
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

WILLIAN ANALDO NUNES

ACCELERATING MACHINE LEARNING USING RISC-V
VECTOR EXTENSION IN A MANYCORE PLATFORM

Porto Alegre
2025

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

ACCELERATING MACHINE
LEARNING USING RISC-V
VECTOR EXTENSION IN A
MANYCORE PLATFORM

WILLIAN ANALDO NUNES

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Fernando Gehm Moraes

Porto Alegre
2025

WILLIAN ANALDO NUNES

ACCELERATING MACHINE LEARNING USING
RISC-V VECTOR EXTENSION IN A MANYCORE

PLATFORM

This Master Thesis has been submitted in
partial fulfillment of the requirements for the
degree of Master in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on March 11, 2025.

COMMITTEE MEMBERS:

Prof. Dr. Sandro Rigo (IC/UNICAMP)

Prof. Dr. César Augusto Missio Marcon (PPGCC/PUCRS)

Prof. Dr. Fernando Gehm Moraes (PPGCC/PUCRS - Advisor)

AGRADECIMENTOS

Primeiramente, agradeço a Deus por ter me trazido até aqui, e por tudo que enviou
ao meu caminho para eu me tornar quem eu sou hoje.

Agradeço aos meus pais e familiares por terem me dado o suporte necessário ao
longo de toda a jornada, os seus sacrificios me permitiram ir mais longe.

Ao meu orientador pela parceria, por respeitar meu tempo e me motivar quando
era preciso.

Agradeço finalmente à Carolina por ter sido meu suporte ao longo dessa jornada,
por ter respeitado meu espaço para que eu fosse “útil” e por todas as vezes que me animou
quando estava para baixo, pelas numerosas conversas da madrugada que nos impeliram a
sermos melhores um para o outro.

Meu sincero muito obrigado a todos que participaram, dedico essa conquista a
todos vocês!

ACELERAÇÃO DE APRENDIZADO DE MÁQUINA USANDO EXTENSÃO
VETORIAL RISC-V EM UMA PLATAFORMA MANYCORE

RESUMO

O crescente aumento na demanda computacional de cargas de trabalho de Ma-
chine Learning (ML), especialmente Redes Neurais Convolucionais (CNNs), exige soluções
eficientes de aceleração em hardware. Esta dissertação investiga o uso da Extensão Ve-
torial do RISC-V (RVV) para acelerar a inferência de CNNs em arquiteturas single-core e
manycore. O estudo apresenta o processador RS5, uma implementação RTL de um núcleo
baseado em RISC-V aprimorado com um subconjunto de instruções RVV projetado para
paralelismo eficiente de dados. Além disso, este processador foi integrado à plataforma
manycore Memphis-V, permitindo uma maior escala de desempenho por meio da execução
paralela.

Foi realizada uma avaliação abrangente para analisar como a aceleração baseada
em RVV impacta no desempenho, consumo de energia, uso de memória e custos de área
de hardware. Os resultados demonstram que a implementação vetorizada das operações
de CNN no processador RS5 atinge um speedup de até 7,68× (camada 1-D CNN) na exe-
cução single-core em comparação com a versão escalar, reduzindo o consumo de energia
em até 61% e alcançando ganhos de desempenho de até 16× em uma aplicação de pro-
duto escalar (dot-product). Quando implantado no ambiente manycore, foram observados
ganhos adicionais de desempenho, com a primeira camada da AlexNet atingindo uma ace-
leração de até 5,7× sobre a implementação escalar single-core e reduzindo o tamanho do
código em até 87,5% na segunda camada. A integração da auto-vetorização e da otimiza-
ção manual em assembly vetorial destacou ainda mais a eficácia do RVV na aceleração de
cargas de trabalho de ML.

Os resultados experimentais demonstram que a integração do RVV melhora sig-
nificativamente a velocidade de inferência de CNNs. A implementação manycore amplifica
ainda mais esses benefícios, evidenciando o potencial das arquiteturas vetoriais baseadas
em RISC-V para aceleração eficiente de ML. Este trabalho contribui para a área de acelera-
ção em hardware ao apresentar uma solução escalável e de código aberto para aplicações
de CNNs.

Palavras-Chave: RISC-V, Processamento Vetorial, Aceleração de Hardware, Manycores,
Redes Neurais Convolucionais.

ACCELERATING MACHINE LEARNING USING RISC-V VECTOR
EXTENSION IN A MANYCORE PLATFORM

ABSTRACT

The increasing computational demands of Machine Learning (ML) workloads, par-
ticularly Convolutional Neural Networks (CNNs), require efficient hardware acceleration so-
lutions. This dissertation investigates the RISC-V Vector Extension (RVV) to accelerate
the CNN inference in single-core and manycore architectures. The research presents the
RS5 processor, an RTL implementation of a RISC-V-based core enhanced with a subset of
RVV instructions designed for efficient data parallelism. Additionally, this processor was inte-
grated into the Memphis-V manycore platform, enabling further performance scaling through
parallel execution.

A comprehensive evaluation was conducted to analyze the impact of RVV-based
acceleration on performance, energy consumption, memory footprint, and hardware area
costs. The results demonstrate that the vectorized implementation of CNN operations on
the RS5 processor achieves a speedup of up to 7.68x (1-D CNN layer) in single-core ex-
ecution compared to a scalar baseline, reducing energy consumption by up to 61% and
achieves speed-ups of up to 16x in a dot-product application. When deployed in the many-
core environment, additional performance gains were observed, with the first layer of AlexNet
achieving up to 5.7× acceleration over the scalar single-core implementation and reducing
code size by up to 87% in the second layer. The integration of auto-vectorization and man-
ually optimized vector assembly further highlighted the effectiveness of RVV in accelerating
ML workloads.

Experimental results demonstrate that the integration of RVV significantly enhances
CNN inference speed. The manycore implementation further amplifies these benefits, high-
lighting the potential of RISC-V-based vector architectures for efficient ML acceleration. This
work contributes to hardware acceleration by showcasing a scalable, open-source solution
for CNN applications.

Keywords: RISC-V, Vector Processing, Hardware Acceleration, Manycores, Convolutional
Neural Networks.

LIST OF FIGURES

2.1 RISC-V Vector extension parameters demonstration. The first part explores
the VLEN, the second the ELEN, the third the SEW, and the last part intro-
duces Lanes. Source: the Author. 27

2.2 Vector registers during operation. Position indexes are represented under
the register with parentheses. Source: the Author. 31

2.3 Vector registers during operation. Position indexes are represented un-
der the register with parentheses. The "X" values represent don’t-cares.
Source: the Author. 31

2.4 Memphis-V platform stack. Source: [Dalzotto et al., 2021] 33

2.5 Memphis-V manycore overview. Adapted from: [Ruaro et al., 2019]. 34

2.6 MAestro overview. Adapted from: [Ruaro et al., 2019]. 35

2.7 Convolutional Neural Network structure. Source: [Phung and Rhee, 2018]. . 38

2.8 Representation of a Convolution Operation using a 3x3 filter/kernel. Input
data is convoluted using the kernel to generate a point in the convoluted
feature. Source: [Patterson and Gibson, 2017]. 39

2.9 Representation of a Max pooling operation using 2x2 filter size and stride 2.
Source: [Rahman et al., 2022]. 39

2.10 The convolution operation in CNNs. Source: [Korol, 2019]. 40

3.1 12-stage pipeline in Xuantie-910 core [Chen et al., 2020]. Source: [Chen
et al., 2020]. 46

3.2 Sifive P270 multi-cluster core block diagram. Source: [SiFive, Inc, 2022]. . . . 47

3.3 Sifive X280 multi-cluster core block diagram. Source: [SiFive, Inc, 2023]. . . . 48

3.4 Arrow datapath block diagram [Assir et al., 2021]. Source: [Assir et al., 2021] 49

3.5 ARA block diagram and integration with Ariane [Perotti et al., 2024]. Source:
[Perotti et al., 2024]. 49

3.6 Block diagram of minimal vector processor [Johns and Kazmierski, 2020].
Source: [Johns and Kazmierski, 2020] . 51

3.7 Ali et al. [2021] VPU pipeline overview. Source: [Ali et al., 2021] 51

3.8 ZeroVex [Zhao and Ye, 2024] top-level diagram. Source: [Zhao and Ye, 2024]. 52

3.9 Hwacha [Schmidt et al., 2018] block diagram. Source: [Schmidt et al., 2018]. 54

3.10 Extended Zero-riscy pipeline with VRF and DOTP units [Yu et al., 2022].
Source: [Yu et al., 2022] . 54

3.11 Baseline and extended CV32e40p(RI5CY) pipeline for XpulpNN [Garofalo
et al., 2020]. Source: [Garofalo et al., 2020]. 55

3.12 Microarchitecture of variable width precision of RK et al. [2021]. Source:
[RK et al., 2021]. 56

3.13 Architecture of CNN accelerator with dual RISC-V controller [Zhang et al.,
2021]. Source: [Zhang et al., 2021]. 58

3.14 Scheduling and pipeline progression of 8 harts running in the barrel proces-
sor [AskariHemmat et al., 2021]. Source: [AskariHemmat et al., 2021]. 59

3.15 Block diagram of a Vector Accelerator shared by two cores [Beldianu and
Ziavras, 2014]. Source: [Beldianu and Ziavras, 2014]. 60

3.16 Architecture block diagram of GAP-8 [Flamand et al., 2018]. Source: [Fla-
mand et al., 2018]. 61

3.17 Comparison of a single-core 4-lane Ara2 system architecture and a two-
core architecture made of 2-lane Ara2 processors. Both configurations have
4 PEs in total [Perotti et al., 2024]. Source: [Perotti et al., 2024]. 61

3.18 Multi- and single-core throughput for different 16-PEs configurations of the
Ara2 system in typical conditions (fmatmul) [Perotti et al., 2024]. Source:
[Perotti et al., 2024]. 62

3.19 The computation dataflow of different DNN operation types [Chen et al.,
2024]. Source: [Chen et al., 2024]. 64

3.20 Eyeriss v2 top-level architecture [Chen et al., 2019]. Source: [Chen et al.,
2019]. 65

4.1 RS5 Organization. Source: the Author. 69

4.2 RS5 Memory Interface. Source: the Author. 73

5.1 RS5 Organization with VXU. Source: the Author. 81

5.2 VXU Organization. Source: the Author. 82

5.3 Hardware reuse in VXU’s adders. The red color in the muxes control indi-
cates which path is propagated when the condition evaluates truly. Source:
the Author. 86

5.4 Sum reduction tree hardware for an eight-element register. The input regis-
ter is filtered (considering mask and VL), and the first element accumulates
the scalar value. The following tree levels reduce the elements until a single
scalar value is achieved in the last level. Source: the Author. 89

5.5 Memory access for different addressing modes of RVV extension in RS5
for eight elements of 8 bits. Figures (a) and (b) illustrate word-aligned and
word-misaligned unit-strided access, whereas figures (c) and (d) demon-
strate strided and indexed modes. Source: the Author. 90

5.6 VLSU organization. Module signals to/from VXU are drawn as blue ar-
rows. Red arrows represent signals to/from memory. The temporal barrier
is drawn as a green rectangle. Source: the Author. 91

6.1 1D-CNN reference model. Source: [Reusch et al., 2023]. 98

6.2 2D-CNN reference model - AlexNet. Source: [Krizhevsky et al., 2017]. 112

6.3 Standard convolutional filters in (a). Depthwise convolution in (b) and point-
wise convolution in (c). Source: [Howard et al., 2017]. 116

6.4 Depthwise convolution structure. Source: the Author. 119

6.5 Second Layer of the depthwise convolution structure. Source: the Author. . . 120

6.6 Mapping in a 4x4 NoC. Source: the Author. 120

7.1 Resource distribution for the RS5 with the RV32IMC instruction set. Source:
the Author. 124

7.2 Resource distribution for the RS5 with the RV32IMC_ZVE32x instruction set
with a VLENs of 64 and 256 bits. Source: the Author. 126

7.3 Performance behavior for different LMULs in the dot-product benchmark. In
(a) VLEN=64 and in (b) VLEN=256. Source: the Author. 131

7.4 Performance behavior for different VLENs in the dot-product benchmark. In
(a) SEW=32 and in (b) SEW=8. Source: the Author. 132

7.5 Performance behavior for different SEWs in the dot-product benchmark.
Horizontal charts share the same VLEN, while vertical charts maintain the
same LMUL. Source: the Author. 132

7.6 Logarithmic performance behavior for different LMULs in the dot-product
benchmark. Horizontal charts share the same VLEN, while vertical charts
maintain the same SEW. Source: the Author. 133

LIST OF TABLES

2.1 The currently defined RISC-V modules are divided into Base and Exten-
sions. Modules can be in the Ratified, Frozen, or Draft status. Source:
[RISC-V Foundation, 2024a]. 24

2.2 RISC-V privilege levels. Source: [RISC-V Foundation, 2024b]. 25

2.3 Vector Configuration Instructions and Assembler names for immediate con-
figurations. Source: the Author. 29

2.4 RISC-V Vector Extension Parameter and Configuration Summary. Source:
the Author. 30

2.5 Embedded vector extensions. Source: [RISC-V Foundation, 2024a]. 32

3.1 Comparison between RISC-V Vector accelerators. Source: the Author. 53

3.2 Summary of RISC-V custom accelerators. Source: the Author. 57

3.3 Summary of multicore accelerators. Source: the Author. 63

3.4 Summary NN acceleration methods and techniques on NoCs. Source: the
Author. 67

4.1 RS5 Design Parameters. Source: the Author. 70

5.1 Requirements of the Zve32x subset and RS5 compliance with each of them.
Source: the Author. 79

5.2 Instructions implemented in the RS5 Vector Unit and their possible applica-
tion. Source: the Author. 79

5.3 Instructions implemented in the RS5 VXU and the respective cycles per
register. Source: the Author. 85

6.1 Comparison between the number of clock cycles needed for each operation
for the scalar and vector assembly versions. The last column presents the
ratio between both (vector

scalar). Source: the Author. 109

6.2 AlexNet layers information. Source: [Korol, 2019]. 112

6.3 Multiplication operations per layer in Alexnet. Source: [Korol, 2019]. 113

7.1 ASIC area results at 500MHz for RS5 core (TSMC 28 nm). Source: the
Author. 123

7.2 RS5 core FPGA area results at 100MHz with default synthesis strategies.
Source: the Author. 124

7.3 ASIC area results at 500MHz for RS5 core with vector extension. Source:
the Author. 125

7.4 RS5 core with vector extension FPGA area results. Source: the Author. 127

7.5 Performance results running the simplified first layer of the 1-D CNN appli-
cation in RS5. Source: the Author. 128

7.6 Performance results running the 1-D CNN application in RS5. Source: the
Author. 130

7.7 Performance results running the first two convolutional layers of AlexNet in
RS5. Source: the Author. 134

7.8 Power analisys of diferent applications on RS5 w/vector unit. Source: the
Author. 135

7.9 RS5 W/ Vector extension summary of area and speed-up results. Source:
the Author. 136

7.10 Equivalent gates results in kGE for RS5 and other RVV implementations.
Source: the Author. 137

7.11 Results on running RGB channels computation (P1) on MEMPHIS-V with
vector extension. Source: the Author. 139

7.12 Results on running RGB channels join (P2) plus ReLU and Max-Pool on
MEMPHIS-V with vector extension. Source: the Author. 139

7.13 Peformance on the AlexNet first layer on single x manycore. Source: the
Author. 140

CONTENTS

1 INTRODUCTION . 15

1.1 MOTIVATION . 16

1.2 OBJECTIVES . 16

1.3 CONTRIBUTIONS . 17

1.4 METHODOLOGY . 17

1.5 PUBLICATIONS DURING DE MSC PERIOD . 18

1.6 DOCUMENT ORGANIZATION . 19

2 BACKGROUND KNOWLEDGE . 20

2.1 HARDWARE ACCELERATION . 20

2.1.1 PARALLELISM BASIC CONCEPTS . 22

2.1.2 VECTOR ARCHITECTURES . 23

2.2 RISC-V ISA . 23

2.3 RISC-V VECTOR EXTENSION . 26

2.4 MEMPHIS . 32

2.4.1 PHIVERS: PROCESSOR HIVE FOR RS5 . 33

2.4.2 MAESTRO: THE MANAGEMENT APPLICATION OPERATING SYSTEM 35

2.4.3 PLATFORM FEATURES . 36

2.5 CONVOLUTIONAL NEURAL NETWORKS (CNNS) . 37

2.6 FINAL REMARKS . 41

3 RELATED WORK . 43

3.1 SIMD AND VECTOR ACCELERATORS . 43

3.2 RISC-V HARDWARE ACCELERATORS . 45

3.2.1 RVV ACCELERATORS . 46

3.2.2 RISC-V CUSTOM ACCELERATORS . 53

3.2.3 ACCELERATORS CONTROLLED BY RISC-V . 57

3.3 MANYCORE ACCELERATORS . 59

3.3.1 MULTICORE ACCELERATORS . 59

3.3.2 NETWORK-ON-CHIP ACCELERATORS . 62

3.4 FINAL REMARKS . 66

4 RS5 PROCESSOR . 69

4.1 PIPELINE STAGES . 70

4.2 STALL SIGNALS . 71

4.3 CSRS AND INTERRUPT CONTROL . 72

4.4 REAL-TIME CLOCK . 73

4.5 MEMORY INTERFACE . 73

4.6 MEMORY MANAGEMENT UNIT (MMU) . 74

4.7 PERFORMANCE COUNTERS (ZICNTR AND ZIHPM) 75

4.8 RS5 VALIDATION SETUP . 75

4.9 FINAL REMARKS . 76

5 RVV IMPLEMENTATION . 77

5.1 RVV SUBSET . 77

5.2 RS5 RVV IMPLEMENTATION . 80

5.2.1 VECTOR ARITHMETIC AND LOGIC UNIT . 86

5.2.2 VECTOR LOAD AND STORE UNIT . 89

5.2.3 RELATED WORK . 93

5.3 VXU VALIDATION . 94

5.4 CONCLUSION AND FINAL REMARKS . 96

6 CNN BENCHMARKS AND MANYCORE MAPPING . 97

6.1 1-D CNN . 98

6.1.1 C-LANGUAGE MODEL . 99

6.1.2 ASSEMBLY CODE - SCALAR . 100

6.1.3 ASSEMBLY CODE - VECTOR AUTO-VECTORIZED . 104

6.1.4 ASSEMBLY CODE - VECTOR MANUALLY VECTORIZED 109

6.2 2-D CNN . 112

6.3 MANYCORE MAPPING . 115

6.4 CONCLUSION AND FINAL REMARKS . 121

7 RESULTS . 122

7.1 SINGLE-CORE RESULTS . 122

7.1.1 AREA EVALUATION . 122

7.1.2 PERFORMANCE EVALUATION . 128

7.1.3 POWER AND ENERGY EVALUATION . 134

7.1.4 RELATED WORK COMPARISON . 136

7.2 MANYCORE RESULTS . 138

7.2.1 RELATED WORK COMPARISON . 141

7.3 CONCLUSION AND FINAL REMARKS . 142

8 CONCLUSIONS AND FUTURE WORK . 144

8.1 FUTURE WORK . 145

REFERENCES . 147

15

1. INTRODUCTION

Hardware accelerators, specialized hardware components designed for optimized
task execution, have regained importance with the growing demand for computation in areas
like video processing and Machine Learning (ML) algorithms [Peccerillo et al., 2022]. This
resurgence is evident in the use of Graphics Processing Units (GPUs) and the newer Neural
Processing Units (NPUs). For instance, Microsoft’s recent Copilot+ [Microsoft, 2024] certi-
fication for Windows computers requires an NPU with at least 40 TOPS (trillion operations
per second) to support advanced Artificial Intelligence (AI) models.

Neural networks (NN) became essential for AI and ML applications, including clas-
sification, clustering, and pattern recognition [Goel et al., 2023; Abiodun et al., 2018]. Convo-
lutional Neural Networks (CNNs), specifically designed for structured grid data like images,
are particularly effective for image recognition and object detection tasks. However, opti-
mizing CNN inference, which involves extensive data transfers and multiplications, presents
challenges in hardware development. Domain-specific accelerators are crucial for enhanc-
ing performance in these data-intensive applications [Chang and Culurciello, 2017].

With its open-source instruction set architecture (ISA), the RISC-V [RISC-V Foun-
dation, 2024a] architecture enables the development of processors tailored to specific appli-
cations. Due to its rich standard extensions and ease of customization, it has emerged as
the favored ISA for domain-specific processor designs. The RISC-V Vector (RVV) Extension
[RISC-V Foundation, 2021] enhances the RISC-V ISA by introducing vector processing ca-
pabilities. Its primary purpose is to provide efficient and scalable data parallelism tailored for
large-scale applications such as scientific computing, ML, multimedia processing, and other
high-performance computing tasks.

Manycore architectures incorporate multiple individual processing units, or cores,
on a single chip. This design answers the growing demand for enhanced computational
power and performance across various applications. The main advantage of manycores
lies in their ability to execute multiple tasks concurrently through parallel processing. This
results in more efficient utilization of resources and performance. In ML applications, this
parallelism enables complex computations to be processed simultaneously, accelerating the
inference phase of ML models and leading to faster and more scalable ML solutions.

This work seeks to explore the application of the RISC-V Vector Extension as a
tightly coupled accelerator of CNN applications in single and manycore architectures, explor-
ing the parallelism opportunities brought by this extension. It achieved significant application
speedups, allowing for much faster CNN inference in single or manycore environments.
These results highlight that a processor with the right instruction set extension can play a
significant role in deploying modern algorithms.

16

1.1 Motivation

The primary motivation for this study is the scarce literature on RISC-V CNN ac-
celerator implementations in manycore systems with general-purpose processing elements
and with the RVV extension as a tightly coupled accelerator. As discussed in Chapter 3,
most manycore studies focus on mapping algorithms or changes in particular architectures;
meanwhile, the RISC-V implementations usually focus on high-end accelerators or custom
accelerators that do not enable the exploration of different ML tasks.

Another motivation is the increased popularity of ML algorithms, especially CNNs,
which require specialized hardware to run efficiently because they are highly computer-
intensive. This relates directly to the ratification of the RISC-V Vector extension and the
limited work with processors that implement the latest version of the extension. Also, the
suitability of the RISC-V Vector extension to accelerate CNN in tandem with the compiler’s
auto-vectorization has yet to be proven.

1.2 Objectives

This work has two strategic goals. The first is to develop an accelerated RISC-V
processor. The second involves exploring a manycore platform that uses this processor to
accelerate CNN applications.

Specific goals include:

1. Provide an RTL implementation of a RISC-V processor [RISC-V Foundation, 2024a],
namely the RS5 processor [Nunes et al., 2024], with a subset of the RISC-V Vec-
tor [RISC-V Foundation, 2021] extension instructions as a tightly coupled accelerator,
targeting CNN inference hardware acceleration;

2. Integrate the accelerated processor into a manycore platform and analyze the charac-
teristics of this architecture to enhance the acceleration of ML applications through the
extended instruction set implemented in the previous step;

3. Evaluate the effectiveness of the resulting implementation quantitatively using metrics,
such as performance and memory footprint for the software component, cycles spent
for the application, die area, and energy consumption for the hardware components.

17

1.3 Contributions

The contributions of this work are:

1. Optimized version of the RS5 processor, including new extensions and mechanisms
such as branch prediction, compressed instructions, atomic memory accesses, and
cryptography acceleration (Chapter 4).

2. Implementation of a subset of the Vector extension as a tightly coupled accelerator in
the RS5 processor (Chapter 5).

3. Extension of the benchmark library of the RS5 processor by adding 1-D and 2-D CNN
applications (Chapter 6).

4. New CNN benchmark in the Memphis manycore platform, exploring a manycore map-
ping technique that further improves parallelism in the CNN inference phase (Chap-
ter 6).

5. Exploration of the accelerated RS5 processor and the chosen manycore mapping tech-
nique in CNN applications, analyzing the speedup, suitability, and compiler’s effective-
ness, and providing results and comparisons for single-core and manycore accelerated
and non-accelerated versions (Chapter 7).

1.4 Methodology

The work described in this dissertation follows these steps. First, the RS5 proces-
sor, an existing open-source implementation of the RISC-V ISA developed by the author,
gained specialized instructions conforming to the vector extension of the RISC-V architec-
ture. These instructions accelerate various algorithms and applications, particularly CNNs.

Next, the implemented instructions accelerated specific CNN benchmarks to mea-
sure speedup and improvement. Hardware parameters were explored to identify configura-
tions best suited to the target applications, considering the requirements of each benchmark.
The compiler’s auto-vectorization was analyzed, and manual vectorization was performed to
compare the performance gains achieved by each approach.

After obtaining the hardware-accelerated results, the effectiveness of the acceler-
ated implementation was quantitatively compared to non-accelerated versions of the same
applications. The evaluation considered software metrics, such as overall code size, and
hardware metrics, such as energy consumption and die area. Performance was assessed
by comparing the clock cycles required for identical tasks in both implementations. The

18

die area was evaluated through FPGA implementation and ASIC synthesis, followed by a
thorough analysis of the results.

With the hardware accelerator implemented and validated, the accelerated RS5
processor served as the processing element (PE) of Memphis-V [Ruaro et al., 2019], a
Network-on-Chip (NoC)-based manycore platform. This integration facilitated exploring a
CNN application in this environment, where parallelization techniques were evaluated for
applicability. A 2-Dimensional CNN application was adapted for execution in the manycore
context, enabling metrics extraction for the explored technique.

Finally, the results were compared across all cases: non-accelerated RS5, acceler-
ated RS5, non-accelerated Memphis-V, and accelerated Memphis-V. Metrics were analyzed
and evaluated within the different environments, and the final results included system bottle-
necks, drawbacks, and trade-offs.

1.5 Publications During de MsC Period

The development of this work resulted in 4 papers being published. They are listed
below:

Accelerating Machine Learning with RISC-V Vector Extension and Auto-Vectorization Techniques
NUNES, Willian Analdo; SANTOS, Antônio Vinicius Corrêa; MORAES, Fernando Gehm; Fernando Gehm Moraes
In: ISCAS, 2025

Deploying human activity recognition in embedded RISC-V processors
NUNES, Willian Analdo; REUSCH, Rafael Schild; LUZA, Lucas; BERNARDON, Eduardo; DAL ZOTTO, Angelo
Elias; JURACY, Leonardo Rezende; MORAES, Fernando Gehm.
Design Automation For Embedded Systems, vol. 28, n. 3, pp. 187-217, December 2024.
http://dx.doi.org/10.1007/s10617-024-09288-w

RS5: An Integrated Hardware and Software Ecosystem for RISC-V Embedded Systems
NUNES, Willian Analdo; ZOTTO, Angelo Elias Dal; BORGES, Caroline da Silva; MORAES, Fernando Gehm
In: LASCAS, 2024
http://dx.doi.org/10.1109/LASCAS60203.2024.10506171

Validating an Automated Asynchronous Synthesis Environment with a Challenging Design: RISC-V
NUNES, Willian; SARTORI, Marcos; MOREIRA, Matheus; MORAES, Fernando Gehm; CALAZANS, Ney
In: SBCCI, 2023
http://dx.doi.org/10.1109/SBCCI60457.2023.10261656

http://dx.doi.org/10.1007/s10617-024-09288-w
http://dx.doi.org/10.1109/LASCAS60203.2024.10506171
http://dx.doi.org/10.1109/SBCCI60457.2023.10261656

19

1.6 Document organization

This manuscript is organized as follows.

• Chapter 2 presents fundamental concepts concerning hardware acceleration and the RISC-
V architecture, detailing the vector extension. It also presents the manycore platform used
in this work, Memphis-V, and concepts related to ML and CNN;

• Chapter 3 presents the state-of-the-art related to hardware acceleration involving RISC-V
and ML, and also presents works that target accelerating CNN in manycore platforms;

• Chapter 4 details the RISC-V RS5 processor, corresponding to the first contribution of
the Dissertation. The RS5 processor started in the end-of-term work of the Author, being
extended to meet the goals of the Dissertation;

• Chapter 5 presents the second contribution of the Dissertation, which is the design of the
RISC-V vector extension in the RS5 processor, bringing insights of the implementation and
design choices;

• Chapter 6 details the third and fourth contributions of the Dissertation by presenting the
benchmark applications and referring to the mapping of a CNN application on the many-
core. The Chapter initially presents the selected benchmarks and discusses mapping
alternatives on a manycore. The chosen mapping procedure is applied to the manycore,
and the CNN deployment is presented;

• Chapter 7 presents the fifth contribution of the Dissertation by presenting the evaluation of
the benchmark results in all the developed environments (single and manycore), evaluating
die area (FPGA and ASIC), clock cycle reduction, and power consumption;

• Chapter 8 finishes this manuscript with conclusions derived from previous chapters and
highlights future work.

20

2. BACKGROUND KNOWLEDGE

This Chapter introduces fundamental concepts to the understanding of this work:

• Section 2.1 overviews hardware acceleration concepts;

• Section 2.2 introduces the RISC-V instruction set, an open Instruction Set Architecture
(ISA);

• Section 2.3 introduces the RISC-V Vector extension, designed to provide efficient and
scalable data parallelism;

• Section 2.4 presents the Memphis-V manycore, a framework for the automatic generation
and validation of manycores;

• Section 2.5 describes Convolutional Neural Networks (CNNs), a specific type of deep
learning architecture within the broader field of Machine Learning;

• Section 2.6 presents final remarks related to the presented concepts.

2.1 Hardware Acceleration

As Gordon Moore stated in 1965, Moore’s Law predicted that the number of transis-
tors would double every two years. This trend was upheld for decades, driving exponential
growth in computing power. However, the pace has slowed in recent years due to physi-
cal and economic challenges. Transistor scaling has become more complex and costly as
we approach atomic-scale dimensions [Zhu et al., 2023]. Computing innovation continues
through new paradigms. The focus has shifted from transistor count to performance-per-
watt, energy efficiency, and new computing architectures.

We are in “A New Golden Age for Computer Architecture”, as stated by John
Hennessy and David Patterson [Hennessy and Patterson, 2018], which comprises new op-
portunities for improvements like Domain-Specific Hardware/Software Co-Design. Domain-
specific hardware (accelerator) is a specialized hardware component capable of efficiently
executing specific tasks (thus domain-specific). The increasing demand for general-purpose
processors required hardware specialization across all computing systems, including mo-
bile processors, desktops, and data centers [Kim and Shao, 2018]. Consequently, nearly all
leading semiconductor manufacturers and cloud service providers offer chips equipped with
accelerators, regardless of their size, for various applications (Cryptography, Graphics and
Multimedia Processing, AI and ML, etc.).

Hwu and Patel [2018] define an accelerator as a distinct architectural substructure
designed with a different set of objectives than the base processor, originating from the re-
quirements of a specific class of applications. This design approach allows the accelerator to

21

achieve better performance, reduced cost, lower power consumption, and less development
effort, or a combination of these benefits compared to standard base hardware.

One of the most recognized accelerators is the Graphics Processing Unit (GPU),
specialized hardware designed for efficiently processing graphical data. Initially developed
to render high-resolution images and animations for gaming and visual applications, GPUs
are optimized for parallel processing, enabling them to handle multiple tasks simultaneously
[Blythe, 2008]. This capability makes them ideal for rendering 3D graphics, performing matrix
calculations, and accelerating video processing. Over time, their use has expanded beyond
graphics to other domains such as artificial intelligence, machine learning, and scientific
computing, where their ability to process large datasets in parallel significantly improves
performance. NVIDIA’s CUDA and OpenCL (Open Computing Language) are programming
frameworks that enable developers to write code for GPUs [Sanders, 2010] using a tech-
nique known as General-Purpose computing on Graphics Processing Units (GPGPU). Since
2008, GPUs have seen widespread adoption in the computing market. NVIDIA reports that
by 2016, over one billion CUDA-enabled GPUs were sold [Hwu and Patel, 2018].

Field-Programmable Gate Arrays (FPGAs) are reconfigurable hardware acceler-
ators particularly well-suited for real-time, compute-intensive tasks. In contrast to GPUs,
which are designed for general-purpose parallel processing, FPGAs are reconfigurable and
can be tailored for specific functions, making them highly adaptable to different applications.
Their design supports low-latency operations and efficient parallelism, which is crucial for
rapid data acquisition and image processing. For instance, FPGAs are effective in real-
time image filtering and video processing, achieving high throughput and performance even
under strict timing needs [Hudomalj et al., 2020]. Their energy efficiency and hardware-
level optimizations enhance their popularity in telecommunications and edge computing. As
noted by Hwu and Patel [2018], FPGA solutions are emerging in cloud computing. Microsoft
reports that more than one million servers are equipped with FPGA accelerators in Azure
Cloud data centers. These FPGA accelerators enhance the performance of network host
functions. By offloading the network stack functions to FPGAs, these tasks can be executed
more efficiently in terms of energy consumption, freeing up host computing resources for
applications and boosting the cost-effectiveness of cloud server provisioning.

Hardware accelerators can be engineered in various configurations. Based on their
interaction with the central processor, they may be classified into two main categories: tightly
coupled accelerators and coprocessors.

Tightly coupled (or tightly integrated) hardware accelerators are designed to work
closely with the main processor’s architecture. They allow efficient communication and data
transfer with reduced latency and often share resources like the memory bus. These accel-
erators are often designed to act like an additional execution unit and must be tailored to
the specific main processor architecture. However, due to their unique design, they can take
longer to develop and have limited reuse.

22

A coprocessor is a separate, loosely coupled processing unit that accelerates spe-
cific tasks while allowing the main processor to focus on general-purpose tasks. A dedicated
bus/interface, like AXI or PCI-Express, often connects coprocessors to the main processor.
Coprocessors can be added or removed from a system more easily than tightly integrated
accelerators. This scalability allows for flexibility in system design and upgrades without re-
quiring significant modifications. Furthermore, coprocessors can be re-used in systems that
implement the same dedicated bus/interface.

2.1.1 Parallelism Basic Concepts

Data parallelism distributes data across multiple processing units to perform the
same operation concurrently. This optimizes resource use, as all units execute similar tasks
simultaneously. It excels in tasks requiring identical operations on several data pieces, en-
suring optimal load balance. In this method, computation occurs synchronously, and paral-
lelization is limited by input size and available processing elements.

Task parallelism aims for concurrent execution of independent tasks, breaking larger
tasks into smaller ones for different processing units. The extent of parallelization is limited
by the number of independent tasks available, and load balancing is influenced by hardware
and scheduling algorithms.

Single Instruction, Multiple Data (SIMD) and Multiple Instruction, Multiple Data
(MIMD) are computing architectures closely linked to data and task parallelism [Hennessy
and Patterson, 2011]. SIMD architectures naturally enable data parallelism by executing the
same instruction across multiple data elements simultaneously. On the other hand, MIMD
architectures facilitate task parallelism by allowing the execution of diverse instructions on
various data sets.

SIMD is a parallel processing architecture that operates on multiple data elements
with one instruction. Unlike scalar architectures, SIMD processes multiple elements simul-
taneously through a single instruction stream controlling various processing elements. It is
ideal for tasks needing the same operation on large datasets.

MIMD is a parallel computing architecture in which multiple processors execute
different instructions on different data simultaneously. Each processor has its own control
unit and memory, making it flexible for various applications and capable of handling diverse
tasks. However, it may require more complex coordination than SIMD architecture.

23

2.1.2 Vector Architectures

Vector architectures are systems that efficiently process and manipulate vectors or
data arrays. Following the SIMD paradigm, they concurrently apply a single instruction to
multiple data elements, enabling high throughput and parallel processing efficiency. Vector
instructions are specialized commands that operate on entire vectors in a single step.

Vector processors frequently utilize techniques such as pipelining and parallel ex-
ecution to enhance performance further. Pipelining facilitates the overlapping of instruction
execution stages, whereas parallelism allows for the concurrent execution of multiple vec-
tor operations. Vector processors are specifically optimized for consistent and predictable
memory access patterns, as they operate on consecutive elements within vectors.

Vector processors usually feature specialized registers designed to store and ma-
nipulate vector data. These registers can contain multiple vector elements, enabling their
simultaneous processing [Hennessy and Patterson, 2011]. A notable advantage of these
specialized registers is their reconfigurability, allowing modifications to the element length or
size at runtime. This capability allows the vector processor to handle various data types or
adjust precision accordingly.

Vector architectures improve computational performance, especially for large-scale
data processing tasks. These architectures have been utilized in numerous processors since
the early days of computing. A prime example is the ILLIAC IV [Barnes et al., 1968],
created in the 1960s at the University of Illinois, one of the first processors with vector
architecture. The Cray-1 [Russell, 1978], introduced in 1976, became a renowned vec-
tor processor, performing operations at unprecedented speeds and driving advances in
climate modeling and molecular dynamics. In the following decades, vector processing
was incorporated into many supercomputers, but by the 1990s, it began to be integrated
into general-purpose processors, notably through SIMD extensions in CPUs. In 1994, the
SPARC ISA, a Reduced Instruction Set Computer (RISC) ISA, introduced the Visual Instruc-
tion Set (VIS) that reuses floating-point registers to store multiple values of 8, 16, or 32-bit
(https://en.wikipedia.org/wiki/Visual_Instruction_Set. Intel’s MMX (Multimedia Extensions)
in the mid-1990s [Peleg and Weiser, 1996], SSE (Streaming SIMD Extensions) in the early
2000s, and Intel’s Advanced Vector Extensions (AVX) [Lomont, 2011], introduced in 2011,
represent significant milestones in bringing vector processing to mainstream processors.

2.2 RISC-V ISA

RISC-V is a modern, open, and extensible Instruction Set Architecture (ISA), ini-
tially developed at the University of California, Berkeley. It aims to serve as an open stan-

https://en.wikipedia.org/wiki/Visual_Instruction_Set

24

dard ISA. RISC-V is managed by RISC-V International, a global non-profit organization
(https://riscv.org/about/). The architecture’s design principles emphasize simplicity, flexibil-
ity, and extensibility, making it scalable for a wide range of applications. This scalability is
achieved through a core set of instructions and optional extensions.

Table 2.1: The currently defined RISC-V modules are divided into Base and Extensions.
Modules can be in the Ratified, Frozen, or Draft status. Source: [RISC-V Foundation,
2024a].

Base Description Version Status
RV32I 32-Bits Base Integer Instruction Set 2.1 Ratified
RV32E 32-Bits Base Integer Instruction Set for embedded systems 2.0 Ratified
RV64I 64-Bits Base Integer Instruction Set 2.0 Ratified
RV64E 64-Bits Base Integer Instruction Set for embedded systems 2.1 Ratified
RV128I 128-Bits Base Integer Instruction Set 1.7 Draft

Extension Description Version Status
Zifencei Extension for Instruction-Fetch Fence 2.0 Ratified

Zicsr Extension for Control and Status Register (CSR) Instructions 2.0 Ratified
Zicntr Extension for Base Counters and Timers 2.0 Ratified
Zihpm Extension for Hardware Performance Counters 2.0 Ratified

Zihintntl Extension for Non-Temporal Locality Hints 1.0 Ratified
Zihintpause Extension for Pause Hint 2.0 Ratified

Zimop Extension for May-Be-Operations 1.0 Ratified
Zicond Extension for Integer Conditional Operations 1.0 Ratified

M Extension for Integer Multiplication and Division 2.0 Ratified
Zmmul Extension for Integer Multiplication 1.0 Ratified

A Extension for Atomic Instructions 2.1 Ratified
Zawrs Extension for Wait-on-Reservation-Set instructions, 1.01 Ratified
Zacas Extension for Atomic Compare-and-Swap (CAS) Instructions 1.0 Ratified

RVWMO Memory Consistency Model 2.0 Ratified
Ztso Extension for Total Store Ordering 1.0 Ratified
CMO Extensions for Base Cache Management Operation ISA 1.0 Ratified

F Extension for Single-Precision Floating-Point 2.2 Ratified
D Extension for Double-Precision Floating-Point 2.2 Ratified
Q Extension for Quad-Precision Floating-Point 2.2 Ratified

Zfh Extension for Half-Precision Floating-Point 1.0 Ratified
Zfhmin Extension for Minimal Half-Precision Floating-Point 1.0 Ratified

Zfa Extension for Minimal Half-Precision Floating-Point 1.0 Ratified
Zfinx Extension for Floating-Point in Integer Registers 1.0 Ratified
Zdinx Extension for double-precision Floating-Point in Integer Registers 1.0 Ratified
Zhinx Extension for half-precision Floating-Point in Integer Registers 1.0 Ratified

Zhinxmin Extension for Minimal half-precision Floating-Point in Integer Registers 1.0 Ratified
C Extension for Compressed Instructions 2.0 Ratified
B Extension for Bit Manipulation 1.0 Ratified

*Zce Extension for Code Size Reduction 1.0 Ratified
P Extension for Packed-SIMD Instructions 0.2 Draft
V Extension for Vector Operations 1.0 Ratified

*Zbkb Bitmanip instructions for Cryptography 1.0 Ratified
*Zbkc Bitmanip instructions for Cryptography 1.0 Ratified
*Zbkx Crossbar permutations 1.0 Ratified

*Zk Standard scalar cryptography extension 1.0 Ratified
*Zks ShangMi Algorithm Suite 1.0 Ratified

*Zvbb Vector Basic Bit-manipulation 1.0 Ratified
*Zvbc Vector Carryless Multiplication 1.0 Ratified
*Zvkg Vector GCM/GMAC 1.0 Ratified

*Zvkned NIST Suite: Vector AES Block Cipher 1.0 Ratified
*Zvknhb NIST Suite: Vector SHA-2 Secure Hash 1.0 Ratified
*Zvksed ShangMi Suite: SM4 Block Cipher 1.0 Ratified
*Zvksg ShangMi Algorithm Suite with GCM 1.0 Ratified
*Zvkt Vector Data-Independent Execution Latency 1.0 Ratified

https://riscv.org/about/

25

The RISC-V ISA set is defined in its two-volume Instruction Set Manuals [RISC-V
Foundation, 2024a,b]. Table 2.1, adapted from RISC-V Foundation [2024a], contains the
current list of modules supported by the RISC-V standard. The Base modules correspond
to the ISA options available for implementation. The Instruction length defines the ISA and
can be 32, 64, or 128 bits, referred to as XLEN in the following sections.

