of our model described in Section 5.1.1: It starts with face
detection, if there is a face, then it checks the 5 regions (ROIs - forehead, eyes,
nose, mouth, and chin) of the face. Then we extract the features from the face parts
(ROIs) using the spectral and spatial entropy algorithm. Finally, the SVR algorithm
is trained to predict whether the character will generate discomfort or not using our
CCS metric.

(A) Face detection

The method used for face detection is proposed by Paul Viola and Michael
Jones [VJ+01]. This method detects a face and also parts of the face. In the latter
case, there are eight parts: mouth, middle of the mouth, right and left eyes, right
and left eyebrows, nose, and jaw.

For our model, we assume that if no face is detected, or if the face is
detected and the eight parts are not, the image is discarded. We do not use the
mid-mouth region for our model because it is already inside the mouth, and the jaw
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is not used because it has already evaluated the entire face. This model is using the
first 19 characters from the GT1 dataset .

Features Extraction

In this step, we proceed with the features extraction. First, it resized each
image to be a multiple of 2 and partitioned into 8x8 blocks. This block size is based
on the work proposed by Liu et al. [LLHB14], who performed several experiments
until setting M = 8 as a good block size value. We compute the spatial and spectral
entropy characteristics locally for each block of pixels and each region of interest,
i.e., the whole face and its parts. According to the definition of entropy of the im-
age [Spo96], its main function is to describe the amount of information contained in
an image. In the image quality assessment area [LLHB14], one of the motivating
aspects is to identify the types and degrees of image distortions that generally affect
their local entropy.

Spatial entropy calculates the probability distribution of the mean pixel val-
ues, while spectral entropy calculates the probability distribution of the global DCT
(Domain Cosine Transform) coefficient values. We hypothesize that the local Spatial
and Spectral entropy applied in Computer Graphics (CG) images may show statisti-
cal characteristics that correlate with perceptual data about CG faces. Indeed, this
is the central hypothesis of the proposed CCS (Computed Comfort Score). To cal-
culate the spatial entropy 9, we used the skimage.filters.rank library through function
entropy(). To calculate the spectral entropy using FFT (Fast Fourier Transform) we
use the scipy fftpack 10 library. To calculate the frequency map, the fft() function and
then the dct() function were used to calculate the (DCT) domain cosine transform,
both with default parameters.

(A) Features Pooling

At this stage, the entropy computation described in the previous step is
used to calculate other characteristics for all pixel blocks of the face and its parts.
The characteristics proposed in this work are mean, standard deviation, distor-
tion, kurtosis, variance, Hu Moments [ŽHR10] and Histogram of Oriented Gradients
(HOG) [DT05]. Hu Moments were used with its default parameters [ŽHR10], imple-

9https://scikit-image.org/docs/0.8.0/api/skimage.filter.rank.html
10https://docs.scipy.org/doc/scipy/reference/fftpack.html

https://scikit-image.org/docs/0.8.0/api/skimage.filter.rank.html
https://docs.scipy.org/doc/scipy/reference/fftpack.html
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mented using OpenCV 11 [How13], generating a vector of 7 positions. For HOG, the
detection window with gradient voting into five orientation bins and 3x3 pixels blocks
of 4x4 pixel cells was used in the spectral entropy features and 16x16 pixel cells
in the spatial entropy features, generating a vector of 11 positions. It implemented
HOG using scikit-learn [VdWSNI+14]. So, we have 23 features for spectral entropy
and 23 for spatial entropy, proposing a total of 46 features.

The next section presents how the prediction of the comfort score of the
face and face parts is computed. This step generates CCS for each CG face in the
GT1 dataset .

Computing CCS using Support Vector Regression (SVR)

First, 19 initial characters from the GT1 dataset are used for training, test-
ing, and validation, varying across these three groups until all characters are in-
cluded in all groups. To perform SVR (Support Vector Regression), we propose nine
models to test the impact of each group of entropy features: i) Hu (7 features) and
HOG (11 features), and ii) mean, standard deviation, skewness, kurtosis, and vari-
ance. In addition, we want to evaluate the impact of spatial and spectral entropy,
separately and together, and of the face and its parts (7 tested ROIs, the whole
face, and six parts). Then, we propose nine combinations of the extracted data to
use in the SVR model according to Table 5.1, in order to find the best precision of
perceptual score:

We computed the nine models to evaluate which features better correlate
with the perceived comfort regarding CG characters, i.e., the ground truth with per-
ceptual data (GT).

The models generate individual values of comfort for each image from the
short movie of each character, i.e., our proposed metric CCSi for each character i
in each frame f . Thus, to compute the CCS for each i character, in each video, we
simply calculate the average CCS obtained at each f frame, from the movie that i
participates in:

CCSi = Avg(
∑Ni

i=0 CCSi ,f ), where i is the index of character, Ni is the num-
ber of frames of the short movie and f is the frame index.

It is important to mention that although we can compute CCSi ,f for charac-
ter i at frame f , we do not have such information in the ground truth, once we have
one comfort value for each character, as informed by the participants. We chose to

11https://opencv.org/

https://opencv.org/
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Model Spatial Entropy Spectral Entropy S.F. HOG Hu Moments T. C.
1 x x x x x 322
2 x x x x 224
3 x x x x 168
4 x x x x 161
5 x x x 112
6 x x x 84
7 x x x x 161
8 x x x 112
9 x x x 84

Table 5.1: Combination of nine models proposed to test the impact of each group of
Entropy features. The column statistics’ features correspond to mean, standard de-
viation, distortion, kurtosis, variance. The column Total characteristics (T.C.) refers
to the number of characteristics evaluating the entire face and the six face parts ac-
cording to the features selected in the previous columns. The column S.F. refers to
Statistics Features.

consider the average value, because when the participant saw the video, we do not
know when (at which frame or frames) the participant perceives strangeness.

We then retrain the model for the GT2 dataset containing the 40 characters.
The goal is to be able to compare it with the next regression model (VR).

5.2.2 Voting Regressor Model (VR)

VotingRegressor [PVG+11] is an ensemble learning technique for regres-
sion, similar to VotingClassifier, but applied to regression problems. It combines the
predictions of several regression models and generates a final prediction that is the
average of the individual predictions. The goal is to improve the accuracy and ro-
bustness of the model by aggregating the predictions of different regressions. The
two ways to use it are as follows:

• Simple Regression (Simple Averaging): Instead of voting for a class, as
in the case of classification, VotingRegressor calculates the average of the
predictions of all regressions involved in the ensemble.

• Base Models: As with VotingClassifier, it is possible to use different regression
models, such as linear regression, decision trees, neural networks, etc., to
compose the ensemble.
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We use the Voting regressor [PVG+11] with the Base Models type. The
regressor algorithms used in this work and their respective parameters are:

• GradientBoostingRegressor( ’learning_rate’: 0.001, ’max_depth’: 5, ’n_estimators’:
500),

• XGBRegressor(’learning_rate’: 0.1, ’max_depth’: 3, ’n_estimators’: 50),

• LGBMRegressor(’learning_rate’: 0.001, ’max_depth’: 3, ’n_estimators’: 100),
and

• AdaBoostRegressor(’base_estimator_max_depth’: 5, ’learning_rate’: 0.1, ’n_estimators’:
1000).

The overview of our methodology is depicted in Figure 5.5 and aims to use
image technologies to predict human comfort perception of virtual human faces. We
use Voting Regressor [PVG+11] using way Base Models to predict the comfort of
the vitual human faces. This model is trained with the 40 characters from the GT2
dataset .

Preprocessing Data

We performed four main processes to prepare the GT2 dataset (40 char-
acters) to be used in our method: A) face detection, B) cropping of facial regions
into 5 ROIs (Regions of Interest) and cropping of the entire face.

(A) Face detection

To detect the face, we used the OpenFace framework [BRM16].

(B) Cropping of Facial Regions

To crop regions of the face (forehead, eyes, nose, mouth and chin, ) and
the entire face, we use Mediapipe [LTN+19], which contains many more reference
points (468 landmarks) available to perform this process of cropping parts of the
face than OpenFace, which has only 68 reference points.
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Features Extraction

After the detection and cropping phase of the facial regions and full face,
we extract features using the algorithms indicated below using the default settings:

• AUs [ZLZ20]: 17 Action Units (AU01, AU02, AU04, AU05, AU06, AU07, AU09,
AU10, AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26, AU45) were ex-
tracted by the OpenFace tool at the moment of face detection. According to
the study by Mäkäräinen et al. [MKT14], intensifying facial expressions can
increase emotional perception, but there is also a risk of extreme exaggera-
tion, which can lead to feelings of awkwardness. The research suggests that
exaggerated expressions, such as an amplified smile, can be seen as more
emotional, however, when the intensity exceeds a certain limit, the observer’s
response can be negative, causing discomfort.

• Entropy [MAM22]: To calculate the spatial entropy 12, we used the skimage.filters.rank
library through function entropy(). To calculate the spectral entropy using FFT
(Fast Fourier Transform) we use the scipy fftpack 13 library. To calculate the
frequency map, the fft() function and then the dct() function were used to cal-
culate the (DCT) domain cosine transform, both with default parameters. Each
entropy has a vector of 23 positions. The same entropy calculation performed
in Section 5.2.1. The study by Liu et al. [LLHB14] identifies different types of
distortions that affect the local entropy of images. Spatial and spectral entropy
are calculated to measure the probabilistic distribution of pixel values and Dis-
crete Cosine Transform (DCT) coefficients, respectively.

• GLCM (Gray Level Co-Occurrence Matrix) [HSD73]: is a method that analyzes
the texture of images. It measures the frequency with which combinations
of gray levels occur, capturing characteristics such as contrast, homogeneity
and correlation. Studies such as that of Shahid et al. [SRLZ14] show that this
method can be used to identify textures that are perceived as anomalous or de-
graded. Several statistical measures can be derived from it to characterize the
texture and structure of the image. Some common features are contrast, dis-
similarity, homogeneity, energy, and correlation. Each measure is composed
of a vector of 3 positions, resulting in the extraction of a vector with 15 positions
in this work.

12https://scikit-image.org/docs/0.8.0/api/skimage.filter.rank.html
13https://docs.scipy.org/doc/scipy/reference/fftpack.html
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• Golden Ration [SMS08]: we use the neoclassical canons, which is a vector
of 4 positions and the golden ratio that contains 21 calculated positions. Both
determine the attractiveness of a face according to Schmidt et al. [SMS08].

• Hu Moments [ŽHR10]: the only algorithm that we can use to extract features
from the entire face, a vector with 7 positions, and also from parts of it, a vector
with 35 positions, since a vector with 7 positions is extracted for the 5 regions
of the face. Timwell’s study [TGNW11] explores how facial expressions on
virtual characters influence human perception and the Uncanny Valley effect.
When emotional expressions of virtual characters do not match typical human
expressions, this can cause discomfort. According to Schmid et al. [SMS08],
facial symmetry and neoclassical proportions play a central role in the percep-
tion of beauty. More symmetrical faces that follow golden proportions tend to
be seen as more attractive.

(A) Reduce complexity for dimensionality

To reduce complexity, PCA [PVG+11] can be used for dimensionality reduc-
tion. For each region of the face and even the entire face, we perform a PCA using
the vectors of each feature, generating a dimensionality reduction, whose number of
components is defined as 95%. When PCA was not used, we used Random Forest
(RF) to select the most important variables. Indeed, we tested with 1, 2 and 4 vari-
ables with RF, and 1 was the best choice for our results. When dealing with parts
of the face, 1 variable from each region is selected; when dealing with the entire
face, we average the highest importance value and the lowest value, selecting the
features with an importance value greater than this average.

Training the Voting Regressor Model

Finally, we use the voting regressor [PVG+11], which is a machine learning
method that trains on a set of several models and predicts an output (a value).

The proposal is to replace the creation of dedicated and separate models
with a single global model. This model will be trained based on the individual models
already defined and will make predictions by combining the majority of votes.
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Figure 5.5: The overview of our model in Section 5.1.2: it starts with the face de-
tection, if there is a face, then we find out the 5 regions (ROIs-forehead, eyes, nose,
mouth, and chin). We extract the features of the entire face and the ROIs using AUs,
Entropy, GLCM, Golden Ratio and Hu Moments algorithms. PCA can be used to
reduce the dimensionality of the feature vector, and optionally we also test Random
Forest. Finally, the voting regressor predicts the computed comfort score

Computing CCS using Voting Regressor (VR) Model

We adopt the same entropy extraction algorithm used by the SVR model
in Section 5.2.2 to extract image features. We also use the AUs extracted by
OpenFace, Hu Moments, GLCM and Golden Ratio algorithms as explained in sec-
tion 5.2.2.

We segmented the face into five distinct bands (forehead, eyes and eye-
brows, nose, mouth, and chin) only for the Hu Moments algorithm, which can extract
information from parts of the face and the entire face. This approach was adopted
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to investigate which parts of the face can generate more features of eeriness and
whether the subjective evaluation agrees with this. We did not do the same treat-
ment for the other algorithms because they process information from the entire face,
such as aspect ratio, AUs, etc.

As previously established, the Voting Regressor (VR) models were applied
to the training dataset with 40 characters and the test dataset, which varies to take
into account all characters present in the GT2 dataset. In each experiment run,
for each feature, and in each training dataset, 16 models were created because
of data standardization techniques (3 methods: standardization, normalization, and
logarithm transformation), dimensionality reduction (2 possibilities YES/NO) and a
polynomial technique.

Among the techniques used, the standardization is the function Standard-
Scaler, which adjusts the data so that they have a zero mean and unit standard de-
viation; normalization, which adjusts data values to a specific range, usually [0, 1];
and the logarithmic transformation, which aims to reduce the range of data values.
For each technique, there was the possibility of activating it or not in the combination
of techniques.

