
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

RAFAEL FOLLMANN FACCENDA

SECURING APPLICATIONS IN NOC-BASED MANY-CORE
SYSTEMS – A COMPREHENSIVE METHODOLOGY

Porto Alegre
2024

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

SECURING APPLICATIONS IN
NOC-BASED MANY-CORE

SYSTEMS – A
COMPREHENSIVE
METHODOLOGY

RAFAEL FOLLMANN FACCENDA

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Dr. Fernando Gehm Moraes
Co-Advisor: Prof. Dr. Luciano Lores Caimi

Porto Alegre
2024

RAFAEL FOLLMANN FACCENDA

SECURING APPLICATIONS IN NOC-BASED
MANY-CORE SYSTEMS – A COMPREHENSIVE

METHODOLOGY

This Doctoral Thesis has been submitted in
partial fulfillment of the requirements for the
degree of Ph. D. in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on 12th March, 2024.

COMMITTEE MEMBERS:

Prof. Dr. Marcio Eduardo Kreutz (PPgSC/UFRN)

Prof. Dr. Ney Laert Vilar Calazans (PGMICRO/UFRGS)

Prof. Dr. César Augusto Missio Marcon (PPGCC/PUCRS)

Prof. Dr. Luciano Lores Caimi (UFFS- Co-Advisor)

Prof. Dr. Fernando Gehm Moraes (PPGCC/PUCRS - Advisor)

AGRADECIMENTOS

Gostaria de deixar meus agradecimentos para todos que me apoiaram e acredi-
taram em mim durante esta etapa.

Primeiramente, aos meus pais Lúcia e Irineu que sempre fizeram seus máximos
para que eu tivesse boas oportunidades e conseguisse aproveitá-las da melhor forma. Este
agredecimento se estende a toda minha família de Sarandi que mesmo de longe se fizeram
presentes na minha vida.

Também à minha família escolhida: Roberto, Iaçanã, Gabriele, Ingrid, Júlia, que
sempre me apoiaram e acreditaram em mim, compartilhando angústias mas também ale-
grias. Foram essenciais para que eu chegasse até aqui.

Aos meus orientadores Prof. Moraes por ter me acolhido na PUCRS, sendo ótimo
orientador nesta jornada, constantemente acreditando no meu trabalho, me fazendo enx-
ergar além das minhas inseguranças, e Prof. Caimi que além de emprestar a plataforma
base desta tese, sempre se fez presente e deu suporte para minhas ideias. Também ao
Gustavo, que chegou no meio deste projeto e trouxe contribuições essenciais para que
alcançássemos os objetivos.

Por fim, agradeço à CAPES pela bolsa de doutorado para que eu pudesse me
dedicar integralmente a este projeto, e à PUCRS e Escola Politécnica pela estrutura e
serviços que viabilizaram a execução das atividades.

SEGURANÇA DE APLICAÇÕES EM SISTEMAS MANY-CORE
BASEADOS EM NOC – UMA METODOLOGIA ABRANGENTE

RESUMO

Sistemas many-core em Chip (MCSoCs) alcançam alto desempenho através de parale-
lismo espacial. Estes sistemas contém Elementos de Processamento (PEs) interconecta-
dos por infraestruturas de comunicação como Redes-em-Chip (NoCs). À medida que os
MCSoCs se tornam amplamente adotados e sua complexidade aumenta, a proteção de da-
dos emerge como um requisito de projeto crítico. A questão central de pesquisa é: “como
proteger aplicações executando em MCSoCs contra ameaças de segurança”? A revisão
da literatura identifica várias técnicas de defesa, incluindo criptografia, códigos de auten-
ticação, códigos de correção de erros e detectação de fluxos anômalos. Enquanto esses
métodos protegem o MCSoC contra ataques específicos, há uma lacuna referente à prote-
ção abrangente contra uma ampla gama de ameaças (DoS e espionagem, por exemplo). A
primeira contribuição original desta Tese é uma taxonomia que categoriza as propostas de
segurança em cinco critérios ortogonais: (1) fonte e tipo das ameaças; (2) contramedidas;
(3) fase da aplicação onde as contramedidas são executadas; (4) sobrecarga relacionada às
contramedidas; (5) contramedidas realizadas em tempo de projeto ou de execução. A Zona
Segura Opaca (OSZ) é um mecanismo de segurança realizado em tempo de execução que
visa o isolamento espacial de aplicações, oferecendo proteção robusta a ataques externos.
No entanto, vulnerabilidades persistem quando Hardware Trojans (HTs) infectam roteado-
res da OSZ ou quando uma aplicação executando um uma OSZ comunica-se com dispo-
sitivos de IO. Esta Tese aborda essas vulnerabilidades, propondo três inovações técnicas
originais: (1) Mapeamento Seguro com Ponto de Acesso (SeMAP): permite o mapeamento
simultâneo de múltiplas OSZs, protegendo aplicações contra acessos não autorizados e ga-
rantindo a disponibilidade de caminhos para os dispositivos de IO usando um protocolo de
autenticação leve; (2) Gerente de Sessão: um mecanismo para monitoramento, detecção e
recuperação de ataques ou falhas que interrompem a entrega de pacotes; (3) Framework
de Segurança Integrado: combina os mecanismos de segurança desenvolvidos em um fra-
mework, enviando alertas de segurança para um Gerente de Sistema. Uma campanha de
ataques severa testou a resiliência da plataforma, que a protegeu de todos ataques execu-
tados. Resultados mostraram recuperação bem-sucedida dos dados e execução correta de
todas as aplicações, com uma penalidade média de tempo de execução de 4,47%. Este
resultado destaca a eficácia das contramedidas propostas, demonstrando que a segurança
das aplicações tem baixo custo em termos de tempo de execução. Além disso, a sobre-
carga de área de silício é pequena, correspondendo à adição de uma NoC de controle e
módulos para controlar o acesso aos links dos roteadores.

Palavras-Chave: Sistemas many-core baseados em redes intra-chip, segurança, OSZ (zo-
nas seguras opacas), comunicação segura, framework de seguraça.

SECURING APPLICATIONS IN NOC-BASED MANY-CORE SYSTEMS –
A COMPREHENSIVE METHODOLOGY

ABSTRACT

Many-core systems on Chip (MCSoCs) achieve high performance through spatial paral-
lelism. They include Processing Elements (PEs) interconnected by complex communication
infrastructures as Networks-on-Chip (NoCs). As MCSoCs become widely adopted and their
complexity increases, data protection emerges as a critical design requirement. The central
research question of this Thesis is: “how to protect applications running on MCSoCs against
security threats”? The literature review identifies various defense techniques, including cryp-
tography, authentication codes, error correction codes, and establishing communication flow
profiles to detect anomalous behavior. While these methods protect the MCSoC from spe-
cific attacks, there is a gap in proposals of comprehensive protection against a wide range of
potential threats (e.g. DoS and Eavesdropping). The first original contribution of this Thesis
is a taxonomy that categorizes MCSoC security proposals into five orthogonal criteria: (1)
source and type of the threats; (2) countermeasures; (3) application phase where counter-
measures are executed; (4) overhead related to the countermeasures; (5) design time or
runtime countermeasures. The Opaque Secure Zone (OSZ) is a runtime security mecha-
nism designed for spatial isolation of applications, offering robust protection against external
attacks. However, vulnerabilities persist when Hardware Trojans (HTs) infect OSZ routers or
the need for secure communication with external IO devices. This Thesis approaches these
vulnerabilities, proposing three original technical innovations: (1) Secure Mapping with Ac-
cess Point (SeMAP): enables the simultaneous mapping of multiple OSZs, protecting secure
applications against unauthorized accesses and ensuring the availability of paths to the IO
devices using a lightweight authentication protocol; (2) Session Manager: a mechanism for
monitoring, detecting, and recovering from attacks or faults disrupting packet delivery; (3)
Integrated Security Framework: combines the developed security mechanisms into a com-
prehensive framework, sending security warnings to a System Manager. A severe attack
campaign tested the platform’s resilience, which protected the platform against all attacks.
The results showed successful data recovery and correct execution of all applications, with
an average execution time penalty of 4.47%. This outcome underscores the effectiveness
of the proposed countermeasures, demonstrating that securing applications has low cost in
terms of execution time. The silicon area overhead is small, concerning the addition of a
control NoC and modules for controlling access to the routers’ links.

Keywords: NoC-based many-cores, security, OSZ (opaque secure zones), secure commu-
nication, security framework.

LIST OF FIGURES

Figure 2.1 – Taxonomy for dependability and security proposed by [Avizienis et al.,
2004]. 21

Figure 2.2 – Proposed taxonomy related to threats and countermeasures for MC-
SoCs. 22

Figure 2.3 – Research overview according to the attack type and source - 2020. . 28

Figure 2.4 – Research overview according to the attack type and source - 2023. . 29

Figure 2.5 – Countermeasure overview according to type of attack from 2020 re-
search. 37

Figure 2.6 – Countermeasure overview according to type of attack from 2023 re-
search. 38

Figure 3.1 – NoC-based MPSoC. Link controls (LC) are added to the control sig-
nals of NoCs links, enabling to isolate ports individually. 50

Figure 3.2 – Packet and message structures - a flag (D/P) in the target address
field differentiates data packets from peripheral packets. 52

Figure 3.3 – BrNoC architecture. 54

Figure 3.4 – Message (flit) and one row of BrNoC CAM memory. 54

Figure 3.5 – Example of path discovery using the BrNoC. 56

Figure 3.6 – Overview of the kernels: (a) Manager PE kernel controls the system
and does not execute users’ tasks; (b) Regular PE kernel manages users’
tasks. 57

Figure 3.7 – Application task graph example. 58

Figure 3.8 – SZ1: continuous and rectangular, SZ2: discontinuous, SZ3: contin-
uous, rectangular, and opaque, SZ4: continuous and rectilinear. Source:
[Caimi and Moraes, 2019]. 60

Figure 3.9 – Example of IO communication through an OSZ. Source: [Caimi and
Moraes, 2019]. 62

Figure 3.10 – SNIP architecture and interfaces. Source: [Comarú et al., 2023]. 64

Figure 3.11 – Application Table with two lines, each corresponding to a different
application allowed to interact with the peripheral. [Comarú et al., 2023]. . . . 64

Figure 3.12 – Representation of attacks that an HT may execute. (i) misrouting, (ii)
local port blocking and (iii) packet duplication. Source: [Weber et al., 2020]. 67

Figure 4.1 – MCSoC with an OSZ and IO communication terminology. 68

Figure 4.2 – Example of Dynamic SZ method, adapted from [Caimi and Moraes,
2019]. 70

Figure 4.3 – Gray and restricted areas. Three Appsecs mapped on the restricted
area, each with an Access Point (AP). The path AP↔Peripheral is defined
by source routing. 71

Figure 4.4 – Examples of gray and restricted areas. 72

Figure 4.5 – Illustration of OSZ shapes in a restricted area. 73

Figure 4.6 – (a) Sliding Search Window (SWS); (b) directions of task mapping
inside the OSZ. 74

Figure 4.7 – Example of SR path from/to task to/from peripheral through AP. 75

Figure 4.8 – Application mapping to evaluate the methods to communicate with
peripherals. 76

Figure 4.9 – Iteration latency using the baseline MCSoC, DSZ and SeMAP. 77

Figure 4.10 – Sequence diagram of the Application Deploy phase. 80

Figure 4.11 – Lightweight authentication modules. 82

Figure 4.12 – Key Renewal sequence diagram . 83

Figure 4.13 – Secure Router and Access Point architecture. 84

Figure 4.14 – Impact of authentication and key renewal frequency. 86

Figure 4.15 – DoS and spoofing attacks on the baseline and K5 (key renewal after
five IO transactions) systems. The first five iterations are the simulation
warmup period. 87

Figure 5.1 – Hardware Trojan affecting communication. (a) T1 communicating
with T2, inactive HT in between. (b) HT activation. (c) HT blocking the
packet transmission from T1 to T2. 90

Figure 5.2 – (a) Sequence diagram of the Session Manager operation between
the consumer and producer tasks. (b) PE internal organization and the path
taken from each step of the protocol. Numbers 1-4 indicate each of the
protocol steps temporally (a) and spatially (b). 91

Figure 5.3 – Representation of the message recovery protocol using the control
NoC. 94

Figure 5.4 – Two examples of Hardware Trojan affecting communication and the
Session Manager finding alternative paths. 95

Figure 5.5 – Task mapping of the MPEG application with the inter-task commu-
nication on a 3x3 Mesh NoC with a 2x3 OSZ (yellow area). (a) Message
Delivery packets. (b) Message Request packets. 100

Figure 5.6 – Impact of the Recovery Protocol on applications (a) MPEG (b) AES.
X-axis: iteration number, y-axis: iteration latency. 100

Figure 6.1 – Security management framework overview. 103

Figure 6.2 – DoS flooding attack scenario. 107

Figure 6.3 – Spoofing attack scenario. 107

Figure 6.4 – Key renewal overhead for different applications. 108

Figure 6.5 – Eavesdropping attack scenario. 109

Figure 6.6 – Searchpath overhead for different path sizes. 109

Figure 6.7 – DoS blocking scenario inside an OSZ. 110

Figure 6.8 – DoS blocking scenario in the Gray Area. 110

Figure 6.9 – Overhead for calculating a new path for peripherals. 111

Figure 6.10 – Move AP sequence diagram. 111

Figure 6.11 – Example of the dynamic HT configuration on a 5x5 MCSoC. 115

Figure 6.12 – Experimental setup to evaluate the security framework. 117

Figure B.1 – CTG of the used benchmarks. 136

Figure D.1 – Sequence diagram of the OSZ method. 139

LIST OF TABLES

Table 2.1 – Cost of the security proposals for MCSoCs. 42

Table 2.2 – Positioning within the state-of-the-art in security frameworks for NoC-
base many-cores. 48

Table 4.1 – Services supported by the IO API. 85

Table 4.2 – Synthesis results - 28nm FDSOI - CADENCE GENUS 21.12-s068. . . 88

Table 5.1 – Applications execution time with and without the protocol. 97

Table 5.2 – Average overhead (in clock cycles) for each service compared to the
baseline implementation. 98

Table 5.3 – Applications execution time with and without the protocol. 101

Table 6.1 – Average cost of Move AP countermeasure for different applications. . . 112

Table 6.2 – Summary of the countermeasure costs, in clock cycles. 113

Table 6.3 – Warning reported on attack scenario . 118

Table 6.4 – Time overhead for Framework scenario (in ms) 119

LIST OF ACRONYMS

3PIP – Third Part Intellectual Property

AES – Advanced Encryption Standard

AP – Access Point

API – Application Program Interface

CAM – Content Addressable Memory

CPU – Central Processor Unit

CTG – Communication Task Graph

DDoS – Distributed Denial of Service

DH – Diffie-Hellmann

DMA – Direct Memory Access

DMNI – Direct Memory Network Interface

DoS – Denial-of-Service

DSZ – Dynamic Secure Zone

ECC – Error Correction Code

ECDH – Elliptic Curve Diffie-Hellmann

EOP – End-of-Packet

ET – Execution Time

FPGA – Field Programmable Gate Array

HT – Hardware Trojan

IO – Input/Output

IoT – Internet of Things

IP – Intellectual Property

LFSR – Linear-feedback Shift Register

MAC – Message Authentication Code

MPE – Manager Processing Element

MCSoC – Many-core System on Chip

NI – Network Interface

NoC – Network on Chip

OSZ – Opaque Secure Zones

OS – Operating System

PE – Processing Element

PS – Packet Switch

PUF – Physical Unclonable Function

RTL – Register Transfer Level

SCA – Side Channel Attack

SDN – Software Defined Network

SeMAP – Secure Mapping with Access Points

SNIP – Secure Network Interface for Peripherals

SR – Source Routing

SZ – Secure Zone

TEE – Trusted Execution Environment

VHDL – VHSIC Hardware Description Language

VHSIC – Very High Speed Integrated Circuit

CONTENTS

1 INTRODUCTION . 16

1.1 THESIS STATEMENT . 18

1.2 OBJECTIVES . 18

1.3 ORIGINAL CONTRIBUTIONS . 20

1.4 DOCUMENT ORGANIZATION . 20

2 CONTEMPORARY RESEARCH IN MCSOC SECURITY 21

2.1 PROPOSED TAXONOMY . 21

2.2 CRITERION 1 - ATTACK . 23

2.2.1 SOURCE . 23

2.2.2 TYPE . 25

2.2.3 DISCUSSION . 28

2.3 CRITERION 2 - COUNTERMEASURE . 30

2.3.1 DISCUSSION . 36

2.4 CRITERION 3 - PHASE . 39

2.4.1 DISCUSSION . 41

2.5 CRITERION 4 - COST . 41

2.5.1 DISCUSSION . 44

2.6 CRITERION 5 - INTEGRATION . 44

2.7 TAXONOMY FINAL REMARKS . 45

2.8 COMPARATIVE ANALYSIS AND POSITIONING WITHIN THE STATE-OF-THE-
ART . 46

3 BACKGROUND KNOWLEDGE . 50

3.1 BASELINE PLATFORM . 50

3.1.1 DATA NOC . 51

3.1.2 CONTROL NOC - BRNOC . 52

3.1.3 SOFTWARE MODEL . 57

3.2 OPAQUE SECURE ZONE . 59

3.3 IO COMMUNICATION . 61

3.4 PERIPHERAL INTERFACE . 63

3.4.1 APPLICATION TABLE . 63

3.4.2 PACKET HANDLER . 65

3.4.3 PACKET BUILDER . 66

3.4.4 KEY GENERATOR . 66

3.5 HARDWARE TROJAN - HT . 67

4 SEMAP - SECURE MAPPING WITH ACCESS POINT 68

4.1 MCSOC PARTITIONING FOR SECURITY . 70

4.2 RESOURCE ALLOCATION WITH GRAY AREA . 72

4.2.1 OSZ SHAPE, LOCATION AND MAPPING . 72

4.2.2 ACCESS POINT (AP) DEFINITION . 74

4.2.3 IO PATH CONFIGURATION . 74

4.2.4 DSZ AND SEMAP COMPARISON . 75

4.3 SECURING THE MESSAGE EXCHANGE . 78

4.3.1 AUTHENTICATION PROTOCOL . 79

4.3.2 KEY RENEWAL . 82

4.3.3 ACCESS POINT ARCHITECTURE . 83

4.3.4 IO API . 85

4.4 RESULTS . 86

4.5 FINAL REMARKS . 88

5 SESSION MANAGER . 89

5.1 THREAT MODEL . 89

5.2 MESSAGE EXCHANGE MONITORING . 90

5.3 DETECTION . 93

5.3.1 DYNAMIC TIMEOUT . 93

5.4 RECOVERY PROTOCOL . 94

5.5 RESULTS . 96

5.5.1 APPLICATION OVERHEAD RESULTS . 96

5.5.2 KERNEL OVERHEAD . 98

5.5.3 RECOVERY COSTS . 99

5.6 FINAL REMARKS . 101

6 FRAMEWORK FOR SYSTEMIC SECURITY MANAGEMENT 102

6.1 MONITORING AND DETECTION OF SUSPICIOUS BEHAVIOR 103

6.2 COUNTERMEASURE . 104

6.3 SECURITY ANALYSIS AND COSTS . 106

6.3.1 FINAL REMARKS ON SECURITY ANALYSIS AND COSTS 112

6.4 FRAMEWORK EVALUATION . 114

6.4.1 ATTACK CAMPAIGN . 114

6.4.2 EXPERIMENTAL SETUP . 116

6.4.3 RESULTS . 118

6.5 FINAL REMARKS . 120

7 CONCLUSION . 122

7.1 FUTURE WORK . 123

REFERENCES . 125

APPENDIX A – List of Publications . 135

APPENDIX B – CTG of the Applications . 136

APPENDIX C – Search String . 137

APPENDIX D – OSZ API detail . 138

16

1. INTRODUCTION

Many-core Systems on Chip (MCSoC) are platforms designed to provide high-
performance systems based on parallelism, meeting the current demand for embedded de-
vices with power consumption and communication constraints. An MCSoC contains PEs
(Processing Elements) interconnected by complex communication infrastructures, such as
hierarchical buses or NoCs (Networks-on-Chip) [Popovici et al., 2010]. PEs may be proces-
sors, 3PIP (third-party intellectual property) modules, memory blocks, and dedicated hard-
ware accelerators. Examples of modern architectures with a large number of processors
interconnected by NoCs include the Mellanox family TILE-Gx72 (72 cores) [Tecnhlogies,
2018], Intel Knights Landing [Sodani et al., 2016], Oracle M8 (32 cores) [Oracle, 2017],
Kalray array (256 cores) [Dinechin et al., 2014], KiloCore chip (1,000 cores) [Bohnenstiehl
et al., 2016], and Esperanto (1,100 RISC-V cores) [Peckham, 2020].

An NoC consists of routers and links and is responsible for forwarding data and
control messages between PEs. Network Interfaces (NI) connect PEs to the routers of the
NoC. Whenever a PE sends a message, the NI transforms it into a packet and delivers it to
the router. Then, the router sends the packet to a neighbor router through a link according to
a path defined by the routing algorithm. The routers constitute the underlying communica-
tion infrastructure of the system, where multiple interconnected routers define the network
topology [Hemani et al., 2000, Benini and Micheli, 2002].

As the adoption and complexity of MCSoCs increase, the concern for data protec-
tion appears as a design requirement [Baron et al., 2013]. An MCSoC may be employed
in scenarios where availability is critical, and downtimes must be minimized. These sys-
tems may also handle sensitive information; thus, protecting this data from unauthorized
access is necessary [Kumar et al., 2021]. According to [Ramachandran, 2002], not only
data protection, unauthorized access, and availability are concerns on the MCSoC design.
The following seven security principles are generally accepted as the foundation of a good
security solution being the three first principles mandatory features [Ramachandran, 2002]:

• Confidentiality: the property of non-disclosure of information to unauthorized processes,
entities, or users;

• Availability: the protection of assets from DoS (Denial-of-Service) threats that might
impact the utilization of system resources;

• Integrity: the prevention of modification or destruction of an asset by an unauthorized
entity or user;

• Authentication: the process of establishment and validation of a claimed identity;

• Authorization: the process of determining whether a validated entity is allowed to ac-
cess a secured resource based on attributes, predicates, or context;

17

• Auditing: the property of logging the system activities at levels sufficient for the recon-
struction of events;

• Nonrepudiation: the prevention of any participant denying his role in the interaction
once completed.

A consequence of the increasing number of features and functionalities inside a
single chip is the adoption of 3PIPs to meet time-to-market constraints and reduce design
costs. Such IPs come from different vendors, raising the risk of having a Hardware Trojan
(HT) insertion [Li et al., 2016]. Assuming HTs infect the NoC, these can perform several
attacks that threaten security principles [Ramachandran, 2002]. Such attacks may affect
confidentiality by redirecting messages to malicious agents, availability by dropping mes-
sages or blocking a communication path, and integrity by corrupting the content of a packet
traversing the NoC.

