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UMA ARQUITETURA MODULAR PARA A EMULAÇÃO DE APLICAÇÕES
DE BORDA ESCALÁVEIS

RESUMO

Na última década, a área de cloud computing transformou a indústria de tecnologia
da informação, permitindo a execução de serviços com a disponibilidade de recursos com-
putacionais sob demanda. Seu novo paradigma trouxe modelos de custo mais flexíveis e
entre outras coisas, viabilizou o processamento de grandes volumes de dados. Nos últimos
anos, outras tecnologias como a internet das coisas e a indústria 4.0 surgiram e fomentaram
um aumento ainda maior na produção de dados, o que fez com que a indústria e a acade-
mia buscassem por novas abordagens para o processamento e armazenamento de dados.
O foco desses estudos tem sido a redução da latência inerente ao modelo centralizado e a
área de computação de borda vem sendo vista como uma possível solução. A modelagem
de soluções eficientes dentro desse contexto deve levar em conta quais componentes da
aplicação devem ser alocados na borda para melhorar efetivamente o desempenho e re-
duzir o custo de execução. Para tanto, surge a necessidade de ferramentas que viabilizem
o projeto e experimentação, reproduzindo cenários específicos de computação de borda.
Nesta tese, contribuímos para o estado da arte da area de computação de borda e ex-
ploramos as possibilidades de emular cenários considerando aspectos de escalabilidade
e diferentes infraestruturas, permitindo experimentação e design com resultados realistas.
Propomos uma arquitetura de emulação modular para prototipagem de aplicações de borda
escaláveis. A arquitetura proposta é adaptável a diversas condições. Permitimos a medição
de cenários específicos considerando a pegada computacional dos dispositivos de borda e
exploramos as possibilidades de avaliar diferentes comportamentos de aplicações de borda.
Além disso, validamos um protótipo com um caso de uso de agricultura inteligente, no qual
os resultados da experimentação de escalabilidade apontaram 200 como o número máximo
observado de dispositivos de borda que uma única instância de Edge Broker pode suportar
nas restrições aplicadas e configurações de testbed.

Palavras-Chave: Computação de Borda, Internet das Coisas, Indústria 4.0, Arquitetura de
Emulação.





A MODULAR ARCHITECTURE FOR THE EMULATION OF SCALABLE
EDGE APPLICATIONS

ABSTRACT

In the last decade, cloud computing transformed the information technology in-
dustry, allowing companies to execute many services that require on-demand availability
of computational resources with more flexible provisioning and cost models, including the
processing of already growing data volumes. But in the past few years, other technologies
such as internet of things and the digitized industry known as industry 4.0 have emerged,
increasing data generation even more. The large amounts of data produced by user de-
vices and manufacturing machinery have made both industry and academia search for new
approaches to process all this data. Alternatives to the cloud centralized processing model
and its inherent high latencies have been studied and edge computing is being proposed as
a solution to these problems. In this context, to design efficient solutions, it is necessary to
consider which application components must be allocated at the edge to effectively improve
performance and reduce the cost of execution, which raises the urge for tools that enable
the design and experimentation over specific edge computing scenarios. In this thesis, we
contribute to the state-of-the-art of edge computing and explore the possibilities of emu-
lating edge scenarios considering scalability aspects and different infrastructures, allowing
experimentation and design with realistic results. We propose a modular emulation archi-
tecture for prototyping scalable edge applications. The proposed architecture is adaptable
to many different conditions. We enable measurements of specific scenarios considering
the computational footprint of edge devices and explore the possibilities of evaluating dif-
ferent behaviors of edge applications. Furthermore, we validate a prototype with a smart
agriculture use-case, in which the results of the scalability experimentation pointed 200 as
the observed maximum number of Edge Devices that a single Edge Broker instance can
support on the applied restrictions and testbed configurations running this implementation.

Keywords: Edge Computing, Internet of Things, Industry 4.0, Emulation Architecture.
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1. INTRODUCTION

In recent years, millions of mobile phones, vehicles, sensors, and other devices are
continuously producing large amounts of data [1, 2]. Internet of Things (IoT) has become a
popular research subject and is very present in our daily lives [3]. The term IoT addresses
a wide range of devices and systems that exchange information with each other directly
and eventually communicate with data centers [4]. Besides the explosive growth in demand
for high bandwidth services due to the millions of user devices, manufacturing industries
have evolved in their methods of making products, collecting information, and driving further
intelligent actions during the manufacturing process [5]. Industry 4.0, as it is called, connects
the IoT with manufacturing techniques to enable systems to share information, analyze it,
and use it to guide intelligent actions, which tends to be even more intense due to the
expected advances in the 5G technology for the next few years, since 5G promises to hand
very high capacity of IoT devices [5]. These areas introduced a massive jump in the scale
of data production [4], and an important subset of these devices involves real-time control,
particularly for industrial applications [2].

Cloud computing has an important role regarding IoT applications, due to its ca-
pacity to process large amounts of data, management, scalability, and configurability [6].
Data processing, in the IoT context, is usually based on the conventional cloud computing
architecture, where all data is uploaded to centralized servers, that after computation, send
the results back to the original devices [4]. To support IoT applications, significant capacity
for computation and storage is required. However, due to the great amount of data and mes-
sage exchanges, large-scale applications may suffer while attempting to communicate with
centralized servers [4]. Therefore, edge computing proposes that the infrastructure must
contemplate servers located closer to the end user than cloud servers usually are. The geo-
graphic proximity from user devices provides faster response, which is an important feature
since IoT applications tend to be delay-sensitive.

Despite edge computing servers having less computation power than cloud servers,
they still tend to provide better Quality of Service (QoS) [7] and show the way to potentially
leverage the areas of cloud computing and IoT. Having its concepts focus on important
metrics, such as delay, high bandwidth, latency cost, and power consumption this area is
becoming an attractive research topic. Along with that, many use case scenarios emerge,
such as smart agriculture, healthcare, mobile applications, big data, video analytics, con-
nected vehicles, etc [3]. However, scalability is still one of the biggest challenges inherited
from the IoT area. It is crucial to know the limits and how much stress an application can
take. For IoT applications, to get those numbers, companies have to spend large amounts
of money to design Proof of Concepts (PoCs) to test their solutions directly in a real envi-
ronment. Several expensive materials, such as Printed Circuit Boards (PCBs), gateways,



22

and batteries, must be installed just to validate the behavior of simple routines in large-scale
conditions. The problem with this practice can be easily spotted when a designed PoC does
not work as expected. All efforts invested might be wasted because of an issue that could
be easily tracked if there were better developing and experimentation environments.

The complexity of edge infrastructures in terms of their distributed nature, hetero-
geneous environments, resource constraints, latency, and bandwidth requirements, as well
as integration with cloud services, makes experimentation, testing, validation, tuning, and
evaluation difficult tasks. We might take smart agriculture as an example. In this field, the
applications are usually subject to many weather conditions and might have inherent delays
in message exchange. Those conditions are usually hard to reproduce in the development
phase and even in a PoC with many physical devices, require the team to wait for a specific
climatic condition to reproduce such a testing scenario. This situation leads to the necessity
of simplifying these processes and providing cost-effective ways for application prototyping
and testing. Smart agriculture’s relationship to scalability is intricately tied to the widespread
deployment of thousands of devices in agricultural fields. The adoption of IoT technologies in
agriculture has led to the integration of a multitude of sensors, actuators, and smart devices
across farming landscapes. Smart agriculture relies on an extensive network of sensors
to collect data on various environmental parameters, such as soil moisture, temperature,
humidity, and crop health. With thousands of these sensors distributed throughout fields,
scalability becomes crucial to manage and process the vast amount of data generated. This
involves tailoring agricultural practices based on localized data from individual devices, opti-
mizing resource use, and minimizing environmental impact. Several factors contribute to the
importance of scalability in the context of smart agriculture. A few points would be sensor
proliferation, real-time decision-making, and precision farming practices [8, 9, 10].

Virtualization has already been proven as a valuable asset in the past when ap-
plied to cloud simulation with CloudSim [11] and the work that came after that. However,
simulation, while a valuable tool in various fields, exhibits disadvantages when compared to
emulation. Simulations often suffer from limited realism due to approximations and models,
leading to inaccuracies in predicting outcomes, especially in complex systems. In contrast,
emulation provides a more realistic representation by directly using real hardware and soft-
ware components, offering greater accuracy, improved handling of complexity, and better
support for low-level interactions. Considering the nuances of the edge environments, we
see emulation as a bright path for these multiple scenarios. In this work, we discuss the use
of edge emulators as an alternative for the scalability evaluation of IoT solutions. We present
an emulation architecture that, by relying on the presence of real-world components, tends
to provide more realistic results compared to simulation tools and can be an effective alterna-
tive to developing optimized edge applications without having to build the entire architecture
in the real world.

The main contributions of this work are as follows:
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• A systematic mapping where we analyzed 219 papers to provide an overview of the
edge computing state-of-the-art related to the IoT and industry 4.0. This systematic
mapping revealed a notable research gap concerning emulation architectures, leading
to the formulation of the proposal outlined in this thesis;

• We analyzed the main differences between the use of simulation and emulation with
a particular focus on edge applications, weighing the pros and cons, which led us to
invest in a modular emulation architecture for edge computing applications.

• An architecture for edge emulation aiming to create realistic edge applications within
clustered environments providing modularity specifically tailored to evaluate the scal-
ability of edge architectures in IoT scenarios that might accurately replicate complex
real-world conditions and promote a comprehensive understanding of system behav-
iors;

• A prototype implementation of the proposed edge emulation architecture highlighting
its modular and easily expandable aspects, enabling the design, experimentation, scal-
ability stress over, and testing of diverse edge environments, as well as the usage of
pre-programmed popular IoT protocols and standards;

• The validation of our tool with a use case in the area of smart agriculture where the
emulation tool has been applied to evaluate the scalability of the system, generating
accurate metrics for resource utilization, and traffic control optimization.

1.1 Document Organization

The remainder of this thesis is organized as follows. Chapter 2 summarizes the
concepts used in this study. Chapter 3 presents a systematic mapping, analyzing edge
computing research efforts and boundaries to the mentioned related areas and possible
future directions. Chapter 5 advocates for a paradigm shift in the approach of edge applica-
tion development to the usage of emulation. Furthermore, the chapter presents our thesis
proposal. Chapter 6 is dedicated to the experimentation and results analysis. Chapter 4
presents related work in the literature. Finally, Chapter 7 offers conclusions, contributions,
and directions for future research.
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2. BACKGROUND

In this section, we present the most important concepts to understand the remain-
der of this study. Considering that this analysis addresses multiple cloud problems and
current solutions for data processing are usually entirely cloud-based, firstly, we describe
the cloud computing area. Furthermore, we briefly present the definitions of IoT, industry
4.0, edge computing, and smart agriculture.

2.1 Cloud Computing

Since its beginning, cloud computing has been seen as a promising technology,
transforming a large part of the IT industry. According to the NIST definition, “Cloud comput-
ing is a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, application, and
services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction" [12]. The term cloud computing refers not only to applications
but also to the infrastructure, where both can be offered as a service [13]. More precisely,
regarding the service characteristics, the literature uses the following service models to cat-
egorize cloud services: Software as a Service (SaaS), Platform as a Service (PaaS), In-
frastructure as a Service (IaaS), and Data storage as a Service (DaaS) [14]. Furthermore,
according to distribution and physical location, cloud computing environments are classified
into four distinct models, namely: private cloud, public cloud, hybrid cloud, and community
cloud [15].

The advantages provided by cloud computing include the capacity to process large
amounts of data, management, easy access to high-performance computing, storage in-
frastructure, massive scalability, and specifiable configurability, while hiding the complexity
of IT infrastructure management from its users [16]. Due to the mentioned features, cloud
computing became financially attractive, since users can centrally manage a pool of storage
and computing resources, rather than owning and managing on-premise infrastructures, as
cited in [17].

Cloud computing has presented itself as a solution to alleviate the tension between
IT service supplies and business demands, which is a real challenge nowadays. Cloud in-
frastructure is a technological option that makes it feasible for many companies to maintain
services without having to own an expensive infrastructure [18]. Cloud computing constantly
deals with multiple processing and access challenges [6]. In recent years, due to the in-
crease in data production, one of the problems that have always been present in the cloud
computing context, the access peaks, has become a more prominent challenge. Several
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strategies attempt to solve this problem. A few studies present approaches and tools that
intend to predict anomalous situations. Detecting and analyzing potential anomalous perfor-
mances in cloud computing systems is essential for avoiding losses to customers and en-
suring the efficient operation of the systems. To this end, a variety of automated techniques
have been developed to identify anomalies in cloud computing [19], [20], [21]. Despite the
attempts to predict anomalies, due to the massive increase in data production in the past few
years, it seems that reducing data transmission and reducing data processing in the cloud
itself, would be the most suitable approach to be pursued. Even with the advances brought
by cloud computing, such an amount of data led to the rise of new paradigms such as fog
and edge computing, aiming at decreasing network latency by extending cloud services to
the edge of the network.