Extensions are ways of improving a base module with additional standard instruc-
tions. The most relevant extensions are M, A, F and D, which are collectively known as the
G extension set. These extensions add integer multiply and division instructions (M), atomic
read-modify-write memory instructions (A), and single-precision and double-precision float-
ing point registers (F and D). The extension Zicsr adds a set of instructions that operate
atomically in the Control Status Registers (CSRs). Among the other ratified extensions are
the Zmmul extension, a subset of the M extension that excludes the division operations,
Compressed Instructions extension (C), which adds support to 16-bit instructions reducing
memory footprint. The Zicsr extension introduces instructions for accessing and controlling
the status of control and status registers (CSRs), and the Zicntr extension adds counters that
can be used as performance monitors. Compilation flags inform the compiler of which ex-
tensions are available in the target core, indicating the sets of instructions that the generated
code can contain.

The RISC-V community is active, with numerous custom extensions being devel-
oped and proposed for various applications. Members of this community also have the
opportunity to interact with teams responsible for specifying standard extensions currently in
development. These extensions fall into three classifications: (i) Draft, which are expected
to change before ratification; (ii) Frozen, not anticipated to change substantially before ratifi-
cation; and (iii) Ratified, which have been officially ratified and are, ideally, permanent.

The RISC-V privileged architecture is a complement of base ISAs. It defines privi-
lege levels and functionalities required to run operating systems and attach external devices.
Privilege levels or modes encapsulate different levels of software permissions. There are
three defined privileges which are listed in Table 2.2. Machine (M) mode is the most priv-
ileged level, and its implementation is mandatory in a privileged architecture. Supervisor
(S) is the second privilege level and is often used by operating systems. User (U) mode is
the less trustable mode and has the lowest privilege, its operation is restricted. Note that the
privilege level 2 is reserved for future use.

Table 2.2: RISC-V privilege levels. Source: [RISC-V Foundation, 2024b].

Level Encoding Name Abbreviation
0 00 User/Application U
1 01 Supervisor S
2 10 Reserved
3 11 Machine M

26

All RISC-V hardware implementations must support the M mode, as this is the most
privileged mode, which has access to all the Hardware Thread (hart) functionalities. All code
that runs in machine mode is considered trusted and will not provide any protection against
incorrect or malicious application code. The user mode (U) is the most common option
besides M since it protects the rest of the system from application code. The hart usually
initializes in the M mode, where boot configurations occur. Next, the mode switches to U, if
available. The U mode runs applications until a trap occurs, forcing the privilege to change
to a higher level. When a trap occurs, the privilege changes, and the hart branches to a
trap handler routine. The trap handler filters the cause of the trap and performs adequate
treatment of the trap.

The privileged architecture specifies the CSRs responsible for tracking the hart’s
privilege and status, and thus requires the RISC-V Zicsr extension. All Zicsr instructions are
atomic, meaning they read and write CSRs in a single instruction. Each privilege level has its
own set of CSRs, which can be accessed by either its own privilege or by a higher privilege
one. If an application tries to access a CSR of a set that belongs to a higher privilege mode,
this causes an exception.

2.3 RISC-V Vector Extension

The RISC-V Vector (V) Extension is designed to enhance the RISC-V ISA by intro-
ducing vector processing capabilities. Its primary purpose is to provide efficient and scalable
data parallelism, which is beneficial for large-scale data processing applications, such as sci-
entific computing, ML, multimedia processing, and other high-performance computing tasks.

The RVV extension adds 32 vector registers (v0-v31) and seven Control and Status
Registers (CSRs). Figure 2.1 details the parameters that define an RVV implementation.
The parameters are:

• VLEN: each vector register has a fixed length, which must be a power of 2 (Figure 2.1 A).

• ELEN - element length: also a power of 2, defines the maximum size of a vector element
that any operation can produce or consume (Figure 2.1 B). The VLEN and ELEN param-
eters are fixed and defined at design time. In Figure 2.1, they are represented as arrows
above the registers.

• SEW - Selected Element Width: the RVV extension allows runtime configuration of the
element width, ranging from 8-bit elements up to ELEN-bit elements (Figure 2.1 C). This
feature enables the same hardware to support various operations and precision levels.

• LANE: design parameter, refers to the hardware capabilities of data-parallel processing,
in other words, processing elements. As Figure 2.1 D shows, the implementations can
vary in number of Lanes, a unique Lane implies that only one ELEN-wide element will be

27

Figure 2.1: RISC-V Vector extension parameters demonstration. The first part explores the
VLEN, the second the ELEN, the third the SEW, and the last part introduces Lanes. Source:
the Author.

processed per cycle. Using fewer Lanes can help keep the area footprint low but requires

28

more multiplexing and/or sliding of operands. More Lanes increase the throughput as the
number of elements processed per cycle increases.

The PEs must be capable of processing ELEN-wide elements but can vary in capa-
bilities in different implementations. A PE might support just one element at a time or multiple
smaller ones. For example, a PE with 32-bit capabilities might support multi-precision op-
erations, performing 1x 32b operation, 2x 16b, or 4x 8b operations in a single cycle. While
other PEs might support just one operation per cycle, independent of element-width.

Equations 2.1 and 2.2 define how VLEN, ELEN, and SEW impact the number of
elements a register can hold.

Maximum Number of elements in a register =
VLEN
ELEN

(2.1)

Number of elements in a register =
VLEN
SEW

(2.2)

The instructions of the RVV extension always start with the “V” prefix followed by
the operation name. The operations can have different operands, which are specified by a
suffix in the instruction name. The suffix starts with a dot and is followed by the operand
types: “V” for vector, “I” for immediate, and “X” for scalar.

The vector operands or results may occupy one or more vector registers, configur-
ing a register group. A register group is configured using a CSR field called “LMUL”. The CSR
field “VL”, which stands for Vector Length, specifies the number of elements the instruction
will process in the iteration and depends on the SEW and LMUL values as Equation (2.3)
shows:

Maximun number of elements in a vector group (VL) =
VLEN
SEW

× LMUL (2.3)

A Configuration Instruction is provided to allow rapid configuration of the vector
CSRs to match application needs. It changes SEW, LMUL, VL, and tail/mask policies. It is
named “vsetvl” and has two variants with immediate operands as Table 2.3 shows. Assem-
bler names for immediate configurations are also shown in Table 2.3.

Code 2.1 demonstrates the shape and use of the vector configuration instructions.
The application determines the total amount of elements to process, known as the applica-
tion vector length (AVL), which serves as a proposed value for VL. In return, the hardware
indicates in the rd register the (often smaller) number of elements it can manage in each
iteration. This value, stored in the VL CSR and referred to as “supported VL", depends on
the microarchitectural design and the vtype setting, see Equation (2.3). Code 2.2 presents
an example of the returned “supported VL" for a given architecture.

29

Table 2.3: Vector Configuration Instructions and Assembler names for immediate configura-
tions. Source: the Author.

Configuration Instruction Description
vsetvl Vector Configuration Instruction
vsetvli Vector Configuration Instruction with immediate VL
vsetivli Vector Configuration Instruction with immediate VL and immediate Configs

Config Selected Element Width (SEW)
e8 SEW=8b

e16 SEW=16b
e32 SEW=32b
e64 SEW=64b

Config Register Group (LMUL)
mf8 LMUL=1/8
mf4 LMUL=1/4
mf2 LMUL=1/2
m1 LMUL=1, assumed if m setting absent
m2 LMUL=2
m4 LMUL=4
m8 LMUL=8

Config Tail and Mask Policies
tu Tail Undisturbed
ta Tail Agnostic
mu Mask Undisturbed
ma Mask Agnostic

1 # t 0 = R e c e i v e s t h e s u p p o r t e d VL (how many e l e m e n t s t h e h a r d w a r e s u p p o r t s g i v e n t h e new
v t y p e c o n f i g u r a t i o n s)

2 # t 1 = A p p l i c a t i o n VL (AVL)
3 # t 2 = new v t y p e
4 vsetvl t0, t1, t2
5
6 # t 0 = R e c e i v e s t h e s u p p o r t e d VL
7 # 8 = AVL , a p p l i c a t i o n v e c t o r c o n t a i n s 8 e l e m e n t s
8 # e32 = 32 b e l e m e n t s (SEW= 3 2)
9 # m1 = Group s i z e i s one r e g i s t e r (LMUL= 1)

10 # t u = T a i l U n d i s t u r b e d (T a i l e l e m e n t s a r e u n t o u c h e d)
11 # ma = Mask a g n o s t i c (Masked e l e m e n t s c a n c h a n g e)
12 vsetivli t0, 8, e32 , m1 , tu , ma

Code 2.1: Commented assembly with Vector Configuration instructions for demonstration.

The behavior shown in Code 2.2 makes the Vector extension application scalable
and independent of VLEN. This means that code compiled for a specific VLEN can run on
other platforms that support larger VLENs. Consequently, the RVV extension specification
introduces "Minimum Vector Length Standard Extensions" using the "Zvl*" prefix. Thus, code
compiled with the extension Zvl128b can run on any platform with VLEN ≥ 128. The value
obtained in the destination register (supported VL) can dictate loop control by indicating the
number of elements processed in each iteration. Typically, this value is deducted from AVL,
and the loop continues until AVL equals 0.

30

1 # H a r d w a r e C o n f i g u r a t i o n :
2 # VLEN = 128 b and ELEN = 32 b
3
4 # Loads t 1 w i t h t h e AVL (6 4 e l e m e n t s)
5 li t1 , 64
6
7 # t 1 = AVL
8 # m2 = Group s i z e i s two r e g i s t e r s (LMUL= 2)
9 # e32 = 32 b e l e m e n t s (SEW= 3 2)

10 vsetvli t0 , t1 , e32 , m2, ta, ma
11
12 # t 0 = S u p p o r t e d VL
13 # t 0 = VLEN / SEW * LMUL
14 # t 0 = 1 2 8 / 3 2 * 2
15 # t 0 = 8 e l e m e n t s
16 # With t h e g i v e n h a r d w a r e c o n f i g u r a t i o n , one i t e r a t i o n o f a v e c t o r i n s t r u c t i o n w i l l p r o c e s s

o n l y 8 e l e m e n t s f rom t h e 64 r e q u e s t e d .

Code 2.2: Commented Assembly with Vector Configuration instruction and AVl relationship
example.

The CSR field vstart specifies the first element to be processed by the instruction,
leaving earlier elements in the destination vector undisturbed. Non-zero vstart values may
cause vector instructions to run substantially slower.

Table 2.4 summarizes the main parameters and configurations used in an RVV
implementation and vector operations.

Table 2.4: RISC-V Vector Extension Parameter and Configuration Summary. Source: the
Author.

Parameter/Configuration Description Runtime
VLEN Vector register size in bits (power of 2) N
ELEN Maximum element size (power of 2, ELEN ≤ VLEN) N
SEW Selected element width (SEW ≤ ELEN) Y
LMUL Register group size (1, 2, 4, and 8) Y

VSTART Vector’s starting index Y
VL Vector size in elements Y

Figure 2.2 exemplifies how two vector registers are used in a group operation. The
vector registers v2 and v3 are grouped with the LMUL=2 config. Considering VLEN=128 and
the current SEW=32, the amount of elements in each register is 4 (128

32 , see Equation (2.2)).

Given the previously presented parameters, the register group can hold up to 8
elements (using Equation (2.3): 128

32 × 2 = 8). The CSR field vstart=1 setting indicates that
the first element to be processed is the element at index 1, which implies that the position 0
of the vector register v2 will not be touched. The VL=7 sets the vector length in elements,
indicating that seven elements will be processed. As the vector starts in position 1 (vstart=1),
the elements from 1 to 6 will be processed. Position 7 will not be touched, as the operation
will end in position 6.

31

Figure 2.2: Vector registers during operation. Position indexes are represented under the
register with parentheses. Source: the Author.

Masking is supported on many vector instructions. The mask value used to control
the execution of a masked vector instruction is always supplied by the vector register v0.
Each bit of v0 represents an element in the register group. Figure 2.3 exemplifies how two
vector registers are used in a masked operation, applying a mask to the previously presented
example of Figure 2.2.

Figure 2.3: Vector registers during operation. Position indexes are represented under the
register with parentheses. The "X" values represent don’t-cares. Source: the Author.

The vector v0 supplies the mask which will be applied to the vector registers v2 and
v3, grouped with the LMUL=2 config. The selected element width (SEW) is set to 32 bits,

32

thus each vector register can hold 4 elements (VLEN/SEW). As the vector starts in position
1 (vstart=1), the elements from 1 to 6 will be processed. Position 7 will not be touched, as
the operation will end in position 6. Two elements are masked-off: the element at the vector
index 3, located at the last position of register v2, and the element at the vector index 4,
located at the first position of register v3. The remaining elements are the active elements
which will generate results.

Loads and stores instructions support three memory addressing modes:

• unit-stride - access elements stored contiguously in memory starting from the base effec-
tive address.

• strided - constant-strided operations access the first memory element at the base effective
address and then access subsequent elements at address increments given by the byte
offset in the register specified by a scalar register.

• indexed - Vector-indexed operations add the contents of each element of the vector offset
operand specified by a vector register to the base address to give the effective address of
each element.

Subset extensions were proposed to address the numerous instructions defined in
the RVV extension. The complete extension, designed for application processors, is named
with a single-letter “V”. It includes all the instructions defined in the specification and requires
the scalar core to support floating-point operations with single and double precision.

Smaller extensions intended for embedded use are named with a “Zve" prefix,
providing varying degrees of vector support. Table 2.5 lists the minimum VLEN for each
extension and what floating-point types are needed/supported. They support all vector load
and store, integer arithmetic, vector mask, reduction, and permutation instructions.

Table 2.5: Embedded vector extensions. Source: [RISC-V Foundation, 2024a].

Extension Minimum VLEN Supported SEW FP32 FP64
Zve32x 32 8, 16, 32 N N
Zve32f 32 8, 16, 32 Y N
Zve64x 64 8, 16, 32, 64 N N
Zve64f 64 8, 16, 32, 64 Y N
Zve64d 64 8, 16, 32, 64 Y Y

2.4 Memphis

This Section presents Memphis-V (pronounced memphis-five), a framework for au-
tomatic generation and validation of manycores. Memphis-V stands for Manycore Modeling
Platform for Phivers. It allows for designing a NoC-based manycore system surrounded by
peripherals. Debugging tools are available to verify hardware and software simultaneously.

33

The Memphis-V platform is an evolution of Memphis [Ruaro et al., 2019] with a redesigned
software stack, RISC-V processors, and the inclusion of a broadcast-capable NoC. Mem-
phis, in turn, originated from Hermes Multiprocessor System (HeMPS) [Carara et al., 2009],
but with support for external peripherals. Memphis-V is an open-source framework with code
and documentation available at https://github.com/gaph-pucrs/Memphis-5.

Figure 2.4 overviews the Memphis-V platform stack. The bottom of the stack is
the hardware, called Phivers, which stands for Processor Hive for RS5 (Section 2.4.1). The
middle of the stack is the OS kernel, called MAestro (Section 2.4.2). The software is on
the top of the stack, composed of a set of benchmark applications and the Management
Application (MA). Outside the stack are the generation and debugging tools provided by the
Memphis-V framework, which aid in the platform’s validation. The Memphis-V platform stack
provides a complete manycore model.

Figure 2.4: Memphis-V platform stack. Source: [Dalzotto et al., 2021]

Memphis-V manages the system by implementing a Management Application [Dal-
zotto et al., 2021]. MA transforms the management problem into a distributed application
through high-priority tasks, allowing management to benefit from the high parallel power of
manycores. The MA management is out of the scope of this work, with details available in
[Dalzotto et al., 2021].

2.4.1 Phivers: Processor Hive for RS5

Figure 2.5a shows the homogeneous region of Memphis-V with PEs and the exter-
nal region with peripherals connected to the manycore borders. Two default peripherals are
shown in the Figure, Application Injector and MA Injector. Figure 2.5b pictures the compo-
nents of each PE, including:

• An RS5 [Nunes et al., 2024] processor, detailed in Chapter 4.

• True dual-port scratchpad memories for instruction and data.

• A Hermes [Moraes et al., 2004] Packet-Switching (PS) router. Hermes has XY routing,
round-robin arbitration, input buffering, and credit-based control flow.

https://github.com/gaph-pucrs/Memphis-5

34

• A BrLite Broadcast (BR) router. BrLite is a version of BrNoC [Wachter et al., 2017]
without backtracking, thus with a smaller area footprint. BrLite transmits small control
and monitoring messages in a single flit. Its broadcast transmission presents low la-
tency and fault tolerance due to its flooding behavior. It occupies approximately 50%
of the Hermes router area.

• A Direct Memory Network Interface (DMNI) [Ruaro et al., 2016], integrating Network
Interface (NI) and Direct Memory Access (DMA) modules.

(a) Memphis-V organization. (b) Memphis-V PE.

Figure 2.5: Memphis-V manycore overview. Adapted from: [Ruaro et al., 2019].

Memphis-V is distributed with two default peripherals: Application Injector and MA
Injector. Both peripherals are responsible for dynamic loading tasks into the manycore.

The Application Injector is responsible for deploying applications into the system.
The first injection step occurs when the peripheral detects an incoming new application. The
Injector sends a message to an MA task responsible for mapping the application, called
Mapper Task. The message describes the application that will be used by the mapping
algorithm implemented by the Mapper Task. After successfully mapping, the Mapper Task
answers the peripheral with an array containing the mapped task IDs with their mapped
locations. Then, the Application Injector sends the task binaries individually to each mapped
PE. The kernel at the target PEs informs the Mapper Task that the task is allocated. When
all tasks are allocated, the Mapper Task sends a task release message containing all the
application task locations back to each allocated PE kernel.

For security reasons, it is necessary to separate the deployment of MA tasks, such
as the Mapper Task, from user tasks. Thus, the MA Injector is separated from the Application

35

Injector but uses the same protocol described above. The MA Injector’s main functional
difference from the Application Injector is injecting the Mapper Task first, sending it to a PE
defined at design time.

2.4.2 MAestro: the Management Application Operating System

Figure 2.6 illustrates MAestro, an embedded OS loaded into all PEs. MAestro
uses a microkernel design, where all non-core functionalities, such as management, are in
separate processes executing at a lower privilege level.

(a) MAestro executes in M-mode, with purple
background. User tasks execute in U-Mode,
with yellow background.

(b) Memory layout. The
memory is organized in
equally sided pages.

Figure 2.6: MAestro overview. Adapted from: [Ruaro et al., 2019].

The core functionalities of MAestro, highlighted inside the purple rectangle in Fig-
ure 2.6a are:

• Hardware Abstraction Layer (HAL): the HAL abstracts the RS5 processor, providing
CSR access, memory management, and context switching.

• System calls: built on top of newlib-nano [Red Hat, 2024], MAestro provides 6 POSIX
system calls to handle standard output, dynamic memory allocation, and process control,
along with several manycore-specific system calls.

• Interrupt handling: MAestro handles RTC and peripheral interrupts, such as the DMNI
that abstracts both Hermes and BrLite routers.

36

• Multitasking: Through Xosvm (Section 4.6), MAestro supports multitasking with dynamic
application loading. Figure 2.6b pictures the contiguous memory pages when multiple
tasks are allocated into the scratchpad memory.

• Task scheduling: MAestro supports preemptive scheduling through timer interrupts pro-
vided by the RTC. The built-in schedulers support best-effort tasks through round-robin
and soft Real-Time (RT) tasks through Least Slack Time (LST).

• Communication: MAestro includes drivers and a protocol stack to enable the commu-
nication through the NoC. A Message-Passing Interface (MPI)-like Application Program-
ming Interface (API) provides communication access to user applications. This mech-
anism supports bidirectional message exchange, including kernel-to-task, peripheral-to-
task, and peripheral-to-kernel communication, thereby implementing a message-passing
Inter-Process Communication (IPC) system.

• Monitoring: MAestro monitors the system through Low-Level Monitors (LLM), which fetch
monitored metrics without complex computation. The OS invokes the LLMs periodically,
collecting data from, e.g., instruction counters for power and temperature estimation or
QoS monitors. Data generated by the LLM is sent through BrLite, and handled by the
monitoring framework.

2.4.3 Platform features

Memphis-V provides a set of 14 standard benchmarks to evaluate the manycore.
Applications in Memphis are modeled as Communication Task Graphs (CTG). CTG is a
model to represent functional parallelism, where an application is composed of independent
parts and thus divided into tasks [Rauber and Rünger, 2013]. A graph node represents each
task in a CTG, and the graph edges represent the communication between these tasks.

A parallel application is often structured in a pattern effective for different applica-
tions [Rauber and Rünger, 2013]. These patterns provide a specific coordination structure
for the application. The three main patterns used by Memphis-V applications are:

• Fork-join: a task forks the workload, splitting the computation between worker tasks.
Another task awaits for the workers termination to join the results.

• Master-slave: a master task controls and distributes the workload to its slaves, or
worker tasks. The master is also often responsible for executing the main part of the
program and joining the results.

37

• Pipeline: data is forwarded from task to task to perform different processing steps
in sequence. Parallelism is achieved by partitioning the data into streams that flow
through the pipeline stages.

The OS support library, built on top of newlib-nano, can interface with any user-
level application. The Memphis-V library, known as libmemphis, offers four procedures to
retrieve information about the manycore system, such as the processing element (PE) ad-
dress where the application is executing, and six message-passing functions. It also in-
cludes procedures to assist in the implementation of MA tasks. Additionally, the Memphis-V
utilities library, referred to as libmutils, provides supplementary data structures to support
application development.

Memphis-V has a framework design flow guided by files written in the YAML markup
language. A test case is a file that describes the features of the platform, and a scenario is
a file that lists the applications to evaluate and the parameters for the MA. The configuration
is interpreted by Python programs that generate the hardware model and build the software
stack and applications. The test case supports the following parameters:

• Page size: the maximum memory a task can occupy for both instructions and data.
These parameters will define the scratchpad memory size and the maximum number
of tasks in a PE.

• Maximum number of tasks: defines the maximum number of tasks per PE. Together
with page size, it defines the scratchpad memory size.

• Manycore dimension: the number of PEs in the manycore, defined by a 2D mesh.

• Peripherals: a list of peripherals connected to the NoC borders.

• Debugging definitions: supports seven distinct debugging configurations for simula-
tion, enabling designers to balance debugging granularity and simulation performance.

Memphis-V debugging features allow data extraction at simulation time. This data
includes NoC traffic, instructions executed by the processor, memory access log, scheduling
status, and task log. The debugging step is aided by a graphical tool that allows visualizing
the data extracted and provides several system metrics.

2.5 Convolutional Neural Networks (CNNs)

Machine learning (ML) is a subset of artificial intelligence that enables computers to
“learn” and make decisions without being explicitly programmed [Mahesh, 2020]. Essentially,
these algorithms use systems to recognize patterns, extract meaningful insights, and adjust

38

their behavior based on the information they process. This set of algorithms can improve its
performance over time, especially during the “training phase” which uses prepared data sets
to create the ML model capable of classifying the data. This phase seeks to evolve the model
to optimize the results, generally using a metric called “precision”, a value that measures the
amount of data recognized/classified correctly. The learning process is iterative and can be
done using several techniques, such as supervised or unsupervised learning.

Machine Learning applications require hardware accelerators to handle the consid-
erable computational demands of their algorithms effectively. The increase in computational
capabilities, commonly supported by GPUs and dedicated hardware, has enabled the train-
ing of complex models like deep neural networks (DNN). This enhanced computing power
has speedup both the automatic training phase and the subsequent inference phase of DNN
models in their intended applications [Silvano et al., 2023].

Convolutional Neural Networks (CNNs) are a specialized type of DNN designed to
process grid-like data, such as images. Unlike traditional neural networks, CNNs use convo-
lutional layers to automatically detect spatial features, reducing the need for manual feature
extraction. This architecture makes CNNs highly effective for tasks like image recognition,
object detection, and image segmentation.

Figure 2.7: Convolutional Neural Network structure. Source: [Phung and Rhee, 2018].

Figure 2.7 illustrates the general architecture of a CNN, which contains the following
components:

• Convolution Layer: the heart of CNNs. It performs multiplications and summations of
input values. Convolution employs filters (often referred to as kernels), which restrict
these operations to specific matrix windows. Each filter consists of weights, known as
parameters. Additionally, convolution incorporates a variable called stride, represent-
ing how many positions the filter shifts over the input matrix. Figure 2.8 depicts how a
convolution operation is performed using a 3x3 kernel;

• Activation Function: a non-linear function that facilitates the classification process in
neural networks. This function is applied after a convolution operation to introduce non-

39

linearity into the model. Commonly used activation functions include the hyperbolic
tangent (tanh), the exponential function, and the Rectified Linear Unit (ReLU);

• Pooling Layer: this layer reduces the amount of data for processing. In contrast to
convolutional layers, pooling layers lack parameters and instead consist of operations.
The most common operations are Average Pooling and Max Pooling. Average Pooling
calculates the average values within a window, whereas Max Pooling identifies the
highest value. Figure 2.9 represents a max pooling using 2x2 filter size and stride 2;

• Padding: a technique to adjust the input size for a layer with specific configurations.
This involves appending rows and columns of zeros around the original input map,
resulting in a new map with dimensions that are compatible with the subsequent layer
(ensuring the map size aligns with the stride and filter size);

• Fully Connected (FC): the FC layer is used at the end of a CNN, connecting all pre-
ceding output layers to each input for the FC. The output from this layer delivers the
classification result.

Figure 2.8: Representation of a Convolution Operation using a 3x3 filter/kernel. Input data is
convoluted using the kernel to generate a point in the convoluted feature. Source: [Patterson
and Gibson, 2017].

Figure 2.9: Representation of a Max pooling operation using 2x2 filter size and stride 2.
Source: [Rahman et al., 2022].

40

A step of a convolution layer is shown in Figure 2.8. Multiplications are performed
between the weights of the kernel and the input feature map (IFMAP), the results of the
multiplications are then accumulated to generate a complete convolution value. A complete
convolution layer involves convoluting the entire IFMAP to generate the output feature map
(OFMAP), using the stride to slide over the IFMAP after each convolution step. Also, to
generate the OFMAP, each of the resulting values of each convolution step is added to a
bias value and applied to the activation function. The input of a convolutional layer can
comprise multiple IFMAPs, which in this case can be called channels, and is demonstrated
in Figure 2.10. Input channels can differ across networks, typically for RGB images there
are 3, with each channel representing a color. Generally, OFMAPs feature several channels,
with the quantity specified uniquely for each network and layer, since the OFMAP from one
layer serves as the IFMAP for the following layer. For each OFMAP channel, there is an
associated set of filters/kernels which are used in the convolution with the IFMAP. So, with
support of Figure 2.10 we can conclude:

• An IFMAP with C channels uses a set of C filters/kernels;

• The amount of Output Channels of the OFMAP defines the number of sets (C-wide) of
filters/kernels, thus # Filters = Output Channels;

• Each set of filters/kernels will generate one output channel of the OFMAP.

.

Figure 2.10: The convolution operation in CNNs. Source: [Korol, 2019].

Formally, Equation (2.4) describes the convolution.

41

O[co][x][y] = B[co] +
Ci−1∑
k=0

Width−1∑
i=0

Height−1∑
j=0

(I[k][Sx + i][Sy + j] ∗ W[co][i][j]) (2.4)

where: co is the current output channel; x and y are the horizontal and the vertical positions;
Ci is the total number of input and filter channels; Width and Height correspond to the filter
size; S is the stride; O is the output; I is the input; W is the filter tensors; and B is the bias
vector.

The initial work to utilize a trainable Convolutional Neural Network was LeNet [Le-
Cun et al., 1989]. In 1998, the architecture introduced by LeCun et al. comprised a seven-
layer deep structure capable of recognizing handwritten digits using 60,000 parameters.

In 2012, AlexNet won the ImageNet competition [Krizhevsky et al., 2017], marking
a significant milestone in neural network development. Its architecture introduced greater
depth and a higher number of parameters than LeNet. AlexNet consists of five convolutional
layers employing filters of sizes 11x11, 5x5, and 3x3, and includes 60 million parameters.
It achieved a Top-5 error rate of 15.3% on the ImageNet dataset, initiating a new era of
neural network research. Subsequent works have explored diverse architectures built on
similar foundational concepts, including GoogLeNet [Szegedy et al., 2015], ResNet [He
et al., 2016], and MobileNet [Howard et al., 2017].

The benefits of CNNs in classification tasks have resulted in the creation of frame-
works that assist developers in constructing their models by providing the necessary mech-
anisms for training and inference [Juracy et al., 2021]. Examples of frameworks include
Pytorch [PyTorch, 2024] and TensorFlow [TensorFlow, 2024]. These frameworks offer li-
braries for developing Machine Learning applications, including CNNs, which simplify the
training and inference phases using high-level programming languages like Python.

2.6 Final Remarks

This Chapter introduced key topics related to this Dissertation. The RISC-V Vector
(RVV) extension emerged as a promising candidate for a hardware accelerator due to its
ability to exploit data parallelism in a SIMD manner. Its popularity stems from the widespread
adoption of RISC-V cores and the open-source nature of the RISC-V ecosystem, which has
enabled the community to play an active role in its development.

Section 2.5 presented how a CNN is structured and its main components, while
Equation (2.4) detailed the operations executed by the convolutional layers, highlighting the
Multiply and Accumulate (MAC) operations, which usually are costly to be executed in hard-
ware, taking several cycles if handled through software. This type of operation is well-suited

42

for hardware acceleration, mainly due to its focus on pure arithmetic tasks. The RVV ex-
tension provides numerous variations of MAC instructions, positioning it as a viable option
for accelerating CNNs. The RVV extension’s runtime programmability enables the core to
efficiently execute varying layers by reconfiguring the accelerator based on kernel size and
vector length. Masked operations allow operations on data windows, and the load-store
addressing modes provide good support for non-contiguous data access.

Due to its modular design, the RS5 processor is well-suited for testing the RVV ex-
tension as a CNN accelerator. Its architecture allows users to activate or deactivate various
extensions through design-time parameters, enabling them to select an optimal configuration
for specific applications and facilitating comparative analyses.

MEMPHIS-V offers a framework for easily configuring manycore platforms and nu-
merous features for launching and debugging parallel applications. Allied with RS5 modular
characteristics, the MEMPHIS-V platform becomes a powerful tool for manycore validation.

The CNN channels (depth dimension) can be significantly large (Alexnet’s first three
layers have 96, 256, and 384 channels, respectively), offering a good opportunity for par-
allelism because each channel calculation is independent. A CNN running in a scalar core
can have a long runtime for a single inference and needs a significant memory size to hold
the parameters necessary to run the network. Distributing channels across PEs in a many-
core environment effectively addresses both issues: each core manages a segment of the
network parameters while parallel processing accelerates the inference process, as shown
in the following chapters. When combining parallel processing with vector processing capa-
bilities, both Data Level Parallelism and Task Level Parallelism are explored simultaneously,
greatly influencing the time required for inferences.

43

3. RELATED WORK

This Chapter presents related work in the context of RISC-V hardware accelerators
targeting many domains:

• Section 3.1 presents a historical view of SIMD and vector accelerators, presenting the first
computers to use this approach and covering INTEL, ARM, and NVIDIA solutions.

• Section 3.2 is dedicated to RISC-V hardware accelerators; it is divided into works that
use the standard RVV extension (Section 3.2.1), custom SIMD or vector extensions (Sec-
tion 3.2.2), and those using dedicated RISC-V processors to control the accelerator (Sec-
tion 3.2.3).

• Section 3.3 presents the state-of-the-art for manycore hardware acceleration techniques.
It is divided into multi-core-based and NoC-based accelerators.

• Section 3.4 concludes the Chapter, positioning this Dissertation w.r.t. the state-of-art.

3.1 SIMD and Vector Accelerators

As Chapter 2 introduced, the use of SIMD and vector acceleration techniques is not
new. It started in the early days of computer developments, exploring SIMD techniques in
processors like the ILLIAC IV and the CRAY-1. It evolved and arrived at the general-purpose
processors through extensions like Intel’s MMX (Multimedia Extensions) and Advanced Vec-
tor Extensions (AVX).

ILLIAC IV [Barnes et al., 1968] was developed in the 1960s, as a parallel-array
computer containing 256 processing elements. Its architecture incorporated SIMD instruc-
tions with special features, including multi-array processing, multi-precision arithmetic, and
fast data-routing interconnections. The vector processing capabilities of Illiac IV further in-
creased its performance, leading to advancements in scientific and engineering simulations.
Despite facing programming complexity and maintenance challenges, its contributions laid
the groundwork for subsequent developments in parallel computing architectures.

The first supercomputer to successfully implement a vector processor was CRAY-1
[Russell, 1978]. It was announced in 1975, and the first unit was installed at Los Alamos
National Laboratory in 1976. Eighty Cray-1s were sold, making it one of the most successful
supercomputers in history. It could support 138 million floating-point operations per second
(MFLOPS) for sustained periods and even higher rates of 250 MFLOPS in short bursts. It
features eight 64-element vector registers, each element being 64 bits wide (summing 4096
bits).

In the mid-1990s, Intel [Intel Corporation, 2025] introduced the MMX (Multimedia
Extensions), the first set of SIMD instructions implemented in their processors. MMX was de-

44

signed to accelerate multimedia and communication applications [Peleg and Weiser, 1996],
featuring 64-bit registers that overlapped with the floating-point unit registers. In the early
2000s, Intel launched the SSE (Streaming SIMD Extensions), which addressed some of
MMX’s shortcomings. SSE introduced eight new 128-bit registers. Subsequent versions
(SSE2, SSE3, and SSE4) further expanded SSE, adding new instructions and capabilities
to enhance performance in multimedia and scientific applications. Intel’s Advanced Vec-
tor Extensions (AVX) [Lomont, 2011], introduced in 2011, represented a significant leap in
SIMD processing. AVX expanded the register size to 256 bits, enabling the simultaneous
processing of more data per instruction. AVX also introduced new instructions optimized for
complex mathematical computations and scientific workloads, making it highly suitable for
data analysis, machine learning, and simulation applications. Subsequent iterations, such
as AVX2 and AVX-512, enhanced the extension’s capabilities by supporting a wider range
of data types and increasing parallelism.

ARM Neon was introduced by ARM [ARM, 2025] as part of the ARMv7-A architec-
ture in 2009, focusing on SIMD operations for multimedia and DSP applications. NEON was
ARM’s response to the growing demand for efficient processing in mobile and embedded
devices, where power efficiency is critical. With the introduction of SVE (Scalable Vec-
tor Extension) in ARMv8-A, ARM moved towards scalable and flexible vector processing,
targeting HPC (high-performance computing) and AI workloads.

The ARM Neon extension can accelerate the performance of multimedia applica-
tions such as 3-dimensional graphics, image processing, and deep learning. There are 32
64-bit vector registers, D0 – D31, known as Double (D) registers. Two consecutive D regis-
ters can be combined into a Quad (Q) register. The bit width of the data in a vector register
can be set as 8, 16, 32, or 64, which means a vector register can accommodate multiple
data. Zhang et al. [2017] showed that Neon can offer a 5x speed-up for an edge detection
algorithm.

ARM Scalable Vector Extension (SVE) [Stephens et al., 2017] is designed for
High-Performance Computing (HPC) and shares similarities with the RVV extension, such
as making the vector register length implementation-dependent. The minimum word length
is 128 bits, and the maximum is 2048 bits. SVE can achieve speedups of up to 3×, even
when the vectors are the same size as those in Advanced SIMD.

ARM also features the M-Profile Vector Extension (MVE), known as “Helium”,
designed to quadruple processing speed with a twofold increase in datapath width. Helium
delivers significant performance improvements for ML and digital signal processing applica-
tions.

Alternative methods for SIMD techniques find applications in Digital Signal Pro-
cessing (DSP). The ARM Cortex-M4 and Cortex-M7 microcontrollers are known as Dig-
ital Signal Controllers (DSC) [ARM, 2016]. The DSC microcontrollers provide a blend of
traditional Microcontrollers (MCU) and DSP functionality in a single instruction set using

45

general-purpose registers to support DSP extensions. This approach can reduce system-
level complexity by removing the need for shared memory, MCU and DSP communication,
complex multiprocessor bus architectures, and other custom “glue” logic between the MCU
and DSP [ARM, 2016]. It also reduces software development costs, as a single compiler/de-
bugger/IDE can support the entire project. The DSP ISE supports 8-, 16-, 32- and 64-bit
types. These processors provide SIMD instructions that operate on 8- or 16-bit integers. It
offers MAC, saturation additions/subtractions, and other SIMD instructions. All registers are
still 32-bit wide, but the SIMD instructions operate simultaneously on 2 x 16-bit values or 4 x
8-bit values within a 32-bit register.

NVIDIA [NVIDIA Corporation, 2025] started its journey in SIMD and vector com-
puting, emphasizing graphics, eventually evolving into a more expansive vision of parallel
processing computing. NVIDIA’s CUDA marked a turning point, evolving GPUs from spe-
cialized tools into versatile computing powerhouses. NVIDIA utilizes SIMD principles on a
large scale, positioning itself as a leader in parallel computing and influencing AI, HPC, and
other areas.

NVIDIA CUDA is a proprietary parallel computing platform that allows software
to use certain types of GPUs, originally designed for computer video cards, for general-
purpose processing. CUDA cores are the processing units of the NVIDIA GPUs and are
the fundamental blocks for CUDA; they are programmable parallel processors capable of
handling a wide range of workloads in a SIMD manner [Sanders, 2010]. CUDA is designed
to work with programming languages such as C, C++, and Fortran, making the development
of applications to run in this environment much more straightforward than previous tools.

3.2 RISC-V hardware accelerators

The RISC-V vector extension, introduced in Section 2.3, was adopted by several
processors, either as a coupled accelerator or as a coprocessor. This extension can tar-
get many applications, leading to different implementation approaches. Due to its large
instruction set and register bank, the RVV extension can add an important area overhead
to the processor core. On the other hand, custom SIMD/Vector accelerators can have more
freedom to include only the needed functions without complying with any directive from a
standard extension specification. In exchange, custom accelerators need custom software
support, often with modified compilers, which can bring extra complexity to the implementa-
tion.

This section is organized as follows:

• Section 3.2.1 presents works that use the standard RVV extension as an accelerator. It
starts by introducing commercial cores and then presents academic works.

46

• Section 3.2.2 presents custom SIMD/Vector accelerators that use different approaches to
obtain the best domain-specific acceleration results.

• Section 3.2.3 closes the section by presenting works that use RISC-V processors to control
complex hardware accelerators.

3.2.1 RVV Accelerators

This section presents related work regarding implementations compliant with the
RVV extension. It initially presents commercial cores and then introduces academic works.

Xuantie-910 [Chen et al., 2020] is a commercial high-performance Multi-Core Pro-
cessor based on the RV64GCV instruction set. Every single core has a 12-stage deep
pipeline, out-of-order, multi-issue superscalar architecture depicted in Figure 3.1. It sup-
ports all three privilege modes, achieving a maximum clock frequency of 2.5 GHz in TSMC
12nm FinFET, and runs in a Xilinx VU9P FPGA at 200 MHz.

Figure 3.1: 12-stage pipeline in Xuantie-910 core [Chen et al., 2020]. Source: [Chen et al.,
2020].

Xuantie-910 implements over 50 non-standard instructions to accelerate various
tasks and performs 7.1 CoreMark/MHz. Each core features a 32/64 KB L1 instruction cache
and a 32/64 KB data cache. It also supports a standard 8-16 region Physical Memory Pro-
tection (PMP) and is compatible with SV39 MMU following the RISC-V Linux specification.

47

The processor includes a Core-Local Interrupt Controller (Clint) and Platform-Level Interrupt
Controller (PLIC), supporting multi-core Symmetric Multi-Processing (SMP) with cache co-
herence. Each cluster, consisting of 1 to 4 cores, can boot the Linux operating system. Up
to four CPU clusters can connect through Ncore, an internal bus with a coherence proto-
col. They utilize an inclusive L2 cache, which can be configured up to a maximum size of 8
MB. Xuantie was one of the earliest commercial processors to implement the RISC-V Vector
Extension. This extension facilitates dual-issue out-of-order vector operation instructions,
accommodating operational widths from 64 to 1024 bits. Two 128-bit vector slices are rec-
ommended. This configuration allows the XT-910 to execute 256-bit operations in one clock
cycle and efficiently perform 128-bit vector load/store operations.

SiFive offers a RISC-V Core IP portfolio with customization options that allow cus-
tomers to select the best fit for their needs. The portfolio ranges from simpler processors,
like E31 [SiFive, Inc, 2017a] and E51 [SiFive, Inc, 2017b] to high-end performance cores,
like the P270 [SiFive, Inc, 2022] and X280. It is classified into Essential, Performance, Au-
tomotive, and Intelligence families. The Intelligence Family includes high-performance AI
dataflow processors with scalable vector compute capabilities.