Based on the threats presented above, the motivation of this Thesis is to answer
the following question: “how to protect applications running on MCSoCs against security
threats”. The literature presents several techniques, such as cryptography [Charles and
Mishra, 2020b], authentication codes [Sharma et al., 2019], error correction codes [Gondal
et al., 2020], creation of a communication flow profile to detect anomalous behavior [Charles
et al., 2020b]. Adopting these techniques makes it possible to detect violations related to
security or faults in the NoC. Moreover, authors propose spatial isolation via Secure Zones
(SZ) to protect communication and computation simultaneously. A particular case of SZ is
the Opaque Secure Zone (OSZ) [Caimi and Moraes, 2019], which is a defense mechanism
executed at runtime that focuses on finding a rectilinear region on the system with free PEs to
map an application with security constraints. The OSZ activation occurs by setting wrappers
at the boundaries of the rectilinear region, blocking all incoming and outgoing traffic trying to
cross the OSZ boarders.

OSZ prevents attacks from outside sources, such as Denial-of-Service (DoS), tim-
ing attacks, spoofing, and man-in-the-middle [Caimi and Moraes, 2019, Caimi et al., 2018a].
Even though the method is robust against external attacks, it still presents vulnerabilities
when HTs infect routers inside the OSZ or when the application running in the OSZ needs
to communicate with peripherals1.

Therefore, gaps relate to robust defense mechanisms effective against most at-
tacks reported in the literature. As discussed in the state-of-the-art (Chapter 2), defense
mechanisms seek to protect the MCSoC from a given specific attack, lacking proposals that
protect the system against a plethora of possible threats.

1also referred in this Thesis as IO devices

18

1.1 Thesis Statement

It is feasible to integrate a comprehensive suite of methods to secure application
execution in MCSoCs, with low impact on execution time and area footprint, through a frame-
work that monitors and detects suspicious behavior and applies countermeasures to rein-
force security. The focus is to protect simultaneously the computation and communication
resources of sensitive applications, including access to IO devices.

1.2 Objectives

The OSZ mechanism is the baseline security method. Challenges include protect-
ing the system against HTs and making communication with external devices (e.g., shared
memories, 3PIPs, hardware accelerators) safe. The execution of attack campaigns aims to
demonstrate the Thesis statement. Nonetheless, it is essential to identify weaknesses not
covered by the final set of secure methods.

The strategic objective of this Thesis is to propose a framework that promotes se-
curity against several threats by integrating different defense mechanisms in software and
hardware that operate throughout the application execution, including IO communication.

To reach the strategic objective, the following specific goals are set:

SG1 System organization to define the locations of OSZs.
One of the major concerns of this Thesis is to promote secure IO communication. This
goal aims to solve OSZ mapping issues by defining Gray and Restricted areas. The
Gray area runs non-secure applications and provides paths for peripherals, regardless
of the OSZs location (mapped in the Restricted areas), also ensuring that new OSZs
do not disturb the existing IO flows.

SG2 Communication protocol with IO devices.
Communication with IO devices requires an opening on the OSZ to exchange packets
with external elements. This objective focuses on developing software and hardware
to enable IO transactions without incurring new vulnerabilities. The software requires
a dedicated communication API using a master-slave protocol, with all transactions
starting from the PEs inside the OSZ. The hardware support refers to the creation and
management of Access Points in the borders of the OSZ.

19

SG3 IO packet authentication.
The packets exchanged between OSZ and IO devices can be harmed by attackers, the
Access Point and the peripheral itself. The objective is to protect the IO communica-
tion elements utilizing a lightweight Authentication Protocol, identifying the legitimate
packets and protecting against unauthorized access.

SG4 Attacks targeting the communication with IO devices.
Performing attacks on the platform helps measure the impacts of running applications
without security mechanisms and the effectiveness of the defense mechanisms. In
addition, these attack campaigns guide design choices. For example, traffic monitoring
may indicate an anomalous behavior, triggering countermeasures.

SG5 Protect the communication inside the OSZ.
As previously described, HTs are malicious hardware inserted into the system without
the designer’s knowledge. An undetected HT can affect the secure application even
within an OSZ. The goal is to create communication Sessions to monitor the inner OSZ
traffic, detecting anomalies that suggest the presence of HTs or faulty links.

SG6 Attack campaign with HTs and recovery mechanism. Objective SG5 resulted in a
protocol to detect the occurrence of attacks inside the OSZ. The objective is to emulate
HT on specific routers to validate the proposal. The evaluation of the attack led to the
proposal of a Recovery mechanism.

SG7 Integration of security mechanisms.
Objectives SG1-SG5 target different threats and were analyzed separately. The cur-
rent objective aims to integrate the defense mechanisms inside a Framework, based
on a monitor-detection-countermeasure structure.

SG8 Warning reports.
As the attacks are becoming more complex, the countermeasures need to evolve.
Therefore, this objective focuses on implementing a detection system that reports se-
curity violations at runtime to a Security Manager responsible for system-level counter-
measures.

SG9 Final attack campaing.
This objective aims to submit the Framework to a distributed attack campaign, includ-
ing simultaneous DoS, Spoofing, and Eavesdropping attacks. Then, analyze the ef-
fectiveness of security mechanisms and measure the total overhead induced by the
countermeasures.

20

1.3 Original Contributions

This Thesis has four original contributions:

1. A taxonomy that categorizes related work into five orthogonal criteria: (1) source and
type of the threats, (2) countermeasures; (3) application phase where countermea-
sures are executed; (4) overhead related to the countermeasures; (5) design time or
runtime countermeasures (Chapter 2);

2. Secure Mapping with Access Point (SeMAP), a proposal enabling the mapping of mul-
tiple OSZs simultaneously, authenticating IO communication, and protecting secure
applications against unauthorized accesses (Chapter 4);

3. Session Manager, a mechanism designed to monitor, detect, and recover the system
against attacks or faults that disrupt packet delivery (Chapter 5);

4. Framework that integrates all developed security mechanisms, sending security warn-
ings for a System Manager to enable systemic countermeasures (Chapter 6).

1.4 Document Organization

This document is organized as follows.

• Chapter 2 presents contemporary literature research and the proposed taxonomy for
security in NoC-based MCSoC;

• Chapter 3 details the baseline platform selected to develop the proposed methods;

• Chapter 4 presents SeMAP, fulfilling objectives SG1 to SG4;

• Chapter 5 presents the Session Manager, fulfilling objectives SG5 and SG6;

• Chapter 6 describes Security Framework, fulfilling objectives SG7 to SG9.

• Chapter 7 presents the conclusion and future work.

21

2. CONTEMPORARY RESEARCH IN MCSOC SECURITY

This Chapter presents contemporary research on threats and countermeasures
for MCSoCs. We performed a literature review in two moments: first, in March 2020, that
included works from 2018 up to 2020, and the second, in December 2023, that covered
works published between 2021 and 2023. The review used the search string (detailed in
Appendix C) on Scopus.

In 2020, instead of discussing proposals individually, we proposed a taxonomy re-
lated to security for these systems, corresponding to the first original contribution of this
Thesis. This taxonomy embraces five orthogonal criteria explained in detail referencing re-
lated work.

In 2023, we used the same search string to select works between 2021 and 2023,
analyzing them through our proposed taxonomy and comparing them with the 2020 re-
search. Besides the overview of the MCSoC security research field, this Chapter also
presents a detailed discussion of works closely related to this Thesis.

This Chapter is structured beginning with the proposed taxonomy (Section 2.1), fol-
lowed by detailed discussions on each criterion (Sections 2.2 to 2.6). The Chapter concludes
with the Thesis placement w.r.t. the related work and a table comparing them (Section 2.8).

2.1 Proposed Taxonomy

The foundation of the proposed taxonomy is based on the work of Avizienis et
al. [Avizienis et al., 2004], who proposed an initial taxonomy related to dependability and
security. This taxonomy categorizes proposals into three distinct groups: attributes, threats,
and means. These categories are visually represented in Figure 2.1.

Figure 2.1 – Taxonomy for dependability and security proposed by [Avizienis et al., 2004].

22

Avizienis’ taxonomy includes security and dependability in a unified way. However,
since this Thesis focuses on the security axis and not fault tolerance, we propose a specific
taxonomy for security in MCSoCs. This taxonomy covers the following criteria:

1. attack: describes the source and type of the threats;

2. countermeasure: methods adopted to detect, avoid or mitigate the attacks;

3. application phase: an application typically has 3 phases: admission, execution, and
communication with peripherals [Caimi, 2019]. This criterion refers to when the attack
occurs, and which is the adopted countermeasure;

4. cost: the overhead related to the countermeasure in the system;

5. integration : when the countermeasure or the attack is implemented or activated.

Figure 2.2 presents the proposed taxonomy. The next five subsections discuss
each taxonomy column in detail.

Many-core
Security

Attack Countermeasure Phase Cost Integration

Source

Malicious
Hardware

Malicious
App

Malicious
IO

Type

DoS

SCA

Spoofing

Data
Corruption

Eavesdrop.

Cryptography

Routing

Authentication

Obfuscation

Firewall

Detection

Secure Zones

PUF

SDN

Mapping

Correction

Admission

Execution

IO

Area

Power

Latency/Delay

Performance

Energy

Critical Path

Design Time

Runtime

Figure 2.2 – Proposed taxonomy related to threats and countermeasures for MCSoCs.

23

2.2 Criterion 1 - Attack

Commonly, the first topic discussed on an MCSoC security work is the threat model,
where the authors describe the activity of a possible intruder or harmful behavior. It is
important to identify two main attacks components: the source and the the type.

The source refers to the agent of the threat, which can be Malicious Hardware
(commonly known as Hardware Trojan - HT), Malicious Application (MalApp), or Malicious
IO device. The other component is type, which specifies the threat activity and its effects
on the system, such as Denial of Service (DoS), Side-channel Attack (SCA), Spoofing, Data
Corruption, or Eavesdropping, for example. Observing those components in the threat model
is essential to clearly understand the specific issues that each author is working on. For
example, a DoS attack performed by an HT or a MalApp may cause similar effects on the
system, but the action taken against an HT DoS may not be effective against an MalApp.
Some examples of the combination of different types with sources: DoS caused by an HT
[Daoud and Rafla, 2019b], SCA done by a MalApp [Reinbrecht et al., 2020], and a spoofing
attack performed by a malicious IO device [Elkanishy et al., 2019].

2.2.1 Source

In Figure 2.2, under the Attack branch, there are three main sources of attacks:
Malicious Hardware, Malicious Application, Malicious IO device. This subsection discusses
those attacks sources.

Malicious Hardware

The literature contains several reports of malicious hardware, a.k.a. Hardware Tro-
jan (HT) [Boraten and Kodi, 2016, Kulkarni et al., 2016, Zhang et al., 2018, Raparti and
Pasricha, 2019, Zhao et al., 2020, Gondal et al., 2020]. The main reason enabling the in-
sertion of HTs in a design is the distributed production chain adopted in the microelectronics
industry, which allows designers to build a system with IPs from different design companies
(3PIPs). Such a situation raises the question: “Is this foreign IP trustworthy?”. The answer
to this question is not simple since most IPs do not reveal their content or design process to
protect intellectual property.

Related works investigate the feasibility of inserting HTs, detecting them, or coun-
termeasures to the attacks carried out by them. Philomina [Philomina, 2021] overviews HT
effects on NoC-based systems. The author also categorizes HTs according to a taxonomy,

24

which includes the IC supply chain phase (when the HT can be embedded), activation, ef-
fects, location, type, and size.

Zhang et al. [Zhang et al., 2018] present an example of HT in a NoC, inserting
malicious hardware at the input ports of the routers. This HT is designed to discard packets
that pass through it, characterizing a DoS attack. In this case, the HT needs to be config-
ured and activated by a malicious application. In summary, Zhang et al. present a threat
model of an attack executed through an HT in cooperation with a malicious application with
considerable knowledge of the system and access to system functions.

Raparti and Pasricha [Raparti and Pasricha, 2019] describe an HT inside the net-
work interface (NI), which is the component that makes the interface between the PE and
the NoC. The HT is placed near the packetization modules modifying the packet header,
changing the target, and causing packets to be delivered to a different PE. The authors also
mention that such HT is intrusive, with high area overhead and needs to be configured by
an application with access to specific system functions.

Therefore, based on the assumptions made by the threat models with HTs, the
attacker should furtively insert the HT in a given system module. Some authors also suggest
an application that can configure and activate the HT to perform an attack successfully.

Malicious Application

Intruders broadly use malicious applications to execute attacks. This attack is char-
acterized by suspicious software loaded to the system that runs a harmful code able to
damage or spy the many-core resources, such as memories, communication traffic, power
dissipation (by monitoring DVFS messages).

Reinbrecht et al. [Reinbrecht et al., 2020] use malicious software to discover sensi-
tive information inside memories through cache access attempts (timing attacks, discussed
on Section 2.3). The malicious application needs permission to access the moment of mem-
ory readings besides a privileged view of the shared memory addresses to execute this
attack.

Forlin et al. [Forlin et al., 2019] use malicious applications to inject low-priority
traffic to retrieve time information about the high-priority traffic behavior. In this case, the
malicious application must assign priorities to its messages (a function normally restricted
to the system manager). Moreover, the malicious software needs to be placed in specific
locations and with knowledge of the routing algorithm and system topology, which requires
advanced access to system managing functions.

Mountford et al. [Mountford et al., 2023] present a threat model that combines
Malicious Hardware (HT) with Malicious Applicaation. A rogue application allocated in the
system activates an HT that counts the packets passing through the infected NoC router.

25

The HT then sends the gathered information back to the rogue application, which forwards
the information to an external device that can perform attacks, such as traffic analysis.

Malicious IO devices

Malicious IO devices are peripherals that attempt to perform an attack when con-
nected to an input/output port of the system. Elkanishy et al. [Elkanishy et al., 2019] describe
the BlueBorne attack through a Bluetooth (BT) interface. The BlueBorne attack allows the
external device to pair with the BT chip without consent or when the BT chip is not in discov-
ery mode. Once this connection is established, the external device can access and control
crucial resources to the system operation.

It is also possible to execute attacks using hardware outside the system, which can,
by proximity, monitor and extract information related, e.g., to the system electromagnetic
irradiation. As discussed in [Kenarangi and Partin-Vaisband, 2019], it is possible to use
these electromagnetic values in statistical analysis to extract sensitive information about an
AES (Advanced Encryption Standard) encryption process.

Ahmed et al. [Ahmed et al., 2021] consider a threat model composed by a malicious
hardware, called Remote Access Hardware Trojan (RAHT), placed on NoC routers that leak
information about traffic pattern to a malicious IO device. The RAHT is able to count packets
and send this information via an IO port to an external data-analysis attacker (Malicious IO
device) that could utilize machine learning techniques to infer the applications running on
the system or even reverse engineer IPs from the system.

2.2.2 Type

The attack type refers to the threat goal, including the targeted resources and the
harmful behavior to affect them.

Denial-of-Service (DoS)

Denial-of-Service (DoS) is a broad category that includes attacks that deny or hin-
der the operation of a given system function. Flooding, packet loss, and misrouting are
common attacks executed at the communication level. The goal of these attacks is to dis-
turb or even block the communication in the many-core.

Zhang et al. [Zhang et al., 2018] explore DoS attacks known as Blackhole and
Sinkhole, executed by HTs inside routers. The Blackhole attack consists of an infected
router that discards packets passing through it. Similar to the Blackhole attack, the Sinkhole

26

attack redirects the flow that passes through it to another target (i.e., misrouting). In both
cases, the communication is compromised, denying the packet exchange between PEs.

An extended version of DoS, the Distributed Denial-of-Service (DDoS), consists of
several compromised IPs performing DoS attacks simultaneously. Charles et al. [Charles
et al., 2020b] present a DDoS executed from four malicious IPs targeting one single IP,
congesting the NoC (i.e., flooding), causing the latency to rise significantly, severely com-
promising the system performance.

Yao et al. [Yao et al., 2023] describe a DoS attack targeting the arbiters of input
ports within a router’s switch allocator to disrupt packet transmission. This attack is executed
by an HT, named Spotlight, which maliciously suppresses the priority of packets, leading to
a significant increase in packet latency.

Side-Channel Attacks (SCA)

The Side-Channel Attack gathers information through direct interference and eaves-
dropping. The attacker may discover important information about the many-core based on
the retrieved data. The SCA is the primary type of attack associated with leaking or stealing
sensitive information, which can be from different natures, as a physical attribute, such as
power dissipation, or timing information, such as latency.

Ho et al. [Ho et al., 2019] present an SCA over a physical attribute, named Differ-
ential Power Analisys (DPA). This attack monitors and analyzes the power dissipation of a
PE during an AES encryption process. As the power dissipation of each encryption round is
different, the attacker may be able to identify which round is being processed and infer the
key through statistical methods.

Besides power dissipation, there are electromagnetic SCAs that monitor electro-
magnetic irradiation [Xiao et al., 2020]. In this case, the electromagnetic irradiation over a
capacitor at the core power supply line enables the extraction of power traces from an AES
encryption. These traces are fed to a Convolutional Neural Network (CNN) to retrieve the
key.

Reinbrecht et al. [Reinbrecht et al., 2020] presents a Logical SCA (LSCA). This
SCA attempts to retrieve data by observing logical effects, such as Timing and Cache At-
tacks. The authors execute the LSCA by intentionally causing traffic collisions and then
monitoring their latency. Based on the latency values, it is possible to estimate the traffic
pattern of a sensitive application. Reinbrecht et al. also discuss the cache attack, which
attempts to retrieve information stored on shared memory, forcing flushes and reloads of the
cache. Based on the timing and behavior of the memory, one can guess the specific area
of a memory used by a sensitive application. Implementations and further investigation of
cache attacks are presented in detail in [Reinbrecht et al., 2019] and [Ge et al., 2019].

27

Ali et al. [Ali and Khan, 2021] present in their threat model a covert communication
attack, which, according to the authors, is one category of software side-channel attack
(sSCA). Two independent applications exploit the platform setup to communicate covertly. To
transmit a secret bit, application X floods the network with memory access, while application
Y measures memory access latency. Each determined time window, application Y infers the
value of the secret bit: if the latency is high, it means that the secret bit is 1, if the latency is
low, the secret bit is 0.

Spoofing

Spoofing is an attack characterized by a malicious source (hardware, IO, or soft-
ware) that successfully falsifies its identity to obtain unauthorized privileges. Once received
these privileges, the attacker can access sensitive information. Elkanishy et al. [Elkanishy
et al., 2019] present a Bluetooth attack promoted by a malicious peripheral that accessed
the system bypassing the pairing protocol.

Through spoofing attacks, malicious sources can access system controlling units
and violate the resource distribution. Zhao et al. [Zhao et al., 2020] explore a vulnerability
in the system power budgeting by modifying power configuration packets. This attack may
alter the performance of a sensitive application, enhance the resources of a malicious task,
or even damage the system by violating safe temperature limits.

Bish et al. [Bisht and Das, 2022] developed an HT that misroutes the packets and
is able to counteract a defense mechanism by blaming their neighbor routers for the attack.
This is a spoofing attack because the HT utilizes techniques to falsify its identity as a non-
infected router.

Data Corruption

Most authors consider that faults occur due to external agents, such as radiation,
electromagnetic interference, crosstalk, or aging factors. On the other hand, attackers can
induce intentional faults, by corrupting data or carrying out laser attacks.

Gondal et al. [Gondal et al., 2020] present an HT that corrupts messages to disturb
communication. Based on the effects of this HT, they propose an error correction mechanism
(discussed in the Countermeasure section).

Zhang et al. [Zhang et al., 2018] discuss a laser attack, which forces glitches
on a neuromorphic processing unit (NPU). Using a laser source, the attacker can change
the neurons’ weights. From the retrieved information, it is possible to discover the learning
strategy.

28

Eavesdropping

Eavesdropping is the direct steal of information from applications. Raparti and
Pasricha [Raparti and Pasricha, 2019] present a data-snooping promoted through message
duplication and redirection. In this case, the attack is performed by a router infected with
an HT. The authors propose a solution to this attack by designing a module to invalidate the
eavesdropping and detect the attack location.

Kulkarni et al. [Kulkarni et al., 2021] implement an HT as a small circuit installed
in the router’s input buffers. The HT attack, which is randomly triggered, manipulates the
header flit, changing the packet target and redirecting it to another PE.

2.2.3 Discussion

Figures 2.3 and 2.4 summarize the 2020 and 2023 research results, respectively,
regarding the type and source of attacks. The squares in the intersection of the type-source
grid contain the number of works found in the research. Note that the values are not accu-
mulated, meaning that the graphs do not share works.

PhD-Rafa - Tax:attackScheme20

DoS

SCA

Spoofing

Corruption

Eavesdropping

Malicious

Hardware

Malicious

Software

Malicious

IO

10

5

1

1

1 1

3 1

4

6

T
y
p
e
s

Sources

Occurence

Scale

0

1

10

Figure 2.3 – Research overview according to the attack type and source - 2020.

In the 2020 research, the attack source with the most occurrences is the malicious
hardware (18 mentions). This higher occurrence is a consequence of the system modular-
ization, with 3PIPs that may not be completely trustworthy. However, an issue related to the
malicious hardware approach is that the insertion of the HTs is invasive. The attacker usu-
ally needs access to the system design or execute a reverse engineering process. For this

29

reason, the authors make assumptions that severely limit the application of the proposals
related to HTs.

Regarding the attack type, the most mentioned is Denial-of-Service (DoS). This
happens because DoS is a generic term that covers different attacks. In addition, some DoS
attacks are simpler to implement when compared with other attack types, such as SCA and
Spoofing, which require more resources to perform the attack successfully.

On the other hand, the least explored attack source is the malicious IO. The ab-
sence of publicly available MCSoC platforms allowing the connection with peripherals to
explore such attacks explains why few works explore them. The connection with external
devices opens a considerable attack surface. The many-core may now interact with devices
that may not be known in advance (e.g., the previously mentioned attack using a Bluetooth
interface). Therefore, the field of on-chip security focusing on IO connections was an open
research field.

PhD-Rafa - Tax:attackScheme23

DoS

SCA

Spoofing

Corruption

Eavesdropping

Malicious

Hardware

Malicious

Software

Malicious

IO

12

1

1

1

14 4

3

4

1

T
y
p
e
s

Sources

4 Occurence

Scale

0

1

14

4

Figure 2.4 – Research overview according to the attack type and source - 2023.