2.2 Internet of Things and Industry 4.0

The term IoT addresses a scenario where ordinary devices can be uniquely iden-
tified and connected to the internet [22]. In recent years with the physical size and price
reduction, these heterogeneous devices are becoming more and more present in people’s
daily lives. The high connectivity level that IoT provides to the IT industry, brings a whole
new segment to be explored. Companies may now consider real-time data to improve the
interaction between users and applications. However, significant challenges remain to be
solved from a technological and business perspective.

At a strategic level, existing business models may have to be adapted or re-defined,
and at an operational level, challenges related to hardware and software requirements, and
even to the offered services, start taking place [23]. The highly connected environments, as
well as the great amount of data produced by IoT devices, are also creating new discussions
inside the academia. The IoT research goals are pointed to lightweight protocols, energy
efficiency, cognition, security, identification, data, connectivity, and miniaturized devices [24].

The IoT is present in many different areas in multiple ways. Inside the manufac-
turing industry, the IoT is known as the Industrial Internet of Things (IIoT), which is also
recognized as the fourth industrial revolution or industry 4.0. As cited in [25], the first in-
dustrial revolution was represented by mechanical production plants based on water and
steam power at the end of the 18th century. The second started with the symbol of mass
labor production based on electrical energy at the beginning of the 20th century. The third
started with automatic production based on electronics and internet technology in the 1970s.
And now, the fourth industrial revolution, with digital manufacturing, network communication,
computer, and automation technologies [26].

The industry 4.0 can be seen as the integration of complex physical machinery and
devices with networked sensors and software, or as a new level of value chain organization



27

and management across the life cycle of products [25]. The understanding of what exactly
industry 4.0 represents for the academia and manufacturing industry is still not fully known.
However, there are many expectations around this area and what it will become in a few
years from now. Clearly, among other things, this new industrial era will be responsible for a
digital transformation of the traditional industry. Furthermore, the areas of IoT and industry
4.0 have introduced a new scale of data production. Uploading all produced data to central-
ized servers started to cause performance degradation in delay-sensitive applications, and
data exchange started to represent higher costs. These motives are making the established
cloud paradigm reach its limits and pushing to the exploration of new solutions based on
upcoming computational paradigms.

2.3 Edge Computing

Applications based on IoT devices and smart industrial devices, or simply edge de-
vices, are usually associated with high connectivity and massive data production. In order
to handle location awareness and the low latency expected to support these delay-sensitive
applications, new strategies besides usual cloud services, became a necessity. Once the IoT
and industry 4.0 are increasing data production, companies are trying new strategies to han-
dle the large amount of data expected for the next few years. Cloud companies are starting
to readapt to keep quality of service, having low-latency response as one of the most im-
portant goals. The state-of-the-art presents a series of experiments and academic research
that places edge computing in an essential position to make data processing cheaper and
also utilize the current cloud infrastructure.

Edge computing shifts computational data, applications, and services from cloud
servers to the network’s edge. Content providers and application developers can leverage
edge computing systems to provide users with services nearby. The distinctive features
of edge computing include high bandwidth, ultra-low latency, and real-time access to net-
work information, benefiting multiple applications [27]. Edge computing brings services re-
sponsible for processing and storage to the network edge, intending to be geographically
closer to the edge devices, which allows edge nodes to reduce bandwidth consumption and
network latency. Those services, usually offered by cloud servers, in the edge computing
paradigm, are placed in edge nodes, also referred to as cloudlets, micro datacenters, or fog
nodes [28, 4].

The future of edge computing is characterized by the integration of 5G networks,
fostering rapid data transfer and minimal latency. As edge computing becomes central to the
IoT, its adoption will grow across industries and areas such as smart agriculture, enhancing
efficiency, and localized data processing. Moreover, the convergence of artificial intelligence
with edge computing is reshaping digital landscapes, enabling real-time decision-making at
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the edge devices themselves. Industries are poised to leverage edge computing for sector-
specific applications, from healthcare’s remote patient monitoring to manufacturing’s predic-
tive maintenance. Emphasizing decentralized infrastructure, future developments will focus
on robust security measures, standardization efforts, and seamless integration with cloud
computing to create a versatile computing environment addressing the evolving needs of
technology. Due to the challenge of experimenting and designing edge applications in real-
world scenarios, studies focused on building edge computing simulators and emulators have
been published. These frameworks have the potential to simplify this process and provide
fast and scalable tools for addressing real-world applications. In Chapter 3 we present a
study that aims to map the knowledge about edge computing that led us to the proposal in
the area of edge emulation later presented.

2.4 Smart Agriculture

Smart or precision agriculture represents a paradigm shift in traditional farming
practices by seamlessly integrating advanced technologies and sophisticated information
management tools [29]. At its core, this innovative approach harnesses the power of tech-
nologies such as the IoT, sensors, artificial intelligence (AI), drones, and data analytics to
revolutionize the agricultural landscape. Sensors are responsible for various tasks such as
sensing soil, temperature, weather, light sensing, and moisture. Similarly, devices carry out
numerous control functions, including node discovery, device identification, and naming ser-
vices. All these operations are executed by devices controlled by a microcontroller. The
control process is managed by a remote device or computer connected through the Inter-
net [30]. A few trends and challenges of IoT-based smart agriculture are farm management
systems, tracking and tracing, crop management, water management, irrigation manage-
ment, soil management, weather management, precision farming, nutrient management,
waste management, and livestock monitoring [31].

In a smart agriculture system, precision is key, as farmers can employ data-driven
strategies to optimize the allocation of resources. This includes targeted and efficient use of
water, fertilizers, and pesticides, leading to minimizing waste and environmental impact. By
leveraging digital technologies, smart agriculture not only enhances operational efficiency
but also contributes to sustainable farming practices. The result is a more resilient and pro-
ductive agricultural sector that meets the challenges of an evolving global landscape while
promoting environmental stewardship. The fusion of technology and agriculture in smart
farming signifies a transformative era in food production, aligning with the growing need for
resource efficiency, environmental sustainability, and increased food security. Due to its in-
tricate requirements, such as reduced latency, bandwidth efficiency, reliability, data security
concerns, scalability, and customization capabilities, smart agriculture is a compelling use
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case for testing edge computing applications. Therefore, in the proposal presented in this
thesis, we employ this domain as our chosen validation use case.
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3. STATE OF THE ART IN EDGE COMPUTING AND ITS INTERPLAY
WITH IOT AND INDUSTRY 4.0

This systematic mapping was developed as the first contribution of our study. Ac-
cepted in the Journal of Grid and Utility Computing 2021 edition by the title Edge Computing
and its Boundaries to IoT and industry 4.0: A Systematic Mapping Study 1, this study aims
to map edge computing state-of-the-art. This study provides an overview of the edge com-
puting research area and identifies the quantity, research types, and results available in
the literature. As secondary goals, this study identifies possible research gaps and viable
approaches for future efforts. Our initial objectives with this study can be defined as follows:

• To identify edge computing state-of-the-art research;

• To identify the boundaries between the areas of edge computing and IoT;

• To identify the relation between the areas of edge computing and industry 4.0;

• To identify challenges, literature gaps, and possible future directions.

3.1 Systematic Mapping Methodology

This section presents the methodology used to conduct the systematic mapping
presented in this chapter, and how the objectives above guide the study processes.

3.1.1 Research Questions

The current work was conducted based on the protocol for systematic mapping
studies presented in [32]. In the following sections, we present how each stage of our study
was planned. The questions below were defined to be answered throughout this systematic
mapping:

• What are the boundaries between the areas of edge computing, internet of things, and
industry 4.0?

• What is the impact and challenges of edge computing on the internet of things and
industry 4.0?

1https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijguc
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The research questions developed for this study are based in our initial motiva-
tions and intents to expand the general understanding of the scientific efforts in the edge
computing area. Therefore, we expose where this new technology has been used and the
adversities that it can solve.

3.1.2 Research Strategies

For the research strategy, we defined a string to be used over the academic databases.
This process was carried out as follows. First, for each research question, synonyms related
to the objective of the question were searched, and new logical clauses were specified, one
for each research question using these synonyms. The strings were defined based on three
major search terms: "Edge computing", "Internet of Things", and "Industry 4.0". Our initials
search strings based on the mentioned terms are presented below:

• “Edge computing" AND (“Internet of Things" OR IoT).

• “Edge computing" AND “Industry 4.0".

Finally, in the creation of the search string, the clauses originating from the search
questions were combined by logical OR operators, so the results would include at least one
of the synonyms. This new clause was then combined with the initial clause using the AND
operator, searching for the intersection of the major terms in the string. This ensures that
at least one of the main terms and phrases of the research clauses must be present in the
results. The final string is the following:

“Edge computing" AND (“Internet of Things" OR IoT) AND “Industry 4.0".

In order to collect a significant sample of scientific studies we searched in two
relevant databases for the research area, namely IEEE and ScienceDirect. The search
was then carried out by applying the criteria of the search string in the title, abstract, or
keywords fields. This result was stored to be used in the classification process specified in
Section 3.1.3. In future work, we intend to expand the search phase also to other databases.

3.1.3 Selection Strategy

We defined the criteria for inclusion and exclusion for the results of our study. Such
action was taken, aiming to keep only the relevant articles. To address the state-of-the-art
studies, the following inclusion criteria were applied to titles and abstracts:

• Result is a scientific article;
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• Terms fulfill the search string;

• Results published in the time frame 2016 to 2020.

The excluded results were not analyzed in the research. The following exclusion
criteria were applied to titles and abstracts:

• Result is not a scientific article;

• Result is not in English;

• The Search Strings are not in the abstract or the article keywords;

• Researchers do not have access to the result;

• The study is not a primary study;

• The article address another research area;

• Result presents summaries of conferences/editorials or guidelines/templates for con-
ducting mapping studies.

3.1.4 Literature Sources and Studies Selection

In this section, we analyze the primary studies obtained with the classification crite-
ria and research questions outlined previously. In our first search, based on the string earlier
mentioned, we found 81 studies in the IEEE database and 138 studies in the ScienceDirect
database. Considering the total results, the first phase obtained 219 studies. In order to
classify the search results, we applied the inclusion and exclusion criteria. We conducted
the classification based on titles and abstracts, as well as full-text reading for ambiguous
situations.

The classified studies resulted in 54 from IEEE and 36 from ScienceDirect. The
acceptance score for the former database is equal to 67%, and for the latter 26%. Table 3.1

Table 3.1 – Distribution of primary studies by research method.
Database Study

IEEE

[33],[34],[35],[36],[37],[38],[39], [40],[41]
[42],[43],[44],[45],[46],[47],[48], [49], [50]
[51],[52],[53],[54],[55],[56],[57], [58], [59]
[60],[61],[62],[63],[64],[65],[66], [67], [68]
[69],[70],[71],[72],[73],[74], [75],[76],[77]
[78],[79],[80],[81],[82],[83],[84],[85],[86]

ScienceDirect

[87],[88],[89],[90],[91],[92], [93],[94],[95]
[96],[97],[98], [99],[100],[101],[102],[103],[104]
[105],[106],[107], [108],[109],[110],[111], [112], [113]
[114],[115],[116], [117],[118],[119],[120]
[121], [122]
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Search Classification

219 90

Figure 3.1 – Results obtained from the search process.

presents the results of the classification process in detail. The reason for the high score of
excluded studies, in our perception, is that most of the database results were related only to
a single term of the research string. Figure 3.1 presents a summary of the number the total
numbers regarding the first and second phases.

3.2 Data extraction and Classification

As we present in Section 3.1.4, from the classification process, we obtained 90
studies. In order to better understand the distribution of such studies regarding the research
area, we conducted a full-text reading phase where the main goal was then to group the
studies by the main contribution area mentioned throughout the study, the results are shown
in Table 3.2.

Due to the interdisciplinary nature of the analyzed studies, some of them could fit
into more than a single category. However, we intend to generalize the domains and classify
each study in a single area. Therefore, to conduct the classification process, we focus on the
main contribution. It is noteworthy that in order to associate the different terms used in each
study, we decided to unify related subjects into single categories. Therefore, terms such as
distributed processing and processing were both considered processing studies. Similarly,
specific research areas were considered in more general ways, such as blockchain studies
are considered security studies. Studies with more applied approaches, such as farming
and education, despite being research areas with very specific challenges, were also clas-
sified more generally regarding the research area. Furthermore, the monitoring category
addresses monitoring, analytics, and anomaly detection studies. The network category ad-
dresses network, delay-sensitive, and caching studies. Moreover, the resource allocation
category addresses resource allocation, management, resource provision, and placement
studies.

