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“If you don’t know, the thing to do is not to

get scared, but to learn.”

(Ayn Rand)



MÉTRICA PREDITIVA PARA ALOCAÇÃO ÓTIMA DE ORÇAMENTO EM

PRIVACIDADE DIFERENCIAL

RESUMO

Neste trabalho, abordamos a questão crítica da alocação de orçamento em apli-

cações de Privacidade Diferencial (DP), especificamente para cenários onde estatísticas

descritivas são divulgadas. Nosso principal objetivo é desenvolver uma métrica e um ce-

nário inovadores que utilizem informações sobre o uso futuro dos dados para otimizar

a distribuição do orçamento. Uma distribuição de orçamento eficaz é fundamental para

melhorar a utilidade dos dados sem comprometer a privacidade, um desafio significativo

no campo da DP. Identificamos e exploramos uma lacuna relacionada às interações en-

tre consultas de DP para melhorar a utilidade dos dados. Nossa métrica é formalmente

definida e demonstramos sua aplicação por meio de um cenário hipotético utilizando da-

dos sintéticos. Os resultados indicam uma melhoria substancial na utilidade dos dados,

mantendo a privacidade. Este estudo não apenas oferece uma contribuição valiosa para

o campo da DP, mas também abre caminhos para futuras pesquisas e aplicações práticas

em cenários do mundo real.

Palavras-Chave: Differential Privacy, Anonimização, Privacidade, Dataset, Metrica, Es-

tatísticas descritivas.



PREDICTIVE METRIC FOR OPTIMAL BUDGET ALLOCATION IN

DIFFERENTIAL PRIVACY

ABSTRACT

This work addresses the critical issue of budget allocation in Differential Privacy

(DP) applications, specifically for scenarios where summary statistics are released. Our

main objective is to develop a novel metric and scenario that leverages information about

future data usage to optimize budget distribution. Effective budget distribution is pivotal

in enhancing data utility without compromising privacy, a significant challenge in the DP

field. We identify and exploit a gap related to the interactions between DP queries to

improve data utility. Our metric is formally defined, and we apply it through a hypothetical

scenario using synthetic data. The results indicate a substantial improvement in data

utility while maintaining privacy. This study offers a valuable contribution to the DP field

and opens avenues for future research and practical applications in real-world scenarios.

Keywords: Differential Privacy, Anonymization, Privacy, Dataset, Metric, Summary Statis-

tics.
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1. INTRODUCTION

The right for an individual to separate his public from his private life is one of the

most basic human rights. It is so important that it is included in Article 12 of the Universal

Declaration of Human Rights: ”No one shall be subjected to arbitrary interference with his

privacy, family, home or correspondence, nor to attacks upon his honor and reputation.

Everyone has the right to the protection of the law against such interference or attacks.”1.

However, because of several difficulties, the protection of this basic human right is not a

trivial task.

One of the difficulties is that data about individuals are readily available. This

availability is a consequence of society’s informatization. Data is collected on various in-

formation systems, and users are usually unaware of the collection process. For example,

habits during our navigation on the internet or daily routine itinerary captured by a smart-

phone. Another case is when users voluntarily surrender information about their private

lives because they are careless or do not care about their privacy. For example, informa-

tion publicly available on social networks. The result of this is that a huge amount of data

is readily available to multiple third parties, such as companies and governments.

Another difficulty is the inappropriate use of the data by third parties. Often,

data is collected in an unauthorized way. Companies trade these data with other compa-

nies without the individual’s consent. Furthermore, data is stored in an insecure manner,

which makes it vulnerable to data thievery. Finally, the data can be used illegally. Even

governments of democratic countries are known to violate the privacy of their citizens 2.

Society is awakening to these and other difficulties to guarantee the right to pri-

vacy, and several initiatives have taken place. Some initiatives include new laws that

restrict how individuals’ data can be used, collected, and managed. For example, the

General Data Protection Regulation (GDPR) from the European Union 3, the Brazilian 4 and

Indian 5 equivalents, and the UE cookie law 6, just to cite a few. Another list of initiatives is

the creation of tools that protect the users’ privacy, which is also increasing significantly. A

few examples include DuckDuckGo 7, Privacy Badger 8, and Brave 9. These initiatives are

important to protect individuals’ privacy, however, it is also important to recognize that

data is critical to improving quality of life. Data can be used in research, mining, machine

learning, and other means by companies and academia to develop new technologies,

1www.un.org/en/about-us/universal-declaration-of-human-rights
2www.theguardian.com/us-news/2020/sep/03/edward-snowden-nsa-surveillance-guardian-court-rules
3gdpr.eu
4www.serpro.gov.br/lgpd/menu/a-lgpd/o-que-muda-com-a-lgpd
5prsindia.org/billtrack/the-personal-data-protection-bill-2019
6gdpr.eu/cookies/
7duckduckgo.com/privacy
8privacybadger.org
9brave.com
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products, and insights. This creates a conflict, while it is important to protect individuals’

privacy, it is also important to make data widely available to improve our society.

This conflict attracted the attention of both academia [9] [11] and industry. The

main question is whether it is possible to protect data privacy and, at the same time, keep

it useful for research and other applications.

Several researchers have produced new strategies to try to solve this dilemma

for different types of data, such as graphs[27] [50], and longitudinal data[46]. One of the

most important is anonymization techniques for datasets, in this area, the main consoli-

dated technique is Differential Privacy (DP)[14], which is the focus of this thesis.

However, the DP approach does not guarantee perfect privacy and data utility

simultaneously. The anonymization process using the mentioned techniques will distort

the data to some degree, which will incur the loss of utility in favor of privacy. Although

this data utility loss can be controlled, keeping more data utility can be done at the cost

of less privacy protection. The balance between privacy and utility is called the utility-

privacy trade-off [14]. This trade-off is a pivotal part of this research. An analyst executing

DP anonymization techniques will have a set of parameters for fine-tuning this trade-off

of the anonymization process. The main objective is to provide acceptable privacy while

keeping the data as usable as possible.

To support analysts in this endeavor, a diverse array of metrics and techniques

exists to gauge data utility, error, and precision finely. These metrics primarily stem from

the discipline of statistics. Furthermore, methodologies from machine learning and data

mining, like assessing performance variations pre- and post-parameter alterations, con-

tribute valuable insights. This approach is applicable in machine learning scenarios em-

ploying Differential Privacy (DP). Nonetheless, the metrics commonly employed tend to be

broad and may not directly address the intricacies of anonymization contexts. Similarly,

while the machine learning approach proves beneficial, its relevance is confined to the

realm of machine learning.

Hence, a gap exists in metrics applicable to Differential Privacy (DP) to effectively

measure data utility and facilitate the trade-off between privacy and utility. Our research

underscores a specific gap concerning summary statistics within the framework of Global

Differential Privacy. This gap pertains to understanding the interaction of anonymized

queries from a DP-protected database. Leveraging this gap presents an opportunity to

enhance data utility. Our research proposes addressing this gap through the introduction

of a novel metric.

Thus, our research focuses on three key objectives. Firstly, we aim to illustrate

that the noise introduced by DP varies in magnitude when different anonymized queries

interact. In this context, noise represents a reduction in data utility, as heightened noise

diminishes data precision. Secondly, we endeavor to introduce a novel metric capable of

leveraging these varying noise levels. This metric aims to empower developers to enhance



14

data utility in their solutions while maintaining privacy standards. Thirdly, we seek to

assess the effectiveness of our proposed metric in improving data utility.

1.1 Contribution

This subsection underscores the significance of the research associated with

this thesis, delineating its contributions across three key points. These contributions are

closely aligned with the research objectives outlined in Chapter 4, elucidating their effects

on stakeholders and the context. Moreover, these contributions pave the way for future

research directions, a topic thoroughly explored in Chapter 6.

The contributions are as follows:

• We have identified that in interactions involving two anonymized queries protected

by Differential Privacy (DP) through mathematical operations, the resulting noise is

influenced by various parameters employed in the anonymization process, notably

the budget allocation. This discovery is substantiated by analyzing these interac-

tions in basic mathematical operations, where different parameters are assessed

and analyzed. These interactions offer ample opportunity for further exploration to

deepen our understanding, as well as potential avenues for enhancing data utility in

specific scenarios.

• We propose a metric designed for DP developers to explore the interaction of anonymized

queries. Its effectiveness hinges on the developer’s comprehension of the DP sce-

nario. This represents an initial endeavor to leverage insights extracted from anonymized

query interactions to enhance data utility.

• The metric is evaluated within a theoretical framework, yielding promising results

indicating that its utilization can indeed bolster data utility without compromising

privacy.

The thesis heavily centers on the proposed metric. This focus stems from the

early stages of the research associated with this thesis, where one of the primary objec-

tives was to explore how various metrics could enhance data utility in Differential Privacy

(DP) scenarios.

1.2 Structure

Following this introduction, the subsequent chapter will provide the necessary

background to understand the rest of the work. This includes key concepts of Differential



15

Privacy, alternative definitions, and application scenarios. The measurement of data util-

ity, based on the noise introduced by the anonymization process of DP algorithms, is also

presented. This concept is crucial for the majority of our thesis. In Chapter 3, we present

a series of related works, organized by topic. Chapter 4 provides a contextualization of

our research problem and presents the research question. Chapter 5 presents the main

body of our research, focusing on identifying a gap in DP, proposing a metric that allows a

developer to improve data utility in specific DP scenarios, and finally, evaluating the per-

formance of such a metric. In the final chapter, we engage in a comprehensive discussion

of this work and suggest further directions for research.

1.2.1 Disclaimer

ChatGPT 10 and Grammarly11 were employed to enhance the fluidity and compre-

hension of the text in this work. However, their use was limited to text correction.

10ChatGPT.com
11app.grammarly.com
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2. BACKGROUND

In this section, we explore one of the most significant approaches to dataset

anonymization: Differential Privacy (DP). This technique encompasses several modifica-

tions and alternative definitions suited for different scenarios. Here, we will present this

field’s most used and important aspects. Additionally, we will briefly introduce another

notable approach for dataset anonymization: Synthetic Anonymization.

2.1 Differential Privacy

DP is a definition that yields strong privacy guarantees to a dataset member. This

dataset member has a strong case for denying membership in the dataset. The cause is

that the amount of information learned if he participates in a dataset or not is nearly

the same [15]. It makes it almost impossible for an attacker to infer membership if DP

parameters are correctly set. Take a dataset for a study about smoke diseases as an

example; an analyst will know the same amount of information about an individual and

whether or not he belongs to such a dataset. It is a challenge to affirm whether it is a

member of the dataset or not. This approach to anonymization is in contrast with other

attempts to formalize privacy in datasets, i. e. the privacy definition revolved around the

amount of information that is learned about an individual before and after accessing the

dataset [29] [10]. Later, it was proved that these alternative definitions were not feasible

[14].

Differential Privacy

colum1 colum2 colum3 colum4

user1 data1 data1 data1

user2 data2 data2 data2

user3 data3 data3 data3

Dataset
Analyst/Application

Curator Query (1)

Anonymized Result (2)

Noise

Figure 2.1 – Differential Privacy Process

The original definition of DP does not generate a transformed dataset. It depends

on a trusted curator, as shown in Figure 2.1. It will process a solicited query (step 1 in

Figure 2.1) made by an analyst and add noise to it before returning the answer(step 2 in

Figure 2.1). Thus, the data owner will need to keep the means of processing individual

queries to the dataset from the analysts’ requests. This approach protects against attacks
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on privacy, such as the data linkage attack [33] [45]. Also, it does not have the same vul-

nerabilities as other approaches for dataset anonymization, such as Synthetic Anonymity.

We will discuss this approach in Section 2.7. However, another DP approach named Global

Differential Privacy dismisses the need for a curator, and we will present it in Section 2.5.

The formal definition for Differential Privacy is expressed through ϵ-Differential

Privacy, defined as the following.

∀x .x ∈ range(M) | Pr [M(D) = x ] ≤ exp(ϵ).Pr [M(D′) = x ]

In this equation, M represents a randomized algorithm, often referred to as the

Mechanism, which operates on a dataset D. D and D′ are two adjacent datasets, meaning

they differ in exactly one row of data. The function range encompasses all possible values

of x that can be produced by the mechanism M. Intuitively, this means that the probability

distribution of outcomes between both datasets will have a probability distribution that

differs at most ϵ. The value of ϵ is a value defined by a curator. A smaller value means

better privacy.

In practical terms, whether an individual is included in dataset D or not will have

minimal impact on the outcome of any query result, provided an appropriate ϵ value has

been chosen.

Figure 2.2 – Differential Privacy distribution

The algorithm M outputs the result of queries to the database by adding noise

to the answer. For a query f (D), we can define the algorithm as M(D) = F (D) + n, where

it represents the noise n. The noise is generated based on a probability distribution, with

the Laplace distribution being the canon distribution for this application, although other

distributions are also applicable.

The Laplace distribution is characterized by two parameters: the scale (s), which

defines the spread and shape of the distribution, and the location (µ), which specifies

the distribution’s central point. In DP, the location parameter (µ) is always set to zero,

leaving the scale parameter (s) as the critical variable influencing the noise. The scale is

calculated as s = sensitivity
ϵ

, where sensitivity represents the maximum difference in query
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results between any adjacent dataset D′ and the original dataset D. The parameter ϵ

governs the level of privacy, as previously explained.

2.2 Properties of Differential Privacy

Differential privacy has three important properties that are fundamental to its

application [16].

• Post-Processing: An output from a differential private mechanism is differential

private independent of other processing performed on that output. Formally, if f (x)
satisfies ϵ-differential privacy, then any function g that uses f as input g(f (x)) is ϵ-

differential privacy.