Sifive Performance P270 [SiFive, Inc, 2022], Figure 3.2, is an 8-stage, dual-issue,
in-order pipeline compatible with the RISC-V RV64GBCV ISA. It fully supports the RISC V
Vector Extension 1.0. It is combined with the SiFive Recode utility, which translates existing
SIMD software from popular legacy architectures to RISC-V Vector assembly code. The
Vector operations are decoded and queued in the Vector Unit for parallel operation of Scalar
and Vector units. The vector processing supports 256-bit VLEN and 64-bit ELEN. The Vector
ALU supports integer and floating point operations and is 128b-wide, capable of performing
2x64b, 4x32b, 8x16b, or 16x8b operations per cycle. Multicore and multi-cluster processor
configurations are supported for up to 8 cores.

Figure 3.2: Sifive P270 multi-cluster core block diagram. Source: [SiFive, Inc, 2022].

The SiFive Intelligence X280 [SiFive, Inc, 2023], Figure 3.3, and SiFive Intelli-
gence X380, are multicore RISC-V processors with RISC V Vector Extension 1.0 and cus-

48

tom SiFive Intelligence Extensions optimized for AI/ML compute at the edge. It is a 64-bit
RISC-V, 8-stage, dual-issue, in-order pipeline, Linux capable. It uses tailored instructions
to enhance Neural Network calculations and features an Optimized TensorFlow Lite imple-
mentation with numerous Neural Network models adapted. It has a 512-bit vector register
length processor with variable length operations in a decoupled vector pipeline supporting
integer and floating point data types. Multicore and multi-cluster processor configurations
are supported for up to 8 cores.

Figure 3.3: Sifive X280 multi-cluster core block diagram. Source: [SiFive, Inc, 2023].

Arrow [Assir et al., 2021] is a configurable hardware accelerator architecture (co-
processor) that implements a subset of the v0.9 RVV extension.- Its block diagram is shown
in Figure 3.4. Arrow is implemented in a Xilinx XC7A200T-1SBG484C FPGA. The architec-
ture of Arrow supports dual-lane, a VLEN of 256 bits and an ELEN of 64 bits. It can exe-
cute two independent vector instructions in parallel and is pipelined to increase execution
throughput. Its pipeline stages include decoding, operand fetching, execution or memory
accessing, and write-back. When the destination register is within registers 0 to 15, the vec-
tor instruction is executed in the first lane; otherwise, it is executed in the second lane. This
lane-dispatching scheme simplifies the design and removes the need for complex arbitra-
tion hardware. Arrow can support wider lane implementations, but the compiler or assembly
programmer must expose vector instruction parallelism through register allocation, similar to
statically scheduled superscalar processors. Each bank has two read ports and one write
port, with all memory accesses being 64 bits. The accelerator utilizes the ARM AMBA AXI
bus interface for communication.

ARA is a 64-bit vector processor initially developed based on version 0.5 of the
RVV extension [Cavalcante et al., 2019] and was later updated to utilize version 1.0 [Perotti
et al., 2022]. Both versions were implemented targeting Global Foundries 22FDX FD-SOI
technology. Ara serves as a coprocessor for CVA-6 (Ariane), as depicted in Figure 3.5. In
this setup, vector instruction decoding occurs within ARA, rendering Ariane almost agnostic
to vector instructions. Each lane in ARA comprises three execution units: an integer ALU,
an integer MUL, and an FPU, all operating on a 64-bit datapath. It supports multi-precision

49

Figure 3.4: Arrow datapath block diagram [Assir et al., 2021]. Source: [Assir et al., 2021]

ALU and MUL operations, producing 1×64, 2×32, 4×16, and 8×8-bit signed or unsigned
operands. A series of benchmarks, including matrix multiplication and convolutions, were
executed. The accelerators demonstrated optimal performance with two lanes, but some
performance degradation was observed with sixteen lanes.

Figure 3.5: ARA block diagram and integration with Ariane [Perotti et al., 2024]. Source:
[Perotti et al., 2024].

ARA2 [Perotti et al., 2024] extend ARA’s previous work. They implemented sup-
port for all the RVV 1.0 instructions not supported in the previous version and described
the micro-architectural optimizations that allow the architecture to scale up. There were im-
provements in decoding, slide-unit, and CVA-6 interfaces. The mask unit was introduced
to control the mask over all the lanes, which leads to routing complexity, especially when
scaling up the number of lanes. Doubling its number of lanes also doubles its AXI bus data

50

width and the parallelism of the all-to-all internal units (MASKU, SLDU, Vector Load/Store
Unit (VLSU)).

Pircher et al. [2021] explores the RVV extension version 0.9 to accelerate the
quantum-resistant code-based Classic McEliece scheme. This study primarily focuses on
the Gaussian Elimination Algorithm (GEA), a critical component in the key generation pro-
cess of the McEliece scheme. GEA exhibits significant potential for acceleration through
the vector instructions provided by the RVV extension. An instruction set simulator, ETISS,
augmented with a SoftVector library, was employed to support simulations of cores with the
RVV extension. The reference architecture for this research was the RTL model of OpenHW
Group’s CVA6 ARIANE. The processing of vector instructions is facilitated by a dedicated
four-stage vector pipeline equipped with resources such as a vector load/store unit (VLSU)
and a vector arithmetic logic unit (VALU). This setup allows loading one row of a 1664 x
8192-bit matrix into a vector register group with a single load instruction. The overall per-
formance gain is influenced by the memory interface of the vector unit. However, the per-
formance gains achieved for the GEA algorithm with RVV are significantly constrained by
memory bottlenecks.

Some works seek to explore the RVV extension in an embedded environment,
where resource utilization must be minimized. To that end, subsets of the V extensions are
implemented. Another strategy for reducing the area footprint is to reduce the number of
vector registers in the Vector Register File (VRF). This strategy is inspired by the RV32E
ISA, which reduces the number of integer registers in the base ISA from 32 to 16. Jacobs
et al. [2024] use smaller VRFs with 16 and 8 registers. One example of the impact of the
VRF size is that a VRF with eight 64-bit registers has 512 bits, the same number of bits
as the RV32E register file. They observed that the full RVV 1.0 VRF (32x 64-bit registers)
could take up about 30% of the overall area in small processor designs. Halving the vector
register file to 16x 64-bit registers or reducing it to a quarter size of 8x 64-bit registers can
lead to savings of around 15% to 23% of the processor’s area. Their analysis indicates that
operations such as dot-product and matrix multiplication can be effectively executed using
fewer than 32 vector registers without requiring a new programming model.

Johns and Kazmierski [2020] present the implementation of a minimal RISC-V vec-
tor processor targeting embedded systems, which also includes only 16 vector registers.
The design targets microcontrollers using the RISC-V Vector extension specifically for small
embedded devices. The core of the RISC-V processor is an in-order, single-stage RV32E.
It implements a subset of the vector extension, comprising only the essential arithmetic,
memory, move, and slide instructions for vector functionality. The vector processing unit is
tightly-coupled with the processor as scalar functionality, as illustrated in Figure 3.6. The
design introduces a smaller solution based on variable-width processing units (PUs), where
each PU functions is an independent scalar integer ALU. In a single cycle, it can execute one
32-bit, two 16-bit, or four 8-bit operations. This efficient design does not require four 32-bit

51

lanes; instead, it utilizes only a single 32-bit PU, one 16-bit PU, and two 8-bit PUs operating
on one register per cycle. Tests, written in assembly and optimized for this architecture, were
implemented on an Intel Cyclone V 5CSEMA5F31C6 FPGA at 50MHz.

Figure 3.6: Block diagram of minimal vector processor [Johns and Kazmierski, 2020].
Source: [Johns and Kazmierski, 2020]

Ali et al. [2021] present a Vector Processing Unit (VPU): a RISC-V based SIMD co-
processor for embedded processing integrated with the CV32E40P. It is a parameterizable
VPU that implements a subset of the v0.1 of the RVV extension for embedded processing.
The VLEN and number of lanes are configurable. The VPU uses an auxiliary processing
unit (APU) interface, which can be easily integrated into other APU-enabled processors.
ELEN was set to be 32-bit. The VPU architecture, shown in Figure 3.7, is a two-stage
pipeline: instruction fetch and decode stage (fd-stage) and instruction execution and write-
back stage (ew-stage) with two main components: execution block and load store unit. Each
lane owns a part of the vector register file, and its length is called lane length (LLEN). The
lane operates on LLEN/ELEN and requires at least many cycles to complete an instruction.
The VALU design is similar to CV32E40P ALU. Load and store serializes the VLEN register
data to 32-bit data chunks. It was implemented on a Xilinx Zynq xc7z020clg484-1, each lane
utilizing three DSP blocks.

Figure 3.7: Ali et al. [2021] VPU pipeline overview. Source: [Ali et al., 2021]

ZeroVex [Zhao and Ye, 2024] is a scalable and high-performance RVV processor
core. The architecture employs a portion of the RVV v1.0 extension coupled to a 32-bit
processor implemented in SystemVerilog, which is used for integer operations. It can ac-
commodate a power of 2 lanes, each with 32x 32-bit vector registers. Each lane has a SIMD
ALU and a SIMD multiplier. Figure 3.8 depicts the organization of ZeroVex. Incorporating the

52

vector function results in a substantial and directly proportionate area growth and a propor-
tional growth in power consumption. As a trade-off, the vector core exhibits approximately
30 times more energy efficiency than the scalar core.

Figure 3.8: ZeroVex [Zhao and Ye, 2024] top-level diagram. Source: [Zhao and Ye, 2024].

SPEED Wang et al. [2024] is a scalable RVV processor optimized for multi-precision
inference in DNNs, featuring customized instructions, hardware design, and dataflow map-
ping for efficiency. It is tightly coupled to a RISC-V scalar core for programmable instructions
and an external memory for fetching necessary data. Each PE consists of sixteen 4-bit mul-
tipliers that can be dynamically combined to perform MAC operation with 16-bit precision,
four sets of MACs at 8-bit precision, or sixteen sets of MACs at 4-bit precision.

Table 3.1 summarizes the RVV accelerators presented in this section. The last Ta-
ble row presents the features of our work w.r.t the state-of-the-art. Overall, the presented
works vary a lot in coupling, for example in the commercial cores focusing on high perfor-
mance, the SiFive processors (Sifive Intelligence X280 [SiFive, Inc, 2023] and Sifive Per-
formance P270 [SiFive, Inc, 2022]) opted for coprocessors while Xuantie-910 [Chen et al.,
2020] went to a coupled approach. Regarding the RVV version, most implementations use
the 1.0 version, with older works implementing previous versions. Only [Jacobs et al., 2024]
and [Johns and Kazmierski, 2020] opted for designs without multiple lanes, as they focus
on minimal implementations for embedded systems. Generally, the cores with a 32-bit ar-
chitecture implement the RVV extension using an ELEN of 32-bit, with the only exception
being Pircher et al. [2021]. This work is focused on embedded systems, so it implements
the RVV extension as a coupled accelerator with a 32-bit ELEN and a scalable VLEN to
allow parameter exploration.

53

Table 3.1: Comparison between RISC-V Vector accelerators. Source: the Author.

Scalar Core Coupling RVV
Version Multi-Lane Pipelined VLEN/ELEN Target

Application Language Bus

Xuantie-910 [Chen
et al., 2020]
(Commercial)

Xuantie-910
(RV64GCV + custom
ISEs)

Coupled v0.7.1 ✓ ✓ 64-1024/256
High-
Performance
Computing

N/S N/S

Sifive Performance
P270 [SiFive, Inc,
2022] (Commercial)

SiFive Performance
P270 (RV64GBCV) Coprocessor v1.0 ✓ ✓ 256/64

High-
Performance
Computing

N/S N/S

Sifive Intelligence
X280 [SiFive, Inc,
2023] (Commercial)

SiFive Intelligence
X280 (RV64GCV +
custom)

Coprocessor v1.0 ✓ ✓ 512/64
High-
Performance AI
and ML

N/S N/S

ARROW [Assir et al.,
2021]

MicroBlaze v11.0
(not RV) Coprocessor v0.9

subset ✓ ✓ 256/64 edge ML VHDL AXI

ARA [Cavalcante
et al., 2019]

CVA6 (ARIANE)
(RV64IMAC) Coprocessor v0.5 ✓ ✓ 128-2048/64 General

Purpose
Sys-
temVerilog AXI

ARA [Perotti et al.,
2022]

CVA6 (ARIANE)
(RV64IMAC) Coprocessor v1.0 (Not

fully) ✓ ✓ 128-4096/64 General
Purpose

Sys-
temVerilog AXI

ARA2 [Perotti et al.,
2024]

CVA6 (ARIANE)
(RV64IMAC) Coprocessor v1.0 ✓ ✓ 256-8192/64 General

Purpose
Sys-
temVerilog AXI

Pircher et al. [2021] Custom RV32I Coupled v0.9 ✓ X 1024/64 Cryptography

Domain
Specific
Language
(DSL)

N/S

Jacobs et al. [2024] Custom RV32E N/S v1.0 X N/S 64/32 Embedded
systems N/S N/S

Johns and
Kazmierski [2020] Custom RV32E Coupled v0.9

subset X X 32/32
Embedded
systems,
Microcontroller

N/S N/S

Ali et al. [2021] cv32e40p
(RV32IM[F|Zfinx]C) Coprocessor v0.1 ✓ ✓ scalable/32 Embedded

systems
Sys-
temVerilog APU

ZeroVex [Zhao and
Ye, 2024] ZeroVex (RV32IMV) Coupled v1.0 ✓ ✓ 256/32 Embedded

systems
Sys-
temVerilog N/S

SPEED [Wang et al.,
2024] RV64GCV1.0 Coupled v1.0 ✓ ✓ scalable/64 Multi-Precision

DNN Inference N/S N/S

This Dissertation RS5 [Nunes et al.,
2024] Coupled v1.0 ✓ ✓ scalable/32 Embedded

systems
Sys-
temVerilog AXI

3.2.2 RISC-V Custom Accelerators

Hwacha [Schmidt et al., 2018] served as a base architecture for the definition of
the RVV Extension. It is depicted in Figure 3.9. Hwacha is an open-source RISC-V co-
processor that implements a custom ISA extension for parallel data processing. It has
evolved over several versions, the most recent being V4. Developed at the University of
California, Berkeley, its RTL is written in Chisel. Its goal is to explore energy-efficient imple-
mentations of vector architectures. Hwacha also features a runtime-variable vector length
facilitated by a configurable register file. It supports unit-stride, constant-stride, and indexed
load/stores, as well as a comprehensive set of operations, including half, single, double
floating-point, integer, and predicate operations.

Yu et al. [2022] present a RISC-V ISE that includes a data operation instruction and
a data transfer instruction to boost the computational efficiency of CNNs on edge devices.
The ISE is implemented on zero-riscy (IBEX) microarchitecture, illustrated at Figure 3.10,
and the proposed extended instructions are integrated into the GCC toolchain. The proposed
instructions are VMAC and VLOAD, which are SIMD-based and are used to accelerate the
dot product computation in the convolution operation. The data width adopted is 16 bits,
and each vector register holds nine elements, considering that the convolution kernel of a
typical CNN is mostly 3 * 3. The VMAC instruction is a data computational instruction. It
has two source registers from the vector registers file, each with nine elements. The result

54

Figure 3.9: Hwacha [Schmidt et al., 2018] block diagram. Source: [Schmidt et al., 2018].

is written back to a general-purpose register, rd . The VLOAD instruction is a data transfer
instruction that loads a set of vectors from memory into vector registers. It implements a
Vector Registers File (VRF) with eight registers of 144 bits (9 x 16-bit elements) and a Dot
Product Unit (DPU or DOTP), which accepts two vectors for calculation at the same time
and executes a vector dot product with nine elements.

Figure 3.10: Extended Zero-riscy pipeline with VRF and DOTP units [Yu et al., 2022].
Source: [Yu et al., 2022]

RVVe [Schmidt et al., 2024] is a Minimal RISC-V Vector Processor for Embedded
AI Acceleration. Their main target is an accelerator targeting the low area with a small-
scale vector processor. The accelerator is built on a NeoRV32 RISC-V core, extended with
a lightweight vector extension called RVVe. The designers opted only to support an 8-bit
quantized network. The RVVe includes VMAC, VADD, and VMUL instructions. The exten-
sion uses the integer register file instead of introducing a dedicated VRF. The extension
also includes VLOAD and VSTORE instructions supporting unit-strided and strided access
patterns of 8 and 32-bit values. The design was synthesized into an AMD Xilinx Zynq Ultra-
Scale+ MPSoC ZCU102 FPGA.

55

The XpulpNN [Garofalo et al., 2020] is a custom RISC-V extension to accelerate
Quantified Neural Networks (QNNs) on RISC-V processors. It uses sub-byte fixed-point
data types to avoid requiring numerous instructions for packing and unpacking data when
running low-bit-width (i.e., 2- and 4-bit) QNN kernels. It is integrated into the cv32e40p
(RI5CY) processor, as depicted in Figure 3.11. The proposed XpulpNN instructions extend
the RV32IMCXpulpV2 ISA with SIMD operations for 4-bit and 2-bit operands, namely nibble
and crumb. The main functionality consists of dot product operations and an instruction
that handles the quantization process in hardware. In total, 15 new instructions are added.
The XpulpV2 ISE provides 8-bit and 16-bit SIMD instructions. The work extends the Dot-
Product Unit of XpulpV2 to support 2- and 4-bit vector operands. The proposed multipliers
compute the dot product between two vectors, each containing either eight 4-bit or sixteen
2-bit elements, and accumulate the result in a 32-bit register through an adder tree in one
clock cycle.

Figure 3.11: Baseline and extended CV32e40p(RI5CY) pipeline for XpulpNN [Garofalo et al.,
2020]. Source: [Garofalo et al., 2020].

RK et al. [2021] introduces a variable bit-precision vector extension for RISC-V pro-
cessors, designed to support lower bit-widths or variable precision (1 to 16 bits) in MAC
operations – Figure 3.12. This extension is demonstrated by integrating it with a PicoRV32
core, using a Xilinx Zynq-based FPGA Zedboard as the implementation platform. This devel-
opment addresses the bit-width gaps identified in works like XpulpNN [Garofalo et al., 2020].
They opted for a bit-serial implementation for the multiplier, facilitating the integration of vari-
able bit precision. Validation was performed using matrix multiplication with fully variable
bit-width precision. Three new states were added to the non-pipelined PicoRV32’s Finite
State Machine (FSM). The architecture includes a dual-ported vector register file with 32
registers, each 512 bits wide. The vector processing element comprises 16 lanes of parallel
elements capable of processing two 32-bit input operands. The Bit Serial Multiplier takes
two operands, A (16-bit wide) and B (N-bit wide), and performs a shift-and-add process N
times, where N is the width of Operand B. This results in a computation time of N cycles.

56

The architecture was validated using a 3x3 matrix multiplication test program, with Matrix
A having 16-bit width elements and Matrix B containing variable bit-width elements. Three
versions were tested: the baseline PicoRV32 processor and the PicoRV32 processor with
the Vector processor with and without variable bit-precision support. It achieved an average
speedup of 1.14x in the version with variable precision compared to the version without vari-
able precision on a matrix multiplication test program. It also reduces the memory footprint
by up to 1.88x.

Figure 3.12: Microarchitecture of variable width precision of RK et al. [2021]. Source: [RK
et al., 2021].

FlexBex [Dao et al., 2020] is a RISC-V with a reconfigurable instruction extension
using an open-source framework for adding embedded FPGAs (eFPGA) into RISC-V CPUs.
An eFPGA is directly coupled with the CPU, supporting partial reconfiguration, and the in-
structions can be swapped at runtime. FlexBex integrates an Ibex through an additional
execute block called eFU (eFPGA Unit), taped out in 180µm TSMC. The eFPGA allows up
to three custom instructions using two source registers. Individual instructions include a vari-
able delay to stall the RISC-V core as needed. Compiled custom instruction configuration
bitstreams can be loaded directly into the eFPGA using a serial external programming port.

Simodense [Papaphilippou et al., 2021] adopts a similar approach to Flexbex by in-
tegrating small FPGAs to implement custom instructions in an open-source RISC-V softcore
optimized for exploring custom SIMD instructions. The framework facilitates easy integra-
tion of custom vector instructions and allows for their evaluation in simulation and hardware.
Simodense implements the RV32IM instruction set with a single pipeline stage and does not
rely on 1-cycle-latency memories for instructions or data. It communicates with DRAM in
bursts via an interconnect, such as AXI. The Last Level Cache (LLC) is implemented using
BRAMs, with the Level-1 block size matching the vector register width. Advanced instruc-
tions, including pipelined vector instructions, are processed through a dedicated pipeline.

57

Simodense was implemented on a Xilinx UltraScale+ ZU3EG device, demonstrating a re-
duction in the number of instructions and cycles required for the evaluated tasks. Wang
et al. [2021] details the implementation of a custom instruction, “CONV23”, extended from
the RISC-V ISA, specifically designed for Winograd-based convolution acceleration. The
Winograd minimal filtering algorithm efficiently minimizes multiplication operations during
convolution calculations. Its computation requires just 16 multiplications, compared to the
36 required by the traditional direct dot product method. The custom “CONV23” instruction
enables the convolution of a 3×3 kernel with a 4×4 input matrix, producing a 2×2 output
matrix. The CONV23 module operates as a 3-state machine (idle, data acquiring, and cal-
culation). The instruction can be executed within 19 clock cycles, significantly improving
over the 140 cycles required if implemented using standard RISC-V ISA instructions. A
Cv32e40p (RI5CY) RV32IMC core was synthesized onto the NEXYS A7 FPGA platform.
Before the convolution operation, the input matrix is stored in memory, while the elements of
the convolution kernel are housed in the convolution acceleration module.

Table 3.2 summarizes the RVV accelerators presented in this section.

Table 3.2: Summary of RISC-V custom accelerators. Source: the Author.

Processor Coupling Technique Target Application
Hwacha [Schmidt et al.,
2018] Rocket core (RV64GC) Coprocessor Custom vector

extension General Purpose

Yu et al. [2022] IBEX (RV32IMCB) Coupled Custom vector
extension CNNs on Edge devices

RVVe [Schmidt et al.,
2024] NeoRV32 (RV32IMCB) Coupled Custom lightweight

vector extension Embedded AI

XpulpNN [Garofalo
et al., 2020]

cv32e40p
(RV32IM[F|Zfinx]C) Coupled Custom SIMD

extension QNNs

RK et al. [2021] PicoRV32 (RV32IMC) Coprocessor Custom vector
extension

Variable bit-precision
(QNNs)

FlexBex [Dao et al.,
2020] IBEX (RV32IMCB) Coupled Embedded FPGA w/

custom SIMD extension General Purpose

Simodense
[Papaphilippou et al.,
2021]

Custom (RV32IM) Coupled Embedded FPGA w/
custom SIMD extension General Purpose

Wang et al. [2021] cv32e40p
(RV32IM[F|Zfinx]C) Coupled Custom SIMD

extension Winograd Convolution

3.2.3 Accelerators Controlled by RISC-V

Zhang et al. [2021] present a CNN accelerator featuring two RISC-V PicoRV32
controllers designed to enhance control flexibility and hardware utilization. The CNN com-
putations are divided into two groups: full-precision and low-precision, and the controllers
are employed to manage their execution with fine-grained control. Such architecture applies
to different CNNs to support simultaneous computations using multi-blocks. A logic is de-
signed to control the queued operations for the full precision processing element (FPPE)
with high flexibility. The architecture is illustrated in Figure 3.13. MACs and storage of PE
arrays have 8-bit precision. The 16-bit weight calculations are done by FPPEs that contain

58

16-bit MAC and storage. The PicoRV32[IMC] can run the driver code for the entire accelera-
tor. With this embedded processor, the workload of the external processor can be reduced.
The simplified PicoRV32[I] is a minimized PicoRV which only has the I instruction subset
that only does the configuration and control for FPPEs.

Figure 3.13: Architecture of CNN accelerator with dual RISC-V controller [Zhang et al.,
2021]. Source: [Zhang et al., 2021].

AskariHemmat et al. [2021] present a RISC-V Barrel Processor designed to control
a DNN Acceleration. It is a 5-stage pipeline datapath with eight hardware threads (hearts).
It implements the RV32I and custom CSRs for controlling the PEs. Each thread is exe-
cuted under a strict round-robin scheduler, as shown in Figure 3.14, and is responsible for
providing data and control signals to a neural network PE. Each PE can perform arbitrary-
precision GEneral Matrix Vector (GEMV) operations. Each thread executes independently of
other threads, and the software sends any communication between threads through shared
memory. No data hazard detection or branch prediction logic is needed, and each hart has
its own register file. A PE uses mixed fixed-point precision operands, computes 64 output
vector elements in parallel, and performs 4096 1-bit multiply-and-accumulate operations on
every clock cycle. The PEs have local memory for storing elements of the weight tensors and
a local memory for storing data tensors. Every hart has its own instance of CSRs, which are
directly linked to its associated PE. Memory is 32KB in size and is implemented in the FPGA
using BRAMs. It was prototyped using Xilinx Vivado, targeting the Kintex Ultrascale 040
(KU040) FPGA. Each matrix-vector product took 16 clock cycles to finish. Since all these
matrix-vector products were performed simultaneously on eight different harts, the result of
the entire matrix-matrix product took 16 clock cycles to finish.

59

Figure 3.14: Scheduling and pipeline progression of 8 harts running in the barrel processor
[AskariHemmat et al., 2021]. Source: [AskariHemmat et al., 2021].

3.3 Manycore accelerators

This Section presents works that use manycores for domain-specific acceleration.
It is divided into two Subsections: Section 3.3.1 presents works that use multicore clusters
for acceleration, and Section 3.3.2 presents works related to NoC-based accelerators.

3.3.1 Multicore Accelerators

This Section reviews related works that leverage multicore architectures for accel-
eration. Some works use vector accelerators, while others employ custom accelerators.
These designs are predominantly organized into core clusters. The SiFive Performance
P270 [SiFive, Inc, 2022] and Intelligence X280 [SiFive, Inc, 2023] can also be configured as
multicore clusters.

Beldianu and Ziavras [2014] overviews the design of a shared vector accelerator
for multicore processors. The main motivation of the Authors is the underutilization of vector
processors due to the lack of sustained data-level parallelism or the presence of vector-
length variations in application code. Figure 3.15 shows the vector processor (VP) sharing
two cores. Multiple cores can dynamically share any vector lane, and each lane contains
a subset of the elements from a vector register distributed along the lanes, an FPU, and
a memory load/store (LDST) unit. A vector controller (VC) is attached to each core and
receives its vector instructions. These instructions can be instructions to move and process
vector data, which are forwarded to vector lanes, or control instructions, which are forwarded
to the attached scheduler. Vector lanes do not compete for resources except to access
a memory module. VP sharing techniques are explored, and fine-grain temporal (FTS)
doubles the speedup and reduces the energy by about 50% as compared to cores with

60

VP exclusive access. VP sharing for a dual-core yields speedups of 1.2-2 and halves the
energy needs compared to a system with a single core with an attached VP. ASIC was
developed targeting a 40nm TSMC technology and can operate at 1.1 GHz.

Figure 3.15: Block diagram of a Vector Accelerator shared by two cores [Beldianu and Zi-
avras, 2014]. Source: [Beldianu and Ziavras, 2014].

A RISC-V SoC for AI at the Edge of the Internet of Things (IoT) called GAP-8 was
developed by Flamand et al. [2018]. GAP8 is a multi-core processor derived from the PULP
platform fabricated in TSMC 55nm LP CMOS technology. It leverages a microcontroller, a
set of peripherals, secure execution, and a programmable parallel processing engine which
includes a dedicated convolutional engine for DNN inference. The Fabric Controller is an
MCU extended for energy-efficient digital signal processing. The memory hierarchy is orga-
nized as a single namespace. Every core in the chip can access all memory locations unless
they are protected by the Memory Protection Unit. The cluster, which resides in a dedicated
voltage and frequency domain, is turned on when applications running on the fabric con-
troller offload highly computation-intensive kernels. It contains 8 RISC-V cores identical to
the one used in the FC, allowing the SoC to run the same binary code on either the fabric
controller or the cluster. The cores in GAP-8 feature an in-order, 4-stage pipeline, compli-
ant with the RVIMC extended and optimized with single-cycle MACs, single-cycle complex
multiplication, and dedicated instructions for efficient rounding, normalization, and clipping.

61

Also, SIMD instructions enable vectors of 4-byte elements or two short elements and bit-
manipulation instructions. When the cluster runs CNN-based applications, it can offload the
computation of convolutional layers to a dedicated accelerator, the Hardware Convolution
Engine (HWCE), which can evaluate a 5×5 convolution or three 3×3 convolutions on 4-,
8—or 16-bit operands in a single cycle. The combination of parallelism and a hardware ac-
celerator improves performance 10 times compared to a single-core model while improving
energy efficiency.

Figure 3.16: Architecture block diagram of GAP-8 [Flamand et al., 2018]. Source: [Flamand
et al., 2018].

ARA2 [Perotti et al., 2024] provides a multicore analysis, examining the behavior
of the vector core architecture in a multicore environment and investigating its performance
and efficiency trade-offs. Multiple clusters of the previously described system and the SRAM
main memory were multi-banked to support multiple ARA2 instances. For comparisons, they
explore the number of cores per cluster, the number of lanes of each vector core, and the
application vector length. Figure 3.17 compares a single-core Ara2 system with a two-core
Ara2 system, with both configurations having the same amount of PEs. They conclude that
vector processors exploit one dimension only, while multicore systems can parallelize on
multiple dimensions.

Figure 3.17: Comparison of a single-core 4-lane Ara2 system architecture and a two-core
architecture made of 2-lane Ara2 processors. Both configurations have 4 PEs in total [Perotti
et al., 2024]. Source: [Perotti et al., 2024].

62

The experiment includes four systems with the same number of FPUs (16), ranging
from a single-core 16-lane Ara2 system to a multicore system consisting of eight 2-lane Ara2
systems coupled with eight CVA6 instances. Figure 3.18 compares the throughput results
in the four systems, exploring the vector length. For medium/short vectors (8, 16, 32, 64 bit
elements), multicore systems composed of smaller instances outperform those with fewer
but larger vector cores. As the vector size increases, the PEs are fully utilized even with the
maximum number of lanes. The dual-core 8-lane and single-core 16-lane systems surpass
the others at vector lengths of 128 and 256 elements, respectively, as the synchronization
overhead and pressure on the memory system decrease with fewer cores when evaluating
the system’s performance abstracted from the physical implementation. The 16-lane system
experiences a non-negligible frequency drop that penalizes the whole computation, which
becomes slower than all the other designs for all the different vector lengths. The Authors
conclude that: (1) for longer vectors, more lanes in single instances are more beneficial; (2)
for smaller vectors: many smaller vector processors are better than a large vector processor
that cannot effectively exploit all the dimensions of parallelism in the application.

Figure 3.18: Multi- and single-core throughput for different 16-PEs configurations of the Ara2
system in typical conditions (fmatmul) [Perotti et al., 2024]. Source: [Perotti et al., 2024].

Table 3.3 summarizes multicore accelerators presented in this section.

3.3.2 Network-on-Chip Accelerators

This section describes works related to the acceleration of AI and ML in the context
of Networks-on-Chip. NoC allows more flexible data transmission between PEs, removing

63

Table 3.3: Summary of multicore accelerators. Source: the Author.

Architecture Target Application
Beldianu and Ziavras [2014] Dual-Core With Shared Vector Accelerator General Purpose

GAP-8 [Flamand et al., 2018] RISC-V Controller + RISC-V 8-Core Cluster W/
Dedicated Accelerator AI at the Edge

ARA2 [Perotti et al., 2024] Multicore Cluster of CVA-6 W/ RVV
Co-Processor AI and ML

SiFive Performance P270
[SiFive, Inc, 2022]

Multicore and multi-cluster up to 8 cores of
RISC-V RV64GBCV

High-Performance
Computing

SiFive Intelligence X280
[SiFive, Inc, 2023]

Multicore and multi-cluster up to 8 cores of
RISC-V RV64GCV + Custom

High-Performance AI
and ML

the need for complex interconnections. As a result, the NoC-based accelerator has emerged
as a promising design paradigm.

Ultra-NoC [Chen et al., 2024] employs a mesh-based NoC interconnection to pro-
pose a unified low-transmission routing mechanism. It supports flexible data transmission
and accommodates diverse communication patterns commonly employed in DNN opera-
tions. Figure 3.19 shows concepts like Input and Weight reuse, which, in consequence,
introduce techniques like Output, Weight, and Row stationary. Data transmission modes
supported by the Ultra-NoC are unicast, multicast, and broadcast. The head flit is used to
record the multiple destinations of the packet. The proposed Ultra-NoC reduces 26% to 49%
and 30% to 56% memory access under AlexNet and ResNet-50, respectively. The design
features a controller, on-chip memory, and a 13×13 mesh NoC comprising 169 tiles. Each
tile comprises a router, a network interface (NI), and a processing element (PE). Each PE
contains a multiplier and an adder, while the PE controller oversees the processing state.

Eyeriss v2 [Chen et al., 2019] presents a NoC architecture designed for DNN pro-
cessing, capable of accommodating various filter shapes and sizes utilized in compact DNNs
like MobileNet. This is achieved by designing a flexible NoC, which architecture is called hi-
erarchical mesh. When data reuse is low, the NoC can provide high bandwidth (via unicast)
from the memory hierarchy to keep the PEs busy. When data reuse is high, the NoC exploits
spatial data reuse (via multicast or broadcast) to achieve high energy efficiency. Each PE
contains MAC datapaths that process 8-bit fixed-point input activations and weights. Eyeriss
v2 comprises an array of PEs, a local scratchpad (SPad) memory to exploit data reuse, and
global buffers (GLB), which serve as an additional level of memory hierarchy between the
PEs and the off-chip DRAM. Thus, it has a two-level memory hierarchy. PEs and GLBs are
grouped into clusters to support a flexible NoC. It uses separate NoCs to transfer the three
data types, i.e., input activation (iact), weight, and partial sums (psums), between the GLBs
and PEs. Each NoC is tailored for the corresponding dataflow of that data type. It comprises
16 PE clusters and 16 GLB clusters arranged in an 8×2 array. Each PE cluster contains 12
PEs arranged in a 3 × 4 array. Figure 3.20 depicts Eyeriss v2 top-level architecture. The
chip processes one layer at a time. Once it finishes processing a layer, it is reconfigured to
handle the next one.

64

routing is preconfigured by the controller before data
transmission, which degrades performance and flexibility.

To address the challenges mentioned above, we employ the
mesh-based NoC interconnection to propose a unified low-
transmission routing mechanism. The proposed Unified Low-
transmission Routing Assisted NoC (Ultra-NoC) supports
flexible data transmission and accommodates diverse
communication patterns commonly employed in DNN
operations. As shown in Fig. 1(b), the proposed Ultra-NoC
lexibly supports unicast, multicast, and broadcast data
transmission modes, which enables the optimization of dataflow
across different layers with proper data transmission modes. In
this way, we can improve the data transmission efficiency and
reduce significant memory access. The main contributions of
this work are summarized as follows.

1) An unified low-bandwidth packet format is introduced to
accommodate different data transmission modes to leverage
flexible data delivery on the Ultra-NoC.

2) A hybrid data transmission mechanism and router
architecture are proposed to integrate various data delivery,
leading to more efficient data transmission.

 To evaluate the proposed methods, we modify a cycle-
accurate NoC-based neural network simulator [9] and analyze
the memory access. Compared with the related works, the
experimental results show that the proposed approaches can
reduce memory access by 15% to 56% while processing
different DNN models. Therefore, the total energy consumption
can be saved by 24% to 55%.

II. RELATED WORK

A. Eyeriss V2 [7]
In [7], Chen et al. proposed a hierarchical mesh NoC (HM-

NoC) to adapt to various data reuse and bandwidth
requirements. The flexible NoC interconnection can support
different sizes and types of convolution operations (i.e.,
convolution and depth-wise convolution). In addition to HM-
NoC, the authors exploited the compressed sparse column
(CSC) compression method to improve throughput and energy
efficiency in both compact and sparse DNNs. However, HM-
NoC employs circuit-switched routing to lower hardware
overhead costs, which restricts the scalability and flexibility of
data transmission. Besides, due to the router design
consideration, the relatively complex control of the router
restricts more intricate data transmissions.

B. Adapt-flow [8]
To enhance computational efficiency and flexibility, Yang

et al. proposed a flexible DNN accelerator architecture called
Adapt-flow. The authors exploit a bi-directional Clos network
as an interconnect to provide adequate support for various traffic
patterns required by different dataflow. To further improve
performance, they proposed a dataflow selection algorithm that
selects the optimal dataflow strategy for a given DNN layer.
Although this work has investigated the communication patterns
between global buffers in various dataflow, it does not analyze
the communication between PEs, which restricts the data
communication flexibility.

C. UNPU [4]
To improve computation efficiency and support multi-

precision operations, Lee et al. proposed DNN accelerator called
UNPU. The lookup table-based bit-serial processing element
(LBPE) and the aligned feature map loader (AFL) are designed
to handle multi-precision operations. To effectively utilize the
input data reuse method, UNPU also employs NoC to increase
the flexibility of data transfer. Therefore, UNPU has the
advantage of high throughput, and the table-based PE design
results in lower energy consumption. However, table-based PE
design leads to high hardware overhead.

D. MMNNN [9]
To improve the efficiency of data transmission in DNN

computing, Ouyang et al. proposed a multicast mechanism for
NoC-based DNN accelerator called MMNNN. The proposed
routing algorithm provides high flexibility in data transmission.
On the other hand, they also propose a router architecture that
can transmit the packet to multiple destinations without head-of-
line blocking issues, providing higher throughput and lower data
transmission latency. However, the proposed router architecture
does not support wormhole flow control, resulting in long
transmission latency and ineffective utilization of NoC resources.
Additionally, the complex router design leads to excessive
hardware costs.

Fig. 2 The computation dataflow of different DNN operation types.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on January 03,2025 at 14:46:48 UTC from IEEE Xplore. Restrictions apply.

Figure 3.19: The computation dataflow of different DNN operation types [Chen et al., 2024].
Source: [Chen et al., 2024].

The following works seek to add NN capabilities in the NoC components, such
as routers, referred to in this work as intra-Noc acceleration. They add extra hardware to
perform specific acceleration tasks tailored to each network.

NOVA [Upadhyay et al., 2024] presents a NoC-based vector unit that approximates
the non-linear operations within the NoC, relying on the NoC to calculate and broadcast
values to different processing elements on-chip. The accelerator can be used on top of
existing hardware accelerators using NOVA as a NoC overlay. The NOVA router has two
input and output ports (Neighbor and Local). The outputs from each PE are processed by
the comparators to generate lookup addresses, which are then sent to the corresponding
NOVA router.

65

Figure 3.20: Eyeriss v2 top-level architecture [Chen et al., 2019]. Source: [Chen et al.,
2019].

Tiwari et al. [2022] propose modifications in the NOC routers with the In-Network
Accumulation (INA) method, focusing on reducing the network load and potentially memory
transactions that will help alleviate the communication bottleneck. To support the partial sum
accumulation, an INA block enclosing an adder is added to each router. The simulation was
performed on different DNN workloads and showed a 1.22x improvement in runtime latency
and a 2.16x improvement in power consumption.

Gao et al. [2023] propose a dual-layer NoC-based accelerator for lightweight CNN
networks. The design includes four parts: (1) NoC array; (2) PE clusters; (3) Loop con-
troller; and (4)Instruction decoder. The NoC array delivers data in different patterns to sup-
port calculation. The Instruction decoder adds support to various data for CNN algorithms
using a dedicated Instruction Set Architecture (ISA) as the control core of the accelerator.
The loop controller controls the memory access interface, input data packagers, and weight
packagers. Each PE cluster includes eight processing elements, each containing 1 MAC
operation.

Implementing NN accelerators based on NoC architectures needs application map-
ping to achieve optimal performance. Various NoC mapping techniques have been sug-
gested to reduce power consumption and latency in network communication. Some of the
works that explore this area are described below.

Zhao et al. [2020] presents a mapping method for CNNs on NoCs. The proposed
approach initially groups convolution operations and allocates them to processing elements
(PEs) while considering the characteristics of pooling operations. Subsequently, it calculates
the traffic between PEs to generate the Processing Element Communication Graph (PCG).
Then, PEs are mapped to the nodes on the NoC by a Genetic Algorithm to reduce com-
munication power consumption and latency. When the number of channels of the image is

66

one, each PE completes one convolution operation per row, and all PEs can complete one
convolution operation per clock cycle. Allocating individual PEs for pooling wastes resources
and increases communication power, so pooling and convolution operations share the same
PE. One PE per channel is allocated in the input layer when the image has multiple chan-
nels. For the remaining layers, the number of convolution operations and the balance of
computations of different layers are considered. According to their research, more than 70%
of the computation operations in CNN are occupied by convolution operations. Experimental
results have shown that the proposed method effectively saves power consumption by about
50%.

Liang et al. [2024] employs the Whale Optimization Algorithm, characterized by
simplicity, a small number of parameters, and strong global search capabilities. However,
it cannot be directly applied to discrete problems. According to them: “the complexity of
convolutional neural network applications requires consideration of optimization for multiple
objectives, such as energy consumption, latency, and load balancing”. The results show that
their approach significantly improves power consumption and latency compared to similar
mapping algorithms.

Ye et al. [2023] propose a task allocation method on a resource-limited NoC Plat-
form. The CNN’s computing tasks are first grouped and assigned to PEs to obtain the PCG.
The computational load of each task group cannot exceed the limitation of PE’s comput-
ing capability. Then the PEs are mapped to the NoC through a mechanism called dynamic
dense reverse mapping. Compared with the related work, the proposed method reduces
31% power consumption and 38% latency.