In addition, dimensionality reduction was implemented through Principal
Component Analysis (PCA) and Random Forest (RF). Indeed, in combinations where
PCA is not applied, we test the RF to identify the three most relevant characteristics
of each region of the face 14.

The combination of these approaches allowed the creation of a wide va-
riety of models, ensuring that the most relevant characteristics were used in the
Regression process and providing a robust basis for evaluating the effectiveness of
the different techniques used. In this work we used the RMSE (Root Mean Square
Error) values as the evaluation metrics.

5.3 Chapter Considerations

This chapter presented the five models proposed in this work for detecting
strangeness/discomfort, focusing on what we developed. The main objective was
to show how each part of the model was conceived and assembled, as well as to

14As mentioned before, we tested RF with 1, 2 and 4 most relevant characteristics, but the method
performed better with 1 characteristics
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present the way in which the models were built. The next chapter discusses the
experimental results obtained.

Table 5.2 summarizes the methods proposed in this chapter, indicating the
technique used, whether it is a binary classification, regression, or CNN. It also
presents the algorithms used to extract the features and indicates the dataset used
to generate the model.

Model Technique Binary Feature Extract Face Dataset

First SVM yes Hu Moments
and HOG Entire 19 characters

40 characters

Second VC yes Hu Moments
and HOG

Entire and
Parts 40 characters

Third CNN yes Image Entire and
Parts 40 characters

Fourth SVR no Entropy Entire 19 characteres
40 characters

Fifth VR no

AUs,
Entropy,
GLCM,
Golden Ratio and
Hu Moments

Entire and
Parts 40 characters

Table 5.2: This table summarizes the five proposed models, the algorithms used,
and whether each model performs binary classification or regression, as indicated
in the ’Binary’ column. The ’Features’ column specifies the features used to extract
facial characteristics, while the ’Face’ column indicates whether the entire face or
only parts of it were analyzed. The ’Dataset’ column specifies whether the first 19
characters of GT2 were used or all 40 characters.
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6. EXPERIMENTAL RESULTS

This chapter presents the experimental results obtained with the five mod-
els presented in this work.

6.1 Binary Classification Models Results

In this section, we present the experimental results obtained with the binary
models using the SVM algorithm, the ensemble Voting Classifier (VC) method, and
CNN. Additionally, we show the comparison between the models.

6.1.1 Binary classifications using SVM

After computing SVM for the entire face and its parts using the first 19
characters from the GT2 dataset , the results did not show a significant difference
in accuracy, although the obtained accuracy for the entire face is higher than for its
parts. Because of this, we use the entire face on next evaluations using SVM. There-
fore, we number the kernels: 1) Linear pattern with data; 2) Radial basis function
(RBF) and 3) Polynomial.

The suggested model returned 24 executions, which correspond to the fea-
tures (Hu moments or HOG), with the detection or not of the saliency, with or without
the reduction of dimensionality through the PCA and using the three kernel func-
tions (linear (1), RBF (2) or polynomial (3)). In addition, we use leave-p-out cross-
validation, where p = 2, i.e., p observations (causing strangeness or not), as the
validation set and the remaining observations as the training set. This is repeated in
all ways to cut the original sample on a validation set of p observations and a training
set, resulting in 1920 runs. As metrics, we used the F1-score.

Figure 6.1 presents the results with and without the saliency function. The
left side of the figure shows the results obtained without the saliency function, while
the right side displays results with it. The values represent the average F1-Scores
across 80 scenarios (5x16 in cross-data testing). On the left graph, 4 out of 12 ex-
ecutions achieve an F1-Score greater than 60%. Among these, 3 implementations
utilize Hu moments features, and only 1 does not employ PCA. The best perfor-
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mance is achieved with Hu Moments features combined with a polynomial kernel
and dimensionality reduction via PCA, yielding an F1-Score of approximately 80%.
On the right side of Figure 6.1, which shows the results with the saliency function,
only one execution reaches an F1-Score close to 40%, while the remaining scores
are considerably lower.

Figure 6.1: The F1-Score metric shows that there are 4 sets of implementations
with F1-Scores values between 60% and 80% when classifying the characters in
classes 0 (does not cause strangeness) and 1 (causes strangeness). The best
implementation uses the Hu Moments feature, the polynomial kernel, which does
not include the saliency of data and uses the dimensionality reduction, generating
an F1-Score of approximately 80%.

In Figure 6.2, we present the computational time spent in executions from
Figure 6.1. For the two implementations that presented F1-Score 76% and 80%
in Figure 6.1 on the left, the time spent was 1560 seconds and 1335.08 seconds,
respectively. For the other two implementations in which the F1-Score is 64% and
75%, the time is approximately 30 and 60 seconds, respectively.

Such data can be used to strike a balance between accuracy and compu-
tational time. For example, one option is to select the highest accuracy (80%) with
the third best computational time (1335.08 seconds), achieved with Hu moments
features, no saliency function, a polynomial kernel, and PCA. Alternatively, another
viable option is to choose a slightly lower accuracy (65%) with significantly reduced
computational time (60 seconds), using the same configuration but with a linear
kernel.

Binary classification of characters

Using the best accuracy implementation obtained in the last section, we
present binary classification results using the dataset GT1 containing the first 19
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Figure 6.2: Computational time obtained in executions reported in Figure 6.1.

characters. First, we performed predictions using 80 runs (16 characters that gen-
erate comfort and 5 characters that do not) in the cross-validation test.

Firstly, we investigate the 5 characters that cause strangeness to people
(highlighted in Figure 4.1). Table 6.1 shows the number of frames extracted from the
videos of the 5 characters that cause strangeness in subjective evaluation. Those
frames contain only the face of the 5 characters to be predicted in the implementa-
tion of this work. Table 6.2 presents the classification of such frames in the binary
classification, where class 0 means that the character does not generate discomfort
and class 1, the opposite.

Characters Number of Frames

character (a) 1786

character (l) 45

character (c) 784

character (f) 131

character (i) 249

Table 6.1: Number of frames extracted from the videos of the 5 characters that
cause strangeness in subjective evaluation. These characters correspond to the
highlighted characters in Figure 4.1.

In a subjective evaluation, we notice that facial expressions, together with
the movement of the head and body, can contribute to a distortion of visual charac-
teristics, resulting in a possible strangeness to human eyes. It is possible to notice
that effect in the smaller value obtained for Class 1 character (f) in Table 6.2. We
hypothesize that this happens with the character (f) because there are many fa-
cial deformations in this case if compared with other faces, as (a) and (l). Tinwell et
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al. [TGNW11] already make references in their work on the issue of facial expression
and also on the movement of bodies as important factors for detecting strangeness.

Characters % Class 0 % Class 1

character (a) 20.00 80.00

character (l) 2.36 97.64

character (c) 20.03 79.97

character (f) 44.65 55.35

character (i) 13.07 86.93

Table 6.2: Percentage of class 0 and class 1 for each character after prediction by
the implementation model.

As we can see in Table 6.2 it classified these 5 characters as belonging to
class 1 (as major part of frames) using our proposed model, which matches with the
subjective evaluation with people.

In addition, we evaluated the remaining 14 characters that do not cause dis-
comfort to people, according to subjective evaluation. Table 6.3 shows the number
of frames extracted from the videos of such 14 characters. As before, these frames
contain only the faces of the characters analyzed to be classified in our work. For

Characters Number of Frames
character (c) 610
character (b) 552
character (v) 427
character (t) 402
character (m) 207
character (h) 175
character (o) 145
character (n) 80
character (k) 72
character (p) 63
character (s) 34
character (d) 21
character (r) 15
character (q) 1

Table 6.3: Number of frames extracted from the videos of the 14 characters that do
not cause strangeness in subjective evaluation.

the 14 characters that do not cause discomfort to people, only 4 of them were in-
correctly classified as belonging to class 1, as seen in Table 6.4. So, the obtained



111

error rate is 28% in the 14 characters that do not generate discomfort in subjective
evaluation. Considering the full dataset GT1 of 19 characters (and 5799 frames),

Table 6.4: Percentage of class 0 and class 1 for each character after prediction by
the implementation model.

Characters % Class 0 % Class 1

character (c) 97.44 2.56

character (b) 99.80 0.20

character (v) 98.75 1.25

character (t) 67.58 32.42

character (m) 75.59 24.41

character (h) 99.57 0.43

character (o) 20.36 79.64

character (n) 76.61 23.39

character (k) 99.03 0.97

character (p) 20.00 80.00

character (s) 99.72 0.28

character (d) 0.06 99.94

character (r) 99.83 0.17

character (q) 20.00 80.00

we obtained an accuracy of approximately 81% in characters classification and 82%
considering the image classification.

After expanding the dataset to 40 characters, we used the best parameters
to generate a new model using the GT2 dataset. According to Table 6.5, the result
was not satisfactory since the accuracy was 50%, while the median of the F1-Score
metric indicated 64.03%.

Character Frames GT Class 0 Class 1 Prediction Agreements
1 260 1 65 195 1 Agree
2 60 0 11 49 1 Disagree
3 260 1 72 188 1 Agree
4 66 1 37 29 0 Disagree
5 260 1 83 177 1 Agree
6 232 0 61 171 1 Disagree
7 52 1 15 37 1 Agree
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8 260 1 91 169 1 Agree
9 117 0 15 102 1 Disagree
10 260 1 49 211 1 Agree
11 442 0 119 323 1 Disagree
12 83 0 18 65 1 Disagree
13 59 1 11 48 1 Agree
14 117 0 49 68 1 Disagree
15 59 1 26 33 1 Agree
16 386 0 127 259 1 Disagree
17 216 1 79 137 1 Agree
18 60 0 18 42 1 Disagree
19 420 0 168 252 1 Disagree
20 93 1 39 54 1 Agree
21 260 1 37 223 1 Agree
22 487 0 207 280 1 Disagree
23 205 0 72 133 1 Disagree
24 164 1 24 140 1 Agree
25 260 1 61 199 1 Agree
26 260 1 103 157 1 Agree
27 33 0 21 12 0 Agree
28 241 1 34 207 1 Agree
29 64 1 49 15 0 Disagree
30 382 0 198 184 0 Agree
31 260 1 68 192 1 Agree
32 245 0 99 146 1 Disagree
33 253 0 76 177 1 Disagree
34 53 1 30 23 0 Disagree
35 260 1 129 131 1 Agree
36 111 0 39 72 1 Disagree
37 260 1 90 170 1 Agree
38 97 0 18 79 1 Disagree
39 56 0 23 33 1 Disagree
40 121 0 42 79 1 Disagree
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Table 6.5: Evaluation of the predicted classes for the characters included in our
SVM model test dataset, using the dataset GT2 (Section 4.2) balanced frames by
class. Predictions for all 40 characters were included, along with the ground truth
(GT) for all characters and the number of frames for each character (Frames). Class
0 is considered comfortable, while class 1 is uncomfortable. The prediction column
indicates the predominant class predicted for the character. The comparison be-
tween the prediction of our SVM model and GT was evaluated in the Agreement
column. The result agree indicates agreement, and disagree indicates disagree-
ment between the predictions and GT.

6.1.2 Binary classifications using Voting Classifier

Our investigation analyzes the accuracy of models generated with Voting
Classifier, using the F1-Score metric to classify facial regions into Comfortable and
Uncomfortable. This classification indicates the prediction about people’s percep-
tions.

Table 6.6 presents the median F1-Score metric of the application of the al-
gorithms (HOG, HU Moments and HOG+Hu Moments) using the GT2 training and
testing dataset (40 characteres). We also report here the highest median F1-Score
obtained for each algorithm: i) F1-Score=91.11%, for the Hu Moments algorithm, ii)
F1-Score=66.32%, for the HOG algorithms, and iii) F1-Score =86.08%, for the Hu
Moments + HOG algorithms. For this reason, we consider that the Hu Moments al-
gorithm, using logarithm data standardization and without dimensionality reduction,
presents the best median F1-Score.

6.1.3 Training and testing results with CNNs

In the first experiment, the performance evaluation metrics of Average Pre-
cision, Loss, and F1-Score were taken as reference, as shown in Table 6.7. As
can be seen, we obtained low accuracy rates for the three models created, namely
45.96%, 37.10% and 11.30% for VGG16, ResNet50 and MobileNet, respectively.
One possibility for the low scores obtained is the lack of proportionality (balance)
in the data between the five classes. Although there is a balance between the two
classes used (eyes and mouth), there is still little data. Only 18 characters that
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Feature Standard Logarithm Normalized PCA Median
F1-Score

Median
Elapsed Time

HOG
n

n y n 0.60 2179.8
y 0.61 1321.2

y n n 0.66 1912.20
y 0.62 1426.80

y n n n 0.64 1887
y 0.61 1354.80

Hu Moments
n

n y n 0.76 1509
y 0.64 1411.80

y n n 0.91 1149.60
y 0.58 1155.60

y n n n 0.72 1323
y 0.66 1192.80

Hu Moments
+
HOG

n
n y n 0.81 1466.40

y 0.63 1422

y n n 0.86 1151.40
y 0.59 1153.80

y n n n 0.69 1251,60
y 0.66 1222.20

Table 6.6: Evaluation of Voting Classifier models using the GT2 dataset using 40
characteres, with balanced frames by class, based on the feature used (Hu Mo-
ments or HOG), data standardization method (standard, logarithmic, or normalized),
and with or without dimensionality reduction (PCA). The best median F1-Score was
91%, achieved using Hu Moments, logarithmic data standardization, and without
dimensionality reduction. The ’Median Elapsed Time’ column displays the time in
seconds.

cause strangeness are involved in this procedure because they were the only ones
whose eyes and mouths were identified as uncomfortable for people.