• Concurrent composition or Group Privacy: As mentioned in the previous sec-

tion, removing one individual from the dataset will expose nearly the same amount

of information. This concept extends to groups of individuals, although large groups

will degrade the privacy guarantee. Formally, if a function f (x) satisfies ϵ-differential

privacy, and we partition the dataset X into disjoint sets x1 ∪ x2 ∪ ... ∪ xn = X . Then

each release of the function f (x) using as input a subset of the dataset, denoted as

f (xk ), also satisfies ϵ-differential privacy.

• Sequential Composition: It is possible to apply multiple differential privacy algo-

rithms to the same dataset or on the result of another differential privacy algorithm.

The released result maintains differential privacy, although the overall privacy guar-

antee may decrease. Formally, if a mechanism f1(x) satisfies ϵ1-differential privacy,

and another mechanism f2(x) satisfies ϵ2-differential privacy. Then function g(x) is

(ϵ1 + ϵ2)-differential privacy.

g(x) = (f1(x), f2(x))

In the simplest scenario (Figure 2.3), where functions operating on the dataset

f1(x), f2(x), ... , fn(x) do not interact with each other, each function is allocated an in-

dividual privacy budget ϵi . In most cases of DP, a single privacy budget ϵ is defined

to be shared among all functions operating on the dataset. However, this sharing

doesn’t imply equal allocation; some functions may receive higher budgets than oth-

ers, resulting in outputs with varying noise levels.

Another scenario for sequential composition arises when the output of one function

serves as input in the following function. This scenario represented in Figure 2.4

is called adaptive composition. This scenario is prevalent in machine learning
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budget ε₂budget ε₁Dataset
X Function 1 Function 2 Function 3

Output Output Output

budget ε₃

Figure 2.3 – Sequential Composition

applications, where the result of one function feeds into the next. In this setup, the

budget ϵ values allocated for each function remain fixed before execution. A third

approach changes that.

budget ε₂budget ε₁Dataset
X Function 1 Function 2 Function 3

Output

Output

Output

budget ε₃

Figure 2.4 – Adaptive Composition

A third scenario of sequential composition is the Fully adaptive composition. It

takes into account the output of a function as a parameter that impacts the allocation

of the privacy budget ϵ for the following function [41]. Figure 2.5 represents this

scenario.

2.3 Two challenges of DP: The Privacy-Utility trade-off and the Budget Allo-

cation

As discussed in previous sections, ϵ is a fundamental parameter in DP scenarios.

It governs the level of noise added in a mechanism. In practice, ϵ plays a dual role:

On one hand, it determines the level of privacy the mechanism provides. A lower

ϵ value corresponds to higher noise, increasing privacy.
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budget ε₂budget ε₁Dataset
X Function 1 Function 2 Function 3

Output

budget ε₃
Output Output

Figure 2.5 – Fully Adaptive Composition

On the other hand, ϵ also influences the utility of the mechanism’s output. A

higher ϵ value reduces noise, leading to more precise and valuable results.

This dilemma between privacy and utility of a mechanism is known as the Privacy-

Utility trade-off. The ϵ is defined by the developer of the application, which needs to take

into account several implications, including:

• Privacy Requirements: Legal or business-defined privacy requirements must be con-

sidered when defining ϵ.

• Application Sensitivity: Some applications have specific needs for data utility to be

helpful, which influences the value of ϵ.

• Risk Tolerance: It’s essential to assess your organization’s risk tolerance for potential

privacy breaches when determining ϵ.

Some researchers work on the definition of the ϵ value [21] [38], while others

focus on explaining how this value impacts privacy [32] [30]

Another problem stemming from the parameter ϵ is its allocation between mul-

tiple mechanisms. As discussed in Section 2.2, in Sequential Composition, the ϵ value is

shared among numerous functions or mechanisms, although not necessarily equally. This

collective ϵ allocated across the entire application is referred to as ϵ budget.

The distribution of this budget significantly impacts the application’s performance

in terms of precision and accuracy. Dedicating less budget to a mechanism results in more

noise and reduced utility in its output. Allocating more budget reduces noise and enhances

utility. Since not all mechanisms require the same level of performance, determining how

to divide the budget becomes a crucial problem.

This issue is a central focus in the field of differential privacy and is addressed in

detail in Chapters 3, 4, and 5. It is worth noting that, regardless of the budget distribution,

maintaining the total budget ensures consistent privacy levels, as stated in the Sequential

Composition property.
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2.4 Relaxations and alternative definitions to Differential Privacy

The DP described thus far represents the canonical version, known for its high

privacy guarantees and strong definition. However, a drawback of the canonical version

is its tendency to reduce the data utility, rendering some applications infeasible. Addi-

tionally, some applications may benefit from a modified DP definition that better suits the

application’s needs.

In this section, we introduce two modified DP definitions: Approximate Differen-

tial Privacy and Gaussian Differential Privacy. Afterward, we provide a summary of other

variants of DP.

2.4.1 Approximate Differential Privacy

The notion of DP can be weakened to provide more flexibility, leading to the

concept of Approximate Differential Privacy [16]. One of the benefits of such flexibility is

the Advanced Composition, which is a form of composition where the error caused by

the noise is less than that of the normal composition. The notation for this definition is

(ϵ, δ)-Differential Privacy. The definition is as follows:

Pr [(M(D) ∈ S)] ≤ exp(ϵ).Pr [M(D′ ∈ S)] + δ

Where D and D′ are two adjacent datasets. S is all subsets of the range(M).
The parameter δ, introduced by the curator, serves as an additional margin beyond the

bounds of ϵ. When an output of the algorithm M falls within this margin, the privacy for

that specific execution is compromised. As such, the δ parameter should be a small value.

It is worth noting that when δ = 0, the constraint of Approximate Differential

Privacy is equivalent to that of the canonical Differential Privacy. Such a case is called

pure Differential Privacy.

2.4.2 Gaussian Differential Privacy

Gaussian Differential Privacy uses the Gaussian distribution as the noise source

in the mechanism [12]. It falls to the f -differential privacy family, which comprises DP

definitions approaching Approximate Differential Privacy. As such, it represents a relaxed

version of the canonical DP. Notably, Gaussian Differential Privacy offers stronger privacy

guarantees during sequential composition than Approximate Differential Privacy. Among
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the f -differential privacy family, Gaussian Differential Privacy stands out as the most pre-

dominant definition.

It uses a model of attack on the DP scenario based on hypothesis testing. An

attacker wants to distinguish the dataset D and its neighbor D′ based on the output of a

mechanism. The hypothesis testing problem is as follows.

H0 : The dataset used is D

H1 : the dataset used is D’

Based on this testing in the case of Approximate Differential Privacy, the

upper bound of any testing using a significance level 0 < α < 1 is eϵα + δ. Thus, the test is

powerless for small privacy values of α and δ. The problem of Approximate Differential

Privacy is when composition is used. In that case, the privacy guarantees, based on the

upper bound, are no longer clear. Gaussian Differential Privacy includes tools to reason

about composition using the Central Limit Theorem.

2.4.3 Others

Numerous other alternative definitions of DP exist, as (α, ϵ)-Rényi DP [31] that is

based on R´enyi divergence, and ρ-zero-concentrated DP [5], also based on R´enyi diver-

gence but focused in trail probabilities. This is an active field of research, with ongoing

work for new alternatives. This section presents a summary in Table 2.1. While the list is

not exhaustive, it includes some of the more important definitions to date.

2.5 Local and Global Differential Privacy

The DP presented until now is the original version, where the mechanism adds

noise to protect the privacy of members of dataset D. It still depends on a curator that

will have access to the original dataset as represented in Figure 2.6 to add noise to the

queries. This approach that depends on the curator to add noise to the query result to

protect privacy is called Global Differential Privacy.

Two significant problems arise from the Global Differential Privacy approach. Firstly,

the curator needs to be trusted implicitly. Since the curator has access to all the original

data, any malicious action on their part could lead to data leakage from the dataset mem-

bers. This reliance on a trusted curator introduces a potential vulnerability.

Secondly, even if the curator is trusted, the original dataset remains vulnerable to

external attacks. While the curator may act in good faith, external threats could still com-
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DP Definition Summary
ϵ-DP [14] The canonical definition, also known as Pure Dif-

ferential Privacy, offers strong privacy guaran-
tees but is often too restrictive for real-world ap-
plications.

(ϵ, δ)-DP [16] Approximate Differential Privacy is a relaxation
of ϵ-DP, introducing an additive term δ to balance
privacy and data usability. However, measuring
privacy guarantees is less clear compared to ϵ-
DP.

f -DP [12] f -Differential Privacy, a family of relaxed DP def-
initions, improves on Approximate Differential
Privacy by enabling clear risk analysis using Hy-
pothesis testing.

Gaussian DP [12] A significant variant of f -Differential Privacy, uti-
lizing the Gaussian Distribution for noise and of-
fering enhanced risk analysis capabilities.

(α, ϵ)-Rényi DP [31] This definition proposes a stronger relaxation of
DP based on Rényi divergence, facilitating quan-
titative tracking of privacy loss during advanced
composition.

ρ-zero-concentraded DP [5] Similar to Rényi DP, this variant employs Rényi
divergence to improve privacy loss quantifica-
tion, focusing specifically on tail probabilities of
privacy loss.

Table 2.1 – List of alternative DP definitions

Dataset

Dataset

Figure 2.6 – Global and Local Differential Privacy

promise the dataset. This necessitates robust security measures to protect the dataset

from unauthorized access and breaches.
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An alternative approach to Differential Privacy is known as Local Differential

Privacy. In this approach, each individual adds noise to their data before it is inserted

into the dataset. This means that every participant adds noise to their data, making the

dataset publicly available. The need for a trusted curator in Global Differential Privacy is

eliminated.

While Local Differential Privacy addresses the issues of Global Differential Pri-

vacy, it also introduces several challenges. One challenge is the limited information shar-

ing among participants, as each individual adds noise independently to their data. This

limits the potential insights that the curator could derive from the dataset.

Another challenge is the difficulty of fine-tuning and preserving data utility. Since

noise is added locally by each participant, it is impossible to analyze the dataset before

noise is added, thus hindering any attempt to improve data utility based on the real values

of the dataset.

Another significant challenge is enforcing participants’ compliance with privacy-

preserving protocols. It is essential to ensure the correct aggregation of data while main-

taining the privacy of all dataset members.

Both approaches have their challenges and advantages. The choice of the better

one is highly dependent on the application and its requirements. There are use cases for

both Local Differential Privacy and Global Differential Privacy.

2.6 Measuring Utility

An essential aspect of Differential Privacy is the measurement of data utility.

While privacy is governed by the parameter ϵ, there is no direct way to quantify data

utility. Various methods are employed for this purpose

One measurement method focuses on the noise added to the original query re-

sult, which distorts the query result before it is presented to an analyst. Our work will

measure data utility based on the amount of noise added.

The noise added can be quantified as the absolute value of the difference be-

tween the real result of an operation in the database f (D) and the result from a mechanism

M(D). This quantification is essential for assessing data utility. However, due to the ran-

domness introduced by the Laplace distribution[6] utilized in the mechanism, a significant

number of measurements of the noise added (denoted as na) need to be conducted for

accurate assessment.

To account for this, the resulting measurement should be weighted based on the

number of measurements (p) conducted. The weighted measurement can be calculated

using Equation 2.1, where p represents the number of measurements.
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na =
∑p

i abs(fi(D) − Mi(D))
p

(2.1)

In this study, we will adopt a similar approach to measure utility. However, in-

stead of measuring the noise added of a single mechanism, we will measure it for a

mathematical operation that utilizes two mechanisms. For instance, consider the addition

of two mechanisms: O(D) = M1(D) + M2(D). The resulting equations are depicted in Equa-

tion 2.2, where OO(D) represents the original result of the operation without the noise

introduced by the mechanisms.

na =
∑p

i abs(OOi(D) − Oi(D))
p

(2.2)

2.7 Other anonymization technique - Synthatic Anonymization

The Syntactic Anonymity approach for dataset anonymization involves altering

multiple attribute values of each individual data, resulting in an anonymized dataset, as

illustrated in Figure 2.7. This alteration intends to ensure that multiple rows hold iden-

tical values. By doing so, an attacker attempting a linkage attack [44], which involves

using external information to identify a target person, would need to segregate the row

representing the target from other rows with the same values.

However, altering attribute values also leads to the loss of some information.

Therefore, there is a concern to minimize these changes to the data in order to preserve

as much information as possible.

Syntactic Anonymity

colum1 colum2 colum3 colum4

user1 data1 data1 data1

user2 data2 data2 data2

user3 data3 data3 data3

Dataset

Anonymization colum1 colum2 colum3 colum4

???? ???? ???? ????

???? ???? ???? ????

???? ???? ???? ????

Anonymized 
Dataset

Analyst

Application

Figure 2.7 – Syntactic Anonymity Process

To change the values in a dataset, two main techniques are used:
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• Generalization: Involves changing the original value with another one that is less

specific but still holds some meaning to the original value. For instance, consider an

attribute like ”sex” with values male, female. A possible generalization for this case

is changing both values to ”any sex” male → any sex, female → any sex.

For numerical values, intervals or averages can be used. For example, suppose an

attribute ”salary” has the following values: 2000, 3500, 2800. It can be generalized

to an interval [2000, 3500].

• Suppression: Involves the removal of all values for an attribute or an entire row

from the dataset, rendering it unusable. While this may seem extreme, it is neces-

sary in several cases where preserving privacy is paramount.

These techniques were employed alongside various models that offer some level

of protection for anonymized data. However, it is important to note that all these models

have some vulnerabilities. Nevertheless, these vulnerabilities do not render them useless,

and most of them are still widely used.

In chronological order, the most important of these models are k-anonymity, l-

diversity, and t-closeness. These models are closely related, each building upon its pre-

decessor to improve and address specific vulnerabilities.

k-anonymity was the first syntactic model proposed to protect privacy [44] [43].