Table 3.4 summarizes NN acceleration methods and techniques on NoCs pre-
sented in this section. The last Table row positions our work w.r.t the state-of-the-art. Gen-
erally the related works focus on three streams: 1) Custom NoCs where there are NoCs
dedicated for data distribution for specialized PEs; 2) Intra-Noc acceleration where the NoC
components, like routers, are modified; and 3) mapping methods where the authors explore
different mapping techniques to optimize communication between PEs. Our work focus on
having general-purpose PEs with internal acceleration, differently from the state-of-the-art
where usually the PEs and NoCs are only designed for a single task.

3.4 Final Remarks

This Chapter reviewed works on Domain-Specific Accelerators (DSAs). While their
target applications vary, all aim to achieve high efficiency in their specialized tasks. In most
cases, these applications are related to AI and ML, often designed for edge devices.

67

Table 3.4: Summary NN acceleration methods and techniques on NoCs. Source: the Author.

Method Technique Target Application
Ultra-NoC [Chen
et al., 2024]

NoC
Modification

Hybrid data transmission to leverage
different data reuse methods DNN

Eyeriss v2 [Chen
et al., 2019]

Custom NoC
Architecture

Separate NoC for different data types and
clusters of PEs and GLBs

DNN on Mobile
Devices

NOVA [Upadhyay
et al., 2024]

Intra-NoC
Acceleration

Special router to support non-linear
operations

CNN Attention
Layers

Tiwari et al. [2022] Intra-NoC
Acceleration

Routers support partial sum accumulation
(In-Network Accumulation (INA)) DNN

Gao et al. [2023] Custom NoC
architecture

Dual-layer NoC-based accelerator with
dedicated custom ISA

CNN for Edge
Computing

Zhao et al. [2020] Mapping
method

PEs communication graph optimization
algorithm (Genetic Algorithm) CNN

Liang et al. [2024] Mapping
method

PEs communication graph optimization
algorithm (Whale Optimization Algorithm) CNN

Ye et al. [2023] Mapping
method

PEs communication graph optimization
algorithm considering resource limitation
(dynamic dense reverse mapping)

CNNs on
resource-limited
NoC

This Dissertation

General-
Purpose PE
with
accelerator

Usage of a general purpose PE with a
tightly coupled accelerator ML/CNN

The works discussed in Section 3.1 highlight that many companies have incor-
porated vector and SIMD processing features into their products, often as instruction set
extensions (ISEs). Examples include ARM SVE, Intel AVX, and NVIDIA CUDA.

Section 3.2 introduced RISC-V-based accelerators. Leveraging the open-source
nature of the RISC-V ISA, many works explore its use across a wide range of domains,
from high-performance commercial processors to compact embedded cores. RVV-based
accelerators target diverse applications and are deployed in various configurations, such as
coprocessors, tightly coupled designs, pipelined architectures, and multi-lane setups. Some
approaches are even more domain-specific, proposing custom extensions to RISC-V cores,
as discussed in Section 3.2.2. These works define minimal instruction sets that provide only
the necessary operations to accelerate specific target applications, avoiding compliance with
broader specifications or incurring unnecessary overhead. However, this strategy sacrifices
programmability, requiring compiler adaptation to support the new instructions. Finally, as
shown in Section 3.2.3, the simplicity of the RISC-V ISA and processor cores is utilized for
controlling accelerators. These works employ RISC-V processors as embedded controllers
to optimize processing element (PE) utilization and manage complex dataflows in special-
ized accelerator clusters.

Section 3.3 reviewed works involving manycore architectures, categorized into mul-
ticore accelerators and NoC-based accelerators. The multicore accelerators discussed in
Section 3.3.1 primarily organize processing cores into clusters. Most of these accelerators

68

leverage vector-based technology, either shared or individual, except for GAP-8. Many use
clusters of processors with the RVV extension, targeting applications in AI and ML.

Section 3.3.2 explored works that employ NoCs for domain-specific acceleration.
These works use various approaches, including custom or modified NoCs, intra-NoC accel-
eration (offloading computation from processing elements), and mapping methods or algo-
rithms. The reviewed works rely on NoCs to interconnect processing elements (PEs) specif-
ically tailored for their target applications, often optimized for operations such as multiply-
accumulate (MAC). Consequently, most NoC-based works focus on NoC architectures de-
signed explicitly for acceleration.

In RISC-V cores, there is a gap in the availability of an embedded processor that im-
plements the RVV extension while maintaining compatibility with its target environments and
providing effective acceleration. Most existing approaches either modify the memory inter-
face or overly simplify the vector unit, thereby reducing parallelism. Our approach addresses
this by implementing an architecture that combines single- and multi-lane components, in-
tegrating it as a tightly coupled accelerator using a shared memory bus. Additionally, most
processors focus on high-end implementations or support more comprehensive subsets of
the vector extension. In contrast, our work aims to implement a reduced subset specifically
optimized for CNN applications.

Although ARA2 [Perotti et al., 2024] uses a multicore environment with the RVV
extension, it does not use an NoC to interconnect PEs, characterizing a gap in the literature
for NoCs with PEs composed of RVV processors. Regarding manycores, the optimization
grain is often too small, presenting modifications in the NoC routers that could be performed
in other ways with more capable PEs. This also is derived from their approach using NoCs
built only for that purpose, with the PEs being only MAC components in most cases, justifying
their NoC modifications to achieve better performances. Our approach seeks to use general-
purpose NoCs, which were not tailored for domain-specific applications. This highlights the
gap that our work tries to fulfill: enhancing the CNN inference in a NoC environment with
accelerated PEs that can handle multiple workloads.

This work leverages vector/SIMD acceleration techniques with multicore and NoC
opportunities. It employs a manycore platform comprising several RISC-V cores, including
those with the RVV extension, acting as vector accelerators. This design enables the ex-
ploration of SIMD/vector parallelization within the RISC-V cores, combined with MIMD par-
allelization across the manycore dimension while using NoC interconnections for efficient
communication. Additionally, the NoC platform and RISC-V processors can concurrently
perform other tasks without performance degradation. In summary, this work addresses the
gaps in CNN acceleration using RISC-V vector processors within a NoC-based manycore.

69

4. RS5 PROCESSOR

This Chapter presents the first contribution of this Dissertation: an improved ver-
sion of the RS5 processor. This version includes new RISC-V extensions and mechanisms
like branch prediction, compressed instructions, atomic memory accesses, and cryptogra-
phy acceleration.

RS5, developed initially by the Author of this work – Nunes et al. [2024], is a RISC-
V processor that implements the RISC-V RV32I ISA alongside multiple optional extensions
and the Machine and User privilege levels. Figure 4.1 presents the RS5 organization, where
green rectangles separate the four pipeline stages: instruction fetch (IF), instruction decode
(ID), execution unit (XU), and retire unit (WB). Control signals are represented in red and
optional units are dashed.

The purple line delimits the core. Components in dashed blue lines are optional. Green
components are temporal barriers. Signals that control the pipeline stall are marked in red,
and the hold signal is dashed due to only occurring on multicicle instructions that are only
present in optional extensions.

Figure 4.1: RS5 Organization. Source: the Author.

The RS5 offers design parameters to define the inclusion of optional features (ex-
tensions and features). Table 4.1 shows all the RS5 top-level parameters.

The parameters correspond to:

• Environment – allows to quickly switch between ASIC and FPGA constructions.

• MULEXT – parameter to select whether or not to include hardware acceleration for multi-
plication and division (M Extension) or multiplication only (Zmmul Extension).

• AMOEXT – atomic extension that adds instructions that atomically read-modify-write mem-
ory contents.

70

Table 4.1: RS5 Design Parameters. Source: the Author.

Parameter Description Options
Environment Environment type ASIC, FPGA

MULEXT Include Hardware Multiplication/Division extension
MUL_OFF,
MUL_ZMMUL,
MUL_M

AMOEXT Include Atomic operation extension

AMO_OFF,
AMO_ZALRSC,
AMO_ZAAMO,
AMO_A

COMPRESSED Include Compressed extension TRUE, FALSE
XOSVMEnable Include XOSVM extension (MMU) TRUE, FALSE
ZIHPMEnable Include ZIHPM extension (Performance Monitors) TRUE, FALSE
ZKNEEnable Include ZKNE extension (AES Hardware acceleration) TRUE, FALSE
BRANCHPRED Include Branch prediction TRUE, FALSE
VEnable Include Vector extension TRUE, FALSE
VLEN Vector length in bits 64, 128, 256, ...

• COMPRESSED – compressed extension that adds support for 16-bit instructions, reduc-
ing memory footprint.

• XOSVMEnable – custom Memory Management Unit (MMU) in the form of a custom ex-
tension called XOSVM.

• ZIHPMnable – optional configuration that includes the performance monitors used for in-
struction profiling.

• ZKNEEnable – optional extension that accelerates the AES encryption algorithm.

• BRANCHPRED – branch predictor is an optional feature that improves performance but
can have area and timing drawbacks.

• VENABLE – optional extension that adds vector processing capabilities.

• VLEN – define the size of the registers in the vector unit when vector extension is enabled.
Otherwise, it is a don’t care.

4.1 Pipeline Stages

The IF stage controls the reception of instructions from the instruction memory (I-
MEM). It selects the Program Counter (pc) according to the core reset, trap occurrence, trap
return, jumps, and sequential operation. This stage works with virtual memory addresses
and can optionally be connected to an I-MMU to translate them to physical memory ad-
dresses. If the compressed extension is present, this stage includes an address aligner and
an instruction decompressor, which transform 16-bit instructions into 32-bit instructions to
be decoded.

71

The ID stage extracts the operation (op) requested by the fetched instruction and
the destination register (rd). The source registers (rs) have already been decoded at this
stage. It then fetches the operands (ops) from the register bank (GPRs) and performs hazard
detection. This stage can identify if an rs of the current instruction is the same as the rd being
written by the retirement stage or being generated by the execute unit to perform a 1- or 2-
stage forwarding (fwd . ctl .), avoiding waiting for the register bank write, thus bypassing
the data directly to ops. The data hazard detection emits no-operations (haz.), inserting
bubbles into the pipeline for the number of cycles necessary to resolve a conflict. This stage
can count with the optional branch predictor, which generates signals that connect directly
with the first stage (BP target & BP taken).

The XU stage is responsible for the computation based on op and ops. This stage
can have different execution units: (i) ALU. Its operation result (ALU res.) can be used to
compose the data memory (D-MEM) access address and the branch target ; (ii) BRANCH:
manages conditional branching (branch target & branch taken); (iii) LOAD/STORE: man-
ages D-MEM access (write enable and write data); (iv) CSR: executes CSR atomic op-
erations, enforces privileges, and handles traps; and (v) Multiplication (MUL) and Division
(DIV): the MUL unit can be included independently (Zmmul extension), while the inclusion of
the Division unit implies the inclusion of the Multiplication unit, resulting in the M extension.;
(vi) ATOMIC: state machine that controls read-modify-write operations on memory.

The WB stage executes the write-back of op results. It is responsible for writing
data obtained from D-MEM after a data read was queued from the LOAD/STORE unit. Note
that an optional D-MMU can virtualize D-MEM addresses.

Note that memory writing is performed during the XU stage. The XU also manages
the hold signal for multi-cycle operations, such as multiplication, division, and atomic opera-
tions. Multiplication operations typically require 4 to 5 cycles to complete, whereas division
operations may take up to 32 cycles.

4.2 Stall Signals

The signals highlighted in red in Figure 4.1 control the pipeline stalls and act as an
enable for the temporal barriers that delimit the stages. Three signals stall the pipeline:

• hazard – raised when the hazard detection mechanism detects a memory read-after-
write conflict (given a 1-cycle latency memory). The hazard signal stalls only the first two
stages, allowing the later stages to proceed with their respective computations to resolve
the detected conflicts.

• stall – external signal that indicates to the core that a requested operation is being pro-
cessed. It causes all the stages to hold their current state while the signal is in high-level.

72

Memory reads that caused cache-miss or memory writes to peripherals that are not ready
to receive the data (e.g., FIFO full) are examples of situations that can cause the stall
signal to be raised.

• hold – control signal that stalls all the pipeline temporal barriers. This signal is generated
in the execution of multi-cycle instructions and remain active during the cycles needed for
computation of the given instruction. It is present in the core only when optional extensions
are present (i.e., MUL/DIV/ATOMIC operations).

These three signals work together, enabling the processor to operate in diverse
environments and applications. They allow the processor to support multi-cycle instructions
and enable memory architectures that do not assume zero-latency access.

4.3 CSRs and Interrupt Control

Including CSRs is essential for enabling the core to run an operating system. The
Zicsr extension defines the instructions required to support these registers. The Zicsr in-
structions operate on a predefined register map consisting of 4,096 registers (12-bit ad-
dresses) and perform atomic operations, which include (i) read and write; (ii) read and set;
and (iii) read and clear. A dedicated execution unit controls these operations for CSRs and
sends control signals to a CSR Bank, which contains several inputs and outputs for commu-
nicating the CSRs with the several units of the processor. The RISC-V privilege approach
allows the processor to have different privilege levels: Machine, Supervisor, and User, with
the Machine at the highest and the User at the lowest. This allows the separation of user
applications from system tasks such as trap handling.

Trap handling is an essential feature for processor cores that interact with the ex-
ternal world, as they must be capable of receiving interrupts and raising exceptions. The
processor employs a local interrupt controller with fixed priority. Interrupts can be globally
disabled or masked using the CSRs. When a trap occurs, several CSRs are simultaneously
modified. The current privilege level is set to Machine mode, and the previous privilege level
is saved. The program counter associated with the exception or active during the accepted
interrupt is stored, and the program counter is updated with the address of the trap-handling
routine. Interrupts are disabled, the trap cause is written to a CSR, and other minor trap-
specific adjustments may also occur.

RS5 adopts an interrupt treatment approach based on a proposal by SiFive [SiFive,
Inc, 2020]. Two types of interrupt controllers are discussed: (i) Core Local Interrupt Con-
troller (CLIC); (ii) Platform Level Interrupt Controller (PLIC). CLIC is primarily designed to
manage interrupts for multiple hardware threads within the same core, multiplexing timer
interrupts, and managing software interrupts. Given that RS5 is a single-thread core, CLIC
does not apply to this work. PLIC manages global or external interrupts generated by pe-

73

ripheral devices. Within PLIC, each interrupt can be assigned a configurable priority level
ranging from 1 to 7 (highest priority), and 0 disables the interrupt.

RS5 supports timer interrupts through a Real-Time Clock (RTC) and external in-
terrupts managed by PLIC (irq). PLIC is configurable and provides an interface to Memory-
Mapped Registers (MMR).

4.4 Real-Time Clock

RISC-V standardizes RTC access through MMRs. RS5 implements a 64-bit cycle
counter that is accessible through MMR and also routed to the time counter in Zicntr. The
OS uses the RTC to generate timer interrupts to control the scheduling time slice.

4.5 Memory Interface

RS5 assumes a True Dual-Port memory architecture, where one port is used for
instructions and the other for data access. The memory interfaces, illustrated in Figure 4.2,
assume that each port includes a single address bus responsible for addressing both read
and write operations. The distinction between operations is determined by a byte-wide
"write" control signal. If this signal is all zeros, a read operation is performed; otherwise,
a byte-wide write operation occurs, with each bit of the signal serving as an enable for the
corresponding byte position in memory. Additionally, the port features an enable signal that
disables all memory operations when set to zero. The instruction memory port has its enable
and write signals hardwired to zero, ensuring that only read operations are performed.

Figure 4.2: RS5 Memory Interface. Source: the Author.

This interface allows the RS5 processor core to be used in an AXI bus interface
without any modifications within the processor.

74

4.6 Memory Management Unit (MMU)

RS5 includes an optional compact MMU through the Xosvm extension (“X”: custom
extensions, “osvm”: offset and size virtual memory). This extension enables paged memory
organization by dividing the memory into contiguous, statically-sized pages for each pro-
cess. It was introduced to address two significant issues: firstly, the standard RISC-V Sv32
extension for 32-bit virtual memory systems requires the Supervisor mode (S-Mode) along-
side M- and U-Mode, leading to increased hardware overhead with the inclusion of extra
CSRs and a Translation Look-aside Buffer (TLB); secondly, while RISC-V may offer a Physi-
cal Memory Protection (PMP) extension for security-centric embedded applications, it lacks
virtual memory support needed by dynamic application loading.

The Xosvm extension requires three additional CSRs (mask, offset, and size) for
each memory (instruction and data) and an additional register for MMU enablement. The
offset registers control the page offset of each memory, restricted to the power of two
values. Consider, for example, all page sizes equal to 4096 bytes (0x1000). The offset
for the first four user pages are 0x1000, 0x2000, 0x3000, 0x4000. The size mask registers
contain the page size of each memory minus one. In the above example, for a page size
equal to 0x1000, size is equal to 0x0FFF.

Equation (4.1) describes how to obtain the Physical Memory Address (pma) from
the Virtual Memory Address (vma), i.e., the address generated by a code running in the
processor. The or operation is equivalent to adding the page offset to the vma, but with a
smaller hardware cost.

pma = vma ∨ offset (4.1)

In the context of the Xosvm extension, memory isolation between pages is en-
sured, thus safeguarding the contents stored on each page. This is achieved through Equa-
tion (4.2). In this equation, the 32-bit size mask is negated and then bitwise AND-masked
with vma (also 32-bits). If any bit of the operation result differs from zero, an exception is
raised to the processor core.

exception = (vma ∧ ¬size) ̸= 0 (4.2)

In the above example size is equal to 0x0FFF, if an operation tries to access any
element above the vma address 0x0FFF an exception would be generated. For example,
when trying to access vma of 0x1000, the negated mask would be 0xF000, which would result
in a non-zero value when it goes through the bitwise AND operation (0x1000 ∧ 0xF000 =
0x1000), generating an exception.

75

4.7 Performance counters (Zicntr and Zihpm)

RISC-V standardizes performance counters to monitor and measure program exe-
cution and system behavior. By analyzing the data collected from these counters, develop-
ers can make decisions to improve code efficiency, identify bottlenecks, and enhance overall
system performance.

RS5 implements the three counters of the Zicntr extension: (i) cycle: a counter
that is increased at every clock cycle and keeps track of how many cycles have passed
since the core boot; (ii) time: a counter that reports an arbitrary precision time counter that
is not affected by clock gating, which is connected to the RTC; and (iii) instret: a counter
that tracks how many instructions were retired by the core. Additionally, RS5 offers optional
debugging counters accessible through the standardized Zihpm extension. These counters
track the number of bubbles issued, context switches, and instructions executed by type,
such as branches, arithmetic, or logic.

4.8 RS5 Validation Setup

RS5 validation was conducted in three environments:

• RTL simulation, which employs a testbench to emulate peripherals and memory, enabling
debugging and rapid validation;

• post-synthesis simulation, aimed at ASIC validation under synthesis constraints;

• FPGA prototyping, which evaluates the core in real-world scenarios.

For FPGA prototyping, the setup uses a Digilent NEXYS A7 board with a Xilinx
xc7a100tcsg324-1 FPGA. The main memory is implemented using Block RAM (BRAM), a
high-density memory module in Xilinx FPGAs. The GPR is implemented with Lookup Table
RAM (LUTRAM), a Xilinx FPGA primitive that is both area- and power-efficient. However,
due to LUTRAM’s limitations in granularity and atomicity, the CSR bank is implemented using
flip-flops.

The core employs a byte-addressed True Dual-Port memory that supports syn-
chronous reads and writes. This memory is initialized by the software using a binary file.
The setup includes a UART module for communication, and the board’s built-in buttons are
used to emulate external interrupts.

Compliance with the RISC-V ISA is evaluated using the rv32ui and rv32um unit
tests [RISC-V Foundation, 2015], while performance is assessed using the EEMBC Core-
Mark benchmark [Consortium, 2024].

76

4.9 Final Remarks

This Chapter provided a comprehensive overview of the RS5 processor, an imple-
mentation of a RISC-V processor that integrates several optional extensions and received
multiple architectural improvements during the development of this work, characterizing the
first contribution of this Dissertation. The processor has various performance and security
features, including branch prediction, compressed instructions, atomic memory operations,
cryptographic acceleration, and an optional compact MMU for virtual memory management.
Designed with flexibility, RS5 can be configured for various applications through design pa-
rameters that enable or disable specific extensions. Its four-stage pipeline, stall management
mechanisms, and performance monitoring support contribute to its efficiency and adaptabil-
ity. The RS5 core was validated through RTL and post-synthesis simulations and FPGA
prototyping. These tests demonstrated its compliance with the RISC-V ISA and perfor-
mance in real-world scenarios. The results confirm RS5 is a robust and scalable solution for
embedded and general-purpose computing applications.

77

5. RVV IMPLEMENTATION

This Chapter presents the efforts to implement the RVV extension in the RS5 pro-
cessor. It was developed as a tightly coupled accelerator consisting of a new execution unit
of the RS5 pipeline. This is the second and main contribution of this work.

This Chapter is organized as follows.

• Section 5.1 presents the subset chosen for implementation and the reasoning for the de-
sign choices regarding the instructions and functionalities implemented or not on the RS5
vector extension implementation.

• Section 5.2 details the vector extension implementation as a tightly coupled accelerator in
the RS5 processors. It uses a top-down approach to detail how the accelerator is fitted
inside the RS5 pipeline structure. This section also details the main implementation design
choices. The vector execution unit (VXU) organization is presented with its components
and functionalities.

Section 5.2.1 presents the Vector Arithmetic and Logic Unit, a VXU component respon-
sible for executing the vector arithmetic and logic operations. Section 5.2.2 presents the
Vector Load and Store Unit (VLSU), detailing how it is organized and controlled and how
it communicates with the VXU and the RS5 memory.

• Section 5.3 presents the validation process of the RS5 VXU implementation.

• Section 5.4 concludes this Chapter.

5.1 RVV Subset

The RISC-V Vector extension was previously introduced in Section 2.3. The RVV
extension can be implemented as a whole in an application processor, where, in this case,
it is named a single letter “V”. The specification also presents predefined instruction subsets
intended for embedded uses named with a Zve prefix. These subsets were presented in
Table 2.5.

The Zve32x is the smaller instruction subset. It requires a minimum VLEN of 32 bits
and supports SEWs of 8, 16, and 32 bits. It supports only integer operations. The Zve32f
adds 32-bit floating-point support to the Zve32x , requiring the scalar core to implement the
F extension. The Zve64∗ extensions increase the RVV extension’s capabilities to 64-bit
processors, expanding the minimum VLEN and supported SEWs to 64 bits. The Zve64d
subset supports double-precision floating-point operations while requiring the scalar core to
implement the D extension.

78

Chapter 4 presented the RS5 processor. Given that the RS5 processor targets
embedded systems, it became evident that the RS5 RVV extension implementation should
target one of the Zve subsets designed for that purpose. Since it is a 32-bit processor, it
limits the options to Zve32x or Zve32f subsets. As the RS5 processor does not implement
the floating-point extension (F), the only suitable subset is the Zve32x .

The requirements for the Zve32x subset are presented in Table 5.1 accompanied
by the RS5 decision to implement it or not and the reasoning to do so. Some requirements
were not fulfilled due to the large number of instructions or their complexity. In both cases,
the target applications did not use the instructions, leading to a considerable area overhead
of never-used instructions. A further explanation for each follows:

• Precise traps - since the RS5 does not trap during multi-cycle instructions, there is no need
to have precise traps, and thus, the vstart logic is not needed, simplifying the design. Error
during vector instructions execution are not treated;

• Vector integer instructions - instructions like add-with-carry and subtract-with-carry are
used only in very specific scenarios (not the case of the target applications), and others like
widening add/subtract are easier to implement in case they are needed but offer significant
area overhead;

• Fixed-point arithmetic - this class of instructions is not used by the target applications and
offers a significant amount of instructions, which would increase the area overhead and
complexity by a very significant amount;

• Vector mask instructions - this class of instructions varies in complexity, it goes from logic
instructions between mask registers (ignoring VLMUL) to more complex instructions like
count population and find-first-set mask bit, which would rarely be used;

• Vector permutation instructions - this class contains very complex instructions like slide
instructions, register-gather, and compress/decompress instructions, which would add sig-
nificant area overhead and are not used by the target applications.

Thus, we implemented a subset of the Zve32x instructions. Since the compiler
cannot be told which instructions are present in the implemented subset, the Zve32x subset
is still used to compile the target applications. If an instruction not implemented in the RS5
subset is emitted, the RS5 will decode it as invalid and raise an exception. To avoid that,
the applications can be rewritten with different constructs to avoid using unimplemented
instructions, or the implementation of those instructions must be considered.

Table 5.2 details the instructions selected for implementation in the RS5 processor
and justifies their selection based on their possible use/application. In total, 60 instructions
were selected, almost doubling the 36 instructions of the RV32I base ISA implemented by
the RS5 processor. This number highlights the need to implement only a portion of the
Zve32x subset, which, with all the instructions, would surpass 100 instructions.

79

Table 5.1: Requirements of the Zve32x subset and RS5 compliance with each of them.
Source: the Author.

Requirement Imple-
mented Reasoning

Precise traps No The vector instructions do not trap
SEW of 8, 16, and 32 bits Yes -
Vector configuration
instructions Yes -

All vector load and store
instructions Yes -

All vector integer
instructions Partially

Widening Add/Subtract, Integer Extension,
Add-with-Carry/Subtract-with-Borrow and Narrowing Right
Shift instructions were not implemented as the target
applications did not use them

All vector fixed-point
arithmetic instructions No The target applications did not use fixed-point arithmetic

All vector integer
single-width and widening
reduction operations

Partially Only single-width reductions were implemented

All vector mask
instructions No These instructions were not implemented due to

complexity and the target applications not using them

All vector permutation
instructions Partially

Slide, Register Gather, and Compress instructions were
not implemented due to complexity, and the target
applications not using them

Table 5.2: Instructions implemented in the RS5 Vector Unit and their possible application.
Source: the Author.

Instruction Class Instruction Names Application

Configuration VSETVL, VSETVLI,
VSETIVLI Configuration instructions

Arithmetic VADD, VSUB, VRSUB General-purpose arithmetic
Logic VAND, VOR, VXOR General-purpose logic
Shifts VSLL, VSRL, VSRA General-purpose shift

Mask Compares

VMSEQ, VMSNE,
VMSLTU, VMSLT,
VMSLEU, VMSLE,
VMSGTU, VMSGT

Mask generation (Used in ReLU)

Min/Max VMIN, VMINU, VMAX,
VMAXU Get min/max value between two elements

Multiplication VMUL, VMULH,
VMULHU, VMULHSU General-purpose multiplication

Widening
Multiplication

VWMUL, VWMULU,
VWMULSU General-purpose widening multiplication

Multiply and
Accumulate

VMACC, VNMSAC,
VMADD, VNMSUB MACs (Convolution operations, dot product)

Division VDIV, VDIVU, VREM,
VREMU General-purpose division

Sum Reduction VREDSUM Aggregation of partial sums

Min/Max Reduction VREDMIN, VREDMINU,
VREDMAX, VREDMAXU Get min/max value of vector (Max-Pooling)

Logic Reduction VREDAND, VREDOR,
VREDXOR Get logic reduction of vector

Register Moves VMV, VMVR, VMVSX,
VMVXS Moving data between vector registers

Merge VMERGE Merge data between vector registers based on mask

Unit-Strided
Load/Store VLE, VSE Access contiguous data from memory (e.g. kernel weights)

Strided Load/Store VSLE,VSSE Access pattern-distributed data from memory (e.g. feature maps)

Index load/Store VLUXEI, VLOXEI,
VSUXEI, VSOXEI Access distributed data from memory (e.g. fully connected layers)

80

Another important detail is that the instructions presented in Table 5.2 may have
variants. The “VADD" instruction, for example, has three variants:

• vadd.vv - sums two vector operands;

• vadd.vx - sums a vector operand to a replicated scalar operand (from a scalar register);

• vadd.vi - sums a vector operand to a replicated immediate operand (from the instruction
encoding).

The variants do not create a new instruction, but need operand replication (for
scalar and immediate operands) and multiplexing before execution.

5.2 RS5 RVV implementation

The RS5 processor includes multiple execution units, specialized modules for han-
dling specific operations like load-store and multiplication. The execute unit of the RS5 pro-
cessor, which represents the third stage of the pipeline, instantiates these modules. Some
execution units require more than one cycle to complete an instruction. For example, the
multiplication unit takes 4 to 5 cycles, and the division unit can take up to 33 cycles. During
the execution of a multi-cycle instruction, the pipeline stalls through a hold signal assertion
until the computation is completed.

The vector extension is implemented in the RS5 [Nunes et al., 2024] processor
as a tightly coupled accelerator. It is implemented as another multi-cycle execution unit
and integrated into the execute module. The vector instructions are decoded in the RS5
decoding unit and executed by an execution unit dedicated to vector processing, present in
the third stage (execution) of the pipeline. From now on, this unit will be called the “Vector
Execution Unit” (VXU). Figure 5.1 presents the modified version of the RS5 processor that
supports the RISC-V Vector extension. The only difference between the old version of RS5
presented in Figure 4.1 and the new version presented in Figure 5.1 is the addition of the
VXU in the third stage of the processor.

The second stage of the RS5 processor’s pipeline (instruction decode) was mod-
ified to support vector instruction decoding. The RS5 pipeline instruction control received
only three new instructions: 1) VLOAD, 2) VSTORE, and 3) VECTOR. This approach helps
minimize the impact of including the vector extension on the scalar core. If the vector exten-
sion is disabled, any vector instruction will be decoded as invalid, and an exception will be
raised since the optional components will not be present to execute the instruction, keeping
the area overhead minimal. The VLOAD and VSTORE instructions are classified as dedi-
cated instructions. They facilitate the control of the multiplexers for the memory control sig-
nals and do not require consideration of more than one signal to produce multiplexing logic.
All the vector arithmetic and configuration instructions are decoded as VECTOR instructions,

81

The purple line delimits the core. Components in dashed blue lines are optional. Green
components are temporal barriers. Signals that control the pipeline stall are marked in
red, and the hold signal is dashed because it only occurs on multicycle instructions that
are only present in optional extensions. Note the inclusion of the Vector Unit. The
included/modified units are highlighted in purple.

Figure 5.1: RS5 Organization with VXU. Source: the Author.

with an auxiliary signal that identifies each. This auxiliary signal is only considered inside
the Vector Unit, leaving the entire pipeline agnostic to its existence. Thus, the impact of the
vector unit’s inclusion on the other pipeline units is minimal.

The third stage of the RS5 processor’s pipeline (instruction execution) was modi-
fied by including the VXU. The VXU is a child unit that receives the execution unit signals
(instructions and operands) and performs the required operation. It is a multi-cycle unit with
a dedicated “hold_vector" signal that is OR-ed with the hold signal from other execution units
(division, multiplication, and atomic, if any are present) to generate the main “hold" signal re-
sponsible for freezing the first two pipeline stages until the operation is complete. Since the
VXU can access the memory, the choice was to use the RS5 processor memory interface
without any modifications. This implies that memory control signals generated by the VXU’s
Vector Load and Store Unit (VLSU) must be multiplexed with the memory control signals
from the other sources (Load/Store and atomic units), which is done based on the current
instruction. This design choice helps ensure that the RS5 processor is compliant in every
environment without modifying or adding any memory interface. It also helps reduce area
overhead and memory complexity.

The CSR bank also suffered modifications as the vector CSRs were added. Unlike
regular CSRs, vector CSRs are not present in the CSR bank. They are treated as external
registers that can only be written by the vector configuration instructions. Thus, only read
logic is implemented, reading the value held in the registers inside the VXU. The CSRs are:
1) Vstart - hardwired to zero; 2) VlenBytes - Constant value (VLEN/8); 3) Vtype; and 4) VL.

82

The VLEN is a design parameter and can be changed at the module instantiation.
When VLEN is changed, the entire vector unit adapts to handle VLEN-length data, by adding
more lanes. The VXU unit features VLEN as a design parameter, allowing it to be modified
upon instantiation. VLEN is flexible in powers of 2, and the entire VXU is designed to adapt
to process VLEN-length data without designer interactions aside from selecting the desired
VLEN.

The VXU is implemented as a three-stage pipeline as illustrated in Figure 5.2. The
first stage comprises the control logic associated with the vector CSRs and the operands
fetch and replication. The second stage is the execution, where the vectors are processed
using two additional units: the Vector Load and Store Unit (VLSU), which is single-lane, and
the Vector Arithmetic and Logic Unit (VALU), which is multi-lane. Based on the mask and
VL, it also generates the Vector Register File’s write enable signal. The results from the
VLSU, VALU, write enable, and destination register are propagated to the write-back stage,
the last stage of the pipeline. The write-back stage multiplexes the VALU and VLSU results
according to the instruction operation. Then, it performs the writeback on the VRF using the
write enable and destination register signals.

scalar operand

instruction
& instruction operation

hold_o

VL

MASK
& VL
& RD

operands

hold

O
PF
/E
X

result_vlsu

result_valuEX
/W

B

MASK

rs1 data
& rs2 data

Vector
RegFile

result & write enable & destination register

rs1 & rs2

FSM - LMUL, VL &
Pointers Control

Vector CSRs

Write Enable
Generation

Scalar & Immediate
Replication

operands

scalar result

VALU

address & write enable & write data

read data

VLSU

hold_vlsu

hold_valu3

2

4

1

6

5

7

8

Green components are temporal barriers. Signals that control the unit pipeline stall are marked in
red. Blue signals represent the communication with the scalar core.

Figure 5.2: VXU Organization. Source: the Author.

The VXU employs a Finite State Machine (FSM) to control its pipeline, operating
in two states: V_IDLE and V_EXEC. The V_IDLE state is the initial state, where the unit
remains when it is not operational (i.e., not executing a vector instruction). Upon detecting
a vector instruction, it transitions to the V_EXEC state, raising the hold_o signal and propa-
gating the operands to the second pipeline stage. In the V_EXEC state, computations are
carried out. This state persists until all registers in the current group (LMUL of the instruction,
up to 8 registers) are processed. The hold_o signal is de-asserted during the final execution

83

cycle, allowing the scalar pipeline to resume operation. A data hazard detection mecha-
nism is implemented to prevent pipeline stalls due to write-back conflicts. This mechanism
is triggered when a vector instruction enters the first pipeline stage with a source register
that matches the destination register in the last pipeline stage. In such cases, the pipeline is
stalled for one cycle to ensure that results are properly written to the VRF.

The numbers in Figure 5.2 correspond to the elements that implement the RVV
extension:

1) Scalar and Immediate Replication. Controls the replication of the scalar and immediate
operands and the operands selection via multiplexers.

2) Vector CSRs. Implements the vector CSRs and associated logic. Checks for invalid con-
figurations and communicates with other components providing SEW, VL, and LMUL.

3) Control FSM. Controls the vector unit with the previously mentioned states. It contains
the following modules:

3.1) LMUL Control. It manages register groups by tracking the number of registers
processed within a group. It is used to determine when an instruction’s execution
is complete.

3.2) Register Pointers Control. Register groups are addressed by their smallest reg-
ister number, requiring adjustments to the operand read address for the current
register. The base register address is combined with cycle counters to obtain the
correct register address. Vector instructions may use source and destination reg-
isters differently for normal, narrowing, or widening operations, necessitating spe-
cific pointer control. Narrowing instructions halve the destination register group
size, while widening operations double it. Normal operations keep the source and
destination register groups the same size.

3.3) Vector Length Control. Manages the number of elements a register can hold
and tracks how many have been processed during instruction execution. Instruc-
tions may be completed early if the processed elements exceed the current VL.

4) Vector Register File (VRF). Implements the vector registers. The VRF has one write
port and three read ports: two for source operands and one for mask (V0 register). It
consists of 32 registers of VLEN bits, with a write enable signal for each byte.

5) Vector Load-Store Unit (VLSU). It manages the vector memory access. Each vector
access is multi-cycle, and the latency depends on the VLEN, address mode, SEW,
and address alignment. It operates on a single-lane, meaning only one 32-bit PE is
used. Increasing VLEN barely affects this unit as only the data registers and flow
control elements grow with VLEN.

84

6) Vector Arithmetic and Logic Unit (VALU). Manages the vector arithmetic and logic op-
erations, capable of processing an entire VLEN register in parallel for any element
width up to ELEN(32) by using a multi-lane approach. The number of lanes is linked
to VLEN: if VLEN doubles, the number of lanes also doubles. The operations can
take different cycles to be completed (depending on SEW for wider operations). For
example, additions take one cycle per register, and multiplications can take up to 5
cycles.

7) Write Enable Generation. Generation of the register file’s write enable signal. It is a
byte-enable signal that considers SEW, VL, and mask.

8) Result Control and Demultiplexing. Demultiplex the result of the VALU and VLSU and
send to write back in the VRF or to the scalar register file

The VXU is designed as a multi-lane vector unit, meaning it can process multiple
elements in parallel. The number of lanes in the RS5 VXU is tied to the VLEN and ELEN
parameters. The ELEN is tied to the processor’s data width, 32. Thus, the number of lanes
in the VXU unit is VLEN/32. This indicates that each execution of vector instructions can
process an entire VLEN-wide register in a singular iteration. The vector Load and Store
instructions use the RS5 memory interface without modification, so they are limited to a
single-lane (32 bits). This implies that the RS5’s VXU is multi-lane for arithmetic and logic
instructions and single-lane for Loads and Stores.

The number of lanes is a design choice with advantages and disadvantages. Fewer
lanes reduce the processing elements required (which often use a significant area footprint)
but add multiplexing logic (punishing the circuit timing) and process fewer elements per cycle
(smaller throughput). More lanes imply a larger area footprint (more PEs), often with better
circuit timing and the advantage of higher throughput.

One of the main design choices was to leave the RS5 memory interface untouched
to keep it suitable for its working environments. Therefore, we opted to execute the arithmetic
and logic instructions in a multi-lane fashion to compensate the reduced throughput of the
vector memory accesses. To help reduce the area overhead of the multi-lane design, the
PEs were developed to explore opportunities for hardware reuse.

The VRF supports three simultaneous reads: two for source operands and one
for the mask (V0 register). MAC instructions require three source operands, leading to the
need to switch the VRF source addressing. This is possible because MAC operations are
multicycle, and the accumulation step is only performed during the last cycle. Thus, the two
multipliers are initially fetched from VRF, and the multiplication starts. When the multiplica-
tion is in the last cycle, the third operand is fetched from the VRF, becoming available at the
next cycle to be accumulated with the multiplication result.

The instructions implemented by the VXU are a subset of the RVV extension se-
lected for ML applications as previously presented by Section 5.1. They are categorized into

85

Table 5.3: Instructions implemented in the RS5 VXU and the respective cycles per register.
Source: the Author.

Instruction Class Instruction Names
SEW=8 -

Cycles per
register

SEW=16 -
Cycles per

register

SEW=32 -
Cycles per

register
Optional

Arithmetic VADD, VSUB, VRSUB 1 1 1 N
Logic VAND, VOR, VXOR 1 1 1 Y
Shifts VSLL, VSRL, VSRA 1 1 1 N

Mask Compares VMSEQ, VMSNE, VMSLTU, VMSLT,
VMSLEU, VMSLE, VMSGTU, VMSGT 1 1 1 N

Min/Max VMIN, VMINU, VMAX, VMAXU 1 1 1 Y
Multiplication VMUL, VMULH, VMULHU, VMULHSU 2 2 4-5 N
Widening
Multiplication VWMUL, VWMULU, VWMULSU 3 3 5-6 N

Multiply and
Accumulate

VMACC, VNMSAC, VMADD,
VNMSUB 3 3 5-6 N

Division VDIV, VDIVU, VREM, VREMU 1-8 1-16 1-32 Y
Sum Reduction VREDSUM 1 1 1 Y

Min/Max Reduction VREDMIN, VREDMINU, VREDMAX,
VREDMAXU 1 1 1 Y

Logic Reduction VREDAND, VREDOR, VREDXOR 1 1 1 Y
Register Moves VMV, VMVR, VMVSX, VMVXS 1 1 1 N
Merge VMERGE 1 1 1 Y

Unit-Strided
Load/Store VLE, VSE ∼VLEN/32 ∼VLEN/32 ∼VLEN/32 N

Strided Load/Store VSLE,VSSE VLEN/8 VLEN/16 VLEN/32 N
Index load/Store VLUXEI, VLOXEI, VSUXEI, VSOXEI VLEN/8 VLEN/16 VLEN/32 N

classes, as shown in Table 5.3, indicating the cycles needed to process a register for each
SEW and class. The last column, optional, lists instruction classes that can be disabled via
design-time code parameters, further reducing the implemented subset.

There is always one additional cycle for every instruction listed in Table 5.3. The
additional cycle corresponds to the state V_IDLE in which the operands are fetched from
the VRF and multiplexed, becoming available when the unit is in the V_EXEC state. Equa-
tion (5.1) shows how to compute the number of cycles, N, that a given vector instruction
takes to execute in the VXU. The constant 1 represents the additional cycle. X represents
the number of “cycles per register" presented in Table 5.3 for the given instruction and the
current SEW. The value of X is multiplied by LMUL as it represents the amount of regis-
ters the instruction must process. Executing back-to-back vector instructions with the same
operands may lead to another additional cycle caused by data hazard conflicts.