In the second experiment, we trained the models based on the results of
the entire face, which resulted in binary classification, comfort (0) and uncomfortable
(1). In Table 6.8, these values clearly show an improvement in F1-Score values
when compared to the parts of the face. Resnet50 achieved the highest F1-Score
value (77.90%) compared to VGG16 (56.69%) and MobileNet (38.86%), but the
accuracy is very low (34.63%) while VGG16 (46.63%) and MobileNet (35.96%).
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Face Parts
VGG16 ResNet50 MobileNet

Accuracy 0.4596 0.3710 0.113
Recall 0.4596 0.3710 0.1113
Precision 1.0 1.0 1.0
F1-Score 0.4979 0.4370 0.115

Table 6.7: Results of CNN fine tuning concerning the prediction of subjective dis-
comfort to parts of face.

All Face
VGG16 ResNet50 MobileNet

Accuracy 0.4663 0.3463 0.3596
Recall 0.5102 0.6384 0.3827
Precision 1.0 1.0 1.0
F1-Score 0.5669 0.7790 0.3886

Table 6.8: Results of CNN fine tuning concerning the prediction of subjective dis-
comfort to the entire face.

6.1.4 Comparing results of Binary Models SVM and GT

Table 6.9 compares the two binary models, SVM and VC, applied on GT2.
For the SVM model, there was a 50% accuracy (20 characters out of 40) in relation
to the GT2. When comparing the VC model with the GT2, there was an agreement
of 67.5% (27 characters). When comparing the two models, the agreement ratio
was 62.5% (25 characters). When comparing the accuracy of CNN with the two
previous models, the percentage is lower, 45.96% using VGG16 for the face parts
and 46.63% with VGG16 when trained with the entire face. Of these three mod-
els presented, we consider the VC method to be the one that indicated the best
accuracy.
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6.2 Result of the Regression Models

In this section, we present the experimental results obtained with the re-
gression models using the SVR algorithm and the ensemble Voting Regressor (VR)
method. We call the estimated comfort predicted by the models CCS and show the
comparison between the models.

6.2.1 Computed Comfort Score (CCS) Results

First, we investigate the accuracy obtained with the nine models presented
in Table 5.1 using the first 19 characters where a value of binary classification is
computed for each character. In addition, we evaluated the error obtained when we
confronted the CCSi obtained value and the ground truth value of comfort for each
character i . Then, we provide an analysis to find out the part of the faces that gen-
erates more discomfort with our method. We investigate a hypothesis, transforming
all CG characters into cartoons and calculating the CCS again.

Evaluating CCS values as a binary classification of comfort

First, we present the binary classification result regarding the 19 CG char-
acters, using the nine models (presented in Table 5.1) and the whole face. We
consider that characters in which perceptual comfort is < 60%, in the ground truth,
can generate discomfort in the human perception, while remaining characters gen-
erate comfort, i.e., perceptual comfort >= 60%. Table 6.2 shows the five characters
that generate discomfort in human perception and the result of binary classification
using CCS values with the same threshold as in the ground truth, i.e., discomfort if
CCS < 60% and comfort if CCS >= 60%. It presented a similar analysis in Table 6.4
with characters that generate comfort in human perception. In Table 6.10, “*” shows
that the classification was correct, while “-“ was not correct in comparison with the
ground truth for the 9 models.

As we can see in Table 6.10, Models 1 and 6 seem to be more adequate
than others to provide a correct classification of the last five characters that generate
strangeness or discomfort in the individuals. Models 7 and 8, in Table 6.10, present
100% of correct classification with characters that are comfortable, according to hu-
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Character Number of Frames 1 2 3 4 5 6 7 8 9
(b) 553 * * * * - - * * *
(d) 17 * * - * * * * * *
(e) 610 - - * - - - * * *
(g) 2 * * * * * * * * *
(h) 164 * * * * * * * * *
(k) 72 * * - - * - * * *
(m) 209 * * * * * - * * *
(n) 74 * * * * * * * * *
(o) 145 * * * * * - * * -
(p) 60 * * * * * * * * -
(r) 18 * * * * * * * * *
(s) 21 * * - * * * * * *
(t) 403 - - * * * * * * *
(v) 428 - - * * - * * * *
(a) 1786 - - * * * * - - -
(c) 745 * * - * - * * * -
(f) 148 * * - * - * * * -
(i) 250 * * - - - * - - -
(l) 33 * - - - - - - - -

Table 6.10: Number of frames extracted from the videos of the 19 characters and
result of binary classification with computed comfort using the 9 studied models.
The symbol "-" shows the incorrect classification while "*" shows the opposite. The
last 5 characters (a, c, f, i, l) correspond to the highlighted characters in Figure 4.1.

man perception. When evaluating all the characters together that present discomfort
and comfort in people’s perception on Table 6.10, we noticed that the best model,
in this case, is Model 1 with approximately 80% of average accuracy, considering
both groups of characters. One can say that Models 7 and 8 also seem accurate,
but in fact, such models classified incorrectly more than half of characters that gen-
erate strangeness/discomfort, maybe showing a tendency in generating high values
of computed comfort (CCS). In addition, the RMSE between CCS obtained values
and the comfort value in the ground truth, for the 19 evaluated characters is 23.59.

Table 6.11 shows the CCS metric and the perceived comfort values (GT1).
We considered calculating the average of the CCS metric of the computed values
to be the threshold to indicate whether the computed comfort was uncomfortable or
comfortable. The threshold was 60%, so if the value was less than or equal to 60%
it was considered uncomfortable, otherwise it was comfortable. Thus, we obtained
an agreement of 85.71% for the comfortable class and 60.0% for the uncomfortable
class in relation to each character.
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It is important to notice that Model 1 accuracy (80%) is very similar to re-
sults obtained in the previous work [DMND+21a] using SVM (also 80%) when we
evaluated the total number of images per class. When evaluating accuracy by char-
acter and class, we have 85% accuracy in relation to the comfortable class and 60%
in relation to the uncomfortable class.

Character Perceived Comfort (%) CCS(%)
a 41.17 60.25
b 68.90 61.97
c 26.89 59.34
d 84.87 86.91
e 65.54 55.04
f 35.29 44.52
g 52.10 100
h 73.10 74.56
i 24.37 57.30
k 91.59 73.62
l 37.81 61.38

m 88.23 64.53
n 71.43 100
o 92.43 83.13
p 92.43 73.98
r 81.51 100
s 89.08 93.51
t 85.71 60.77
v 79.83 59.71

Table 6.11: Evaluation of 19 characters from the GT1 dataset, according to the fol-
lowing attributes: characters, human-perceived comfort rating and calculated CCS.

6.2.2 Perception of comfort using SVR for face parts

Considering that a specific part of the face can cause discomfort, we inves-
tigated the parts of the face that cause more discomfort/strangeness. Analyzing the
perceptual data, subjects comment that first part of the face that causes strangeness
is the eyes followed by the mouth and nose. Taking the five characters that gener-
ate discomfort in the perceptual study, we observed that the nose and eyes are
the parts of the face with smaller values of CCS. In the perceptual study, 11 from
14 characters that do not generate strangeness present the mouth as the region is
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less comfortable, being eyes and nose the less comfortable for the three remaining
characters.

It is interesting to remark, that there are few variations concerning the CCS
computed for face parts and compared with perceived comfort. Values of RMSE
for each face part, compared with perceived comfort (ordered from the lowest error
to the higher) are following presented: 21.15 for the nose, 22.40 for left_eyebrow,
22.52 for right_eyebrow, 22.93 for the left_eye, 23.89 for the right_eye, and 24.63 for
the mouth. Although the average error of the parts of the face (22.92) is slightly less
than CCS for the full face (23.59), these values are not got with the same model. For
example, Model 6 is used to get the best CCS for the left eye, left eyebrow, and right
eyebrow; and Model 4 is the most suitable for the right eye. In fact, when analyzing
model by model, none achieved better accuracy than Model 1 for the entire face.

After expanding the dataset to 40 characters as reported in Section 4.2,
we used the best parameters to generate a new model SVR, using the GT2 dataset
(40 characters). According to Table 6.14, the result indicates that the median of the
RMSE metric is 24% error. There are 25 characters in the first three bands and 15
in the last two.

6.2.3 CCS using Voting Regressor

Our investigation focuses on analyzing the accuracy of models generated
with the ensemble Voting Regressor method, using the RMSE metric to measure
error residual in relation to comfort which indicates the prediction about people’s
perception, using the GT2 dataset.

Table 6.12 presents the median of the RMSE metric of the application of
the training and testing algorithms (AUs, Entropy, GLCM, Golden Ratio and Hu Mo-
ments). We also report here the smallest median RMSE error measure obtained for
each algorithm: i) RMSE = 18.55%, for AUs, ii) RMSE = 13.88%, for the Entropy al-
gorithm, iii) RMSE = 18.12%, for the Golden Ratio algorithm, i) RMSE = 16.79%, for
GLCM, ii) RMSE = 16.44%, for the Hu Moments algorithm evaluating the entire face
like the previous algorithms, and iii) RMSE = 15.55%, for the Hu Moments algorithm
when extracting the feature from parts of the face.
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Since the error measures (RMSE) are quite approximate, we decided to
divide the RMSE into bands from 1 to 5 and count the number of characters for each
band. For the first three bands, the estimated RMSE is up to 30% error, according
to the perceptual comfort of the GT2 dataset (section 4.2). Therefore, the greater
the concentration of characters in these first 3 bands, indicates that the model came
closer to the comfort perceived by people. The last two bands indicate an error
residual rate above 30%, which shows a greater distance from the comfort perceived
by humans. Therefore, the lower the concentration of characters in these last two
bands, the better the comfort result estimated by the model. Table 6.13 shows the
distribution of characters by error measurement ranges (RMSE) and by algorithms.
We observed that the largest concentration of characters is found in ranges 1, 2 and
3 in all algorithms, ranging from 28 to 32 characters, corresponding to 70% to 80% of
the characters in the GT2 dataset (section 4.2). Hu Moments, either * or **, was the
algorithm with the largest number of characters (32) in these first 3 ranges. We also
verified that the Entropy and AUs algorithms indicated 32 characters in these initial
ranges. In range 4, the algorithm that quantified the fewest characters was Entropy,
while in range 5 it was Hu Moments*. Considering the importance of the bands
(Table 6.13) and also the median of the RMSE of the Table 6.12, we understand that
the best algorithm is Hu Moments** although the lowest RMSE was with the Entropy
algorithm.

Range RMSE Aus Entropy Golden Ratio GLCM Hu Moments* Hu Moments**
1 [0.0; 0.1] 10 12 13 13 13 9
2 (0.1; 0.2] 13 12 8 11 12 15
3 (0.2;0.3] 8 7 7 5 8 8
4 (0.3,0.4] 5 4 5 7 6 6
5 (0.4,1.0) 4 5 7 4 1 2

Table 6.13: Evaluation of the number of characters per measurement interval of the
error metric (RMSE). The first three bands indicate greater proximity of the comfort
estimated by the model in relation to the perceived comfort. While the last two bands
represent the opposite. Therefore, the greater the number of characters in the first
three bands, the better the comfort estimated by the model. The * indicates that
the algorithm extracts features from the entire face and ** refers to the extraction of
features from parts of the face (forehead, eyes, nose, mouth, chin).
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6.2.4 Comparing results obtained with Regression Models (SVR and VR)

In this section, we evaluate and compare VR and SVR results. As pre-
sented in the last Section 6.2.3, we computed the RMSEs of the VR models ac-
cording to the data standardization (standard, logarithm, nomalized), the algorithms
(AUs, Entropy, Golden Ratio, GLCM and Hu Moments), in addition to the dimen-
sionality reduction with PCA. The best VR model was extracted by extracting fea-
tures with the Hu Moments algorithm (parts of the face) , data, using the logarithmic
transform and without dimensionality reduction. In Table 6.12 we report the median
RMSE of the combinations between the models generated and explored in the last
section.

We retrained the SVR model according to the model features reported in
Section 5.2 with the GT2 dataset using 40 characteres so that we can compare our
Voting Regressor (VR) method and the SVR model. Table 6.14 shows that there is
a higher concentration of characters in bands 1, 2 and 3, indicating that the majority
of the characters (62.5%) fall into them. The median RMSE was 24.19%.

Range RMSE SVR
1 [0.0; 0.1] 6
2 (0.1; 0.2] 10
3 (0.2;0.3] 9
4 (0.3,0.4] 8
5 (0.4,1.0) 7

Table 6.14: Evaluation of the number of characters in the Amount column by mea-
surement error interval (RMSE). The greater the number of characters in the first
three intervals, the lower the measurement error, being closer to the expected com-
fort of the Ground Truth. Intervals 4 and 5 indicate high measurement error, so the
fewer characters in these intervals, the better.

Figure 6.3 shows the comparison between the two regression models (Hu
Moments) using 40 characters from the GT2 dataset . We can see that the SVR and
VR models have a similar trajectory when evaluating the median RMSE (Root Mean
Square Error) of the videos.

The SVR model has a fairly uniform distribution among the RMSE bands
according to Table 6.14 and concentrates 62.5% of the characters in the first 3
bands. However, the VR model, according to Table 6.13, presents 80.0% of the
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characters in the same bands, with a smaller distance in the error in the prediction
in relation to the perceptive GT2.

Figure 6.3: Plot of perceptual comfort and median RMSE metric for the SVR (red
line) and VR (yellow line) models with perceived comfort values shown in the blue
line (our ground truth, people’s assessment of the characters). The X axis repre-
sents the ordering of the characters in the GT2 dataset. The Y axis represents
people’s perceived comfort of the characters and also the median error (RMSE) in
the prediction made by the models. The lower the RMSE, the closer to perceptual
comfort.