Table 3.4 presents the summary of the classification previously mentioned, group-
ing the studies by research areas and main contributions. In the analyzed studies, we may
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Table 3.2 – Studies classification
General Processing Devices, Hardware Security Monitoring Network Energy consumption Resource allocation

Study Classification Study Classification Study Classification Study Classification Study Classification Study Classification Study Classification Study Classification

[60] Overview [51] Application Development [35] Evaluation [52] Design [39] Methodology [34] Architecture [61] System [43] Application Development

[72] Overview [64] Application Development [41] Architecture [59] Overview [33] Application Development [36] Architecture [65] Application Development [57] System

[75] Architecture [69] Architecture [98] System [67] Model [42] Architecture [37] Methodology [94] System [63] Framework

[77] Architecture [78] Architecture [71] Overview [47] Application Development [38] Algorithm [108] Analysis [66] Methodology

[90] Architecture [88] Implementation [89] Overview [49] Framework [40] Architecture [70] Model

[91] Framework [110] Architecture [50] Application Development [46] Architecture [73] Architecture

[102] Architecture [113] Architecture [53] Application Development [48] Architecture [80] Policy

[103] Framework [115] Architecture [81] Application Development [54] Protocol [82] Method

[105] Architecture [44] Design [83] Architecture [55] Architecture [85] System

[106] Methodology [84] Methodology [56] Architecture [92] Architecture

[111] Protocol [87] System [58] Implementation [96] Design

[112] Architecture [97] Framework [62] Architecture [101] Architecture

[114] Architecture [99] Overview [68] Architecture [104] Algorithm

[118] Design [100] Methodology [74] Method [116] Algorithm

[121] Overview [107] System [76] Framework

[45] Overview [117] System [79] Algorithm

[86] Framework

[93] Architecture

[95] Middleware

[109] Plataform

[119] Evaluation

[120] Architecture

[122] Design

notice a higher concentration in three specific areas. Delay-sensitive is the category with
higher effort concentration, representing 26% of the articles. This category is also com-
posed of network and caching studies. The second category that stands out is the cate-
gory composed of monitoring, analytics, and anomaly detection works, representing 18% of
works. The third category with high concentration is the resource allocation category. Also
composed of management, resource provision, placement, and orchestration studies this
category represents 16% of the analyzed studies. Regarding the main contribution, most
articles present new architectures, which may be related to the novel characteristics of the

Table 3.3 – studies years distribution of selected over the years.
Database

Year ScienceDirect IEEE Total
2016 0 2 2
2017 1 4 5
2018 5 17 22
2019 21 26 47
2020 9 5 14
Total 36 54 90
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edge computing area. Table 3.3 presents the distribution of the publications over the years
since 2016. In general, it is possible to observe how the area has been gaining more visibility
within the scientific community.

Table 3.4 – Summary of classification.
General Processing

Devices,

hardware
Security

Monitoring, analytics,

anomaly detection

Delay-sensitive,

network, caching
Energy consumption

Resource allocation, management,

resource provision, placement, orchestration
Total

Application, system, middleware 3 1 8 2 2 3 19

Architecture, design, model, method 8 2 1 6 3 12 6 38

Framework, plataform 3 3 3 1 10

Protocol, policy 1 1 2

Evaluation, analisys 1 1 1 3

Methodology 1 1 1 1 4

Algorithm 3 2 5

Overview 4 3 1 8

Simulator 1 1

Total 16 5 3 9 16 23 4 14 90

The scientific community is still attempting to understand the most efficient ways
to utilize and provide edge services closer to the end-user devices and manufacturing in-
dustries using the infrastructure inherited from cloud computing. We may also notice some
general studies that address more than a single specific area and present solutions that
cover edge computing in multiple scenarios. Those also represent 18% of the covered stud-
ies. Both IoT and industry 4.0 areas are quite concerned about the same correlated areas,
such as latency, data processing, security, and other examples earlier mentioned. However,
the IoT attention is generally focused on better QoS and the improvement of the user expe-
rience. Industry 4.0 studies, in general, focus on the optimization of a certain manufacturing
process, management, product improvement, or even to provide complete information about
the final product, considering the entire manufacturing life-cycle. Edge computing seems to
be a solution for many problems to be faced by IoT and industry 4.0. In most cases, related
to data processing, monitoring, and delay-sensitive applications.

3.2.1 Research Questions Analysis

In this section, we perform an analysis of the primary studies obtained through the
classification criteria and research questions previously outlined. The answers to the stated
search questions, according to the analysis of the primary studies selected are as follows:
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What are the boundaries between the areas of edge computing, Internet of Things, and
Industry 4.0?

As presented in previous sections, IoT and industry 4.0 are strongly related areas.
In fact, industry 4.0 addresses the improvement of industrial machinery using the recent
achievements of IoT, which led to some early studies using the term Industrial IoT (IIoT). In
both cases, the massive data generation is a subject to closely follow.

This greater amount of data brings new possibilities such as more specialized ser-
vices, analytics, manufacturing control, etc. On the other hand, delay-sensitive applications
are those that suffer the most. Lightweight protocols, better systems architectures, method-
ologies, specialized frameworks, and new algorithms may be a solution to communicate
and process such a heavy workload and handle real-time applications without losing QoS.
This concern may be observed in Table 3.4, with the higher number of studies of this nature.
These problems are generally presented on the “Things" side, which may be inside the man-
ufacturing industry, smart cities, or even closer to the end-user with wearable gadgets. With
the higher number of devices connected to the network and data traffic, plenty of security
problems also need to be handled. Over the analyzed studies, we noticed that blockchain
was the most recurring security solution applied to this scenario. We consider four main dis-
tribution groups in the general study area: IoT devices, edge servers, cloud infrastructure,
and the network. Notably, network studies may focus on between the IoT environment and
the edge server, mostly targeting delay-sensitive applications. Also, network studies may
target the in-between the edge server and the cloud, mostly addressing the reduction of
cloud services utilization.

Another problem related to how to handle such a heavy workload is that the central-
ized services offered by cloud computing may not be so efficient and might be too expensive
in some scenarios. This condition is what starts the discussion about where should be lo-
cated the edge node and how much data should be processed in those nodes in order to
improve the application performance with minimal costs. The attempts to solve these prob-
lems, in general, are studies focused on the edge nodes and the cloud architecture itself. It
seems that the role of the edge node has been already understood. However, how it is going
to be accomplished and change the current applications and services is still an open issue.
Studies of this nature focus on solutions that in terms of location, will be at the edge node,
the cloud infrastructure, or in the in-between. The large number of sensors and devices con-
nect to the network producing data that allow monitoring systems to be more assertive and
also influence strategic decisions, such as the usage of historical data and machine learning
applications to predict user behaviors and product line necessities.

Edge computing is the area considered to be between the end-user devices and
the cloud environment. For that reason, defining the boundaries between these areas and
which equipment it addresses may be quite intricate. At the edge of the network, with low
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processing power, the IoT devices, which may also be called edge devices, will regularly
communicate with the edge nodes. The communication protocols used for that matter are
an object of study itself. Reasonable options to be considered are the protocols already
proposed for related projects in industry and academia. One example is the Next Generation
Service Interface (NGSI), an open standard interface defined by the Open Mobile Alliance
(OMA) focused on the development of IoT and smart city platforms [123]. The edge nodes
are meant to have much more processing power than the IoT devices. However, there is not
really a lower and upper limit to how much it is.

From the edge node to the cloud, another concept that may be misunderstood is
related to the difference between fog and edge computing. Conducting this work, we have
noticed an uncertainty in the terms used to refer to and define the area itself. In the literature,
the definitions of the terms “fog computing" and “edge computing" most of the time are hard
to distinguish. We notice that some papers have difficulties in defining which of the two fit
in. Some, for example, mention both fog computing and edge computing in the keywords,
but in the paper, just one is actually used. This uncertainty makes database searches not
return some of those studies as a result. According to Qinglin et al. [124], the difference
between fog computing and edge computing is that fog computing relies on interconnection
capabilities among nodes, whereas edge computing runs in isolated edge nodes. The edge
devices provide the input data for edge computing. Meanwhile, the fog computing layer is
carried out in the data transmission network, in which the top layer is the cloud, where big
data can be stored and analyzed.

What is the impact and challenges of edge computing on the internet of things and industry
4.0?

The main goal of edge computing is to bring processing closer to the end user.
Out of the centralized cloud servers, the applications hosted at the edge bring the possibility
of faster response considering IoT devices over the cities and the digital revolution inside
the manufacturing industry. A big question to be answered in the next years is how the
combination of the IoT, industry 4.0, and edge computing will change the traditional cloud
services that became very well established in the past decade.

The classification conducted in this work may already present some of the chal-
lenges to be faced by the combination of the mentioned areas. In our perception and in
accord with the analysis performed the challenges can be named as follows:

• Security and data privacy;

• Common architectures and protocols;

• Frameworks and middleware for remote management and data analytics;
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• Network and connections constraints;

• Hardware constraints;

• To integrate with the current systems reusing the current infrastructure.

Nowadays, it is not possible to implement any new technology without considering
data security and privacy matters. As discussed in previous sections, the edge computing
environment involves constant and massive data exchange. Problems of the security and
privacy domain could be considered, in this scenario, IoT or industry 4.0 concerns. How-
ever, as edge computing is strongly related to these areas, its systems will certainly have to
consider ways to protect private information as well as handle malicious activities. With a
large number of connected devices, managing large-scale infrastructures, requires not only
a good view of all devices but also easy ways to securely connect new equipment without
creating security vulnerabilities.

Edge computing applications consider at least three location levels in their envi-
ronments. The first is the data source, the second is the cloudlet location, and the third, is
the cloud computing infrastructure. To develop a real application, in this scenario, there are
different integration challenges. The point is not only, the integration itself, but to make it dy-
namically and efficiently, providing good time response and user experience. Furthermore,
there must be considered the usage of patterns to handle the heterogeneity of different data
sources and infrastructure platforms that will host those applications. Another related chal-
lenge is to have a complete visual of the connected devices. Centralized monitoring of all
devices in the manufacturing industry, for example, is a desirable feature for any large-scale
system. Furthermore, the possibility to control and send tasks to them would also be a
helpful feature.

The purpose of this study is to determine and characterize the state-of-the-art of
the edge computing area, considering industry 4.0 and IoT perspective. On the other hand,
by looking at the state-of-the-art, we may have a proper direction for future studies. From
the discussion of the results obtained from the classification and analysis, along with the
results presented in Table 3.4, it is possible to point out some of the current literature gaps,
which may give us a good perspective of opportunities for the next few years. We may
consider literature gaps, categories that were not found in our research, but also categories
with a short number of publications. In our perception, some notable gaps in the literature
addressing the edge computing area are:

• Scalability;

• Specialized Devices.

• Processing;
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• Energy consumption;

• Storage;

As previously presented, data processing at the edge is the integration of the IoT
devices and the edge nodes. We found a few studies that focus on the analysis and im-
provement of these processes, specifically focused on collecting data from vehicles in an
autonomous way, so the data, after being extracted from the vehicle sensors, can be mined
for interactions in order to provide customer feedback and tracking. In a general sense,
there are many scenarios and similar opportunities. Edge computing considers computa-
tional environments with hundreds of devices connected to an edge node. Furthermore, the
number of edge nodes may also be large. For that matter, service orchestration with high
scalability and reliability are potential challenges to be faced. The scalability at that point can
be seen as a literature gap, as well as further studies, focused on the usage of processing
power and energy consumption of the edge nodes. Addressing the scalability and process-
ing studies, the usage of Docker-based environments, and running its containers associated
with other open technologies such as Kubernetes for the container orchestration, may be an
appropriate approach, making it easier to handle such heavy workloads. However, since its
environments handle heavy workloads, studies focused on the energy consumption of these
environments are becoming even more necessary.

Computational power and storage are two of the biggest concerns of cloud-based
applications. Cloud infrastructures usually offer different on-demand services that attempt to
minimize the companies’ costs. Edge nodes may be a potential solution for some of those
problems since it will enable to computing of some data before uploading to the cloud sys-
tem. Reducing the data flow between edge nodes and the cloud is a very present intention
in the experiments analyzed in this study. However, it is still necessary to define how much
and for how long this data will remain stored in the edge nodes and used for additional oper-
ations. Furthermore, to Identifying the sweet spot for the location of the cloudlet, as well as
which tasks the edge should perform without being a solution attached to a specific problem,
is a point to be better understood and explored in the next few years.

3.3 Mapping Conclusion

In this Chapter, we conducted a systematic mapping study focused on the intersec-
tion of edge computing with IoT and industry 4.0. Utilizing a research string we analyzed 219
studies classified from two academic databases, namely, IEEE and ScienceDirect. Applying
our selection criteria, we performed a classification phase and selected 90 studies to map
into a summary categorization based on their field of study and research method. Based on
these results, we answered research questions related to the boundaries between the areas
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of edge computing, IoT, and industry 4.0 and the impact and challenges of edge computing
on these other areas. In this systematic mapping, we notice that the edge computing area
is strongly related to the IoT, industry 4.0, and cloud computing areas. Where, according to
the literature, industry 4.0 may also be called industrial IoT [125, 126].