N = 1 + (XCLASSSEW ∗ LMUL) (5.1)

Configuration instructions take only one cycle to execute. Vector Load/Store in-
structions differ according to the addressing mode. The VLSU has internal control over the
number of elements processed per cycle. Due to its nature, unit-strided operations can
access more than one element per cycle (SEW-dependent, 32-bit limited). Strided and Vec-
torized accesses process a single element per cycle. The Vector Load/Store instructions will
be further detailed in Section 5.2.2.

86

5.2.1 Vector Arithmetic and Logic Unit

The vector arithmetic and logic unit (VALU) is the main component of the VXU. It
executes all instructions except the loads, stores, and configuration instructions. It receives
the operands, mask, CSR configurations (LMUL, VL, and SEW), and control signals (oper-
ation, current cycle, and current state). It outputs the VALU hold signal and the operation
results.

The hold signal is raised when a multicycle instruction is executed and remains high
until the operation is complete. Instructions from the same class can vary in cycle duration
depending on the SEW (e.g., 8- and 16-bit multiplications are performed in two cycles while
32-bit requires 4 to 5 cycles) or specific conditions (e.g., dividing by zero takes a single cycle
while dividing by valid values takes more).

Logical instructions (AND, OR, and XOR) are SEW-agnostic because they are bit-
wise operations. All the other instructions consider SEW in their execution. Since ELEN is
32, the supported SEWs are 8, 16 and 32.

Some operations offer clear opportunities for hardware reuse among SEWs, such
as the addition. The 32-bit VALU adder comprises 4x 8-bit adders with carry-in and carry-out
capabilities. Figure 5.3 details the architecture of the 32-bit adder. Adder 0 is responsible for
the least significant 8-bit part of the data, while Adder 3 processes the most significant 8-bit
part.

• When SEW is 8, carry-in connections on all adders are zero, and carry-out is ignored.

• When SEW is 16, adders 1 and 3 receive the carry-out of adders 0 and 2 as carry-in.

• When SEW is 32, the entire chain of carry-in and carry-out is connected, producing a
32-bit result.

This design avoids the need for specialized hardware for each supported SEW,
minimizing the area overhead.

Figure 5.3: Hardware reuse in VXU’s adders. The red color in the muxes control indicates
which path is propagated when the condition evaluates truly. Source: the Author.

The operands that feed the adder are multiplexed as they can come from different
sources. The possible operands are the following: 1) First and second operands for reg-
ular addition (VADD); 2) First operand and the two’s complement of a second operand for
subtraction (VSUB and VRSUB); 3) Multiplication result and third operand (either regular or

87

two’s complement) for the accumulation in MAC operations (VMACC, VNMSAC, VMADD,
and VNMSUB).

The multipliers also offer hardware reuse opportunities. Multipliers can occupy a
significant amount of the circuit’s area footprint. Thus, in the RS5 execution unit and the
VXU unit, the 32-bit multiples are composed of 17-bit multipliers controlled by an FSM,
making it a multicycle operation. This way, the 32-bit multipliers can perform 8- or 16-bit
multiplications using sign or zero extensions on the missing bits. A generic multiplier module
with parameterized width is used for the smaller multipliers (8 and 16). A VLEN of 64 bits
needs 2x 32-bit, 4x 16-bit, and 8x 8-bit multipliers. By applying hardware reuse, we can fulfill
this requirement by using 2x 32-bit, 2x 16-bit, and 4x 8-bit multipliers.

• When SEW is 32, only the two 32-bit multipliers are used.

• When SEW is 16, the two 16-bit multipliers handle two multiplications, and the two 32-bit
multipliers handle the other two.

• When SEW is 8, all the multipliers are used.

The MAC instructions use the same hardware as the multiplications and additions.
The multiplication results are stored in a temporal barrier and used as a source operand
for the adder in the next cycle. The accumulation step uses the adder to sum the stored
multiplication results and the third operand, maximizing hardware reuse and requiring just
an extra cycle compared to regular multiplications.

Due to its implementation, the divider module does not allow hardware reuse tech-
niques similar to those used in multiplications. Division requires at least N cycles to perform
an N-bit division. The divider module counts with a dedicated FSM with exclusive cycles to
start and calculate the signal, making it very difficult to use the same hardware for smaller
divisions.

Other instruction classes were implemented considering their simplicity or possible
timing problems, given their complexity. The shift instructions were designed for simplicity,
considering only the necessary shift control bits for each SEW. For instance, 8-bit operands
require three shift control bits, whereas 32-bit operands need five control bits. The compar-
isons (equal and greater) operations focus on better timing, as the comparison results are
used for other instructions, such as minimum (VMIN, VMINU), maximum (VMAX, VMAXU),
and mask compare instructions (VMSEQ, VMSNE, VMSLTU, VMSLT, VMSLEU, VMSLE,
VMSGTU, VMSGT).

Register Moves (VMV, VMVR, VMVSX, VMVXS) bypass the input operands to the
outputs without any modifications. The VMERGE instruction combines two registers using a
mask. If the mask is active, data is sourced from one register; otherwise, it comes from the
alternate register.

In widening operations, each register processed by an instruction generates two
output registers. A widening operation with a SEW of 32 bits would generate 64-bit elements,

88

which is invalid as it would surpass the ELEN=32, which defines the maximum element size
an instruction can produce as 32 bits. Only widening multiplications were implemented in
RS5 VXU. Widening operations require an extra cycle to execute, given the need to write
two registers in the VRF.

The reduction instructions (VREDSUM, VREDMIN, VREDMINU, VREDMAX, VRED-
MAXU, VREDAND, VREDOR, and VREDXOR) condense a group of registers into a single
scalar result, effectively merging all elements through the defined operation. For instance, in
sum reductions, all elements in the register are added together, producing one output value
rather than an output vector.

The reduction instructions also receive a scalar operand (the first position of the
second vector operand) to be reduced with the input vector register. This extra scalar
operand allows the reduction of a group of multiple registers. In the first cycle, the scalar
operand will be the value coming from the first position of the second operand register. For
subsequent registers in the group, the scalar operand will be the reduction result from the
previous register.

In the RS5 VXU unit, the reduction instructions are implemented using a reduction
tree exemplified in Figure 5.4. There are dedicated reduction trees for each supported SEW.
The three have log2 N levels, where N is the number of elements in the vector registers.
For larger VLENs, the design will feature deep reduction trees, especially for 8-bit elements,
which may create a critical path for timing constraints. The VXU unit offers the option to im-
plement the reduction trees in using combinational or sequential circuits. The combinational
version can reduce the entire vector register in a single cycle, offering good performance in
exchange for a possible critical path for timing closure. The sequential version operates one
tree level per cycle, resulting in slower operations but significantly better timing. However,
this creates additional area overhead due to the need for extra flip-flops at each tree level.

Figure 5.4 represents the multiplexers for filtering the inputs in green. They are
responsible for inserting neutral operands for the given operation (the neutral operand for
addition is 0, and for logical AND operations is a binary 1). Neutral operands are inserted if
the given element is masked off or the element index is bigger than the current VL. Figure 5.4
displays the reduction operation highlighted in orange boxes. In this figure, the depicted
operation is a sum; however, for different instructions, the operation varies according to the
instruction type (for instance, in the case of VREDAND, it is a bitwise AND).

The first level of the reduction tree is composed of the filtered input operands,
with the least significant position being the filtered input operand index zero reduced with
the scalar operand. The vector size is halved in each subsequent tree level until only one
element remains at the final level, representing the reduction outcome.

89

Figure 5.4: Sum reduction tree hardware for an eight-element register. The input register is
filtered (considering mask and VL), and the first element accumulates the scalar value. The
following tree levels reduce the elements until a single scalar value is achieved in the last
level. Source: the Author.

5.2.2 Vector Load and Store Unit

The Vector Load-Store Unit (VLSU) is the component responsible for memory ac-
cesses in RS5 VXU. It comprises a two-stage pipeline, with the first stage performing mem-
ory addressing and the second stage receiving data from memory reads. The second stage
is needed because the memory model used in RS5 only supplies the requested data in the
subsequent cycle. In the first stage of the pipeline, read signals are dispatched to memory,
making the read data accessible in the subsequent stage.

RS5 memory interface always accesses the memory word-aligned (4 bytes), which
means that the two least significant bits of the address are discarded. However, the VLSU
supports “word-misaligned” access, where the memory access addresses are naturally
aligned to SEW. This means that:

1) Elements with a SEW of 8 bits must be in byte-aligned addresses (e.g., 1, 2 and 3);

90

2) Elements with a SEW of 16 bits must be in half-word-aligned (2 bytes) addresses (e.g.,
2, 4 and 6);

3) Elements with a SEW of 32 bits must be word-aligned (4 bytes) addresses (e.g., 0 and
4).

The support of word-misaligned access implies that different numbers of elements
can be accessed between memory operations depending on the address alignment. Fig-
ure 5.5 shows the memory accesses for a vector of eight 8-bit elements. for different mem-
ory addressing modes. Figure 5.5 (a) and (b) show unit-strided accesses, respectively, with
word-aligned and word-misaligned. In the word-aligned accesses (Figure 5.5 (a)), only two
memory accesses are needed to load/store the entire vector. This is because the address
is word-aligned, allowing four elements to be accessed per cycle. However, the first access
can load only one element when the base address is word-misaligned, and the start ad-
dress is 3 (Figure 5.5 (b)). The second memory access successfully reads four elements,
so the number of elements accessed at the end of the second memory access is 5. Thus,
an additional memory access cycle is required for just three elements, ignoring the fourth
one. When the addressing mode is Unit-Strided, and SEW is 8, up to 4 elements per cycle
can be accessed. When SEW is 16, up to 2 elements can be accessed per cycle. Logically,
when SEW is 32 bits, only one element per cycle is accessed.

Figure 5.5: Memory access for different addressing modes of RVV extension in RS5 for
eight elements of 8 bits. Figures (a) and (b) illustrate word-aligned and word-misaligned
unit-strided access, whereas figures (c) and (d) demonstrate strided and indexed modes.
Source: the Author.

For strided and indexed memory addressing modes, represented in Figure 5.5 (c)
and (d) respectively, the amount of elements accessed per cycle is always 1, independent
of SEW configurations. There is no guarantee that the next element is within the window
of the current memory access for the indexed addressing mode since the indexes might not
correlate, leading to irregular memory accesses as the example in Figure 5.5 (d). In the
strided addressing mode, although memory access is correlated (the next access address
is offset from the current access address), subsequent elements are not guaranteed to be in
the same access window (32 bits). For example, for memory accesses with a SEW of 8 bits,
a stride bigger than 5 is enough to restrict the number of elements per access to just one, as

91

Figure 5.5 (d) presents. The benefits of implementing extra hardware to support access to
multiple elements in strided and indexed addressing modes do not outweigh the complexity
and area overhead.

Table 5.3 (page 85) presents the vector memory access instruction grouped by
class (addressing mode) and their respective number of cycles needed to process an entire
vector register.

To control all the logic in the VLSU, it counts with an internal FSM of four states:

VLSU_IDLE indicates that the unit is idle, waiting for a memory access instruction;

VLSU_FIRST_CYCLE indicates that the processing of a new vector register by a memory
access instruction started, resetting all counters/accumulators related to vector register
processing;

VLSU_EXEC performs the execution of the memory access instruction until the vector reg-
ister is fully processed;

VLSU_LAST_CYCLE indicates that a vector register was fully processed by the memory
access instruction. The resulting vector can be written in the VRF if it is a read op-
eration. The FSM can either return to the VLSU_FIRST_CYCLE state until all the
vector group (LMUL) is processed or to the VLSU_IDLE state when the group is fully
processed.

Figure 5.6: VLSU organization. Module signals to/from VXU are drawn as blue arrows.
Red arrows represent signals to/from memory. The temporal barrier is drawn as a green
rectangle. Source: the Author.

Figure 5.6 shows the organization of the VLSU. It shows the module input and
output signals from VXU as blue arrows and the memory signals as red arrows. The inputs
from VXU comprise the stride (for strided operations), the index vector (for indexed memory

92

access), the base address, the vector to be written, the mask, and the Vector Length (VL).
The outputs to the VXU module are the hold signal (generation abstracted in Figure 5.6)
and the data read vector. The memory signals are the memory address, the memory write
enable, the data to be written to memory, and the data read from memory. The numbers in
Figure 5.6 correspond to the components that implement the VLSU module:

1) Strided offset calculation/accumulation. Generates the strided offset. A fixed value
increases an accumulator in every execution cycle. It resets to zero when the memory
access instruction is completed or when a memory instruction is not being executed.
The value added to the accumulator is either 4 when the memory addressing mode is
unit-strided or the stride value when the memory addressing mode is strided.

2) Vector offset Indexing. Generates the indexed offset. It receives the index vector (one
of the operands) and gets the current element offset from the vector considering SEW
and the current element index.

3) Elements processed in current register accumulator Calculates the current element
index. This accumulator resets when a register completes processing or when a mem-
ory instruction isn’t executed. During each memory access cycle, the number of pro-
cessed elements is added to the accumulator.

4) Elements processed in cycle calculation Generates the number of elements processed
in each memory access cycle. It considers SEW, addressing mode, and memory align-
ment (the two least significant base address bits).

5) Elements processed in total accumulator Generates the number of elements processed
during the current instruction execution. It is an accumulator similar to the one that
holds elements processed in the current register, except that it does not reset when a
register is fully processed but only at the end of the instruction execution. This allows
for comparing the total number of processed elements with VL to check if the vector
was not completely processed.

6) Mem address calculation Generates the effective memory address. It is an adder that
sums the base address with the offset. The offset is multiplex between the strided and
indexed based on the instruction addressing mode. The result of the sum is propagated
to the memory.

7) Write enable Generation Generates the memory write enable. It is a mechanism that
uses the current index to address the mask and check if the element is active (if not,
the write will not be executed). It also checks if the current index is not bigger than the
VL, indicating that it should also not be written.

93

8) Write data indexing Generates the data to be written in memory. It uses the current
element index to index the write data vector (one of the operands) and get the data
that should be written in the given memory position.

9) Vector end detector Generates a signal that indicates vector ending. It compares the VL
and the total value of elements processed. If they match, then the vector processing is
over, and the instruction can end execution.

10) Read data indexing Generates the data to be written in VRF. It receives the data read
from memory and the other values stored in the temporal barriers. The index ad-
dresses the correct position in which the read data should be allocated on the output
vector. Memory address and the number of elements processed in that cycle are used
to calculate which part of the read data should be considered.

5.2.3 Related Work

This section aims to compare the RS5 implementation of the RVV extension with
comparable cores presented in Section 3.2.1.

Arrow [Assir et al., 2021] implements a subset of the version 0.9 of the RVV ex-
tension. It also presents design time parameters for VLEN, and offer the option to change
the number of Lanes and the ELEN. In the paper they analyzed a dual-lane architecture
with VLEN of 256 bits and ELEN of 64 bits. Arrow is a coprocessor and have a pipelined
datapath, similar to a processor pipeline, with decoding, operand fetch, execute or memory
access, and write-back. The memory access is performed through a dedicated AXI inter-
face and all memory accesses are 64 bits wide. Among the instructions implemented in the
subset there are: unit-stride and strided memory access; single-width integer addition, sub-
traction, multiplication, and division; bitwise logic and shift; and integer compare, min/max,
merge, and move operations.

ARA [Cavalcante et al., 2019; Perotti et al., 2022, 2024] can be configured with a
variable number of identical lanes, with each having three execution units, an integer ALU,
an integer MUL, and an FPU, all of them operating on a 64-bit datapath. RS5 VXU does
not implement Floating point support, thus it differes from Ara in this point. Ara has a single
memory port with a configurable width through a dedicated AXI interface.

Johns and Kazmierski [2020] uses a non-pipelined scalar core, thus the vector ac-
celerator follows the same architecture as a multi-cycle component tighten to the processor’s
pipeline. It uses a 32-bit VLEN thus containing only one lane. For instructions using vector
register groups, one register is operated on per cycle similar to what is done in RS5 VXU,
except that each register comprises only one ELEN-element, and RS5 support registers
with multiple ELEN elements. The VRF only implements 16 instead of 32 vector registers.

94

The memory port is also limited to 32 bits, sharing the memory bus with regular load-store
instructions.

Ali et al. [2021] uses a 32-bit ELEN to match the processor instruction width. The
architecture is a two-stage pipeline with an instruction fetch and decode stage (fd-stage)
and an instruction execution and write-back stage (ew-stage). The second stage also com-
prehends VLSU and VALU components. The VALU is composed of multiple lanes whose
number can be configured. The VLSU has an interface with the CPU’s data memory, and
the OBI protocol is used for communication. The data and the address bit length are set to
32 bits.

ZeroVex [Zhao and Ye, 2024] uses a similar approach to RS5 VXU, tying the num-
ber of lanes with the VLEN. However, it uses a distributed VRF where each lane is furnished
with 32 32-bit vector registers. The memory access has dedicated ports through an OBI
interface, with each lane having a memory access port.

The related work demonstrates the variability in RVV extension implementations,
with some designs featuring multiple lanes and dedicated memory ports, while others prior-
itize minimal hardware usage by simplifying the architecture as much as possible. The RS5
VXU adopts a balanced approach by combining multi-lane processing for data operations
with single-lane memory access while maintaining simplicity through a reduced instruction
subset. This design enables the integration of the RVV extension into RS5 without requiring
modifications to the memory interface, while still achieving high throughput, reinforcing its
role as a general-purpose processor.

5.3 VXU validation

Early validation of the RS5 VXU implementation was performed using manually
generated assembly codes. It helped validate the initial instructions and the main compo-
nents of the VXU, such as VRF accesses, memory accesses, and instruction executions.
However, this approach was not the best since it had the designer’s bias.

In the RV32I ISA, there are multiple validation suites. One of them is the unit tests
[RISC-V Foundation, 2015], which test each instruction functionality individually for multiple
operands. However, this suite lacks tests for vector instructions.

By searching for RVV extension validation suites, the Author crossed with the ARA
[Cavalcante et al., 2019; Perotti et al., 2022, 2024] repository, which contains tests for the
ARA vector accelerator. It includes tests for all the rv64uv instructions. Since the RS5
RVV implementation does not include all the instructions from the V extension, only the
implemented instructions were selected. As the Ara accelerator includes 64-bit support, the
tests needed to be modified to exclude the tests with SEW of 64 bits.

95

The majority of the unit tests use vectors of 16 elements. To hold an entire vector
of 16 elements in a single vector register, as the tests assume, it is needed: 1) a VLEN of
128 bits for a SEW of 8 bits; 2) a VLEN of 256 bits for a SEW of 16 bits; and 3) a VLEN of
512 bits for a SEW of 32 bits. Thus, the VXU was tested with a VLEN of 512 to comply with
the ARA’s tests.

1 # i n c l u d e " v e c t o r _ m a c r o s . h "
2
3 void TEST_CASE1(void) {
4 VSET(16, e8, m1) ;
5 VLOAD_8(v1 , 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8) ;
6 VLOAD_8(v2 , 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8) ;
7 asm volatile("vadd.vv v3 , v1 , v2") ;
8 VCMP_U8(1, v3 , 2, 4, 6, 8, 10, 12, 14, 16, 2, 4, 6, 8, 10, 12, 14, 16) ;
9

10 VSET(16, e16 , m1) ;
11 VLOAD_16(v1, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8) ;
12 VLOAD_16(v2, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8) ;
13 asm volatile("vadd.vv v3 , v1 , v2") ;
14 VCMP_U16(2, v3, 2, 4, 6, 8, 10, 12, 14, 16, 2, 4, 6, 8, 10, 12, 14, 16) ;
15
16 VSET(16, e32 , m1) ;
17 VLOAD_32(v1, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8) ;
18 VLOAD_32(v2, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8) ;
19 asm volatile("vadd.vv v3 , v1 , v2") ;
20 VCMP_U32(3, v3, 2, 4, 6, 8, 10, 12, 14, 16, 2, 4, 6, 8, 10, 12, 14, 16) ;
21 }

Code 5.1: C-code of the first test case for the VADD instruction unit-test.

Listing 5.1 presents the first test case of the VADD instruction. It tests the VADD
instruction for different SEW configurations and checks the results. It initially sets the con-
figurations using the “VSET" macro, which calls for a configuration instruction with the given
parameters. It sets the VL to 16 elements, the LMUL to 1, and the SEW to 8, 16, and 32.
After the configuration, the v1 and v2 registers are loaded with the vectors to be processed
using VLOAD macros. The VADD instruction is then called using inline assembly. Lastly, the
instruction results are compared to the expected results using a comparison macro.

Each instruction unit test contains multiple test cases involving different scenarios,
such as masked and unmasked executions, different VLs, and different types of operands
(vector, scalar, and immediate). A script was developed to help run all the unit tests. It
compiles and executes each unit test individually and then classifies the result as passed or
failed. It is a sort of regression that can be run after changing the processor to help identify
any errors that may have been introduced by the modifications.

96

5.4 Conclusion and Final Remarks

This Chapter presented the VXU, a hardware component that implements the RVV
extension in the RS5 processor as a tightly coupled accelerator. The modifications made to
RS5 were discussed in detail, along with an in-depth analysis of the chosen design. Addi-
tionally, the design choices were explained, focusing on the VALU and VLSU components.

The RS5 VXU features a distinctive design that integrates both single-lane and
multi-lane capabilities for memory access and computations, making it suitable for a general-
purpose processor without needing modifications in the memory interface while providing
high throughput.

Chapter 6 will present the applications used as benchmarks for testing the VXU
accelerator performance, while Chapter 7 will show the results achieved with the accelerator.

97

6. CNN BENCHMARKS AND MANYCORE MAPPING

This Chapter presents the third and fourth contributions of this Dissertation: new
CNN benchmarks for the RS5 processor and the manycore mapping technique. These were
used to validate the RVV extension implementation of the RS5 processor and to generate
the results that will be presented in Chapter 7.

The applications presented in this Chapter were successfully compiled using the
vector extension in GCC 14.2. This compiler version added automatic vectorization, and its
previous version, GCC 13, introduced support for the RVV extension instructions via inline
assembly.

The ISA string in the Makefile was updated with the RVV extension, using the
implemented subset (zve32x) to compile the application to the RS5 processor. The Minimum
Vector Length specification (zvl) used for applications was 64 bits in general. However, tests
were made using a supplementary compiling flag -mrvv-vector-bits that tells the compiler
to use the value specified in the zvl ISA as target VLEN. This option often produces better
performance results in exchange for compatibility. Another compiler flag explored was the
-mrvv-max-lmul that gives a hint to the compiler of what size of vector register groups it
should use, varying from 1 (m1) to 8 (m8) registers. Thus, an example of an ISA string in
the makefile is: -march=rv32im_zve32x_zvl256b -mrvv-vector-bits=zvl -mrvv-max-lmul=m8.

This chapter is organized as follows.

• Section 6.1 presents the first benchmark application, a one-dimensional CNN. It details
how it can be vectorized using the RVV extension instructions. It also evaluates the
GCC compiler by analyzing the generated assembly codes. It also presents a manually-
vectorized version that shows that the compiler auto-vectorization can still be improved.

• Section 6.2 introduces the second benchmark application, a two-dimensional CNN. It de-
scribes the characteristics of the selected network and explains how the initial code version
was ported to RS5. Additionally, it details the process of dividing the original functions into
smaller ones to enhance opportunities for manycore parallelism.

• Section 6.3 details how the 2D CNN was mapped to a manycore environment. It describes
the selected technique for dividing the CNN application into smaller processes to improve
parallelism. For that, it goes through a mathematical basis and shows how the smaller
processes communicate and how they can be organized in multiple PE layers.

• Section 6.4 concludes this Chapter.

98

6.1 1-D CNN

This section presents the ML application for testing the RS5 VXU, a one-dimensional
CNN (1D-CNN). The 1D-CNN application has a relatively simple architecture by today’s stan-
dards [Reusch et al., 2023]. The primary objective is not to achieve state-of-the-art accuracy
but rather to illustrate the effectiveness of simplistic CNN models in the context of Human
Activity Recognition tasks. Figure 6.1 presents the 1D-CNN baseline model. It contains
three convolutional layers and two fully connected (FC) layers. It adopts the rectified lin-
ear activation function (ReLU) after each convolution. The work presented by Reusch et al.
[2022] extended this CNN, adding temporal awareness to the reference model, keeping its
reduced complexity.

Figure 6.1: 1D-CNN reference model. Source: [Reusch et al., 2023].

In Reusch et al. [2023], the 1D-CNN was converted from the Pythorch model to a C
model using integer representation. The model described in C language (C model) executes
only the inference phase. The C model was built without standard libraries or function calls,
making it a perfect fit for the test application or the RS5 VXU.

The model receives a unidimensional vector corresponding to the raw data ex-
tracted from the dataset as input. This raw data input has a shape of 1 × 120 (Figure 6.1
presents the reference model, which uses a 1 x 40 input). Considering that the input vec-
tor has 120 entries, KERNEL_SIZE=5, and the number of filters equals 64, this first layer
executes 37,120 multiply-accumulate (MAC) operations (64 × 116 × 5). This model uses a
bidimensional input shape of 64×116 and 64×112 in the second and third layers. The first
dimension, 64, corresponds to the number of filters. The second parameter corresponds to
the input features size minus one (kernel size −1). The number of MAC operations is equal
to 2,293,760 (64 × 112 × 64 × 5) and 2,211,840 (64 × 108 × 64 × 5) for the second and
third layers, respectively. The FC 1 layer has an input size of 6,192,128 filters, resulting in
128 outputs, and executes 884,736 MACs. The FC 2 layer has an input size of 128 with 5
filters, resulting in 5 outputs, performing 640 MAC operations. For a single inference, it is
necessary to execute 5,428,096 MAC operations.

The application was compiled to RISC-V using GCC 14.2. It was then executed
on the RS5 processor to generate the baseline results. During the compilation process, the

99

assembly instructions generated by the compiler were analyzed, leading to several conclu-
sions. One notable observation concerns the generation of division operations. GCC 14.1
tries to avoid hardware divisions, which are often slow even in hardware. This optimization
is achieved whenever the divider or divisor is constant, and division instructions are inserted
only when both operands are variables. This behavior was observed only in GCC 14.1;
all older GCC versions did not implement this optimization and issued division instructions
regardless.

By running the application in the baseline RS5, the validity of RS5 was once more
proven, since it could issue the correct result for a data-intensive application. The mem-
ory for holding the input vector had to be expanded to more than 5 Megabytes. Using the
performance monitor counters for instruction profiling allowed tracking the number of multi-
plications performed on execution. The resulting number was very similar to the theoretical
value (5,428,096).

6.1.1 C-Language Model

Listing 6.1 presents a simplified version of the first convolution layer for the 1D-CNN
in C-Language. The code implements a simplified version of the Equation (2.4), where one
of the summations does not exist because the CNN only has one dimension (width). Initially,
the application defines the network parameters (number of filters, kernel size, and input size)
using the C-defined macros. In the main function, after the initialization of the variables (like
input_vector), the auxiliary variables are declared:

• bias - an integer to hold the bias for the current filter;

• kernel - An integer vector to hold the five elements-wide kernel for each filter;

• featureMap - An integer matrix to hold the output feature map. It is a matrix because each
filter generates an output feature map. The size of each feature map is the size of the input
minus the kernel size (plus one).

After declaring the variables, the convolution operation is performed. The convolu-
tion is composed of a main loop that processes each filter. Inside the filters loop, the kernel
and bias variables are loaded respectively with the weights and bias of the current filter.

From lines 23 to 28, the dot product operation is executed, consisting of the core
convolution operation. The process includes a loop that produces each feature map output,
comprising 116 iterations for every filter. Initially, it initializes the accumulator variable to-
talSum with zero. Then, it walks through the kernel window (5 elements), performing MAC
operations. The MAC operations consist of multiplications of the kernel weight with the given
input vector position and accumulate the multiplication result to the totalSum variable. After

100

the kernel window is done, the accumulation result is added with the bias and stored in the
output feature map, concluding the convolution.

Lines 32 to 35 present the ReLU operation executed after each convolutional layer.
It consists of two loops that iterate over the output feature map. Each position is checked to
see if it is smaller than zero, if so, it is replaced with the zero value.

1 #define NUM_FILTERS 64
2 #define KERNEL_SIZE 5
3 #define CONV0_INPUT_SIZE 120
4
5 int main(){
6 ...
7 int bias = 0;
8 static int kernel[KERNEL_SIZE];
9 static int featureMap[NUM_FILTERS][CONV0_INPUT_SIZE -4];

10
11 for(i = 0 ; i < CONV0_INPUT_SIZE ; i++)
12 input_vector[i] = dataset120[i];
13
14 / / F i r s t C o n v o l u t i o n L a y e r
15 for (int k = 0; k < NUM_FILTERS; k++)
16 {
17 for (i = 0; i < KERNEL_SIZE; i++) / / Load C u r r e n t W e i g h t s
18 kernel[i] = (int) (conv0_weights[i + (k * KERNEL_SIZE)]);
19
20 bias = (int) (conv0_bias[k]);
21
22 / / P e r f o r m d o t p r o d u c t (c o n v o l u t i o n)
23 for (i = 0; i <= (input_vector - KERNEL_SIZE); i++)
24 int totalSum = 0;
25 for (int j = 0; j < KERNEL_SIZE; j++)
26 totalSum += (input_vector[i+j]) * kernel[j];
27 featureMap[k][i] = totalSum + bias ;
28 }
29 }
30
31 / / ReLU
32 for (int k = 0; k < NUM_FILTERS; i++)
33 for (int i = 0; i < CONV0_INPUT_SIZE -4; i++)
34 if (featureMap[k][i] < 0)
35 featureMap[k][i] = 0;
36 ...
37 }

Code 6.1: Simplified C-code of the first convolution layer for the 1D-CNN.

6.1.2 Assembly Code - Scalar

This Subsection presents the assembly code generated from the C-code presented
in Section 6.1.1 by the GCC 14.1 compiler using the only the base ISA with the M extension.

101

The input vector loading performed by Lines 11 and 12 in Listing 6.1 is translated
to the vector assembly code presented in Listing 6.2.

Line 1 and 2 load a5 and a4 with the pointers to the memory areas that were
allocated for the dataset120 and the input_vector, respectively. Line 3 loads register a3 with
the address of the last element to be moved.

From Lines 6 to 9, four elements from the source vector are loaded to the scalar
registers. The addressing uses immediate offset to access the four consecutive elements.
Lines 11 to 14 store the four previously loaded values to the output register memory address
using immediate offsets.

Lines 16 and 17 perform the memory pointers bumping by 16 bytes (4x elements
of 4 bytes = 16 bytes). Line 18 is the loop control variable, which checks if the entire vector
was moved. If not, it re-executes the loop until the operation is complete. The loop takes 11
clock cycles and processes four elements per iteration. To move the entire vector, it will take
333 clock cycles in the scalar assembly code (3 for loading pointers and 30 ∗ 11 (amount of
iterations (120

4 = 30) multiplied by instructions per iteration)).

1 la a5 , <dataset120 >
2 la a4 , <input_vector >
3 la a3 , vector_end
4
5 move_vector:
6 lw a6 ,0(a5) # Load f i r s t e l e m e n t t o s c a l a r r e g
7 lw a0 ,4(a5) # Load s e c o n d e l e m e n t t o s c a l a r r e g
8 lw a1 ,8(a5) # Load t h i r d e l e m e n t t o s c a l a r r e g
9 lw a2 ,12(a5) # Load f o u r t h e l e m e n t t o s c a l a r r e g

10
11 sw a6 ,0(a4) # S t o r e f i r s t e l e m e n t i n new p o s i t i o n
12 sw a0 ,4(a4) # S t o r e s e c o n d e l e m e n t i n new p o s i t i o n
13 sw a1 ,8(a4) # S t o r e t h i r d e l e m e n t i n new p o s i t i o n
14 sw a2 ,12(a4) # S t o r e f o u r t h e l e m e n t i n new p o s i t i o n
15
16 addi a5,a5 ,16 # Bump i n p u t p o i n t e r
17 addi a4,a4 ,16 # Bump o u t p u t p o i n t e r
18 bne a5,a3 , move_vector # Check i f a l l e l e m e n t s were moved

Code 6.2: Commented scalar assembly instructions generated for reading raw data to input
vector.

Listing 6.3 presents the vector assembly code for the convolution operation loop,
presented by Listing 6.1 in Lines 23 to 28.

Lines 1 to 5 perform the memory pointers loading. Lines 7 and 8 initialize the
loop control registers (the elements processed counter and the number of elements to be
processed). Line 10 initializes the total sum variable to zero in register a6. Line 11 loads the
bias to the register t4.

102

Lines 14 to 31 perform the convolution operation on each output element (output
loop). Initially, Lines 14 and 15 copy the pointers for the current input vector address and
the kernel weights vector. The copy instructions are needed because the pointers will be
modified inside the loop to perform the kernel(dot product) operation (five input elements are
convoluted with the five kernel weights). Lines 17 to 23 consist of the kernel loop and will
be further detailed in the next paragraph. Line 25 sums the bias to the total sum calculated
by the kernel loop. Line 26 stores the final result in the output memory position. Line 28
increases the elements processed counter. Lines 29 and 30 bump the memory pointers
for the input and output vectors. Finally, Line 31 controls the loop, comparing the elements
processed counter to the number of elements to be processed and jumping back to Line 14
until the loop is finished.

1 la t1, <input_vector >
2 la a5, <weights >
3 la a0, <weights_end > # W e i g h t s End P o s i t i o n (w e i g h t s a d d r e s s +5 p o s i t i o n s)
4 la t2, <bias > # b i a s memory a d d r e s s p o i n t e r
5 la a7, <featureMap > # F e a t u r e Map memory a d d r e s s p o i n t e r
6
7 li a6, 0 # Loop c o n t r o l (e l e m e n t s p r o c e s s e d)
8 li t3, 116 # Loop c o n t r o l (e l e m e n t s t o be p r o c e s s e d)
9

10 li a2 ,0 # The t o t a l S u m v a r i a b l e
11 lw t4 ,0(t2) # Load b i a s t o t 4
12
13 output_loop:
14 mv a3 , t1 # Copy t h e c u r r e n t i n p u t e l e m e n t a d d r e s s
15 mv t5 , a5 # Copy t h e f i r s t w e i g h t a d d r e s s
16 kernel_loop:
17 lw a4 ,0(a3) # Load e l e m e n t f rom i n p u t _ v e c t o r
18 lw a1 ,0(t5) # Load k e r n e l w e i g h t
19 addi a3,a3 ,4 # Bump i n p u t p o i n t e r
20 addi t5,t5 ,4 # Bump w e i g h t s p o i n t e r
21 mul a4 ,a4,a1 # M u l t i p l y i n p u t and w e i g h t
22 add a2 ,a2,a4 # A c c u m u l a t e w i t h t o t a l S u m v a r i a b l e
23 bne t5 ,a0, kernel_loop
24
25 add a2,t4 ,a2 # Adds t h e b i a s t o t h e t o t a l S u m
26 sw a2 ,0(a7) # S t o r e s r e s u l t i n t h e f e a t u r e map v e c t o r
27
28 addi a6,a6 ,1
29 addi t1,t1 ,4
30 addi a7,a7 ,4
31 bne a6,t3 ,188 output_loop

Code 6.3: Simplified and commented scalar assembly instructions generated for
Convolution operation.

The kernel loop consists of the loop executed by the Listing 6.1 in Lines 25 and 26.
It is executed 5 times (kernel size). Initially, in Lines 17 and 18, the input vector element and
the kernel weight are loaded. Lines 19 and 20 bump the memory pointers. Line 21 performs
the multiplication of the input vector element and the kernel weight. Line 22 accumulates

103

the multiplication result with the total sum variable. Finally, Line 23 controls the kernel loop
iterations.

During the convolution operation, the output loop runs 116 times, with the kernel
loop executing 5 times for each iteration. The kernel loop comprises seven instructions,
including a multiplication instruction that requires four cycles to execute on the RS5 pro-
cessor. Thus, each kernel loop iteration takes 10 clock cycles to be executed in the RS5
processor. The output loop consists of 8 instructions plus the kernel loop instructions. Thus,
each output element needs 8 clock cycles from the output loop plus 50 clock cycles from
the five iterations of the kernel loop. Thus, each output element takes 58 clock cycles to be
calculated. The entire output loop would need 6728 (116 ∗ 58) clock cycles. By adding the
pointers loadings, the total number of instructions needed by the presented code is 6737
clock cycles.

Listing 6.4 presents the scalar assembly code for the ReLU operation, presented
by Listing 6.1 in Lines 32 to 35.

1 la a5, <featureMap > # F i r s t p o s i t i o n o f f e a t u r e map
2 la a3, <featureMap_end > # L a s t p o s i t i o n o f f e a t u r e map
3
4 relu:
5 lw a4 ,0(a5) # Load e l e m e n t
6 bgtz a4, incr_pointer # I f b i g g e r t h a n 0 , t h e n s k i p s t o r e i n s t r u c t i o n
7 sw zero ,0(a5) # S t o r e s 0 i n n e g a t i v e e l e m e n t s memory p o s i t i o n
8 incr_pointer:
9 addi a5,a5 ,4 # Bumps memory p o i n t e r

10 bne a3,a5, relu # Loop C o n t r o l (1 1 6 e l e m e n t s)

Code 6.4: Commented scalar assembly instructions generated for ReLU (omitted redundant
configuration instructions and filter loop).

Initially, it sets the register a5 with the pointer to the output feature map vector
address and the register a3 with the vector end position (116 elements ahead). Line 5 loads
the current element to the register a4. Line 6 is a branch instruction that checks if the loaded
element is bigger than zero, if so, it skips the next instruction. The instruction in Line 7 is a
memory store that stores the value zero in the element’s memory position if the element is
negative. Line 9 bumps the elements pointer. Line 10 manages the loop’s termination after
processing all 116 elements; if not, it returns to Line 5.

It takes five instructions to perform the ReLU on each vector element (considering
the sometimes skipped load instruction). Thus, for the 116 elements, 580 clock cycles are
needed, plus the initial two instructions that load pointers, for a total of 582 clock cycles.

104

6.1.3 Assembly Code - Vector Auto-Vectorized

This Subsection presents the assembly code generated from the C-code presented
in Section 6.1.1 by the GCC 14.1 compiler using the vector extension and targeting a VLEN
of 256 bits.

The input vector loading performed by Lines 11 and 12 in Listing 6.1 is translated
to the vector assembly code presented in Listing 6.5

1 la a2 , <dataset120 >
2 la a3 , <input_vector >
3 li a4 ,480 # Number o f b y t e s t o l o a d (4 8 0 b y t e s = 120 words)
4 move_loop:
5 vsetvli a5 ,a4,e8,m8,ta ,ma # C o n f i g u r e t h e v e c t o r u n i t (VLEN=480 , SEW=8 , LMUL= 8)
6 vle8.v v8 ,(a2) # Load b y t e s t o v e c t o r r e g i s t e r g r o u p
7 sub a4,a4,a5 # S u b t r a c t t h e amount o f p r o c e s s e d b y t e s f rom t h e t o t a l (4 8 0)
8 add a2,a2,a5 # Bump i n p u t p o i n t e r
9 vse8.v v8 ,(a3) # S t o r e b y t e s f rom v e c t o r r e g i s t e r g r o u p

10 add a3,a3,a5 # Bump o u t p u t p o i n t e r
11 bnez a4, move_loop # Loop u n t i l a l l 480 b y t e s a r e moved

Code 6.5: Commented vector assembly instructions generated for reading raw data to input
vector.

Line 1 and 2 loads a2 and a3 with the pointers to the memory areas that were
allocated for the dataset120 and the input_vector, respectively. Line 3 loads register a4 with
the number of bytes to be loaded; as the number of elements is 120 (words), there are 480
bytes. Line 5 is the vector configuration instruction, setting VLEN to 480 elements, SEW to
8 bits, and LMUL to 8 registers.

In line 5, the a5 register receives the number of elements of the vector that the
vector unit will process in one iteration. Considering the parameters of vsetvli instruction,
the number returned by the configuration instruction is 256 ((VLEN/SEW) * LMUL)). Lines 6
to 11 comprise the move loop that moves the entire vector. Line 6 presents the unit-strided
memory read (vle8 = vector load elements of 8 bits). It accesses the memory at the base
address in the a2 (dataset120 address) register and stores the data in the vector register
group starting at v8.

Line 7 performs the subtraction of bytes processed by the instruction iteration (held
in a5) from the number of bytes to be loaded (a4 initialized with 480). Line 8 bumps the
memory pointer a2 with the number of bytes already loaded. Line 9 stores data in memory
using unit-strided access (vse8 = vector store elements of 8 bits). It stores the vector register
group that starts at v8 (data previously loaded by Line 6 instruction) at the memory address
held by a3 register (input_vector address). Line 10 then bumps the a3 pointer with the
number of bytes stored in this iteration. Finally, line 11 checks if the value held by a4 (number

105

of bytes to be processed) has reached zero, indicating the vector was processed entirely. If
so, it proceeds with the application’s next section. Otherwise, it jumps to the instruction in
Line 5 until a4 reaches 0.

Each loop iteration processes eight elements and consists of 7 instructions, whereas
the vector instructions are multi-cycle.

• vsetvli - Configuration instruction. It takes only one cycle to execute.

• vle8 - Vector load instruction. Loading one register takes VLEN
32 (from Table 5.3) cycles as

the access is word-aligned. Thus, it takes 256
32 = 8 cycles in the memory access plus the

additional cycle needed in the VXU unit, resulting in 9 cycles to load eight 32-bit elements.

• vse8 - Vector store instruction. It takes the same amount of cycles as the vector load
instruction.