This model proposes that each tuple in a dataset DS must have at least k other tuples

with the same quasi-identifier attribute values. The tuple must belong to an equivalence

class with k tuples in it. To achieve k , a transformation on the dataset DS is applied.

This transformation will use the mentioned generalization and suppression techniques to

create a dataset DS′, which achieves k . This model has some vulnerabilities, for example,

the homogeneity attack [51] and the background knowledge attack [29]. The next model

solves these problems.

l-diversity[29] was introduced to address attacks that exploit the lack of diver-

sity in the sensitive value SD for equivalence classes in k-anonymity (known as homo-

geneity attack). It operates by incorporating the sensitive data into the process of creat-

ing equivalence classes, ensuring that each equivalence class contains at least l distinct

sensitive values among its rows. This approach enhances protection against background

knowledge attacks as well.

However, this additional requirement to distribute sensitive data among equiv-

alence classes often necessitates more generalization, which leads to a higher loss of

information.

t-closeness[24] is similar to the l-diversity in the sense that it changes the equiv-

alence classes to accommodate different values for the sensitive attribute SD. However,

unlike the l-diversity, t-closeness takes into account the original distribution of SD in the

entire dataset DS. The difference, or distance, between the sensitive data distribution



27

SD in each equivalence class in the anonymized dataset compared to the original dataset

must be no more than the parameter t .

2.8 Final Consideration

In this section, we highlighted the most important aspects of Differential Privacy

(DP), a pivotal component of our work. DP stands out as the most significant technique for

dataset anonymization due to its strong definition and rigorous mathematical properties.

This background provides a sufficient foundation for understanding the work developed

in this thesis. Additionally, we included a brief overview of Syntactic Anonymity, another

anonymization technique, although it is not as robustly defined as DP.
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3. RELATED WORK

Our work is closely tied to the allocation of the privacy budget ϵ in data anonymiza-

tion processes. The allocation of this budget significantly influences the utility of anonymized

data, making it a pivotal aspect of DP. Consequently, extensive research is dedicated to

optimizing budget allocation. In this thesis, we explore two cases of budget allocation:

firstly, general strategies for allocation, and secondly, optimal allocation tailored explic-

itly for Machine Learning algorithms. Given the prominence of Machine Learning in this

domain, the latter receives particular emphasis. The selected studies are from 2019 or

early.

3.1 General Budget Allocation Strategies

This section explores proposals for allocating the privacy budget that transcend

specific scenarios. While much of the research on budget allocation focuses on particular

contexts, often centered around specific machine learning algorithms, a general approach

remains crucial. This encompasses proposals adaptable to virtually any scenario, includ-

ing the summary statistics scenario.

The research conducted by Bai et al. [1] revolves around employing convergent

series as a strategy for budget allocation. The authors argue that the uniform budget al-

location strategy frequently falls short regarding data utility, advocating instead for the

flexibility offered by convergent series. Additionally, they introduce several optimization

approaches applicable within the convergent series framework and discuss countermea-

sures against collusion attacks [13].

The proposal introduces utilizing two distinct series: the Geometric series and the

Taylor series. While the former has been previously employed for budget allocation, the

latter represents a novelty in this context. The general approach for budget distribution is

outlined as follows, where ϵi denotes the budget allocation for term i , ϵ signifies the total

budget, and ki represents the proportion of the budget allocated for term i:

ϵi = kiϵ

In the Geometric series, the value of ki is determined by the formula:

ki = (1 − r )r i−1

In this context, r signifies the ratio between two consecutive terms, serving as

a mechanism to govern the budget’s distribution proportion. A lower value of r suggests
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a swifter budget dispersion. The authors suggest that if the number of queries n to be

conducted is known, the following formula yields the optimal r .

r =
n − 1

n

The Taylor series possesses two key characteristics that render it suitable for

budget allocation. Its most significant attribute is nonmonotonicity coupled with positivity.

In the Taylor series, ki is computed as follows:

ki =
t

(i − 1)
(ln

1
t

)i−1

t defines the first term of the series and impacts the function form. The authors

suggest the following formula to determine the value of t .

t = e1−[ n
2 ]

In both sequences, not all the budget available will be used. A calibration strategy

is used to correct that. In it, the correct proportion is ki∗, which is used to calculate the

budget for each query ϵi∗ = ki ∗ϵ. The formula for the calibration is presented below, where

Sn =
∑n

i=1 ki < 1.

ki∗ =
ki

Sn

The first proposed approach to optimizing budget allocation involves inverting

the distribution. Typically, the normal distribution using series prioritizes allocating more

budget to the earlier terms, resulting in reduced noise for initial queries but heightened

noise for subsequent ones. However, certain applications, such as random forest machine

learning algorithms, which will be discussed later in this chapter, could benefit from re-

versing this order. By allocating more budget to later queries and less to earlier ones, a

more favorable balance of noise distribution can be achieved.

The second approach entails establishing an acceptable budget allocation thresh-

old. This threshold represents the minimum budget required for a query, which is essential

because, in certain instances, the noise generated by a mechanism may render its results

unusable. However, determining an acceptable budget poses challenges due to the vary-

ing sensitivities of different queries within the dataset. Not all queries are created equal;

some exhibit various levels of sensitivity to DP, necessitating distinct acceptable budget

allocations.

To address this challenge, the authors propose normalizing the sensitivity of the

dataset. Additionally, they present a strategy for integrating the acceptable budget as a

constraint during the budget allocation process. This ensures that each query receives a
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budget allocation tailored to its specific sensitivity level, thus enhancing the overall utility

of the privacy-preserving mechanism.

The authors also introduce three strategies to safeguard the budget allocation

strategy against collusion attacks. These strategies involve employing a Random Ar-

rangement of the budget, utilizing probability distributions, and implementing the Laplace

Mechanism. While these strategies are crucial for ensuring the robustness of the budget

allocation approach, we will not consider them in this thesis, as they are beyond the pri-

mary focus of our research.

Pujol et al. [40] introduces another scenario of budget allocation known as the

multi-analyst scenario. In this setup, multiple analysts have various queries to submit, and

a privacy budget is assigned to them. Depending on the strategy employed, noise can be

minimized, thereby enhancing data utility. While the paper primarily focuses on summary

statistics, this approach could also be extended to other instances of budget allocation.

This paper offers several contributions worth noting.

The first contribution lies in formulating three Desiderata, which are key char-

acteristics defining the ideal budget allocation mechanism for the multi-analyst scenario.

These Desiderata are:

• Sharing Incentive: Each analyst will experience either the same amount of error

or less in their queries if they collaborate with other analysts using the mechanism.

Participating in collaboration implies giving their share of the budget allocation.

• Non-Interference: Adding more analysts to the mechanism will not escalate the

error for the analysts already participating and sharing their budget.

• Adaptivity: The mechanism adapts its strategy based on the input it receives from

the analysts.

• Computational Efficient: Not one of the Desideratas presented by Pujol et al.,

however, is an important criterion for the mechanism.

The second contribution is the set of design paradigms proposed for Multi-Analyst

Differential Privacy (DP) query answering. These paradigms are illustrated in Figure 3.1.

They are organized based on the Select Measure Reconstruct Paradigm.

• Independent (a): In this common approach, each analyst receives a portion of the

budget. The analysts can use their allocated budget independently to make their

queries to the curator.

• Workload Agnostic Mechanisms (b): An analyst can contribute their budget

share to the collective mechanism. However, they cannot influence the queries that

will be performed. The curator strategically selects the queries without considering

input from the analysts.
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• Collect First Mechanisms (c): The curator aggregates all the queries that the

analysts are interested in performing and has access to the budget allocated to each

analyst. Based on these queries, the curator strategically prioritizes a subset of

them.

• Select First Mechanisms (d): In this paradigm, the analyst prioritizes the queries

they want to perform before sending them to the curator. The curator then conducts

a second round of strategic selection, prioritizing the queries based on the analyst’s

input.

Ask queries Answered with budget siε Reconstruct Query Answers

(a)

Answer preset workload with budget ε Reconstruct Query Answers

(b)

Selection StepCollection Step Answered with budget ε Reconstruct Query Answers

(c)

Selection Step Collection Step Answered with budget ε Reconstruct Query Answers

(d)

Figure 3.1 – Design Paradigms for Multi-Analyst DP Query Answering from Pujol et al. [40]

The authors classify a series of algorithms: Independent, Identity, Utilitarian,

Weighted Utilitarian, and 0-Waterfilling, using the proposed Desiderata. This classifica-

tion is presented in Table 3.1.

Desiderata/
Mechanism

Sharing Incentive Non-interference Adaptivity

Independent x x x
Identity x x
Utilitarian x
Weighted Utilitarian ? x
0-Waterfilling x x x

Table 3.1 – Desiderata satisfied by algorithms

Finally, the authors propose the 0-Waterfilling mechanism, a "select first" ap-

proach that satisfies all three Desideratas. Additionally, it is an efficient algorithm. We

will not consider the details here.
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3.2 Budget Allocation in ML and Data Mining Scenarios

In this section, we provide a non-exhaustive overview of recent studies focusing

on budget allocation strategies for DP in machine learning and data mining scenarios.

Specifically, we concentrate on two key algorithms: k-cluster and Random Forest, where

the implementation of budget allocation strategies is readily isolated and comprehensible.

While we briefly mention a few other strategies applied to alternative algorithms, we do

so with less detailed scrutiny.

3.2.1 k-Cluster

The k-Means [22] algorithm stands out as a cornerstone in unsupervised cluster-

ing tasks due to its widespread adoption and efficiency. Its primary goal is to segment

a dataset into k clusters by introducing k centroids. Each centroid serves as a represen-

tative for its respective cluster, and every data point is allocated to the cluster whose

centroid is nearest to it. The outcome of applying the algorithm with three clusters is de-

picted in Figure 3.2, showcasing its efficacy in pattern discovery and label assignment in

scenarios where explicit labels are lacking. Given its popularity, a plethora of research

explores the application of Differential Privacy (DP) in k-means scenarios, along with en-

deavors to optimize budget allocation within these contexts.

(a) Original plotted data (b) 3-cluster plotted data

Figure 3.2 – Example of 3-Cluster application

The initial attempt to incorporate Differential Privacy (DP) into k-means cluster-

ing, known as DP k-means[3], encountered challenges in maintaining data utility due to

privacy budget distribution issues. Addressing this concern requires a more efficient allo-

cation of the privacy budget ϵ. In this regard, Li et al. introduced the GAPBAS algorithm

[26], which employs a genetic algorithm[23] tailored to the DP k-means framework for op-

timal budget distribution. The distribution problem in DP k-means is NP-complete, under-
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scoring the significance of leveraging heuristic-based algorithms like GAPBAS to navigate

this complex scenario effectively.

While the GAPBA’s study provided insights into setting initial centroids positions

in k-means clustering, our focus lies in understanding the utilization of the genetic algo-

rithm , as it closely aligns with our research objectives. The genetic algorithm aims to

mimic natural selection in exploring potential solutions to a given problem. It comprises

multiple steps, as Figure 3.3 depicts. The first step is encoding possible solutions into a

string of bits and defining a heuristic function that evaluates the fitness or quality of each

solution. Initially, the algorithm generates several random proposed solutions (Initial Pop-

ulation), each assigned a fitness score. The best solutions, those with lower scores, are

retained, while the less optimal ones are discarded (selection). The retained solutions un-

dergo a round of genetic operations to produce a new population, such as crossover with

other surviving encoded solutions and random mutations. This process is repeated for a

specified number of iterations, defined by the developer. Ultimately, only solutions closer

to optimal solutions are expected to emerge, and the best one is selected.

Figure 3.3 – Genetic Algorithm Process as presented in the work of Li et al.[26]

In this context, the problem lies in distributing a global privacy budget ϵ into T
parts, where T represents the number of iterations in the k-means clustering algorithm,

determined by the initial centroids’ positions. Essentially, each iteration of the k-means

algorithm, aimed at updating centroids, will be allocated a portion of the privacy budget ϵ.

To encode these solutions, we create an array ϵseq = [ϵ0, ϵ1, ... , ϵT ], where each ϵi represents

the budget assigned to the ith update of the centroids in the k-means algorithm. This array

is then encoded in binary form.
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The iterative process of the k-cluster and the genetic algorithms is different. Each

possible solution in the genetic algorithm will undergo all the iterative processes of the k-

cluster. In the end, a fitness score is generated for the potential solutions. The genetic

algorithm will use the score to decide if the solutions will be used in the next iteration or

discarded. The fitness score for GARPA is the Normalized Intra-cluster Variance (NICV), a

standard k-cluster evaluation metric.

Another approach to DP k-Means involves using an arithmetic progression to

manage the allocation of the privacy budget. This method, named APDPk-means, was

proposed by Fan and Xu [17]. The privacy budget was evenly divided in the original DP k-

means proposal by Blum et al. [3]. However, this uniform allocation presents a challenge.

As the number of iterations in the k-means clustering algorithm increases to update the

centroids, the overall noise also escalates, potentially compromising the quality of the k-

means clustering. Fan and Xu found that earlier iterations exert a more significant impact

on the resulting k-means model; thus, they should be allotted a larger share of the privacy

budget to reduce noise during these critical stages. This rationale underpins their choice

to employ a decreasing arithmetic progression, allocating more budget to initial iterations

and progressively less to subsequent ones.

The proposal incorporates the notion of the minimum privacy budget ϵm intro-

duced by Su et al. [42]. This value, ϵm, signifies a threshold beyond which smaller values

of ϵ become overwhelmed by noise, failing to enhance centroids positions effectively. The

allocation of the privacy budget unfolds as follows:

• Calculate the minimum privacy budget ϵm. Specify a maximum number of iterations

for the k-means clustering algorithm, denoted as tm, a value determined by the de-

veloper. Additionally, compute t = ϵ
ϵm

. If t > tm, the arithmetic progression proposed

in the paper is employed; otherwise, a standard uniform distribution is utilized. This

step ensures that the distribution of the privacy budget remains above ϵm; otherwise,

uniform budget allocation is employed.