The summary of our classification process provides an overview of the studies in
these fields and evidences a main concentration area of recent studies focused on architec-
tures, new designs, models, and methods applied for delay-sensitive applications, networks,
and caching. Another representative concentration area was focused on applications, sys-
tems, and middleware applied for monitoring, analytics, and anomaly detection. With these
results in hand, we clearly defined the boundaries between these areas and the impact edge
computing is having on IoT and industry 4.0. Furthermore, we analyzed some of the chal-
lenges that will be faced in the years to come. We strongly believe that the results of this
systematic mapping will help to better understand how these areas are related and can lever-
age from each other, and also the challenges that will be faced in their further development,
especially regarding the edge computing area. The areas of IoT, industry 4.0, cloud, and
edge computing have common challenges caused by the high data production. We under-
stand that due to the complexity of edge computing environments, there is a research gap
in the development of emulation tools that allow proper experimentation in the intersection
of these areas.

Our systematic mapping revealed significant challenges in collecting and process-
ing data, as well as integrating IoT devices into edge computing systems. The existing gaps
in the state-of-the-art highlighted in this chapter emphasizes the current limitations of the
area. The research to tackle the edge gaps requires experimentation over complex scenar-
ios, which implies a high financial cost. Creating a physical setup for testing and validating
concepts to accomplish these points involves substantial expenses related to acquiring hard-
ware, infrastructure, and ongoing operational maintenance. This paves the way for exploring
other alternatives for software development such as the usage of digital environments, which
in contrast to the real environments, allow the generation of intricate scenarios without the
necessity of a tangible and resource-intensive infrastructure. Creating a development tool
focusing on software development of edge applications would make it possible for the area
to go further in fulfilling the stat-of-the-art gaps and pair with the ongoing topics such as anal-
ysis and improvement of the integration processes of IoT devices and edge nodes and the
development of scalable edge applications. This understanding took center stage, shaping
the trajectory of the subsequent developments in this work. The next chapter goes further
into the use of digitized environments as an alternative for edge system development.
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4. RELATED WORK

Many studies have been previously conducted on building edge computing sim-
ulators and also emulators due to the challenge of experiment and design application in
real-world scenarios. These frameworks have the potential to simplify this process and pro-
vide fast and scalable tools for addressing real-world applications. In this section, we first
present existing experimental tools for edge environment emulation. Then, we outline the
design objectives of the proposed Edge classifier.

EmuFog [127] is a framework focused on enabling the design and emulation of Fog
computing infrastructures based on real-world scenarios. The authors aimed to provide a
test environment for fog computing through EmuFog. Using an emulated network, the Emu-
Fog framework focuses on enabling researchers to design specific network topologies based
on user cases, considering algorithms for fog topology enhancement and its extensible na-
ture. The proposed emulator is built on top of an extension of the Mininet [128] emulator
called MaxiNet [129]. Since, EmuFog focus is to allow developers to design the Fog infras-
tructure topologies. This process is made in two steps. The first step is to build a network
topology considering switches/routers. The authors mentioned the possibility of employing
network topology generators or importing topology datasets. The second step is to place
and customize the placement of Fog nodes in the generated network topology to be fed into
MaxiNet for emulation. Furthermore, the authors mention the intention to augment EmuFog
by Embedding mobility models for clients and Fog nodes such as cars or drones.

EmuEdge [130] is a hybrid emulator aiming to reproduce networks close to real-
ity through tuning and replaying network traces. The proposed hybrid design of EmuEdge
enables on-demand degrees of realism by supporting both physical and emulated nodes.
EmuEdge focuses on on-demand degrees of realism, which is considered by the authors
a key step to reproducible edge computing experiments. The authors claim the EmuEdge
to be an emulator designed specifically for hybrid edge computing systems from both com-
putation and network perspectives that augments Mininet-alike systems with better isolation
and heterogeneity support. Furthermore, the authors claim that the on-demand degrees
of realism on EmuEdge is a key step to reproducible edge computing experiments, is also
regarded as a hybrid extension of Mininet that fills the gap on the computation plane.

Aming at bridging the functionalities of existing emulators for data centers and mo-
bile networks, namely srsLTE [131] for the mobile network and Mininet [128] to emulate an
SDN-based data center network. OpenLEON [132] proposes a platform that enables exper-
imentation and prototyping in a Multi-Access edge computing context, where the computing
service must be closer to the end user since locality and low-latency requirements are es-
sential. The authors claim the OpenLeon platform satisfies the requirement of maintaining
high fidelity to incorporate network topologies that faithfully reproduce on a smaller scale
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those of data center networks and the current LTE stack to guarantee correct handling of
the mobile traffic. Furthermore, the authors claim that the platform also satisfies the re-
quirement of allowing the user to emulate different data center topologies and to extend the
functionalities of a mobile network.

Fogbed [133] uses a desktop approach to provide a framework and toolset inte-
gration enabling the deployment of fog nodes under different network configurations. The
proposed framework is composed of a fog emulation system based on Mininet and Docker
open-source software and allows the testing of fog components with third-party systems
through standard interfaces. Fogbed extends the Mininet framework to allow the usage of
Docker containers as virtual nodes. The authors claim that these features allow for the
emulation of real-world cloud and fog infrastructures. It is also mentioned the possibility of
changing resource limitations for a container such as CPU time and memory available at
runtime.

In Celestial [89] the authors address the exploration of LEO (Low Earth Orbit) edge
computing possibilities and the evaluation of arbitrary software systems within a precise run-
time environment with cost-efficient scalability. They introduce Celestial, a virtual testbed
for LEO edge based on microVMs, adept at emulating individual satellites, their movements,
and ground station servers with realistic network conditions in an application-agnostic man-
ner. The authors emphasize the necessity of a testbed for LEO edge to enable the testing
and evaluation of software by systems researchers, application developers, and platform
designers on Earth. The paper concludes by highlighting Celestial’s potential for future
research and development in LEO edge computing, especially in addressing challenges
related to state management, resource allocation, and request routing.

Table 4.1 – Comparison between related work and our proposal.
Name Research Topic Language

EmuFog Network Topology Kotlin
Emuedge On-demand degrees of realism on network Pyhon

OpenLEON Integration between preexistent cloud and mobile emulators Shell
Fogbed Third-party system integration Pyhon
Celestial LEO Edge Emulation Python/Go

Our proposal Infrastructure Configuration NodeJS

During our research, we identified a promising path within the field of edge comput-
ing through emulation. Our interest became to enable the prototyping of edge applications
in a modular way that could favor experimentation considering constraints on computational
resources, focusing on IoT equipment cases, and could be easily expanded in terms of its
components, operational rules, and dataflow. We understand that these characteristics are
explored in a certain way by related work. However, they have different focuses and do
not directly address these same topics as in this work. Thus, our focus concentrated on
proposing an architecture that can have different implementations. Similarly to the emu-
lators mentioned above, our research focuses on the design, experimentation, and testing



45

of specific environments with accurate metrics. All of the mentioned work considers the
edge as an extension of the cloud and contemplates cloud integration. Another common
aspect is that the five of them integrate with the Mininet network emulator. Throughout the
work, we present our prototype, which can then be considered an emulator. This imple-
mentation concerns instrumental aspects such as initiating and terminating communication
between components and functions related to data measurement and visualization. Still,
the experiments demonstrated with our prototype also point to differences from other works,
as they lead to conclusions regarding consumption limits and component behavior that can
be reached through the emulator. Table 4.1 presents a comparison of the edge emulators
mentioned above.

Our work differs from the mentioned studies due to the proposal of a modular em-
ulation architecture that focuses on prototyping scalable edge applications. We explore the
possibility of emulating realistic edge computing scenarios within clustered environments
and docker-friendly applications. Due to being an architecture and not a tool, our proposal
may have different implementations and adaptations and also presents data visualization
features. We validate our implementation by experimenting with a smart agriculture use
case, demonstrating that emulating edge computing applications in clustered environments
enables the recreation of real-world scenarios conditions. Moreover, we validate that our
tool may be used as an aid to the examination of performance dynamics and resource uti-
lization patterns in a digitized edge emulator environment contributing to a comprehensive
understanding of real-world application behavior.
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5. A MODULAR ARCHITECTURE FOR THE EMULATION OF
SCALABLE EDGE APPLICATIONS

Cloud computing focuses on delivering reliable and scalable infrastructures for
hosting Internet-based application services. However, quantifying aspects such as the per-
formance of scheduling and allocation policy for different application and service models un-
der varying loads, energy performance (power consumption, heat dissipation), and system
size might be a challenging problem. Therefore, aiming to simplify this process, research on
cloud computing has proposed simulators such as CloudSim [11], which intends to provide
a single application that models specific environments and behaviors, enabling experimen-
tation of emerging cloud computing infrastructures and management services. Despite the
advance of cloud computing, due to the massive volume of data overcome in recent years,
the paradigms of fog and edge computing have been proposed, where cloud services are
extended to the edge of the network, decreasing network latency. Likewise in the cloud,
these new paradigms present the same problems regarding experimentation throughout its
environments. Therefore, new simulators have been proposed to tackle these problems.
Simulators such as iFogSim, an evaluation platform that enables the simulation and mea-
surement of the impact of resource management techniques in latency, network congestion,
energy consumption, and costs. However, despite great contribution, some behavior as-
pects through models still end up based on assumptions and simplifications, which might
lead to non-realistic results [130].

In Chapter 3 we discuss the boundaries between the areas of edge computing,
IoT, and industry 4.0, considering the impact and challenges of edge computing on these
specific areas. The complexity of edge infrastructures leads to the necessity of frameworks
that allow experimentation, testing, validation, tuning, and evaluation. Simulators are able to
provide a cost-effective way for application prototyping. Emulators, on the other hand, tend
to provide more realistic results, since the application is not deployed in a single machine
running throughout a single application, but relies on the presence of aspects such as real
network delay. Therefore, in this thesis, we intend to simplify these processes by providing an
accurate way to emulate edge computing environments. This chapter describes the problem
statement and thesis proposal.

5.1 Motivation

The systematic mapping presented in Chapter 3 led our research to a pivotal point
in our study. After identifying the literature gaps we notice a lack of tools to assist in system
development specifically for edge computing scenarios. Consequently, the next step was
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to determine whether the path our research would trace to be over simulation or emulation.
This chapter advocates for a paradigm shift in the approach of edge application development
by endorsing the utilization of development tools to create alternatives to expensive real im-
plementations. Simulation and emulation have evolved into powerful tools that can replicate
intricate real-world scenarios with a high degree of accuracy. Such tools have as key ad-
vantages the ability to mimic real-world conditions, reduce time-to-market, and provide a
versatile testing environment. As the capabilities of these tools continue to advance, they
offer a compelling solution to the financial and logistical challenges associated with software
development. Below we present some findings on the state-of-the-art edge simulators and
emulators. Also, we present the distinctions between the two concepts.

5.1.1 Simulation of Edge Architectures

The paradigms of edge and fog computing extend the cloud services to the edge
of the network. Applications of these segments intend to solve delay-sensitive problems
where minimizing the latency and maximizing the throughput are essential conditions. To this
end, evaluation platforms that enable the performance quantification of management policies
were required [134]. Considering simulators as frameworks focused on experimenting and
testing specific environments running in a single application, we have found a series of edge
simulators that claim to provide cost-effective ways for edge environment prototyping. The
list below presents the simulators we found:

• iFogSim [134];

• Sphere [135].

• EdgeCloudSim [136];

• FogNetSim++ [137];

• FogExplorer [138];

• YAFS [139];

• RECAP Simulator [140];

• FogTorchPI [141];

• Sleipnir [142].

Despite the significant contributions of simulators in the mentioned problems, such
applications do not consider physical aspects of deployment across the network, and due
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to the high level of abstraction over simulated environments, the models for their devices,
protocols, and traffic generation patterns may raise fidelity concerns, opening paths to the
possibility of undesired non-realistic results [143, 130].

5.1.2 Emulation of Edge Architectures

In general, research on edge computing has the intention to tackle the gap between
cloud infrastructure and the time response demands brought by areas such as IoT and
industry 4.0. Emulation is an alternative that enables experimentation and design of edge
and fog infrastructures, providing more realistic results since it considers real-world elements
and has fewer abstractions in comparison with the simulators mentioned in the previous
section. The list below presents the emulators we found, a more detailed explanation about
each one of them may be found in Chapter 4:

• EmuFog [127];

• EmuEdge [130].