In the 2023 research (Figure 2.4), there was a continued focus on malicious hard-
ware as the primary source of attacks, but with a notable shift in the type of attacks to eaves-
dropping. This shift indicates that researchers have broadened the spectrum of attacks
executable by HTs, highlighting the need for countermeasures against not only impairing
threats like Denial of Service (DoS) but also those that involve leaking sensitive informa-
tion, such as Eavesdropping. While DoS remains a prevalent threat, several studies have
considered HTs capable of executing both DoS and Eavesdropping attacks.

The incidence of malicious software executing attacks on MCSoCs has decreased.
While numerous articles reference malicious applications or tasks to contextualize threats

30

to MCSoCs, a limited number of papers specifically focus on and developing attacks from
malicious software. Among those that do, the majority execute SCA.

Malicious IO were almost non-existent in the 2020 research and now present a
slight increase in occurrences. However, most of these occurrences are attributed to our
publications, mainly derived from the protection of IO communication (Chapter 4). Beyond
our contributions, only two other papers present malicious peripherals.

2.3 Criterion 2 - Countermeasure

This section categorizes the state-of-the-art proposals for defense mechanisms.
We present a brief description for each countermeasure, followed by works using them.
Proposals found in the literature research are, in most cases, robust defense mechanisms
that employ more than one technique simultaneously to protect the system. For this reason,
we may use the same work in different categories.

Cryptography

Cryptography is used to create a secure channel for sensitive information exchange,
restricting the messages’ reading only by units with cryptography keys.

Charles and Mishra [Charles and Mishra, 2020b] present an optimized encryption
method named incremental cryptography. The authors focus on reusing similar blocks that
have already been encrypted in previous rounds, preventing the system from repeating the
encryption and saving time and energy.

Oliveira et al. [Oliveira et al., 2018] propose a secure architecture and provide the
costs of increasing the security for NoCs. The architecture contains a firewall capable of
filtering incoming and outgoing network traffic and encrypting sensitive information, perform-
ing end-to-end security using an AES cipher block. The firewall plus the AES increases the
router area by 193.7%, and latency increases in the worst-case scenario by 395.92%. De-
spite this performance penalty, the authors argue that the injection rate of applications is low
(typically 5-10%), resulting in a small performance overhead at the application level.

Furthermore, cryptography is often discussed in works that explore key-exchange
protocols to establish secure communication channels. Harttung et al. [Harttung et al.,
2019] propose three lightweight authentication methods, named Individual Authentication,
Interwoven Authentication, and Full Generation Authentication. The authors combine the
authentication methods with lightweight ciphers (PRESENT, mCRypton, and PRINCE). Re-
sults show that the information rate (amount of flits created by PEs and the total number
of flits injected into the network, indicating the protocol overhead) increases by 40% and

31

increases the average end-to-end latencies by 10%. The authors also argue that this is an
acceptable penalty considering the added security in the communication.

Tran et al. [Tran et al., 2021] proposes a hardware-based cryptosystem to protect
IoT (Internet-of-Things) devices. The authors implement an AES 128-bit symmetric cryptog-
raphy algorithm using VHDL focusing on an SoC FPGA. They embed the system onto the
DE10-Standard board, which can act as node or gateway. As a node, it receives environ-
ment data through sensors, encrypts it and sends to the gateway devices via wireless. As a
gateway, the system must receive this data, decrypt it, and put it on the server or cloud.

Routing

Several attacks propose routing algorithms to avoid, e.g., HTs, in a given path be-
tween PEs. Charles et al. [Charles et al., 2020a] propose a method named Anonymous
Routing. This method inserts extra layers of protection that hide the source and target fields
of the packets. The method has two phases: (i) route discovery, which sends packets to
discover the route between a source and target PEs, sharing security parameters with the
routers in the defined path; (ii) data transfer, using virtual circuit numbers (VCN). When
transferring packets, intermediate routers only see the VCNs corresponding to the preced-
ing router and the following router, which reveals no information about the source or the
destination. As a result, the message exchange becomes untraceable for devices that do
not have access to the key to decrypt the packets. In this case, anonymous routing combines
the routing algorithm with cryptography and obfuscation.

Indrusiak et al. [Indrusiak et al., 2019] describe the implementation of route ran-
domization in a many-core as a protection mechanism against SCA. In this case, varying the
routers taken by sensitive traffic prevents the collision with malicious traffic provoked by an
SCA, making the SCA information extraction considerably harder since the timing measures
are no longer precise.

Patooghy et al. [Patooghy et al., 2023] proposes another type of anonymous rout-
ing, encrypting the entire packet and the NoC routes with the encrypted addresses. Each
router must decipher the turns on the header address to decide the channel to forward the
packet. The secure packet is delivered to the target when the encrypted destination field
matches the encrypted address of the router.

Authentication

Authentication is the process of establishment and validation of a claimed identity.
Kornaros et al. [Kornaros et al., 2018] use authentication to secure the system boot. Caimi
et al. [Caimi et al., 2018a] use authentication to protect the admission of secure applications.

32

Kornaros et al. [Kornaros et al., 2018] present the security structure named IOSCU
(I/O Secure Communication Unit), which is a firewall-based authentication mechanism. The
IOSCU goal is to promote a secure boot, especially in systems with connected peripher-
als, with the authentication process isolated from the software. During regular operation,
the firewall can be configured by units with credentials to create a secure communication
session.

Caimi et al. [Caimi et al., 2018a] protect the application deploy into the many-core.
The first step is the mutual authentication, where an external device and the many-core ex-
change keys, using the ECDH (Elliptic Curve Diffie-Hellman) protocol. After authentication,
tasks are loaded with a MAC (Message Authentication Code) attached to the object code to
guarantee the code integrity.

Sharma et al. [Sharma et al., 2019] propose a twofold key agreement to create
secure communication sessions among processing clusters inside the same chip, guaran-
teeing message exchange only between authenticated units. Harttung et al. [Harttung et al.,
2019] propose a mechanism at the message level. Authentication is performed for every
message, combined with a MAC to check the delivered message’s integrity.

Charles et al. [Charles et al., 2022] propose a digital watermarking of packets to
guarantee packet authenticity and detect eavesdropping attacks. Watermark encoders and
decoders are installed at the NI of each node, which inserts unique watermarks on each
packet stream based on a shared secret between source and destination.

Obfuscation

Obfuscation represents a group of countermeasures that protect information or re-
sources, hiding or disguising them against attackers that try to eavesdrop to discover sen-
sitive data. Ho et al. [Ho et al., 2019] obfuscate the power dissipation values of an AES
encryption process by taking turns between the AES execution and a dummy process. As a
result, the power values SCAs could target are not accurate enough to retrieve the crypto-
graphic key. Besides this technique, the authors also use configurable clock frequencies to
obfuscate the data leaks.

Forlin et al. [Forlin et al., 2019] make an in-depth analysis of SCA attacks in a
Priority-Preemptive NoC (PP-NoC). The authors propose three defense mechanisms that
use obfuscation methods against SCAs:

• RT-Blinding: periodically send dummy high-priority packets to avoid attackers to gather
information about the timing of sensitive packets;

• RT-Masking: intentionally saturate the channels when a high-priority flow is passing,
so the actual size and pattern of the flow is not easily discovered;

33

• RT-Shielding: tuning of the NoC parameters (as buffer size) to prevent the interference
of low-priority traffic into high-priority traffic. This countermeasure require design time
traffic analysis to define the NoC parameters.

Mountford et al. [Mountford et al., 2023] introduce a method for obfuscating the
addresses of packets transmitted through the NoC. They propose the implementation of
a look-up table (LUT) within the router, which determines the packet’s direction based on
a specific routing code. To enhance security, the indexes of the LUT are randomized for
each router at the design time, making it more challenging for an attacker to discern their
values. Additionally, the authors add another layer of obfuscation by padding the path length,
ensuring that every packet has an identical number of routing flits.

Firewall

A firewall in the scope of on-chip communication is a hardware barrier placed at
the ports of the communication structure to control the input and output of an element.
This mechanism generally comprises a table to store the recognized trusted sources and a
controller allowing credentialed traffic and blocking unauthorized traffic. Azad et al. [Azad
et al., 2018] propose a firewall to guarantee the integrity and confidentiality of the platform.
The firewall is placed at the NI and has two tables: (i) initiator table, which checks if the
source has permission to send messages; (ii) target table, which verifies if the message is
allowed to enter the target unit. Another important aspect of this proposal is that a Security
Manager configures the firewalls that send configuration messages protected with a MAC.

The same authors, in [Azad et al., 2019], propose the CAESAR-MCSoC, using a
group of firewalls to isolate a cluster of nodes in the platform, resulting in a secure zone, a
concept discussed later. This work places the firewalls into the NI (CAESAR NI) alongside
the Packetizer, Depacketizer, and a CAESAR Core (crypto core for encryption and authenti-
cation).

Oliveira et al. [Oliveira et al., 2018] propose an architecture that includes a firewall
capable of filtering incoming and outgoing NoC traffic, an AES cipher block to encrypt the
NoC flow, and an auxiliary NoC that uses a Hamiltonian path to configure the firewall rules
and distribute the keys. Instead of changing the interfaces, state machines in the firewall
manage the flow control signals. The firewall may encrypt the packets according to an
identifier in the packet or not.

Detection

Countermeasures categorized as detecting and monitoring are the proposals that
focus on tracking suspicious behavior and, in some cases, taking actions to neutralize the
activity of a threat (with the help of other countermeasures). This class is characterized by

34

works that detect or locate threats with the help of monitors inserted in different parts of the
system. Chaves et al. [Chaves et al., 2019] insert a DoS monitor inside the router, named
CPRD (Collision Point Router Detection). The packets sent through these routers have an
extra field that carries the value of the router in which the packet waited the most. When the
packet arrives at the target, the latency is analyzed, and if it is above the expected latency
of the packet, a DoS suspicion is reported. Once there are a certain number of DoS reports,
the platform understands that an attack is happening and activates the firmware to locate
and reset the source of the attack.

Kenarangi and Partin-Vaisband [Kenarangi and Partin-Vaisband, 2019] use ma-
chine learning sensors fed with voltage-level information of the PDN (power delivery net-
work). These sensors protect the system against power, timing, or electromagnetic SCAs.
Thus, the sensors are trained with the transient state values of the PDN, enabling them to
detect unexpected behaviors, especially in terms of power and electromagnetic attacks.

Sudusinghe et al. [Sudusinghe et al., 2022] implements an eavesdropping detec-
tion technique based on machine learning. The approach is has three phases: (1) design
time, in which features to infer NoC traffic and probes are attached to routers to gather traffic
information. Then, during (2) training time, the gathered information is utilized to train the
ML models, which, once trained, are stored in an IP that will act as a decision unit (DU). At
(3) runtime, the DU utilizes the ML models and the NoC traffic collected by the probes to
make decisions or even detect eavesdropping attacks.

Secure Zones

Secure Zone is a countermeasure that explores spatial isolation, i.e., reservation of
resources to execute one secure application. Caimi and Moraes [Caimi and Moraes, 2019]
propose the Opaque Secure Zone (OSZ) technique, executed at runtime. This technique
uses software-configurable wrappers to “close” a region of the MCSoC, blocking both in-
coming and outgoing packets arriving at the OSZ borders. The OSZ closing and opening
protocols are done via a control-NoC, separated from the data-NoC, and unavailable at the
application level. For each application that requests an OSZ, the platform manager defines
the required resources and maps and allocates the application on those resources, securing
the application admission phase. During the secure application execution, packets that try
to traverse the OSZ are rerouted. The OSZ can be opened to IO packets according to a
secure protocol.

As mentioned before, in the firewall section, Azad et al. [Azad et al., 2019] create
a secure zone using programmable firewalls to protect the CAESAR-MCSoC. Moreover,
the authors also deploy a firewall configuration protocol with encrypted and authenticated
configuration packets.

35

Benhani et al. [Benhani et al., 2019] use secure zones in a Trusted Execution
Environment (TEE) based on the ARM TrustZone mechanism in a heterogeneous SoC. In
this case, the authors use cryptography to establish secure communication via an AXI Bus.

Physical Unclonable Function (PUF)

Physical Unclonable Function (PUF) is a hardware unit whose output depends on
manufacturing factors, creating unpredictable behavior, thus, considered as impossible to
be violated. Siddiqui et al. [Siddiqui et al., 2019] propose a secure boot in FPGAs involving
PUF and backend server. The server challenges the PUF in the client, provoking responses
that, once verified by the server, send the bitstream to configure the application logic in
the FPGA. Kumar et al. [Kumar et al., 2018] propose using a PUF to protect the system
against the misuse of test structures to leak confidential data from the cryptographic or
critical cores. Thus, the authors create a wrapper that can only be accessed by authenticated
test engineers.

PUFs are also utilizes on proposals for secure test environments, Zhang et al.
[Zhang et al., 2022] uses PUF to create a secure wrapper for NoC-based SoC that is com-
patible to IEEE 1500. The original key is encrypted into a stream cipher by the PUF module,
and the input key must match or the wrapper is locked, promoting an effective authentication.

Software-Defined Network (SDN)

SDN in NoC aims to reduce the router complexity by moving the control logic (ar-
bitration and routing) to software, creating a control layer. The SDN Controller has a global
view of the communication infrastructure, being able to make decisions according to the
current constraints and status of the network.

Ruaro et al. [Ruaro et al., 2020] propose the SDN-SS, an SDN framework for
MCSoCs. This work presents a secure SDN management, with protocols to secure the
SDN configuration, including secure router configuration with key-exchanging mechanisms.

Ellinidou et al. [Ellinidou et al., 2019] propose the SSPSoC, also based on SDNs,
but the target system is a cloud-of-chips, which is a larger dimension of MCSoC architectures
with a large number of ICs. Similar to the previous work, the authors’ concerns are security,
inserting defense mechanisms such as private key derivation, group key agreement, and
data exchange phases to provide secure communication.

Mapping

Task mapping is also used as a security mechanism. Tibaldi et al. [Tibaldi et al.,
2021] present a framework to generate heterogeneous SoC by selecting processing and

36

communication components and after defining the mapping and scheduling of tasks. Design
space exploration is done with a Ant Colony Optimization heuristic, including security as a
constraint, resulting in the application’s performance and security improvement. The authors
focus on reinforcing security via task mapping and distribution of resources to avoid the
influence of public communication flows into private flows.

A Thermal Covert Channel (TCC) attack is a type of security exploit that leverages
thermal emissions from electronic devices to transmit information covertly. The fundamental
principle behind a TCC attack is manipulating temperature changes in a system to create
a covert channel for data transmission. Wu et al. [Wu et al., 2021] propose a countermea-
sure to TCC attacks by task migration. The authors identify that task distance weakens
the thermal signal and propose a task migration algorithm that blocks TCCs based on task
distance.

Correction

The proposals based on correction in the scope of many-core security are defen-
sive mechanisms against faults caused intentionally by an intruder - as the corruption attack
[Gondal et al., 2020]. In that same work, the authors design a specific router, called Junction
Routers, enhanced with Error Correcting Codes (EEC). The selected EEC by the authors is
the Joint Cross Talk Avoidance Triple Error (JTEC), which can detect and avoid 3-bit errors.
As a result, several Junction Routers are placed at the NoC, and they successfully correct
the packets that the attacker corrupts.

2.3.1 Discussion

Figure 2.5 and Figure 2.6 presents the countermeasures versus the types of at-
tacks. The intersections indicate the number of works that use the countermeasure to de-
fend against a given attack. Note that one work can use a countermeasure against more
attacks, counting in more than one intersection. The color represents the number of works
found in the literature.

The 2020 research showed DoS as the most reported attack. The most frequent
countermeasures against DoS attacks are:

• adaptive routing, change the path when detecting a suspicious behavior;

• secure zones, deviate the traffic that tries to traverse a secure application;

• obfuscation, masks the packet contents to the attacker.

SCAs are present in the threat models, with the timing attack being the most fre-
quent. The countermeasures obfuscation, authentication, routing, firewalls, and secure

37

Figure 2.5 – Countermeasure overview according to type of attack from 2020 research.

zones are adopted to avoid or mitigate this attack. Those techniques can control the access
to sensitive information, such as timing readings, sensitive traffic path, power dissipation,
and cache accesses.

Secure Zones is an effective countermeasure against most attacks. The robust-
ness of this countermeasure is due to the spatial isolation and controlled access through
configurable wrappers. Caimi et al. [Caimi et al., 2021] review several secure zone propos-
als. Besides Secure Zones, SDN appears, with lower numbers, as a defense mechanism
against four out of five attack types, showing to be an alternative to increase many-cores’
security. The main limitation of SDN is the number of dedicated SDN subnetworks [Ruaro
et al., 2020].

Another situation observed in Figure 2.5 is the relationship correction x corruption.
Only one work mentions this type of attack and countermeasure. One reason for the lack
of work related to data corruption is that most countermeasures are associated with the
fault-tolerance field. Thus, fault-tolerance techniques may be used together with security
countermeasures, as presented in the Avizienis’ taxonomy [Avizienis et al., 2004].

Spoofing and eavesdropping are two types of attacks that are more complex and,
for this reason, require a more robust attack system, including specific software routines and

38

access to specific platform features. Therefore, these attacks are not very recurrent in the
2020 research.

However, the 2023 research (Figure 2.6) showed increased spoofing occurences
and even more eavesdropping attacks. In addition, cryptography and authentication are
the most used countermeasures to avoid sending data to unauthorized entities inside the
platform.

Figure 2.6 – Countermeasure overview according to type of attack from 2023 research.

The protection mechanisms used against DoS also increased. Current works have
used cryptography and authentication to validate traffic flows to avoid flooding and confirm
IPs’ legitimacy to avoid attempts to impair the system functionality. Besides that, more works
are focusing on techniques to detect attacks and locate their source, mostly DoS but also
other types of attack.

The works of Secure Zone on 2023 research are mostly from our research. Only
two other papers, [Benhani et al., 2019] and [Azad et al., 2019], have considered secure
zones and were not the focal point of the proposals.

Comparing Figure 2.5 to Figure 2.6, one can see an increase in the total occurrence
number. Even though the number of publications on security has increased, it is important to
observe that the threat models are getting more complex and countermeasures are evolving,
being able to cover more than one attack type.

39

2.4 Criterion 3 - Phase

According to [Caimi et al., 2018a], the application lifetime encompasses three main
phases: (a) Admission: before execution, the application needs to be loaded into the MC-
SoC, mapping the tasks and reserving the necessary resources. (b) Execution: during the
application execution, the computation resources run the algorithms and may use commu-
nication resources to inter-task communication; (c) IO Access: some applications may need
access to external devices connected to an IO port. Thus, it is possible to classify threats
and countermeasures according to the execution phase.

Application Admission

The main requirement of the application admission security is the protection of the
source code during its transmission from external devices to the PEs. Defense mechanisms
adopted at this phase include secure boot [Siddiqui et al., 2019], application deploy [Real
et al., 2018], and source code integrity [Sepúlveda et al., 2018].

The application admission proposed by Real et al. [Real et al., 2018] adopts a
logical and spatial isolation of sensitive applications by creating secure zones to mitigate
DoS and cache SCA attacks at runtime. The architecture uses the MPSoCSim, a Mesh
NoC where each router is connected to a cluster with four processors (with local memory),
one shared memory, and one shared bus.

Caimi and Moraes [Caimi and Moraes, 2019] adopt in the OSZ technique mutual
authentication based on ECDH protocol to guarantee the authenticity of the entity respon-
sible for deploying the application into the MCSoC (application injector). Furthermore, the
source code transferring is protected by encrypting the message and attaching a MAC to it,
verified by the receiver PE to guarantee the code integrity.

Siddiqui et al. [Siddiqui et al., 2019] propose the “Multilayered Camouflaged Secure
Boot” technique, targeting FPGA devices. The goal is to mitigate the leakage of the bitstream
contents by encrypting it with a key only available to remote trusted servers. The FPGA only
accepts the bitstream with a correct authentification. In addition, a PUF is used to generate
unique keys for each device.

Application Execution

Most works in the literature focus on protecting the execution phase since this is
the phase where applications use the system resources (NoC, processors, NI, memory).
This category includes proposals protecting the communication resources, the computation
resources, or both.

40

Examples of defense mechanisms at the communication level: Trust-based Routing
[Charles and Mishra, 2020a], that guarantees the delivery of packets avoiding suspicious
routers; proposal of a response protocol that indicates the correct packets delivery [Daoud
and Rafla, 2019b], Anonymous Routing that obfuscates via cryptography the source, target,
and content of the packet, asserting that the information exchanged between tasks is not
accessed by other tasks [Charles et al., 2020a].

In terms of protecting specifically the task execution, Zhao et al. [Zhao et al., 2020]
discuss a Power Budget attack that is able to alter the values of power given to cores.
Therefore, the execution of an application can be severely damaged if such an attack lowers
the power resources of the core. As a countermeasure, the authors suggest the monitoring
of the power budgets that differ from an average threshold.

Reinbrecht et al. [Reinbrecht et al., 2020] present Guard-NoC, a communication
and computation protection against SCAs, specifically Timing Attacks. The protection is
based on the Obfuscation Module, placed between the NI and the local IC input. This mod-
ule uses two processes to prevent timing attacks: blinding and masking. The blinding strat-
egy implementation changes the response time of the ICs to have a constant value. Masking
is applied to insert delays on the responses, operating as a noise source. Both strategies
are effective against the attempts to read or access time measurements of that local IC.
In addition to this obfuscation mechanism, the Guard-NoC protects the system’s commu-
nication via the switching mechanism. This NoC has dual switching, the packet switching
is reserved to secure communications. Consequently, the circuit switching is destined for
common packet transmission. The separation of secure and common traffic prevents the
attackers from injecting malicious traffic directed to collide against secure traffic and infer
timing values about a protected communication.

Communication with IO devices

Relative to the communication with IO, unauthorized access to instructions and
data in shared memory and peripherals can compromise the execution of the applications,
resulting in attacks of information tampering or information leakage. For this reason, it is im-
portant to have security protocols to communicate with IO devices, protecting the many-core
against malicious peripherals. One example of a countermeasure focused on protecting the
communication with IO devices is the IO Secure Communication Unit (IOSCU) (previously
detailed on Authentication) [Kornaros et al., 2018]. This work also discusses the security
challenges of adding new modules in an SoC-based automotive design.

Another type of IO is external memories attached to the MCSoC. In this case, works
that propose defense mechanisms to protect cache level 2 (L2) or lower memory layers, such
as [Ge et al., 2019, Reinbrecht et al., 2019], are also related to the IO communication.

41

2.4.1 Discussion

This section demonstrates that most works consider only one of the application
execution phases, limited to the application execution (computation or communication pro-
tection) and the memory access. The concern about memory access is considered from the
communication point of view. Proposals regarding the application admission and the access
to peripherals are scarce in the MCSoC research field. A low-cost protocol for secure ap-
plication admission and communication with external devices targeting MCSoCs is still an
open research problem.