Thus, each loop iteration takes five single-cycle instructions and two vector multi-
cycle instructions, each taking nine cycles, resulting in 23 cycles to move eight elements. To
move the entire vector of 120 elements, it needs 15 loop iterations. This results in 345 clock
cycles plus the three needed to initialize the pointers and counters, for a total of 348 clock
cycles to move the entire vector.

Listing 6.6 presents the vector assembly code for the convolution operation loop,
presented by Listing 6.1 in Lines 23 to 28.

Lines 1 to 4 load the addresses of the input vector, kernel weights, bias, and output
vector. Line 6 loads the total amount of elements to be processed (116). Lines 7 and 8 load
the kernel weight initial index(0) and size(5).

Lines 11 to 32 perform the convolution operation on each output element (output
loop). Line 11 is the vector configuration instruction; it sets the VL to 8, SEW to 32 bits, and a
group of 1 register (LMUL=1). Line 12 is a move instruction that moves the immediate value
zero to the vector register v3, It consists of the total sum variable initialized with value zero.
The instruction in Line 12 uses scalar replication to spread a scalar through the entire vector
register. Line 13 loads the bias to the vector register v4 using a strided load instruction (it
replicates the bias in all positions).

Lines 16 to 23 comprise the kernel loop, executed by the Listing 6.1 in Lines 25 and
26. It translated the C-code to a different structure, processing eight elements simultane-
ously, all operating with the same kernel index. Line 16 loads eight consecutive positions of
the input vector using a unit-strided load instruction. Line 17 loads the weight using a strided
load instruction with stride zero, resulting in all elements being loaded with the same weight.
Lines 19 and 20 perform the kernel counter and address pointer bumping. Line 22 performs
the multiplication of the input vector elements and kernel weights accumulating with the total
sum register. Line 23 performs the kernel loop ending check. It checks if the current input
vector slice has been accumulated with the entire kernel vector, jumping to line 16 if not
finished.

106

1 la a1, <input_vector > # I n p u t v e c t o r a d d r e s s
2 la a4, <kernel_weights > # K e r n e l w e i g h t s a d d r e s s
3 li a5, <bias > # B i a s p o i n t e r
4 la a6, <featureMap > # O u t p u t f e a t u r e map a d d r e s s
5
6 li t1, 116 # E l e m e n t s t o be p r o c e s s e d
7 li a2, 0 # K e r n e l c o u n t e r
8 li a3, 5 # K e r n e l s i z e
9

10 output_loop:
11 vsetivli zero ,8,e32 ,m1,ta,ma # C o n f i g u r e t h e v e c t o r u n i t (VLEN=8 , SEW=32 , LMUL= 1)
12 vmv.v.i v1 ,0 # Move z e r o s t o v1 (t o t a l S u m = 0)
13 vlse32.v v4,a5 # Load b i a s t o v4 (s t r i d e z e r o)
14
15 kernel_loop:
16 vle32.v v3 ,(a1) # Load 8 e l e m e n t s o f t h e i n p u t v e c t o r
17 vlse32.v v2 ,(a4),zero # Load u n i q u e w e i g h t (r e p l i c a t e d w / s t r i d e z e r o)
18
19 addi a2,a2 ,1 # I n c r e a s e k e r n e l c o u n t e r
20 addi a4,a4 ,4 # bump w e i g h t s p o i n t e r
21
22 vmacc.vv v1,v3,v2 # t o t a l S u m [i + : 8] += i n p u t _ v e c t o r [i + : 8] * w e i g h t [j]
23 bne a5,a3 , calculate_total_sum # K e r n e l Loop C o n t r o l
24
25 vadd.vv v1 ,v1,v4 # Sum t h e k e r n e l o p e r a t i o n r e s u l t w i t h t h e b i a s
26 vse32.v v1 ,(a6) # S t o r e t h e r e s u l t s i n memory
27
28 addi t1, t1, -8 # U p d a t e e l e m e n t s t o be p r o c e s s e d c o u n t e r
29 addi a1, 32 # Bump i n p u t v e c t o r p o i n t e r by 8 p o s i t i o n s
30 addi a6, 32 # Bump o u t p u t v e c t o r p o i n t e r by 8 p o s i t i o n s
31 li a2, 0 # R e s e t s k e r n e l c o u n t e r
32 bne zero , t1, <output_loop >

Code 6.6: Simplified and commented Assembly instructions generated for Convolution
operation (omitted redundant configuration instructions and external loops).

After the kernel loop, line 25 adds the accumulation result (total sum variable) with
the bias. Line 26 then stores the kernel results in the output vector memory position.

Line 28 decreases the amount of processed elements from the total amount. Lines
29 and 30 bump the input and output vector pointers by eight positions. Line 28 resets the
kernel counter to 0. Finally, Line 32 performs the loop-ending check, jumping to Line 11 until
all 116 elements are processed.

Each kernel loop iteration processes eight elements and consists of 6 instructions,
whereas the vector instructions are multi-cycle.

• vle32 - Vector load instruction (unit-strided). Loading one register takes VLEN
32 (from Ta-

ble 5.3) cycles as the access is word-aligned. Thus, it takes 256
32 = 8 cycles in the memory

access plus the additional cycle needed in the VXU unit, resulting in 9 cycles to load eight
32-bit elements.

• vlse32 - Vector load instruction (strided). It takes the same number of cycles as the unit-
strided load instruction because both are 32 bits.

107

• vmac - Vector multiply and accumulate instruction. It takes five cycles to complete (4 for
multiplication and 1 for accumulation), plus the additional cycle needed in the VXU unit,
resulting in 6 cycles to multiply and accumulate eight 32-bit elements.

Thus, the kernel loop iteration takes three clock cycles for single-cycle instructions
and 24 for multi-cycle instructions (18 from loads and 6 to MAC), totalizing 24 clock cycles
to process eight elements. The five kernel loop iterations take 120 clock cycles to complete.

The output loop has nine instructions (apart from the kernel loop), where four are
regular and 5 are vector instructions.

• vsetivli - Configuration instruction. It takes only one cycle to execute.

• vmv - Register move instruction. It takes one cycle per register to execute, plus an addi-
tional cycle needed in the VXU unit, resulting in 2 cycles.

• vlse32 - Vector load instruction (strided). Loading one register takes VLEN
32 (from Table 5.3)

cycles as the access is word-aligned. Thus, it takes 256
32 = 8 cycles in the memory access

plus the additional cycle needed in the VXU unit, resulting in 9 cycles to load eight 32-bit
elements.

• vadd - Vector addition instruction. Additions in RS5 VXU take 1 cycle to complete, plus the
additional cycle needed in the VXU unit, resulting in 2 cycles to add eight 32-bit elements.

• vse32 - Vector store instruction (unit-strided). It takes the same number of cycles as the
load strided load instruction because both are 32 bits.

Thus, executing one iteration of the kernel loop takes four clock cycles from regular instruc-
tions and 23 from vector instructions (1 for configuration, 2 for move, 18 for load/stores, and
2 for addition). Considering the kernel loop, each iteration of the output loop takes 143 clock
cycles to calculate eight output elements. As the number of iterations required to process
the 116 elements is 15, the total number of clock cycles spent in the output loop will be 2145.
With the seven initial instructions (pointers loading), the code snippet would take 2152 clock
cycles.

Listing 6.7 presents the vector assembly code for the ReLU operation, presented
by Listing 6.1 in Lines 32 to 35. Initially, it sets the register a4 with the pointer to the output
feature map vector address and the register a5 with the vector size (116 elements). Line 4
(the configuration instruction) sets the register group as a single register (LMUL=1), SEW
= 32, and VL = 8 elements. Line 5 consists of loading vector register v1 with zeros (using
immediate replication).

The ReLU loop goes from Line 7 to 12. Line 7 loads a partition of the vector into
the v0 vector register. It loads 8x (VL) 32-bit elements into the v0 register. Line 8 subtracts
the number of processed elements from the total amount previously loaded into register
a5. Line 9 is responsible for seeking elements with negative values. For that, it uses a mask
instruction called vmsle, which is the abbreviation for "vector mask set if less or equal". Mask
instructions create a mask based on a condition; each element generates a single mask bit,

108

setting if the condition evaluates truly. The instruction in line 9 compares if the elements
are negative by comparing them with the immediate 0. The generated mask is stored in the
vector register v0, used as the mask for masked instructions.

1 la a4, <featureMap > # V e c t o r a d d r e s s
2 li a5 ,116 # V e c t o r s i z e (e l e m e n t s t o be p r o c e s s e d)
3
4 vsetivli zero ,8,e32 ,m1,ta,ma # VL=8 , SEW=32 , LMUL=1
5 vmv.v.i v1 ,0 # F i l l r e g i s t e r v1 w i t h z e r o s
6 relu_loop:
7 vle32.v v0 ,(a4) # Load 8 e l e m e n t s t o v0
8 addi a5 ,a5 ,-8 # D e c r e a s e s t h e p r o c e s s e d e l e m e n t s f rom t o t a l
9 vmsle.vi v0,v0 ,0 # S e t mask on n e g a t i v e e l e m e n t s p o s i t i o n s

10 vse32.v v1 ,(a4),v0.t # S t o r e s z e r o on e l e m e n t s w i t h mask s e t
11 addi a4 ,a4 ,32 # Bumps memory p o i n t e r i n 8 p o s i t i o n s
12 bne zero ,a5,<relu_loop > # Loop − e n d i n g c h e k

Code 6.7: Commented Assembly instructions generated for ReLU.

Line 10 performs the last part of the ReLU: replacing negative elements. For that,
it uses a masked store instruction (argument v0.t indicates it is a masked instruction). The
masked store will only store the data in the v1 vector register (zeros) if the mask bit corre-
sponding to that element is set. It uses the previously generated mask. Thus, it will store
zeros only in the memory positions that contain negative elements. Line 11 performs the
memory pointer bumping for the output vector address. Finally, Line 12 controls the loop-
ending, returning to loading elements until the entire vector has passed through ReLU.

The ReLu loop processes eight elements per iteration, consisting of three regular
and three vector instructions. In the RS5 VXU implementation, the given load and store
instructions take nine cycles to execute, while the mask instruction takes only two cycles.
Thus, it takes 23 clock cycles to execute the ReLU loop. The ReLU loop will be executed 15
times, resulting in 345 clock cycles needed. With the preparation instructions, this number
totalizes 350 clock cycles.

This section highlights the capabilities of GCC 14.2 auto-vectorization, being ca-
pable of translating many loops into vector instructions. Table 6.1 compares the number of
clock cycles needed for each operation for the scalar and vector assembly versions and the
respective ratio between both. It becomes clear that pure memory instructions do not have
any advantage, as expected, since the VXU does not alter the RS5 memory capabilities.
Instead, the vector version of the vector move operation required additional cycles due to
the VXU startup cycles and additional control/configuration instructions.

The picture changes when the operations involve arithmetic operations since it is
where the main VXU parallelism occurs. In the convolution operation, the vector version
takes less than a third of the clock cycles required for the scalar version, highlighting the

109

Table 6.1: Comparison between the number of clock cycles needed for each operation for
the scalar and vector assembly versions. The last column presents the ratio between both
(vector

scalar). Source: the Author.

Operation Scalar Vector (256 bits) Ratio
Vector move 333 348 1.04
Convolution 6737 2152 0.32
ReLU 582 350 0.60

acceleration capabilities. The GCC choice to have multiple elements operating with the
same kernel weight was very interesting in this operation, as it made a mix of two loops.

In the ReLU operation, the vectorized version took about only sixty percent of the
cycles that the scalar version takes. The compiler’s choice to use a masked load store is
also an interesting use of the available instructions in the vector extension.

Although the compiler proved very capable of auto-vectorizing the 1-D CNN code,
it did not fully explore the RVV extension capabilities. Instead, it limited itself to using register
groups of just one register in arithmetic operations. It also uses several redundant configu-
ration instructions omitted from the presented codes. Addressing these issues may lead to
even better results.

6.1.4 Assembly Code - Vector Manually Vectorized

The Subsection aims to address some of the issues pointed out in the Section 6.1.3
by making a manually vectorized assembly. It is based on the auto-vectorized version but
has significant improvements.

Listing 6.8 presents the vector assembly code for the entire convolution layer, pre-
sented by Listing 6.1.

This code aims to delve deeper into parallelism by utilizing groups of 8 registers
(LMUL=8). An optimization was that instead of storing the input vector in the dataset mem-
ory position, we directly used the values in the registers to start the computation. This
avoided storing the values in a new memory position and loading them from there. Another
optimization regarding memory access is performing the ReLU operation on the data im-
mediately after the convolution and before storing its results in memory. It also uses the
variants of the arithmetic instructions using replicated scalar register values as operands,
thus avoiding vector move instructions.

Lines 1 to 4 perform the pointers loading. Lines 6 to 8 initialize the control variables
needed (kernel index, kernel size, and output size). Line 9 loads the bias to a scalar register.

Lines 12 to 34 correspond to the output loop. Line 12 presents the configuration
instruction, it uses a SEW of 32 bits and LMUL of 8. The AVL value is 116, but the VXU,

110

with a VLEN of 256 bits, can not handle that many elements in just 8 registers. Thus, the
instruction result, placed in the a1 register, is the number of elements it will process in the
current iteration. With a VLEN of 256 bits and the selected configurations, the maximum
number of elements a register group can hold is 64 (see Equation (2.3)). Line 13 shifts the
value held in a1, effectively multiplying it by four. The shift result is the number of bytes
that the memory pointers must be bumped. Line 14 moves the immediate value zero to the
register group starting with register v24, effectively filling all the registers from v24 to v31.
This register group is the total sum variable vector.

1 la s5 , <dataset120 >
2 la a3 , <featureMap >
3 la a4 , <weights >
4 la a5 , <bias >
5
6 li t1 , 0 # K e r n e l c o u n t e r
7 li t5 , 5 # K e r n e l s i z e
8 li a0 , 116 # O u t p u t s i z e
9 lw t2 , 0(a5) # Load b i a s t o t 2

10
11 output_loop:
12 vsetvli a1, a0, e32 , m8 , ta , ma # VL=116 , SEW=32 , LMUL=8
13 slli t3, a1 , 2 # p r o c e s s e d e l e m e n t s * 4 (f o r memory bump)
14 vmv.v.i v24 , 0 # F i l l r e g s (v24 − v31) w i t h z e r o s (t o t a l S u m)
15
16 kernel_loop:
17 vle32.v v8, (s5) # Load e l e m e n t s t o (v8 − v15) r e g s
18 lw t4 , (a4) # Load b i a s t o s c a l a r t 4 r e g
19 addi a4, a4 , 4 # Bumps k e r n e l p o i n t e r
20 addi t1, t1 , 1 # I n c r e a s e s k e r n e l c o u n t e r
21 vmacc.vx v24 , t4, v8 # Mul t (v8 − 1 5) by s c a l a r i n t 4 + (v24 − v31)
22 bne t1 , t5, kernel_loop
23
24 vadd.vx v24 , v24 , t2 # Add b i a s t o t o t a l S u m v a r i a b l e
25
26 ReLU:
27 vmsgt.vi v0 , v24 , 0 # S e t mask on p o s i t i v e e l e m e n t s
28 vse32.v v24 , (a3), v0.t # S t o r e s o n l y p o s i t i v e conv r e s u l t s
29
30 sub a0 , a0, a1 # S u b t r a c t p r o c e s s e d e l e m e n t s f rom t o t a l
31 add s5 , s5, t3 # Bumps i n p u t p o i n t e r by p r o c e s s e d p o s i t i o n s
32 add a3 , a3, t3 # Bumps o u t p u t p o i n t e r by p r o c e s s e d p o s i t i o n s
33 li a4 , 0 # R e s e t s k e r n e l i n d e x
34 bgt zero , a0, <output_loop > # Loop c o n t r o l

Code 6.8: Commented manually generated assembly instructions generated for first conv
layer of the CNN.

The kernel loop is implemented by Lines 17 to 22. It uses the same structure as
the kernel loop of the auto-vectorized assembly. The only difference is that here it operates
on a larger register group.

111

Line 24 adds the kernel operation results to the bias. It uses the scalar variant of
the vadd instruction, getting the second operand directly from a scalar register. The content
of register t2 (bias) is replicated into an entire vector register to before the addition operation.

Lines 27 and 28 perform the ReLU operation, similar to the auto-vectorized assem-
bly. However, instead of storing all the values in memory and later replacing negative values
with zeros, the manually vectorized version only stores the non-negative values. For that, it
uses the vmsgt (vector mask set if greater than) instruction comparing with the immediate
value zero. Finally, Line 28 performs the memory store only on the positive values using the
generated mask.

Lines 30 to 33 are the pointers bumping and index/counters control. Line 34 per-
forms the loop-ending control by checking if the entire vector was processed. As one iteration
processes 64 elements, two iterations would be needed.

In this case, as the LMUL is eight, the vector instructions would take more cycles
to be executed, directly related to the number of elements it will process.

• vsetivli - Configuration instruction. It takes only one cycle to execute.

• vmv - Register move instruction. One cycle per register, plus an additional cycle needed
in the VXU unit, resulting in 9 cycles.

• vle32 - Vector load instruction (strided). Loading one register takes VLEN
32 (from Table 5.3)

cycles as the access is word-aligned. Thus, it takes 256
32 = 8 in the memory access plus the

additional cycle needed in the VXU unit, resulting in 65 cycles to load 64x 32-bit elements.

• vmacc - Vector Multiply and accumulate. It takes five cycles per register and the additional
cycle needed in the VXU unit, resulting in 41 cycles multiplying and accumulating 64x
32-bit elements.

• vadd - Vector addition instruction. One cycle per register and the additional cycle needed
in the VXU unit, resulting in 9 cycles to add 64x 32-bit elements.

• vmsgt - Vector mask instruction. One cycle per register and the additional cycle needed in
the VXU unit, resulting in 9 cycles to generate mask for 64x 32-bit elements.

• vse32 - Vector store instruction (unit-strided). It takes the same number of cycles as the
load instruction because both are 32 bits.

The kernel loop takes 109 clock cycles per iteration. Thus, executing an iteration
of the output loop would take 10 clock cycles for regular instructions and 638 (93 + 5 ∗ 109)
for vector instructions. The total number of clock cycles to execute the code snippet is 1284
(initial control instructions (8 clock cycles) and the two iterations of the control loop).

The number of cycles needed to process the first convolution layer of the 1-D CNN
in the manually vectorized assembly and the auto-vectorized assembly can be compared.
The auto-vectorized version’s execution would take 2502 clock cycles (ignoring the vector
move operation to make a fair comparison), while the other would take only 1284. This is
a ratio of 0,51 of the clock cycles needed, an improvement of almost 2x. When comparing

112

this result to the scalar version, the improvement reaches around 5,71x (a ratio of 0,175).
These theoretical results highlight the acceleration potential in the RS5 VXU unit for CNN
applications.

6.2 2-D CNN

The two-dimensional CNN chosen as a benchmark is the Alexnet [Krizhevsky et al.,
2017]. In 2012, AlexNet won the ImageNet competition, marking a significant milestone in
neural network development. The AlexNet model comprises five convolutional layers that
utilize filters with dimensions 11x11, 5x5, and 3x3. It encompasses 60 million parame-
ters. AlexNet’s success demonstrated the power of deep learning in solving complex vision
problems. Although old, AlexNet is one of the most relevant networks due to its historical
importance, as it paved the way for more advanced/modern CNN architectures.

Figure 6.2: 2D-CNN reference model - AlexNet. Source: [Krizhevsky et al., 2017].

The network architecture, as illustrated in Figure 6.2, features five convolutional
layers followed by three fully-connected (FC) layers. From left to right, the structure includes
the input layer, followed by four convolutional hidden layers and two fully-connected layers,
culminating in the final fully-connected output layer.

Table 6.2: AlexNet layers information. Source: [Korol, 2019].

Layer Operation Input Size (padded) Weight/ Filter Size Output Size
1 CONV 227x227x3 11x11x3 (x96) 55x55x96
1 MAX-POOL 55x55x96 3x3 27x27x96
2 CONV 31x31x96 5x5x96 (x256) 27x27x256
2 MAX-POOL 27x27x256 3x3 13x13x256
3 CONV 15x15x256 3x3x256 (x384) 13x13x384
4 CONV 15x15x384 3x3x384 (x384) 13x13x384
5 CONV 15x15x384 3x3x384 (x256) 13x13x256
5 MAX-POOL 13x13x256 3x3 6x6x256
6 FC 6x6x256 6x6x256x4096 4096
7 FC 4096 4096x4096 4096
8 FC 4096 4096x1000 1000

The parameters of each layer are detailed in Table 6.2. This table shows that the
input layer consists of three channels, representing the RGB color channels. The first layer
kernel has a 11x11x3 filter, which generates a 55x55 output. For the first layer, there are

113

96 Filters, resulting in 96 output channels. The pooling layer helps to reduce the first layer
dimensions using a max-pool filter, it reduces the output size from 55x55 to 27x27 by using
a filter size of 3x3. To resolve the incompatible sizes of the first layer output feature map
(27x27x96) and the second layer input (31x31x96), a pad operation is applied. The pad
operation adds zeros on the borders of the incompatible size until it achieves the desired
shape. The other layers follow a similar structure and will not be further detailed here. It is
worth citing that convolutional layers 3 and 4 are not connected to pooling layers.

Table 6.3 presents the number of multiplication operations per layer in the AlexNet
CNN, highlighting its computationally intensive nature. This further demonstrates how such
applications can benefit from specialized hardware. Hardware acceleration enhances the
performance of data-intensive applications, making them more suitable for various environ-
ments.

Table 6.3: Multiplication operations per layer in Alexnet. Source: [Korol, 2019].

Layer Multiply Ops
1 - CONV 105,415,200
2 - CONV 447,897,600
3 - CONV 149,520,384
4 - CONV 224,280,576
5 - CONV 149,520,384

6 - FC 37,748,736
7 - FC 8,388,608
8 - FC 2,048,000
Total = 1,124,819,488

The AlexNet CNN source code used by the Author was written in C-language and
used floating-point parameters. This network implementation had to be ported to use integer
values because neither the RS5 nor the VXU supports floating-point operations. Normaliza-
tion of the parameters was performed using Python scripts. These scripts read the source
parameters and multiply them by a fixed factor 1024 before casting them into integers. The
1024 value was chosen because it simplifies some hardware operations. Since 1024 is a
power of two, multiplying or dividing any number by 1024 can be done using bit shift in-
structions, which are less costly than multiplying/dividing instructions. After normalizing the
parameters, the next step was to adjust the C-language code to implement integer parame-
ters/operations instead of floating-point. The normalization process was not concerned with
the resulting network precision. The primary goal was to execute the network on the RS5
processor.

The C-language code uses macros to define the dimensions of each network layer
accordingly to Table 6.2. It also uses generic functions that receive (through function param-
eters) the layer parameters and dimensions, as Listing 6.9 shows. This is a good practice
because it allows the same C function to be used for different layers. It also allows the same

114

code to be used for different networks by simply providing the new parameters and adjusting
the macros to reflect the new layer shapes.

1 void relu(float data[], const unsigned input_height , const unsigned input_width , const
unsigned input_depth)

Code 6.9: Header of the C-Language ReLU function.

The convolution C-function was initially very complex. It performed all the compu-
tations required by the convolution layers, considering multiple input and output channels,
strides, and layer shapes. This function was composed of a total of 6 nesting loops (in order:
output depth, input depth, output height, output width, kernel height, and kernel width). The
convolution function was divided into multiple functions for simplicity while targeting paral-
lelism opportunities. This modification resulted in four C functions.

conv_kernel(...) - This function performs the kernel operation in the current kernel window.
It receives the input data, the given kernel, and the kernel dimensions. It has two
nested loops that iterate over the kernel dimensions (kernel height and width). The
function returns the accumulation result.

conv_channel(...) - This function operates on an entire input channel. It receives the input
data (and dimensions), the channel kernel/filter (and dimensions), and output dimen-
sions. It has two nested loops that iterate over the output channel dimensions (output
height and width). On each inner loop iteration, it calls the conv_kernel function. This
way, the kernel slides over the entire input channel (applying stride) and generates the
resulting output channel. The function returns the calculated output channel.

conv_sum_bias(...) - This function sums the given bias to the layer’s given output channel.
It receives the data, data dimensions, the biases, and the output channel identification
(to get the bias for the given output channel). It has two nested loops that iterate over
the output channel dimensions (output height and width). The function has no return
as it operates directly on the output memory area received via parameter.

conv(...) - This function performs the entire convolution operation by calling the other func-
tions. It receives all the layer data and parameters. It has two nested loops that iterate
over the output channels (output depth) and input channels (input depth). The inner
loop, responsible for the input channels, calls the conv_channel(...) function to perform
the channel computation. The function return (resulting channel) is then accumulated
with the output channel. After the end of the inner loop, the outer loop, responsible for
the output channels, calls the conv_sum_bias(...) function to finish the computation of
the output channel. The function has no return as it operates directly on the output
memory area received via parameter.

115

The two versions of the application (integer and integer with divided functions) were
tested on the host computer to compare the output’s equivalence. After validation, both
applications were executed on the scalar version of the RS5 processor. The compilation with
the RVV extension was successful. The compiler can auto-vectorize the 2-D convolution
operations, similar to the 1-D CNN. Finally, the auto-vectorized code was executed in the
RS5 processor with the vector extension, generating results that will be presented in the
next Chapter.

6.3 Manycore Mapping

Chapter 3 presented the state-of-the-art regarding NoCs and CNNs. Table 3.4 sum-
marized the selected works. The acceleration methods involve NoC modifications, dedicated
NoCs, and mapping methods, all seeking to maximize the parallelism. This work seeks to
use specialized Processing Elements (PEs) for acceleration in the context of a manycore.
The Author does not intend to modify the NoC, as it already has high throughput. This
Dissertation explores the impact of a specialized PE on CNN applications in manycores.

The initial approach involved mapping different CNN layers to different PEs. While
this enables some parallelism, direct dependencies and varying computational costs across
layers can result in suboptimal performance. Additionally, this method does not fully ex-
ploit parallelism opportunities within each layer. The selected manycore mapping technique
maximizes parallelism by leveraging the independence of input channels. A literature review
revealed works that employ this method, referred to as depthwise convolutions. Howard
et al. [2017] introduces the concept of depthwise separable convolutions, which consist
of two layers: depthwise convolutions and pointwise convolutions.

• Depthwise Convolutions: each input channel is convolved independently using its fil-
ter. This approach decreases computational load compared to standard convolutions,
which aggregate information from all channels simultaneously.

• Pointwise Convolutions: a 1×1 convolution merges the outputs from depthwise convo-
lutions. This process integrates data across channels, functioning as a linear combi-
nation of the input channels.

Figure 6.3 presents the filter structure for standard convolutions in (a), depthwise
convolution in (b), and pointwise convolution in (c). Where Dk is the spatial dimension of the
kernel, M is the number of input channels, and N is the number of output channels.

Using depthwise convolutions allows mapping different input channels to different
PEs, improving the parallelism inside each layer. Since each group of input channels and
their corresponding filters creates a single output channel, this suggests that the processing

116

Figure 6.3: Standard convolutional filters in (a). Depthwise convolution in (b) and pointwise
convolution in (c). Source: [Howard et al., 2017].

of various output channels can be viewed as independent. This leads to another parallelism
opportunity: a first PE layer processes the input channels using depthwise convolution and
then sends the resulting feature map (of a single output channel) to a second PE layer, which
gathers all the resultant feature maps from the depthwise convolution. This allows the first
PE layer to proceed to the following output channel while the second PE layer processes the
merge of results of all the first layer PEs.

Formally, Equation (6.1) describes the convolution operation performed by the first
PE layer. It differs from Equation (2.4) by not having the outer summation (which sums the
input channels).

Op[co][x][y] =
Width−1∑

i=0

Height−1∑
j=0

(I[K][Sx + i][Sy + j] ∗ W[co][i][j]) (6.1)

where: co is the current output channel; x and y are the horizontal and the vertical positions;
Width and Height correspond to the filter size; S is the stride; Op is the partial output; I is

117

the input; W is the filter tensor; K is the input channel (fixed parameter in PEs that performs
depthwise convolution).

To fulfill the absence of the outer summation, there needs to be ci (number of output
channels) PEs in the first PE layer performing the computation presented by Equation (6.1).
Each PE has a fixed K parameter indicating which input channel it is responsible for pro-
cessing. The operation output Op is now partial and needs to be summed with the partial
outputs from the other input channels to generate the output feature map. The operation
described by Equation (6.1) is executed for every output channel in the first PE layer.

Formally, Equation (6.2) describes the convolution operation performed by the sec-
ond PE layer. It fulfills the Equation (6.1) to complete the convolution operation implemented
by Equation (2.4). It summates all the partial outputs from the first PE layer for each output
channel. Then, sum the Bias (B) to generate the complete output feature map. The second
PE layer also performs the ReLU and Max-Pool operations if needed to balance computa-
tions. After that, it sends each output feature map to a third PE layer, which starts the second
convolution layer using depthwise convolution.

O[co] = B[co] +
Ci−1∑
k=0

Op[co][Ci] (6.2)

The amount of PEs can vary according to the layer depth and manycore dimen-
sions. The first convolutional layer of the chosen application (AlexNet) has only three input
channels corresponding to RGB layers. Thus, in this case, the first PE layer contains 3 PEs,
each responsible for a unique input channel. Each PE will handle 96 (first layer output depth)
iterations of the depthwise convolution. After the end of each iteration, the results are sent
to the second PE layer.

The second PE layer comprises one PE and is responsible for receiving the data
sent by the first PE layer after the processing of each output channel. It then sums the partial
feature maps, adds the bias, and performs the ReLU and Max-Pool operations. The output
feature map is then sent to the third PE layer.

The third PE layer has an input depth of 96 and an output depth of 256. Because
the input layer is more profound (96), having dedicated PEs for each input channel becomes
unfeasible, as this would require a significant number of PEs. Thus, each PE in the third PE
layer processes multiple input channels. The number of channels that each PE will process
depends on how many PEs will be allocated for the third PE layer(96

PEs3
). The PE in the third

PE layer already accumulates the partial outputs of the processed input channels before
being sent to the fourth PE layer.

The fourth PE layer is similar to the second one. It is responsible for gathering the
partial outputs, summing them, performing the ReLU and Pooling operations if required, and
then sending the result to the fifth PE layer, which has a structure similar to the third layer.

118

The 2-D CNN application (Alexnet) was modified to divide the CNN structure into
depthwise convolution. For that, four different C-Language programs were created. They
are named with a leading P (which stands for program) followed by the number identifying
the PE layer to which it belongs. Only four PE layers are implemented, so the programs
handle only the first two convolutional layers of AlexNet.

• P1 - Entry point program, implementing the operations performed by the first PE layer.
The program handles a single input channel and then sends it to the second program. It
requires three instances of this program (3 processes running the same program with a
different K parameter (input channel)).

• P2 - implements the operations performed by the second PE layer. Receives the partial
outputs from the P1 processes and sums them to generate the output feature map. The
ReLu and Max-Pool operations are applied, and each output channel is sent to the next
PE layer.

• P3 - implements the operations performed by the third PE layer. It handles multiple input
channels (depending on the number of PEs in the layer and convolution layer depth).
Receive the input channels from the P2 process, perform the depthwise convolution, and
then send it to the next PE layer.

• P4 - implements the operations performed by the fourth PE layer. Receives the partial
outputs from the P3 processes and sums them to generate the output feature map. The
ReLu and Max-Pool operations are applied, and each output channel is sent to the next
PE layer.

Figure 6.4 presents the P1 (with three instances/processes) and P2 (with a single
instance/process) programs handling the first convolutional layer of AlexNet. The red dashed
lines delimit the computations performed by each process.

Each P1 process represented in Figure 6.4 (A) is depicted with the channel color
it processes, having the K parameter described at the top. The 96 filters for the 96 output
channels are represented in gray. The partial outputs are sent to the P2 process. There are
96 partial outputs sent to the P2 process (one for each filter). Process P2 represented in
Figure 6.4 (B) starts receiving the partial outputs and then performs their accumulation and
the Bias sum. It also represents the ReLU and pooling operation. P2 operates 96 times (one
for each output channel), generating 96 output feature maps (in yellow).

Figure 6.5 presents the P3 (with eight processes) and P4 programs handling the
second convolutional layer of AlexNet. The red dashed lines delimit the computations per-
formed by each process.

The 96 outputs from the P2 process are represented in Figure 6.5 (A) (same yellow
color scheme as Figure 6.4). The P3 processes are represented in Figure 6.4 (B), in total
there are 8 P3 instances, each responsible for processing 12 channels. The K parameters
in P3 represent the indexes of the input channel that the process instance is responsible

119

Red dashed lines delimit the computations performed by each process. (A) Represents the
computation performed by the P1 processes. Each process handles an input channel. (B)
Represents the computation performed by the P2 process. It receives the partially convo-
luted input channels from all the P1 processes. Then, it accumulates them, generating the
convolution output feature map, in which the ReLU and Max-Pool operations are applied to
generate the final output feature map (in yellow).

Figure 6.4: Depthwise convolution structure. Source: the Author.

for processing. The P2 program sends the (P2) input channels in a round-robin manner,
distributing one channel per P3 process until all P3 processes have received an input chan-
nel. For example, the first P3 process will receive channels 0, 8, 16, 24, 32, 40, 48, 56, 64,
72, 80 and 88. All the partial outputs generated within a P3 process (12) are accumulated
and then sent to the P4 process. There are 256 partial outputs sent to the P4 process (one
for each output filter). Process P4 represented in Figure 6.5 (C) starts receiving the partial
outputs and then performs their accumulation and the Bias sum. It also performs the ReLU
and pooling operation. P4 operates 256 times (one for each output channel), generating 256
output feature maps (in green).

The Memphis-V platform was used with the RS5 processor as the PE. The mapping
was performed considering the XY routing. The NoC dimension chosen was a 4x4 NoC. The
NoC PEs 0x0 and 3x3 are used as injectors, and the PEs 3x0 and 0x3 are not used.

Figure 6.6 presents the mapping of the presented processes to the NoC, consider-
ing the amount of PEs chosen for each PE layer (3 for first, 1 for second, 8 for third, and 1
for fourth). The NoC PEs can run multiple tasks, but only the PE at position 1x2 is used in
more than one task/process.

Figure 6.6 (a) presents the three P1 instances and the P2 process. The P2 process
is centralized to receive data from the maximum ports possible, avoiding packets using the
same router. With the P1 and P2 mapping positions, the P2 process receives data from

120

Red dashed lines delimit the computations performed by each process. (A) Represent the
outputs of the P2 process. (B) Represents the computation performed by the P3 processes.
Each process instance handles multiple input channels (Ninput channels

P3 instances). (C) Represents the
computation performed by the P4 process. It receives the partially convoluted data from
the P3 processes. Then, it accumulates them, generating the convolution output feature
map, in which the ReLU and Max-Pool operations are applied to generate the final output
feature map (in green).

Figure 6.5: Second Layer of the depthwise convolution structure. Source: the Author.

Red arrows represent communications, and the number associated represents the number
of channels/packets sent. (a) presents the three P1 instances communicating with the P2
process. (b) presents the P2 process sending the channels to be processed by the eight
P3 processes. (c) presents all the eight P3 processes sending data to the P4 process.

Figure 6.6: Mapping in a 4x4 NoC. Source: the Author.

the South (S), West (W), and North (N) ports, while the East (E) is unused. Figure 6.6
(b) presents the P2 process sending the first convolution layer output channels to the P3
processes (8x P3 instances, which see the received channels as input channels). Each

121

P3 process receives 12 channels to process. They are mapped to PEs surrounding the
centralized PE to divide the channels between all the ports. The routing is not optimal given
that the routing algorithm used by the NoC is the XY, which first routes the channel in the
X-axis. The channels are sent through P2 ports in the following directions (in order): W, N, E,
S, W, N, E, and W. Finally, Figure 6.6 (c) presents the P3 processes sending data to the P4
process. The P4 process is centralized and receives the packets in the following order: W,
N, E, S, S, E, S, N. Although some ports are used sequentially, the NoC is not a bottleneck
and can handle the data transmission without reducing the application’s performance.

6.4 Conclusion and Final Remarks

This Chapter presented the benchmark applications used to validate and evaluate
the RS5 VXU unit. The 1-D and 2-D CNNs were ported to the RS5 processor and run in the
scalar core to validate its functionality. It also presented the depthwise convolution technique
chosen to improve the parallelism in the manycore context further.

Section 6.1 detailed the 1-D CNN application and extensively analyzed the fit of
the RVV extension with this applications class. It used assembly codes to explain how the
operations can be vectorized and presented a theoretical analysis of the acceleration for
each convolution part. This analysis proved that the RVV extension can offer significant
acceleration for the application with very few instructions.

Section 6.2 presented the 2-D CNN application with the details on how it was ported
and optimized to simplify further operations in manycores. The application layers and the
number of multiplications were presented, highlighting the need for specialized hardware to
run inference efficiently.

Finally, Section 6.3 demonstrated the method for enhancing parallelism possibilities
within a manycore environment. It provided a mathematical foundation for how CNNs can
be separated through depthwise convolutions. The arrangement of smaller processes within
a manycore environment illustrated how PE layers are organized. Finally, it showed the
mapping implemented for the smaller applications, considering communication.

The benchmarks will be further analyzed in the next Chapter, Chapter 7, with (hard-
ware and software) parameter analysis and comparisons of the theoretical and achieved
accelerations.

122

7. RESULTS

This Chapter presents the fifth contribution of this Dissertation: an exploration of
the CNN benchmarks execution in the different hardware environments, exploring param-
eters in the single-core environment, and testing the mapping technique in the manycore
environment.

This Chapter is organized as follows.

• Section 7.1 presents the results for a single RS5 processor, with the area, performance,
and power evaluations. It explores the different instruction subsets and all the benchmark
applications presented in Chapter 6. It also evaluates different compilation options for the
RVV extension and compares results with the related works.

• Section 7.2 presents the results for a manycore NoC platform with the RS5 processor as
the processing element. It explores the parallelization technique presented in Section 6.3
while exploring the impact of having an accelerated PE with the RVV extension.

• Section 7.3 concludes this Chapter.

7.1 Single-core Results

The RS5 core [Nunes et al., 2024], introduced in Chapter 4, enables the selection
of optional extensions for use in various software applications. Since its early development,
it has been designed for two primary environments: ASIC and FPGA. Section 4.8 presented
the three validation environments:

• RTL simulation, which employs a testbench to emulate peripherals and memory, enabling
debugging and rapid validation;

• post-synthesis simulation, aimed at ASIC validation under synthesis constraints;

• FPGA prototyping, which evaluates the core in real-world scenarios.

7.1.1 Area Evaluation

Table 7.1 presents the area and timing results of the RS5 processor synthesis in a
28-nanometer library at a frequency of 500 MHz. The synthesis tool used was the Cadence
Genus 22.15. The first two lines of the table present the RV32I ISA, the most simple proces-
sor version. These two lines illustrate the effect of adding a branch prediction mechanism
to the processor, which has a minimal area increase of only 250 µm2 and contributes to
enhanced performance. Therefore, the mechanism is present in all other syntheses. The

123

Table 7.1: ASIC area results at 500MHz for RS5 core (TSMC 28 nm). Source: the Author.

Instruction Set Total #
Gates

Cell Area
(µm2)

Total
Area
(µm2)

Slack (ps)
- Slowest

RV32I (no branch prediction) 7,041 8,074 10,902 9
RV32I 7,237 8,343 11,151 5
RV32I_ZIHPM 9,374 11,066 14,409 1
RV32I_ZKNE 7,535 8,612 11,638 9
RV32I_XOSVM 8,080 9,124 12,315 2
RV32IC 7,825 8,800 11,938 1
RV32I_ZMMUL 8,280 9,352 12,546 3
RV32IM 9,105 10,298 13,938 4
RV32IMC -baseline implementation 9,546 10,674 14,196 16
RV32IAC 8,778 9,660 13,207 6
RV32IMAC 10,491 11,558 15,443 6
RV32IMAC_ZIHPM_XOSVM 13,952 15,641 20,628 1
RV32IMAC_ZIHPM_XOSVM_ZKNE 14,323 15,900 21,164 0

effect of including each extension individually is assessed by the subsequent lines. All the
combinations achieved timing closure for the target frequency.

The RV32IMC and RV32IMAC ISAs are the most common combinations in embed-
ded RISC-V processors. Hardware accelerators for multiplication and division (M extension)
are crucial for performance. Nunes et al. [2024] demonstrated that the RV32IM ISA achieved
a CoreMark score of 212.3 points [Consortium, 2024], whereas the RV32I ISA reached only
86.3. Including compressed instructions (C extension) reduces code size, while atomic in-
structions (A extension) enable read-modify-write operations in memory, which is essential
for implementing OS semaphores.

Since the benchmark applications presented in Chapter 6 do not use an OS, the A
extension is not required. Thus, due to its flexibility and performance, the chosen baseline
was the RV32IMC instruction set. In the 28 nm ASIC synthesis, this instruction set occupied
approximately 14K µm2. Figure 7.1 shows the resource distribution for the baseline core,
where the register bank and execution unit are the largest modules, each occupying around
30% of the area, followed by the CSR bank at approximately 20%.

Table 7.2 presents the FPGA synthesis results for a Digilent NEXYS A7 board
with a Xilinx xc7a100tcsg324-1 FPGA at 100MHz. It shows the results in terms of look-up
tables (LUTs), Flip-Flops (FFs), and Digital Signal Processors (DSPs). The timing result is
presented in picoseconds. The Xilinx Vivado 2023.2 default synthesis strategies were used.
The most complete version of the RS5 processor (RV32IMAC_ZIHPM_XOSVM) with and
without the ZKNE extension (AES cryptography acceleration) failed to meet timing closure
using the default and performance synthesis strategies. Thus, its operating frequency was
reduced to 50 MHz. The chosen baseline (RV32IMC) uses ≈3300 LUTs, ≈1300 FFs, and 1
DSP block (used in multiplication hardware)

.