• OpenLEON [132];

• Fogbed [133];

The intricacy of edge infrastructures poses challenges when it comes to conduct-
ing experiments, tests, validations, fine-tuning, and evaluations. This situation highlights
the importance of frameworks that make these processes simpler. While simulators can
assist with certain aspects of application prototyping cost-effectively, emulators, reliant on
real-world components, tend to yield more authentic results. They emerge as a compelling
alternative for the development of optimized edge applications, especially when dealing with
substantial data volumes.

5.1.3 Practical Advantages in the Usage of Emulation of Edge Architectures

In the landscape of modern technological development, digital environments stand
out as a strategic advantage over traditional systems. Firstly, the cost factor plays a piv-
otal role. Establishing a physical setup for testing and validating concepts incurs substantial
expenses related to acquiring hardware, infrastructure, and operational maintenance. Dig-
ital environments, on the other hand, enable the creation of complex scenarios without the
need for a tangible, resource-intensive infrastructure. This not only results in significant cost
savings but also expedites the testing and iteration processes, allowing for a more agile
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and responsive development cycle. Moreover, unlike traditional implementations that may
be constrained by physical limitations and fixed configurations, digital setups provide the
freedom to create a diverse range of conditions and scenarios. This versatility is invaluable
for researchers and developers seeking to explore the full spectrum of possibilities within
their domain. It allows for rapid prototyping and the ability to test under various conditions,
ultimately fostering a more comprehensive understanding of the system’s behavior without
the constraints of a fixed physical infrastructure, offering a strategic alternative by combining
cost-effectiveness with unparalleled flexibility, making them a compelling choice for proof of
concepts and experimental developments in diverse fields.

The distinction between simulation and emulation lies in their approaches to repli-
cating real-world scenarios. While both are valuable, emulation incorporates tangible hard-
ware components along with the virtual environment. This integration results in a more
accurate representation of the physical world, capturing nuances such as hardware-specific
behaviors and dynamic interactions that may be critical in certain domains. Emulation stands
out for its ability to bridge the gap between the virtual and the real, offering a level of preci-
sion that simulations may struggle to achieve. By mimicking the behavior of actual hardware,
emulators provide results that closely align with those observed in practical implementations.
This tangible integration enhances the realism of the emulation process, making it particu-
larly advantageous in fields where hardware nuances significantly impact the reliability and
performance of systems. In summary, the distinction between simulation and emulation lies
in their depth of replication, and the added fidelity of emulation often renders it the superior
choice when aiming for a more accurate and realistic representation of real-world scenarios.
In Chapter 5, we go further into the subject of edge emulation and present our proposal.

5.1.4 Emulation of Edge Architectures Requirements

Considering the replicability of edge computing scenarios, which are associated
with large amounts of data, latency, and costs-related issues, we propose here an architec-
ture for edge emulation focused on analyzing data transfers and scalability aspects, which
have been accepted at the 9th IEEE World Forum on Internet of Things (WF-IoT 2023) by
the title "A versatile emulator tool to evaluate the scalability of Edge architectures in IoT sce-
narios". We enable edge experimentation and testing in order to identify the most efficient
allocation of system components considering an edge-to-cloud environment, mitigating met-
ric abstractions present within simulated environments. Due to the intense data exchange of
such applications, we consider the edge environment within containers in cluster infrastruc-
tures with a cloud connection. Furthermore, our proposal mirrors the low processing power
of edge devices and their bandwidth limitations, such as industrial machinery, by limiting
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the container’s capacity and network interfaces to resemble such devices. The main points
considered are:

• Edge infrastructure emulation;

• Application and environment prototyping;

• Performance measurements (data exchange, processing, memory, disk);

• Scalability experiments;

• Device capacity definition;

• Different message exchange protocols and configurable payloads;

• Different configurations regarding edge/cloud visibility.

Proposal Objectives

To provide a guide to our work, the following objectives were defined:

• Emulate edge computing applications within clustered environments, replicating the
specific conditions of real-world scenarios;

• Promote a comprehensive understanding of a real-world application behavior by an-
alyzing performance dynamics, and resource utilization patterns of an edge emulator
digitized environment.

5.2 A New Modular and Scalable Edge Emulator Architecture

A recurrent topic for edge computing solutions that helps in understanding the area
domain is to reduce the volume of data sent to the cloud [28]. A dataflow from edge-to-cloud
that is not pre-processed at the edge and due to that, contains additional data that is not
relevant to the application at any point, might represent a waste of money or even add a
layer of delay in the entire application, leading at least, to a higher volume of paid data traffic
and storage. An example of that would be a monitoring logs application in supermarket
PoS (Points of Sale) represented in Figure 5.1. In general, the volume of data in edge
applications might be seen as one of the main causes of scalability problems, along with
the message exchange itself between edge devices. In this case, regarding edge-to-cloud
communication, the worst-case scenario would take all generated logs to be analyzed in the
cloud, represented in scenario 1. An optimization would consider the possibility of sending
to the cloud only relevant data or even just tags that represent previously mapped errors, as
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represented in scenario 2. Edge computing applications might consider N-layers of devices
that interact and orchestrate work independently of each other and, if necessary, have to
consolidate results.

Figure 5.1 – POS data exchange.

Similar to the example of supermarket point-of-sale presented above, many edge
computing applications need to deal with issues related to the volume of edge-to-cloud data.
However, the problem becomes even more significant when the application doesn’t only
consolidate data, but has a higher volume of message exchange between the elements at
the edge. This dataflow typically originates from IoT devices with limited processing ca-
pabilities, often operating under constrained network conditions. In our understanding, the
adoption of a strong architectural definition in the early stages of software development is
fundamental and can promote the anticipation of the inherent challenges, leading to contin-
uous optimization. Early identification of potential bottlenecks provides a unique opportunity
to make design decisions when they are still economically viable, avoiding significant reengi-
neering costs in advanced development stages. Ultimately, a well-defined architecture not
only strengthens the testing process but also provides a clear and actionable insight into
software performance, enabling continuous and efficient evolution throughout the entire de-
velopment cycle. The importance of a well-defined architecture for testing goes beyond mere
technical formality, playing a crucial role in enhancing development processes. With a care-
fully outlined architectural structure, the development and test phases might be conducted
more efficiently and effectively, enabling the early identification of potential limitations for the
application.
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Figure 5.2 – Modular Emulation Architecture for Scalable Edge Applications.
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In Figure 5.2 we present the Modular Emulator Architecture for Scalable Edge Ap-
plications 1 we propose in this thesis. The understanding of our architecture starts with the
two resource allocations considered. First, there is the clustered environment, which we as-
sume to be an on-premise cluster running container images. These elements represent the
edge components and create a communication layer that will start the dataflow throughout
the network. Once we have the edge elements within containers in a cluster environment
allows a series of paths to be explored, such as resource constraints regarding memory,
CPU, and disk. Furthermore, traffic control can also be explored throughout the network.
By having these nodes on containers, the messages sent will still go through the network,
and each container might be deployed in a different domain if necessary. The second part
considered is the cloud domain. For these elements, allocation placement is meant to be
at a cloud provisioning service. These same containers could also be deployed at the edge
environment if network constraints were applied to generate the resource limitations.

At the edge, the message exchange between the emulated edge devices is based
on a publish/subscribe protocol called Message Queue Telemetry Transport (MQTT). The
MQTT protocol is also used in the communication from the cloud to the edge side in the
scenario where the cloud does not know the edge device clients. Message exchange plays
a critical role in edge applications, and the architecture addresses this by outlining the flow
of communication between different elements. MQTT protocol is adopted for efficient and
lightweight messaging between nodes. Publishers establish connections with brokers to
send messages, while subscribers connect and subscribe to specific topics. The initial hand-
shake between these elements incurs additional traffic, the volume of which depends on the
number of instances instantiated. This handshake process can potentially become a bottle-
neck, particularly when dealing with a large number of instances.

To emulate large amounts of data, we consider a component that connects with
the containers as a publisher, and its role is to represent IoT sensors. As mentioned above,
the messages are generated with specific topics to be consumed by their subscribers. More
specifically, the component produces data representing, for instance, readings from humid-
ity, temperature, sound, and fluidity sensors that generate data considering a configurable
interval. Algorithm 5.1 presents the pseudo-code for the MQTT publisher to generate IoT
device parameters data. Sensor data transmission represents a core aspect of edge applica-
tions, and the architecture includes provisions for managing this flow. Sensor readings are
generated at the "Edge Device/Publisher" component, mimicking the behavior of IoT sen-
sors. These readings are then propagated through the MQTT broker to subscribers. The
architecture acknowledges the potential for bottlenecks, particularly with centralized edge
brokers handling all incoming and outgoing data.

The architecture presents subscriber components that interact with N brokers to
collect messages at the edge. A broker is responsible for receiving and propagating mes-

1https://github.com/mmatheuslyra/EdgeExperiment
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Algorithm 5.1 Device data publisher pseudo-code
Initialization
EdgeDevices [Device0,Device1, ...,Devicen]
PublishTopic [flow , temperature,humidity ,sound ]
MQTTClient  Connection
while Emulator is active do

Wait Interval
Topic Random(PublishTopic)
Message Random(EdgeDevices)
MQTTClient .Publish(Topic,Message)

end

sages from generated IoT devices to their respective subscribers. The remaining compo-
nents are the data manager, responsible for sending pre-processed data to the cloud using
a Representational State Transfer (REST) protocol, and the cloud client. The choice of using
REST is due to the intention to maintain communication between edge and cloud using a
protocol that supports larger payloads compared to MQTT, which focuses on devices that
usually have an intense throughput but with lighter payloads. Thereby, cloud communica-
tion assumes an aspect closer to an Application Programming Interface (API) and uses a
protocol with the appropriate purpose [144]. Regarding the implementation details on the
visibility to the cloud, there are two different ways edge devices might be exposed, which
implies the usage of different communication protocols. One might reproduce a scenario
where the cloud has the addressees of edge devices and might freely communicate with it.
The second should consider an environment where edge device addresses are not exposed
to the cloud. To contemplate the second scenario where only edge components know the
cloud address but the cloud component does not know the address of each element at the
edge, in our proposal, a client using the MQTT protocol connects to the broker allocated in
the cloud. The cloud publishes specific topics that are used to propagate commands to the
edge devices.

Through these elements, our architecture represents a minimal structure for an
edge ecosystem. The well-defined responsibilities among the mentioned nodes, as well as
the existence of two different allocation blocks, add a degree of modularity to the system
that enables various modifications in the IoT elements interactions. Within these responsi-
bilities, the edge block has components focused on creating the dataflow that we consider
fundamental among the IoT elements, which we nominated as the IoT environment inside
the edge block. In addition to this, within this same edge block, we have elements that play
the role of data storage and processing within the block called data processing. This en-
tire edge block was designed to operate independently of the cloud, as we understand this
as a situation that may eventually occur in real scenarios, where edge and cloud may lose
their access paths from time to time. The interactions between edge and cloud elements
establish fundamental communications that allow data traffic analysis. Furthermore, hosting
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the cloud block in a cloud provider, allows developers to estimate financial costs through the
experimentation and performance of its elements.

Edge computing has several limitations, such as resource consumption, network,
processing, etc. Therefore, through docker resource configuration, we can set specific limits
for each container and network controller of the emulated IoT application, reproducing the
conditions of a real scenario. These configurations can be easily changed if the user wants
to experiment with different requirements. Furthermore, the area faces problems in estimat-
ing performance against hardware contingencies, which once more advocates the usage
of emulation tools since this is a phenomenon hard to reproduce in simulation. As previ-
ously mentioned, within a simulated environment, most of the metrics are abstracted, which
can distance the final result from a real-world scenario. Through emulation, resources, and
infrastructure have different degrees of realism, where real elements can be added keep-
ing metrics such as network latency equal to the real world. Such experimentation tools
that consider data traffic between devices and explore its limitations in terms of processing
power, different communication protocols, and visibilities between elements might contribute
to deciding which part of an application should remain on the edge or in the cloud. Existing
emulators have specific strengths that diverge from our goals, as later presented in Chap-
ter 4. Therefore, we intend to contribute to the area of edge computing enabling the devel-
opment of optimized applications with efficient device distribution considering an edge/cloud
environment.