• For the arithmetic allocation progression, compute the sequence using ϵm as the first

term and the total privacy budget ϵ as the sum of the progression. The difference

between each term of the progression is calculated using the formula:

d = 2(ϵ− ϵmn)n(n − 1)

The progression is constructed based on the initial term ϵm, the difference between

each term, and the number of terms tm. In practice, it is applied in reverse, with ϵm

as the last term and the term with the highest privacy budget as the first term.

• For the uniform distribution, allocate the privacy budget for each iteration as ϵ
ϵm

.
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3.2.2 Random Forest

Random Forest is a supervised machine learning algorithm commonly used for

classification tasks that use an ensemble method [4]. It operates on the principle of en-

semble learning, leveraging multiple decision trees, which are also supervised machine

learning algorithms. Decision trees are constructed based on datasets with multiple di-

mensions. The non-leaf nodes in a decision tree represent decisions based on attribute

values, while each leaf corresponds to a classification for an object. When classifying

a new object, it traverses from the root to a leaf based on the decisions at each node,

resulting in the assigned classification.

A Random Forest is built by randomly partitioning the dataset across its dimen-

sions and constructing a decision tree for each partition, as illustrated in Figure 3.4. When

classifying an object using the forest, it undergoes evaluation by each decision tree, with

each tree providing a label for the object. The final assigned label is typically determined

by majority voting among all decision trees in the forest.

Full Dataset Dataset Partition 1 Dataset Partition 2 Dataset Partition 3

Figure 3.4 – Random Forest and partitions

Maintaining a balance between data utility and privacy becomes crucial when

incorporating Differential Privacy (DP) into Random Forest algorithms. Effective budget

allocation is critical to preserving a higher level of data utility. As outlined by Li et al.

[25], one proposed approach utilizes out-of-bag estimation as a heuristic to determine the

budget allocation for each decision tree and node within the Random Forest [39].

Out-of-bag estimation serves as a reliable validation method commonly utilized

in evaluating Random Forest models. Its key advantage over cross-validation lies in its ef-

ficient use of data. Every data point contributes to model training while delivering results

comparable to those obtained through cross-validation. This efficiency is rooted in boot-

strap sampling, where, for each decision tree within the forest, the dataset is partitioned

into two sets: the selected entries used for constructing that specific tree and the set of
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unselected samples (out-of-bag). During validation, each data entry’s label is assessed by

aggregating votes from all decision trees in the model that included that entry out-of-bag.

These assessments are then aggregated as correctly or incorrectly labeled to generate a

final score based on all entries in the dataset.

The DP Out-of-bag estimation is defined using the formula:

B′ =
1
2

(
Y + n(ϵ)

YT
+

N + n(ϵ)
NT

)

In this equation, Y represents the total number of false positives in the out-of-bag

classification of this tree, while N represents the number of false negatives. YT and NT

indicate the total misclassifications of false positives and false negatives, respectively. Ad-

ditionally, n(ϵ) represents the noise added to ensure compliance with Differential Privacy

constraints.

A weight can then be attributed to each decision tree using the formula:

WT =
1
B′

Each decision tree receives a privacy budget calculated as follows:

ϵT =
ϵ

T
∗ WT

Where T is the total number of decision trees.

In Figure 3.5, the budget allocation by tree is depicted as ϵ
T ×WT , allocating from

tree 1 to tree T . Each tree’s budget is further distributed among its features (layers) in

the figure. We won’t explore the specifics of this secondary division.

Figure 3.5 – Privacy Budget distribution in Random forest from Li et al.[25]

This approach strives to allocate more privacy to trees with more significant in-

fluence over the overall model, thereby reducing noise and preserving precision in these

pivotal trees. Similarly, the concept extends to features, although the specific method-

ology for this allocation is not discussed. Certain features carry more weight in shaping
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the model’s decisions and are therefore allotted a more significant share of the privacy

budget compared to others.

Another approach, similar to the one discussed earlier, is proposed by Hou et

al. [20]. They introduce the DPRF (Differential Privacy Protection Random Forest) in their

work. Although their research encompasses other collaborations in the realm of random

forests, including hybrid decision tree algorithms, we will specifically investigate their pro-

posal regarding privacy budget allocation.

Unlike the work of Li et al., this proposal does not advocate for any deviation from

the uniform distribution of the privacy budget among trees. Consequently, all decision

trees in the forest receive an equal share of the total privacy budget. However, at the

layer level, the budget is distributed unevenly.

The rationale behind this argument is that queries used to construct the top levels

of the tree typically involve a more significant number of data entries. Consequently, the

noise added to these queries less impacts data utility. Conversely, queries at the bottom

nodes, closer to the leaf nodes, involve fewer data entries due to database partitioning.

As a result, the noise added to these queries is more impactful. Based on this reasoning,

a distribution is proposed where the bottom layers receive a more significant share of the

privacy budget than the top layers.

The formula used to assign the privacy budget for an entire layer is as follows:

eu =
e
w

(9)

Here, e is the total privacy budget for that tree, and w is the weight for a specific

layer.

The budget for each layer eu will be divided among multiple queries used to con-

struct the random forest. Each query will receive an amount of privacy budget equal to

ei :

ei = eu ∗ (2
/

(dm − i + 1))

Where dm is the tree maximum budget, i the layer, and wi = 2(dm − i + 1). in

Figure 3.6 a decision tree is presented including the budget allocation for each query in

each level.

3.2.3 Others

The budget allocation problem remains a significant concern in the realm of

DP, with numerous studies dedicated to addressing it. In this section, we’ll provide an
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Figure 3.6 – Proposed budget distribution in a tree as proposed in Hou et al. [20]

overview of a few additional works, albeit in a less detailed manner compared to previ-

ous sections. Given the abundance of research in this area, it’s impractical to investigate

each one deeply. Moreover, our initial intention was not to provide an exhaustive review.

Instead, we aim to cover highly relevant topics to the machine-learning community.

One significant topic is multi-party learning, where participants collaborate to

construct a global model by sharing their locally trained model versions without disclosing

their raw data. However, a crucial aspect of this approach is that it does not grant other

participants direct access to the local data. Despite this precaution, there have been

demonstrations indicating that privacy in multi-party learning can still be compromised

[47]. Therefore, the use of DP in such scenarios holds promise and has garnered attention

from academia.

A recent approach proposed by Pan and Feng [37] builds upon previous works on

DP multi-party learning. Their method introduces the approximation of ρ-zero-concentrated

DP and a dynamic privacy budget allocation strategy. This strategy entails injecting more

noise during the initial stages of model construction and gradually reducing the amount of

noise injected as the process progresses. Such innovations aim to enhance the data utility

of DP multi-party learning frameworks.

Xie et al.[49] employ a comparable strategy aimed at enhancing DP within the

Stochastic Gradient Descent (SGD) algorithm. Their approach mirrors the concept of in-

jecting more noise in the initial steps of the algorithm and gradually reducing noise as

the algorithm nears convergence. While their research focuses on applying this algorithm

to backpropagation within a neural network, it’s important to note that the utility of this
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algorithm extends far beyond machine learning. Indeed, this DP-enhanced approach can

find applications in other domains beyond the scope of traditional machine-learning tasks.

3.2.4 Final Remarks

Numerous studies in the field have shown that budget allocation is a crucial area

of research in DP. However, the works discussed do not cover all research in this area.

While some studies address more general DP, most focus on machine learning. In this

context, we have dedicated our efforts to the budget allocation strategies for two specific

machine learning algorithms: k-cluster and Random Forest.

The work presented in this thesis proposes a metric designed primarily to assist

with the budget allocation problem. Consequently, this research is related to the works

discussed here, but several key differences are worth highlighting. The most significant

difference is that the proposed metric utilizes information provided by a developer regard-

ing the future use of the queries answered by the mechanism, a novel approach that is not

present in other works. Furthermore, the solution proposed here is specific to summary

statistics, whereas the works discussed are either general applications or tailored for use

in machine learning. Additionally, our research includes a study of how different differen-

tial privacy (DP) queries interact under basic mathematical operations, which differs from

the objectives of the presented works.

To summarize this chapter, we present Table 3.2.4, which organizes the discussed

works by paper reference, the application they target, whether they can be used in sum-

mary statistics, and if they are based on predictions of how DP queries will be used. The

last two columns are crucial as they differentiate the presented works from our research.

In the next chapter, we will demonstrate that our work is specifically designed for sum-

mary statistics and introduce the novel use of predictions for query usage within this con-

text. Most reviewed works are classified as utilizing predictions for query usage because

their algorithms adjust based on anticipated query applications in subsequent steps.

Also, the works discussed here provide a rich field of ideas that can be explored

and incorporated into future research on the metric proposed in this thesis. The most

notable ideas are:

• In the work of Bai et al. [1], an acceptable budget allocation threshold is proposed.

This approach can be incorporated into this research with the same objective: to

establish a minimum budget value that can be allocated to a query. Allocating values

below this threshold would significantly impair data utility, making them ineffective.
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Paper Application
Can be used in
summary statistics?

Based on prediction
on how the DP queries
will be used?

Bai et al. [1] General Yes No

Pujol et al. [40]
multi-analyst
scenarios

Yes, on
multi-analyst scenario

Yes

Li et al. [26] DP k-Means No Yes
Fan and Xu [17] DP k-Means No Yes
Li et al. [25] Random Forest No Yes
Hou et al. [20] Random Forest No Yes

Pan and Feng [37]
multi-party
learning

No Yes

Xie et al. [49]
Stochastic
gradient descent

No Yes

Table 3.2 – List of Related Papers

• Additionally, in the work of Bai et al. [1] and Su et al.[42], the normalization of

sensitivity is proposed, which can also be applied to facilitate the budget allocation

process and the calculation of the metric in this research.

• The GAPBA study [26] employs a genetic algorithm to address the budget allocation

problem effectively. Similarly, in our case, a genetic algorithm could be utilized in

the same manner. Here, the fitness function would result from the proposed metric,

with a good fit representing a budget allocation proposal that achieves a high metric

value.

• Xie et al. [49] proposed a stochastic gradient descent (SGD) algorithm. Using a

brute force strategy with our metric as the heuristic for better results would render

the problem NP-complete. However, applying gradient descent with our metric can

help find an optimal budget allocation in a much less computationally costly manner.
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4. PROBLEM STATEMENT

In this chapter, we present the research problem, outlining its significance, con-

textual background, and our approach to addressing it. The chapter is structured as fol-

lows: first, we provide context for the problem by describing the environment in which it

arises. Next, we articulate the issue or problem that our research endeavors to resolve

and the opportunities it presents. Subsequently, we explore the potential impact of our

research from various perspectives. Finally, we delineate our research objectives and the

overall structure of our study.

4.1 Context

Differential Privacy (DP) has emerged as the leading approach for protecting in-

dividuals’ privacy in datasets, offering more robust and transparent definitions compared

to other methods [44]. Its significance has surged recently due to the increasing amount

of data collected about individuals and the growing pressure from public opinion and leg-

islative measures. A few of the most important legislation are:

• General Data Protection Regulation (GDPR) (EU): Enacted in 2018, GDPR gov-

erns the processing and handling of personal data of individuals within the EU, as

well as EU citizens outside of the EU.

• California Consumer Privacy Act (CCPA) (USA): Implemented in 2018, CCPA is

a privacy law applicable in the state of California. It grants residents rights regarding

their personal information and imposes obligations on businesses handling private

data.

• Health Insurance Portability and Accountability Act (HIPAA) (USA): Enacted

in 1996, HIPAA protects sensitive patient data within the healthcare sector. It applies

to entities such as hospitals, health plans, and healthcare providers.

• Personal Information Protection and Electronic Documents Act (PIPEDA)

(Canada): Established in 2000, PIPEDA is a federal law regulating the collection and

use of personal data in commercial activities.

• Privacy Act (Australia): Introduced in 1988 and amended in 2014, this legislation

governs the handling of personal data by both government agencies and private

organizations in Australia.

• General Data Protection Law (LGPD) (Brazil): Implemented in 2020, LGPD reg-

ulates the processing of personal data in Brazil.
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• Data Protection Act 2018 (UK): The UK’s Data Protection Act 2018 complements

GDPR and outlines additional provisions related to data protection and processing

within the UK.

For instance, a survey conducted by KPMG 1 reveals that 70% of business lead-

ers increased the collection of consumer personal data over the past year. Moreover, it

shows that 86% of the general population in the United States considers privacy a growing

concern. The Key findings released by KPMG are in Figure 4.1. This data underscores the

critical role of Differential Privacy in today’s data-driven world.

Key Findings

Business U.S. Population

● 70% say their company increased 
collection of consumer personal data 
over the last year

● 62% say their company should do 
more to strengthen existing data 
protection measures

● 33% say consumers should be 
concerned about how their personal 
data is used by their company

● 86% say data privacy is a growing 
concern for them

● 68% are concerned about the level of 
data being collected by businesses

● 40% don’t trust companies to ethically 
use their data

● 30% aren’t willing to share their 
personal data for any reason

Figure 4.1 – KPMG Key Findings

As a result, many applications have begun to incorporate Differential Privacy (DP)

as a means of safeguarding privacy. Major companies such as Microsoft, Apple, Google,

and others have integrated DP into numerous applications. Moreover, DP principles are

applied in areas where the intention to adhere to them may not be explicit. For instance,

randomized response, a data collection method widely used in Social Sciences, aligns with

the DP definition[7] [48]. In other applications, the adherence to DP is very natural, as in

Federated Learning, a privacy-preserving method in Machine Learning [36].