124

Figure 7.1: Resource distribution for the RS5 with the RV32IMC instruction set. Source: the
Author.

Table 7.2: RS5 core FPGA area results at 100MHz with default synthesis strategies. Source:
the Author.

Instruction Set (* = No branch
prediction, ** = Running on 50MHz) LUTs FFs DSPs Slack (ps)

RV32I* 2,301 897 0 392
RV32I 2,374 948 0 409
RV32I_ZIHPM 2,664 1,497 0 410
RV32I_ZKNE 2,745 951 0 41
RV32I_XOSVM 2,428 1,171 0 297
RV32IC 2,522 1,014 0 380
RV32I_ZMMUL 2,726 1,043 1 201
RV32IM 3,047 1,226 1 169
RV32IMC 3,296 1,292 1 325
RV32IAC 2,893 1,199 0 120
RV32IMAC 3,482 1,475 1 173
RV32IMAC_ZIHPM_XOSVM** 3,921 2,375 1 4,862
RV32IMAC_ZIHPM_XOSVM_ZKNE** 4,164 2,381 1 3.892

The benchmarks compiled with GCC 14.2 and auto-vectorization offered insight
into the necessary vector instructions for running the applications. The vector instructions
used by the benchmark applications are:

• Configuration: used to set the CSRs of the RS5 VXU.

• Load: Unit-Strided addressing mode is used for loading vectors from memory. The strided
addressing mode is often used with a stride zero to load the same value to an entire
register group.

• Store: Unit-Strided addressing mode stores vectors in memory.

• Multiply and accumulate: Used in dot product operations of convolution operations.

• Sum reduction: used in the dot product operations of convolution layers.

125

• Addition: used for adding the bias to the dot product operation results in convolutional
layers.

• Mask compares: used in ReLU operation to define which values should be replaced by
zero.

• Max: used in Max-Pool operations in the pooling layers.

• Max Reduction: used in Max-Pool operations in the pooling layers.

The RS5 VXU has non-optional instructions that the target applications did not use.
An example is the Load/Store instructions with indexed addressing modes and widening
multiplications. Although not used, these instructions can not be disabled in the synthesis
steps. Therefore, the instruction subset that comprises the mandatory instructions plus the
optional instructions used by the applications is called the “Minimal” subset. The subset
called “Complete” comprises all instructions implemented. Another subset called “No_Div ”
explores the exclusion of vector division operations to analyze its impact in the area.

Table 7.3 presents the area results for synthesizing RS5 with the vector exten-
sion across three subsets (Minimal, No_Div, and Complete). The Table includes results for
VLENs of 64, 128, and 256 bits. Larger VLENs do not justify the area-performance trade-
off, as the area increases excessively. All evaluated VLENs and subsets achieved timing
closure.

Table 7.3: ASIC area results at 500MHz for RS5 core with vector extension. Source: the
Author.

Instruction Set VLEN Subset Total #
Gates

Cell Area
(µm2)

Total
Area
(µm2)

Slack (ps)
- Slowest

RV32IMC - - 9,546 10,674 14,196 16

RV32IMC_ZVE32X
64 Minimal 31,573 30,517 41,080 0
64 No_Div 31,800 31,244 42,575 0
64 Complete 37,604 36,910 49,546 0

RV32IMC_ZVE32X
128 Minimal 50,448 48,168 65,036 0
128 No_Div 51,792 49,014 66,177 0
128 Complete 63,639 60,464 80,528 0

RV32IMC_ZVE32X
256 Minimal 89,515 83,353 114,117 0
256 No_Div 93,118 85,990 117,078 0
256 Complete 115,751 107,734 145,832 0

A 64-bit VLEN offers an area overhead of 2.89x (minimal subset) to 3.49x (com-
plete subset) compared to the RV32IMC baseline. This means that the VXU inclusion, on
average, triples the processor area. Including other optional instructions, except the division,
represents an area footprint increase of just 3.64%. However, the division operations offer a
significant area footprint overhead of 16.37%. A VLEN of 128 bits expands the area footprint
by 4.58x for the minimal subset and 5.67x for the complete subset. Comparing the 128-bit
VLEN area with the 64-bit VLEN shows an increase ranging from 1.58x to 1.62x for their
respective minimal and complete subsets. With a VLEN of 256 bits, the area expansion for
minimal and complete subsets is 8.04x to 10.27x compared to the scalar core, and 1.75x
and 1.81x compared to the 128-bit version.

126

Figure 7.2: Resource distribution for the RS5 with the RV32IMC_ZVE32x instruction set with
a VLENs of 64 and 256 bits. Source: the Author.

Figure 7.2 presents the resource distribution for the RS5 core with the VXU unit
using the minimal subset. Figure 7.2 (a) and (b) show the VXU with a VLEN of 64 bits,
and (c) and (d) represent a 256-bit VLEN. The (a) and (c) subplots show the RS5 resource
distribution. Even though the VXU is part of the execute module, it is depicted as a separate
module to illustrate how it contributes to the RS5 processor area. With this, it is possible
to observe that the execute module maintains a similar area to the scalar core execute unit
(4243 µm2 – Figure 7.1), highlighting that including the VXU does not significantly impact
other components. However, the VXU takes 65% (VLEN=64) and 88% (VLEN=256) of the
processor area.

Figure 7.2 (b) and (d) show the VXU’s internal resource distribution. The VALU is
the component that uses more resources, followed by the VRF. The 64-bit VALU occupies
12,866 µm2 (52% of VXU area) for a dual-lane (2x32) design, and the 256 bits VALU occu-
pies 51,274 µm2 (54.7% of the VXU area) for an octa-lane (8x32) design. The multipliers
represent around a third of the VALU area, highlighting the importance of resource sharing
for multiplying operations. The growth ratio from the dual-lane VALU to the octa-lane VALU
is 3.98x, showing that the VALU area grows linearly with the number of lanes. The VRF,
which is directly impacted by the size of the registers, has a similar growth ratio of 4.06x and
occupies from 34% to 36.8% of the VXU area. The VLSU occupies 3,197 µm2 (12.9% of the
VXU area) for a 64-bit VLEN and 7,731 µm2 for a 256-bit VLEN. The growth ratio is lower,

127

at just 2.42x, because this unit operates in a single lane. Vector CSR has a minimal effect,
accounting for less than 1% of resource usage.

Table 7.4: RS5 core with vector extension FPGA area results. Source: the Author.

Instruction Set (* = Using
multicycle reductions) VLEN Subset

Fre-
quency
(MHz)

Strategy LUTs FFs DSPs Slack (ps)

RV32I - - 100 Default 2,374 948 0 409
RV32IMC - - 100 Default 3,296 1,292 1 325
RV32IMC - - 50 Default 3,202 1,292 1 7,881

RV32IMC_ZVE32XB 64
Minimal 50 Default 10,800 2,344 5 109
No_Div 50 Default 11,266 2,347 5 642

Complete 50 Default 12,673 3,429 5 245

RV32IMC_ZVE32XB 128
Minimal 50 Performance 17,156 3,095 9 8
No_Div 50 Performance 17,646 3,105 9 5

Complete 50 Performance 23,328 5,345 9 20

RV32IMC_ZVE32XB* 128
Minimal 50 Default 15,467 5,652 9 847
No_Div 50 Default 16,729 6,810 9 1,563

Complete 50 Default 21,984 9,114 9 418

RV32IMC_ZVE32XB* 256
Minimal 50 Default 27,500 10,142 17 494
No_Div 50 Default 29,830 12,565 17 727

Complete 50 Default 39,344 16,871 17 408

RV32IMC_ZVE32XB* 256
Minimal 50 Performance 29,602 11,953 17 968
No_Div 50 Performance 31,777 16,407 17 716

Complete 50 Performance 43,636 20,843 17 2,139

Table 7.4 presents the FPGA synthesis results for the RS5 processor with the VXU
unit. As Table 7.2 showed, the most complete versions of the RS5 processor failed timing
closure even with performance strategy. The same applied to the vector extension, which
implied that the frequency had to be reduced to 50MHz. The baseline core was synthesized
using the same frequency for fair comparisons, using 3200/1300 LUTs/FFs. The RS5 with
the vector extension and a VLEN of 64 bits achieved timing closure using the default strategy
for the three subsets. They presented growth in LUTs/FFs usage of 3.37x/1.81x (minimal
subset) to 3.96x/2.64x (complete subset), representing similar growth ratios observed in
ASIC syntheses. Using a VLEN of 128 bits with default synthesis strategies did not achieve
timing closure. Thus, the performance synthesis strategy was used. The growth in the 128-
bit version with performance synthesis is 5.36x/2.40x in LUTs/FFs for the minimal subset.
The VXU with a VLEN of 256 bits did not achieve positive slacks even using the performance
strategy.

The sections of Table 7.4 with a “*” use multicycle reduction trees, improving timing
in exchange for performance. This can be seen in the 128-bit VLEN, which failed timing
closure using the default synthesis strategy but had positive slacks when this option was
active. When comparing the two variants of 128-bit VLEN with the minimal subset, the
version employing multicycle reductions has approximately 2,000 fewer LUTs. However, this
optimization increases the number of FFs by about 2,500, nearly doubling the usage.

The impact of using the performance synthesis strategy can be seen in the ver-
sions with a 64-bit VLEN. The performance synthesis strategy can increase the number of
LUTs and FFs used, ranging from 2,000 to 4,000. The 256-bit VLEN with the default
strategy indicates growth factors in LUTs/FFs ranging from 8.59x/7.85x (minimal subset) to
12.29x/13.06x (complete subset). This growth is similar to that presented in ASIC synthesis,
which achieved 8.04x to 10.27x in the respective subsets.

128

7.1.2 Performance Evaluation

1-D CNN Performance Evaluation

Table 7.5 displays the performance results, measured in clock cycles, for execut-
ing the first convolutional layer of the 1-D CNN (with ReLU) presented in Section 6.1. It
first presents the results for a scalar core using the base ISA and the versions with multi-
plication. It emphasizes once more that division operations are seldom necessary because
compilers typically avoid them due to their high cost. The chosen baseline ISA (RV32IMC)
is highlighted and took 636,531 clock cycles to execute. The following table rows explore the
performance results for the vector extension with VLENs ranging from 64 to 1024 bits.

Table 7.5: Performance results running the simplified first layer of the 1-D CNN application
in RS5. Source: the Author.

Instruction Set Scalable VLEN Clock
Cycles Speed-up

Cycle Re-
duction

(%)
RV32I - - 7,220,542 - -

RV32I_ZMMUL - - 595,735 - -
RV32IM - - 595,735 - -

RV32IMC - - 636,531 - -

RV32IMC_ZVE32X_ZVL64B

X 64 508,199 1.25 20.16
✓ 64 608,163 1.05 4.46
✓ 128 394,479 1.61 38.03
✓ 256 288,597 2.21 54.66

RV32IMC_ZVE32X_ZVL128B
X 128 300,726 2.12 52.76
✓ 128 347,705 1.83 45.38
✓ 256 232,415 2.74 63.49

RV32IMC_ZVE32X_ZVL256B X 256 228,127 2.79 64.16
✓ 256 232,415 2.74 63.49

RV32IMC_ZVE32X_Manual X 256 82,895 7.68 86.98

RV32IMC_ZVE32X_ZVL512B X 512 170,893 3.72 73.15
✓ 512 168,910 3.77 73.46

RV32IMC_ZVE32X_ZVL1024B X 1024 138,334 4.60 78.27
✓ 1024 138,454 4.60 78.25

Table 7.5 results explore the compiler option -mrvv-vector-bits=zvl. Usually, the
compiler use the VLEN specified by the ZVL instruction set to generate scalable code. A
scalable code can be run in VLENs bigger or equal to the specified in ZVL, thus assuring
portability among cores. The inclusion of the -mrvv-vector-bits=zvl flag indicates to the
compiler that it should generate code targeting only the VLEN specified in the ZVL instruction
set. This is displayed in the table using the “scalable” column, which, when has an “X”,
indicates that the optional flag was used.

The RV32IMC_ZVE32X_ZVL64B instruction set presents four results: 1) Non-
Scalable code running on a 64-bit VLEN; 2-4) scalable code running on a 64, 128 and
256-bit VLEN. Comparing the 64-bit VLEN versions, the non-scalable version shows a sig-

129

nificant advantage by reducing the application runtime cycles by over 20% (1.25x speed-up).
In contrast, the scalable version manages a reduction of just 4.46% (1.05x speed-up). For a
128-bit VLEN, the non-scalable version has an advantage of ≈7% in cycles reduction. For
larger VLENs, the difference between scalable and non-scalable reduces to less than 1%,
with the non-scalable having advantages in most cases.

Running a code compiled for a scalable ZVL64B on a 128-bit VXU unit achieved
a speed-up of 1.61x while running a code compiled with ZVL128B on the same hardware
yielded a speed-up of 1.83x. Based on this information, we can conclude that compiling
the code with the ZVL instruction set with the same VLEN as the hardware that will run the
code is the better option. In addition, using non-scalable code is the better option as it yields
better speed-ups/cycle reductions. Thus, only the non-scalable version will be considered
for other benchmarks. The maximum speed-up achieved was 1.25x, 2.12x, 2.79x, 3.77x,
and 4.60x for VLENs of 64, 128, 256, 512, and 1024 bits, respectively.

The Table also shows a version of the code that was manually vectorized in assem-
bly, targeting a VLEN of 256 bits, as Section 6.1 presented. The manual version achieved
a speed-up of 7.68x, beating all the speed-ups from codes generated by the compiler, even
those with larger VLENs. This represents a reduction of almost 87% in the cycles required to
run the application, meaning that the application was executed in just 13% of the time that
a scalar version would take. This result closely resembles the theoretical expectations dis-
cussed in Section 6.1.4, indicating an approximate speed-up of 5.71x. The improved result
(7.68x) arises from the more straightforward memory access in the assembly version.

Table 7.6 presents the results of running the complete 1-D CNN on the RS5 core.
This application was presented in Section 6.1 and, for a single inference, takes 5,428,096
MAC operations. Running on the base ISA would take around 955 million clock cycles to
execute, while in the baseline ISA it takes around 78 million cycles. Table 7.6 brings the
column Max-LMUL which refers to another compilation option/flag for the RVV extension
explored in this table. The option/flag is the -mrvv-max-lmul that gives a hint to the compiler
of what size of vector register groups it should use, varying from 1 (m1) to 8 (m8) registers.

The complete 1-D CNN application achieved a maximum speed-up of 1.98x for the
vector extension with a VLEN of 1024 bits. A 256-bit VLEN offered a speed-up of 1.91x, very
close to the 1.98x of the 1024-bit version, thus becoming the best trade-off of performance
and area for this application. It reduced the required clock cycles by 47.6%, representing
more than 37 million cycles. Smaller VLENs also showed good performance. The 64-
bit version achieves a maximum speed-up of 1.43x, which reduces the cycles needed by
approximately 30% (about 23 million cycles). The 128-bit version achieved a maximum
speed-up of 1.66x, reducing the clock cycles by almost 40% (around 31 million cycles).

A 64-bit VLEN VXU yielded a speed-up of only 1.04x without adding the hint flag.
Including a register group hint for bigger register groups allowed the application to achieve
more significant speed-ups. The hint of using registers of 1 group limited the compiler and

130

Table 7.6: Performance results running the 1-D CNN application in RS5. Source: the Author.

Instruction Set Max-
LMUL VLEN Clock Cycles Speed-up

Cycle Re-
duction

(%)
RV32I - - 955,198,109 - -

RV32IMC - - 78,083,969 - -

RV32IMC_ZVE32X_ZVL64B

- 64 74,787,999 1.04 4.22
1 64 77,975,577 1.00 0.14
2 64 61,326,366 1.27 21.46
4 64 54,475,600 1.43 30.23
8 64 71,505,872 1.09 8.42

RV32IMC_ZVE32X_ZVL128B

- 128 56,267,471 1.39 27.94
1 128 56,509,994 1.38 27.63
2 128 46,955,281 1.66 39.87
4 128 51,790,385 1.51 33.67
8 128 69,925,007 1.12 10.45

RV32IMC_ZVE32X_ZVL256B

- 256 40,931,358 1.91 47.58
1 256 40,935,557 1.91 47.57
2 256 43,071,013 1.81 44.84
4 256 48,571,769 1.61 37.80
8 256 67,311,347 1.16 13.80

RV32IMC_ZVE32X_ZVL512B

- 512 40,000,534 1.95 48.77
1 512 40,058,847 1.95 48.70
2 512 42,858,139 1.82 45.11
4 512 48,069,445 1.62 38.44
8 512 66,505,523 1.17 14.83

RV32IMC_ZVE32X_ZVL1024B

- 1024 39,527,786 1.98 49.38
1 1024 39,987,473 1.95 48.79
2 1024 42,539,441 1.84 45.52
4 1024 47,403,823 1.65 39.29
8 1024 66,392,487 1.18 14.97

made the performance even worse. Groups of 2 and 4 registers improved performance
in 1.27x and 1.43x, respectively. Using groups of 8 registers did not improve performance
compared to groups of 4, but it still improved compared with the version without the hint. The
same behavior was observed for a 128-bit VLEN, but the maximum speed-up was reached
with groups of two registers, demonstrating that the improvement is related to the size of the
processed vector.

Dot-product Performance Evaluation

A dot-product benchmark was ported from ARA [Perotti et al., 2022] to explore the
relationship between vector size and acceleration. The application runs the same operation
(dot-product) in different vector lengths/sizes. It also explores different data sizes, from 8 to
32 bits. The application was modified to allow the cycles per operation calculation.

Figure 7.3 presents the results for the dot-product benchmark running on RS5 pro-
cessor, exploring the LMUL for vector operations. Figure 7.3 (a) shows the results for a
VLEN of 64 bits and (b) for a VLEN of 256 bits. For smaller vector sizes, all versions take
similar cycles to execute, even compared with the scalar version.

131

Figure 7.3: Performance behavior for different LMULs in the dot-product benchmark. In (a)
VLEN=64 and in (b) VLEN=256. Source: the Author.

For a VLEN of 64 bits (Figure 7.3 (a)), the scalar version (dashed line) outperforms
versions using register groups (LMUL) of 1 and 2 registers due to the additional cycles
required for configuring and controlling the VXU accelerator, which occur more frequently
with smaller register groups. However, larger register groups perform better than the scalar
version for a 64-bit VLEN.

For a VLEN of 256 bits (Figure 7.3 (b)), all vectorized versions outperform the
scalar version, as larger vector registers accommodate more elements, enabling greater
parallelism. However, increasing the VLEN does not necessarily yield significant gains if the
vector size remains small. For large vectors, groups of eight registers proved to be the most
effective option.

Figure 7.4 shows the results for the dot-product benchmark running on RS5 pro-
cessor, exploring the VLEN. Figure 7.4 (a) shows the results for operations using 32-bit data
(SEW=32), and (b) shows the result for operations using 8-bit data (SEW=8). In (a), it can
be observed that the VLEN size only starts to make a significant difference from around 64
to 128 elements in the vector. It can also be observed that doubling the VLEN does not
double the performance. For a VL of 1024 elements, a 256-bit VLEN requires about 3,000
cycles, whereas the 128-bit version takes around 4,000 cycles, and the scalar version takes
about 9,000 cycles. This results in a speed-up of about 3x and 2.25x, respectively.

Figure 7.4 (b) shows the impact of using smaller data sizes (SEW) in the vector unit.
In RS5 VXU, 8-bit data have the maximum number of elements processed in parallel, 4 times
more than in a 32-bit SEW. In the (b) chart with SEW=8, it is evident that for the maximum
vector size, all VLENs show a speed-up exceeding 6x compared to the scalar core, reducing
the cycles from around 12,000 to below 2,000. For smaller vector sizes, the differences are
negligible, only starting to be visible after 512 elements. This happens because the vector
register can hold and process more data in parallel.

132

Figure 7.4: Performance behavior for different VLENs in the dot-product benchmark. In (a)
SEW=32 and in (b) SEW=8. Source: the Author.

Figure 7.5 shows the results for the dot-product exploring the SEW variation. Fig-
ure 7.5 (a) and (b) have a 64-bit VLEN, and (c) and (d) have a 256-bit VLEN, with the LMUL
being 1 in (a) and (c) and 8 in (b) and (d). Scalar results are shown as dashed lines.

Figure 7.5: Performance behavior for different SEWs in the dot-product benchmark. Hori-
zontal charts share the same VLEN, while vertical charts maintain the same LMUL. Source:
the Author.

Figure 7.5 (a) shows that the vectorized version with small VLEN (64) and LMUL
(1) can yield worse results compared to even the scalar. For an LMUL of 8 registers, the

133

64-bit VLEN yields more regular results, with the worst being the scalar versions and the
vectorized with better results. Charts (b), (c), and (d) show that smaller SEWs provide better
results than bigger SEWs. The main difference observed when the VLEN increases ((c) and
(d)) is that the cycle vs. vector size growth ratio is smaller.

Figure 7.6 shows the logarithmic results for the dot-product benchmark, exploring
the SEW, LMUL, and VLEN variations. Individual charts show LMUL variation, and the
horizontal charts explore the different SEWs. Charts from (a) to (c) show results for a 64-bit
VLEN and (d) to (f) for a 256-bit VLEN.

Figure 7.6: Logarithmic performance behavior for different LMULs in the dot-product bench-
mark. Horizontal charts share the same VLEN, while vertical charts maintain the same SEW.
Source: the Author.

In Figure 7.6, it can be observed that as the SEW grows (horizontal charts), the dif-
ference between the scalar and the vectorized versions diminishes. It can also be observed
that as the VL grows, the register groups with eight registers become superior to others. By
applying a logarithmic scale, the smaller VLs can be observed better. The best speed-up
achieved for the dot-product application was using with a 256-bit VLEN, with LMUL=8 and
SEW=8, achieving 16.15x of speed-up.

AlexNet Performance Evaluation

134

Table 7.7 presents the results for running the first two convolutional layers of the
AlexNet [Krizhevsky et al., 2017]. The scalar core with the base ISA takes almost 85 bil-
lion clock cycles, while the baseline takes around 8.5 billion cycles. The configuration that
yielded better speed-up was those with 512 and 1024 VLENs, both achieving 1.37x. The
VLEN of 256 bits (chosen as the best trade-off in CNN 1-D) achieved a maximum speed-up
of 1.33x, a reduction of almost 25%, representing more than 2 billion clock cycles. A 128-bit
VLEN presented a top reduction of 15.6% (1.18x speed-up). The 64-bit VLEN did not pro-
vide good acceleration, with most cases being worse than the scalar and having a maximum
reduction of 3.6% (speed-up of 1.04x).

Table 7.7: Performance results running the first two convolutional layers of AlexNet in RS5.
Source: the Author.

Instruction Set VLEN Max-
LMUL Clock Cycles Speed-up

Cycle Re-
duction

(%)
RV32I - - 84,792,153,908

RV32IMC - - 8,513,618,557

RV32IMC_ZVE32X_ZVL64B

64 - 8,513,618,583 1.00 0.00
64 1 8,513,892,321 1.00 0.00
64 2 9,148,991,562 0.93 -7.46
64 4 8,206,769,205 1.04 3.6
64 8 9,576,737,921 0.89 -12.49

RV32IMC_ZVE32X_ZVL128B

128 - 8,259,518,056 1.03 2.98
128 1 8,259,518,056 1.03 2.98
128 2 7,187,565,401 1.18 15.58
128 4 7,810,109,889 1.09 8.26
128 8 9,401,203,341 0.91 -10.43

RV32IMC_ZVE32X_ZVL256B

256 - 6,394,263,639 1.33 24.89
256 1 6,394,263,639 1.33 24.89
256 2 6,736,728,017 1.26 20.87
256 4 7,532,481,241 1.13 11.52
256 8 9,123,126,403 0.93 -7.16

RV32IMC_ZVE32X_ZVL512B 512 - 6,211,825,071 1.37 27.04
RV32IMC_ZVE32X_ZVL1024B 1024 - 6,211,793,917 1.37 27.04

With the first and second layers of AlexNet containing 105,415,200 and 447,897,600
multiplication operations, accumulating over 500 million multiplications the vector accelera-
tion outcomes fell short of expectations. By observing the assembly code generated by the
compiler, it was possible to see that it could not auto-vectorize every part of the convolution
operations. For example, the function that sums the bias to the output feature did not use
any vector instruction, although the VADD instruction could have been used. This might be
due to how the C-language code is written, which uses multiple C memory pointers for the
array/matrix structures.

7.1.3 Power and Energy Evaluation

The synthesized circuits were used in simulation with annotated delays to evaluate
the power. These simulations used the synthesized netlist allied with the delays of each gate
to validate the circuit functionality after the synthesis. This simulation allows the export of a

135

switching activity file. The switching activity file can then be loaded into the synthesis tool
again to calculate the power more precisely for that application.

The Cadence Xcelium 23.03 simulator was used to perform the annotated simula-
tions. The testbench includes the circuit netlist, the “.sdf” file with the delays to be annotated,
and RAM with the application loaded. The testbench is also responsible for dumping the
switching activity file. A commonly used flow uses value change dumping (VCD), but this
approach is slower than the Cadence SHM flow. The SHM files dumped by the testbench
are loaded into the synthesis tool (Cadence Denus) alongside the circuit netlist and the li-
braries. The synthesis tool then performs a more precise power analysis based on actual
switching activities.

As the applications vary in characteristics, they can have different switching activi-
ties. For this analysis, two applications were selected: the dot-product of vectors with 4096
elements (with 8, 16, and 32 bits) and the simplified first layer of the 1-D CNN.

Table 7.8 presents the results for the target applications. Smaller circuits, such as
the scalar core and the variations with smaller VLENs, consume less power. The scalar
core consumes around 4.4 to 5 mW, while the accelerated versions can consume up to
16.74 mW.

Table 7.8: Power analisys of diferent applications on RS5 w/vector unit. Source: the Author.

Application (* =
Manually-Vectorized) VLEN Power

(mW) Time (ns) Energy
(µJ)

Energy
comparison

(%)
dot-product 4096x8b - 4.40 112,610 0.50 -
dot-product 4096x8b 64 9.45 28,750 0.27 -46.00
dot-product 4096x8b 128 10.34 25,486 0.26 -48.00
dot-product 4096x8b 256 16.74 23,854 0.40 -20.00

dot-product 4096x16b - 4.83 120,926 0.58 -
dot-product 4096x16b 64 9.50 39,990 0.38 -34.48
dot-product 4096x16b 128 10.11 33,084 0.33 -43.10
dot-product 4096x16b 256 16.36 29,756 0.49 -15.52
dot-product 4096x32b - 5.00 93,234 0.47 -
dot-product 4096x32b 64 7.72 69,682 0.54 +14.89
dot-product 4096x32b 128 9.44 52,274 0.49 +4.25
dot-product 4096x32b 256 15.45 43,570 0.67 +42.55

conv_simplified - 4.92 1,273,062 6.26 -
conv_simplified 64 7.47 1,016,398 7.59 +21.25
conv_simplified 128 9.70 601,452 5.83 -6.87
conv_simplified 256 16.06 456,254 7.33 +17.09
conv_simplified* 256 14.73 165,790 2.44 -61.02

As seen previously, the versions with the RVV extension can significantly reduce
the time it takes to execute the applications. The third table column presents the time taken,
in nanoseconds, to execute each application for the given application and core version.
The power and time information can be used to calculate the energy required to run the
application (energy = power x time).

136

The energy required to run the dot-product application in its 8-bit version on a scalar
core is 0.50µJ. In the versions that use the RVV extension, the energy used was reduced by
up to 48% (0.2 µJ), proving that even with a significant area overhead, the speed-up of the
applications can be beneficial. A similar behavior was observed in the 16-bit version of the
dot-product application. For the 32-bit dot-product, no accelerated version obtained gains in
energy consumption. This occurs because 32-bit data is the worst-case in parallelism in the
RS5 VXU, obtaining the smaller speed-ups.

The simplified convolution (the first layer of a 1-D CNN) consumed energy similar to
the scalar version, with the 64- and 256-bit VLEN versions increasing and the 128-bit version
decreasing by around 7 percent. This occurs again because the application uses only 32-bit
data, limiting the speed-up that can be achieved. The manually vectorized version, which
has a more significant speed-up, obtained an energy reduction of 61%, showcasing how
effective the RVV extension can be.

7.1.4 Related work comparison

This Section presented the RS5 area and performance evaluation, including the
RISC-V vector extension. Table 7.9 summarizes the area of RS5 with VXU for different
VLENs and their relative speed-up for the benchmark applications.

Table 7.9: RS5 W/ Vector extension summary of area and speed-up results. Source: the
Author.

ISA/subset VLEN Lanes
ASIC
Area
(µm2)

LUTs/FFs (* = Using
multicycle reductions)

Simplified convolution
(** = manually

vectorized)

Dot-
Product 1-D Conv 2-D Conv

IMC - - 14,196 3,296/1,292 - - - -
IMC_ZVE32X/Minimal 64 2 41,080 10,800/2,344 1.25x 9.00x 1.43x 1.04x
IMC_ZVE32X/Minimal 128 4 65,036 17,156/3,095 2.12x 12.77x 1.66x 1.18x
IMC_ZVE32X/Minimal 256 8 114,117 27,500/10,142* 2.79x/7.68x** 16.15x 1.91x 1.33x

Chapter 3 discussed related works that employ various techniques to accelerate
CNNs, with RVV-based approaches differing in multiple aspects. Table 3.1 summarized
these works regarding RVV accelerators, with the final row positioning our work relative to
the state-of-the-art.

Wang et al. [Wang et al., 2024] synthesized Ara [Perotti et al., 2022] and SPEED
using Synopsys Design Compiler 2014.09 on the TSMC 28 nm process with four lanes and
a vector length of 4,096 bits. At a frequency of 500 MHz and an RV64GCV1.0 ISA, they
reported areas of 0.44 mm2 for Ara and 1.10 mm2 for SPEED. The RS5 results consider
the same frequency and technology used in Wang et al. work. With the same number of
lanes (4) and a VLEN of 128 bits, RS5 requires no more than 0.080 mm2, 5.5 times smaller
than ARA and 13.75x smaller than SPEED. The largest RS5 RVV version (with eight lanes
and 256-bit VLEN) requires 0.145 mm2, corresponding to one-third the area of Ara and ≈7.5

137

times smaller than SPEED. These results also show that despite having bigger VLEN (4096),
the area results are contained in ARA and SPEED, showcasing that fewer processing lanes
(only four) can help the contention of the overheads.

Table 7.10: Equivalent gates results in kGE for RS5 and other RVV implementations.
Source: the Author.

RVV implementation 2-Lanes 4-Lanes 8-Lanes
ARA [Cavalcante et al., 2019] 2228 3434 5902
ARA2 [Perotti et al., 2024] 2291 3688 6768
This Work 131 213 386

Regarding equivalent gates, Table 7.10 compares the complete RS5 subset with
other works that provide this information. With the same number of lanes, the RS5 im-
plementation in this work occupies significantly less area, ranging from 15.29× to 17.53×
smaller. It is important to note that ARA focuses on high-end acceleration and implements
the full RVV extension, whereas this work targets only a subset. Nevertheless, this result
shows how large implementations can become.

ZeroVex [Zhao and Ye, 2024] synthesized their design to the SkyWater open source
PDK, achieving an area for the scalar core of 0.15 mm2. For a 2-lane vector accelerator, the
area increases to 0.40 mm2, almost tripling the size, similar to what happens in the RS5
core with a 2-lane vector accelerator, which achieves an area of 0.041 mm2 (note that each
design employs different technology nodes).

Ali et al. [2021] synthesized their Vector accelerator (VPU) for Xilinx FPGA Zynq
xc7z020clg484-1 using Xilinx Vivado v2018.3. Each lane utilizes three DSP blocks. When
synthesized to a similar Xilinx FPGA board, the RS5 with a VLEN of 64 bits required around
7,000 additional LUTs, while in Ali et al. [2021] for the same VLEN, it required around 3,800.
Even though RS5 requires almost twice the amount of LUTS used by Ali et al. [2021] with a
VLEN of 64 bits, RS5 implements an additional lane justifying this overhead. In the 256-bit
versions, both accelerators have eight lanes, with RS5 requiring approximately 24,000 LUTs
and their work requiring over 20000 LUTs.

The authors of ARROW [Assir et al., 2021] found that, in the ARROW accelera-
tor, a 2D convolution runs only 1.4 – 1.9× faster. They concluded that this relatively low
performance of 2D convolution is mainly due to their highly repetitive use of scalar arith-
metic operations to manage data pointers. Our work achieved similar performance for a 2D
convolution in AlexNet, achieving a maximum of 1.33x speed-up.

Johns and Kazmierski [2020] presented a vector processor coupled with an em-
bedded RISC-V. They use a VLEN of only 32 bits with a single lane. The authors used
three benchmarks: 1)RGB to grayscale using shifts; 2) Grayscale filter; and 3) Integer ma-
trix multiplication of two 120x120 matrices with 8-bit data. All the applications were written

138

in assembly. Compared to the scalar core, the performance results ranged from 2.7x to 5.8x
speed-ups, increasing FPGA resource usage by 2.6x.

These results indicate that the RS5 VSU achieves an area comparable to or smaller
than similar works. However, direct comparisons between implementations are challenging
and often unfair due to differences in subsets, technologies, protocols, and memory arrange-
ments. Unlike many related works, the RS5 VXU lacks a dedicated memory port, which is
a known performance bottleneck. Additionally, it does not allow independent scaling of the
number of lanes, as this is tied to the VLEN parameter, potentially leading to significant area
overheads as VLEN increases.

7.2 Manycore Results

This Section presents the results for running the AlexNet [Krizhevsky et al., 2017] 2-
D CNN in a manycore environment. The manycore environment is the Memphis-V platform,
which uses the RS5 processor as the processing element (PE). This allows the exploration
of the RVV extension in a broader range of application characteristics.

Section 6.3 presented the 2-D CNN application and the chosen technique for par-
titioning the application into different programs. The programs are:

• P1 - Handles only one out of three input channels of the first layer, performing the depth-
wise convolution and sending the results to the P2 process;

• P2 - Joins the results from all the P1 instances, performing ReLU and Max-Pool operations
on each output channel. Sends data to all P3 instances;

• P3 - handles multiple input channels of the second layer, performing the depthwise convo-
lution and sending the results to the P4 process;

• P4 - Joins the results from all the P3 instances, performing ReLU and Max-Pool operations
on each output channel.

The chosen NoC dimension was a 4x4 NoC, which mapping can be seen at Fig-
ure 6.6. Simulations were performed using a scalar PE and three accelerated versions. The
three accelerated versions include the RVV extension with VLENs of 64, 128, and 256 bits.

Table 7.11 presents the results of the P1 application/processes on the Memphis-V
platform. Each process only computes one of the three RGB input channels and generates
the 96 output channels of the first convolutional layer for that given input channel.

The average number of cycles taken to compute each output channel can be seen
in the second column of Table 7.11. The scalar and the 64-bit VLEN versions take a simi-
lar cycle count. In contrast, the versions with larger VLENs obtain significant speed-ups in
computation, reducing up to 2x the number of cycles required for the calculation of each out-
put channel. The VLEN growth negatively impacted the time spent communicating (sending

139

Table 7.11: Results on running RGB channels computation (P1) on MEMPHIS-V with vector
extension. Source: the Author.

VLEN Avg cycles per channel
in computation

Speed-up in
computation

Total cycles in
computation (x96)

Avg cycles per channel
in communication

Total cycles in
communication

(x96)
- 4.74e+6 - 4.55e+8 1.19e+5 1.14e+7

64 4.75e+6 1.00x 4.56e+8 1.19e+5 1.14e+7
128 2.65e+6 1.79x 2.54e+8 1.34e+5 1.28e+7
256 2.37e+6 2.00x 2.27e+8 1.39e+5 1.34e+7

each output channel to the P2 process), and no plausible explanation was found for this.
The time taken for communication is smaller by one order of magnitude, as the application
computation load is much bigger than the amount of data required to be sent.

Table 7.12 presents the cycle results of the P2 process, responsible for joining the
input channels of the first convolutional layer and performing ReLU and Max-Pool operations.
This process’s first operation is waiting for the outputs of each P1 process. The average cycle
count spent waiting for P1 results ranges from 4.54e+6 (scalar) to 2.33e+6 (256-bit VLEN),
which is very similar to the time taken per channel in the P1 process (4.74e+6 to 2.37e+6).
This indicates that the P2 process relies more on the results from P1 than it spends time
computing ReLU and max-pooling or sending data to P3.

Table 7.12: Results on running RGB channels join (P2) plus ReLU and Max-Pool on
MEMPHIS-V with vector extension. Source: the Author.

VLEN Avg cycles per
channel receive

Total cycles
receiving (x96)

Avg cycles per channel
computation

Total cycles
computation (x96)

Avg cycles per
channel sending

Total cycles
sending (x96)

- 4.54e+6 4.36e+8 2.92e+5 2.80e+7 3.65e+4 3.50e+6
64 4.62e+6 4.44e+8 2.14e+5 2.06e+7 3.65e+4 3.51e+6

128 2.57e+6 2.46e+8 1.85e+5 1.77e+7 3.65e+4 3.50e+6
256 2.33e+6 2.23e+8 1.48e+5 1.42e+7 3.65e+4 3.50e+6

The average number of cycles per computation performed in the P2 process is
shown in the fourth column of Table 7.12. It is one order of magnitude smaller than the
time it waits for data from the P1 process, indicating that it quickly processes it and sends it
forward once it has data. The average number of cycles required to send the data to the P3
process is another order of magnitude smaller than the computation time. The time taken in
the communication in P2 is around 3 times smaller than in P1. This happens as the packages
transmitted by P2 are reduced in size due to the data passing through a max-pooling layer.

Table 7.13 compares the single and manycore versions of the first layer of the 2-D
CNN benchmark, both exploring the scalar and vectorized versions for multiple VLENs.

While in the single-core version, the speed-up of using the vector extension reached
1.65x, by applying the manycore mapping technique, the speed-up reached almost 3x in us-
ing scalar PEs. The 3x speed-up in the scalar core is significant. Still, the theoretical gain of
using 4 PEs would be 4x, which cannot be achieved in real applications for multiple reasons,
like communication and non-optimal computation division. As previously demonstrated, the
P2 process performs significantly less computation during operation. It spends the major-

140

Table 7.13: Peformance on the AlexNet first layer on single x manycore. Source: the Author.

Single/Manycore VLEN Cycles Speed-up Cycle
reduction (%)

Single - 1,418,604,031 - -
Single 64 1,418,604,052 1.00x 0.00
Single 128 1,012,741,796 1.40x 28.61
Single 256 858,535,157 1.65x 39.48
Many - 474,913,995 2.99x 66.52
Many 64 475,713,468 2.98x 66.47
Many 128 275,530,467 5.15x 80.58
Many 256 248,906,823 5.70x 82.45

ity of its time awaiting data from the P1 processes. If we exclude the P2 process, the 3x
speed-up gets closer to the 3x theoretical gain.

The best trade-off was the many-core version with a 128-bit VLEN, offering a
speed-up of 5.15x, meaning a reduction of around 80% of the cycles compared to a scalar
single-core and 1.72x of the scalar manycore.

The results of the manycore simulations show that the applied technique signifi-
cantly improved the time per inference, achieving a maximum of 5.70x of speed-up com-
pared to a single scalar core.

The number of PEs used more than doubles when running the first two layers of
the 2-D CNN application. The first layer uses 3 PEs for the P1 instances and 1 PE for the
P2 instance, while the second layer uses 8 PEs for the P3 processes and another one for
the P4 process. However, extracting results for the application with all four programs was
impossible because the P3 processes presented data access fault exceptions, which halted
the simulation. This exception occurs when accessing data outside the process data page,
meaning the parameters can not fit inside the allocated memory page. Despite using the
maximum page size, this error continued to occur. The data memory in the MEMPHIS-V
platform is limited to 24 bits, and platform modifications would be required to allow expan-
sions beyond 24 bits.

In the first layer of AlexNet, there are 189,531 integer parameters (154,587 inputs,
34,848 weights, and 96 biases), and in the second, 614,656 integer parameters(614,400
weights and 256 biases). In a manycore environment, these parameters are distributed
through the program instances. The P1 program counts with three instances, distributing a
third of the input and weights to each instance. Thus, each process has only 63,145 parame-
ters compared to a single instance’s 189,435 (not including bias) parameters, representing a
reduction of 66.7%. The P3 program counts with eight instances, where each will count with
76,800 parameters, a significant reduction compared to the 614,400 required when only one
instance is used, representing a reduction of 87.5%. The P2 and P4 programs will receive
only the biases, representing 96 and 256 parameters, respectively. Considering a single
processor running the first two layers of AlexNet, it would use 804.187 parameters. In a

141

manycore environment, the process instance that uses the most parameters (P3 program)
uses 76,800 parameters, representing a reduction of 90.4% in code size.

To avoid dealing with limited space in the process memory pages, a possible solu-
tion is to have an external memory to store the application parameters. This approach helps
keep the local storage small, with the weights and biases stored on an external memory
being loaded dynamically to the local memory when needed.