2.5 Criterion 4 - Cost

Every implementation, either threat or countermeasure, has an innate cost mea-
sured in physic attributes (e.g., area or power), application performance (e.g., execution
time), or communication efficiency (e.g., latency). This section presents the costs related to
the insertion of the security methods.

Table 2.1 summarizes works that presented the costs and trade-offs related to their
proposal. The first columns show the authors enumerated from #1 to #22, followed by the
proposal characteristics. The other six columns correspond to the overheads: area, power,
performance, latency, energy, and critical path delay.

The values represent the overhead of the proposal and the reference for compar-
ison in parenthesis. As some works focused on improving already existent techniques, the
values with the minus sign represent a decrease in the overhead. The performance column
is a generic term that includes different measurements, such as execution time (ET), band-
width (BW), throughput (TP), depending on the authors’ presentation. Besides that, when
there is the indication of others, means a comparison between the proposal and another
proposal of the literature.

This section aims to present an overview of how the authors evaluate the costs and
trade-offs related to countermeasures and threats, and not a direct comparison between the
state-of-the-art. Besides that, not all the works are present in the table because: (i) did not
present the costs clearly, or (ii) presented results could not be summarized in this table (e.g.,
presentation of several graphs instead of tables or measures).

Area, Power and Energy

The silicon area is the primary metric for evaluating the impact of either the threat
or the countermeasure. Most authors present a relative area evaluation, comparing their

42

Table 2.1 – Cost of the security proposals for MCSoCs.
Work Proposal Area Power Performance Latency Energy Crit.Path

1 [Charles and Mishra, 2020b] Cryptography
2% (NoC)

15% (Crypt)
-5% (crypt. ET)

2 [Reinbrecht et al., 2020]
Obfuscation
Secure Zone

16% (Router)
0.9%(System)

+18% (Router)
+0.9% (System)

2.77%(Blinding)
13.45% (Masking)

3 [Charles and Mishra, 2020a] Adapt. Routing 6% (Router)
-4.7%

(vs. Attack)
-43.6%

(vs. Attack)
-28.3%

(vs. Attack)
4 [Charles et al., 2020a] Adapt. Routing 4% (ET)

5 [Caimi and Moraes, 2019] SDN 6% (NI) 4% (NI)
19.42% (High TP)
7.1% (Med. TP)
0.9% (Low TP)

6 [Charles et al., 2020b] Detection
6%

(Router)
4%

(Router)

7 [Benhani et al., 2019]
Cryptography
Secure Zone

0.93 - 3.47%
(System)

15.3µs
(crypt. ET)

8 [Daoud and Rafla, 2019b] Adapt. Routing
10.83%
(Router)

27.78%
(Router)

-21.31% (TP)

9 [Ho et al., 2019] Obfuscation 1.89 mm2 24.6pJ
9 core plat.

10 [Daoud and Rafla, 2019a] DoS HT
1.98%

(Router w/ HT)
0.74%

(Router w/ HT)

11 [Caimi and Moraes, 2019]
Secure Zone

Adapt. Routing
12% - 15%
(ET w/ IO)

12 [Azad et al., 2019]
Cryptography
Secure Zones

Firewall

277.6% (NI)
18% (NI)

17.80% (NI)

13 [Ravikumar et al., 2019]
Detection

Adapt. Routing
1.4 mW 200 cc

14 [Raparti and Pasricha, 2019] Firewall 2.2 µm2 5.5% (NI)
-48.7%

(ET w/ attack)
-67.8%

(ET w/ attack)
-47.8%

(System)

15 [Harttung et al., 2019]
Cryptography
Authentication

4.4%
(vs. others)

-40%
(data Rate)

-10%
(System)

16 [Chaves et al., 2019]
Monitoring CPRD
Detection CPDD

17.7% 5% -.02 ns
23.2% 9.4% -.03 ns

17 [Hussain and Guo, 2019]
Authentication

Cripto
-56%

(vs. others)
-36%

(BW overhead)
-11.66%

18 [Azad et al., 2018]
Cryptography

Firewall
0.8 mm2 6.46% (NI)

19 [Zhang et al., 2018] DoS HT
52%

packet loss

20 [JYV et al., 2018] Obfuscation
21.2%

(Router)
150% (HT)
10% (CT)

21 [Hussain et al., 2018] Detection -40% (vs others)
13% (EETD1)
19% (EETD2)

-38%
(vs others)

22 [Caimi et al., 2018b]
SZ

Adapt. Routing
Mapping

94.2K cc (ET)

(BW) Bandwidth; (TP) Throughput; (ET) Execution Time; (cc) Clock Cycles.

proposal before and after the implementation. The hardware modules evaluated are the
routers and the network interfaces (NI). For example, [Azad et al., 2019] (#121) presented
the highest relative overhead, 277.6%, which is expected from a firewall that is a complex
mechanism to include in the NI. Other works compare their proposal to the state-of-the-
art. [Hussain and Guo, 2019] (#17) reduced in 56% the area of authentication schemes
compared to proposals available in the literature. In terms of threat evaluation, [Daoud and
Rafla, 2019a] (#10) presented an area overhead lower than 2% when implementing a DoS-
HT in a router.

Power evaluation is also a performance metric broadly used by the authors in their
work. As in the area evaluation, authors measure the power comparing their proposal to
the baseline one [Caimi and Moraes, 2019, Raparti and Pasricha, 2019, Reinbrecht et al.,

1First column of Table 2.1

43

2020, Charles et al., 2020a] (#11,#14,#2,#4). In other cases, the authors present the imple-
mentation absolute value [Ravikumar et al., 2019] (#13).

Hussain et al. [Hussain et al., 2018] (#21) have energy as the major concern,
as it proposes a runtime HT detection that is energy-efficient. They claim that always-on
countermeasures are expensive in terms of energy. For this reason, their proposal is a
countermeasure that is only activated after an HT attack is detected, being powered off oth-
erwise. Results show a reduction of 38% in energy consumption compared against another
detection mechanism available in the literature. Ho et al. [Ho et al., 2019] (#9) measured the
total energy consumption of a 9-core platform with the countermeasure, resulting in 24.6 pJ
overhead.

Performance

The authors use performance to measure the proposal’s impact on the application
execution time, frequently using benchmarks. As mentioned, this column also presents
measurements that impact the overall performance, such as bandwidth (BT), thropughput
(TP), and other time measurements and comparisons made by the authors. Charles and
Mishra [Charles and Mishra, 2020b] (#1) show that incremental cryptography can reduce
the encryption time by 5%. Reinbrecht et al. [Reinbrecht et al., 2020] (#2) measured the
impact on the execution time of both obfuscation techniques: 2.77% in blinding and 13.45%
in masking. Caimi and Moraes [Caimi and Moraes, 2019] (#11) presented an increase of 12
to 15% in the execution time of applications inside an OSZ to perform IO communication.

Latency and Delay

Latency and delay are measurements used to analyze the impact of the implemen-
tation on communication. Those metrics are helpful to evaluate trade-offs, e.g., modifying
routing algorithms such as Trust-Based Routing proposed by [Charles and Mishra, 2020a]
(#3). In this case, the insertion of extra layers of security increased the packet latency com-
pared to the non-secure routing. However, that same comparison in an attack scenario
reduced the latency caused by the attacks by 43.6%. Another example is the proposal of
[Harttung et al., 2019] (#15), which measured the extra delay in the delivery of messages
due to the message encryption procedures, reaching 10% overhead.

Critical Path

The critical path is the key attribute that constrains the range of operating frequency
of the circuit. Implementing extra circuits, either attacks or countermeasures, may insert
more delays throughout the critical path of the circuit, limiting its operating frequency. Chaves
et al. [Chaves et al., 2019] (#16) implemented two routers that reduced the critical path delay

44

by 0.02 and 0.03 ns. Azad et al. also analyze the critical path, as presented in [Azad et al.,
2019, Azad et al., 2018](#12 and #18), reducing it by 17.8% and 6.56%, respectively.

2.5.1 Discussion

This review analyzed the approaches taken by the authors to evaluate the costs of
their proposals. We identified two methods to evaluate the proposals:

1. relative: results are compared with other/previous versions of the same platform. For
example, compare an IP with and without a firewall. This evaluation gives limited infor-
mation about the method since it is a function of the baseline implementation.

2. absolute: results such as power, performance, and area are given to the implemented
modules. This approach is helpful for designers since they can evaluate the impact of
adding a given module to the system.

Note that the Table does not present a Security column. Security is not directly
measurable, lacking in the literature benchmarks to evaluate attacks. Developing bench-
marks for evaluating security in NoC-based systems is an open research field.

2.6 Criterion 5 - Integration

The countermeasures insertion can be classified according to when its integra-
tion on the system occurs, which can be at design time or runtime. Design time proposals
assume methods that cannot change at runtime, i.e., it is not possible to configure the coun-
termeasures according to the system state. Despite requiring design-time support, runtime
approaches can configure the countermeasures according to the system state, such as
changing routing paths or the location of secure zones.

Design Time

In design-time approaches, the configuration and activation of the countermeasure
is a static process, and it is done during the design phase and is not modified at runtime.
An example of design time countermeasure is the incremental cryptography proposed by
[Charles and Mishra, 2020b], which is an encryption block placed at the NI, that is always
encrypting packets, regardless of the packet length or type. PUF is another example of
design time countermeasure, which can only be inserted into the system at design time.

Halder et al. [Halder et al., 2023] propose ObNoC, which obfuscates hardware
to avoid reverse-engineering attacks. The ObNoC routers are designed with configurable

45

switching architectures that are programmed after fabrication and only for authorized holders
of the activation packet that activates the functional configuration of the routers.

Runtime

Runtime countermeasure includes methods that can be configured while the sys-
tem is running. Furthermore, they are adaptable, meaning that the current state and work-
load of the platform are taken into consideration in the countermeasure decision-making pro-
cess. Runtime countermeasure is the category of most works. The proposals that include
detection and monitoring, such as [Chaves et al., 2019, Kenarangi and Partin-Vaisband,
2019] are always runtime since they are constantly observing the system and making de-
cisions based on what is observed. Proposals that protect the resource allocation, such
as secure zones [Caimi et al., 2018a] are runtime since they analyze the availability of the
resources to allocate and protect sensitive applications.

2.7 Taxonomy Final Remarks

Previous sections proposed a taxonomy for the MCSoC security research field.
This proposal contains five criteria related to the works available in the literature: attacks,
countermeasures, the application phase, costs, and integration moment. The literature re-
view considered the most recent publications.

In terms of attacks, the research showed that recent proposals explore HTs to
perform attacks on MCSoCs, proposing countermeasures to these attacks. The relevance
of detecting HT attacks, mainly DoS, is that HTs are difficult to detect and may cause severe
damage to the system.

Among the countermeasures, secure zones and SDNs are defense mechanisms
that protect the system against a wider range of attacks, being effective against DoS, SCA,
Eavesdropping, and Spoofing. It is important to mention that secure zones and SDNs also
require a more complex platform in terms of hardware and software to promote spatial iso-
lation.

The security mechanisms must protect all application phases, including its admis-
sion, execution, and communication with IO devices. Most works in the literature present
countermeasures only for the application execution, with few proposals encompassing this
requirement.

One question raised in the cost section is “how to measure security?”. Works
presented different methods to measure the efficiency of the security approaches, but most
of them are only comparable to their context since the threat models and countermeasures

46

are very specific, i.e., compared to a baseline implementation. Benchmarks for evaluating
security in NoC-based systems are thus an open research field.

The integration of security methods must occur at runtime. The MCSoC must pro-
vide the security mechanisms at design time (e.g. encryption IP, isolation wrappers, control
NoC), but these must be configurable at runtime to adapt the system according to detected
attacks.

In this Thesis, we propose mechanisms based on secure zones, authentication,
and detection to protect the MCSoC against malicious IO devices and malicious hardware
performing DoS, Spoofing, and Eavesdropping.

Our approaches protecting IO (Objectives SG1 to SG4) are motivated by the lack
of works that consider the protection of IO communication, especially considering the use of
secure zones.

One can see the concern around hardware trojans on MCSoCs, which was still
an open vulnerability even considering the secure zones. Because of that, we propose a
detection mechanism of hardware trojans that protects the communication inside the secure
zone (Objectives SG5 and SG6).

During this research, we observed a broad range of threats and countermeasures.
We proposed a taxonomy to map the research results to help understand the areas and
subareas of the MCSoC security research field. We noticed that most papers proposed
countermeasures focusing on specific threats, with a limited number of works that approach
complex threats integrating several countermeasures. In addition to that, Charles and Mishra
[Charles and Mishra, 2022] pointed to the integration of security mechanisms as a research
direction in the conclusion of their survey on NoC security and countermeasures:

Seamless integration of security mechanisms: While existing literature has discussed several different
threat models, it is naive to think that mitigating one particular type of threat will secure the SoC. For example,
defending against eavesdropping attacks does not guarantee that eavesdropping is the only possible attack in
that particular architecture. Developing security mechanisms for different threat models is a promising starting
point. However, seamless integration of a suite of security mechanisms is required to secure the hardware root
of trust. [...] Similarly, how to integrate several NoC security mechanisms and ensuring their inter-operability in
hardware, firmware, and software layers is worth exploring further.

Hence, the main original contribution of this Thesis (Chapter 6) is the integration of
defense, monitoring, and detection mechanisms that protect the MCSoC from a diverse set
of threats.

2.8 Comparative Analysis and Positioning within the State-of-the-Art

This section discusses related work on MCSoC security. During the taxonomy
we placed and discussed several works, however most of they focus on specific counter-

47

measures against specific attacks. In addition, many of them assumed threat models very
different from the ones in this Thesis. For those reasons, for Thesis placement, we focused
on proposals that integrate multiple countermeasures and propose systemic level security.

In a previous study, Fiorin et al. [Fiorin et al., 2007] emphasized the need of a secu-
rity framework designed to gather data from monitors integrated into network interfaces (NI)
or routers strategically positioned within critical areas of the NoC. The authors propose to
monitor: (i) buffer occupancy, (ii) anomalous behavior of power manager; (iii) unauthorized
access to secure memory locations; (iv) violation of execution of critical routines. These
authors propose in [Fiorin et al., 2008] the adoption of firewalls integrated into the NI to man-
age memory accesses using a lookup table containing the access rights. The authors only
evaluate the firewall area. In more recent work, Fiorin et al. [Fiorin et al., 2013] propose
the insertion of a configurable Probe device inside the NI that can detect events and collect
values about throughput, latency, resource utilization, and message characteristics. After
detecting events, a message to the Probe Management Unit (PMU) reports the detected set
of events that can trigger runtime management functions. The probe module was evaluated
for area, energy, and traffic overhead.

Meng et al. [Meng et al., 2023] propose a framework for systematically detecting
security violations in SoC designs resulting from vulnerabilities in NoC communication. The
threat model includes message misdirection, message mutation, delivery prevention, and
network congestion. The proposed framework, SEVNOC, extracts a control-flow graph of the
design that enables analysis of security properties through state exploration. The framework
does not detect attacks at runtime. The authors’ goal is to detect vulnerabilities in the RTL
design using a symbolic approach.

Sharma et al. [Sharma et al., 2021] analyze the security aspects of MPSoCs,
discussing several defense mechanisms known in the literature, such as secure zones, fire-
walls, and key agreement, and then expand the discussion to the Cloud of Chips scope.
Furthermore, the authors propose a software-defined network-on-chip (SDNoC) as an al-
ternative that can reserve resources, avoiding congestion and harmful paths. The paper
provides a broad view of MPSoC security and how effective are the defense mechanisms
against DoS, Hardware Trojan, and Side-channel attacks. However, the proposal does not
include runtime monitoring of threats, which results in a gap in detection and countermea-
sures once a threat is detected.

Ruaro et al. [Ruaro et al., 2020] also adopt SDN to establish a programmable path
based on different policies, such as power, QoS, and security. In addition, the authors pro-
pose a secure path configuration based on key authentication that avoids DoS and flooding
attacks since packets that fail the authentication are discarded. However, the authors point
out that their approach is still vulnerable to HT attacks.

Kumar et al. [Kumar et al., 2021] propose a methodology to protect NoCs against
HTs. The authors propose a 3-tier approach that includes a Trojan cognizant routing al-

48

gorithm (TCRA), a Trojan detection and diagnosis module, and a Trojan-resilient network
interface. The detection and diagnosis module is responsible for identifying and locating
HTs in the system, while the network interface provides a secure communication channel
between the NoC and the external world. The authors used a NoC simulator (NoCTweak)
to test the TCRA under different scenarios, including single and multiple HTs. The results
of the experiments show that the proposed approach effectively mitigates the impact of HTs
on NoCs. The TCRA outperforms other methods regarding average throughput, packet de-
livery, and free link availability.

Table 2.2 – Positioning within the state-of-the-art in security frameworks for NoC-base many-
cores.

Author Security
Location Defense Mechanism Monitoring Detection Countermeasure

[Fiorin et al.,
2008]

NI, to protect
external
shared
memories

Data Protection Unit
(DPU), for memory
access control

Memory access
rights

Correctness of
access rights

Packet discarding;
negative
acknowledgment to the
initiator

[Fiorin et al.,
2013]

NI —
Throughput,
Latency, Resource
Utilization

— —

[Meng et al.,
2023]

SoC
Security analysis at
design-time of CFGs
(control-flow graph)

— — —

[Sharma
et al., 2021]

SND for
MPSoC and
Cloud of
Chips

SDNoC-based security,
security-aware routing

— — —

[Ruaro et al.,
2020]

NoC (SDN)

Secure SDN
configuration;
sub-network
authentication

Key authentication
for path
configuration
packets

Wrong
authentication
key

Packet discarding

[Kumar et al.,
2021]

Router and
NI

Trojan cognizant
routing algorithm
(TCRA),
Trojan-resilient network
interface.

— Error detection
code (ECD)

Routing algorithm and
ECD

This Thesis
PEs, NoC
and NI with
IO devices

Opaque Secure Zones
(OSZ), authentication,
adaptative routing,
secure NI for IO
devices

Session protocol in
OSZs, master-slave
comm. protocol,
packet
authentication

Missing packets,
unexpected data,
fail key auth.,
access attempts

Reroute, key renewal;
packet discarding,
warnining for a
security manager

Table 2.2 provides a qualitative comparison of the works discussed in this section.
The column Security Location denotes the system components endowed with security
mechanisms. Most proposals focus primarily on protecting the communication infrastructure,
encompassing NoC and NI components. In addition to employing these components, our
work uses PEs to monitor and configure NoC and NI peripherals at runtime.

The column Defense Mechanisms presents the security mechanisms adopted by
the authors. Our approach is distinct due to adopting opaque secure zones, which reserve

49

communication and computation resources for a specific application, together with secure
mechanisms for communicating with peripherals.

The Monitoring column lists the policies used for system monitoring. Here ap-
pears a gap in current literature, as fundamental mechanisms are firewalls or authentication,
lacking systemic mechanisms. The Detection column is a consequence of the monitoring
methods. As discussed later, our work monitors multiple events simultaneously, enabling the
detection of a broader range of security events.

Lastly, the Countermeasure column shows that the most common countermea-
sure is packet discarding, followed by rerouting. Besides incorporating these countermea-
sures, our work notifies a Security Manager about suspicious events. This enables this it to
know the system’s status and implement suitable measures to ensure its secure operation.

The reviewed proposals on security for NoC-based systems addressed frameworks
and mechanisms to treat different security threats. Despite these advances, the integration
of security mechanisms still needs to be improved, enabling a security manager to make
decisions using monitoring data to mitigate threats more effectively. This integration is the
primary goal of our work, aiming to create a comprehensive framework for security manage-
ment.

50

3. BACKGROUND KNOWLEDGE

This Chapter explains the concepts required to follow this Thesis. Section 3.1
presents the baseline NoC-based MCSoC. Section 3.2 presents the Opaque Secure Zones
(OSZ), the central security method used in this Thesis. Section 3.3 presents the legacy
communication proposal between OSZs and IO devices, which will be modified to mitigate
security issues. The Secure Network Interface for Peripherals (SNIP) is detailed in Sec-
tion 3.4. Finally, in Section 3.5, we present examples of attacks that Hardware Trojans can
carry out.

3.1 Baseline platform

The baseline MCSoC utilized in this work is the Hermes MultiProcessor System
(HeMPS) [Carara et al., 2009]. The main HeMPS platform features are presented on Fig-
ure 3.1:

Figure 3.1 – NoC-based MPSoC. Link controls (LC) are added to the control signals of NoCs
links, enabling to isolate ports individually.

• NoC-based system: the platform contains two NoCs. A PS (Packet Switch) data NoC
and a control NoC. Both adopt 2D-mesh topology. The data NoC uses duplicated
physical channels, enabling the adoption of distinct routing algorithms per physical
channel (detailed in Section 3.1.1). The control NoC uses broadcast as the default
transmission mode (detailed in Section 3.1.2). The two NoCs are completely disjointed
without hardware or software dependence in their accesses.

51

• Homogeneous system: all PEs have the same hardware architecture (Figure 3.1(b))
with a PS NoC router, a broadcast NoC router, a private memory, a MIPS-like pro-
cessor, a DMNI (Direct Memory Network Interface) module, a set of link control cells
connected to each router link.

• Distributed memory: each PE has a true dual-port scratchpad memory for instructions
and data while a message-passing API executes the communication between PEs.

• Applications are modeled as a Communication Task Graph (CTG). The CTG is a model
to represent functional parallelism, where an application is composed of independent
parts and thus is divided into tasks [Rauber and Rünger, 2013]. A graph node repre-
sents each task in a CTG, and the graph edges represent the communication between
these tasks (Appendix B).

• Peripherals are connected to the boundaries of the MCSoC [Ruaro et al., 2018], at
unused ports of the mesh NoC (e.g., South ports of bottom routers). Therefore, this
results in a regular floorplan for PEs, with peripherals distributed along the platform
perimeter.

This platform requires at least one peripheral, the Application Injector (AppInj). This
peripheral transmits the applications’ source code to the PEs through the data NoC.

The control flow signals of all links contain link control modules (LC). The function
of the LC cells is to isolate a given link. The granularity of the isolation is at the link level.
For example, blocking only the west link and continuing to transmit through the other links
is possible. The activation of the LCs occurs by the OS using a memory-mapped register
at each PE. Each bit of the LC register enables/disables a given link. Thus, the LC’s area
overhead is negligible since its implementation requires a small number of gates, a register,
and an FSM.

3.1.1 Data NoC

The data NoC transfers data messages, exchanged by applications. The data NoC
extends the NoC Hermes [Moraes et al., 2004] adopting duplicated physical channels, flit
width equal to 16 bits, input buffering, round-robin arbitration, credit-based flow control,
wormhole packet switching, simultaneous support for distributed XY routing and source rout-
ing (SR).