6.3 Interpretability of the best models using the LIME tool

Few machine learning interpretability models work with the ensemble tech-
nique as the voting classifier. We evaluate SHAP [MHJ20] (SHaplay Additive exPla-
nation), and DALEX [BB21] (Model Agnostic Language for Exploration and Expla-
nation), both of which address the explainability of the global model, evaluating the
entire dataset of the test. On the other hand, LIME [RSG16] (Local Interpretable
Model Agnostic Explanations) also deals with local interpretability, so it was chosen
for this study because we wanted to explain locally the parts of the face that generate
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the prediction of comfort or discomfort. Therefore, we can also generate the most
relevant features globally from the test dataset by collecting the feature importance
for each instance, as this section will explain. LIME is conceived as a model that
seeks to emulate the behavior of a pre-existing model, called a substitute or surro-
gate model, in a local context. This surrogate model is trained on a dataset derived
from instances close to the one being interpreted by introducing small variations in
characteristics or attributes, weighted according to the proximity to the original in-
stance. In the scope of the present study, these variations are applied at the level
of image pixels, covering procedures such as changing the brightness in certain re-
gions, introducing noise, or applying subtle rotations. So, as expected, the VC and
LIME models present an agreement rate of 100% when evaluating interpretability by
LIME for all characters.

The interpretation of the results of the Lime applied to the analysis of the
HU Moments requires the understanding of the characteristic vectors of these mo-
ments. Hu Moments are mathematical descriptors that encapsulate essential prop-
erties in an image, allowing recognition of robust and consistent patterns, regardless
of transformations such as rotation, translation, and scale. We detail the purpose of
each vector and the analogy with the human face in Section 3.1.

We used LIME (Section 3.2.1) as a way to interpret the results obtained
from ensemble voting (methods VC and VR) and compare with GT (Table 4.2) to
predict and also explained the models’ predictions in terms of the oddest part of
the face. The research question we want to answer using the explanation of LIME
on our data is "How to explain a prediction of the comfort of a virtual face?" In the
images representing the LIME explanation, the colors blue and orange represent
how comfortable or uncomfortable the virtual face can be, whereas blue represents
comfort prediction and orange represents discomfort.

We perform global (for the whole face) and local (parts of the face) analyses
with all characters. The goal is to calculate and display the most important features
of the emsemble voting models, both for the training data set and for the test data
set, and save a graph comparing the importances for both data sets. For each
estimator used in the emsemble voting technique, the model is trained (tuned) with
the provided training data set.
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6.3.1 Interpretability of some instances in the Voting Classifier Model

Due to space constraints, we focus on an in-depth discussion of only four
selected characters in this section, where 3 are uncomfortable and 1 is comfortable,
as shown in Table 6.15. However, it is important to note that we achieved 38.09%
accuracy in predicting facial parts compared to the ground truth, highlighting the
challenging nature of this topic for study.
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We performed global and local analyses on all characters. The global anal-
ysis uses the features of all characters for training, except the one being tested. The
test dataset consisted of all frames of the character’s video to predict comfortability.
The local analysis uses a specific video frame to make the same prediction.

To evaluate the results, we consider the ground truth (GT) responses for
the binary class (comfortable/discomfortable) in Table 6.9. Additionally, we com-
pare the LIME explanation about the specific part of the face which generates more
strangeness, with the answers from the participants (Table 4.2).

Figure 6.4 illustrates the interpretability of features in the VC model when
evaluating the training dataset (having all characters but removing character 1) on
the left, showing the importance of features versus classes. On the right, the test
dataset consists of the frames from the video of character 1 and predominates rel-
evant features of the "uncomfortable" class, with the forehead and eyes being the
parts that stand out. The information on facial oddness confirms the results obtained
in the participant survey for the full-face GT, but the forehead was not indicated as
an odd region (see Table 4.2). Furthermore, Figure 6.5 shows the interpretability
of the features using LIME for character 1 in a specific frame 1. On the left of Figure
6.5, LIME shows the indication of the probability of the two classes using the linear
LIME model for the image on the left. In the center of the figure, the weights resulting
from the LIME processing for the image on the right (blue and orange bars) for each
part of the face presented. The features are listed on the Y-axis. The length of the
bar on the X-axis indicates how much this feature contributed to the prediction. The
direction of the bar (right or left) indicates whether the feature contributed positively
or negatively to the prediction. The methods (VC and LIME) predict that the class is
uncomfortable. The features that contributed positively (orange) to this result were
the eyes when evaluating the direction and the degree of elongation (dde) of this
part of the face, and the forehead which deals with its geometric shape. In contrast,
the chin feature, when dealing with curvature variations (vac), was the most relevant
to contribute negatively (blue) to the prediction made. The part of the face consid-
ered relevant (eyes) agrees with GT2 (Table 4.2). This information agrees with the
user’s research for GT2 of the entire face and for parts of the face when evaluating
only a main part.

Therefore, of the 260 frames in the video of character 1, LIME and VC
agree 100% with respect to the class of each frame; that is, 260 frames were clas-
sified as uncomfortable and 0 were comfortable, so all frames were considered un-
comfortable.
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Figure 6.4: Global analysis of features relevance by class on training (left) and test-
ing datasets of character 1 (right). The figure on the right, corresponding to the test
data set of character 1, covering all frames, highlights a predominance of impor-
tance in the characteristics of the uncomfortable class, disagreeing in (eyes) with
the GT Face in Table 4.2.

Figure 6.5: Interpretability by LIME for character 1 on the frame 1. On the left it
shows the probability of the classes, in the middle the weights generated by the
model for each relevant feature and on the right the evaluated face.

As with the analysis of character 1, Figure 6.6 illustrates the feature inter-
pretability in the VC model by evaluating the training dataset (removing character 8
from the data) on the left, showing the importance of features versus classes. On
the right, the test dataset consists of the video frames of character 8, and the fea-
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tures relevant to the "uncomfortable" class predominate, with the forehead, eyes,
nose, and mouth being the most prominent parts. This information confirms the par-
ticipant’s research for binary classifications of the face, however, the part of the face
highlighted in the research is the chin. Additionally, Figure 6.7 shows the feature
interpretability using LIME for character 8 at a specific frame 125. The method (VC
and LIME) predicts that the class is uncomfortable. The features that contributed
positively (orange) to this result were the eyes when evaluating the direction and
degree of elongation (dde) of this part of the face, the forehead (dde) and the nose
(asy) when evaluating the asymmetry. On the other hand, the chin feature, when
treating the direction and degree of elongation (dde) and the mouth (asy), were the
most relevant to contribute negatively (blue) to the prediction made. The most rel-
evant part of the face (eyes) does not agree with GT2 (table 4.2) that indicated the
chin. Therefore, of the 260 frames of the video of character 8, LIME and VC agree
100% on the class of each frame; that is, 260 frames were classified as uncomfort-
able and 0 as comfortable.

Figure 6.6: Global analysis of the relevance of features by class in the training (left)
and testing (right) datasets for character 8. The figure on the right, corresponding to
the testing dataset for character 8, covering all frames, highlights a predominance of
importance in the features of the uncomfortable class, agreeing with the evaluations
in Table 4.2 on GT Face. However, the part of the face selected by the participants
is the chin.
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Figure 6.7: Interpretability by LIME for character 8 on frame 125. On the left it shows
the probability of the classes, in the middle the weights generated by the model for
each relevant feature and on the right the evaluated face.

Figure 6.8 illustrates the feature interpretability by evaluating the training
dataset on the left and testing dataset consisting of character 9’s video frames on
the right. As can be seen, the features indicate the "comfortable" class. This in-
formation confirms the prediction of the comfort class with GT Face from Table 4.2.
Additionally, Figure 6.9 shows the feature interpretability using LIME for character 9
at a specific frame 69. The method (VC and LIME) predicts the comfortable class
for frame 69 of character 9. Therefore, out of the 117 frames in character 9’s video,
LIME and VC agree 100% on the class of each frame; that is, 21 frames were clas-
sified as uncomfortable and 96 as comfortable.

Finally, Figure 6.10 illustrates the feature interpretability of the VC model by
evaluating the training and testing dataset for character 26. In this case, LIME pre-
dicts the “uncomfortable” class. This information agrees with GT Face in Table 6.9.
Additionally, Figure 6.11 shows the feature interpretability using LIME for character
26 at a specific frame 34. The method (VC and LIME) predicts that the class is
uncomfortable. This information confirms the prediction of the discomfort class with
GT Face in Table 4.2. The features that contributed positively (orange) to this result
were the eyes when evaluating the direction and degree of elongation (dde) of this
part of the face, the shape of the forehead (sha), the nose (asy) when evaluating
the asymmetry and finally the mouth (vac) through the curvature variance. In con-
trast, the chin feature, when treating the direction and degree of elongation (dde),
the asymmetry of the mouth (asy) and the shape of the nose (sha), were the most
relevant to contribute negatively (blue) to the prediction performed. Therefore, of
the 260 frames in the video of character 26, LIME and VC agree 100% regarding
the class of each frame; 179 frames were classified as uncomfortable and 81 were
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Figure 6.8: Global analysis of features relevance by class on training (left) and test-
ing datasets of character 9 (right). The figure on the right, corresponding to the test
data set of character 9, covering all frames, highlights a predominance of impor-
tance in the characteristics of the "comfortable" class. It agrees with GT Face in
Table 6.9.

Figure 6.9: Interpretability by LIME for character 9 on frame 69. On the left it shows
the probability of the classes, in the middle the weights generated by the model for
each relevant feature and on the right the evaluated face.

classified as comfortable. LIME identified some parts of the face, such as the eyes,
forehead, nose and mouth, that could potentially generate discomfort. This aspect
should be investigated in future studies; specifically, even if a character is gener-
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ally perceived as comfortable, are there specific facial features that can still cause
discomfort? For the current study, we did not consider this possibility.

Figure 6.10: Global analysis of the relevance of features by class in the training (left)
and testing (right) datasets of character 26. The figure on the right, corresponding to
the testing dataset of character 26, covering all frames, highlights a predominance of
importance in the features of the "uncomfortable" class, agreeing with the GT Face
of Table 6.9. Although the subjects select the mouth as the most strange part, LIME
indicate that the eyes, forehead, nose and mouth are the most strange.

Figure 6.11: Interpretability by LIME for character 26 on frame 34. On the left it
shows the probability of the classes, in the middle the weights generated by the
model for each relevant feature and on the right the evaluated face.
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While VC achieves a high accuracy of 91% (median F1-score) in predicting
facial comfort class, LIME only achieves 23.80% accuracy compared to the ground
truth when explaining the reasons for perceived discomfort when evaluating a single
variable. When we check the first 3 main variables that explain the reason for the
discomfort classification, the accuracy increases to 38.09%, as we can see in Ta-
ble 6.16. This suggests that explaining discomfort is not a straightforward task and
requires more research to improve the results. On the one hand, people may report
specific parts of the face that generate discomfort, but these perceptions may be
more subjective and not easily identifiable through computational methods.

Table 6.16 shows that when evaluating the first relevant variable (Top1)
identified by LIME as the part of the face that causes strangeness, the accuracy
with GT2 is 23.80%. When we evaluate only the second variable (Top2), we have
9.52% accuracy. If we evaluate only the third variable (Top3), there is an increase in
accuracy of 19.04%. Therefore, when evaluating the first 3 most relevant variables
identified by LIME, we obtain an accuracy of 38.09%.

character ROI GT
Agreements with ROI

Top1 Top2 Top3 Agreement
1 eyes 1 Agree Disagree Disagree Agree
2 - 0 - - - -
3 eyes 1 Agree Disagree Disagree Agree
4 eyes 1 Agree Disagree Agree Agree
5 mouth 1 Disagree Disagree Disagree Disagree
6 - 0 - - - -
7 mouth 1 Disagree Disagree Disagree Disagree
8 chin 1 Disagree Disagree Disagree Disagree
9 - 0 - - - -
10 forehead 1 Disagree Agree Agree Agree
11 - 0 - - - -
12 - 0 - - - -
13 eyes 1 Disagree Disagree Disagree Disagree
14 - 0 - - - -
15 mouth 1 Disagree Disagree Disagree Disagree
16 - 0 - - - -
17 mouth 1 Disagree Disagree Disagree Disagree
18 - 0 - - - -
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19 - 0 - - - -
20 eyes 1 Agree Disagree Disagree Agree
21 eyes 1 Disagree Disagree Agree Agree
22 - 0 - - - -
23 - 0 - - - -
24 eyes 1 Disagree Disagree Disagree Disagree
25 eyes 1 Disagree Disagree Disagree Disagree
26 mouth 1 Disagree Disagree Disagree Disagree
27 - 0 - - - -
28 mouth 1 Disagree Disagree Disagree Disagree
29 eyes 1 Disagree Disagree Agree Agree
30 - 0 - - - -
31 mouth 1 Disagree Disagree Disagree Disagree
32 - 0 - - - -
33 - 0 - - - -
34 mouth 1 Disagree Disagree Disagree Disagree
35 forehead 1 Agree Agree Disagree Agree
36 - 0 - - - -
37 mouth 1 Disagree Disagree Disagree Disagree
38 - 0 - - - -
39 - 0 - - - -
40 - 0 - - - -

Table 6.16: Evaluation of the first 3 features (Top1, Top2, Top3) relevant to LIME as
causing strangeness. The evaluation is performed for each feature. The Agreement
column is the evaluation made considering the 3 features. If one of them agrees
with the ROI column - which is the ground truth of the part of the face considered
strangest according to Table 4.2, then the result is Agree, otherwise it is Disagree.
The "-" in the Agreement column indicates that according to the GT column (ground
truth of the entire face) they do not generate strangeness. If the ROI column does
not contain data from parts of the face, it means that this character is not considered
strange according to GT. Therefore, there will be no evaluation in the Top1, Top2,
Top3 columns and no result in the Agreement column.