7.2.1 Related work comparison

As this work explored mainly the impact of an accelerated PE, the works that better
relate to it are those presented by Table 3.3. Although we use a NoC, comparing results with
NoC-related works (Table 3.4) is difficult as they focus on having dedicated NoC, modifying
NoC components, or implementing mapping algorithms, charactheristics that our work does
not present. Our work does not implement dedicated NoCs because it focuses on having a
general-purpose PE, in which one of the applications executed can be a CNN. It is not built
to target only CNNs. The NoC used presents a significant throughput, as demonstrated by
the developers in previous works, and is not a bottleneck for the target applications. This
work does not seek to implement the most optimal mapping in the NoC platform. Our main
goal was to evaluate the impact that an accelerated PE would have, so we did not use any
mapping algorithm.

SiFive Performance P270 [SiFive, Inc, 2022] and SiFive Intelligence X280 [SiFive,
Inc, 2023] use multicore and multi-cluster configurations of up to 8 processing cores. This
configuration would resemble a NoC with a 3x3 dimension, resulting in 9 processing cores.
However, they target high-performance computing, and due to these processors being pro-
prietary, results for comparison could not be found.

GAP-8 [Flamand et al., 2018] uses a RISC-V controller allied with an 8-Core cluster
with an additional dedicated accelerator for convolutions, the Hardware Convolution Engine
(HWCE). For applications like convolutions, Max-Pooling, and matmul, they achieved speed-
ups ranging from 5.3x to 8.4x when using eight cores in the cluster. These results are
comparable to what this work presented in acceleration regarding the first layer of the CNN
using a distributed approach, where with only four PEs we achieved a speed-up of up to
5.7x. For full CNNs, the performance improvement of GAP-8 ranged from 9.3x to 11.7x
using 8-PEs.

ARA2 [Perotti et al., 2024] concluded that a multi-core design with smaller Ara2
instances behaves better than a single-core larger Ara2. This work achieved a similar result
as having multiple scalar cores achieved a better speed-up (almost double) than the biggest
single core with VLEN of 256 bits.

142

7.3 Conclusion and Final Remarks

This Chapter presented Power, Performance, and Area evaluations for the acceler-
ated RS5 processor with the vector extension.

It first explored the impact of including the RVV extension in the RS5 core, present-
ing the area overheads for different VLEN configurations in ASIC and FPGA environments.
The smaller VLEN has an area overhead ranging from 2.89 to 3.49x, while the bigger VLEN
evaluated presented an area overhead ranging from 8.04x to 10.27x. Then, it presented the
RS5 area utilization for each component, highlighting that including the VXU unit does not
negatively impact other components. It also showed that the VXU components that consume
the most area and are directly connected to the VLEN growth are the VRF and the VALU.
The VALU is primarily responsible for the growth of the expressive area, which accounts
for up to 54.7% of the VXU area. Comparing our work with related work positioned it with
comparable results. The comparison showcased that the RS5 VXU is small compared to
more complex RVV implementations. A configurable number of processing Lanes might be
the best approach for keeping the area resources low.

The performance evaluation explored the different RS5 extensions and the impact
of including the VXU. It also examined the compiler flags, concluding that the best perfor-
mances often occur for non-scalar codes. The LMUL parameter was explored, showing that
acceleration is directly connected to vector lengths. The RS5 equipped with the VXU at-
tained speed increases of up to 4.6x in a basic 1-D CNN and up to 1.98x in the full version.
An impressive speed-up of 7.68x was achieved with a manually vectorized code targeting
a 256-bit VLEN in the simplified CNN. In a 2-D CNN, it achieved speed-ups of up to 1.37x.
The performance evaluation also explored a dot-product application evaluation, presenting
an in-depth analysis of the impact of vector size, VLEN, LMUL, and SEW on the number
of cycles required to run the computations. Due to its increased parallelism, the 8-bit SEW
showed the best performance for larger vectors.

Power and Energy evaluation highlighted that the accelerated core can significantly
reduce energy consumption despite the increased area overhead. With a large vector (4096)
of 8-bit elements, it reduced energy consumption by up to 48% in the dot-product application.
Energy gains were not achieved for wider data like 32 bits due to the limited parallelism,
which implies smaller speed-ups. For the simplified 1-D CNN benchmark, the VLEN of
128 bits showed a reduction of approximately 7%, despite using 32-bit data. The manually
vectorized version obtained around 64% of energy consumption reduction. These results
show that vector extension can significantly reduce energy consumption, even with the area
overheads when used under the right conditions to explore the maximum parallelism.

Finally, using a manycore to accelerate the 2-D CNN showed impressive results.
The parallelization technique significantly improved the time taken to execute a single layer

143

of a large CNN. The speed-up ranges from 2.98x to 5.70x, reducing the cycles required by
more than 80% compared to a single scalar core, while the code size was reduced by up to
90.4%.

144

8. CONCLUSIONS AND FUTURE WORK

This work presented a detailed study on accelerating machine learning workloads,
particularly Convolutional Neural Networks (CNNs), using the RISC-V Vector Extension
(RVV) in both single-core and manycore architectures. The research expanded the RS5
processor, a RISC-V-based core implementing a subset of RVV instructions, and evaluated
its performance in different hardware environments.

The area evaluation proved the need to select the correct subset to implement in
the processor, as the overheads can become quite large as the VLEN parameter grows.
Including vector division operations proved very costly in terms of area, adding an overhead
of up to 24.6% for operations not often used by the target application. Therefore, vector
division operations should only be included if strictly necessary.

Although the area overheads of including the vector extension in the RS5 were
significant, other factors should be considered. The first fact is that the RS5 processor is
a small processor with a compact area footprint. Consequently, any addition can lead to
significant area overhead. The second factor is that it is up to 17 times smaller than similar
implementations. The third factor is that in RS5 VXU, the lanes are the most area-intensive
resource, and the number of lanes is linked to VLEN, which grows exponentially.

Overall, the VXU with a VLEN of 256 bits presented the best results in terms of
performance trade-off for the evaluated benchmarks, as larger VLENs often do not signifi-
cantly increase the speed-ups to justify their area overhead. A 256-bit VLEN design uses
8x 32-bit lanes to process data. A configurable number of lanes would allow us to explore
the impact of the VLEN and the number of lanes separately. Regarding the area, the best
option was the four-lane design (128-bit VLEN), which uses no more than 5.67x the area of
a scalar core.

The energy evaluation proved that even with a significant area overhead, which
increases the power dissipation, the circuits can reduce energy consumption thanks to de-
creased time taken per operation.

The RISC-V vector extension proved very effective for accelerating CNN applica-
tions, achieving significant speed-ups for different benchmarks. However, by doing a man-
ual vectorization, this work proved that the vector extension can achieve even better results,
highlighting the compiler’s auto-vectorization limitations.

By exploring the vector extension compiler options, this work concluded that using
non-scalable code can yield better performance in most cases and that using larger register
groups is the better option for larger vectors. A dot-product benchmark helped to iden-
tify multiple relationships between the parameters of the VXU and the application with the
yielded speed-ups. Smaller vectors do not present significant speed-ups that justify the in-

145

clusion of the vector extension, while larger vectors can have better results for larger VLENs
and register groups.

Overall, increasing the VLEN size increases the data parallelism, thus improving
performance. The best-case scenario for achieving maximum parallelism uses a SEW of 8
bits, while the worst-case scenario uses a SEW of 32 bits (SEW=ELEN). Applications using
smaller SEWs can yield better speed-ups with smaller VLENs, while bigger SEWs require
bigger VLENs to yield similar speed-ups. Another finding to note is that using smaller SEWs
allows the processing of larger vectors more effectively.

The results for complete CNNs fell short of expectations. The achieved speed-ups
of 1.91x and 1.3x in the 1-D and 2-D CNN do not entirely justify the area overhead of up to
10x for the associated hardware with a 256-bit VLEN. This can be due to the C-language
code’s use of multiple memory pointers, which can limit the compiler’s auto-vectorization.
Another factor limiting the speed-up is that the benchmarks use 32-bit SEWs, the worst-
case scenario regarding data parallelism.

Implementing the vector load-store unit using a single lane and sharing the proces-
sor memory bus proved a good choice. Despite being a known bottleneck, this approach
allowed the processor to be used without requiring any modifications in the environments it
was used, especially in the manycore environment. Also, the enhanced data parallelism in
computation can compensate for the slower memory access.

In the manycore setup, the parallelization strategy improved execution by up to 5.7x
compared to a scalar single-core implementation. These results indicate that combining vec-
torized processing and manycore mapping strategies significantly enhances the efficiency
of CNN inference. Distributing a CNN layer to multiple PEs also helps keep memory usage
low by reducing the number of parameters each PE must hold.

Although distributing the parameters through multiple PEs reduces memory usage,
using memory pages in the manycore environment limits the number of parameters the
applications can have. To avoid this limitation, it is recommended to store weights and bias
in an external shared memory and read these parameters when necessary.

The results highlight the potential of RISC-V vector extensions as a viable solution
for accelerating CNN tasks in single-core and manycore platforms. By integrating an open-
source, customizable architecture with efficient vectorized execution, this work contributes
to the ongoing development of scalable and energy-efficient CNN accelerators.

8.1 Future Work

As future work, the following tasks can be explored:

146

• Implementing a configurable number of lanes in the RS5 VXU to allow the area footprint
to be contained for bigger VLEN configurations;

• Explore other CNN benchmarks to evaluate more recent CNN architectures and to explore
the impact of the CNN window sizes in the acceleration and their relationship with the
VLEN;

• Rework the benchmark codes to improve auto-vectorization, reducing pointer handling,
which can be malefic to the compiler’s vectorization capabilities;

• Explore other machine learning structures beyond CNN applications, testing the suitability
of the vector extension for other application classes;

• Modify the MEMPHIS-V platform to support larger page sizes or external shared memo-
ries with the application parameters to allow having multiple CNN layers in a manycore
application;

• Explore other mapping techniques in the manycore environment to evaluate the effec-
tiveness of different approaches and test the better NoC configurations to improve the
parallelism.

147

REFERENCES

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., and Arshad, H.
(2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11).
https://doi.org/10.1016/j.heliyon.2018.e00938.

Ali, M., von Ameln, M., and Goehringer, D. (2021). Vector Processing Unit: A risc-v based
simd co-processor for embedded processing. In Euromicro Conference on Digital System
Design (DSD), pages 30–34. https://doi.org/10.1109/DSD53832.2021.00014.

ARM (2016). The DSP capabilities of ARM® Cortex®-M4 and Cortex-M7 Pro-
cessors. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=
&cad=rja&uact=8&ved=2ahUKEwjF5tu2sPaCAxU4ppUCHazLCmgQFnoECA8QAQ&
url=https%3A%2F%2Fcommunity.arm.com%2Fcfs-file%2F__key%
2Fcommunityserver-blogs-components-weblogfiles%2F00-00-00-21-42%2F7563.
ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_
M7.pdf&usg=AOvVaw1b5YLuHoGCWt6fADtBPQci&opi=89978449.

ARM (2025). ARM Official Website. https://www.arm.com/.

AskariHemmat, M., Bilaniuk, O., Wagner, S., Savaria, Y., and David, J.-P. (2021). RISC-V
barrel processor for deep neural network acceleration. In IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–5. https://doi.org/10.1109/ISCAS51556.2021.
9401617.

Assir, I. A., Iskandarani, M. E., Sandid, H. R. A., and Saghir, M. A. (2021). Arrow: A RISC-V
Vector Accelerator for Machine Learning Inference. CoRR, abs/2107.07169:1–6. https:
//arxiv.org/abs/2107.07169.

Barnes, G., Brown, R., Kato, M., Kuck, D., Slotnick, D., and Stokes, R. (1968). The ILLIAC IV
Computer. IEEE Transactions on Computers, C-17(8):746–757. https://doi.org/10.1109/
TC.1968.229158.

Beldianu, S. F. and Ziavras, S. G. (2014). ASIC design of shared vector accelerators for
multicore processors. In IEEE International Symposium on Computer Architecture and
High Performance Computing, pages 182–189. https://doi.org/10.1109/SBAC-PAD.2014.
13.

Blythe, D. (2008). Rise of the Graphics Processor. Proceedings of the IEEE, 96(5):761–778.
https://doi.org/10.1109/JPROC.2008.917718.

Carara, E. A., de Oliveira, R. P., Calazans, N. L. V., and Moraes, F. G. (2009). HeMPS -
a Framework for NoC-based MPSoC Generation. In IEEE International Symposium on

https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1109/DSD53832.2021.00014
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjF5tu2sPaCAxU4ppUCHazLCmgQFnoECA8QAQ&url=https%3A%2F%2Fcommunity.arm.com%2Fcfs-file%2F__key%2Fcommunityserver-blogs-components-weblogfiles%2F00-00-00-21-42%2F7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf&usg=AOvVaw1b5YLuHoGCWt6fADtBPQci&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjF5tu2sPaCAxU4ppUCHazLCmgQFnoECA8QAQ&url=https%3A%2F%2Fcommunity.arm.com%2Fcfs-file%2F__key%2Fcommunityserver-blogs-components-weblogfiles%2F00-00-00-21-42%2F7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf&usg=AOvVaw1b5YLuHoGCWt6fADtBPQci&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjF5tu2sPaCAxU4ppUCHazLCmgQFnoECA8QAQ&url=https%3A%2F%2Fcommunity.arm.com%2Fcfs-file%2F__key%2Fcommunityserver-blogs-components-weblogfiles%2F00-00-00-21-42%2F7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf&usg=AOvVaw1b5YLuHoGCWt6fADtBPQci&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjF5tu2sPaCAxU4ppUCHazLCmgQFnoECA8QAQ&url=https%3A%2F%2Fcommunity.arm.com%2Fcfs-file%2F__key%2Fcommunityserver-blogs-components-weblogfiles%2F00-00-00-21-42%2F7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf&usg=AOvVaw1b5YLuHoGCWt6fADtBPQci&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjF5tu2sPaCAxU4ppUCHazLCmgQFnoECA8QAQ&url=https%3A%2F%2Fcommunity.arm.com%2Fcfs-file%2F__key%2Fcommunityserver-blogs-components-weblogfiles%2F00-00-00-21-42%2F7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf&usg=AOvVaw1b5YLuHoGCWt6fADtBPQci&opi=89978449
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjF5tu2sPaCAxU4ppUCHazLCmgQFnoECA8QAQ&url=https%3A%2F%2Fcommunity.arm.com%2Fcfs-file%2F__key%2Fcommunityserver-blogs-components-weblogfiles%2F00-00-00-21-42%2F7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf&usg=AOvVaw1b5YLuHoGCWt6fADtBPQci&opi=89978449
https://www.arm.com/
https://doi.org/10.1109/ISCAS51556.2021.9401617
https://doi.org/10.1109/ISCAS51556.2021.9401617
https://arxiv.org/abs/2107.07169
https://arxiv.org/abs/2107.07169
https://doi.org/10.1109/TC.1968.229158
https://doi.org/10.1109/TC.1968.229158
https://doi.org/10.1109/SBAC-PAD.2014.13
https://doi.org/10.1109/SBAC-PAD.2014.13
https://doi.org/10.1109/JPROC.2008.917718

148

Circuits and Systems (ISCAS), pages 1345–1348. https://doi.org/10.1109/ISCAS.2009.
5118013.

Cavalcante, M., Schuiki, F., Zaruba, F., Schaffner, M., and Benini, L. (2019). Ara: A 1-GHz+
Scalable and Energy-Efficient RISC-V Vector Processor with Multiprecision Floating-Point
Support in 22-nm FD-SOI. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 28(2):530–543. https://doi.org/10.1109/TVLSI.2019.2950087.

Chang, A. X. M. and Culurciello, E. (2017). Hardware Accelerators for Recurrent Neural
Networks on FPGA. In IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–4. https://doi.org/10.1109/ISCAS.2017.8050816.

Chen, C., Xiang, X., Liu, C., Shang, Y., Guo, R., Liu, D., Lu, Y., Hao, Z., Luo, J., Chen,
Z., et al. (2020). Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-of-Order
64-bit High Performance RISC-V Processor with Vector Extension : Industrial Product.
In ACM/IEEE International Symposium on Computer Architecture (ISCA), pages 52–64.
https://doi.org/10.1109/ISCA45697.2020.00016.

Chen, K.-C. J., Peng, H.-H., and Shen, P.-C. (2024). Ultra-NoC: Unified Low-Transmission
Routing Assisted NoC for High-flexible DNN Accelerator. In IEEE International System-
on-Chip Conference (SOCC), pages 1–5. https://doi.org/10.1109/SOCC62300.2024.
10737754.

Chen, Y.-H., Yang, T.-J., Emer, J., and Sze, V. (2019). Eyeriss v2: A Flexible Accelerator
for Emerging Deep Neural Networks on Mobile Devices. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 9(2):292–308. https://doi.org/10.1109/JETCAS.
2019.2910232.

Consortium, E. E. M. B. (2024). CoreMark - An EEMBC Benchmark. https://www.eembc.
org/coremark/index.php.

Dalzotto, A. E., Ruaro, M., Erthal, L. V., and Moraes, F. G. (2021). Management Appli-
cation - a New Approach to Control Many-Core Systems. In Symposium on Integrated
Circuits and Systems Design (SBCCI), pages 1–6. https://doi.org/10.1109/SBCCI53441.
2021.9529989.

Dao, N., Attwood, A., Healy, B., and Koch, D. (2020). FlexBex: A RISC-V with a Reconfig-
urable Instruction Extension. . In International conference on field-programmable technol-
ogy (ICFPT), pages 190–195. https://doi.org/10.1109/ICFPT51103.2020.00034.

Flamand, E., Rossi, D., Conti, F., Loi, I., Pullini, A., Rotenberg, F., and Benini, L. (2018).
GAP-8: A RISC-V SoC for AI at the Edge of the IoT. In IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pages 1–4. https:
//doi.org/10.1109/ASAP.2018.8445101.

https://doi.org/10.1109/ISCAS.2009.5118013
https://doi.org/10.1109/ISCAS.2009.5118013
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/ISCAS.2017.8050816
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.1109/SOCC62300.2024.10737754
https://doi.org/10.1109/SOCC62300.2024.10737754
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/JETCAS.2019.2910232
https://www.eembc.org/coremark/index.php
https://www.eembc.org/coremark/index.php
https://doi.org/10.1109/SBCCI53441.2021.9529989
https://doi.org/10.1109/SBCCI53441.2021.9529989
https://doi.org/10.1109/ICFPT51103.2020.00034
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1109/ASAP.2018.8445101

149

Gao, J., Shao, Q., Deng, F., Wang, Q., Jing, N., and Jiang, J. (2023). An NoC-based CNN
Accelerator for Edge Computing. In International Conference on ASIC (ASICON), pages
1–4. https://doi.org/10.1109/ASICON58565.2023.10396346.

Garofalo, A., Tagliavini, G., Conti, F., Rossi, D., and Benini, L. (2020). XpulpNN: Ac-
celerating Quantized Neural Networks on RISC-V Processors Through ISA Extensions.
In ACM/IEEE Design, Automation Test in Europe Conference (DATE), pages 186–191.
https://doi.org/10.23919/DATE48585.2020.9116529.

Goel, A., Goel, A. K., and Kumar, A. (2023). The role of artificial neural network and ma-
chine learning in utilizing spatial information. Spatial Information Research, 31(3):275–
285. https://doi.org/10.1007/s41324-022-00494-x.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–
778. https://doi.org/10.1109/CVPR.2016.90.

Hennessy, J. L. and Patterson, D. A. (2011). Computer architecture: a quantitative approach.
Morgan Kaufmann, 7th edition. 936 pages.

Hennessy, J. L. and Patterson, D. A. (2018). John Hennessy and David Patterson 2017 ACM
A.M. Turing Award Lecture. https://www.youtube.com/watch?v=3LVeEjsn8Ts&t=1h15m.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
and Adam, H. (2017). MobileNets: efficient convolutional neural networks for mobile vision
applications (2017). CoRR, abs/1704.04861:1–9. http://arxiv.org/abs/1704.04861.

Hudomalj, U., Mandla, C., and Plattner, M. (2020). FPGA Implementations for Real-Time
Processing of High-Frame-Rate and High-Resolution Image Streams. In International
Conference on Computing, Electronics & Communications Engineering (iCCECE), pages
211–216. https://doi.org/10.1109/iCCECE49321.2020.9231119.

Hwu, W.-m. and Patel, S. (2018). Accelerator Architectures — A Ten-Year Retrospective.
IEEE Micro, 38(6):56–62. https://doi.org/10.1109/MM.2018.2877839.

Intel Corporation (2025). Intel Official Website - Brasil. https://www.intel.com.br/content/
www/br/pt/homepage.html.

Jacobs, E., Utyansky, D., Hassan, M., and Roecker, T. (2024). RISC-V V Vector Extension
(RVV) with reduced number of vector registers. CoRR, abs/2410.08396:1–9. https://doi.
org/10.48550/arXiv.2410.08396.

Johns, M. and Kazmierski, T. J. (2020). A minimal RISC-V vector processor for embedded
systems. In Forum for Specification and Design Languages (FDL), pages 1–4. https:
//doi.org/10.1109/FDL50818.2020.9232940.

https://doi.org/10.1109/ASICON58565.2023.10396346
https://doi.org/10.23919/DATE48585.2020.9116529
https://doi.org/10.1007/s41324-022-00494-x
https://doi.org/10.1109/CVPR.2016.90
https://www.youtube.com/watch?v=3LVeEjsn8Ts&t=1h15m
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/iCCECE49321.2020.9231119
https://doi.org/10.1109/MM.2018.2877839
https://www.intel.com.br/content/www/br/pt/homepage.html
https://www.intel.com.br/content/www/br/pt/homepage.html
https://doi.org/10.48550/arXiv.2410.08396
https://doi.org/10.48550/arXiv.2410.08396
https://doi.org/10.1109/FDL50818.2020.9232940
https://doi.org/10.1109/FDL50818.2020.9232940

150

Juracy, L. R., Moreira, M. T., Amory, A. M., and Moraes, F. G. (2021). A TensorFlow and Sys-
tem Simulator Integration Approach to Estimate Hardware Metrics of Convolution Accel-
erators. In IEEE Latin American Symposium on Circuits and Systems (LASCAS), pages
1–4. https://doi.org/10.1109/LASCAS51355.2021.9459183.

Kim, M. and Shao, Y. S. (2018). Hardware Acceleration. IEEE Micro, 38(6):6–7. https:
//doi.org/10.1109/MM.2018.2881546.

Korol, G. (2019). An FPGA implementation for convolutional neural network. Master’s thesis,
Pontifical Catholic University of Rio Grande do Sul.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90. https://doi.org/
10.1145/3065386.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., and Jackel, L.
(1989). Handwritten digit recognition with a back-propagation network. Advances in neural
information processing systems, 2:396–404.

Liang, Z., Hu, F., Xu, B., and Wei, C. (2024). Multi objective non dominated sorting whale
optimization genetic algorithm for convolutional neural network-based on-chip networks.
In International Seminar on Artificial Intelligence, Networking and Information Technology
(AINIT), pages 653–656. https://doi.org/10.1109/AINIT61980.2024.10581699.

Lomont, C. (2011). Introduction to Intel Advanced Vector Extensions. Intel white paper,
23:1–21. https://hpc.llnl.gov/sites/default/files/intelAVXintro.pdf.

Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science
and Research (IJSR), 9(1):381–386. https://www.ijsr.net/archive/v9i1/ART20203995.pdf.

Microsoft (2024). Copilot+ PCs. https://www.microsoft.com/en-us/windows/
copilot-plus-pcs?r=1.

Moraes, F. G., Calazans, N. L. V., Mello, A. V., Möller, L. H., and Ost, L. C. (2004). HERMES:
an Infrastructure for Low Area Overhead Packet-switching Networks on Chip. Integration,
the VLSI journal, 38(1):69–93. https://doi.org/10.1016/j.vlsi.2004.03.003.

Nunes, W. A., Dal Zotto, A. E., Borges, C. d. S., and Moraes, F. G. (2024). RS5: An
Integrated Hardware and Software Ecosystem for RISC-V Embedded Systems. In IEEE
Latin American Symposium on Circuits and Systems (LASCAS), pages 1–5. https://doi.
org/10.1109/LASCAS60203.2024.10506171.

NVIDIA Corporation (2025). NVIDIA Official Website. https://www.nvidia.com/en-us/.

https://doi.org/10.1109/LASCAS51355.2021.9459183
https://doi.org/10.1109/MM.2018.2881546
https://doi.org/10.1109/MM.2018.2881546
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/AINIT61980.2024.10581699
https://hpc.llnl.gov/sites/default/files/intelAVXintro.pdf
https://www.ijsr.net/archive/v9i1/ART20203995.pdf
https://www.microsoft.com/en-us/windows/copilot-plus-pcs?r=1
https://www.microsoft.com/en-us/windows/copilot-plus-pcs?r=1
https://doi.org/10.1016/j.vlsi.2004.03.003
https://doi.org/10.1109/LASCAS60203.2024.10506171
https://doi.org/10.1109/LASCAS60203.2024.10506171
https://www.nvidia.com/en-us/

151

Papaphilippou, P., HJ, K. P., and Luk, W. (2021). Simodense: a RISC-V softcore optimised for
exploring custom SIMD instructions. In International Conference on Field-Programmable
Logic and Applications (FPL), pages 391–397. https://doi.org/10.1109/FPL53798.2021.
00082.

Patterson, J. and Gibson, A. (2017). Deep learning: A practitioner’s approach. O’Reilly
Media, Inc., 1st edition. 507 pages.

Peccerillo, B., Mannino, M., Mondelli, A., and Bartolini, S. (2022). A survey on hardware
accelerators: Taxonomy, trends, challenges, and perspectives. Journal of Systems Archi-
tecture, 129:1–51. https://doi.org/10.1016/j.sysarc.2022.102561.

Peleg, A. and Weiser, U. (1996). MMX technology extension to the Intel architecture. IEEE
Micro, 16(4):42–50. https://doi.org/10.1109/40.526924.

Perotti, M., Cavalcante, M., Andri, R., Cavigelli, L., and Benini, L. (2024). Ara2: Exploring
Single- and Multi-Core Vector Processing With an Efficient RVV 1.0 Compliant Open-
Source Processor. IEEE Transactions on Computers, 73(7):1822–1836. https://doi.org/
10.1109/TC.2024.3388896.

Perotti, M., Cavalcante, M., Wistoff, N., Andri, R., Cavigelli, L., and Benini, L. (2022). A
New Ara for Vector Computing: An Open Source Highly Efficient RISC-V V 1.0 Vector
Processor Design. In IEEE International Conference on Application-Specific Systems,
Architectures and Processors (ASAP), pages 43–51. https://doi.org/10.1109/ASAP54787.
2022.00017.

Phung, V. H. and Rhee, E. J. (2018). A Deep Learning Approach for Classification of Cloud
Image Patches on Small Datasets. Journal of information and communication conver-
gence engineering, 16(3):173–178. https://doi.org/10.6109/jicce.2018.16.3.173.

Pircher, S., Geier, J., Zeh, A., and Mueller-Gritschneder, D. (2021). Exploring the RISC-V
Vector Extension for the Classic McEliece post-quantum cryptosystem. In International
Symposium on Quality Electronic Design (ISQED), pages 401–407. https://doi.org/10.
1109/ISQED51717.2021.9424273.

PyTorch (2024). PyTorch. https://pytorch.org/.

Rahman, A., Khan, A. A., and Shoumik, T. M. (2022). A novel lightweight CNN approach
for Bangladeshi sign language gesture recognition. PhD thesis, Brac University. https:
//dspace.bracu.ac.bd/xmlui/handle/10361/17893.

Rauber, T. and Rünger, G. (2013). Parallel Programming for Multicore and Cluster Systems.
Springer, 2nd edition. 516 pages.

Red Hat (2024). newlib 4.3.0. https://sourceware.org/newlib/.

https://doi.org/10.1109/FPL53798.2021.00082
https://doi.org/10.1109/FPL53798.2021.00082
https://doi.org/10.1016/j.sysarc.2022.102561
https://doi.org/10.1109/40.526924
https://doi.org/10.1109/TC.2024.3388896
https://doi.org/10.1109/TC.2024.3388896
https://doi.org/10.1109/ASAP54787.2022.00017
https://doi.org/10.1109/ASAP54787.2022.00017
https://doi.org/10.6109/jicce.2018.16.3.173
https://doi.org/10.1109/ISQED51717.2021.9424273
https://doi.org/10.1109/ISQED51717.2021.9424273
https://pytorch.org/
https://dspace.bracu.ac.bd/xmlui/handle/10361/17893
https://dspace.bracu.ac.bd/xmlui/handle/10361/17893
https://sourceware.org/newlib/

152

Reusch, R. S., Juracy, L. R., and Moraes, F. G. (2022). Assessment and Optimization of
1D CNN Model for Human Activity Recognition. In Brazilian Symposium on Computing
Systems Engineering (SBESC), pages 1–7. https://doi.org/10.1109/SBESC56799.2022.
9964520.

Reusch, R. S., Juracy, L. R., and Moraes, F. G. (2023). Deploying Machine Learning
in Resource-Constrained Devices for Human Activity Recognition. In Brazilian Sympo-
sium on Computing Systems Engineering (SBESC), pages 1–6. https://doi.org/10.1109/
SBESC60926.2023.10324073.

RISC-V Foundation (2015). Unit Tests for RISC-V Processors. https://github.com/riscv/
riscv-tests.

RISC-V Foundation (2021). RISC-V "V" Vector Extension. https://github.com/riscv/
riscv-v-spec/releases/tag/v1.0.

RISC-V Foundation (2024a). The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Document Version 20240411. https://drive.google.com/file/d/
1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link, January 2025.

RISC-V Foundation (2024b). The RISC-V Instruction Set Manual Volume II: Priv-
ileged Architecture, Document Version 20240411. https://drive.google.com/file/d/
17GeetSnT5wW3xNuAHI95-SI1gPGd5sJ_/view.

RK, R., Sinha, S., and Rao, N. (2021). Variable Bit-Precision Vector Extension for RISC-V
Based Processors. In IEEE International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), pages 114–121. https://doi.org/10.1109/MCSoC51149.2021.
00024.

Ruaro, M., Caimi, L. L., Fochi, V., and Moraes, F. G. (2019). Memphis: a framework for
heterogeneous many-core SoCs generation and validation. Springer Design Automation
for Embedded Systems, 23(3-4):103–122. https://doi.org/10.1007/s10617-019-09223-4.

Ruaro, M., Lazzarotto, F. B., Marcon, C. A., and Moraes, F. G. (2016). DMNI: A Specialized
Network Interface for NoC-based MPSoCs. In IEEE International Symposium on Circuits
and Systems (ISCAS), pages 1202–1205. https://doi.org/10.1109/ISCAS.2016.7527462.

Russell, R. M. (1978). The CRAY-1 computer system. Communications of the ACM,
21(1):63–72. https://doi.org/10.1145/359327.359336.

Sanders, J. (2010). CUDA by Example: An Introduction to General-Purpose GPU Program-
ming. Addison-Wesley Professional, 1st edition. 320 pages.

Schmidt, C., Ou, A., and Asanović, K. (2018). Hwacha V4: Decoupled Data Parallel Custom
Extension. In Proc. Inaugural RISC-V Summit, pages 1–40.

https://doi.org/10.1109/SBESC56799.2022.9964520
https://doi.org/10.1109/SBESC56799.2022.9964520
https://doi.org/10.1109/SBESC60926.2023.10324073
https://doi.org/10.1109/SBESC60926.2023.10324073
https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-tests
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link
https://drive.google.com/file/d/17GeetSnT5wW3xNuAHI95-SI1gPGd5sJ_/view
https://drive.google.com/file/d/17GeetSnT5wW3xNuAHI95-SI1gPGd5sJ_/view
https://doi.org/10.1109/MCSoC51149.2021.00024
https://doi.org/10.1109/MCSoC51149.2021.00024
https://doi.org/10.1007/s10617-019-09223-4
https://doi.org/10.1109/ISCAS.2016.7527462
https://doi.org/10.1145/359327.359336

153

Schmidt, P., Pfau, J., Hotfilter, T., Stammler, M., Harbaum, T., and Becker, J. (2024). RVVe:
A Minimal RISC-V Vector Processor for Embedded AI Acceleration. In IEEE International
System-on-Chip Conference (SOCC), pages 1–6. https://doi.org/10.1109/SOCC62300.
2024.10737723.

SiFive, Inc (2017a). SiFive E31 Core Complex Manual v1p2. https://static.dev.sifive.com/
E31-RISCVCoreIP.pdf.

SiFive, Inc (2017b). SiFive E51 Core Complex Manual v1p2. https://static.dev.sifive.com/
E31-RISCVCoreIP.pdf.

SiFive, Inc (2020). SiFive Interrupt Cookbook, Version 1.2. https://www.starfivetech.com/
uploads/sifive-interrupt-cookbook-v1p2.pdf.

SiFive, Inc (2022). SiFive Performance P270 Data Sheet. https://sifive.cdn.prismic.io/sifive/
859c28c0-8bd5-4fc4-9113-a25a2a89bf9c_P270+Data+Sheet.pdf.

SiFive, Inc (2023). SiFive Intelligence X280 Data Sheet. https://sifive.cdn.prismic.io/sifive/
9405d3d0-35a1-4680-a259-7a5598d1ecb2_sifive-intelligence-x200-datasheet.pdf.

Silvano, C. et al. (2023). A Survey on Deep Learning Hardware Accelerators for Heteroge-
neous HPC Platforms. CoRR, abs/2306.15552:1–58. https://doi.org/10.48550/arXiv.2306.
15552.

Stephens, N., Biles, S., Boettcher, M., Eapen, J., Eyole, M., Gabrielli, G., Horsnell, M.,
Magklis, G., Martinez, A., Premillieu, N., Reid, A., Rico, A., and Walker, P. (2017). The
ARM Scalable Vector Extension. IEEE Micro, 37(2):26–39. https://doi.org/10.1109/MM.
2017.35.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., and Rabinovich, A. (2015). Going Deeper With Convolutions. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–9. https://doi.org/10.1109/
CVPR.2015.7298594.

TensorFlow (2024). TensorFlow. https://www.tensorflow.org/.

Tiwari, B., Yang, M., Wang, X., and Jiang, Y. (2022). In-Network Accumulation: Extending
the Role of NoC for DNN Acceleration. In IEEE International System-on-Chip Conference
(SOCC), pages 1–6. https://doi.org/10.1109/SOCC56010.2022.9908106.

Upadhyay, M., Juneja, R., Wong, W.-F., and Peh, L.-S. (2024). NOVA: NoC-based Vector
Unit for Mapping Attention Layers on a CNN Accelerator. In ACM/IEEE Design, Automa-
tion Test in Europe Conference (DATE), pages 1–6. https://doi.org/10.23919/DATE58400.
2024.10546727.

https://doi.org/10.1109/SOCC62300.2024.10737723
https://doi.org/10.1109/SOCC62300.2024.10737723
https://static.dev.sifive.com/E31-RISCVCoreIP.pdf
https://static.dev.sifive.com/E31-RISCVCoreIP.pdf
https://static.dev.sifive.com/E31-RISCVCoreIP.pdf
https://static.dev.sifive.com/E31-RISCVCoreIP.pdf
https://www.starfivetech.com/uploads/sifive-interrupt-cookbook-v1p2.pdf
https://www.starfivetech.com/uploads/sifive-interrupt-cookbook-v1p2.pdf
https://sifive.cdn.prismic.io/sifive/859c28c0-8bd5-4fc4-9113-a25a2a89bf9c_P270+Data+Sheet.pdf
https://sifive.cdn.prismic.io/sifive/859c28c0-8bd5-4fc4-9113-a25a2a89bf9c_P270+Data+Sheet.pdf
https://sifive.cdn.prismic.io/sifive/9405d3d0-35a1-4680-a259-7a5598d1ecb2_sifive-intelligence-x200-datasheet.pdf
https://sifive.cdn.prismic.io/sifive/9405d3d0-35a1-4680-a259-7a5598d1ecb2_sifive-intelligence-x200-datasheet.pdf
https://doi.org/10.48550/arXiv.2306.15552
https://doi.org/10.48550/arXiv.2306.15552
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://www.tensorflow.org/
https://doi.org/10.1109/SOCC56010.2022.9908106
https://doi.org/10.23919/DATE58400.2024.10546727
https://doi.org/10.23919/DATE58400.2024.10546727

154

Wachter, E., Caimi, L. L., Fochi, V., Munhoz, D., and Moraes, F. G. (2017). BrNoC: A
broadcast NoC for control messages in many-core systems. Microelectronics Journal,
68:69–77. https://doi.org/10.1016/j.mejo.2017.08.010.

Wang, C., Fang, C., Wu, X., Wang, Z., and Lin, J. (2024). A Scalable RISC-V Vector Proces-
sor Enabling Efficient Multi-Precision DNN Inference. In IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–5. https://doi.org/10.1109/ISCAS58744.2024.
10558028.

Wang, S., Zhu, J., Wang, Q., He, C., and Ye, T. T. (2021). Customized Instruction on RISC-
V for Winograd-Based Convolution Acceleration. In IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pages 65–68. https:
//doi.org/10.1109/ASAP52443.2021.00018.

Ye, J., Ge, F., and Zhou, F. (2023). A Method of Mapping Convolutional Neural Networks on
Resource-limited NoC Platform. In International Conference on ASIC (ASICON), pages
1–4. https://doi.org/10.1109/ASICON58565.2023.10396382.

Yu, X., Yang, Z., Peng, L., Lin, B., Yang, W., and Wang, L. (2022). CNN Specific ISA
Extensions Based on RISC-V Processors. In International Conference on Circuits, Sys-
tems and Simulation (ICCSS), pages 116–120. https://doi.org/10.1109/ICCSS55260.
2022.9802445.

Zhang, K., Ding, L., Cai, Y., Yin, W., Yang, F., Tao, J., and Wang, L. (2017). A high perfor-
mance real-time edge detection system with NEON. In International Conference on ASIC
(ASICON), pages 847–850. https://doi.org/10.1109/ASICON.2017.8252609.

Zhang, L., Zhou, X., and Guo, C. (2021). A CNN Accelerator with Embedded RISC-V Con-
trollers. In China Semiconductor Technology International Conference (CSTIC), pages
1–3. https://doi.org/10.1109/CSTIC52283.2021.9461576.

Zhao, T. and Ye, Z. (2024). ZeroVex: A Scalable and High-performance RISC-V Vector
Processor Core for Embedded Systems. In IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP), pages 32–33. https://doi.org/10.
1109/ASAP61560.2024.00018.

Zhao, Y., Ge, F., Cui, C., Zhou, F., and Wu, N. (2020). A Mapping Method for Convolutional
Neural Networks on Network-on-Chip. In International Conference on Communication
Technology (ICCT), pages 916–920. https://doi.org/10.1109/ICCT50939.2020.9295883.

Zhu, F., Xu, P., and Zong, J. (2023). Moore’s Law: The potential, limits, and break-
throughs. Applied and Computational Engineering, 10:307–315. https://doi.org/10.54254/
2755-2721/10/20230038.

https://doi.org/10.1016/j.mejo.2017.08.010
https://doi.org/10.1109/ISCAS58744.2024.10558028
https://doi.org/10.1109/ISCAS58744.2024.10558028
https://doi.org/10.1109/ASAP52443.2021.00018
https://doi.org/10.1109/ASAP52443.2021.00018
https://doi.org/10.1109/ASICON58565.2023.10396382
https://doi.org/10.1109/ICCSS55260.2022.9802445
https://doi.org/10.1109/ICCSS55260.2022.9802445
https://doi.org/10.1109/ASICON.2017.8252609
https://doi.org/10.1109/CSTIC52283.2021.9461576
https://doi.org/10.1109/ASAP61560.2024.00018
https://doi.org/10.1109/ASAP61560.2024.00018
https://doi.org/10.1109/ICCT50939.2020.9295883
https://doi.org/10.54254/2755-2721/10/20230038
https://doi.org/10.54254/2755-2721/10/20230038

	Introduction
	Motivation
	Objectives
	Contributions
	Methodology
	Publications During de MsC Period
	Document organization

	Background knowledge
	Hardware Acceleration
	Parallelism Basic Concepts
	Vector Architectures

	RISC-V ISA
	RISC-V Vector Extension
	Memphis
	Phivers: Processor Hive for RS5
	MAestro: the Management Application Operating System
	Platform features

	Convolutional Neural Networks (CNNs)
	Final Remarks

	Related Work
	SIMD and Vector Accelerators
	RISC-V hardware accelerators
	RVV Accelerators
	RISC-V Custom Accelerators
	Accelerators Controlled by RISC-V

	Manycore accelerators
	Multicore Accelerators
	Network-on-Chip Accelerators

	Final Remarks

	RS5 Processor
	Pipeline Stages
	Stall Signals
	CSRs and Interrupt Control
	Real-Time Clock
	Memory Interface
	Memory Management Unit (MMU)
	Performance counters (Zicntr and Zihpm)
	RS5 Validation Setup
	Final Remarks

	RVV Implementation
	RVV Subset
	RS5 RVV implementation
	Vector Arithmetic and Logic Unit
	Vector Load and Store Unit
	Related Work

	VXU validation
	Conclusion and Final Remarks

	CNN Benchmarks and Manycore Mapping
	1-D CNN
	C-Language Model
	Assembly Code - Scalar
	Assembly Code - Vector Auto-Vectorized
	Assembly Code - Vector Manually Vectorized

	2-D CNN
	Manycore Mapping
	Conclusion and Final Remarks

	Results
	Single-core Results
	Area Evaluation
	Performance Evaluation
	Power and Energy Evaluation
	Related work comparison

	Manycore Results
	Related work comparison

	Conclusion and Final Remarks

	Conclusions and Future Work
	Future Work
	REFERENCES