Duplicated physical channels ensure deadlock avoidance and full routing adaptivity.
The number of virtual or replicated channels required to avoid deadlocks is a function of the
network topology. For example, two virtual or replicated channels are sufficient to avoid
deadlocks in a 2D-mesh topology [Linder and Harden, 1991]. Due to the duplicated physical

52

channel adoption, the flit width is half of the original in the Hermes NoC to minimize the area
overhead.

The standard routing mode between PEs is the distributed XY routing algorithm.
The data NoC also supports SR, which is essential to determine alternative paths to circum-
vent broken paths due to an OSZ or to avoid infected routers. The mechanism to find an
alternative path to use in the SR is presented in Section 3.1.2.

A data packet, from the NoC point of view, has a header and a payload (Figure 3.2).
The packet header content controls the data NoC behavior, such as, routing, open and close
internal switching, and arbitration. While in [Carara et al., 2009] the packet header have
two fields (target and payload size), we adopt three fields to support the SR, the rerouting
mechanism and the communication with peripherals: (i) the source/target address with data
(D) or peripheral (P) packet flag; (ii) the XY or SR field that indicate the turns on each router
when use SR or the source/target address when use XY routing and; (iii) the payload size.

Source /
 Target

D
/
P

XY /
SR

Payload
 Size

Service Payload (optional)Service
header

Packet header Packet payload

Message header Message payload

Figure 3.2 – Packet and message structures - a flag (D/P) in the target address field differ-
entiates data packets from peripheral packets.

The data NoC differentiates data packets from peripheral packets. Data packets
are those exchanged by tasks running in PEs, and peripheral packets are those transferred
between a task and a peripheral. A peripheral packet arriving in a boundary PE goes to the
peripheral, not the DMNI.

From the task point of view, a message is used by the kernel with two fields: (i) the
message header to control the data exchange between tasks or peripherals. The message
header has data such as: producer task ID, consumer task ID, service (e.g., message de-
livery, request for a message, task mapping, task allocation), message timestamp. (ii) The
message payload is an optional field with data to transmit to the task or peripheral. It may
contain, for example, user data or the object code of a task.

3.1.2 Control NoC - BrNoC

The BrNoC [Wachter et al., 2017] is a dedicated NoC, decoupled from the data
NoC. The BrNoC has the same topology as the data NoC, enabling the control of each port
individually (e.g., the North port in the dedicated NoC has an equivalent North port in the
data NoC). The default transmission mode is broadcast because it enables to reach PEs

53

in case of disabled links, to notify several PEs with one message, and to transmit with low
latency control messages.

When a given port receives a message in a broadcast, it is processed and broad-
casted to the neighbor routers (ports N, S, E, W), except to the port it came from. The
broadcast acts as a wave traveling through the NoC. According to the transmission mode,
the message may be transmitted to the port connected to the NI (local port). The BrNoC
supports five transmission modes:

• brTgt (broadcast with a target): a specific PE is the target of this message. The mes-
sage is broadcasted to all routers, but only the PE with the target address consumes
it. This mode may be used to find a new path after a message is discarded and notify
a specific PE to execute some action. The broadcast ensures that the message will be
delivered even if a link/router is faulty or disabled.

• brAll (broadcast to all PEs): all PEs consume the message. Therefore, all PEs are
interrupted, and the message type defines the action the PE should execute. This
mode may be used to freeze the tasks of a given application.

• brWt (broadcast without a target): all BrNoC routers consume the message, without
notifying the NIs. This mode executes actions related to the BrNoC management, such
as clearing specific data structures.

• brApp (broadcast to application): a specific application is the target of this message.
The message is broadcast to all routers, but only the PEs running tasks of that appli-
cation consume it. The verification is based on a memory-mapped register with the
application number AppReg. This mode is exclusive for secure applications and is
used on key management functions.

• unicast : this message is an answer to a brTgt message. The unicast message
follows the path defined by the brTgt message, in the reverse order to reach the source
PE (backtrack process). This mode may be used to return a new path. Due to the
limited payload size, each BrNoC router in the path sends a unicast message to the
source router so that the path can be completely received.

Figure 3.3 presents the internal architecture of a BrNoC router, for a 2D-mesh
topology. The router contains two control FSMs (Finite State Machines), two round-robin
arbiters and a centralized CAM (Content Addressable Memory) memory. In addition, routers
have a small area footprint since they do not have input buffers (the CAM acts as a buffer
shared by all input ports, storing all flits received for all ports), and each flit encapsulates a
single message.

Figure 3.4 details the flit structure (37 bits in blue) and one CAM row (51 bits, 37
from the flit plus 14 extra control bits). Each CAM row stores the flit contents (to enable

54

source target... used pending

...

Input

Arbiter

O-FSM

I-FSM

Output

Arbiter

CAM

North

South

East

West

Local

North

South

East

West

Local

Input

Ports

Output

Ports

Figure 3.3 – BrNoC architecture.

the broadcast) and control fields. The flit structure contains the fields: message ID (identi-
fication); source address; target address; message type (defines the action to execute and
the transmission mode); message payload . The tag to search in the CAM is the tuple {msg
ID, source address}. Each brNoC link contains the flit structure plus the req, ack and nack
signals.

The CAM size definition (number of rows) occurs at design time, and it is not a
function of the system size, ensuring scalability. Smaller CAMs can increase the delay in
handling the messages, while larger CAMs reduce this delay at the cost of larger silicon
area. The payload size may increase at design time to support services requiring larger
data to transmit. The payload size is also a trade-off between the amount of data to transmit
and the silicon area.

source target type payload my_hop out_port

8 bits 8 bits 4 bits 8 bits 8 bits 2 bits

pending

1 bit

used

1 bit

in_port

2 bits

msg ID

8 bits

control = 14 bitsflit = 37 bits

op_mode

1 bit

Figure 3.4 – Message (flit) and one row of BrNoC CAM memory.

The control structure of one CAM row contains the fields: in_port , my_hop, out_port ,
pending and used . The pending field signalizes the presence of a message to be handled.
The used indicates that the row is in use. The in_port stores the port identification from
where the message comes from. The unicast mode uses the fields my_hop and out_port .

The control NoC has two operation modes (op_mode field): global and restrict.
The global operation mode enables the control messages to pass through the LCs, even
if they are enabled. This operation mode allows PEs inside a secure zone to exchange
messages with the MPE. The restrict operation mode observes the status of the LC, i.e., if a

55

control message hits an activated LC, the message is discarded. This mode enables a path
discovery mechanism by the control NoC.

The I-FSM receives incoming messages and, if necessary, stores the message in
a CAM row. A handshake protocol (req, ack , nack) controls the I-FSM which is initially
in an idle state, waiting for incoming messages (req asserted in a given port). The input
arbiter chooses an input port to handle. Three conditions may assert the ack signal: (c1)
the tag is not in the CAM, and there is space in the CAM; (c2) the tag is in the CAM; (c3)
failed or isolated port, where an LC force the ack signal. The assertion of the nack occurs
when the tag is not in the CAM, and there is no space in the CAM. The router receiving the
nack unsets the req and tries later (action discussed in the O-FSM). When the condition
(c1) is satisfied, the I-FSM stores the flit in the CAM and sets the control bits accordingly.
Condition (c2) ensures that requests to already visited routers are discarded, avoiding cyclic
transmissions (i.e., livelocks) and the end of the broadcast when all routers are visited.

The O-FSM handles the messages stored in the CAM, using the same handshake
protocol. The output arbiter chooses a row to handle, according to the asserted pending
fields. All broadcast modes propagate the message to the neighbor routers, except the
in_port . According to the broadcast mode, the message also goes to all local ports (brAll),
or to the local port that matches the router address with the target field (brTgt). The pending
field is cleared when all broadcasted ports answer with an ack . If some broadcasted port
answer with a nack the arbiter selects another CAM row, enabling the selection of the current
row again. An example of message type using brWt propagation is the CLEAR, responsible
for freeing a CAM row, by clearing the used field. The unicast message uses the in_port ,
my_hop and out_port fields to answer a brTgt message. The unicast message forwards
the message to the port defined in the in_port field.

Path discovery using brNoC

Figure 3.5 presents a step-by-step example of a new path finding using the control
NoC. In this scenario, Router 1 communicates with Router 15 (XY path), but an OSZ inter-
rupts the communication. Using the control NoC, Router 7 starts a TARGET_UNREACHABLE
message to Router 1 (not shown in Figure 3.5).

When the message reaches Router 1, it starts a SEARCH_PATH message to find
a new path to Router 15 (Figure 3.5.a, red arrows).

Next, Routers 0, 2, and 5 receive the message through ports East, West, and
South, respectively. Then, these routers broadcast the received message to their neigh-
bors (Figure 3.5.b). As Router 6 has the LC activated in ports South and East and the
SEARCH_PATH message uses the restrict mode, the message is ignored in Router 6 (the
input req signal is masked, and the output ack signal is forced to high).

56

12

 0

 4

15
(hop 6)

 2 3

14
(hop 5)

13
(hop 4)

9
(hop 3)

5
(hop 2)

1
(hop 1)

12

 0

 4

15

 2

 6 7

 3

1413

9

5

1
(hop 1)

12

 4

15

 6 7

 3

1413

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

12 15

 7

1413

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

4
(hop 3)

3
(hop 3)

9
(hop 3)

12 1514

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

4
(hop 3)

3
(hop 3)

9
(hop 3)

13
(hop 4)

15

5
(hop 2)

1
(hop 1)

2
(hop 2)

0
(hop 2)

4
(hop 3)

3
(hop 3)

9
(hop 3)

13
(hop 4)

12
(hop 5)

14
(hop 5)

 (a) (b) (c)

 (d) (e) (f)

8 10 11 98 10 11 8 10 11

 6

 6 7

10 11

 6 7

10 11

 6 7

10 11

Opaque
Secure Zone

Opaque
Secure Zone

Opaque
Secure Zone

Opaque
Secure Zone

Opaque
Secure Zone

Opaque
Secure Zone

88
(hop 4)

8
(hop 4)

- backtrack path - backtrack path routers - source and target routers - OSZ boundary

Figure 3.5 – Example of path discovery using the BrNoC.

In Figure 3.5.c, Routers 3, 4 and 9 receive the message from ports East, South,
and South, respectively, and broadcast to their neighbors. Note that the message sent by
Router 4 is discarded in Router 5 because this router has already received the message from
the same source (msg ID/source address stored in CAM). Router 7 ignored the message
because the LC is active in the ports South and East, and Router 10 because the LC is
active in the ports West and North.

Next, Figure 3.5.d, the message is received in ports East and South of Routers
8 and 13, respectively, and sent to their neighbors. The Router 4 discard the message
because it has received the message previously. Router 10 ignores the message from
Router 9 because the LC is active in ports West and North.

In the next hop (Figure 3.5.e) the message is received in Routers 12 and 14. Router
12 sends it to Router 8, which ignores the message because it has received it previously.
Router 10 ignores the message from Router 14 because the LC is active in ports West and
North. Finally, in Figure 3.5.f, the SEARCH_PATH message reaches the target, starting the
answer step, with BACKTRACK messages.

In the answer, each router in the path sends a BACKTRACK message to the source
router. Initially, Router 15 sends a BACKTRACK message to Router 1 through the West port

57

(information stored in the in_port field). Next, Router 14 propagates the first message,
and then transmits a new BACKTRACK message to Router 1, with the payload having the
contents of the out_port field. Each router in path repeats this process, propagating the
previous BACKTRACK messages and sending a new one. The my_hop field controls the
process, finishing when the source router receives all BACKTRACK messages (my_hop=1).
Therefore the source router receives a number of BACKTRACK messages equal to the
number of hops in the path to the target. Each one of these messages contains the port to
reach the destination router in the payload. For example, the source PE (Router 1) receives
the following out_port values from the BACKTRACK messages: [W E E N N N].

When Router 1 receives a BACKTRACK message, the PE is interrupted to compute
a hop of the source routing path to Router 15. After receiving all BACKTRACK messages,
Router 1 computes the source routing path and resends the lost message. All subsequent
packets to this destination use the source routing path, which is stored in an OS structure.
The process to find a new path to a given target is executed once but can be repeated when
faults on the current path are detected.

3.1.3 Software Model

Scalability at the hardware level comes from PEs executing several tasks in parallel,
using the NoC to transmit multiple flows concurrently. However, large systems require high-
level management for controlling the deployment of new applications, monitoring resource
usage, managing task mapping and migration, and executing self-adaptive actions according
to systems constraints. The management of HeMPS occurs in the Manager PE, which has
a different kernel from the other PEs.

Task 1 Task 2 Task 3 ...

Task 2

Task 1

Kernel
PE

Kernel
PE

...

Communication System Calls

Task
Scheduling

Interrupt
Handling

Wrapper
Activation

MAC
Verification

Scratchpad Local M
em

ory

PE

Kernel
Manager

Kernel
Manager

App Mapping System Calls

Mutual
Authentication

Task
Migration

Shape
Definition

Key
Management

Scratchpad Local M
em

ory

Manager PE - MPE

(a) (b)

Figure 3.6 – Overview of the kernels: (a) Manager PE kernel controls the system and does
not execute users’ tasks; (b) Regular PE kernel manages users’ tasks.

58

At the Manager PE level, the local memory is reserved for the kernel without exe-
cuting the user’s tasks. The Manager PE executes activities as task mapping, task migration,
monitoring, authentication, and key management (Figure 3.6(a)).

At the regular PE level, a multi-task kernel acts as an Operating System (OS).
The platform adopts a paged memory scheme to simplify the kernel design. Examples of
actions executed by the kernel include task scheduling, inter-task communication (message
passing), and interrupt handling (Figure 3.6(b)).

Both kernels are written in C language. Only a small part of the code is written in
assembly language, which is responsible for executing context saving and handling hard-
ware and software interruptions.

Applications are written in C language. They are modeled as task graphs A = <

T , P, D, S >, where T = {t1, t2, ..., tm} is the set of application tasks corresponding to the
graph vertices; P = {p1, p2, ..., pn} is the set of peripherals corresponding to the graph ver-
tices. The D set represents the application descriptor which contains the communicating
pairs {(ti , tj), (ti , pr), (tj , ps), ..., (tm, pn)} with (ti , tj , ..., tm) ∈ T, (p1, p2, ..., pn) ∈ P. A pair (ti , tj)
denotes the communication from task ti to task tj (ti → tj), and a pair (ti , pr) denotes the
communication from task ti to peripheral pr (ti → pr). The S value indicates if the applica-
tions execute in normal mode (value 0) or secure mode (value 1). Figure 3.7 presents an
application following this model.

task
A

task
B taskC

taskE periph
1

taskD

Send(&msg, taskB)
Send(&msg, taskD)

Receive(&msg, taskA)
Send(&msg, taskC)

Receive(&msg, taskB)
Send(&msg, taskE)

Receive(&msg, taskA)
Send(&msg, taskE)

Receive(&msg, taskC)

IO_Send(&msg, periph1)
Receive(&msg, taskD)

taskA:
 taskB
 taskD
taskB:
 taskC
taskC:
 taskE
taskD:
 taskE
taskE:
 periph1

secure: yes

App.
Descriptor

Figure 3.7 – Application task graph example.

Tasks communicate using message-passing (MPI-like) primitives. The API pro-
vides two primitives: a non-blocking Send() and blocking Receive(). The main advantage of
this approach is that a message is only injected into the NoC if the receiver requests data,
reducing network congestion. To implement a non-blocking Send(), a dedicated memory
space in the kernel, named pipe [Carara et al., 2009], stores each message written by tasks.
Within this work, the pipe is a kernel memory area reserved for message exchanging, where
messages are stored in an ordered fashion and consumed according to it. Each pipe slot
contains information about the target/source processor, task identification, and the order in
which it is produced.

59

At the lower level, the kernel communicates with the data NoC with data_request
and data_delivery packets. The pipe and a message buffer enable packet retransmission to
inter-task and inter-manager communication, respectively. The support for IO communica-
tion uses a second API, with IO_Receive() and IO_Send() primitives, using a master/slave
communication model.

3.2 Opaque Secure Zone

Resource sharing is an essential feature of MCSoCs. Different applications may
execute in the same processor, share the NoC links, and shared memories. This feature,
resource sharing, is the source of issues related to security.

Security methods deployed at design time enable the adoption of sophisticated
and robust algorithms to provide solutions to the security problem since they do not have
limitations related to the execution time of the heuristics. However, design-time methods
do not apply to dynamic workload scenarios. Thus, these methods are limited to scenarios
where the workload is known beforehand without changing during the system lifetime.

Secure Zone (SZ) is a runtime approach adopted to limit resource sharing. It is
possible to classify such proposals using a set of orthogonal criteria [Caimi and Moraes,
2019]:

• Creation time: the definition of the SZ occurs at design time or runtime.

• Shape: the SZ may be discontinuous or continuous, with a rectangular or rectilinear
shape.

• Communication sharing: The SZ may allow flows belonging to sensitive applications to
share NoC links, or the flow inside the SZ is forbidden to other applications.

• Computation sharing: the SZ may allow tasks belonging to sensitive applications to
share the same processor or apply resource reservation to sensitive applications.

• Methods: the methods used by the SZs include cryptography, routing algorithms, spatial
and temporal isolation, rerouting.

Figure 3.8 presents examples of SZs. Discontinuous SZs (SZ2) require more effort
to prevent attacks (encryption or routing schemes) due to the exposure of the flows. In con-
trast, continuous SZs can imply internal fragmentation when using a rectangular shape due
to the reservation of resources without effective use (SZ1). A rectilinear shape (SZ4) pre-
vents internal fragmentation but needs dedicated routing mechanisms to avoid flows cross-
ing the boundary of the region.

60

Figure 3.8 – SZ1: continuous and rectangular, SZ2: discontinuous, SZ3: continuous, rect-
angular, and opaque, SZ4: continuous and rectilinear. Source: [Caimi and Moraes, 2019].

Continuous SZ (SZ1 and SZ4) still exposes the communication to attackers be-
cause flows belonging to other applications can transverse the SZ, allowing DoS, HT, and
timing attacks.

While some works define a secure zone by building routing paths that never cross
through certain PEs [Fernandes et al., 2016], the Opaque Secure Zones (OSZs) cre-
ates rectilinear shapes at runtime without computation and communication resource sharing
(SZ3, in Figure 3.8). They are named Opaque due to the isolation of the communication
by setting barriers that block traffic at the secure zone borders. The PEs of the OSZ are
reserved for running a single secure application. The only resource-sharing exception is
communication with I/O devices, which is further discussed on Section 3.3.

According to the previous classification, Opaque Secure Zones (OSZs) are cre-
ated at runtime and have a rectilinear shape without computation and communication re-
source sharing. The PEs of the OSZ are reserved for running a single secure application
(SZ3, in Figure 3.8). The only resource-sharing exception is communication with I/O de-
vices, which is further discussed on Section 3.3.

OSZ API

The OSZ method promotes the spacial isolation of applications by allocating, at
runtime, a specific region of the system to execute an application with security constraints,
hereinafter referred Appsec.

Definition 1. Secure Application (Appsec) is an application allocated and executed using
security mechanisms.

The OSZ method starts when the entity responsible for deploying new applications
into the system, the Application Injector, requests the execution of a new Appsec. The OSZ
method has four main phases:

61

• Shape Creation.
Defines a set of rectangular shapes, with enough PEs to execute all Appsec tasks. The
shape definition is a function of the number of Appsec tasks, and the number of tasks
that PEs can execute. For example, a 4-task Appsec with PEs executing 1 task, possible
shapes are: 4x1, 1x4, 2x2, 3x2 (with 2 PEs in excess).

• OSZ Location.
This phase searches the entire system for a set of free PEs, according to the shape set
defined in the previous step. Free PEs are PEs not executing tasks. One constraint of
the OSZ method is to avoid sharing the Appsec with other applications (spatial isolation).
Without a region with free PEs, this phase evaluates if task migration can free a set of
PEs to map Appsec in a given shape.

• OSZ Setting.
Once defined the region that will receive Appsec, the system manager executes the
task mapping in this region, and the Application Injector sends the object code of each
task (including a MAC to ensure the task integrity). After this step starts the third OSZ
method phase: OSZ setting. This phase comprises three actions: (1) activate the LC
to close the secure region; (2) remove PEs in excess from the region, if any; (3) notify
the system manager that the OSZ has been closed.

• OSZ Unsetting.
When Appsec finishes, all tasks send a message to the system manager, which will
send control messages to the PEs to release the OSZ. This phase comprises two
actions: (1) clear the task memory space to avoid data leakage; (2) open the LC.

The complete sequence diagram and in-depth explanation of the OSZ API functions
is found on Appendix D

3.3 IO Communication

The OSZ proposal [Caimi, 2019] supports communication with IO devices. Chap-
ter 4 discusses the pros and cons of the proposed IO↔OSZ communication, presenting a
new method to solve issues of the original proposal.

As mentioned in Section 3.1.3, the original OSZ support for IO communication
uses a dedicated API with a master/slave communication model, with IO_Receive() and
IO_Send() primitives. The PE is the communication master, and the peripherals are the
communication slaves. At the lower level, the kernel communicates with the data NoC
with IO_REQUEST, IO_DELIVERY, and IO_ACK packets. The IO_Receive() primitive sends the
IO_REQUEST from the PE side, and the peripheral answers with an IO_DELIVERY packet. The

62

IO_Send() primitive sends IO_DELIVERY from the PE, and the peripheral answers with an
IO_ACK packet.

However, in terms of hardware, an OSZ blocks all incoming and outgoing mes-
sages. Thus, IO communication requires selective control to send packets to peripherals
and receive packets from peripherals. This control is performed by the LC control mod-
ule, which is able to configure masks to the LC, allowing the controlled passing of pack-
ets through the OSZ borders. The masks are memory-mapped registers but can also be
configured through data packets, so PEs not close to the border can open the LC without
interrupting other PEs.

Figure 3.9 presents an example of a PE inside an OSZ communicating with a pe-
ripheral using the default XY routing algorithm. For each message exchange with a pe-
ripheral, the communicating PE first sends two configuration messages to the boundary of
the OSZ, to set the LC mask registers. When the mask configuration message arrives at
the target router, the LC control module intercepts the message (i.e., this message is not
consumed by the PE) to set the mask value (input mask or output mask value). The mask
configuration messages contain the direction (input or output) and the port side to mask
(e.g., north). Once an EOP (end-of-packet) is received, the opened port (input or output)
that received the packet is closed. This mechanism ensures that the secure zone receives
only one packet for each request.

Figure 3.9 – Example of IO communication through an OSZ. Source: [Caimi and Moraes,
2019].

The data NoC differentiates the API with a flag in the header field (D/P flag ex-
plained in Figure 3.2). This feature enables to block all data packets arriving at the boundary
of the OSZ (in both directions) and to apply selective management of IO packets.