We believe this architecture addresses a few challenges identified in the early
stages of our research. This thesis paves the way for software development of digital envi-
ronments over edge emulation. The components presented in the architecture, despite being
generic in terms of their functions, play fundamental roles in an edge environment. These
components might be used to create an intense dataflow based on message exchanges
throughout the network, data persistence, and summarization to the cloud. As a result, they
create a dataflow that can be used as assistance in the development of other applications,
as we validate in the following chapters. By considering modular elements, we understand
that each node can be used as a generic case, replicated multiple times, altered, restricted,
or even entirely replaced. Our proposal does not restrict the implementation but allows it to
take different facets, and if the basic aspects of the architecture are kept, an edge comput-
ing environment will be achieved. Therefore, implementing such architecture might be used
to mimic specific conditions, develop PoCs, validate application behaviors over extremely
restricted scenarios, verify the maximum number of clients supported simultaneously, and
more.
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5.3 Emulation of Resource Constraints

In this section, we go into the intricate landscape of resource constraints, scruti-
nizing pivotal dimensions. Understanding and effectively managing these constraints in the
pursuit of optimized system performance ensures the seamless operation of applications in
the face of dynamic and often challenging computing scenarios. This section delves into
the nuanced challenges posed by limitations in general resources and the intricacies of traf-
fic control and networking. By dissecting these aspects, we aim to glean insights that not
only deepen our understanding of resource limitations but also pave the way for strategic
solutions that enhance the robustness and efficiency of computing systems in the face of
resource constraints.

5.3.1 Motivation in the usage of Resources constraints

The significance of resource constraints within emulators cannot be overstated.
CPU and memory constraints are especially crucial for mirroring the processing limitations
that applications would encounter in current hardware environments. This constraint not
only adds a layer of realism to the emulation but also forces applications to adapt to the
available computational resources, allowing researchers and developers to assess how soft-
ware behaves under different processing conditions. In the digitalization of edge scenarios,
restricting these resources is fundamental.

Furthermore, understanding and imposing these constraints is essential for eval-
uating the scalability of applications. By creating scenarios where memory and CPU re-
sources are limited or fluctuate, researchers can gain insights into how applications handle
varying computational workloads. This is particularly pertinent in the context of edge com-
puting and distributed systems, where these resources might be very restricted depending
on the hardware. Which makes an even more pivotal role in determining the feasibility
and efficiency of deploying applications across diverse computational environments. The
strategic imposition thus becomes a valuable asset or even a necessity for not only gaug-
ing the performance of applications but also for optimizing them to operate effectively within
the confines of real-world computational limitations. In essence, the careful consideration
of resource constraints contributes to the creation of more reliable and adaptive software
solutions that can navigate the complexities of diverse hardware environments.
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5.3.2 CPU constraints

In this thesis, CPU constraints refer to limitations or restrictions defining the amount
of CPU resources that a system, process, or application can utilize. In general, these con-
straints are utilized to manage and allocate resources to concurrent tasks and can take
various forms, such as setting maximum usage limits, defining priorities for access, or re-
stricting usage to specific cores or intervals. In the context of optimizing applications, CPU
constraints are particularly relevant for managing performance and resource utilization within
a shared computing environment. By defining such limitations, users can ensure fair alloca-
tion of resources, prevent monopolization, and optimize overall system performance. These
constraints may be applied in applications using different tools, one example is Docker virtu-
alization, where restrictions can be placed on the amount of CPU resources that containers
can utilize. These constraints are essential for managing performance and resource alloca-
tion. There are several aspects to consider regarding CPU constraints in Docker, such as
shares, quota, and period.

Applying restrictions over processing power aids in emulating applications by fa-
cilitating fair resource allocation, mimicking specific requirements, isolating performance,
providing predictability, testing scalability, and optimizing costs. Each emulated application
might receive a balanced share, preventing resource monopolization and ensuring consis-
tent performance across multiple applications running concurrently. This ensures that even
under heavy loads or CPU-intensive tasks, the performance of other emulated applications
remains unaffected. Moreover, CPU constraints enable developers to predict application
behavior accurately under different resource scenarios, allowing for more reliable testing
and development. Additionally, by gradually adjusting parameters, developers can assess
application scalability and identify potential bottlenecks. Therefore, the usage of CPU con-
straints helps optimize costs by ensuring efficient resource utilization, thereby minimizing
unnecessary expenses associated with over-provisioning.

5.3.3 Networking and Traffic Control

Research in the IoT area has been mentioning network-related problems as one
of the main challenges for a long time. As we can see in early research from more than
a decade ago, such as "The Internet of Things: A survey" [145], where it was already dis-
cussed the pursuit to ensure scalability considering the incredibly high number of nodes,
along with the differences and new possibilities brought by IPv6. In the research of virtual
systems, while trying to create accurate metrics for the emulated environments, the network
conditions are still a main concern, as we might see in one of the related works, such as
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CELESTIAL [146], going through different mechanisms to achieve that goal on the realm of
emulation of low-Earth orbit (LEO) edge.

Traffic control plays a decisive role in shaping the efficacy and fidelity of emulated
environments. Emulators strive to replicate real-world conditions, and in doing so, they must
mimic the intricate dynamics of data traffic within networks. The importance of traffic control
in emulators lies in its ability to go further in network behavior, considering variables such as
latency, packet loss, and bandwidth constraints. By integrating traffic control mechanisms,
emulators can go through diverse network scenarios, from optimal conditions to challenging
and congested environments. This nuanced approach ensures that the emulation process
extends beyond mere software functionality, providing a realistic representation of how ap-
plications perform in diverse network conditions. The ability to create variations in network
behavior allows researchers to scrutinize how applications respond under different levels
of stress, paving the way for the identification and resolution of potential bottlenecks. For
instance, by having real messages sent between nodes, in addition to the traffic control el-
ements, it becomes possible to create edge scenarios with severe restrictions that would
happen only under bad weather conditions.

Figure 5.3 – Containers network distribution.

Image 5.3 presents the distribution of architecture containers introduced in Sec-
tion 5.2 between two networks, Edge and Cloud. This distribution makes it possible to exer-
cise two main points. The visibility of the elements between each other and the traffic control
mentioned above. Regarding the experiments presented in the next chapter. In initial tests,
only visibility aspects of the network distribution were considered. In the second battery of
tests, conducted in the same testbed, traffic control was the specific topic.
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5.4 Edge Emulator Prototype Implementation

In this chapter, we presented a Modular Emulation Architecture for Scalable Edge
Applications where we consider different nodes spread throughout the network to create
a digital environment capable of representing the nuances of an edge environment. We
developed a prototype for the architecture considering the elements presented in Figure 5.2.
Regarding the implementation details of our prototype, the overall programming language
utilized was NodeJS. That applies to edge and cloud nodes, as well as the implementation
of MQTT and REST communications. Each node runs in docker containers with resource
constraints on the image configurations. Docker was also used to establish traffic control in
the independent edge and cloud networks. Since the nodes in the implementation do not
run in a single application but are distributed in independent containers, it allows each node
to be allocated in different hosts. This is also a characteristic that might be used to achieve
scalability goals, by instantiating new containers building up over the proposed architecture.

The proposed architecture considers a great volume of message exchange which is
intricate to the nature of an edge application. To understand that overall interactions between
the elements might be challenging. Therefore, Figure 5.4 represents the flow of the main
message exchanges between the elements. The components that communicate through
MQTT, start with the protocol handshake, which will occur for subscribers and publishers
towards the broker as represented in the "MQTT Handshake" frame. The difference between
them is that publishers only need to connect with the broker to start sending messages
on a given topic, the subscribers need to connect and subscribe to a topic list of interest.
These initial protocol messages might be considered as additional traffic, and the volume
of messages in this handshake will depend on how many instances were created. For
example, in Figure 5.4 the publishers and subscribers at the edge are represented only
once, but in an experiment, they could be instantiated as many times as necessary. With just
a few containers this traffic would certainly not be a problem and could even be disregarded.
However, having a more expressive number of instances could make this a bottleneck.

After the protocol establishes communication, the elements start to send the sen-
sors reading messages. These data are generated in the "Edge Device/Publisher" compo-
nent, which implements Algorithm 5.1. Representing IoT sensors, this component might be
considered the initial point of the readings dataflow. The volume of data generated at this
point can be used to create bottlenecks in the environment. Especially, considering that
there is a centralization in the edge broker, since all publishers and subscribers rely on this
element to send and receive data. These interactions might also be considered as a loop, in
the overall communications, as represented in the "Main Loop" frame of the diagram. Since
the publisher will continue sending messages with the sensors reading topics, these mes-
sages will be propagated by the broker as long as the containers are running. Also, there is
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no actually limit to the number of instances for publishers and subscribers instances. Which
might be used to increase the traffic along with parameter changes in the publisher algo-
rithm.

By default, the subscribers have a list of interests, containing the topics that the el-
ements will be subscribed to. However, the architecture suggests an additional mechanism,
creating an MQTT connection with a cloud broker to update the edge subscriber topics.
Therefore, even without knowing all the edge devices, it is possible to have control over com-
munication from the cloud. This mechanism appears in the chart through the interactions
between the "IoT broker" and the "Edge Publisher / Cloud Subscriber". These interactions
are represented in the "Command Update" frame. Another pivotal point is the interaction be-
tween the "Data Manager" and the cloud "API Client", represented in the "Reduce" diagram
frame. Using REST communication, the API client sends a request to the Data Manager,
which processes the data and sends a response to the cloud. This mechanism allows the
reduction in the data amount that is sent to the cloud. Therefore, the requirement for cloud
resources to be processed and stored is also reduced.

For traffic control, there would also be different ways to implement it. In the re-
lated work, we found the usage of the native Linux Traffic Control (TC) and other tools
such as mininet. For our prototype, we chose to go with Docker’s networking resources.
In Docker, traffic control is implemented through the manipulation of network settings and
policies. Docker provides a range of networking options, such as bridge networks and user-
defined networks, allowing users to configure traffic control parameters. For instance, rate
limiting, and bandwidth constraints can be set on Docker networks to control the flow of data
between containers. Moreover, Docker allows users to leverage the inherent delay features
within network settings to introduce latency, mimicking real-world network conditions.

5.4.1 Edge Emulator as a Tool: Monitoring Layer

To enhance usability and create a more user-friendly environment„ we developed
features containing a few orchestration scripts focused on trying to centralize the usage of
the emulator’s internal calls, and the steps to create the environment such as building and
starting containers. Therefore, the user can start using the tool just by sending commands
and with no need to actually change any parameter.

Furthermore, the architecture described in Chapter 5.2 predicts a monitoring layer.
In our implementation, we added real-time chart generation with Python. We created a
feature to start chart plots considering the containers proved to be the overall bottlenecks in
the experiments further described in Chapter 6. Figure 5.5 presents an example of real-time
charts for resource consumption, representing the usage of CPU, Memory, Network Rx, and
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Network Tx considering four different containers. Further behavior analysis with different
examples might be found the following chapters.

Figure 5.5 – Prototype real-time charts for container resource consumption for 300 seconds
(5 minutes). Charts represent the usage of CPU, Memory, Network Rx, and Network Tx
considering four different containers.

We believe that this monitoring layer adds value to the emulator since it makes it
easier to identify behavior patterns. However, plotting real-time charts generates computa-
tional overhead, which might overshadow experiment results. Therefore, in our implemen-
tation, there are other types of visualization, such as the feature presented in Figure 5.6,
which generates a minor overhead by monitoring general values for CPU, Memory, Network
I/O, and Disk. Also, it presents a minor summary of the local machine resources, such as
the Disk, Memory, and Processor model to serve as a reference for the user. Furthermore,
it was added another monitoring feature that only generates log files.

The architecture monitoring layer might be implemented in different ways. The fea-
tures we showed above are focused on capturing the resource consumption of each Docker
container. There are established monitoring tools that may also be used for that purpose.
One example is Grafana2, an open-source analytics and monitoring platform designed to
visualize and analyze data from various sources in real time. It acts as a central dashboard
where users can integrate data from multiple systems, databases, and applications. It also
supports alerting mechanisms, allowing users to set up notifications based on specific con-
ditions. What proved to be interesting about using this tool in our implementation was the
focus on monitoring the data that passed between the containers and not on its resource

2https://grafana.com/
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Figure 5.6 – Prototype real-time charts for CPU, Memory, Network I/O, and Disk resource
consumption.

Figure 5.7 – Readings collected from Grafana. The monitoring layer in this scenario is
built over the data stored in the Cloud Database. The readings refer to Flow, Humidity,
Temperature, and Sound considering five different sensors SBS01, SBS02, SBS03, SBS04,
and SBS05.
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consumption. While our previous charts focused on getting data per container, in this case,
the focus was on the dataflow itself. Each message sent in our prototype has tags of where
it was sent for and what sensor reading it represents. These values are stored at the edge
and cloud, which makes it possible for Grafana to monitor data. Figure 5.7 presents Grafana
representation from readings stored in the Cloud DB. As mentioned, these refer to read-
ings of Flow, Humidity, Temperature, and Sound considering five different sensors SBS01,
SBS02, SBS03, SBS04, and SBS05.
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6. PROTOTYPE VALIDATION AND USE CASES

This chapter presents the results obtained from the experiments conducted with the
implementation described in Chapter 5.4, referred to in this chapter as the edge emulation
tool. First, we present our resource constraints experiments. To validate the effectiveness
of our tool, we present a second experiment on a use case in the field of smart agriculture,
where the emulation tool successfully reproduces a vineyard use case and evaluates the
scalability of the system. Thereafter, we present a scalability experiment based on the same
smart agriculture use case.