However, as discussed in previous chapters, a significant hurdle to adopting Dif-

ferential Privacy (DP) lies in its inherent nature. Compliance with DP requires modifications

to the original data via the introduction of noise. This noise, an integral part of DP, serves

to protect an individual’s privacy. Yet, the introduction of this noise leads to a reduction in

the utility of the modified data. This trade-off between privacy and utility is a pivotal area

of research in Differential Privacy. Striking an incorrect balance can adversely affect the

performance of applications.

1https://kpmg.com/us/en/articles/2023/bridging-the-trust-chasm.html
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4.2 Issue and Opportunity

Research efforts aimed at enhancing data utility frequently concentrate on gen-

erating or processing queries. However, how data is utilized in the post-processing stage

often receives less attention. This potential gap in the current research landscape under-

scores the need for more focus on optimizing data use during post-processing.

A specific aspect that can be exploited to enhance utility by fine-tuning the bud-

get allocation problem involves considering how queries from the same DP application

interact with each other. These queries often interact through mathematical operations.

Consider, for example, a database protected by DP containing information about

vision health. An anonymized query retrieving the number of people with myopia can

interact with another anonymized query retrieving the total number of people in the

database to compute a ratio. This interaction will result in a varying amount of noise

added, depending on how the budget ϵ is allocated to each query. An examination of

how these interactions influence the added noise of the operation will be presented in

subsequent chapters and constitutes a significant component of this thesis.

An opportunity has emerged from the interaction and the results of a preliminary

study. A developer, aware of the behavior of interactions and anticipating how an analyst

will utilize anonymized queries, especially when they interact with each other, can lever-

age these interactions to minimize the total amount of noise added, thereby enhancing

data utility. Consequently, there is a need to develop tools that can seize this opportunity

effectively.

4.2.1 Attack model

The idea of DP is to protect an individual’s or group’s privacy. However, differ-

ent attack vectors are considered for various applications and approaches. Our proposal

considers the attack model represented in Figure 4.2. In it, we have the individual who

willingly shares his date in an application protected by DP to compose a dataset of multi-

ple individuals. This DP Application is assumed to be private, where no data can leak. As

part of the application there is the figure of the Curator, characteristic of DP scenarios. In

this model, the curator is assumed to be trustworthy. The curator can freely interact with

the dataset without any restrictions.

The Curator’s and the application’s objective is to release several summary statis-

tics to the public. Since these statistics will be public, they need to be protected by DP to

prevent an identification of an individual’s presence in the dataset. Operations on the re-

leased summary statistics are the attack vector our proposal aims to protect. In this case,
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the released summary statistics can be accessed by ordinary analysts with good intent on

using the data and by a malicious analyst who intends to infringe on individuals’ privacy.

By using DP, our approach should be capable of frustrating any attempt by the malicious

analyst.

Dataset

Data 
Interaction

Individual’s
 data

Released Summary Statistics

Data Access

Release

Figure 4.2 – Attack Model

Additionally, the literature presents various attack models where DP protection is

applied to each interaction with the dataset. For instance, the contrasting works compared

to ours of [25] et al. and [20] et al. demonstrate DP safeguarding each interaction with

the dataset during the production of the machine learning model.

4.3 Relevance

The issue of budget allocation, governed by the parameter ϵ, is a pivotal aspect

of Differential Privacy (DP) [2] [26] [25] [19]. This makes it a significant area of focus

within the research community. The parameter ϵ not only regulates privacy but also influ-

ences data utility. Consequently, strategies are often customized for specific applications,

including but not limited to machine learning techniques. This interplay between privacy

and utility underscores the complexity and importance of optimal budget allocation in DP.

The research conducted in this thesis, which will be presented in the subsequent

session, is situated within this primary area of differential privacy research. The proposed

solutions are currently theoretical, and further work is required to make them practical

in real-world scenarios. Presently, the focus is on specific scenarios of Global Differential

Privacy and the release of summary statistics. Future discussions about these scenarios

and potential improvements to this research will be presented in Section 6. However, the

following benefits can be highlighted as positive impacts of our research:
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• Data Utility: The primary benefit of this research is a proposal that, in specific

scenarios, enhances data utility by reducing the noise generated from the interaction

of various anonymized queries.

• Privacy Protection: Our proposal improves utility while maintaining the same level

of privacy, as it does not alter the global ϵ value. This will be demonstrated in the

forthcoming chapters.

• Adaptability: Our proposal is focused on summary statistics using Global Differen-

tial Privacy. It can be readily adapted to any similar applications. The only prerequi-

site is a knowledgeable analyst who understands the context in which the data will

be used.

We want to emphasize the impact of our research on various stakeholders:

• Organizations: Often, the loss of data utility in DP scenarios is substantial enough

to render several applications unfeasible and data incomprehensible. Improvements

in data utility can mitigate this issue, making such applications feasible. Importantly,

there is no increase in the risk of privacy leakage, a significant concern for organiza-

tions as it can lead to legal complications.

• Individuals: For individuals, the application of our research is transparent. There is

no increase in the risk of privacy, which is likely the primary concern for individuals.

As previously mentioned, in the context of organizations, individuals may also benefit

from new private applications and data.

• Academia: Our research contributes significantly to academia. We propose a novel

approach to improve data utility in summary statistics based on predictions of how

the anonymized summary statistics will be used by the analyst in a DP scenario. This

includes a comparative analysis of how anonymized queries behave under different

mathematical operations. Therefore, we present a fresh avenue for research in DP.

4.4 Research Objectives and Structure

The central objective of this thesis is to address the following research question:

"What is the impact of a newly proposed metric for Differential Privacy on the

trade-off between privacy and data utility?"

This research question leads to the following hypotheses:

H0: The use of specific metrics for anonymizing datasets does not significantly

improve data utility and privacy in practical applications. H1: The use of specific metrics
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for anonymizing datasets can significantly improve data utility and privacy in practical

applications.

Enhancing the trade-off between privacy and data utility is a crucial topic in the

field of Differential Privacy. Although this research is still in its early stages, initial re-

sults suggest that the proposed metric has the potential to positively impact this balance,

particularly in the context of summary statistics and Global Differential Privacy.

Based on the research question, we have set and achieved the following objec-

tives:

• Identify a gap in the current field of DP where introducing a new metric could be

beneficial.

• Develop a new metric that can be used in Differential Privacy scenarios to potentially

improve the privacy data-utility trade-off.

• Evaluate the proposed metric to ensure its positive impact on DP.

The research was organized into three parts, highly correlated to the research

objectives. The next chapter will provide a detailed description of each part, including the

adopted methodology.

• Part One: We demonstrate that in our target scenario, changes in noise addition

occur based on how anonymized queries are used in mathematical operations after

the anonymization process. This finding is pivotal for our research, as the proposed

metric exploits this fact to improve data utility.

• Part Two: We present a metric that exploits how the anonymized query is used.

This includes a mathematical definition. The metric depends on a new role in the DP

scenario, the Developer, who is tasked with predicting how an analyst will use the

anonymized queries. The accuracy of these predictions is crucial for the performance

of the metric.

• Part Three: We evaluate the proposed metric in a theoretical scenario to confirm

the possibility of a positive impact on a DP scenario. The performance highly depends

on the Developer’s ability to predict query usage. Thus, the objective of this part was

to assert that it is possible to have a positive impact on data utility, depending on

the Developer’s performance.
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5. CREATING A METRIC FOR ASSESSING DATA UTILITY IN

SUMMARY STATISTICS UNDER DIFFERENTIAL PRIVACY

In this chapter, we discuss the core of our thesis, presenting our research and its

results. Our work is organized into three main parts, as outlined in the previous chapter.

We begin by examining the behavior of anonymized queries using DP when integrated

with simple mathematical operations. This study reveals a potential avenue for achiev-

ing an improved privacy-utility trade-off. Next, we introduce a novel metric designed to

measure the quality of budget allocation. This metric takes into account a forecast of data

usage, which is a unique aspect and a significant contribution to our work. Finally, we

assess the performance of the proposed metric, providing a comprehensive evaluation of

its effectiveness. Each component contributes to our understanding of the subject and

brings us closer to our research objectives. We hope that our findings will shed light on

new possibilities and inspire further exploration in this field.

5.1 Part 1: Analysis of the impact of basic mathematical operations on

queries created using DP

The primary aim of this study is to investigate the impact of implementing DP on

the utility during the merge of outcomes from two distinct mechanisms into fundamen-

tal mathematical operations, with the privacy budget apportioned across varying ratios.

The underlying hypothesis posits that diverse distributions of the privacy budget between

interacting queries can either enhance or diminish the utility of the resultant data. This

investigation sheds light on the behavior of noise introduced by differential privacy under

the specified conditions and, more crucially, justifies the introduction of a metric designed

to aid in allocating the privacy budget by considering the results presented here. The

details of this metric will be elucidated in the subsequent study within this chapter.

5.1.1 Experiment Description

To assess the impact of noise in DP within our mathematical operation scenarios,

we have designed an experiment detailed in Figure 5.1. We will examine each step in-

dividually. Our hypothesis posits that varying the distribution of the privacy budget may

either augment or diminish the utility of the resultant data. We employ the methodology

delineated in Section 2.6 to measure this data utility.
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Definition Operations
Data 

Generation
Results 
Analysis

Data 
Plotting

Figure 5.1 – Steps to the Execution of the Experiment

• Definition: The experiment entails the utilization of two mechanisms, namely Mech-

anism A and Mechanism B. The aim is to assess the utility achieved through op-

erations incorporating both queries. To quantify and analyze the utility of the data,

the method employed is the one outlined in Section 2.6. The operations involving

both mechanisms will be the basic mathematical operations: Addition, Subtraction,

Multiplication, and Division. All operations in our study will use Mechanism A as the

first argument and Mechanism B as the second argument. Each operation is ana-

lyzed individually by systematically varying the values of variables associated with

Mechanism A and Mechanism B.

Both mechanisms encompass intrinsic and external variables.

– Intrinsic variables are inherent to the query conducted within the database

and the database itself. The intrinsic variables include Result of Query A, Re-

sult of Query B, Sensitivity of Mechanism A, Sensitivity of Mechanism

B. Here, "value" denotes the outcome of the query conducted by the Curator

before adding noise.

– External variables are defined by the Differential Privacy (DP) scenario devel-

oper. The external variables consist of Privacy budget allocated for Mecha-

nism A, and Privacy budget allocated for Mechanism B.

DP scenarios generally operate within a specified total privacy budget. The defined

total privacy budget is one (total ϵ = 1), which aligns with a conservative yet robust

privacy protection standard [34]. The external variables always respect the restric-

tion in Equation 5.1.

BudgetofMechanismA + BudgetofMechanismB = total ϵ (5.1)

In our experiment, variables from both intrinsic and external groups were adjusted

one by one.

The intrinsic variables Result Query A and Result Query B start at a base value

of 10, then are increased logarithmically to 10, 100, 1000, and 10000. Similarly,
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Sensitivity of Mechanism A and Sensitivity of Mechanism B begin at 1 and are

increased logarithmically to 1, 10, 100, and 1000.

The external variable Budget of Mechanism A starts at 0.01, increasing by 0.01

increments until reaching 0.99. Due to the constraint in Equation 5.1, changing the

Budget of Mechanism A external variable affects the Budget of Mechanism B

variable.

Each combination of intrinsic and external variable changes will undergo 10,000 it-

erations. The utility measured for each combination will be obtained as the average

of these 10,000 executions. The resulting data on utility will then serve as the basis

for our analysis.

We determined this sample size for an infinite population, considering a Confidence

Level of 99%, a Margin of Error of 1%, and a Standard Deviation of 50%. The calcu-

lated sample size was 9,604, which we rounded up to 10,000 for practical purposes.

• Data Generation: A script made in Python will be used to generate the data based

on our definition. Important libraries used include Numpy version 1.21.5, Seaborn

version 0.12.2, Pandas version 2.0.3, and Matplot. The Numpy is particularly im-

portant because it generates the noise using the La Place distribution. There is a

random component in the noise generation; for replication, the seed used was zero.

The hardware does not impact the results.

• Data Plotting: The Seaborn and Matplotlib libraries are used for data visualization.

The x-axis represents the Privacy budget allocated for Mechanism A, while the

Privacy budget allocated for Mechanism B can be inferred from Equation 5.1.

The y-axis denotes the utility variable. The aim is to observe how noise behaves as

budget allocation changes. Multiple graphs are generated, each depicting different

combinations of variable parameters. In total, there are 64 graphs, although not

all will be presented here. However, they are accessible on the research’s GitHub

repository1 along with the scripts used.

• Results Analysis: The analysis and findings are presented in the last part of the

experiment. This step will be discussed in the following subsection.

5.1.2 Results

This subsection unveils the results obtained for each operation, discussing them

individually within their respective subsections. To streamline data presentation, graphics

1https://github.com/conseg/TheImpactofDifferential
Privacyondatautilityinfundamentalmathematicaloperations
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are employed. Although a large number of graphics (68 in total) were generated due

to the multiple variables, this section showcases just the most relevant ones for each

mathematical operation. At the end, a broader discussion is presented.

In the preceding experiment description, we outlined the utilization of two mech-

anisms. In the ensuing discussions, we must discuss specific points of each mechanism,

namely the query’s original value and the noise added to it. In this regard, we are go-

ing to use the following equations similar to the ones presented in Section 2.6: For the

"Mechanism A" aA = qA + nA; For "Mechanism B" aB = qB + nB. Where Capital "A" and "B"

mean which query it is referring to, "a" means answer, "q" the original query value, and

"n" noise.