63

3.4 Peripheral Interface

A Network Interface (NI) in a NoC-based system is the bridge between on-chip
components, such as processors, memory modules, and dedicated hardware modules, with
the NoC [Aghaei et al., 2020]. Its primary function is to manage data exchange by convert-
ing incoming and outgoing traffic into a format compatible with the NoC infrastructure. To
accomplish this, the NI offers flow control, buffering, routing, and protocol conversion, en-
abling seamless communication within NoC-based systems and contributing to their overall
efficiency and scalability.

In addition, the NI may also enable communication with input and output modules,
such as accelerators or shared memories, herein named IO devices. These IO devices of-
ten use standard protocols for data exchange. The NI integrates these modules into the
NoC infrastructure by adapting to their requirements and ensuring proper data encoding
and decoding (e.g., an IO device with AXI protocol [ARM, 2013]). This may require pro-
tocol converters, specialized buffer management, and tailored QoS policies to maintain a
high-performance data exchange with IO devices. Furthermore, NIs also offer configurable
interfaces that facilitate the integration of new hardware modules, fostering adaptability and
extensibility in NoC-based systems.

Incorporating security as a fundamental requirement in the design of NIs is essen-
tial to protect against threats and ensure the integrity of communication between on-chip
components and IO devices [Charles and Mishra, 2022].

Therefore, we adopted the “Secure Network Interface with Peripherals” (SNIP) [Co-
marú et al., 2023], which integrates security mechanisms to safeguard communication with
internal components in many-core systems.

The SNIP has six main modules, as illustrated in Figure 3.10. Two modules, Packet
Handler and Packet Builder, enable simultaneous communication to and from the NoC.
The Packet Handler stores the sensitive data for communication with the application in the
Application Table, while the Packet Builder retrieves it when necessary. FIFO buffers hold
data sent to or received from the IO device until consumption. The Key Generator produces
and updates authentication keys. The next subsections detail these components, except the
input and output buffers.

3.4.1 Application Table

The main function of the Application Table is to record the applications that are al-
lowed to access the IO device, as well as the information needed to authenticate and answer
packets sent by these applications. Each line of the table corresponds to a different commu-

64

Packet
Handler

Packet
Builder

Application
Table

Output
Buffer

Input
Buffer

IO Device

NoC Router

answer request

r/w r

SNIP

Key
Generatorkeys

params

Figure 3.10 – SNIP architecture and interfaces. Source: [Comarú et al., 2023].

nicating application. This application granularity reduces the table size (and, consequently,
area) compared to a table with task granularity. Figure 3.11 illustrates the fields available in
the table.

line valid appID k1 k2 path_to_SZ path_size

#1

#2

Figure 3.11 – Application Table with two lines, each corresponding to a different application
allowed to interact with the peripheral. [Comarú et al., 2023].

• Valid: flag used to signal whether the table slot is being used to store an application’s
information or not.

• AppID: ID of the application allowed to access the peripheral.

• K1 and K2: keys used by the authentication protocol to assert if a given packet was
not tampered.

• Path_to_SZ: sequence of turns a packet has to take in the network to reach the OSZ.
This field is required to send messages to the application through source routing.

• Path_Size: contains the size of the Path_to_SZ, which may have up to 6 flits.

65

The SNIP handles paths from one up to six flits, making the Path_to_SZ the largest
field on the table. To avoid passing large busses through the table interface, Path_to_SZ is
broken into six segments, each one corresponding to a flit in the path. Only one segment
can be read or written at a time.

The Application Table works as a Content-Addressable Memory (CAM). To access
the selected line, we must inform the appID of the application we are looking for. The table
itself searches the correct line and makes it available for reading or writing. In a CAM, the
information used to distinguish each line (here, the appID) is called a tag.

Furthermore, the table offers two separate interfaces. The primary (read-write)
interface is connected to the Packet Handler, while the secondary (read-only) interface is
connected to the Packet Builder. This separation enables the SNIP to send and receive
messages simultaneously.

3.4.2 Packet Handler

The SNIP acts as a slave to the system since it waits for incoming packets to
define its action. The Packet Handler is responsible for receiving packets from the NoC and
responding appropriately. It executes all the decision-making, acting as a manager to the
other components.

Each packet arriving at the SNIP contains two header flits (target and payload size),
followed by a set of flits corresponding to the message header and, optionally, the payload
flits. The packet handler reads the message header, storing relevant flits (e.g., service,
appID, path) into registers to avoid buffering the packet that could cause NoC contention.

There are four different services the packet handler treats:

IO_INIT: this service is used by the Manager PE to set the k0 value of the SNIP, which is the
key utilized to obfuscate data between the MPE and the SNIP throughout the platform
execution.

IO_CONFIG: used to register a new application in the SNIP table, thus granting it autho-
rization to access the IO device. The received packet contains the appID, the pair
of authentication keys {k1,k2} and the path_to_SZ . Following the authentication pro-
tocol, appID is obfuscated using k0. By the end of handling, a new line has been
allocated in the Application Table, where all values are stored.

The SNIP is accessible to the applications through the IO Communication API,
discussed in Section 3.3. The packets themselves were modified to contain the information
needed for the authentication process, that is further explained in Section 4.3.

66

IO_REQUEST: is sent by the application to request data from the peripheral. The packet
encodes the tuple {appID,k1,k2}. When the packet is received by the SNIP, the Appli-
cation Table performs a crypto search. If a matching application is found, the packet
is said to be authentic. Only if the incoming message is successfully authenticated,
the SNIP answers the application with an IO_DELIVERY packet containing the data re-
quested. This outgoing packet is sent through the path configured in Path_to_SZ and
also contains the authentication flits, for verification on the application side.

IO_DELIVERY: carries data the application wants to convey to the peripheral. It also con-
tains the tuple {appID,k1,k2}. The authentication process is the same as the per-
formed for the IO_REQUEST service. If the authentication succeeds, the data contained
in the packet is relayed to the peripheral, and the SNIP answers the application with
an acknowledge message (IO_ACK service).

3.4.3 Packet Builder

For the SNIP to communicate with applications, it needs to be able to answer to in-
coming messages. The Packet Builder module is responsible for assembling those answers
and sending them through the data NoC.

Once the Packet Handler decides to send a message to an application, it notifies
the Packet Builder through the signal answer_request (Figure 3.10) and informs the packet
parameters: service defines the type of message to build, while appID specifies which ap-
plication to send it to.

3.4.4 Key Generator

The Key Generator creates the keys used in the Authentication Protocol. This mod-
ule produces {k1, k2} keys, using a Linear-Feedback Shift Register (LFSR) as a pseudo-
random key generator. Although an LFSR is not considered the most robust method to
generate pseudo-random numbers, it provides a distributed and area-efficient way to gen-
erate the authentication keys. For the IO_CONFIG service, the LFSR uses appID as a seed,
and k1 is obtained after n rounds in the LFSR and k2 after p more rounds.

67

3.5 Hardware Trojan - HT

In Section 2.2.1, we presented an overview of contemporary research involving
Hardware Trojans (malicious hardware). This Section describes HT types and effects in the
context of this Thesis.

HTs can be classified into two categories according to their activation mechanism:
always-on Trojan and trigger Trojan [Shakya et al., 2017]. Always-on HTs are easily detected
using, e.g., side-channel analyses. HT triggers include time and physical condition (internal
triggers) or user input and component output (external triggers). Trigger HTs are not easily
detected since they are usually in sleep mode, being wake-up by some event.

Weber et al. [Weber et al., 2020] detail the insertion of an HT in an open-source
NoC. Figure 3.12 shows the attacks explored in [Weber et al., 2020]. The system contains
two hardware layers, the trusted Processing Elements (PEs) and the untrusted NoC. Distinct
PEs execute tasks A and B (TA and TB), being an application with security requirements, and
TZ references a malicious task. TA sends data to TB, represented by the green arrow.

task A task B task Z

A
Z

B

task A task B task Z

A
Z

B

Processing Element
trusted hardware

NoC
un trusted hardware

(i) (ii) (iii)

task A task B task Z

A
Z

B

X

X blocked messageinfected messageregular message
Legend:

Figure 3.12 – Representation of attacks that an HT may execute. (i) misrouting, (ii) local
port blocking and (iii) packet duplication. Source: [Weber et al., 2020].

The reported attacks include:

• Misrouting - Figure 3.12(i). TZ configures the HT to misroute the TA outgoing pack-
ets. Consequently, TA transmits packets to a PE, which is not waiting for data, or to
an invalid address. These packets are not consumed, resulting in a DoS attack that
obstructs other flows and may block the entire NoC operation.

• Local-port blocking - Figure 3.12(ii). The application is interrupted, and the result
may be catastrophic for critical applications, as in autonomous driving.

• Packet duplication attack - Figure 3.12(iii). During the attack, packets generated by
TA goes to TB and also to TZ , leaking sensitive data for a malicious task.

68

4. SEMAP - SECURE MAPPING WITH ACCESS POINT

This Chapter presents the second original contribution of this Thesis, the Secure
Mapping with Access Point (SeMAP), a proposal enabling the mapping of multiple OSZs
simultaneously, protecting secure applications (Appsec) against unauthorized accesses, and
ensuring the availability of paths to the IO devices. The main publication related to SeMAP
is:

SeMAP - A Method to Secure the Communication in NoC-based Many Cores
Faccenda, Rafael Follmann; Comarú, Gustavo; Caimi, Luciano Lores; Moraes, Fernando Gehm.
IEEE Design & Test, vol. 40(5), pp 42-51, October 2023.

The goal of this Chapter is to fulfill objectives SG1 to SG4. These objectives seek
to establish secure communication between IO devices and Appsec running within an OSZ.
Given that the peripherals are located outside the OSZ, it becomes necessary to create
openings in the OSZ to enable the flow of incoming and outgoing messages with these IO
devices. These openings are named Access Points, as defined in Definition 2.

Definition 2. Access Point (AP) is a controlled OSZ opening, enabling an Appsec to commu-
nicate with IO devices.

Figure 4.1 illustrates an MCSoC with an Appsec that communicates with a periph-
eral. This Figure also presents concepts used in this Thesis: peripherals (IO device and
Secure Network Interface for Peripherals - SNIP), PE, path, AP and OSZ. Note that an
Appsec communicate with IO devices. The term “peripheral” refers to an IO device and an
SNIP responsible for managing the security aspects of the IO communication.

IO

SNIP

IO

SNIP

IO

SNIP

IO

SNIP

PEPEPEPE

PEPEPEPE

PEPEPEPE

PEPEPEPE

MCSoC: Many-core Systems on Chip

p

Peripheral: contains an SNIP and an IO device,

IO devices may be shared memories, hardware

accelerators, communication interfaces

PE: Processing Element - contains a processor,

network interface, local memory, and the NoC

router

 p: example of a path between the SZ and a

peripheral, exposed to security threats

AP: Access Point - opening in the SZ boundary

enabling communication with peripherals

OSZ:Secure Zone - an isolated region reserved

to execute an application with security

constraints

AP

Figure 4.1 – MCSoC with an OSZ and IO communication terminology.

69

At the same time that the AP enables the communication of an Appsec with IO
devices, it introduces vulnerabilities that attackers can exploit. Assuming as trusted the
control NoC, MPE, SNIP and OS, the threats are as follows:

• Forged packets entering the OSZ through the AP can cause attacks such as DoS
(denial-of-service) [Charles et al., 2020b], spoofing [Rout et al., 2020], and data corrup-
tion. The effects of these attacks include performance degradation up to the complete
application hang.

• Malicious packets to peripherals may execute DoS, spoofing, eavesdropping, and data
corruption. Besides modifying the application data stored, with unpredictable effects,
the intruder may steal sensitive information stored in the IO device.

• The exposed path is prone to Hardware Trojans (HTs) and side-channel attacks (SCAs).
The HT may access the packet content, corrupt the original data, execute an eaves-
dropping attack, misroute, or block packets [Daoud and Rafla, 2019b, Manju et al.,
2020, Ahmed et al., 2021].

• The IO device itself may be malicious and execute DoS attacks or transmit the appli-
cation data to an intruder.

Therefore, to prevent DoS attacks, spoofing, and eavesdropping, not allowing ma-
licious packets to enter into the OSZs or peripherals, nor malicious IO devices performing
unauthorized data injection, we follow the security principles defined in [Caimi and Moraes,
2019]:

1. Differentiate the PE↔PE communication from the PE↔Peripheral: this differentiation
prevents malicious applications from trying to inject packets into OSZs.

2. Master-slave communication: the PEs inside the OSZ must initiate all IO transactions.
Thus, the PEs of the OSZ discard all unexpected packets.

3. IO Packets must be signed to ensure authenticity and that they come from/to the cor-
rect peripheral.

4. Avoid unreachable resources, i.e., an OSZ may not block access to peripherals.

The remainder of this Chapter is organized as follows: First, an analysis of the
previous method for IO communication is presented, along with an introduction to SeMAP
in Section 4.1. This is followed by a detailed description of SeMAP resource management
implementation in Section 4.2. Next, Section 4.3 discusses the protection of message ex-
changes. The Chapter concludes with a presentation of results in Section 4.4 and final
remarks in Section 4.5.

70

4.1 MCSoC Partitioning for Security

The proposal presented in [Caimi and Moraes, 2019], discussed in Section 3.3,
named Dynamic SZ (DSZ) focuses on mapping flexibility. OSZs can be mapped at any
region of the MCSoC, respecting the restriction of not blocking paths to peripherals by always
keeping a distance of one PE between OSZs. Figure 4.2 illustrates a system that follows the
DSZ method with three mapped secure zones. Note the absence of the SNIP module in this
proposal.

IOIO

MPE

T1

T2

Ta
AP

OUT

AP

IN

AP

IN

AP

IN

AP

OUT

AP

OUT

p2

p3

p1

SZ1

SZ2

SZ3

Figure 4.2 – Example of Dynamic SZ method, adapted from [Caimi and Moraes, 2019].

In the DSZ method, the APs are opened for each communication transaction, and
their position is defined based on where the packet will pass following the XY routing. The
task that starts an IO communication opens two unidirectional APs (AP IN and AP OUT
in Figure 4.2), transmitting a control packet to each OSZ border to be opened. The bor-
der router, then, receives this control packet and sets the AP to allow the crossing of one
data packet. Once the data packet passes through the AP, it is immediately closed. This
method ensures that only one packet traverses the AP per transaction, minimizing attack
attempts. On the other hand, if multiple tasks communicate with peripherals, several APs
can be opened simultaneously (SZ1 in the Figure), increasing the attack surface. Packets
to traverse the APs must meet two conditions: (i) be IO packets; (ii) match the key shared
by the IO device and the Appsec. The packet is discarded otherwise.

The mapping flexibility brings the masking effect. Consider Figure 4.2 with only
SZ1 and SZ3 mapped and running in the system, communicating with IO devices as shown
by the arrows p1 and p2. When SZ2 enters in the system, it blocks path p2, which connects
the IO device to SZ3. Thus it is necessary to compute a new path using source routing. The
PE closest to the IO device computes the new path (p3), transmitting it to the IO device for
subsequent data transmissions. This approach adds a security threat, as it involves a PE
not related to Appsec, allowing it to know the location of the AP and use this information to
initiate an attack.

71

Despite the DSZ application mapping flexibility, there is a restriction related to the
task mapping inside the OSZ, named alignment effect. The DSZ does not allow two or more
tasks on the same X or Y coordinate to communicate with peripherals because the DSZ
authorizes only one transaction per AP. If two tasks are aligned, both activate the same AP,
but only one packet passes through it, thus blocking one of the tasks.

As an alternative to solve the aforementioned issues, SeMAP restricts the Appsec

mapping and allows only one bidirectional AP per OSZ. The goal is to have a single aperture
for all the IO transactions to reduce the attack surface. Besides that, the System Manager
reserves rows and columns to run only applications without security constraints, named Gray
Areas (GA) – Definition 3.

Definition 3. Gray area (GA) is an MCSoC region where applications without security re-
quirements are mapped. The set of PEs in the GA must provide paths to all peripherals
connected to the system.

The routers in the GA never receive an OSZ, which means that communication
flows will not be affected by the arrival of new applications, therefore solving the masking
effect of the DSZ and ensuring reachability. The PEs outside the gray area are part of the
Restricted Area, where the OSZs are mapped.

Figure 4.3 illustrates an example of MCSoC with GA. The gray-colored tiles repre-
sent the gray area PEs. In addition, three Appsec mapped in the restricted area with at least
one side juxtaposed to the GA, guaranteeing a path to the IO devices. The peripherals are
attached to the north side of the system for the sake of simplicity. SeMAP does not restrict
peripherals to a given system side but requires the peripherals to be connected to a router
belonging to a GA.

IO

SNIP

IO

SNIP

AP

SZ1

SZ2

SZ3

T1 TaT2

AP AP

MPE

Figure 4.3 – Gray and restricted areas. Three Appsecs mapped on the restricted area, each
with an Access Point (AP). The path AP↔Peripheral is defined by source routing.

72

Next sections detail the SeMAP method, starting from the resource management
that now needs to consider the GA to map OSZs, applications, and tasks (Section 4.2),
followed by the mechanisms to protect the message exchange between IO and Appsec, which
include the SNIP and the authentication protocol (Section 4.3).

4.2 Resource Allocation with Gray Area

Due to the proposal of gray and restricted areas, it is necessary to create new
algorithms that define the shape and location of OSZs. The task mapping must also consider
the AP location to reduce the hop count to the IO devices the Appsecs communicate with.

The GA must be continuous, with at least one row and one column of the MCSoC,
including the border side(s) of the MCSoC where peripherals are connected. Figure 4.4 ex-
emplifies 3 different GA configurations. Following these constraints, any packet that arrives
at any GA router can find a path to the peripherals.

The GA is defined at the system startup according to the expected workload. Once
the MPE selects the rows and columns of the GA, it is impossible to change the regions
reserved for secure and non-secure applications at runtime.

MPE

IO

SNIP

App

Injector

IO

SNIP

AP AP

MPE

App

Injector

IO

SNIP

IO

SNIP

AP

 MPE

App

Injector

AP
IO

SNIP

IO

SNIP

AP

AP

Figure 4.4 – Examples of gray and restricted areas.

4.2.1 OSZ Shape, Location and Mapping

The definition of the OSZ shape now prioritizes shapes having the width of the
restricted area. This method improves system utilization, avoiding PEs without access to
the gray areas. Figure 4.5(a) shows an example of two applications mapped into a restricted
area: one with three tasks (orange) and the other with four tasks (red). Figure 4.5(b) shows
possible shapes for a 3-task application: 3x1 and 2x2 with one PE in excess. Since the

73

restricted area is 3x3, the first shape is 3x1 for having the same width as the restricted
area. The 2x2 is still valid and can be mapped if the 3x1 shape does not fit in the system.
Figure 4.5(c) presents the possible shapes for a 4-task application: 2x2, 4x1, and 1x4. In
this case, the only option is the 2x2 since the latter two options do not fit in the 3x3 restricted
area. One can see that the second application isolated the bottom right PEs from the GA,
which is why the preferred shapes are the ones with the same width as the restricted area.

MPE

3

Tasks

4

Tasks

4x1

1x43x1 2x2 (1 excess)AP

AP

Mapping

(a)

3-tasks

shapes

(b)

2x2

4-tasks

shapes

(c)

Figure 4.5 – Illustration of OSZ shapes in a restricted area.

The process for selecting the location of the OSZ employs a Sliding Window Search
(SWS) algorithm, as detailed in Chapter 3. This algorithm begins its search from the row
or column closest to the peripherals and furthest from the intersection of the GA, defined
as the point where a GA row and column intersect. The SWS algorithm aims to identify a
suitable region for placing the OSZ, focusing on areas with available PEs adjacent to the
GA. As depicted in Figure 4.6(a), the SWS initiates its search near the top row, which is the
peripherals’ side. The search progresses horizontally (indicated by the horizontal orange
arrow), moving from left to right. Upon encountering the GA column, the SWS alters its
course and proceeds vertically downwards (as shown by the vertical orange arrow). The
algorithm opts for an alternative shape if the initial shape selected for the OSZ does not fit
within the available space. In cases where it is not feasible to map the Appsec due to space
constraints, the application will be scheduled for mapping at a later time, specifically after
the completion of another application.

After defining the OSZ shape and coordinates, the next step is task mapping. The
system manager knows the tasks that communicate with peripherals. The system manager
uses this information to map first these tasks near the AP and then the remaining tasks. In
Figure 4.6(b), blue arrows represent the direction in which the manager maps the tasks with
IO communication and yellow arrows represent the mapping of the remaining tasks. It is
important to note that the rectangle reserved to map the application ensures minimal hop
count between communicating tasks, as its size in terms of PEs is equal or close to the
number of the Appsec tasks.

74

AP

(a) (b)

MPE

IO

SNIP

IO

SNIP

1st

2nd

Figure 4.6 – (a) Sliding Search Window (SWS); (b) directions of task mapping inside the
OSZ.

4.2.2 Access Point (AP) Definition

The AP can be mapped at any router port in the OSZ border adjacent to the GA.
The AP is mapped in the OSZ top-left or top-right router by default, according to the GA
position. If the OSZ is at the top of the restricted area, the AP is mapped at the north
port of the top-middle router. Figure 4.5 presents both cases: the AP of orange OSZ is in
the middle-top position, while the purple OSZ is a default case, with the AP at the top-left
position.

Note that this is the first default positioning of the AP, meaning that there is the pos-
sibility to change the AP location periodically or whenever suspicious behavior is detected.

4.2.3 IO Path configuration

PEs inside the OSZ does not use the default XY routing algorithm to reach the
peripheral because the SeMAP forces them to follow a route that passes through the AP
and GA. Thus, the packet follows the source routing algorithm, with each hop to take already
defined by the source.

The first communication of a given task with a peripheral fires a path configuration
heuristic. Since the OS knows the AP, the gray area routers, and peripheral locations, it com-
putes the path to the peripheral, passing through the AP. The MPE is in charge of calculating
and configuring the returning path (peripheral→AP) to the application, explained further in
Section 4.3.

75

IO

SNIP

TASK

AP

N

WW

N

N

E

N

S

W

S

S

E
E S

Figure 4.7 – Example of SR path from/to task to/from peripheral through AP.

First, the OS computes the path PE→AP, then the path AP→peripheral, according
to the gray area shape. The algorithm builds the route by going first to North until reaching
the AP horizontal coordinate. Next, it goes to East or West according to the AP location.
After reaching the AP, the route follows the gray area, in the same manner, going North first,
then East or West towards the peripheral.

Figure 4.7 illustrates an example of a path computation between “Task” and periph-
eral. There are two paths: path A, the yellow arrow from Task→IO, and B, the black arrow
from IO→Task. The circles show each of the ports taken for each of the paths. Therefore,
path A is [N, W, W, N, N, E, N], then, path B is the opposite in reverse order [S, W, S, S, E,
E, S].