6.1 Resource Constraints Experiments

This section navigates through our resource constraints experiments. The explored
dimensions are focused on the restriction of general resources such as container CPU
sharing and memory, along with Traffic Control. In combination with our real-time plots,
we explore how limitations in these foundational elements impact resource utilization and
communication. This section dives into the validation of how our tool might be used in ex-
perimenting, design, and execution. In this experiment, in order to observe the resource
consumption behavior and the real-time plots, ten containers were allocated to represent
the sensors containers’ multiple deployments running on a testbed consisting of a MacBook
Pro, 2,3 GHz Dual-Core Intel Core i5, 8 GB 2133 MHz LPDDR3. The experiment proto-
col comprised three distinct stages. In the initial phase, the round was conducted without
imposing resource limitations per container or network. Subsequently, during the second
stage, the restrictions were introduced, and in the third stage, an intentional overrun of these
predefined values was implemented.

The primary objective of the experiment was to observe the processing metrics of
the Edge Broker meticulously. Concerning network parameters, the focus was on monitoring
general network metrics, consideration the presence of specific limiters. This meticulous de-

Table 6.1 – Network Configurations at Different Stages of the Resource Constraint Experi-
ments

Stage Network Driver Ingress Bandwidth Ingress Burst Ingress Latency Egress Bandwidth Egress Burst Egress Latency

1 Edge bridge - - - - - -

Cloud bridge - - - - - -

2 Edge bridge 100kbit 10kbit 70ms 100kbit 100kbit 70ms

Cloud bridge 100kbit 10kbit 70ms 100kbit 100kbit 70ms

3 Edge bridge 500kbit 100kbit 500ms 500kbit 100kbit 500ms

Cloud bridge 500kbit 100kbit 500ms 500kbit 100kbit 500ms



68

Table 6.2 – Service Configurations at Different Stages
Stage Service cloudBroker cloudClient cloudServer edgeBroker edgeDataManager edgeIoTSmartDev

1 CPU Shares - - - - - -
Memory Limit - - - - - -

2 CPU Shares 10 (1%) 10 (1%) 10 (1%) 102 (10%) 10 (1%) 10 (1%)
Memory Limit - - - 1gb - 1gb

3 CPU Shares 10 (1%) 10 (1%) 10 (1%) 102 (10%) 10 (1%) 10 (1%)
Memory Limit - - - 1gb - 1gb

sign allowed for a nuanced exploration of the interplay between processing capabilities and
network performance, providing a comprehensive understanding of the system’s behavior
under varying conditions. The strategic manipulation of processing and network variables at
different stages contributes to the experimental robustness, allowing for a detailed analysis
of the Edge Broker’s processing dynamics and the broader implications on network met-
rics. Table 6.1 presents the Docker network configuration restrictions used throughout the
three stages of the experiment. Table 6.2 presents the CPU Shares and Memory limits val-
ues. The "cpu_shares" value in Docker represents a proportional weight, not an absolute
percentage. Therefore, the weight is relative to the CPU shares of other containers on the
system as presented in Equation 6.1:

SharePercentage =

✓
ContainerShares

TotalSharesOnSystem

◆
x100 (6.1)

Where SharePercentage denotes the proportion of CPU time allocated to a con-
tainer relative to the total CPU time. ContainerShares denotes the weight assigned to a
container for determining its share of CPU resources. TotalSharesOnSystem denotes the
total sum of CPU shares assigned to all containers.

A consistent pattern is discernible across various execution stages, as illustrated
in Figures 6.1, 6.2, and 6.3. Whether examining CPU, Memory, Network Rx, or Network Tx
consumption, each container exhibits a similar behavior when compared to itself throughout
each stage. However, it is noteworthy that variations in the depicted volume urge a closer
observation of the dynamic changes in the container interactions. The primary bottleneck in
the system is the Edge Broker container. This container becomes the focal point for com-
munication, thereby leading to increased demand for computational resources compared to
other components. Notably, in resource restriction experiments, the consumption values of
this container demonstrate heightened sensitivity and variation in response to the parameter
changes outlined in Tables 6.1 and 6.2.

Our main concern in this experiment was to demonstrate how constraints effectively
alter the behavior and dynamics of containers. As elucidated in the preceding chapters, the
ability to generate diverse scenarios relies on the capacity to impose constraints on the
regular operational state. In Stage 1, as depicted in Figure 6.1, normal operating conditions
are portrayed without any restrictions, presenting minor variation in the CPU and Network in
behavior compared to Stage 2 represented in Figure 6.2. However, it is possible to observe
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Figure 6.1 – Stage 1 of resource constraints readings for 300 seconds (5 minutes). Charts
represent the usage of CPU, Memory, Network Rx, and Network Tx considering four different
containers.

Figure 6.2 – Stage 2 of resource constraints readings for 300 seconds (5 minutes). Charts
represent the usage of CPU, Memory, Network Rx, and Network Tx considering four different
containers.
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Figure 6.3 – Stage 3 of resource constraints readings for 300 seconds (5 minutes). Charts
represent the usage of CPU, Memory, Network Rx, and Network Tx considering four different
containers.

that the values presented in the stage 1 graph regarding memory usage show changes for
the Edge Broker and Edge Data Manager containers. It is noticeable a difference in the total
consumption values compared to the other two stages where restrictions were applied. It is
interesting to note that this restriction was only applied to the Edge Broker. However, due
to its central role in communication, it also affected the Edge Data Manager container. We
believe that this cross-alteration occurs because the latter performs computation on the data
received from the Edge Broker. Thus, when the Edge Broker operates with limitations, its
consumption is also affected.

A Higher difference appears comparing stage 3 to the previous two, as illustrated in
Figure 6.3, where a noticeable shift in behavior is evident, which is even more evident in the
Network output. The CPU consumption exhibits a typical pattern, punctuated by occasional
peaks that underscore the imposed limitations. To effectively illustrate this, it is impera-
tive to employ a use case characterized by even more intensive computations on the edge
broker. In this scenario, merely redirecting MQTT protocol messages proved insufficient to
sufficiently highlight its impact on the graph.

The experiment elucidates the impact of resource limitations on the performance of
a distributed system, focusing on memory restrictions, traffic control, networking, and CPU.
The strategic allocation of our containers in different stages provided a structured approach
to assess the system under varying conditions. By systematically adjusting network config-
urations, including bandwidth and latency parameters, the experiment simulated scenarios
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with and without processing limitations. This allowed for a comprehensive exploration of the
interplay between hardware resources and network performance, providing valuable insights
into potential bottlenecks and optimizing strategies. Furthermore, the experimentation ex-
tended to service configurations, where CPU shares and memory limits were manipulated
across stages. Notably, the allocation of computing resources to the edge broker played a
critical role in influencing overall system performance. The inclusion of memory limits for
specific services, such as the edge IoT device simulator, introduced an additional layer of
complexity, showcasing the experiment’s adaptability to diverse real-world scenarios.

6.2 Experimentation Over a Smart Agriculture Use Case

In this Section, we present a vineyard use case chosen to validate the developed
edge emulator tool due to the complexity of edge infrastructure that is involved and the
required scalability needed to cover an entire vineyard, making an in-site PoC too complex
and time-consuming. The results of this experiment were also part of our publication "A
versatile emulator tool to evaluate the scalability of Edge architectures in IoT scenarios" at
the 9th IEEE World Forum on Internet of Things (WF-IoT 2023).

In smart vineyards, temperature, humidity, and light sensors are distributed along
the whole territory. These sensors collect data from each grapevine or grapevine group,
depending on the vineyard size and the financial costs, and transmit it to a smartphone app,
where wine producers would be able to monitor in real-time or near real-time the quality of
their product. The collected data from the vineyard are usually transmitted through LPWAN
protocols, Wi-Fi, or a combination of both, using the MQTT protocol to publish and subscribe
information to/from an MQTT broker.

MQTT 
Broker

Sensors

Vineyard
Raspberry Pi

Router

Wired Wi-Fi

Web Dashboard

TCP/IP

User App

HTTP/WebSocket

LDR

Humidity

Temperature

Wired

Figure 6.4 – Vineyard use case scheme.

The sensors responsible for monitoring each grapevine or a group of grapevines
were connected to a Raspberry Pi with a Wi-Fi module on board (edge device). The first
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problem that comes to mind is the signal collisions between the Wi-Fi modules and the high
data rate handled by the router. The big challenge is ensuring that all data read from the
grapevine sensors will be successfully received by the MQTT broker, even in a large-scale
application. For a smart vineyard solution, a simulation architecture would require multiple
Raspberry Pi boards exchanging data with an MQTT broker. The data loss estimation could
be considered in future collision-tolerant algorithm development. This extra validation layer
would increase the chances of detecting bugs that would be identified only in the PoC, saving
money and engineering time. Figure 6.4 presents the considered smart vineyard diagram
and Figure 6.5 its state machine.

State machine:

1. Read Sensor: reads the sensors (humidity, temperature, luminosity) and goes to the
Publish Data state.

2. Publish Data: publishes sensor data via MQTT to the broker and goes into low-power
mode.

3. Sleep: low consumption mode. It remains in this state for 15 minutes. Wakes up and
returns to the Read Sensor state.

4. Subscribe Handle: works like an external interrupt. It is only activated when the device
detects the receipt of a subscription. This subscription can be a command asking
to read a specific sensor. Then it handles the received command and goes to Read
Sensor, asking only for the requested sensor data.

Read
Sensor

Publish 
Data

Sleep Timeout?

Sleep

Subs
Handle

Not Sleep
Timeout?

Figure 6.5 – Vineyard state machine.

The vineyard hardware configuration consists of a Raspberry Pi 3B+: 1GB RAM;
Quadcore 1.2 GHz; SD of 64 GB. Temperature sensor: analog NTC thermistor part number
B57164K0103. Light Sensor (LDR): Part number 02-LDR1 50-100K ohms. Humidity Sensor:
Part number DHT22, range 0-100%. For our emulation tests, the computational testbed
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Figure 6.6 – Vineyard use case scheme considering the distribution of the containers.

consists of a three-node cluster in an ethernet network. Each node is a Dell EMC PowerEdge
R740 server with two sockets, each one containing a 5118 Xeon Gold processor of 2.30
GHz, 12 Cores/24 Threads 12 MB L2 cache. The total number of cores is 24/48, with 16.5
MB of L3 cache shared by the two sockets and 322 GB of main memory. Since an IoT
network presents limitations regarding the delay between nodes and rate traffic inherent to
its nature, we take into consideration those concerns and control via software the number of
messages sent by the emulated sensors.

In the experiment data, the observed behavior is that, as the number of edge de-
vice containers increases from 1 to 50, the resource consumption also does. For the chosen
use case, the edge devices containers presented in the Architecture of Figure 5.2, emulate
the Raspberry Pi behavior from the use case scheme of Figure 6.4, along with the sensors’
data. Figure 6.6 shows the use case elements presented in the Architecture, throughout the
emulator containers presented in the use case. The message exchange that happens in the
edge is concentrated in the edge broker node due to the MQTT protocol behavior. There-
fore, the flow starts in the edge devices containers and passes through the edge broker,
which propagates to the subscribers. One of the subscribers is the data manager container,
which will create another flow between edge and cloud. Figure 6.7 represents the network
consumption of three specific containers considering the increasing replication of the Edge
Devices containers as mentioned above. The other containers represented are the Edge
Broker, Data Manager, and, MongoDB (chosen storage for this case).

We might observe that the input and output regarding the Edge Broker node tend
to be higher than the other containers. This might be caused due to the inherent behavior
of the MQTT protocol mentioned above, concentrating most of the message exchange at
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Figure 6.7 – Network input and output of the data manager, edge broker, and MongoDB
containers (rows), considering the increase from 1 to 50 edge devices containers (columns).

the broker. For the Data Manager and MongoDB containers, the input network consumption
turned out to be higher than the output. In that case, as shown in Figure 5.2, the database,
represented here as the MongoDB instance, does not propagate the data from the edge.
For the data manager instance, the input represents the traffic that comes from all the Edge
Devices passing through the Edge Broker. An output bandwidth lower than the input demon-
strates how the data volume that is sent to the cloud container is considerably lower than
the real traffic at the edge, which is one of the main goals of an edge architecture. These
results point out how the application would perform and may identify possible bottlenecks
in resource consumption. For the observed use case, the Edge Broker and MongoDB are
shown as the main bottlenecks, and the behavior is dictated by the volume created by the
number of Edge Devices instances. Therefore, the results achieved with fifty Edge Devices
indicate that the application is performing until now, but from these results of this experi-
ment only we cannot determine if the application would scale if the vineyard had a more
expressive number of edge devices.