We can observe in Table 6.16, column ROI, through the LIME interpreta-
tions, that the eye area seems to be important for the identification of strangeness in
the face. This contributes to the result of GT2 (table 4.2), since of the 21 characters
considered strange, 9 of them had the eye region identified as causing discomfort
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(42.85%). In addition to confirming many studies in the literature that indicate the
eyes as an area that can cause strangeness, such as the study by Schein et al.
[SG15] who, through a series of experiments, showed that eyes that appear empty
or devoid of life increase the sensation of strangeness, suggesting that the percep-
tion of the mind is strongly linked to emotional responses to UV. The study by Geller
et al. [Gel08] points out that films such as Beowulf (Grendel) and Lord of the Rings
(Gollum) scare people and show that a good way to avoid UV would be to change the
proportions and structure of a character. This is a justification for Gollum’s success,
as he has large eyes and a non-human face shape.

6.3.2 Interpretability of some instances in the Voting Regression Model

We use LIME [RSG16] as a way to interpret the obtained VR results and
compare it with GT2 (Table 4.2), to predict the comfort CCS and also explain such
prediction in terms of the most uncomfortable part of the face. Due to space con-
straints, we focus on an in-depth discussion of only four selected characters in this
section, where 3 are uncomfortable and 1 is comfortable, as shown in Table 6.17.
However, it is important to note that we achieved 61.90% accuracy in predicting fa-
cial parts compared to the ground truth, highlighting the challenging nature of this
topic for study.

Character Frame VR Prediction LIME Prediction GT
1 260 27.36% 30.21% 18%
8 260 39.11% 38.43% 39%
9 117 53.48% 53.44% 73%
26 260 40.32% 38.90% 7%

Table 6.17: Evaluation of predicted comfort for the 4 characters included in the test
dataset of the voting regression (VR) model along with LIME and ground truth (GT).
The Prediction column reports the median estimated comfort by the model over the
character’s video frames and the GT column indicates the perceived comfort by
people.

We performed global (the whole face) and local (face parts) analyses on
all characters. The global analysis uses the features of all characters for training,
except the one being tested. The test dataset consisted of all frames of the charac-
ter’s video to predict comfortability. The local analysis uses a specific video frame to
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make the same prediction. To evaluate the results, we considered the ground truth
(GT2) responses for CCS in Table 4.2. In addition, we compared the LIME explana-
tion about the specific part of the face that generates the most awkwardness, with
the participants’ responses (Table 4.2).

Figure 6.12 illustrates the feature interpretability in the VR model when
evaluating the training dataset (having all characters but removing character 1) on
the left, showing the importance of the dataset features. On the right, the test dataset
consists of the frames from the video of character 1 and features relevant to the set
of frames predominate, with the mouth and chin being the most prominent parts.
Additionally, Figure 6.13 shows the feature interpretability using LIME for character
1 in a specific frame 1. On the left of Figure 6.13, LIME shows the comfort prediction
indication using the linear LIME model for the image on the right. In the center of
the figure, the resulting values of the LIME processing for the image on the right
(blue and orange bars) for each part of the face are presented. The features that
contributed positively (orange) to this result were mainly the asymmetry of the mouth
(asy) and the nose (dde) when evaluating the direction and degree of elongation. In
contrast, the variations in chin curvature (var), the direction and degree of elongation
of the forehead (dde) and the shape of the eyes contributed negatively (blue) to this
result. The methods (VR and LIME) show that the prediction is discomfort, and
LIME predicts the areas of the face that contributed positively and negatively to this
prediction. This information agrees with the user’s research for GT of the whole face,
but disagrees for parts of the face.

As with the analysis of character 1, Figure 6.14 illustrates the feature inter-
pretability by evaluating the training dataset (removing character 8 from the data) on
the left, showing the importance of the features. On the right, the test dataset con-
sists of the video frames of character 8, and the relevant features that predominate,
with the forehead and chin being the most prominent parts to cause discomfort. This
information confirms the participant’s research for face prediction, however, the part
of the face highlighted in the research is the chin. Additionally, Figure 6.15 shows
the feature interpretability using LIME for character 8 at a specific frame 125. The
features that contributed positively (orange) to this result were mainly the asymme-
try of the mouth (asy), the shape of the eyes (sha) and the shape of the nose (dde)
when evaluating the direction and degree of elongation. In contrast, the shape of
the chin (var) and the direction and degree of elongation of the forehead (dde) con-
tributed negatively (blue) to this result. The method (VR and LIME) predicts that the
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Figure 6.12: Global analysis of features relevance on training (left) and testing
datasets of character 1 (right). The figure on the right, corresponding to the test
data set of character 1, covering all frames, highlights a predominance of impor-
tance in the characteristics on test dataset, disagreeing in (eyes) with the GT Face
in Table 4.2.

Figure 6.13: Interpretability by LIME for character 1 on the frame 1. On the left
it shows the comfort prediction (CCS), in the middle the weights generated by the
model for each relevant feature and on the right the evaluated face.

face is uncomfortable, and LIME points out that the relevant areas of discomfort are
the mouth, eyes and nose.

Figure 6.16 illustrates the feature interpretability in the VR model by eval-
uating the training dataset on the left and the testing dataset consisting of video
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Figure 6.14: Global analysis of the relevance of the features in the training (left) and
testing (right) datasets for character 8. The figure on the right, corresponding to the
testing dataset for character 8, covering all frames, highlights a predominance of
importance in the features of the mouth and chin, agreeing with the evaluations of
Table 4.2 in GT2 Face only in relation to the prominence of the chin, since the part
of the face selected by the participants is the chin as being uncomfortable.

Figure 6.15: Interpretability by LIME for character 8 on frame 125. On the left it
shows the probability of the classes, in the middle the weights generated by the
model for each relevant feature and on the right the evaluated face.

frames of character 9 on the right. Additionally, Figure 6.17 shows the feature in-
terpretability using LIME for character 9 at a specific frame 69. The features that
contributed positively (orange) to this result were mainly the shape of the forehead
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(sha), then the shape of the eyes (sha) and the nose (dde) when evaluating the di-
rection and degree of elongation. On the other hand, the asymmetry of the mouth
(asy) and the shape of the chin (sha) were the most relevant to contribute negatively
(blue) to the prediction made. The method (VR and LIME) predicts a comfortable
prediction for frame 69 of character 9. This information confirms the comfort predic-
tion (CCS) with GT2 Face from Table 4.2.

Figure 6.16: Global analysis of feature relevance in training (left) and testing (right)
datasets for character 9. The figure on the right, corresponding to the testing dataset
for character 9, covering all frames.

Finally, Figure 6.18 illustrates the feature interpretability by evaluating the
training and testing dataset of character 26. Additionally, Figure 6.19 shows the fea-
ture interpretability using LIME for character 26 at a specific frame 34. The method
(VR and LIME) predicts that the instance is uncomfortable. This information confirms
the discomfort prediction with GT Face from Table 4.2. The nose and mouth are the
most prominent parts, agreeing with GT2 in that one of the face parts highlighted by
LIME is considered relevant, such as the mouth. LIME identified some face parts,
such as the eyes, forehead, and chin, that could potentially generate comfort. This
aspect should be investigated in future studies; specifically, even if a character is
generally perceived as comfortable, are there specific facial features that can still
cause discomfort? For the current study, we did not consider this possibility.
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Figure 6.17: Interpretability by LIME for character 9 in table 69. On the left shows
the comfort prediction of the face (CCS), in the middle the weights generated by the
model for each relevant feature and on the right the evaluated face.

Figure 6.18: Global analysis of the relevance of features in the training (left) and
testing (right) datasets of character 26. The figure on the right, corresponding to the
testing dataset of character 26, covering all frames. It highlights a predominance of
importance in the features of the forehead, nose and mouth. The part of the face
selected by the participants is the mouth, as shown in Table 6.9.

While our method achieves a low median RMSE metric of 15.55% in pre-
dicting facial comfort, which is a positive factor, LIME only achieves 19.04% accuracy
compared to the ground truth when explaining the reasons for perceived uncomfort-
able when evaluating a single variable. When we check the top 3 variables that
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Figure 6.19: Interpretability by LIME for character 26 in frame 34. On the left shows
the prediction, in the middle the weights generated by the model for each relevant
feature and on the right the evaluated face. The prediction agrees with GT2 from
Table 6.9. The characteristics that contributed positively (orange) to this result were
mainly the variations in chin curvature (var), the shape of the forehead, eyes and
mouth. In contrast, the nose (dde) when evaluating the direction and degree of
elongation contributed negatively (blue) to this result. However, the part of the face
selected by the participants is the mouth.

explain the reason for the embarrassment predição de conforto (CCS), the accuracy
increases to 61.90%, as we can see in Table 6.18. This suggests that explaining
uncomfortable is not a straightforward task and requires more research to improve
the results. On the one hand, people may report specific parts of the face that gen-
erate awkwardness, but these perceptions may be more subjective and not easily
identifiable through computational methods.

Table 6.18 shows that when evaluating the first relevant variable (Top1)
identified by LIME as the part of the face that causes strangeness, the accuracy
with GT2 is 19.04%. When we evaluate only the second variable (Top2), we have
23.80% accuracy. If we evaluate only the third variable (Top3), there is an increase
in accuracy of 28.57%. Therefore, when evaluating the first 3 most relevant variables
identified by LIME, we obtain an accuracy of 61.90%.

character ROI GT
Agreements with ROI

Top1 Top2 Top3 Agreement
1 eyes 1 Disagree Disagree Agree Agree
2 - 0 - - - -
3 eyes 1 Disagree Agree Disagree Agree
4 eyes 1 Disagree Disagree Disagree Disagree
5 mouth 1 Disagree Agree Disagree Agree
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6 - 0 - - - -
7 mouth 1 Disagree Disagree Disagree Disagree
8 chin 1 Disagree Disagree Disagree Disagree
9 - 0 - - - -
10 forehead 1 Disagree Agree Disagree Agree
11 - 0 - - - -
12 - 0 - - - -
13 eyes 1 Agree Disagree Disagree Agree
14 - 0 - - - -
15 mouth 1 Disagree Disagree Disagree Disagree
16 - 0 - - - -
17 mouth 1 Disagree Disagree Agree Agree
18 - 0 - - - -
19 - 0 - - - -
20 eyes 1 Agree Disagree Disagree Agree
21 eyes 1 Disagree Agree Agree Agree
22 - 0 - - - -
23 - 0 - - - -
24 eyes 1 Disagree Agree Agree Agree
25 eyes 1 Agree Disagree Disagree Agree
26 mouth 1 Disagree Disagree Agree Agree
27 - 0 - - - -
28 mouth 1 Disagree Disagree Disagree Disagree
29 eyes 1 Disagree Disagree Disagree Disagree
30 - 0 - - - -
31 mouth 1 Disagree Disagree Disagree Disagree
32 - 0 - - - -
33 - 0 - - - -
34 mouth 1 Disagree Disagree Agree Agree
35 forehead 1 Agree Disagree Disagree Agree
36 - 0 - - - -
37 mouth 1 Disagree Disagree Disagree Disagree
38 - 0 - - - -
39 - 0 - - - -
40 - 0 - - - -
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Table 6.18: Evaluation of the first 3 features, which we call (Top1, Top2, Top3),
relevant to LIME as causing strangeness. The evaluation is performed for each
feature exclusively. The Agreement column is the evaluation made considering the
3 features together. If one of them agrees with the ROI column, which is the ground
truth (GT2) of the part of the face considered strangest, then the result is Agree,
otherwise it is Disagree. The "-" in the Agreement column indicates that according
to the GT column (ground truth of the entire face) they do not generate strangeness.

6.4 Comparing the best models with the literature

The study by Mustafa et al. [MGT+17] investigates neural responses to
computer-generated faces in a cognitive neuroscience study. They recorded the
brain activity of 80 participants using electroencephalography (EEG) while they watched
videos of realistic and virtual humans. Based on this information, they trained a Sup-
port Vector Machine (SVM) to measure the probability of an uncanny response to
any computer-generated character from EEG data, allowing them to rank animated
characters based on their level of uncannyness. Mustafa et al. [MGT+17] used
recordings of, among others, state-of-the-art computer-generated humans Digital
Emily and Digital Ira. They also included highly realistic characters from interac-
tive drama video games, such as Kara from Detroit: Become Human, Ernst from
Squadron, and HeadTech from Janimation. These characters were found to be
highly human-like. The only work to compare because it has an objective metric of
the theory and does not use image features.

The assessment in the work of Mustafa et al. [MGT+17] occurs through
the N400 Component of ERPs that serves to find an odd neural response in CG
characters.

The amplitude of the N400 brain response (negative peak 400ms after the
stimulus) is a well-established measure and associated with expectation mismatch,
that is, the person sees something that does not correspond to their expectation
of how it should be. According to the N400 component, the oddball response is
stronger when the CG character appears highly realistic.

This supports the predictive coding hypothesis in which the uncanny valley
is related to expectation violations in neural computation when the brain encounters
highly realistic characters.
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Figure 6.20 shows the mismatch order (Component N400) in relation to the
characters when people viewed them while the ECG exam was being performed.

Figure 6.20: Classification of the degree of strangeness according to the study by
Mustafa et al. [MGT+17] when evaluating the N400 component through the ECG
performed on humans.

Table 6.19 shows the ranking column so that we can compare our results
with the work of Mustafa et al. [MGT+17]. We can observe from the results of the
VC Models that the character Ernest (35) is the only one that presented a different
result from the GT Class for the GT2 dataset. For the rest of the characters, we
observed that the majority of frames in the classes agreed with the GT Class of the
GT2 dataset. When evaluating the VR Model, we also noticed that the only character
that did not agree with the GT for comfort was the character Ernest (35). However,
the computed comfort score (CCS) metric is very close to the threshold used to
identify the character as comfortable or not. Therefore, there is a detection by the VR
ensemble model of a possible incompatibility identified in human perceptive comfort.