4.2.4 DSZ and SeMAP comparison

This Section presents the performance of applications considering the two methods
for communicating with peripherals: DSZ and SeMAP. Figure 4.8 presents the applications
mapping with their respective paths in two scenarios to evaluate the methods of commu-
nication with peripherals. In the first scenario, (a) and (b), the system receives the DTW
(Dynamic Time Warping) application at startup. At 5 ms, a new application enters the sys-
tem (MPEG decoder). Note that the DTW DSZ (Figure 4.8(a)) has two paths broken (red
arrows) by the MPEG, firing two path search computations (due to the “masking effect”). At
9 ms, a PC (Producer-Consumer) is mapped, also blocking two DTW paths. A second sce-
nario, (c) and (d), is evaluated, swapping the DTW with MPEG. In the first scenario (DTW
in the left corner), the IO communication volume (number of messages exchanged with the
peripherals) is higher.

76

(a) DSZ (b) SeMAP

(c) DSZ

MPEG

PC

BANK

RECOG

DTW

AP

IO

SNIP

IO

SNIP

IO IO

BANK

RECOG

MPEGDTW

PC

Scenario 1

IO

SNIP

PC

(d) SeMAP

START

PRINT

IO

SNIP

DTW

AP

IO IO

START

PRINT

PC

DTWMPEG

Scenario 2

MPEG

Figure 4.8 – Application mapping to evaluate the methods to communicate with peripherals.

Figure 4.9 presents the iteration latency for DTW and MPEG applications. The y-
axis is the time required to execute each application iteration (in µs), and the x-axis is the
iteration number. Graphs omit the first five iterations, considering these as the warm-up
period. Each graph has 4 curves:

• Baseline (black line): execution of the applications without communication with pe-
ripherals. Input data is assumed to be stored in the local memories, and results are
also stored in the local memories. Simulating the baseline MCSoC aims to evaluate
the overhead due to the communication with peripherals.

• Single DSZ (blue line): only the reference application (DTW or MPEG) executes in
the system. The goal of simulating the DSZ approach without other applications is to
evaluate the DSZ method in the absence of the masking effect.

• DSZ approach (red line) using evaluation scenario presented on fig. 4.8(a).

• SeMAP approach (green line) using evaluation scenario presented on fig. 4.8(b).

Comparing SeMAP and Single DSZ versus Baseline, the latency per iteration
increases 1.2% (MPEG) to 7.3% (DTW) when there is IO communication (average values).
The latency increases due to the: (i) non-minimum paths; (ii) master-slave communication

77

 660

 680

 700

 720

 740

 760

 780

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T
im

e
 (

µ
s
)

Iteration

Baseline
Single DSZ

DSZ
SeMAP Execution time:

18.26 ms (baseline)
18.44 ms (single DSZ)
18.51 ms (DSZ)
18.37 ms (SeMAP)

(a) DTW iteration latency.

 2280

 2300

 2320

 2340

 2360

 2380

 2400

 2420

 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
im

e
 (

µ
s
)

Iteration

Baseline
Single DSZ

DSZ
SeMAP Execution time:

13.82 ms (baseline)
13.91 ms (single DSZ)
13.94 ms (DSZ)
13.98 ms (SeMAP)

(b) MPEG iteration latency

Figure 4.9 – Iteration latency using the baseline MCSoC, DSZ and SeMAP.

protocol, i.e., all transactions started by the Appsec; (iii) management of APs in the DSZ
method (opening and closing of APs at each transaction).

SeMAP reduces the latency per iteration (0.33% for MPEG and 2.7% for DTW,
best cases) compared to Single DSZ because it does not need to manage APs. On the
other hand, there is a latency per AP to start the application execution, as it is necessary to
compute the paths for each AP (25µs@100MHz - average value per path).

The masking effect, observed in DSZ (red curves), increases the iteration latency
when a new application enters the system, blocking the PE→Peripheral communication,
requiring to reroute the broken paths. In both scenarios, the masking effect only affects
few iterations, since this mechanism is activated once, being the alternative path taken for
the subsequent communications. The valley observed in the first scenario is due to the
application pipeline behavior, i.e., while a task is blocked waiting for a new path, the other
tasks continue to run. The performance degradation increases in scenarios with a larger
number of broken paths,

SeMAP is immune to the masking effect, presenting a small latency increase (0.2%
to 1.8%) when a new application enters the system. The network traffic increases when a
new application is admitted due to the transmission of the object code of the tasks. This
increase in network traffic explains the slight increase observed in latency.

78

In terms of overall application execution time, SeMAP has a minimal overhead -
1.3% for DTW (Baseline versus DSZ) and 0.5% for MPEG (Baseline versus SeMAP).

In addition to the advantage related to not recalculating paths due to the masking effect,
SeMAP presents advantages that justify its adoption:

1. single bidirectional AP per Appsec, reducing the attack surface;

2. simplified OSZ internal mapping due to the absence of the alignment effect;

3. AP management by the kernel is simplified, as there is no need to control the
opening and closing of APs for each IO transmission;

4. management of APs by the kernel is simplified, as there is no need to control the
opening and closing of APs;

5. APs are configured through memory-mapped registers and not by control pack-
ets;

6. there is no need to use a PE near to the peripheral to compute the path to the
OSZ, also reducing the attack surface.

Two potential weaknesses of SeMAP were identified. First, a communication bottle-
neck could occur at the AP, given that all IO communications go through the same router link.
We observed that this issue did not appear in the experiments, given that communication
with IO devices has a reduced rate, corresponding to the search for data to be processed
and subsequently sending the processing to the peripherals. Second, fragmentation of the
restricted area for Appsec. It is possible to defragment the system by using task migration.
Such defragmention is out of the scope of the Thesis, being a possible future work.

4.3 Securing the Message Exchange

The previous section detailed the system configuration defined at system startup
and the runtime mapping of secure applications (Appsec) into OSZs. Once an Appsec is
mapped into the system, the MPE releases its execution. This section delves into the se-
cure mechanisms to enable communication with IO devices. The Authentication protocol
is the key mechanism to enable this communication, elaborated in Section 4.3.1, which in-
corporates authentication flits into the packets. While confidentiality could be achieved by
encrypting the payload, this aspect is out of the scope of this proposal, as it can be ad-
dressed using established lightweight cryptography algorithms. Despite the obfuscation of
authentication keys via XOR operations, these keys are periodically renewed, as detailed in

79

Section 4.3.2. Section 4.3.3 discusses the hardware implementation of the APs, designed
to support the Authentication protocol. This section concludes with Section 4.3.4, which
describes the IO API and the services used in communication with IO devices.

4.3.1 Authentication Protocol

The primary goal of the Authentication protocol is to generate key values — k0,
k1, and k2 — which are used in packets to enable the OS, AP and SNIP to verify the
trustworthiness of the source and the legitimacy of the data. These keys are generated using
a Linear-feedback shift register (LFSR) and are obfuscated with XOR operations, allowing
them to traverse the GA, the non-secure area of the MCSoC. The protocol encompasses
four phases: Initialization, Application Deploy, Communication, and Key Renewal.

Initialization

The initialization phase occurs at system startup. The MPE generates unique keys,
named k0, for each PE and SNIP in the system and sends them to their respective PEs
and SNIPs. In this same process, the LFSR polynomial is configured. Since this action
occurs when there is no other application or traffic in the system, these values can be trans-
mitted without encryption, exempting the use of complex key distribution mechanisms such
as Diffie-Hellmann [Diffie and Hellman, 1976], which would result in software and hardware
overheads. Applications and IO devices do not have access to k0, guaranteeing the confi-
dentiality and integrity of these keys.

Application Deploy

The deploy starts when the MPE receives a New_App message from the Appinj .
Then, the MPE executes the mapping heuristic, and manages the OSZs - steps previously
detailed in Section 4.2.1. Figure 4.10 presents the sequence diagram of the Application
Deploy phase, fired when the Appinj requests the execution of an Appsec.

The MPE maps the Appsec and sends the mapping result to the Appinj , which trans-
mits the application object code (protected by a Message Authentication Code mechanism
[Caimi and Moraes, 2019]) to the selected PEs in the restricted area. In parallel, the MPE
randomly generates the tuple {appID, n, p}, where appID is a unique application identifier
and {n, p} integer values. The MPE transmits Task_Release messages to all Appsec PEs
with two initialization flits, i1 and i2 (Equation 4.1), with the tuple obfuscated by k0.

i1 = appID ⊕ k0PEx i2 = (n & p) ⊕ k0PEx (4.1)

80

NEW_APP

appID = rnd()

n = rnd()

p = rnd()

k1 = LFSR(appID,n)

appID = (f1) ⊕ k0

k2 = LFSR(appID,p)

PE1

TASK_ALLOCATED

[allocTasks == numTasks]

br_SET_AP(address, port)

AP_POSITION

(address, port)

TASK_RELEASE(i1, i2)

k1 = LFSR(appID,n)

appID = (f1) ⊕ k0

k2 = LFSR(appID,p)

path = SRpath

IO_CONFIG

(i1, i2, SRpath)

...AP PEnMPE

k1

k2

Cin = Cout = 0

AP

manager

SNIP

Figure 4.10 – Sequence diagram of the Application Deploy phase.

PEs restore {appID, n, p} upon receiving the initialization flits: appID = i1 ⊕ k0PEx ;
n = MSB(i2 ⊕ k0PEx); p = LSB(i2 ⊕ k0PEx). The appID is the seed for the LFSR. The {n, p}
values correspond to the number of shifts in the LFSR to generate the authentication keys
{k1, k2}. The reason to use an LFSR for key generation comes from its simple hardware im-
plementation and linearity. At the end of this step, all PEs have the same {k1, k2} keys, with-
out transmitting them through the NoC. The PEs notify the MPE through a Task_Allocated

message the correct object code reception and keys generation.

The MPE executes four actions after receiving all Task_Allocated messages:

1. elects a PE as “AP manager”, transmitting br_Set_AP via control NoC to it, with the
port to place the AP;

2. configures the SNIPs with {appID, n, p} and the path from the SNIP to the AP (IO_config),
also using i1 and i2 (Equation 4.1) with the SNIPs k0;

3. sends through the control NoC a message to block the OSZ links (not included in the
figure);

4. sends through the control NoC a message to start Appsec (not included in the figure).

The “AP manager” configures the AP through memory-mapped registers (MMR),
sets {k1, k2}, and resets the transaction counters {Cin, Cout}. The “AP manager” also broad-
casts the AP address for all PEs executing Appsec (AP_position).

81

At the end of the Application Deploy phase, all PEs and peripherals of Appsec have
the authentication keys {k1, k2}, so they can start the packet exchange.

Communication

This phase corresponds to authenticated communication between Appsec and pe-
ripheral, through the SNIP (Section 3.4). Due to the master-slave communication method,
tasks are responsible for starting the communication. Tasks may execute two services:
IO_delivery, to send data to a peripheral; IO_request, to read data from a peripheral. Both
services must include the tuple {appID, k1, k2} encoded in two flits (Equation 4.2).

f1 = k1PE ⊕ k2PE f2 = appID ⊕ k2PE (4.2)

The SNIP authenticates the received packet by retrieving the appID with the k1
value stored at the SNIP (Equation 4.3).

(f1 ⊕ k1SNI) ⊕ f2 == appIDSNI (4.3)

Then, the SNIP searches for a line in its internal table that matches the received
appIDSNI , which could result in:

1. No match: the SNIP packet handler discards the packet, avoiding DoS and spoofing
attacks;

2. Valid AppID and the SNIP are not executing any transaction: the packet handler re-
serves the SNIP for the transaction with the IO device (reading or writing).

The answer packet, SNIP→Appsec, has to pass through two authentication loca-
tions, at the AP and the target PE. The AP extracts k2 from the first flit. If it is equal to k2AP

(k2 value stored in the AP), the flit enters the OSZ. Otherwise, the AP discards the packet.
This lightweight XOR verification avoids attacks such as spoofing and DoS. After reaching
the target PE, the operating system (OS) extracts the AppID (f2SNIP ⊕ k2PE) from the packet
and verifies if the retrieved AppID matches the stored AppID.

Figure 4.11 presents the two authentication circuits: (a) authentication in the SNIP
– Equations 4.2 and 4.3, and (b) the verification of k2 made in the AP.

82

(a) (f1⊕ k1SNIP) ⊕ f2 == appIDSNIP

pass

k1AP

k2'

k2AP

=f1
appID'

k2'

Authentication

OK

f1

f2

k1SNIP appIDSNIP

=

(b) (f1⊕ k1AP) == k2AP

Figure 4.11 – Lightweight authentication modules.

Persistently using flits {f1, f2} with unchanged values over an extended period presents
an opportunity for malicious activities, such as an eavesdropping attack perpetrated by
a Hardware Trojan (HT). However, it is important to note that merely acquiring {f1, f2}
is not sufficient for launching an attack. Due to the use of source routing, an attacker
would not have access to the precise addresses of the SNIP and AP. Moreover, the AP
enhances security by monitoring the number of packets received through transaction
counters. To further increase the security of the system, the authentication mecha-
nism periodically renews {k1, k2}, as a precautionary measure, even in the absence of
detected threats.

4.3.2 Key Renewal

Transaction counters {Cin, Cout} complement the authentication protocol. These
counters are located in the AP, Cin counts the number of packets entering the OSZ, while Cout

counts the packets exiting the OSZ. To ensure secure communication, the condition Cin <

Cout must always be satisfied at the AP, in accordance with the master-slave communication
protocol. The process for renewing keys is triggered by two events: (i) Cout reaching a
predefined threshold (set to 64 in the current implementation); (ii) detection of a malicious
packet, characterized by a packet that contains the correct key but lacks the IO flag (a flag
indicating that the packet was generated by the IO API) or an unexpected value in Cin. Upon
detecting a malicious packet, the AP notifies the MPE.

Figure 4.12 illustrates the key renewal process initiated when the predefined thresh-
old value is reached. This process begins with the AP interrupting the “AP Manager” to
generate new keys. To ensure synchronization, the “AP Manager” first notifies all PEs within
the OSZ to complete any ongoing IO transactions and temporarily halt subsequent IO com-
munications. Once all PEs in the OSZ acknowledge the “AP Manager”, it generates two
new random numbers, {n, p}. These numbers are then transmitted to all PEs in the OSZ
(KEY_EVOLVE message through the control-NoC) for the generation of new keys {k1, k2}
using the LFSR with the previous k2 key serving as the seed. Concurrently, the “AP Man-
ager” also transmits these new {k1, k2} keys to the AP and resets the transaction counters

83

{Cin, Cout}. This initial phase of the key renewal process occurs entirely within the OSZ,
thereby mitigating any security risks associated with the keys.

n = 4 bits (random)

p = 4 bits (random)

k1 = LFSR(k2, n)

k2 = LFSR(k2, p)

k1 = LFSR(k2, n)

k2 = LFSR(k2, p)

KEY_ACK(appID)

[rcvdACK = PEs]

FREEZE_IO

FREEZE_IO

PREPARE_KEY

(appID)

k1 = LFSR(k2, n)

k2 = LFSR(k2, p)

UNFREEZE_IO

[s == threshold]

THRESHOLD

[pendingIO == 0]

PE1 ...AP PEnMPE SNIP

KEY_EVOLVE

(appID, n, p)

AP

manager

s = r = 0

k1

k2

REQ_SNIP_RENEW(AppID,n,p)

IO_RENEW

(i1,i2)

Figure 4.12 – Key Renewal sequence diagram

The final step in the Authentication protocol involves the “AP Manager” sending
a REQUEST_SNIP_RENEW message through the control NoC, with {AppID, n, p}, to the
MPE. It is necessary to make this request through the MPE because the SNIP does not
have an interface with the control NoC. The MPE then send an IO_RENEW packet through
the data NoC, using k0 key to obfuscate the contents of {AppID, n, p}, following the same
procedure as in the Application Deploy phase (as outlined in Equation 4.1). Upon receiving
this packet, the SNIP searches for the corresponding {AppID}, retrieves the stored k2 key
from its table, and then generates new keys using its LFSR. For this generation, the LFSR
uses the retrieved k2 as the seed and the {n, p} values from the packet as the number of
shifts in the LFSR.

4.3.3 Access Point Architecture

As explained in the previous section, the AP is the primary security barrier for pack-
ets attempting to enter the OSZ. This section details the implementation of the security
mechanisms within the AP. The AP is designed as a hardware module, integrated into all

84

router ports on channel 01, except the local port, to minimize the area overhead. The opera-
tion of the AP is controlled by memory-mapped registers (MMRs). Figure 4.13(a) illustrates
the “secure router” configuration, with 4 APs and 9 Link Control (LC) modules. Each LC
is responsible for enabling or disabling the links. The system uses five registers to control
these modules: k1reg, k2reg, THR, apReg (defines the AP to activate), and LCreg (defines
the LC(s) to activate).

When the MPE defines an OSZ, the PEs in the OSZ border activate all LCs of the
OSZ boundary, except the one connected to the AP, discarding incoming and outcoming
traffic. To discard a packet, regardless of its direction, AND gates mask tx/rx signals, and OR

gates activate the credit control flow signal.

PhD-Rafa - AP Details

data-Router

ch0

ch1

ch1ch0

AP

k1

AP

k2

ap

Secure Router

LClink

control

LC

L

C

L

C
L
o
c
a
l

k2Reg

k1Reg

apReg

LCreg

threshold

THR

(a) (b)

k1Reg

Cin

Cout

IOflag

data_in(11-0)

data_in(15-12)

renew_key

data_in

tx

eop_in

authenticated

data_out

rx

eop_out

data_out(15-12)

Access Point (AP)
k2Reg THR

A1=

<
=

<

=

=

Figure 4.13 – Secure Router and Access Point architecture.

The primary role of the is to enable or block communication. Figure 4.13(b) illus-
trates the AP implementation for verifying packet authenticity and managing access to the
OSZ. In this diagram, the elements depicted as blue squares – k1Reg, k2Reg, and THR –
are inputs derived from the MMMRs, as shown in Figure 4.13(a). The registers k1Reg and
k2Reg hold the values of the authentication keys, while THR represents the threshold at
which key renewal is triggered. Additionally, the registers Cin and Cout are responsible for
tracking the count of packets entering and exiting the OSZ, respectively.

The first packet flit has a tuple {packet type, obfuscated k2}. The following flits con-
tain the SR path and payload. For packets entering the OSZ, there are three authentication
layers (three inputs in the AND gate A1):

1. Packet from a peripheral : The system differentiates communication from PE↔PE and
PE↔IO using a 4-bit identifier in the packet header. When the first flit of the packet is
received at the data_in point, its four MSBs are compared against the IOflag to verify
if it is a packet from a peripheral.

1The data NoC has duplicated physical channels (Section 3.1.1). Only one channel receives an AP.

85

2. Successful authentication: For a packet to be authenticated successfully, k2 must cor-
respond with the k2Reg value. This process involves the first flit of the packet arriving
at data_in, where its 12 LSBs undergo an XOR operation with k1Reg. The result of
this operation is then compared with the k2Reg to confirm authentication.

3. Cin < Cout : Due to the master–slave communication protocol, the number of received
packets cannot exceed the transmitted packets.

Besides that, Figure 4.13(b) also shows that whenever the Cout register is equal to
the value of the threshold, the signal renew_key is activated and interrupts the PE to perform
the periodic key renewal. Cin increments when the packet satisfies the above conditions and
enters the OSZ. Outgoing packets traverse the AP and Cout increments. There is no need to
verify their authenticity at the AP (only at the SNIP).

4.3.4 IO API

Table 4.1 summarizes the services supported by the IO API. The first column refers
to the name of the service, the second column refers to who generates the packet with the
service, and the third column refers to the function related to the service.

Table 4.1 – Services supported by the IO API.
Service code Packet Source Function

IO_INIT Manager PE
Packet received at system startup with the initialization key
– k0

IO_CONFIG Manager PE
Configure a line of the SNIP Application Table with
{appID, path, k1, k2, status}

IO_RENEW Manager PE
Renew the appID keys {k1, k2} receiving parameters
{n, p}

IO_CLEAR Manager PE
Clear and deallocate the SNIP Application Table row
indexed by appID

IO_WRITE Application
Write data into an IO device
Application waits an IO_ACK from SNIP

IO_READ Application
Request data from an IO device
Application waits an IO_DELIVERY packet

IO_ACK SNIP
Acknowledgment related to a write operation in an IO
device

IO_DELIVERY SNIP Data from an IO device

The IO_INIT service is generated by the MPE only at system startup, to generate
the k0 keys for each system component. The IO_CONFIG, IO_RENEW and IO_CLEAR
services are related to SNIP management, with the MPE kernel being the only component
that generates these packets. The last four services are related to communication between
Appsecs and peripherals.

86

4.4 Results

This section is dedicated to assessing the impact and effectiveness of the security
measures proposed in SeMAP. It aims to demonstrate their efficacy in mitigating attacks
such as Denial of Service and Spoofing. To achieve this, the results provide an analysis and
discussion, contrasting scenarios where SeMAP is implemented against those without such
security measures.

Experiments use a 4x4 system, running a secure application (5-task MPEG bench-
mark), with two tasks communicating with two IO devices, one to read input data and the
other to output the results.

The first evaluation considers the cost of the authentication process, key renewal,
and overhead for starting the application. Figure 4.14 shows the iteration number executed
by the application on the X-axis and the iteration latency on the Y-axis. The baseline curve
corresponds to the latency without security mechanisms. The K0 curve corresponds to the
execution considering only the authentication process (without key renewal), K5 and K10
correspond to THR equal to 5 and 10 transactions, respectively. The execution time over-
head, w.r.t. the baseline system is 1.43%, 2.56%, 1.95% for K0, K5, and K10, respectively.
As expected, frequent key renewal (K5) increases the latency overhead, with an average
overhead smaller than 3% considering other benchmarks. The average overhead to start
the application is 97.08 µs (9,708 clock cycles @ 100 MHz), with an increase of 1.6% in the
total execution time due to the OSZ and AP configuration.

 2350

 2400

 2450

 2500

 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im
e

 (
µ
s
)

Iteration

Baseline
K0
K5
K10

Total execution time:
Baseline: 9.71 ms
K0: 9.85 ms
K5: 9.96 ms
K10: 9.90 ms

Figure 4.14 – Impact of authentication and key renewal frequency.