Regarding processing utilization, as shown in Figure 6.8, the observed behavior
is similar to what was discussed in the network analysis. With the increase in the number
of edge device instances, there is, as expected, also an increase in CPU usage. However,
this behavior is restricted to the containers that exercise some computation (not significant),
being the mean utilization never higher than 15%. Therefore, we might observe a tendency



75

1 5 10 20 50 D
ata M

anager
Edge Broker

M
ongoD

B

0 40 80 120 0 40 80 120 0 40 80 120 0 40 80 120 0 40 80 120

0

5

10

15

0

5

10

15

0

5

10

15

Number of Edge Device Containers

Time (seconds)

CP
U

 (%
) Containers

Resource(s) CPU

Figure 6.8 – Percentage of the CPU consumption for the data manager, edge broker, and
MongoDB containers (rows), considering the increase from 1 to 50 edge devices containers
(columns).
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Figure 6.9 – Percentage of the memory consumption according to the max of 3.44GB pre-
defined for the data manager, edge broker, and MongoDB containers (rows) considering the
increase from 1 to 50 edge devices containers (columns).
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to increase the resource consumption of the edge broker container that does not happen
to the data manager in the same way. Since the former routes all messages and the latter
keeps executing the same function. Despite the higher data volume, it does not result in
much more CPU consumption. The same happens to the MongoDB instance. Regarding
the memory consumption presented in Figure 6.9, there is also an increased consumption
when more edge devices are used, not representing a significant value since it never goes
over 3%. Therefore, based on this scenario, we can assume that memory requirements for
a real application can be lower than the parameters we predefined. This result can be used
to save money when buying edge devices for the real system.

6.2.1 Scalability Experimentation: Benchmark of the Smart Agriculture Use Case

The experiment presented in the previous section demonstrated how our proposal
can be used to reproduce real-world scenarios in digitalized environments that resemble
specific conditions, thereby becoming a strong ally during the development and testing
phases of a system. Furthermore, due to the modularity of our architecture, validated in the
prototype implementation, new nodes can be added to the emulator, allowing our proposal
to become specialized for specific requirements. In addition to the modularity, scalability was
also a considered aspect of this work. Therefore, in this session, we present a new experi-
ment, reproducing the smart agriculture use case and running the prototype implementation
for five minutes over the same testbed, containing modifications that affect the scale as-
pects of the previous experiment. The main variation is the number of Edge Devices, with
iterations changing to 100, 200, 300, 400, 500. Since the emulator prototype creates an
environment where the instances communicate with each other respecting a publishing pat-
tern, an increase of that scale in the number of Edge Devices instances represents a much
higher number of message exchanges which pushes the system behavior to its limits.

The goal of this experiment was to push the containers to their limits, understand-
ing the behavior of nodes that had previously shown themselves as bottlenecks in a more
extreme situation regarding resource consumption. With the variation increasing from 100 to
500 instances, Figure 6.10 represents the network consumption of three bottleneck contain-
ers alike the previous experiment, followed by Figure 6.11 representing the CPU consump-
tion of the Edge Broker and Data Manager instances. The CPU consumption of the Mon-
goDB instances is represented apart from the others in Figure 6.12. Figure 6.13 presents
the memory consumption.

Considering the components of the edge block presented in the Architecture of
Figure 5.2, what the experiment determines is how many edge devices are supported by
the emulated environment without outages. Regarding the Edge Broker instances, the re-
source consumption of the observed behavior demonstrates that the maximum availability
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Figure 6.10 – Network input and output of the data manager, edge broker, and Mon-
goDB containers (rows), considering the increase from 100 to 500 edge devices containers
(columns).
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Figure 6.11 – Percentage of the CPU consumption for the data manager and edge bro-
ker containers (rows), considering the increase from 100 to 500 edge devices containers
(columns).

for orchestrating messages between publishers and subscribers for the configuration is de-
termined by the number of publishers. In a cross-analysis of the data presented in the
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Figure 6.12 – Percentage of the CPU consumption for the MongoDB container (rows), con-
sidering the increase from 100 to 500 edge devices containers (columns).
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Figure 6.13 – Percentage of the memory consumption according to the max of 3.44GB
predefined for the data manager, edge broker, and MongoDB containers (rows) considering
the increase from 100 to 500 edge devices containers (columns).

images, as well as a log observation during the experimentation, a variation in the behavior
pattern can be spotted between the phases of 200 to 300 Edge Device instances.

From the data we collected, the 300 stage is the point where we observe that the
MongoDB instance stopped responding to requests. The CPU consumption of this container,
as shown in Figure 6.12, presents spikes of 100%, unlike the other instances that have a
considerably low average, as presented in Figure 6.11. Those spikes appeared since the
first stage of the experiment. However, the buffering problem appears only in the mentioned
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threshold, when the volume of messages floods the container interactions. Therefore, the
Edge Broker instance while trying to communicate with the database starts to reach a buffer-
ing timed out after 10000ms. It is also possible to observe that network usage is inverted
compared to the two previous testing stages. In this case, for the Edge Broker container,
the volume of incoming data becomes greater than the output, indicating that the container
loses the ability to orchestrate message delivery to subscribers, as well as to persist data
in the database after this point. Regarding the network metrics for the MongoDB instance,
it is possible to observe that the input data is higher than the output in the 100 and 200
phases, and close to zero from 300 to 500. A representation of this threshold is presented
in Table 6.3.

Table 6.3 – Edge broker, data manager, and MongoDB containers behavior considering the
increase from 100 to 500 edge devices containers

Edge Broker Data Manager MongoDB
Edge Devices Availability Orchestration Availability Summarization Availability

100 3 3 3 3 3
200 3 3 3 3 3
300 3 x 3 x x
400 3 x 3 x x
500 3 x 3 x x

The experiment results determine 200 as the observed maximum number of Edge
Devices that the combination of a single Edge Broker and a single MongoDB instance can
support on the applied conditions. The obtained results points the MongoDB instance to
be the cause of the outages, which leads to the conclusion that the Edge Broker would be
able to handle a higher number of devices if its operations were not as dependent on the
database. These findings can be aligned with the use case we addressed. Considering that
within a vineyard, the sensors will be scattered across the entire territory relying on many
edge brokers geographically close to the sensors and the overall resource consumption of
the testbed was considerably low, it can be assumed that if we take 200 as the limit, to
reach numbers like 1000 Edge Devices, it would be sufficient to instantiate only 5 instances
of Edge Brokers and MongoDB, distributing the Edge Devices among them. This would
effectively increase the scale of the created environment.

Therefore, we consider this experiment, to successfully benchmark the scalability of
our prototype implementation and proposed architecture. This scalability experiment alludes
to the architecture objectives mentioned in Chapter 5.2, showing that emulating edge com-
puting applications in clustered environments allows the replication of specific conditions
found in real-world scenarios and that analyzing the performance dynamics and resource
utilization patterns of a digitized edge emulator environment also leads to the understanding
of real-world application behavior.
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7. CONCLUSION

In the course of our work, we presented a systematic mapping of 219 papers on
edge computing in the context of the IoT and industry 4.0 which provides a comprehensive
overview of the current state-of-the-art. Our research endorses the prospective utilization of
digital environments, specifically emphasizing the merits of edge application development.
Emphasizing the preference for emulation over simulation, our study underscores the dis-
tinct advantages that emulation brings to digital edge environments, aligning effectively with
the unique requirements of IoT applications and enhancing realism and efficiency in testing
and development processes. The proposed architecture for edge emulation is designed to
create realistic edge applications within clustered environments. This architecture offers flex-
ibility, enabling the evaluation of scalability in IoT scenarios by replicating complex real-world
conditions. Through this approach, a comprehensive understanding of system behaviors in
edge environments is fostered. The prototype implementation of this architecture demon-
strates its modular and easily expandable nature, facilitating the design, experimentation,
and testing of edge environments. Notably, the integration of pre-programmed popular IoT
protocols and standards, such as MQTT, enhances the tool’s applicability and adaptability.

In conclusion, we present an emulation architecture and its prototype, a versatile
emulator tool focused on the scalability evaluation of edge environments. Furthermore, we
present a performance analysis that evidences the potential usage of the proposed tool.
Our validation efforts included a case study in the domain of smart agriculture, where the
developed emulation tool was applied to assess system scalability. In these analyses, we
conduct two experiments, where in the first we emulate up to fifty Edge Devices showing that
the vineyard use case was scalable through the experiments, and the second experiment
points out that the current state supports in a single Edge Broker and MongoDB instance the
maximum number of 200 Edge Devices. Other configurations with more IoT devices might
be easily tested by changing the emulator parameters if the host machine has sufficient
resources for all deployed containers.

The results yielded accurate metrics for resource utilization, traffic control, and
other general resources. This empirical validation demonstrates the practical utility and ef-
fectiveness of our emulation tool in real-world scenarios. The proposed architecture and
its prototype implementation offer a valuable tool for researchers and practitioners, facili-
tating the design and evaluation of scalable edge environments. The successful validation
in the context of smart agriculture further establishes the applicability and reliability of our
approach, paving the way for advancements in the development and testing of edge applica-
tions for IoT and industry 4.0. In the course of our work, the results benchmark the scalability
aspects of our proposal by experimenting with a real-world use case, answering the objec-
tives observed in the early stages of research. This work demonstrates that emulating edge
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computing applications in clustered environments allows the replication of specific condi-
tions and may serve to analyze performance dynamics to achieve a better understanding of
real-world application behavior. In summary, our research contributes to the field of edge
computing by advocating for the adoption of edge emulation in digitalized environments for
IoT applications. We strongly believe it might become an ally in the evaluation of IoT re-
search, serving as an aid in the development and testing of the application response on
different scenarios.

7.1 Publications

During the Ph. D. course, the following research results were published:

• MEYER, V.; KIRCHOFF, D.; DA SILVA, M.; DE ROSE, C. A. F.; An Interference-Aware
Application Classifier Based on Machine Learning to Improve Scheduling in Clouds. In:
28th Euromicro International Conference on Parallel, Distributed and NetworkBased
Processing (PDP 2020), Västerås, Suécia, p. 80. (QUALIS - A3).

• DA SILVA, M.; MEYER, V.; KIRCHOFF, D.; NETO, J.; VIEIRA, R.; DE ROSE, C. A. F.;
Evaluating the performance and improving the usability of parallel and distributed Word
Embeddings tools. In: 28th Euromicro International Conference on Parallel, Distributed
and NetworkBased Processing (PDP 2020), Västerås, Suécia, p. 201. (QUALIS - A3).

• MEYER, V.; KIRCHOFF, D.; DA SILVA, M.; DE ROSE, C. A. F.; ML-driven Classifica-
tion Scheme for Dynamic Interference-aware Resource Scheduling in Cloud Infrastruc-
tures. Journal of Systems Architecture (JSA), 2021, Elsevier. (QUALIS - A2).

• MEYER, V.; DA SILVA, M.; KIRCHOFF, D.; DE ROSE, C. A. F.; IADA: A dynamic
interference-aware cloud scheduling architecture for latency-sensitive workloads, Jour-
nal of Systems and Software, 2022, Elsevier. (QUALIS - A1).

Additionally, we have the following research papers accepted:

• DA SILVA, M.; MEYER, V.; KIRCHOFF, D.; DE ROSE, C. A. F.; Edge Computing and its
Boundaries to IoT and Industry 4.0: A Systematic Mapping Study, International Journal
of Grid and Utility Computing (IJGUC), 2021, Elsevier. (QUALIS - A4).

• DA SILVA, M.; GONÇALVES, H.; MEYER, V.; HESSEL, F.; DE ROSE C. A. F.; A versa-
tile emulator tool to evaluate the scalability of Edge architectures in IoT scenarios. In:
9th IEEE World Forum on Internet of Things (WF-IoT 2023), Aveiro, Portugal. (QUALIS
A2).
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7.2 Future Directions

Even though this thesis marks the end of a cycle of our research, the work pre-
sented here opens a new path in our research group, and for that reason, we believe that
this work can serve as a foundation for others. We see the potential for exploring topics that
we were unable to cover in our study, by adding different communication protocols, such as
LoRa, SigFox, and NB-IoT, and also exploring the digital twins approach, to allow the con-
nection of real edge devices, fiscally deployed and integrating with the proposed tool, which
already has ongoing works considering the vineyard use case.

As presented in this work, determining which part of a system should be processed
at the edge has the potential to reduce costs. Therefore, the edge emulation applied to that
cause is a field that can be roughly explored. We believe that the billing aspect is a topic that
could receive more attention by generating metrics and analytics considering the resource
consumption results provided by our emulation tool. Furthermore, we believe our work could
be applied to other areas despite smart agriculture. One of them is federated learning, which
focuses on training machine learning models at the edge, also dealing with problems in the
development phase due to the necessity of having many clients connected at the edge to
generate individual models.
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