Addition

The addition operation takes the form (qA + nA) + (qB + nB). Figure 5.2 A depicts

the baseline cases. Observing the graph, the optimal distribution of the budget epsilon,

which results in the least added noise, is when the budget is perfectly divided between

Mechanism A and Mechanism B. Conversely, at the extremities of the graph, where one

query benefits from more budget at the expense of the other, more added noise is gen-

erated. We speculate that the phenomenon is linked to how noise is generated. In the

mechanism for noise generation, the Laplace distribution has a scale parameter s. The

value of the parameter s is calculated using s = sensitivity
episilon since at the borders. We are de-

creasing the budget epsilon of one of the queries with a lim
episilon→0

= ∞, where the tendency

to infinity is generating a high amount of noise added. This behavior at the border is, in

general, repeated in other operations.

Changes in the qA or qB do not impact the amount of added noise for addition

operations. This lack of impact is evident in Figure 5.2 B, which seems identical to Figure

5.2 A.

Sensitivity, on the other hand, significantly impacts the added noise, as illus-

trated in Figure 5.2 C. One notable observation is that increasing the sensitivity of one

mechanism, Mechanism A in this graph, produces a proportional increase in the added

noise. Another aspect is the change from the optimal point to divide the budget epsilon

from 0.5 in the baseline to the right in the graph. To keep it optimal, the budget must

prioritize the Mechanism with more sensitivity, Mechanism A in this case. However, it’s

crucial to note that excessively reducing the epsilon for Mechanism B may still lead to

suboptimal outcomes. The value of noise added when the budget of B is near 0 still tends

to infinity. It is less outstanding than the opposite when the budget for A tends to 0.
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(A) (B)

(C)

Sensitivity A: 1.0
Sensitivity B: 1.0
Result A: 10.0
Result B: 10.0

Sensitivity A: 1.0
Sensitivity B: 1.0
Result A: 10000.0
Result B: 10.0

Sensitivity A: 100.0
Sensitivity B: 1.0
Result A: 10.0
Result B: 10.0

Figure 5.2 – Addition operation graphics

Subtraction

The subtraction operation is in the form (qA + nA) − (qB + nB). This operation

is similar to the addition, and we can take the same observations previously made. The

noise increases at the borders of the graph, and we speculate that are for the same reason;

Increases in the value of qA or qB do not change the amount of noise added; Changes in

the sensitivity increase the amount of noise to the left of the graph in case of increases in

Mechanism A, or to the right in case of Mechanism B. It also displaced the optimal point

from the center to the opposite side which had an increase in the noise added.



52

(A) (B)

(C)

Sensitivity A: 1.0
Sensitivity B: 1.0
Result A: 10.0
Result B: 10.0

Sensitivity A: 1.0
Sensitivity B: 1.0
Result A: 10.0
Result B: 1000.0

Sensitivity A: 1.0
Sensitivity B: 10.0
Result A: 10.0
Result B: 10.0

Figure 5.3 – Subtraction operation graphics

Multiplication

The multiplication operation follows the format (qA + nA) ∗ (qB + nB). Similar to

previous operations, at the edges of the graph, when one of the queries has a minimal

budget epsilon allocation, the added noise substantially increases, as depicted in Figure

5.4 A. Note that the noise added values are much greater than in addition and subtraction.

Unlike previous operations, changes in qA or qB lead to modifications in the

amount of noise added. Figure 5.4 B illustrates the added noise when qB is increased

to 100. The increase of qB seems to increase the amount of added noise, mostly when
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(A) (B)

(C)

Sensitivity A: 1.0
Sensitivity B: 1.0
Result A: 10.0
Result B: 10.0

Sensitivity A: 1.0
Sensitivity B: 1.0
Result A: 10.0
Result B: 100.0

Sensitivity A: 1000.0
Sensitivity B: 1.0
Result A: 10.0
Result B: 10.0

Figure 5.4 – Multiplication operation graphics

the budget allocated for Query A is smaller. The optimal distribution of the budget shifts

to the right of the graph. The key conclusion is that an increase in the value of a query

will result in the optimal budget distribution aligning closer to it when more budget is al-

located to it, albeit not exclusively. This phenomenon can be understood by applying the

distributive law to the original operation (qA+nA)∗(qB+nB) ⇒ qAqB+qAnB+nAqB+nAnB.

Remember that an increase of the budget epsilon for a query decreases the values of the

noise in that query, nA and nB in our case, and vice-versa. For this scenario, the value

of a Query interacts multiplicatively with the noise of the other query, qAnB and nAqB.

Increases in the value of a query increase the impact that the noise of the other query

causes. Thus, decreasing the budget for a query and increasing the value for the other

greatly impacts the added noise measurement.
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Similar to previous cases, adjusting the sensitivity of one of the Queries increases

the amount of noise added for that query result. Moreover, assigning a minimal portion

of the budget to the query exacerbates the noise added. Examining the graph in Figure

5.4 C, the noise added seems to increase in a multiplicative manner. The optimal budget

distribution point appears to shift towards the right, where the allocated budget for Query

A is larger. However, maximizing the budget for Query A to the detriment of Query B will

also increase the amount of noise added. This behavior is similar in the other operations.

5.1.3 Division

As represented by Equations 5.2, the division operation exhibits different behav-

ior compared to previous operations. Examining the baseline case in Figure 5.5 A, while

the left border shows an increase in the amount of noise added for this operation, the

right side seems to add less noise. This contrasts with other operations, where the noise

increases symmetrically at both borders. The reason appears to be rooted in the imbal-

ance between the noise for the numerator (qA + nA) and the denominator (qB + nB). On

the left side of the graph, the noise for the numerator is greater due to the smaller bud-

get allocated for Query A, increasing nA. Conversely, the noise for the denominator is

decreased due to the larger budget allocated for Query A, which reduces the value of nB.

As a result, the numerator increases while the denominator decreases, leading to a larger

overall value and, consequently, more added noise. The right side, however, does not

exhibit the same effect. Increasing the denominator decreases the result, resulting in less

added noise. This has a limit, as we can see in the graph where the noise increases again

at the end of the graph on the right. The optimal point for budget distribution seems to be

in the middle of the graph, where the budget is equally split.

(qA + nA)
(qB + nB)

(5.2)

Several spikes in the graph seem to occur randomly. This behavior can be at-

tributed to the denominator. Depending on the noise nB generated, it can interact with

the value qB, causing it to be near zero. With a denominator close to zero, the result of the

division converges to infinity, significantly increasing the amount of noise added. Since

it depends on the randomly generated noise, it exhibits unpredictable behavior and can

occur anytime.

Unlike previous operations, changes in the qA and qB have different impacts on

the amount of noise generated. Changes in the Value A (qA) can be observed in Figure 5.5

B. Focusing the budget on Mechanism B seems to maintain a low and predictable amount

of added noise, consistent with observations from Figure 5.5 A. Increases in the budget for
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(A) (B)

(C)

Sensitivity A: 1.0
Sensitivity B: 1.0
Result A: 10.0
Result B: 10.0

Sensitivity A: 1.0
Sensitivity B: 1.0
Result A: 100.0
Result B: 10.0

Sensitivity A: 1.0
Sensitivity B: 1.0
Result A: 10.0
Result B: 100.0

(D)

Sensitivity A: 1000.0
Sensitivity B: 1.0
Result A: 10.0
Result B: 10.0

(E)

Sensitivity A: 1.0
Sensitivity B: 100.0
Result A: 10.0
Result B: 10.0

Figure 5.5 – Division operation graphics

Mechanism A seem to raise the added noise and spike frequency in the graph. This can

be justified by the fact that increasing qA also increases the amount of noise generated
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when the denominator is close to zero. On the other hand, increases in Value B (qB) in

Figure 5.5 C seem to decrease the noise added at all points of the graph compared to the

baseline. The main cause can be linked to the increase in the value of the denominator,

which, when interacting with the numerator, yields a smaller value. The spike frequency

also reduces as the sensitivity for Mechanism B remains at 1 (SenB), and the randomly

generated noise nB is insufficient to decrease the value of qB to near zero. The result is a

much smoother graph.

Regarding changes to the sensitivity (SenA, and SenB). Analyzing Figure 5.5 D,

modifications in SenA seem to increase the amount of noise, mainly at the left of the graph

when the budget allocated to Mechanism A is smaller. The natural cause is the increase

in the magnitude of the noise nA, which augments the nominator while the denominator

(Mechanism B) remains smaller due to no change in SenB, and an increase in the bud-

get for MechanismB, which diminishes nB. Shifting the budget to MechanismA, the right

side of the graph decreases the amount of noise added. It is theorized that the increase

in funding for MechanismA decreases the amount of noise in nA, thereby reducing the

overall added noise. Spikes persist, caused by the denominator coming close to zero. The

graph of Figure 5.5 D shows the case when SenB is increased to 100. The amount of

noise added is much smaller than the opposite case when SenA is increased. Unlike other

cases, the smaller amount of noise seems to be when the budget is maximum allocated

to Mechanism B, decreasing the noise nB. The amount of spikes is very prominent in all

the graphics, probably caused by a higher chance of the denominator Query B aB coming

close to zero.

5.1.4 Discussion

One of the main objectives of this study is to determine whether budget distribu-

tion can impact the utility of post-anonymization operations that involve multiple mecha-

nisms. In our context, utility refers to reduced added noise, as defined earlier. Our study

yields positive results, focusing on a specific scenario where just two queries are used in

basic mathematical operations.

The positive results bring the possibility of leveraging this behavior to enhance

utility in practical applications. While further investigation is necessary, there may be spe-

cific scenarios where optimizing budget distribution can improve the utility of subsequent

queries. In the following study, we will present a metric developed with this in mind [35].

However, this study can benefit from an expansion to encompass more general

cases. Exploring complex operations involving multiple queries is one avenue that re-

quires further attention. The possibility of adding a noise prediction based on the oper-

ation and the budget distribution without the need for repeated calculations to find the
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optimal distribution, as done in our work, would be invaluable if feasible. The study works

only in the canonical form of differential privacy; other forms, such as approximate dif-

ferential privacy, would broaden the applicability of the results, bringing them closer to

real-world scenarios where such forms are more prevalent. Moreover, real-world cases

are also of interest.

Specifically, the behavior of some operations, like addition and subtraction, can

also be used as an advantage by a developer. Division, on the other hand, exhibits more

complex behavior. One aspect is the spikes. Addressing this aspect could reduce the

likelihood of a denominator approaching zero, decreasing added noise. However, any

such approach must be carefully evaluated to ensure it does not compromise privacy.

5.1.5 Final consideration of this study

In this study, we examine the impact of differential privacy on data utility when

two distinct mechanisms interact in basic mathematical operations. Our evaluation, con-

ducted through an experiment measuring added noise in each operation, provides in-

sights into data utility. The findings reveal that variations in variables can strongly influ-

ence data utility, with each mathematical operation exhibiting different behaviors. Fur-

thermore, we demonstrate that the budget allocation also impacts the data utility, indi-

cating that developers should change the variables properly to optimize data utility and

anticipate how the mechanisms will be used later.

As a future direction, this research could be extended to more complex cases

of operations and real-world applications. Furthermore, additional research is needed to

refine or devise budget allocation strategies to enhance data utility.

5.2 Part 2: A Metric proposal to improve data utility

In this section, we introduce a novel metric for budget allocation that quantifies

the data utility of a specific budget distribution. This metric considers the budget assigned

to each query released to the analyst as a summary statistic. It also incorporates predic-

tions of potential future usage of the released queries. The predictions are introduced by

a new role in DP scenarios, the developer. The inclusion of these predictions is an inno-

vation in the field, accounting for scenarios where the interaction of two or more queries

may cause their inherent noise to intermingle. Our proposed metric draws heavily on the

findings from our previous section’s study of such interactions through basic mathematical

operations.
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To articulate the metric, we begin with a problem statement that outlines the

scenarios for its application. Following this, we provide a mathematical definition of the

metric. Subsequently, we briefly discuss the definition of metric used in this work. We

conclude with some final remarks on the implications and potential applications of the

metric.

5.2.1 Problem Statement

The developer is an entity that wants to release several summary statistics to

the public using DP. In such situation, there will be a privacy parameter budget ϵ that

is defined externally which must be respected by the developer. This budget needs to

be divided among all the statistics that will be made available. The budget allocation

between different statistics can be done in different ways. As already discussed, it is a

pivotal part of our work and for the field. By the Sequential Composition property of DP,

all ways of sharing the privacy budget keep the same privacy guarantee as presented

in Section 2.2. When releasing the data, the developer intends to build a DP scenario,

including its budget allocation that helps in providing the best possible quality of data to

an Analyst that will use the statistics.

The Analyst is an entity that intends to consume the statistics that will be re-

leased to the public. It will use these statistics in equations to generate new insights

about the data. The distinction between Statistics, a result from a query in the database

with the DP noise added, and the Equations that use multiple statistics from a DP solution

to create new insights from the data is essential. A third entity is the Curator that works

as intended in DP, an intermediary that will add noise to queries before making them

available to the analyst. Here, we will treat it as a non-interactive fashion DP solution; the

queries are already defined and are released as statistics to the Analyst, which cannot

create new queries.

Figure 5.6 summarises our problem. The developer will build (ii) the DP scenario.

It will project which equations the analyst will create when the DP scenario (i) is made

available. The Developer then creates one budget allocation for all statistics that will

benefit these equations by considering the allocation that will cause the minimum amount

of noise possible. This is a pivotal aspect of our work.