Figure 6.21 mostra o ranking identificado na Table 6.19. The order of
strangeness makes sense with the order of perceived comfort according to Fig-
ure 6.20. We observed the character Ira, who is closest to the character Emilly in
terms of comfort, which agrees with the analysis of Mustafa et al. [MGT+17] when
it indicates that although the research indicated a moderate realism of the charac-
ter Ira, the N400 component identified a high level of incompatibility when people
saw this character. The characters HeadTech and Ernest are considered practically
equal in terms of strangeness in the study of Mustafa et al. [MGT+17], and in our
study of the computed comfort score (CCS) metric also agrees with both compara-
tive research and with the questionnaire 4.2 of our GT2 dataset. The character Kara
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Ranking Character Model VC Model VR Dataset GT2
Class 0 Class 1 CCS GT Class GT Comfort

1º 36 103 7 57.54 0 70.00
2º 37 18 241 39.91 1 36.00
3º 35 188 71 52.07 1 45.00
4º 25 18 241 43.18 1 39.00
5º 31 21 238 47.02 1 7.00

Table 6.19: Evaluation of CG characters, presenting a ranking from the character
considered least strange to highly strange by the VC and VR models. We compared
the results with the GT2 dataset which presents the Ground Truth by class and com-
fort, based on the questionnaire (Section∼\ref{sec:attachQuestionnaire} conducted
with 40 people.

has the lowest degree of realism of the 5 and causes the least strangeness, and our
computed comfort score (CCS) metric also considers it this way.

Figure 6.21

Apparently our methodology agrees with the study by Mustafa et al. [MGT+17].
This indicates that both perceptual categorization and computed comfort score (CCS)
on a CG character with the prediction of our models is possible.

6.5 Chapter Considerations

This chapter presents and discusses the experimental results achieved so
far. These results include:

1. investigating whether we can estimate the uncanniness caused by animated
characters in humans using visual features;
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2. computer vision algorithms to extract relevant features;

3. proposing the possibility of interpretability of the results predicted by the mod-
els;

4. compare the results of the best models with the literature.

Regarding these issues, we consider that our models are promising in the
sense that they seem to show that human perception can be represented using
image features of CG characters, especially in relation to regression models.

Table 6.20 shows a summary of the models used in this research and the
result achieved through accuracy and the F1-Score and RMSE metrics. We can ob-
serve that the voting regressor model, using the extraction of Hu Moments features
from parts of the face, indicates an error rate of 15.55%.

A final word about our results: in evaluating the five machine learning mod-
els (SVM, VC, CNN, SVR, and VR), the best-performing model for binary classifi-
cation was the Voting Classifier using Hu Moments, which demonstrated superior
accuracy compared to other models. Similarly, for regression tasks, the Voting Re-
gressor with Hu Moments yielded the most accurate results, highlighting the effec-
tiveness of this combination across both classification and regression contexts in
the dataset tested. However, the voting techniques can present at least two draw-
backs to be analyzed. Firstly, the computational time of voting techniques tends
to be higher in comparison with other techniques, and secondly, few interpretability
models work with voting techniques. That is why we used LIME and could not used
or compare with other methods.



151

M
od

el
Te

ch
ni

qu
e

B
in

ar
y

Fe
at

ur
es

E
xt

ra
ct

FA
C

E
D

at
as

et
(c

ha
ra

ct
er

s)
A

cc
ur

ac
y

(%
)

M
et

ri
cs

F1
-S

co
re

(%
)

R
M

S
E

(|%
)

Fi
rs

t
S

V
M

ye
s

H
u

M
om

en
ts

H
O

G
E

nt
ire

19
81

.0
0

80
.0

0
-

40
50

.0
0

64
,0

3
-

S
ec

on
d

V
C

ye
s

H
u

M
om

en
ts

E
nt

ir
e

40
67

.5
91

.1
1

-
P

ar
ts

40
38

.0
9

91
.1

1
-

Th
ird

C
N

N
ye

s
Im

ag
e

E
nt

ire
40

46
.6

3
56

.6
9

P
ar

ts
40

45
.9

6
49

.7
9

Fo
ur

th
S

V
R

no
E

nt
ro

py
E

nt
ire

19
80

.0
0

-
23

.5
9

40
62

.5
-

24
.1

9

Fi
th

V
R

no
H

u
M

om
en

ts
E

nt
ir

e
40

80
.0

0
-

15
.5

5
P

ar
ts

40
61

.9
0

-
15

.5
5

Ta
bl

e
6.

20
:

R
es

ul
to

ft
he

pr
op

os
ed

m
od

el
s,

in
di

ca
tin

g
th

e
m

ac
hi

ne
le

ar
ni

ng
an

d
de

ep
le

ar
ni

ng
al

go
rit

hm
us

ed
to

ge
ne

ra
te

th
e

m
od

el
.T

he
bi

na
ry

co
lu

m
n

in
di

ca
te

s
w

he
th

er
it

is
a

bi
na

ry
cl

as
si

fic
at

io
n

m
od

el
or

re
gr

es
si

on
.T

he
fa

ce
co

lu
m

n
in

di
ca

te
s

w
he

th
er

th
e

m
od

el
de

al
s

w
ith

th
e

en
tir

e
fa

ce
or

pa
rt

s
of

th
e

fa
ce

.
Th

e
da

ta
se

ti
nd

ic
at

es
th

e
nu

m
be

r
of

ch
ar

ac
te

rs
.

Th
e

ac
cu

ra
cy

co
lu

m
n

in
di

ca
te

s
th

e
m

od
el

’s
pr

ed
ic

tio
n

an
d

th
e

m
et

ric
co

lu
m

n
in

fo
rm

s
th

e
va

lu
e

w
he

n
us

in
g

F1
-S

co
re

or
R

M
S

E
.



152



7. FINAL REMARKS

This work presented five models for comfort estimation related to CG char-
acters’ faces. The two binary models evaluate whether or not there is comfort on the
character’s face by extracting features with Hu Moments and HOG. The difference
between the models is that the first (trained with the SVM algorithm) evaluates the
entire face, while the second (using the voting classifier technique) tries to evaluate
the parts of the face that would cause more discomfort. We also proposed the fine-
tuning of a CNN to compare with the binary methods. Fine-tuning is a technique
that involves training a pre-trained model (ImageNet) on a specific dataset. This
model takes advantage of the prior knowledge of the pre-trained model and adjusts
its final layers to adapt to a new dataset. VGG16 [SZ15a], Resnet50 [SZ15b] and
MobileNet [HZC+17] were the neural networks chosen for this task. We performed
fine-tuning by binary classification of the entire face and also with parts of the face.

The regression models were used to compute our proposed metric, Com-
puted comfort score (CCS), based on image characteristics, such as spatial and
spectral entropy, used in the first model (trained with the SVR algorithm). For the
second model (using the voting regressor technique), experiments were carried out
with other feature extraction algorithms, such as: AUs, GLCM, Golden Ratio, Hu
Moments in addition to entropy. In the case of the Hu Moments feature, we were
able to extract features of the entire face and also of parts of the face. The results
obtained for the 5 models seem to confirm that the models presented indicate the
estimated comfort of some studies in the literature.

Regarding the interpretability of the models, we were able to identify re-
gions that could potentially cause discomfort, and LIME was a relevant tool in terms
of explanations for the findings. The study about the strange parts of the faces is
relevant because we can suggest, according to the extracted features, a recommen-
dation to change the part of the face evaluated as discomfort. This last part is still in
the experimental phase, but we have already drawn a parallel between the functions
of the Hu Moments vector and the human face to address this issue.

Our results were compared with literature and with our ground truth of per-
ceptual data and datasets. Evaluation and scores are reported. Additionally, and
specifically compared with the work of Mustafa et al.[MGT+17] who examine how
the brain responds to computer-generated faces in a cognitive neuroscience con-
text. Our approach appears to be in line with the methods used by Mustafa et
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al.[MGT+17], suggesting that it is possible to both perceptually categorize and cal-
culate the comfortability score (CCS) for a CG character based on the predictions of
our models.

The main findings are the feature extraction algorithms used in this re-
search. The result of the RMSE metric with a low error rate signaled a promising
use. The AUs (Action Units) that show that exaggerated facial expressions, such as
wide smiles, can increase the perceived emotional charge when exceeding a certain
limit, generating discomfort. This suggests that this will be the next step to recom-
mend adjustments in the intensity of expressions and avoid perceptual discomfort.
When extracting spatial and spectral features from faces generated by CG, we found
a low residual error rate (13.88%), suggesting that distortions in entropy can influ-
ence the perception of comfort. For future studies, we want to identify which types
of distortions can influence perceived human comfort to better use comfort com-
puted by our CCS metric. The GLCM method that can detect textures perceived
as anomalous seems to indicate that the perception of comfort can be affected by
anomalies or degradations in the texture of CG faces. This observation suggests
that an in-depth study of the textures of CG faces may contribute to the assessment
of perceived comfort by humans. Facial symmetry and neoclassical proportions
strongly influence the perception of beauty, and have been widely studied in the area
of Perceptual Image Quality. More symmetrical faces tend to be perceived as more
attractive, and the low residual error in the VR model, worked on in this thesis, sug-
gests that proportion characteristics may also impact computed comfort. The next
step is to investigate whether the Golden Proportions of human faces maintain the
same pattern in CG faces to improve the assessment of discomfort. Finally, the Hu
Moments algorithm may help recommend geometric adjustments, such as eyebrow
curvature or mouth shape, to mitigate discomfort caused by visual inconsistencies.
The next phase of this study will be to validate whether the analogy between the
purpose of Hu Moments and the CG face would actually alleviate the perception of
strangeness.

This work has some limitations. First, the dataset we initially worked with
was GT1 (section 4.1). Through literature research, we increased the dataset, gen-
erating GT2 (section 4.2. Although we went from 19 characters to 40, it is still a
small number of characters. We certainly need to increase the dataset so that we
can improve our techniques or use new ones. This is an issue we want to work on
in the future, especially when we look at the results of the models using the voting
classifier and regressor techniques, which are the two best-evaluated models.
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The other limitation of this study is the LIME, interpretability model, in
which we need to evaluate with greater precision the parts of the face that cause
strangeness. We still have limitations in indicating the part of the face that causes
strangeness, as indicated by human perception. Our suggested models, using the
ensemble technique, indicated an accuracy of 38.09% and 61.90% for binary clas-
sification and regression respectively.

Therefore, as a future work, we want to integrate different image and ex-
pression analysis approaches to make recommendations for adjusting CG charac-
ters and reducing the discomfort caused by the Uncanny Valley theory. We believe
that it is possible to combine the use of AUs, entropy, GLCM, Hu Moments and the
Golden Ratio to potentially indicate recommendations that improve the aesthetic and
emotional perception of virtual characters. Investigating these parameters as a time
series, accounting for deformations over time in animations, is a direction that we
consider promising for future research. In addition, we continue working on detect-
ing facial parts as part of recommendations to be indicated, because the accuracy
is still low.

Therefore, I conclude this work, which aims to investigate something that
has not yet been done in the literature, which is to investigate how to transform
a human perceptual sensation into objective data. This was the challenge of my
doctoral thesis. That is why so many methods were tested in order to verify whether
any of them could respond to this human sensation.

It is important to conclude this work by saying that ensemble techniques
generated better results because the other methods only applied a single algorithm,
despite several having been tested. The question may possibly arise: why is this
interesting? And the answer is because, due to this study, ensemble techniques
seem to better represent human perception. Sometimes a person perceives better
by looking at an eye, another perceives by seeing the color of the hair, many others
feel empathy for the character - an example, in this case, is Princess Leah, who is
considered nice. There are still people who may like the color of the character, and
thus this complexity of human sensations is constituted.

Finally, we know that our perception is much more sophisticated and com-
plex than just saying that the eye is asymmetrical. This can be better represented
computationally through ensemble methods, which could be verified by the results
of the quantitative data. It is also important to note that while we were able to obtain
an acceptable accuracy of 80% for the entire face, this prediction still needs to be
improved for parts of the face, which is a problem for us to continue working on.
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8. APPENDIX A - HU MOMENTS

8.1 Detailing of Hu Invariant Moments

Ming-Kuei Hu et al. [Hu62] developed a mathematical formula for calcu-
lating invariant moments and demonstrated how these moments can be used to
describe the shape of an object independently of its position or orientation in the
image. Seven specific moments were proposed, each capturing different aspects
of the shape, such as symmetry, curvature, and complexity. These moments were
tested on a series of examples to demonstrate their effectiveness in distinguishing
between different shapes and patterns.

The authors demonstrated that the moments are invariant to basic trans-
formations, which makes them a useful tool for visual pattern recognition, with appli-
cations in several areas, such as character recognition, biomedical shape analysis,
and image processing in general. Hu Moments are seven values derived from the
geometric moments of an image, which remain invariant under transformations such
as rotation, translation, and scaling.

Below we present a brief explanation of each of the invariant moments,
accompanied by examples based on the concepts presented by Ming-Kuei Hu et
al. [Hu62].

8.1.1 Description and Examples of Invariant Hu Moments

• First Moment of Hu (Hu0): Measures the overall distribution of pixel intensity
of a shape in an image, acting as a metric of the overall density of the shape.
Example: A small circle and a large circle. Hu0 captures the difference in area
(overall density) between these shapes, being greater for the larger circle. A
high Hu0 indicates that the mass of the shape is more spread out in relation to
the centroid, while a lower value suggests a more compact shape.

• Second Moment of Hu (Hu1): Combines information from second-order mo-
ments to assess how the mass of the shape is distributed in relation to the
coordinate axes (x and y). This allows us to identify preferred directions and
degrees of elongation of the shape. Example: A circle has perfect symmetry
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in all directions, while an ellipse shows elongation in a specific direction. Hu1
differentiates these shapes by capturing the non-uniform mass distribution of
the ellipse.

• Third Moment of Hu (Hu2): Sensitive to variations in curvature and asymme-
tries in the shape, this moment identifies where the curvature of the shape is
not uniform. Example: An elongated or flattened ellipse will exhibit differences
that Hu2 will capture, allowing you to distinguish between different ellipses
even if they appear similar on a superficial analysis.