Since each statistic carries its own noise, the interaction between them caused by

mathematical operations in equations changes the total amount of noise. This total noise

will have a different size depending on the budget allocation. The developer wants to

minimize it, which can be done by choosing the optimal budget allocation. In the next

section, we present a metric to compare budget allocations that the developer can use to

compare budget allocations to find the optimal solution that minimizes the noise.
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Dataset
(iii) Query

(i) Projected 
Queries

Build

(iv) Query

(ii)

 (v) Anonymized 
query

Figure 5.6 – Scenario

Having the optimal budget allocation, it can create the DP scenario (ii). After

this, the solution works as a normal DP solution (iii) (iv) (v). The Analyst will receive the

statistics that the Curator did as queries to the database with the added noise. Which the

analyst will use in equations. This approach can potentially increase the utility of data

without compromising privacy. However, it is highly dependent on the developer’s ability

to predict the equations that the analyst will use. It improves the utility of the data by

prioritizing the predicted equations at the cost of the utility of non-predicted equations.

Also, it is reliant on budget allocation, which is the parameter that the developer can fine-

tune. In the next section, we propose a metric that allows comparing different budget

allocations in order to optimise the selection.

5.3 A Metric to support the process of budget allocation

In this section, we propose a metric that can be used to compare different distri-

butions of the privacy budget ϵ. Initially, an array (5.3) with a total of nsta statistics that

will be released by the developer ranging from sta1 to stansta is defined.

Sta = [sta1, sta2, ..., stansta] (5.3)

A second array (5.4) Sen stores the sensitivity from sen1 to sennsta. Each statis-

tic in array Sen has an equivalent member in array Sta at the same position in the equiv-

alent array. For example, the sensitivity for element stai is seni .



60

Sen = [sen1, sen2, ..., sennsta] (5.4)

A third array that we will use is the budget allocation array (5.5) Bud with nsta
elements. This array represents the privacy budget distribution, for each element in the

original array Sta there is an element in Bud in the same position. This represents the pri-

vacy budget allocated for that specific statistic. For example, the privacy budget allocated

for element stai is budi .

Bud = [bud1, bud2, ..., budnsta] (5.5)

There are two limitations (5.6) (5.7) to the values in this array. The sum of all the

elements in Bud must be equal to the privacy budget ϵ.

nsta∑
i=1

budi = ϵ (5.6)

Also, all the elements in the array need to have a value greater than 0.

∀i(budi > 0) (5.7)

To help organize our data for further functions, we will consolidate all three arrays

(Sta, Sen, and Bud) into one array of tuples (5.8) Tup. Each tuple t will aggregate the

statistic, sensitivity, and budget tupi = (stai , seni , budi). We will also define a function (5.9)

os that retrieves the value sta from a tuple.

Tup = [(sta1, sen1, bud1)1, (sta2, sen2, bud2)2, ..., (stansta, sennsta, budnsta)nsta] (5.8)

os((stai , seni , budi)i) = stai (5.9)

In the previous section, we described what are Equations. We will define them

as a mathematical function eq(Tup) ⇒ R. An equation uses multiple specific statistics to

calculate its output value. The equation eq will receive all tuples with their statistics from

array Tup, although it will use just a few specific ones.

The developer defines equations on a case-by-case basis. Thus, it is impossible

to determine the operation beyond the function signature. However, we will show two

examples of equations using lambda functions. Our example scenario has an array Tup =
[tup1, tup2, tup3, tup4]. The developer will define two operations: The first one (5.10) eq1
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will receive the statistic value from tup2, and tup3 will sum up their values in the second

one (5.11) eq2, the value of tup1, tup2 will be added, and then divided by tup4.

eq1(Tup) = ((λx , y .os(x) + os(y ))tup2)tup3 (5.10)

eq2(Tup) = (((λx , y , z.
os(x) + os(y )

os(z)
)tup1)tup2)tup4 (5.11)

Finally, a fourth array (5.12) Eqs will hold tuples with two values tei = (eqi , seni).
The first value is the function of an equation defined by the developer. The second one

is the sensitivity of that operation if it was a statistic directly retrieved from the database

instead of an equation composed of multiple statistics. Further expanding, eq1 previously

described, is the sum of the statistics from tup2, and tup3. However, it is possible to get

the result of this equation by directly querying the database, which would be the same as

retrieving a new statistic. This alternative way of retrieving the value of eq1 would have a

sensitivity, the value of sen1 is the sensitivity if instead of using eq1 we would query the

database for a new statistic with the same result as eq1. For each equation defined by

the developer a tuple in Eqs will be created. The size of this array depends on how many

equations will be defined by the developer. We define the size as neq.

Eqs = [te1, te2, ...teneq] (5.12)

To quantify the utility of a single statistic, we will create a function us(tupi) that

receives a single tuple from Tup. It will output a positive real number representing the

decrease of utility, a higher number indicating less utility.

Similar to us, we will create another function to quantify the utility of an equa-

tion. This function ue(tei) receives a tuple from Eqs. It outputs a positive real number

representing the decrease of utility,a higher number means less utility.

Finally, our metric (5.13) will receive the array Tup and Eqs as input. The output is

a score representing the utility for a budget allocation Bud ; a lower score means a better

utility. The metric function is defined as follows.

Metric(Tup, Eqs) =
nsta∑
i=1

us(tupi) +
neq∑
i=1

ue(tei) (5.13)

Array Sta and Eqs are based on the information that will be disclosed and equa-

tions that the developer predicts the analyst will use. This implies that it will not change

after being defined. Although, array Bud represents a single instance of all possible di-

visions of the privacy budget ϵ to the statistics. The developer’s objective is to find the

combination of Bud that yields the lowest metric value, which means the highest utility.
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One final consideration is why sensitivity is included in all tuples. The sensitivity

can be used to relativize the values of the function us and ue. A counting query in the

database would create a statistic with a sensitivity of one, which would result in a small

noise in absolute values when used in a mechanism in DP. While other queries would create

a statistic with higher values for sensitivity that could result in more considerable noise

in absolute values. Both statistics are equally important, but the higher noise in absolute

value would create a higher return in the function us. We plan to use the sensitivity in us
and ue to balance all statistics and equations, giving them equal importance.

5.3.1 Definition of Metric

Metrics have definitions that are highly dependent on the context. In this discus-

sion, we focus on two contexts where metrics are widely used: mathematical and software

engineering definitions.

In mathematics, a metric is a well-established and robust concept. Its primary

application is in metric spaces, where it is used to define the distance between elements

of a set. To qualify as a mathematical metric, the function must satisfy four properties:

• Positivity: The distance d between two distinct elements a and b, where a ̸= b, is

always positive (d > 0).

• Identity: The distance between two elements a and b is 0 if and only if a = b.

• Symmetry: The distance from a to b is always the same as the distance from b to

a.

• Triangle Inequality: The distance from a to c is less than or equal to the sum of

the distances from a to b and from b to c.

Our proposed metric does not adhere to the properties of the mathematical defi-

nition, so it is not a metric in a mathematical sense. However, we adopt an approach that

is more aligned with engineering standpoints.

In engineering, including software engineering, the use of metrics is a prevalent

theme. Here, the definition is more closely related to measurement rather than distance.

There are numerous metrics for each subfield; for instance, Cotroneo et al. [8] discuss

metrics in software complexity, and Hatzivasilis et al.[18] address metrics in software

dependability, security, and privacy. Therefore, we define our metric in the context of

DP as "A measure of the data utility that a specific budget allocation provides,

relative to the queries that will be released and the predictions of use of these

queries made by the developer".
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5.3.2 Conclusion

This study presented a novel approach to improving the utility of DP scenarios

by predicting equations that the analyst will do with the released statistics and benefiting

those equations in the budget allocation. To support this approach, we proposed a new

metric that can be used to measure the utility of a specific budget allocation. The approach

is designed to be used with summary statistics.

The potential improvement in utility comes from the budget allocation. Specific

allocations increase or decrease the amount of noise that a predicted equation will gen-

erate. A developer may choose the allocation with our proposed metric, considering all

predicted equations. Since it works just on the budget allocation it does not affect the

solution’s privacy. We will evaluate this metric in our subsequent study.

5.4 Part 3: An evaluation of the proposed metric

In this study, we evaluate the proposed metric with the aim of demonstrating its

effectiveness in achieving a better budget allocation compared to an equal distribution of

the privacy budget. The dataset includes medical expenses for smokers and non-smokers

from two regions: the Northwest and the Southeast. The data is summarized using sum-

mary statistics, and we suppose that the analyst would perform t-tests on the statistics.

We employed a brute-force method to generate all possible budget allocations.

For each allocation, our metric was applied based on the expected absolute error derived

from the statistics and equations of our scenario. This process is computationally inten-

sive, which limited the scope of our experiment. Additionally, some concessions were

made regarding the total privacy budget, resulting in a global budget of ϵ = 12.0. Despite

these limitations, our results were positive for the proposed metric, indicating its potential

for broader applicability.

This section is organized as follows: Experiment Definition, Scenario Description,

Results, and Conclusion.

5.4.1 Experiment Definition

This experiment aims to evaluate the proposed metric, specifically to demon-

strate that it can identify a better budget allocation among various possible distributions.

We strive to show that this metric can find the optimal solution. However, it can also be

used to compare different budget allocations, although the latter is beyond the scope of
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this study. To achieve our objective, we devised a specific scenario to generate data, which

we compared against the benchmark of evenly distributing the global budget.

In the next subsection, we will describe the scenario in greater detail. The key

points are that the scenario is hypothetical and based on a medical expenses dataset.

Twelve statistics were selected to be released as summary statistics from this dataset. In

our hypothetical scenario, the developer would predict that the summary statistics would

be used to perform two different t-tests(Equations). The developer needs to find the best

budget allocation that minimizes the amount of noise, considering the statistics to be

released and the predicted usage.

To generate our results and test our metric, we created a script in Python (version

3.8), available on GitHub2. The script utilizes the Pandas library for data manipulation

(version 2.0.3) and NumPy for random number generation in the Differential Privacy (DP)

mechanism (version 1.24.4). The hardware used should have no impact on the results.

Figure 5.7 summarizes the process to find the optimal budget allocation accord-

ing to our metric.

Statistics Definition (A): The statistics to be used in our scenario and the equa-

tions that utilize these statistics are defined.

Budget Allocation Sequences (B): Using a tree structure, multiple sequences rep-

resenting possible budget allocations are created based on the global budget and the

number of statistics.

Score Calculation (C): The score is calculated using a method similar to Part 5.1

for each sequence. This includes 1,000 executions of the statistics to calculate the abso-

lute error. The equations are also executed 1,000 times to calculate the average absolute

error.

The budget allocation sequence with the smallest metric score is considered to

have the highest likelihood of generating the slightest noise. This sequence is presented

as the result, with the sequence for equally distributing the budget included as a bench-

mark for comparison.

A) Statistics and 
Equations definition

B) Generate Budget 
allocation sequences

C) Calculate the Metric 
value for each sequence

D) Select the best Budget 
allocation based on the score

Figure 5.7 – Process to find the best score

2https://github.com/conseg/TheImpactofDifferential
Privacyondatautilityinfundamentalmathematicaloperations
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In our work, we encountered two main challenges that had to be addressed.

The first challenge was the high computational cost. The number of generated

sequences with twelve statistics was 1,352,078, calculated using the combinatorics for-

mula for distributing r identical objects into n distinct boxes:
((r+n−1

r

)
. Here, n is the num-

ber of statistics, and r is the global budget available for distribution. Additionally, for each

statistic in each sequence, we had to calculate the average absolute error, requiring 1,000

executions per statistic. This limited the number of statistics and equations we could in-

clude in our study. Thus, we worked with only 12 statistics and 2 equations.

The second challenge involved stipulating the equations as two t-tests, which

require calculating square roots. Depending on the noise, there was the possibility of

encountering a square root of a negative number, which is undefined. To address this, we

had two options:

• Clipping: This approach, sometimes used in Differential Privacy, involves clipping

the value to a minimum or maximum depending on the query result.

• Minimum Budget Allocation: We could set a minimum value for the budget allo-

cated to each statistic, ensuring that the amount of noise would not make the query

result negative.

We adopted the second approach, resulting in a minimum budget allocation of

0.5 for each statistic.

We also set 0.5 as the granularity for budget distribution. Since the budget allo-

cated for a statistic is a real number, creating all possible sequences for budget allocation

would result in an infinite number of sequences. By defining a granularity of 0.5, we

limited the number of sequences. The available global privacy budget of 12.0 and the

chosen granularity constrained the number of possible sequences. Two examples of valid

sequences are [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 2.5, 4.5] and [0.5, 4.0, 0.5,

1.0, 0.5, 0.5, 1.0, 0.5, 1.0, 1.0, 0.5, 1.0].

5.4.2 Scenario

Our scenario is based on the Problem Statement outlined in Subsection 5.2.1. In

this scenario, the developer of this DP scenario releases several statistics and attempts

to predict how the analyst will use the data. The objective is to minimize the total noise

from the statistics and the equations by selecting the best budget distribution. The main

aspects of our scenario include the data source, the summary statistics and their predicted

equations, and the data processing.
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• Data Source:

The data source is the Medical Cost Personal Datasets available on Kaggle3. This

dataset, commonly used in machine learning education, contains synthetic data.

Despite not being based on real data, this does not impact the findings of our study.

The dataset consists of 1,338 entries, each representing an individual. The data for

each person includes age, sex, body mass index (BMI), number of children, smoking

status, region, and insurance charges. Our study focuses on three attributes: region

(Northwest or Southeast), smoking status (smoker or non-smoker), and insurance

charges.

• Summary Statistics and predicted equation:

In our hypothetical scenario, the developer will release a series of summary statis-

tics related to insurance charges for each combination of smoker status and region.

Specifically, the released statistics will include the mean, count, and standard devi-

ation (Std) for each group. This results in a total of twelve statistics:

– Mean of Northwest smokers

– Mean of Northwest non-smokers

– Mean of Southeast smokers

– Mean of Southeast non-smokers

– Count of Northwest smokers

– Count of Northwest non-smokers

– Count of Southeast smokers

– Count of Southeast non-smokers

– Std of Northwest smokers

– Std of Northwest non-smokers

– Std of Southeast smokers

– Std of Southeast non-smokers

These values need to be protected using Differential Privacy (DP), so the challenge

is to find the budget allocation that minimizes the noise in these statistics. However,

analysts also need to consider the predicted usage of the data.

In our scenario, the developer predicts the analyst will perform two t-tests on the

dataset using the released statistics. Student’s t-tests are statistical tests determin-

ing whether the difference between two samples is significant. For our case:

3https://www.kaggle.com/datasets/mirichoi0218/insurance?resource=download
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– The first t-test will check if there is a significant difference between the regions

for smokers.

– The second t-test will check if there is a significant difference between the re-

gions for non-smokers.

These two t-tests represent the equations in our metric’s terminology and must be

considered when searching for the best budget allocation. We aim to reduce the

noise in these equations, which are influenced by the noise in the statistics since

these statistics serve as inputs for the equations. The t-test formula for the test of

two samples is as follows:

t =
x̄1 − x̄2√
Std2

1
n1

+ Std2
2

n2

• Data processing:

Before calculating the metric, we normalized the dataset. This step was necessary to

ensure that statistics with higher DP sensitivity do not disproportionately influence

the score. In the next section, we will present the results of our summary statistics

both before and after normalization, including their sensitivities. For the t-tests, we

will show the results without the inclusion of noise. We did not complete the t-test

analysis in detail, as it is not relevant to the conclusion of our work.

5.4.3 Results

First, in Table 5.1, we present all the summary statistics the developer would

release in our scenario. The table includes information about sensitivity; these values

are not anonymized by DP. However, as described in the previous section, the normalized

version of the dataset was used to calculate our metric’s value. Table 5.2 presents the

same statistics in their normalized form. Both tables provide an overall view of the dataset.

A released version of these statistics would need to be anonymized using DP.

For the t-tests that we predicted that an analyst would make, the results are as

follows:

• For comparing the mean of smokers between the Northwest and Southeast regions,

t = −2.433664.

• For comparing the mean of non-smokers between the Northwest and Southeast re-

gions, t = 0.993141.
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Smoker non-Smoker
Northwest Southeast Northwest Southeast

Mean 30192.00 34844.99 8556.46 8032.21
Mean Sensitivity 523.32 321.39 93.66 104.95
Count 58 91 267 273
Count Sensitivity 1 1 1 1
Std 11413.82 11324.76 6128.55 6137.32
Std Sensitivity 623.37 361.82 183.00 239.24

Table 5.1 – Table of Summary Statistics before data normalization

Smoker non-Smoker
Northwest Southeast Northwest Southeast

Mean 0.4640 0.5382 0.1186 0.1103
Mean Sensitivity 0.0083 0.0083 0.0014 0.0016
Count 58 91 267 273
Count Sensitivity 1 1 1 1
Std 0.1821 0.1807 0.0978 0.0979
Std Sensitivity 0.0099 0.0057 0.0029 0.0038

Table 5.2 – Table of Summary Statistics after data normalization

After processing all 1,352,078 valid sequences for budget allocation in our sce-

nario, we determined that the best distribution using the proposed metric is

[1.0, 0.5, 0.5, 0.5, 2.0, 1.5, 2.0, 2.0, 0.5, 0.5, 0.5, 0.5], with a score of 0.23013823722772533

(where a smaller value indicates better performance).

We use the following budget distribution strategies to compare the results and

present their score using our metric.

• Equally splitting the budget among all statistics represented by the sequence

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], which scored 0.3285110737126 in

our metric.

• Using the Geometric series in a decreasing fashion, as described by Bai et al. [1].

The distribution is as follows

[1.54, 1.41, 1.3, 1.19, 1.09, 1.0, 0.92, 0.84, 0.77, 0.71, 0.65, 0.59], which scored

0.3340621832395.

• The Geometric series in an increasing fashion using the following distribution

[0.59, 0.65, 0.71, 0.77, 0.84, 0.92, 1.0, 1.09, 1.19, 1.3, 1.41, 1.54] scored 0.373786903904.

• Using the Taylor series in a decreasing fashion, also presented by Bai et al. [1]. The

sequence is as follows

[0.08, 0.41, 1.02, 1.70, 2.12, 2.12, 1.76, 1.26, 0.79, 0.44, 0.22, 0.10], yielding a score of

0.452966176473.
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• The Taylor series in an increasing fashion in the following sequence

[0.10, 0.22, 0.44, 0.79, 1.26, 1.76, 2.12, 2.12, 1.70, 1.02, 0.41, 0.08] scoring 0.4175178039182.

The lower score of our proposed sequence suggests that it should yield less noise

overall than any other benchmark, considering the noise generated in both the statistics

and the equations. In Figure 5.8, a box plot was created using the metric result for each

valid sequence of our scenario. The box-plot graphic gives an idea of the distribution of

the metric results.

Figure 5.8 – Box-plot created using the metric values for each valid sequence generated

5.4.4 Conclusion

In the third part of this section, we implemented our proposed metric. We used a

commonly used machine learning dataset and designed a hypothetical scenario in which

multiple statistics would be released using Differential Privacy (DP). In our scenario, we

assumed that the analyst would perform two t-tests on the data, which are the predicted

equations that need to be considered when processing our metric.

Our method for calculating the metric is computationally intensive, limiting our

experiment’s scope. We processed 1,352,078 possible budget allocation distributions.

From these, we identified the best distribution using our metric’s score and compared it to
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a benchmark distribution that equally splits the available global privacy budget among all

statistics.

Our experiment demonstrates the utility of our metric in a simulated and con-

trolled scenario. However, the high computational cost of calculating the metric can be

extremely limiting for its practical application. Additionally, as described in the metric

proposal, the results are highly dependent on the developer’s ability to accurately predict

how the analysts will use the statistics in a real scenario. Finally, the pure DP defini-

tion used is too strict to be applicable in real-world scenarios. However, we believe that

the conclusions drawn here can be extrapolated to other situations by employing various

adaptations of DP.

5.5 Final Remarks

In this chapter, we present the main body of this thesis, through which we address

our research questions. We demonstrate that a new metric can be used to find the optimal

budget distribution, albeit within a specific scenario. Optimizing budget distribution is a

means to increase data utility while maintaining the same level of privacy. Our findings

are based on three key parts:

• Part One: We demonstrated the existence of a gap that could be exploited to im-

prove data utility based on how queries protected by Differential Privacy (DP) are

used.

• Part Two: We presented a new metric that can be used to find the best budget

distribution or compare two distributions. We proposed a scenario for using this

metric based on summary statistics to be released using DP and the equations that

utilize these statistics.

• Part Three: We applied the metric to a hypothetical scenario to demonstrate its use.

Based on this metric, we were able to find the supposed best budget distribution.

Thus, distribution presented better results than other benchmarks.

Given that data utility is one of the main challenges for DP, the work presented

here is very important. Although our proposed method has several limitations in its current

form, it also offers numerous avenues for further development. The high computational

cost of processing the metric limited our study, and we confined our work to pure DP, a

more rigorous but less practical version of DP.

Further improvements could involve reducing the computational burden, explor-

ing more practical versions of DP, and refining the prediction models for data usage. These
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steps will be crucial for enhancing the applicability and impact of our metric in real-world

scenarios.
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6. CONCLUSION

In this final chapter, we present our conclusion, summarizing the main points of

this thesis. This chapter is divided into four subsections:

• Objectives: Here, we review the objectives of our work and discuss the primary con-

tributions to the anonymization of datasets and differential privacy (DP).

• Research Done: This subsection summarizes the research conducted throughout the

thesis.

• Answering the Research Question: We revisit our research questions and explain

how our research addresses them.

• Future Work: In this final subsection, we discuss potential future research directions

that can build on the findings of this work.

6.1 Results

We aimed to develop a new metric for optimizing budget distribution in DP sce-

narios. DP is a crucial method for dataset anonymization, a topic of growing interest.

Budget distribution is a critical topic in the DP field as it impacts data utility without com-

promising privacy, thereby enhancing the privacy-utility trade-off. We reviewed several

related works addressing the budget allocation problem to contextualize our research.

However, these works primarily focused on different scenarios, such as machine learning

algorithms, rather than summary statistics and did not consider predicting how the data

would be used.

Our metric is specifically designed for the scenario of summary statistics. In our

approach, we introduce the role of a developer who predicts how these statistics will be

used and constructs the entire application. These predictions are termed equations in our

solution because they involve multiple statistics to calculate. The budget allocation con-

siders these equations while distributing the privacy budget among the statistics. Con-

sequently, our solution highly depends on the developer’s ability to predict data usage

accurately.

During our work, we encountered several restrictions. Some are addressed as

future work in Section 6.4. However, they are sufficient to impede utilization in real-world

scenarios. One major issue is the computational requirements for processing our metric

and finding the optimal budget allocation. Due to this limitation, we tested our metric

in a constrained scenario with only twelve statistics and two equations. Additionally, our
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metric is developed exclusively for pure Differential Privacy (DP), which poses a significant

barrier to its application in real-world scenarios, as pure DP is a very restrictive definition

that is often impractical for deployment. From a research perspective, our evaluation sce-

nario is quite simplistic. While the positive results may extend to more complex scenarios,

expanding and testing in more diverse contexts is crucial. Moreover, our approach as-

sumes that the developer has perfect predictions of how the data will be used, which may

not always be true. Addressing these issues in future research will be essential for the

practical application of our metric.

6.2 Research done

Our research was conducted in three main parts presented in Chapter 5, each

building upon the previous to achieve our overall objective of developing, and evaluating

a new metric for optimizing budget distribution in DP scenarios. Here, we summarize the

work.

6.2.1 Part One: Identifying the Gap

In this part, we conducted research demonstrating how the interaction between

queries protected by DP impacts the noise. The resulting noise varies based on these

interactions and, more importantly, on allocating the privacy budget to the queries. This

variability provides a degree of control over the final noise, enabling improvements in

data utility. Although our work focused on basic mathematical operations, we can infer

that more complex interactions will also result in different noise levels depending on the

interaction and budget allocation. This study is crucial to this thesis as it highlights a gap

that can be exploited to enhance data utility without compromising privacy by accounting

for such query results interactions.

6.2.2 Part Two: Developing the Metric

The second part of our research focused on developing a new metric designed

to optimize budget distribution for summary statistics. We introduced the concept of a

developer who predicts how the released statistics will be used, terming these predictions

as equations. The metric was constructed to account for these equations while distributing

the privacy budget among the statistics. We detailed the metric’s theoretical framework

and mathematical formulation, ensuring it aligns with the principles of DP.
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6.2.3 Part Three: Experimental Validation

In the final part of our research, we applied the proposed metric to a hypothetical

scenario using a well-known synthetic medical cost dataset. The objective of the exper-

iment was to identify the optimal budget allocation, with the benchmark being an equal

budget distribution, Geometric series, and Taylor series. The scenario included twelve

statistics and two equations. Due to computational limitations, we experimented in a

constrained environment, processing 1,352,078 possible budget allocations. The results

demonstrated that our metric could effectively find an optimal budget distribution, signif-

icantly enhancing data utility.

6.3 Answering the Research Question and Hypothesis

To address our original research question, ”What is the impact of a newly

proposed metric for Differential Privacy on the trade-off between privacy and

data utility?” outlined in Chapter 4, we can now provide a conclusive answer. In a

specific scenario, we demonstrated that the proposed metric effectively identified a bet-

ter budget distribution, enhancing data utility without compromising privacy guarantees.

Therefore, a new metric can positively impact the privacy-utility trade-off, offering signifi-

cant improvements.

This also allows us to validate the alternative hypothesis of our research (H1).

The hypothesis is ”The use of specific metrics for anonymizing datasets can significantly

improve data utility and privacy in practical applications”. As described for the research

question the impact of the new metric was positive, improving results when compared to

the benchmark.

6.4 Future Work

Multiple paths for future exploration have emerged from the research conducted

in this thesis. Here, we present the most important directions, organized along three axes:

performance improvements, Differential Privacy definition enhancements, and real-world

applications.

The primary constraint in our final experiment was the computational cost re-

quired to find the optimal budget allocation distribution. Calculating our metric for each

statistic and equation required multiple executions, compounded by the thousands of pos-

sible budget distributions, necessitating a brute-force approach. To enhance performance,
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both in metric calculation and limiting the number of sequences explored, we hypothesize

that gradient descent - a commonly employed algorithm in machine learning for finding

approximate optimal solutions — could be utilized. The cost function inherent in gradient

descent could be the absolute error. Alternatively, an analytical approach, where a defini-

tive formula is used to calculate the metric value without the need for multiple executions,

might be explored. Preliminary investigations in this direction have not yet yielded suc-

cess, using expected values to estimate noise in an equation based on a Laplace folded

distribution [28].

Another constraint is the DP definition to which our metric is applied. Our work

is based on Pure DP, a robust definition that tends to be too costly for data utility, making

it impractical for most real-world applications. These applications often use weaker defi-

nitions, such as approximate DP, which, while offering less stringent privacy guarantees,

maintain sufficient utility to be viable. Adapting our metric and scenario to these weaker

DP definitions is necessary to extend our work’s applicability to real-world scenarios. This

research avenue is essential but should pose minimal challenges, as the adaptation pro-

cess appears straightforward.

Finally, our research was conducted using only synthetic data in a hypothetical

scenario. While this approach is realistic enough to suggest that the results should transfer

to real scenarios, applying our metric to real-world data is an exciting research direction

that could further validate and strengthen our findings. However, this avenue of devel-

opment hinges on overcoming the limitations identified in the other two areas. To apply

our research in real-world scenarios, we need to achieve performance improvements and

adapt our metric to other DP definitions beyond Pure DP.
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