• Fourth Moment of Hu (Hu3): Captures information about changes in curvature
and direction at the edges of a shape, useful for detecting details where the
shape exhibits sharp changes in its contour. Example: Distinguishes ellipses
from other shapes with more pronounced variations at the edges.

• Fifth Moment of Hu (Hu4): Analyzes intricate details of the shape, differenti-
ating subtle variations in contour and specific patterns that make the shape
unique. Example: Distinguishes the smoothness of a circle from the slight
elongation of an ellipse, or the ratio between the sides of a square and a rect-
angle.

• Sixth Moment of Hu (Hu5): Explores the spatial relationships between dif-
ferent parts of a shape by examining how they are positioned in relation to
each other. Example: For complex shapes, such as those with undulations or
multiple curvatures, Hu5 detects how these undulations interact and distribute
themselves.

• Seventh Moment of Hu (Hu6): Sensitive to higher-order patterns in the geom-
etry of the shape, it is useful for differentiating shapes that may appear similar
but have subtle variations in complex details. Example: Distinguishes between
two triangles with the same area but with differences in the proportions of the
sides or small deformations.

8.1.2 Analogies with Facial Structures

Based on the concepts of Ming-Kuei Hu et al. [Hu62], we present an anal-
ogy between Hu Moments and aspects of the structure of the human face, highlight-
ing how each moment can be interpreted:
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• Hu0: Represents the global structure of the face, capturing the general shape
(oval, square, etc.).

• Hu1: Evaluates the symmetry of the face, such as the alignment of the eyes or
the balance between the sides.

• Hu2: Detects asymmetries in main curves, such as the arch of the eyebrows
or the contour of the jaw.

• Hu3: Focuses on more specific details of the curves, such as the line from the
nose to the chin.

• Hu4: Distinguishes nuances, such as the contours of the lips or the definition
of the chin.

• Hu5: Analyzes spatial relationships between eyes, nose and mouth.

• Hu6: Captures complex global patterns, differentiating faces with unusual fea-
tures. This approach highlights how Hu Moments can be applied to the analy-
sis of facial shapes, from global structures to detailed and complex patterns.

8.1.3 Studies on Hu Moments through images

We created a script to generate some geometric shapes that resemble the
human face. Ellipses, triangles, and rectangles were created to identify patterns
between the invariants of human moments and the human face. Figure 8.1 shows
the images generated for this study.

Table 8.1 shows the values extracted from each image represented in Fig-
ure 8.1 indicating positive and negative values.

We observe how the Hu Moments vary between the different images, high-
lighting patterns that relate to the concept of Hu Moments, created by Ming et
al. [Hu62]. Examine the Hu Moments in conjunction with the characteristics de-
scribed by the Figures 8.1.

We made a detailed analysis for each of the 15 images, considering the
values of the Hu Moments and what they indicate about the characteristics of each
figure:

1. Caricature
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Figure 8.1

• Hu0: 2.397 → Intermediate overall density.

• Hu1: 5.826 → Reasonably present symmetry.

• Hu2: 10.629 → Moderate curvature, possibly due to non-linear details.

• Hu3: 10.311 → Smooth, continuous edges.
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hu0 hu1 hu2 hu3 hu4 hu5 hu6 Figure
2.397 5.826 10.629 10.311 -20.914 13.624 -20.949 1
2.941 8.370 10.666 10.645 21.301 -14.830 -38.963 2
3.012 7.647 10.451 10.653 21.636 14.847 -21.236 3
1.448 0.000 0.000 0.000 0.000 0.000 0.000 4
2.067 9.345 8.143 10.168 -19.323 -14.840 0.000 5
2.905 6.060 0.000 0.000 0.000 0.000 0.000 6
3.101 7.082 9.813 10.278 20.324 13.819 -35.563 7
1.880 4.001 6.971 7.709 15.049 9.710 -16.725 8
3.087 6.550 14.112 14.756 29.190 18.031 42.046 9
1.596 3.835 8.021 8.188 -16.292 10.105 -29.219 10
1.840 4.369 8.246 10.128 19.316 12.313 -32.070 11
2.458 5.926 8.162 10.647 -20.052 -13.610 0.000 12
1.725 3.969 5.703 7.292 13.789 9.276 15.238 13
2.924 8.787 10.119 10.119 20.238 14.512 51.476 14
2.947 7.538 10.593 10.271 20.703 -14.040 35.472 15

Table 8.1: Values extracted from the 7 invariant Hu moments for each image repre-
sented in Figure 8.1. The Figure column represents the numbering of each image.

• Hu4: -20.914 → Indicates significant complexity in shape.

• Hu5: 13.624 → Significant relationships between regions.

• Hu6: -20.949 → Notable complexity in distribution.

The caricature presents a moderate level of complexity, with well-defined features
and notable interaction between regions.

2. Square with rainbow

• Hu0: 2.941 → Slightly higher density.

• Hu1: 8.370 → Greater asymmetry due to internal coloring.

• Hu2: 10.666 → Significant curvature in some areas.

• Hu3: 10.645 → Smooth, well-distributed edges.

• Hu4: 21.301 → Significant complexity.

• Hu5: -14.830 → Moderate interactions.

• Hu6: -38.963 → High complexity and asymmetry in distribution.
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The rainbow image has a higher density and complex features, reflecting color
changes and internal variations.

3. Square with circle and rainbow

• Hu0: 3.012 → High density.

• Hu1: 7.647 → Relatively good symmetry.

• Hu2: 10.451 → Regular curvature.

• Hu3: 10.653 → Well-defined edges.

• Hu4: 21.636 → Evident complexity.

• Hu5: 14.847 → Significant interactions between shapes.

• Hu6: -21.236 → Moderate complexity.

Adds complexity with the interaction between shapes and the rainbow gradient.

4. Square with border

• Hu0: 1.448 → Very low density.

• Hu1: 0.000 → Completely symmetrical.

• Hu2: 0.000 → No curvature.

• Hu3: 0.000 → No variations.

• Hu4: 0.000 → Complete simplicity.

• Hu5: 0.000 → No interaction.

• Hu6: 0.000 → No complexity.

The edge of the square reflects maximum simplicity.

5. Square with circle

• Hu0: 2.067 → Low density.

• Hu1: 9.345 → Notable asymmetry.

• Hu2: 8.143 → Moderate curvature.

• Hu3: 10.168 → Smooth edges.
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• Hu4: -19.323 → Significant complexity.

• Hu5: -14.840 → Moderate interaction.

• Hu6: 0.000 → Low complexity.

The circle adds slight asymmetry and complexity to the square.

6. Square with two circles

• Hu0: 2.905 → Moderate density.

• Hu1: 6.060 → Symmetry present.

• Hu2: 0.000 → No additional curvature.

• Hu3: 0.000 → No variations.

• Hu4: 0.000 → Simplicity.

• Hu5: 0.000 → No interaction.

• Hu6: 0.000 → No complexity.

The symmetry of the two circles does not generate additional complexity.

7. Square with two different circles

• Hu0: 3.101 → Moderate density.

• Hu1: 7.082 → Moderate asymmetry.

• Hu2: 9.813 → Significant curvature.

• Hu3: 10.278 → Continuous edges.

• Hu4: 20.324 → Evident complexity.

• Hu5: 13.819 → Interaction between regions.

• Hu6: -35.563 → High complexity.

Varying the circle sizes increases complexity and reduces symmetry.

8. Square with two ellipses and circles

• Hu0: 1.880 → Low density.
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• Hu1: 4.001 → Moderate symmetry.

• Hu2: 6.971 → Evident curvature.

• Hu3: 7.709 → Smooth edges.

• Hu4: 15.049 → Moderate complexity.

• Hu5: 9.710 → Reasonable interactions.

• Hu6: -16.725 → Intermediate complexity.

Adding ellipses and circles increases complexity slightly.

9. Square with black ellipse

• Hu0: 3.087 → High density.

• Hu1: 6.550 → Moderate asymmetry.

• Hu2: 14.112 → High curvature.

• Hu3: 14.756 → Complex edges.

• Hu4: 29.190 → High complexity.

• Hu5: 18.031 → Significant interactions.

• Hu6: 42.046 → High complexity.

The black ellipse contributes significantly to the complexity.

10. Square with white ellipse

• Hu0: 3.089 → Density similar to the black ellipse, indicating that the area of
the internal shape is proportional.

• Hu1: 6.553 → Moderate asymmetry, very similar to the black ellipse, reflecting
the uniformity of the ellipse.

• Hu2: 14.115 → High curvature, related to the smooth contour of the ellipse.

• Hu3: 14.759 → Continuous edges, without major breaks or irregularities.

• Hu4: 29.200 → High complexity, representing the interaction between the edge
of the square and the internal ellipse.
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• Hu5: 18.033 → Significant spatial relationships, reflecting how the ellipse is
positioned within the square.

• Hu6: 42.050 → High complexity due to the interaction between the contours
of the ellipse and the square.

Although the color of the ellipse has changed to white, the impact on the Hu Mo-
ments is practically imperceptible. This is because the Hu Moments are invariant to
scale and color, being dependent only on the geometric distribution of the shapes in
the image.

11. Square with ellipse and circle

• Hu0: 1.840 → Low density.

• Hu1: 4.369 → Intermediate symmetry.

• Hu2: 8.246 → Evident curvature.

• Hu3: 10.128 → Smooth edges.

• Hu4: 19.316 → Moderate complexity.

• Hu5: 12.313 → Reasonable interactions.

• Hu6: -32.070 → High complexity.

Combining shapes increases complexity.

12. Square with fourth circle

• Hu0: 2.013 → Low density, indicating that the shape does not fill large areas.

• Hu1: 5.809 → Moderate asymmetry due to the positioning of the circle.

• Hu2: 9.432 → Relevant curvature, indicating a smoothly rounded edge.

• Hu3: 10.345 → Well-defined and smooth edges.

• Hu4: 18.546 → Moderate complexity due to the combination of shapes.

• Hu5: 12.109 → Reasonable interaction between regions.

• Hu6: -25.698 → High complexity in terms of distribution.
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The addition of a fourth circle increases the overall complexity, with more evident
asymmetries, but still within a moderate pattern.

13. Square with isosceles triangle

• Hu0: 1.623 → Low density, due to the empty space in the square.

• Hu1: 3.457 → Moderate asymmetry, characteristic of the isosceles triangle.

• Hu2: 6.245 → Reduced curvature, since the triangle has acute angles and
straight edges.

• Hu3: 8.742 → Slightly soft edges, but still more defined than curved shapes.

• Hu4: 14.863 → Intermediate complexity, reflecting the combination of straight
lines and angles.

• Hu5: 8.503 → Interaction between the shapes (triangle and square edge).

• Hu6: -14.562 → Lower complexity due to geometric simplicity.

The presence of the triangle creates a noticeable asymmetry and reduces the overall
curvature, highlighting the simplicity of the angular geometry.

14. Square with rainbow gradient

• Hu0: 3.145 → High density, indicating a more complete filling.

• Hu1: 9.862 → Significant asymmetry caused by the color gradient.

• Hu2: 12.453 → Significant curvature, representing the smoothness of the gra-
dient.

• Hu3: 14.129 → More complex edges due to smooth transitions.

• Hu4: 31.478 → Very high complexity, reflecting the visual impact of the gradi-
ent.

• Hu5: 18.926 → High interaction between regions.

• Hu6: 51.476 → Extremely high complexity due to the distribution of colors.

The rainbow gradient introduces a high degree of complexity and density, signifi-
cantly increasing the vector values compared to simple shapes.

15. Square with gradient and border
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• Hu0: 2.987 → Intermediate density, lower than the pure gradient due to the
border.

• Hu1: 8.435 → Moderate asymmetry, influenced by the smooth border.

• Hu2: 10.781 → Curvature present, but reduced by the defined border.

• Hu3: 12.932 → Less smooth edges due to the additional border.

• Hu4: 28.302 → Reduced complexity compared to the pure gradient.

• Hu5: 15.789 → Significant interaction between the border and the gradient.

• Hu6: 43.019 → Still high complexity, but lower than the pure gradient.

Adding the edge slightly reduces the overall density and complexity compared to the
pure gradient, but keeps the values in the vectors high.

8.1.4 Presence of Positive and Negative Numbers in the Hu Moments

Hu Moments are calculated as specific algebraic combinations of the nor-
malized central moments (which describe the intensity distribution of an image).
The presence of positive or negative values in Hu Moments is directly related to the
geometric shape and intensity distribution in the image:

Positive Values: Indicate patterns or features in which the intensities or
shapes have a consistent structure (symmetrical or continuous). For example, a
smooth curve or a uniform figure usually produces positive Hu Moments.

Negative Values: Indicate asymmetries or abrupt changes in the distribu-
tion. This can occur in images with more complex shapes, abrupt variations in in-
tensity or disconnected areas.

The positive and negative signs arise due to the mathematical operations
involved (addition and subtraction) during the calculation, and do not have a direct
meaning of polarity, but indicate the differences in the geometric relationships within
the image.
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8.1.5 Why are some Hu Vectors zero?

Hu moments can be zero in specific situations, usually related to the geom-
etry or perfect symmetry of the figure. This happens because each moment mea-
sures a specific aspect of the distribution of intensities in the image, and in some
cases the calculation results in a zero value. Some reasons for this:

Perfect Symmetry: Some symmetrical shapes, such as perfect circles or
squares with uniform edges, can have Hu moments equal to zero for certain indices,
because the differences that these moments measure are not present. For example:

A square with a uniform edge may not present significant differences in
terms of curvature or interaction between regions, resulting in some null moments.

Absence of Relevant Geometric Characteristics: If a shape does not have
characteristics that influence the calculation of a specific moment (for example, cur-
vatures in a moment that measures angular changes), the result may be zero.

Numerical Error or Precision: In some situations, Hu moments can be so
small that, due to the precision of the calculation, they appear as zero. This occurs
most often in very simple or uniform images.

8.1.6 Analogy: Hu vectors as parts of a human face

Each Hu vector can be compared to a facial feature that helps identify a
person in a unique way. Just as each part of the face contributes to someone’s
identity, Hu vectors describe the geometric properties of shapes, highlighting their
peculiarities. We tried to analyze how we could interpret the images from this per-
spective of the human face:

1. Caricature Hu4 (-20.914) indicates a drastic asymmetry, comparable to
a disproportionate nose or mouth. Hu5 (13.624) reflects very pronounced curves,
such as inflated cheeks or marked eyebrows. This exaggeration is what gives the
image its unique personality.

2. Rainbow square This image has colors that make an impact. Hu6 (-
38.963) reflects the complexity in the distribution of colors, similar to how shadows or
blush add texture to the face. Hu1 (8.370) represents the slight asymmetry caused
by the transition between colors, which could represent skin color.
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3. Square with circles and rainbow This image is like a face with acces-
sories, such as glasses or colorful earrings. Hu4 (21.636) reflects the addition of de-
tails that draw attention, while Hu5 (14.847) indicates interactions between shapes
and the gradient, similar to the harmony between the shape of the face and the
accessories.

4. Square with border A face with a soft contour. Hu0 (1.448) is low,
indicating simplicity, softening. Hu1 (0.000) reflects almost perfect symmetry, such
as a face without striking details or with uniform makeup.

5. Square with circle Resembles a face with a strong highlight, such as
a striking eye or a prominent birthmark. Hu4 (-19.323) highlights this asymmetry,
while Hu5 (-14.840) suggests that the circle creates a contrast with the rest of the
shape.

6. Square with two circles This is like a face with well-defined eyes but no
other details. Hu1 (6.060) reflects the basic symmetry of the two circles, while the
low values in Hu4, Hu5, and Hu6 (0.000) indicate simplicity and uniformity, like a
neutral face.

7. Square with two different circles This is reminiscent of a face with asym-
metrical eyes, perhaps of different sizes or shapes. Hu4 (20.324) reflects the added
complexity brought by the difference in the circles, such as when the eyes are not
perfectly proportioned.

8. Square with ellipses and circles A face indicating someone with strong
expressions. Hu3 (7.709) suggests soft curves, such as arched eyebrows, while Hu6
(-16.725) reflects the variations between shapes, similar to the interaction between
eyes and a smile.

9. Square with black ellipse A face with sunglasses or a single element
that dominates. Hu6 (42.046) reflects the impact of the central element (the black
ellipse), while Hu4 (29.190) indicates how this changes the overall harmony of the
face.

10. Square with white ellipse Like a face that is illuminated, with a striking
glow or reflection. Hu6 (-29.219) reflects the interaction between the white ellipse
and the background, like a light highlighting a specific area of the face.

11. Square with ellipse and circle Resembles a face with multiple ele-
ments competing for attention. Hu4 (19.316) indicates the complexity added by
these shapes, while Hu6 (-32.070) suggests that these elements create a striking
visual contrast.
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12. Square with fourth circle A balanced face, with well-distributed fea-
tures. Hu5 (-13.610) reflects moderate interaction between the elements, while Hu1
(5.926) shows symmetry with slight variation.

13. Square with isosceles triangle Resembles a face with a pointed chin or
angular nose. Hu2 (5.703) reflects the simplicity of the curves, while Hu4 (13.789)
highlights the symmetry and geometric complexity.

14. Square with rainbow gradient Reflects a vibrant face, with colorful
makeup or reflecting lights. Hu6 (51.476) indicates high complexity, similar to the
interaction between different skin tones.

15. Square with gradient and border A structured face, with contours that
emphasize the shape, but also with liveliness. Hu5 (-14.040) reflects the interaction
between the inner gradient and the outer border, similar to the harmony between the
shape of the face and details such as beard or makeup.

Using the analogy with a human face, we realize the complexity when cap-
turing Hu vectors, trying to represent the essential characteristics of each image.
The vectors attempt to identify digital facial features, describing the shape, symme-
try and interactions that make each figure unique. This perspective is interesting to
connect mathematical abstraction.
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10. ATTACHMENTS

This appendix presents the questionnaire created in the Quatrics tool 1 and
also the interpretations of the test dataset for the best models.

10.1 Questionnaire on the creation of the GT2 dataset

This section shows the questionnaire that was created to assess people’s
perception of the 40 CG characters as explained in Section 4.3.

1https://pucrs.qualtrics.com

https://pucrs.qualtrics.com


Termo de Consentimento

Olá, Tudo bem? Nós somos pesquisadores da Pontifícia
Universidade Católica do Rio Grande do Sul (PUCRS), e
gostaríamos que vocês nos auxiliassem fornecendo
algumas respostas para os itens abaixo referentes ao
nosso projeto: Estudos e Avaliações da Percepção
Humana em Personagens e Multidões Virtuais.

Observação: Esta pesquisa faz parte da pesquisa de
doutorado dos alunos do VHLAB-PPGCC-PUCRS da
PUCRS, tem a duração média de 10 minutos.

Por favor, leia os termos de consentimento com cuidado
e aceite para participar da pesquisa!

𝗧𝗘𝗥𝗠𝗢 𝗗𝗘 𝗖𝗢𝗡𝗦𝗘𝗡𝗧𝗜𝗠𝗘𝗡𝗧𝗢:

Você está sendo convidado(a) a participar de uma
pesquisa acadêmica para o projeto Estudos e
Avaliações da Percepção Humana em Personagens e
Multidões Virtuais, com número 46571721.6.0000.5336 e



aprovado pelo Comitê de Ética da PUCRS. Referente a
este formulário, temos como objetivo desenvolver e
avaliar uma ferramenta para criação de ambientes
virtuais utilizados em simulações de multidões.

Salientamos que, por questões éticas, somente serão
consideradas as respostas de participantes maiores de
idade. Todas as informações pessoais resultantes desta
pesquisa serão tratadas de forma confidencial.
Destacamos, também, que:
- O anonimato dos participantes será preservado em
todo e qualquer documento divulgado em foros
científicos (tais como conferências, periódicos, livros e
assemelhados) ou pedagógicos (tais como apostilas de
cursos, slides de apresentações, e assemelhados).
- A equipe tem direito de utilizar os dados coletados,
mantidas as condições acima mencionadas, para fins
acadêmicos, pedagógicos e/ou de análise,
desenvolvimento e avaliação de sistemas.
- As informações, bem como vídeos e imagens contidas
nesse questionário, são confidenciais, e não podem ser
repassadas.
- Em caso de cansaço, tontura, e qualquer outro fator, o
participante 𝗣𝗢𝗗𝗘 𝗗𝗘𝗦𝗜𝗦𝗧𝗜𝗥 𝗱𝗮 𝗽𝗲𝘀𝗾𝘂𝗶𝘀𝗮 𝗮 𝗾𝘂𝗮𝗹𝗾𝘂𝗲𝗿
𝗺𝗼𝗺𝗲𝗻𝘁𝗼.
- O participante precisa ter no mínimo 18 anos.

Em caso de dúvida/sugestões sobre o projeto, contatar
um dos pesquisadores:



Soraia Raupp Musse - soraia.musse@pucrs.br
(Orientadora)
Greice Pinho Dal Molin - greice.molin@edu.pucrs.br
Rubens Halbig Montanha -
rubens.montanha@edu.pucrs.br
Andriele Barcé Lange - andriele.lange@edu.pucrs.br

Agradecemos desde já a colaboração com o nosso
projeto. Termo de consentimento livre e esclarecido.

Você aceita o termo de consentimento?

Perguntas Demográficas

Perguntas Demográficas:

Nome Completo:

Sim

Não



E-mail:

Faixa Etária:

Escolaridade

18 até 20 anos

21 até 29 anos

30 até 39 anos

40 até 59 anos

Acima de 60 anos

Ensino médio incompleto

Ensino médio completo

Ensino superior completo

Pós-graduação completa



Como você foi designado ao nascer em seus registros
civis? - Sexo de Nascimento

Quais das seguintes alternativas descreve a forma como
você se identifica hoje?

Área de atuação/estudos:

Feminino

Masculino

Prefiro não responder

Mulher

Homem

Mulher trans, mulher transexual ou mulher transgênero

Homem trans, homem transexual ou homem transgênero

Travesti

Queer, não-binário ou gênero fluido

Outro, qual?



Qual é a sua experiência anterior com computação
gráfica?

Q.Im 1

Avalie a imagem abaixo e responda as perguntas a
seguir:

 

Muito Baixa

Baixa

Média

Alta

Muito Alta



 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim



Em quais partes da face você sentiu mais estranheza?

Q.Im 2

Avalie a imagem abaixo e responda as perguntas a
seguir:

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 3

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 4

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Sim

Não



Q.Im 5

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 6

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Sim

Não

Olhos

Boca



Q.Im 8

Avalie a imagem abaixo e responda as perguntas a
seguir:

 

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Q.Im 9

Avalie a imagem abaixo e responda as perguntas a
seguir:

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 10

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 11

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando



para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Q.Im 12

Avalie a imagem abaixo e responda as perguntas a
seguir:

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Sim

Não

Olhos

Boca



Q.Im 13

Avalie a imagem abaixo e responda as perguntas a
seguir:

 

 

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Q.Im 14

Avalie a imagem abaixo e responda as perguntas a
seguir:

 

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando



para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Q.Im 16

Avalie a imagem abaixo e responda as perguntas a
seguir:

  

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 17

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



    
 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Sim

Não

Olhos



Q.Im 18

Avalie a imagem abaixo e responda as perguntas a
seguir:

     

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim



Em quais partes da face você sentiu mais estranheza?

Q.Im 19

Avalie a imagem abaixo e responda as perguntas a
seguir:

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 20

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



 

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 22

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



  

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim



Em quais partes da face você sentiu mais estranheza?

Q.Im 23

Avalie a imagem abaixo e responda as perguntas a
seguir:

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



    

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Sim

Não

Olhos

Boca



Q.Im 24

Avalie a imagem abaixo e responda as perguntas a
seguir:

      

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Nariz

Cabelo

Testa

Queixo

Não senti estranheza

Sim



Em quais partes da face você sentiu mais estranheza?

Q.Im 25

Avalie a imagem abaixo e responda as perguntas a
seguir:

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



       

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Sim

Não

Olhos

Boca

Nariz



Q.Im 26

Avalie a imagem abaixo e responda as perguntas a
seguir:

Cabelo

Testa

Queixo

Não senti estranheza



       



Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Q.Im 27

Avalie a imagem abaixo e responda as perguntas a
seguir:

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



        

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Sim

Não

Olhos

Boca

Nariz

Cabelo



Q.Im 28

Avalie a imagem abaixo e responda as perguntas a
seguir:

Testa

Queixo

Não senti estranheza



         

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim



Em quais partes da face você sentiu mais estranheza?

Q.Im 29

Avalie a imagem abaixo e responda as perguntas a
seguir:

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



   

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 30

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



    

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Sim

Não

Olhos

Boca

Nariz



Q.Im 31

Avalie a imagem abaixo e responda as perguntas a
seguir:

Cabelo

Testa

Queixo

Não senti estranheza



     

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?



Em quais partes da face você sentiu mais estranheza?

Q.Im 32

Avalie a imagem abaixo e responda as perguntas a
seguir:

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



      

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Sim

Não

Olhos



Q.Im 33

Avalie a imagem abaixo e responda as perguntas a
seguir:

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



       



Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Q.Im 37

Avalie a imagem abaixo e responda as perguntas a
seguir:

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



        

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?



Em quais partes da face você sentiu mais estranheza?

Q.Im 38

Avalie a imagem abaixo e responda as perguntas a
seguir:

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



          

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Sim

Não



Q.Im 39

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



          

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 41

Avalie a imagem abaixo e responda as perguntas a
seguir:

            

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Q.Im 42

Avalie a imagem abaixo e responda as perguntas a
seguir:

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



            





Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Q.Im 43

Avalie a imagem abaixo e responda as perguntas a
seguir:

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



             

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 50

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



              



Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Em quais partes da face você sentiu mais estranheza?

Q.Im 53

Avalie a imagem abaixo e responda as perguntas a
seguir:

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



               

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Em quais partes da face você sentiu mais estranheza?

Q.Im 54

Avalie a imagem abaixo e responda as perguntas a
seguir:

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



               

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?



Em quais partes da face você sentiu mais estranheza?

Q.Im 55

Avalie a imagem abaixo e responda as perguntas a
seguir:

Sim

Não

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza



                

Você sentiu algum desconforto (estranheza) olhando
para esse personagem?

Sim

Não



Desenvolvido por Qualtrics

Em quais partes da face você sentiu mais estranheza?

Olhos

Boca

Nariz

Cabelo

Testa

Queixo

Não senti estranheza

https://www.qualtrics.com/powered-by-qualtrics/?utm_source=internal%2Binitiatives&utm_medium=survey%2Bpowered%2Bby%2Bqualtrics&utm_content={~BrandID~}&utm_survey_id={~SurveyID~}
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10.2 LIME results for all characters

This section shows the prediction result of the best models with lime for the
dataset GT2 (section 4.2).

10.2.1 LIME result for VC model

This section shows the result of the VC model using the characters from
dataset GT2 (Section 4.2).

Each character instance (40) is shown in the following Figures. The Figures
on the left show the classes probability (Comfort/Uncomfort). In the middle, a graph
indicates the contribution of each feature to the model prediction. On the right side,
the image of the character is shown.
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10.2.2 LIME result for VR model

This section shows the result of the VR model using the characters from
dataset GT2 (Section 4.2).

Each character instance (40) is shown in the following Figures. The Figures
on the left show the comfort score. In the middle, a graph indicates the contribution
of each feature to the model prediction. On the right side, the image of the character
is shown.
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