In a second evaluation, a malicious task injects invalid packets into the AP coordi-
nate to perform a DoS attack, with 26-flit packets at every 20 µs@100MHz, corresponding to
1.3% of the link bandwidth (Figure 4.15, iteration 8-14). Despite the reduced injection rate,
the baseline system has a 31.6% increase in iteration latency, given that invalid packets ar-
rive at a PE, and the OS must treat and discard them (on average, there are 116 interruptions
at each iteration). In the SeMAP proposal, the AP discards the packets without affecting the

87

iteration latency. This result shows that: (1) it is possible to generate a DoS attack not
flooding the NoC but inducing frequent interruptions in processors; (2) the effectiveness of
protecting applications against DoS attacks using the proposed mechanisms.

 2300

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DoS Spoofing
T
im
e

 (
µ
s
)

Iteration

K5
Baseline

Figure 4.15 – DoS and spoofing attacks on the baseline and K5 (key renewal after five IO
transactions) systems. The first five iterations are the simulation warmup period.

Figure 4.15, iteration 16-20, shows the effect of a spoofing attack with forged 26-
flit packets at every 75 µs@100MHz. In the baseline system, the application hangs in this
experiment if the forged packet arrives while the task waits for an IO packet (iteration 18).
For SeMAP, we assume that the forged IO packet arrives at the AP satisfying condition
Cin < Cout , with a forged f1. In this case, the attack is detected at iteration 17. The packet
arrives at the PE, with the OS discarding it due to the failed f2 authentication, starting a key
renewal, and re-executing the IO transaction. The cost is negligible, 18 µs. For an attack to
succeed, it is necessary to get the exact time the application is waiting for an IO packet and
correctly forge AppID, k1, k2. Given the reduced time between key renewals, the attacker
does not have enough time to perform a spoofing attack successfully.

Area Evaluation

Table 4.2 presents the results of the logic synthesis, using Cadence Genus - 28 nm
technology library, to assess the hardware impact of the security elements added to the sys-
tem. The synthesis includes the Secure Router, Control Router, and SNIP. Each processing
element (PE) has two routers (data and control routers), a processor, local memory, and
a network interface. The SNIP is configured with an application table with four rows, and
input/output buffers for 16 slots for 16-bit flits. The Data Router has two disjoint channels,
with 16-bit flits and 8-flit input buffers. The Control Router has a CAM size with 8 slots.

Table 4.2 shows that the SNIP has a low area overhead, representing 55.6% of the
data router area. Comparing the baseline router area (17,973 µm2) to the new communica-
tion infrastructure (control and secure router – 26,766 µm2), the area overhead corresponds
to 48.8% in the communication infrastructure.

88

Table 4.2 – Synthesis results - 28nm FDSOI - CADENCE GENUS 21.12-s068.

Synthesis

Results
SNIP

Control

Router

Secure Router – Figure 4.13(a)

Data

Router

1 AP

(Avg)

All LCs +

Regs
Total

Cell Count 3,666 3,203 7,049 169 50 7,776

Cell Area (µm2) 8,665 4,656 13,768 291 86 15,019

Net Area (µm2) 2,470 2,090 4,204 81 472 5,000

Total Area (µm2) 11,135 6,747 17,973 372 558 20,019

Timing Slack (ps)
@500 MHz 373 29 - - - 136

Total Est. Power (mW) 3.95 2.69 - - - 7.46

The communication infrastructure represents no more than 20% of the PE area (in
[Rovinski et al., 2019], the NoC represents 7.7% of the PE area). Thus, it is expected that
an increase of 50% in the communication infrastructure corresponds to an increase in the
PE area between 5% an 10%.

4.5 Final Remarks

In this Chapter, we introduced SeMAP, a methodo designed to enable secure ap-
plications (Appsec) to communicate securely with IO devices. The primary security concern
SeMAP addresses is the vulnerability inherent in the exposed path between the OSZ and
the IO device. SeMAP addresses this vulnerability through a combination of hardware and
software components:

• Hardware Components: APs and SNIPs. These components safeguard the communi-
cation endpoints.

• Software Components: Logical partitioning of the MCSoC into gray and protected ar-
eas, the implementation of an authentication protocol, and the mechanism for key re-
newal.

The SeMAP proposal effectively addresses issues related to communication with
peripherals, i.e. entities outside the OSZ. While the OSZ is designed to be “closed”, with
dedicated processing and computing resources exclusively allocated to a specific application
(Appsec), the potential for internal attacks within the OSZ, possibly produced by Hardware
Trojans (HTs), cannot be disregarded. The next Chapter shifts the focus to this inside per-
spective of the OSZ. It proposes a solution aimed at securing the communication of tasks
belonging to Appsec, thereby strengthening the internal integrity of the OSZ against such
threats.

89

5. SESSION MANAGER

This Chapter presents the third original contribution of this Thesis, the Session
Manager [Faccenda et al., 2021], fulfilling objectives SG5 and SG6. This mechanism is
designed to monitor, detect, and recover the system against attacks or faults that disrupt
the packet delivery via the data-NoC (e.g., an HT inserted in a router or link that drops
packets). The motivation for the Session Manager is the system vulnerability related to HTs.
The Security Manager (set of security procedures executed at the MPE) does not know the
presence of an HT, and in this case, an OSZ may be created with infected routers. The main
publication associated with the Session Manager is:

Detection and Countermeasures of Security Attacks and Faults on NoC-Based Many-Cores
Faccenda, Rafael; Caimi, Luciano; Moraes, Fernando Gehm.
IEEE Access, v.9, pp. 153142 - 153152, November 2021.

The objective of the Session Manager, protocol executed at the PE level, is to
supervise the sending and receiving of packets in the data-NoC. Every time the PE sends a
data packet, it also sends a control packet via control-NoC simultaneously to the same target.
This control packet carries the communicating pair unique identifier, named session key, or
Ks, which enables the packet receiver to verify its authenticity using Ks and confirm the
data-packet arrival. If the target PE detects any violation of the session protocol, it activates
the recovery protocol that requests the source PE to resend the data packet, avoiding the
original path. As the data NoC supports source routing, the control NoC creates a new path,
circumventing the affected region.

The following sections describe the threat model (Section 5.1), the Monitoring Pro-
tocol (Section 5.2), the Detection Protocol (Section 5.3), the Recovery Protocol (Section 5.4),
the evaluation of the Session Manager (Section 5.5), and the final remarks (Section 5.6).

5.1 Threat Model

As mentioned above, one identified vulnerability of the OSZ is the presence of HTs
that can block routers inside of the reserved area. Figure 5.1 illustrates an example of an
HT executing a DoS attack. Figure 5.1(a) presents a 3x3 system with two communicating
tasks: T1 and T2, and a deactivated HT in a router of the path. Figure 5.1(b) illustrates the
activation of the HT that blocks the router. Consequently, the router is now unable to receive
and send packets, inducing the DoS attack (Figure 5.1(c)).

In the scope of OSZs, the scenario represented on Figure 5.1 can happen inside a
secure zone, as the System Manager has no information about the presence of an infected
resource. Even without the possibility of having a malicious application running in the OSZ,

90

(a) (b) (c)

T1 T2 T1 T2 T2T1

Figure 5.1 – Hardware Trojan affecting communication. (a) T1 communicating with T2, in-
active HT in between. (b) HT activation. (c) HT blocking the packet transmission from T1 to
T2.

internal conditions can trigger the HT, such as a timer or another physical condition of the
system.

Therefore, HTs can attack OSZs internally, regardless of the triggering model. As-
suming the Data NoC as a 3PIP, it can be infected by HTs, requiring countermeasures to
avoid or mitigate the attacks. The threat model of the Session Manager assumed as trusted
the control NoC, PE, and OS. Thus, considering the following HT attacks [Philomina, 2021]:

• Packet Loss: one or more of the routers are dropping packets. Therefore, the target
never receives the message, and the tasks are left waiting, blocking their execution.
This is a DoS-type attack and is also known as a blackhole attack [Daoud and Rafla,
2019b].

• Packet Misrouting: one or more routers change the packet header, sending it to the
wrong destination. Consequently, the target PE stays blocked, waiting for the re-
quested packet, as in the previous attack.

• Port Blocking: one or more ports of the routers cannot send or receive packets, making
them stall and causing contention. In this case, the blocking can be temporary, affecting
only the packet latency, or it can also be permanent, blocking the application.

5.2 Message Exchange Monitoring

Message exchange monitoring is responsible for detecting problems related to at-
tacks during the packet transmission. The monitoring process of the Session Manager starts
by establishing a session (Definition 4). Figure 5.2(a) presents the sequence diagram with
each step of the protocol, from its creation up to its end.

Definition 4. Session: establishment of a virtual connection between a producer-consumer
pair, using the control NoC. The session is defined by a unique identifier, known only by the
communicating pair.

91

Definition 5. Session key (Ks): unique identifier for a communicating pair, represented by
the tuple {rnd , IDp, IDc}, being rnd a random number, IDp the producer task identifier, and
IDc the consumer task identifier.

The OS of each PE has a table to store Kss. In fact, Ks identifies a given session,
not following the “key” concept adopted in cryptography. We decided to keep this nomencla-
ture since it provides security to the session.

�����������	�
����	������
������

����� ���	
���

����

��	�

��	������

��	�

����

��

���

���

��

����
� ���

�
�������	���������

��������
������

�

�

�

�

�������
 �
�����

�����	���������

���
���������

�����	��������
�

�����	����������
�

�����	���������

�����	��������
�

�
������������

�� ��������

�
������������

�� ��������

����
���
����
��

�����	��������
�

��������!�"

#�$��%!�&���'

�

�

�

�

���

�������

��������

��
�

���

�������

�������

���"��

�������

���	
���

��
�

��������

���	
���

���"��

�����

��	�������������

���	
��������������

�(�

���

��

��

�� ��������

����
���
����
��

Figure 5.2 – (a) Sequence diagram of the Session Manager operation between the consumer
and producer tasks. (b) PE internal organization and the path taken from each step of the
protocol. Numbers 1-4 indicate each of the protocol steps temporally (a) and spatially (b).

92

The consumer task starts the session protocol in the first Message_Request packet
to be transmitted in the data NoC. Before sending the Message_Request, the kernel creates
the Ks (Definition 5) with the producer and consumer identifiers and rnd . Then, through the
control NoC, the consumer sends a Start_Session packet to the producer, with Ks in its
payload. When receiving this packet, the producer then creates the session at the producer
side using rnd and the task identifiers from the received Ks. When the producer delivers
this first requested message, it also transmits the Session_Ack control packet confirming the
successful session creation.

Following the sequence diagram of Figure 5.2(a), after the successful session cre-
ation on both sides of the communication, the tasks exchange messages as depicted inside
the loop section of the diagram:

1. Message_Req_Ctrl(MRC): Control message from the consumer task to the producer
task, indicates to the producer task an MR en route. Contains Ks and the sequence
number of the transaction to verify the correctness of the packet.

2. Message_Request(MR): Data packet holding the Message_Request service that asks for
the data from the producer task.

The OS only handles Message_Request if both messages arrive. Once confirmed
the arrivals, the OS searches for messages to the requesting task stored in the pipe. If a
message is found, the delivery starts immediately, else the OS registers the Message_Request,
and as soon as the data is ready, it is sent to the consumer task. The delivery is also com-
posed of two messages:

3. Message_Deliv_Ctrl(MDC): Control message from the producer task to the consumer
task, indicates to the consumer task an MD en route. Contains the same information of
the MRC .

4. Message_Delivery(MD): Data packet with Message_Delivery service that carries the
data from the producer task to the consumer task.

The data packet (MR or MD) enables the OS to retrieve part of Ks: {IDp, IDc} – steps
2 and 4. The control packet (MRC or MDC) contains the rnd value – steps 1 and 3. To validate
a data packet, the OS retrieves from the Ks table a line matching the received {IDp, IDc, rnd}.
The OS accepts the data packet iff the received values match with some line of the Ks table.

Packets transmitted in both NoCs may arrive in any order. If the data packet arrives
before the control packet, the OS stores it up to the reception of the corresponding control
packet. The same scenario occurs in the opposite reception order.

Step four then goes back to step one, until there are messages to be transmit-
ted. Once the consumer finishes its execution, it closes the current session sending an

93

End_Session message via control NoC to all tasks that produce data to this task. The pro-
ducers close the session on their side when they receive this End_Session message, clearing
all values used by the protocol.

Two important issues in a message exchange protocol are: (i) correct reception
order; (ii) network congestion by transmitted but not consumed packets. The message
exchange protocol adopted in the OS of the platform addresses these two issues. Data
transmission does not freely inject packets into the network, it stores them in the OS pipe
until a consumption request, that is MR packet. Thus, a packet injected into the network is
consumed by the receiver, ensuring message ordering and avoiding network congestion.

5.3 Detection

Three situations signalize a suspicious behavior to the OS: (i) a mismatch when
comparing the Ks from data and control packets; (ii) an unexpected packet arriving at the
data NoC without a previous message request; (iii) a timeout in the reception of the data or
control packet.

The Session Manager, thus, handles the attacks of the threat model (Section 5.1)
as follows:

• Packet Loss: the receiver PE knows that a data packet should arrive due to the recep-
tion of a control packet. The Session Manager uses a dynamic timeout mechanism to
detect this type of event.

• Packet Misrouting: for the receiver PE, the effect is similar to a packet loss. However,
the misrouted packet goes to a PE that was not expecting data, and as this PE did not
received a control packet, it discards the packet and signalizes the incorrect reception.

• Port Blocking: this attack may be permanent or intermittent. If it is permanent, it is
similar to a packet loss. If the attack is intermittent, the data packet may arrive with a
latency higher than a threshold, which is also detected by the timeout mechanism.

To increase the ability of the method to detect attacks and faults, the control NoC
may embed in the payload other parameters, such as a Message Authentication Code
(MAC), that could detect corrupted packets.

5.3.1 Dynamic Timeout

The detection of attacks adopts a timeout mechanism. This timeout is implemented
in hardware as a counter that interrupts the OS when reaches zero. The threshold value

94

that is loaded into the counter is dynamic and it is different for each session. The value is
computed according to the Session average latency. The initial value is estimated based
on the number of hops between the communicating pair. The warm-up iterations use this
value in the first five iterations while registering the latencies of those communications. After
the warm-up period, the average latency is used as the threshold and is updated at each
iteration.

The Timeout Monitor is activated whenever a MRC or MDC is received. Then it loads
the threshold value of the respective session into the timeout counter, which will interrupt
the processor if the corresponding MR or MD does not reach the PE, triggering the Recovery
Protocol.

5.4 Recovery Protocol

Figure 5.3 presents the Session Manager Recovery Protocol. After detecting an
attack or fault through the Timeout Monitor, the target PE starts the recovery process. Here,
the control NoC also plays a major role in finding a new path. The target PE sends a
TARGET_UNREACHABLE message to the source PE via the control NoC, informing the Ks

of the affected session. Then, the source sends a SEARCHPATH service, which uses the
broadcast characteristic of the control NoC to find a new path. Then, the control NoC finds
this new path via a BACKTRACK service, that returns to the source (that previously sent
the SEARCHPATH).

(b) (c) (d)

APP1
T1

APP1
T2

(a)

APP1
T1

APP1
T2

APP1
T1

APP1
T2

APP1
T1

APP1
T2

Successful message transmis-
sion.

Data transmission interrupted
in the data NoC.

Request for packet retrans-
mission using the control NoC.

Successful retransmission
using source routing.

Dashed arrows: packets transmitted in broadcast using the control NoC.
Straight arrows: packets transmitted through the data NoC.

Figure 5.3 – Representation of the message recovery protocol using the control NoC.

As there is no information related to the HT or fault precise location, the method
searches a new path that avoids the routers of the broken path (previous path, which did not
deliver the packet correctly). To accomplish this goal, the SEARCHPATH message carries
two extra configurations: (i) the blocked output port at the source PE; (ii) the blocked input

95

port at the target PE. Defining those two blocked ports, the path search method avoids the
routers used in the broken path. The hop number of the new path can be non-minimal, as
presented by the examples.

Figure 5.4 illustrates two examples of the new path discovery with blocked ports.
Red arrows represent the broken paths, which are the ones that are not transmitting the
packet correctly – detection by the timeout mechanism. The triangles with a red outline are
the ports blocked in the SEARCHPATH. The black triangles correspond to the available ports
for the new path. The orange arrows indicates the new path. In Figure 5.4(a), the broadcast
was not transmitted by the source east port, reaching the target west port due to the blocking
of the north port. In this case, the number of hops remains minimal. In Figure 5.4(b), the
broadcast excluded the source east port, and reached the target north port. In this case, the
new path has four hops and is non-minimal, considering that in the original path, the routers
were aligned and had only two hops of distance.

New Path

Broken Path

Free Port

Blocked Port

(a)

Source

Target

(b)

Source Target

Figure 5.4 – Two examples of Hardware Trojan affecting communication and the Session
Manager finding alternative paths.

With the new path, the source PE searches for sent packets with the Ks information
received in the TARGET_UNREACHABLE, including whether the lost packet was a MR or
MD. Then, the packet retransmission occurs now with source routing (SR). All subsequent
packets to the target PE, even those not from the same session, will use this path up to
the detection of a new event. Besides that, once defined the new path, there is no addi-
tional overhead in the producer-consumer communication, excepting a slight increase in the
latency if the SR path is longer than the previous one.

Note that the focus of the Session Manager is not the location of the HT(s) or
faulty router(s). The method uses a path search approach that avoids the previous path, not
considering any information about specific routers to avoid.

The current implementation of the recovery protocol has a relevant limitation: the
non-registration of blocked ports. If the new path also passes through an infected router, the
TimeoutMonitor will fire another TARGET_UNREACHABLE to the source PE informing that
the packet still has not arrived. Then, the recovery protocol acts the same way as before,
blocking the ports of the used route. Using the example of Figure 5.4(b), the SEARCHPATH
would block now ports North for both source and target PEs, releasing the previously blocked

96

ports. The resulting new path would be the original one, with an HT. This limitation makes
the protocol resend the packets indefinitely between these two routes.

A solution would be to launch the SEARCHPATH blocking the ports of all the pre-
vious broken paths, but it would severely limit the path options. As an example, it would fix
the issue on Figure 5.4(b) by finding a route using the south ports, but would not work on
Figure 5.4(a) because the routers are placed on the corners, having only two other neigh-
bors. For this reason, a more elaborate solution is required, enhancing the path construction
algorithm to include information about the system to avoid certain routers besides blocking
the ports.

5.5 Results

This section presents the costs related to the Session Manager in terms of appli-
cation execution time overhead (Section 5.5.1), overhead on the session handling routines
(Section 5.5.2), and analysis of the recovery protocol impact on applications (Section 5.5.3).

Results are gathered simulating seven applications: DTW, MPEG, MWD, MPEG4,
Dijkstra, VOPD, and AES in a 4x4 MCSoC. These applications are used in the many-core
research community [Costa et al., 2021, Kashi et al., 2021]. Appendix B presents the CTGs
of the applications used in this Chapter. The decision for a 4x4 MCSoC is related to the size
required for the applications to run in single-task mode, i.e., one task per PE.

The applications have distinct communication models, such as pipeline and master-
slave, to present a broader view of the impact of the Session on application execution. The
MPEG application follows a pipeline communication model. The AES application follows a
master-slave model, with one task responsible for distributing the computation to other tasks.
The AES application is parameterizable in the number of slave tasks (4 or 8) and 16-byte
blocks to encrypt (8 up to 512). For example, AES 4 requires two iterations to encrypt or
decrypt a 128-byte message (8 blocks of 16 bytes), while AES 8 requires only one iteration
for the same workload.

The CPU, memory, DMNI, control NoC, and the OS are considered reliable entities.
Third-party entities, such as the data-NoC and applications, are considered unreliable.

5.5.1 Application Overhead Results

This section presents the overall impact of the Session Manager on the application
execution time. In this step, no attacks are considered. Table 5.1 compares the application
execution time between the baseline system and the one with the Session Manager. The

97

first column corresponds to the Application. Each line of AES 4 and AES 8 corresponds to
a different number of blocks to be encrypted, from 8 to 512.

Table 5.1 – Applications execution time with and without the protocol.

Application Baseline
(ms)

Session
(ms)

Overhead
(%)

DTW 36.29 37.58 3.55
MPEG 22.68 23.54 3.79
VOPD 3.19 3.94 23.51
MWD 2.51 3.05 21.51

MPEG4 23.14 29.61 27.96
Dijkstra 5.65 7.56 33.81

AES 4

8 2.72 3.21 18.01
16 3.98 4.79 20.35
32 6.49 7.75 19.41
64 11.58 13.96 20.55
128 21.70 26.19 20.69
256 41.99 50.79 20.96
512 72.59 89.69 23.56

AES 8

8 3.13 3.81 21.73
16 4.14 5.09 22.95
32 6.16 7.65 24.19
64 10.28 12.90 25.49
128 18.31 23.29 27.20
256 34.55 43.82 26.83
512 68.05 86.23 26.72

Two applications follow the pipeline communication model, MPEG and DTW. The
execution time overhead for these applications corresponds to 3.79% (MPEG) and 3.55%
(DTW). This small performance overhead is due to the communication model. Only one
message is exchanged between each communicating task pair per iteration, requiring one
session synchronization per iteration.

The CTG of the remaining applications follows a master-slave model (AES, Dijk-
stra), or has a complex CTG with many inter-task dependencies (MWD, MPEG4, VOPD).
For these applications, the execution time overhead ranges from 18.01% to 33.31%. The
execution time overhead for these applications is higher due to the number of messages
the master task(s) needs to synchronize. The protocol synchronization directly affects the
execution time. When a task has many communication dependencies, the synchronization
delay is propagated and impacts the sending or receiving of subsequent messages to the
next tasks.

The AES application illustrates this effect of protocol synchronization. The increase
in the number of slave tasks, from 4 to 8, implies a higher execution time overhead due to the
large number of messages to synchronize. The number of iterations the application executes

98

(the number of blocks to be handled divided by the number of slave tasks) shows the effect
of the synchronization propagation. The AES_4 stabilizes the execution time overhead at
approximately 24% from 16 iterations (64 blocks). For AES_8, the execution penalty also
stabilizes at 16 iterations, but for 128 blocks, at approximately 27%.

These results define the protocol execution time overhead according to the commu-
nication characteristics of the application. We consider that the overhead of up to 33.81% on
application execution time is an acceptable cost considering the security and fault tolerance
benefits added by the communication session protocol.

5.5.2 Kernel Overhead

The Session Manager increases the computation of the OS to handle the protocol
packets. There are two new algorithms: handling the control (MRC and MDC) packets. In
addition, the routines to handle MR and MD packets were modified to insert the verification
with the control NoC.

To analyze the impact of the protocol in the OS, Table 5.2 shows the time (in clock
cycles) taken by the OS to handle the messages with the Session Manager, compared to
the baseline implementation, considering 128 iterations of the application. The values refer
to the AES 4 with 128 blocks simulation, considering two cases:

• Case 1: control packets arrive before data packets, observed in the AES Slaves.

• Case 2: data packets arrive before control packets, observed in the AES Master. This
happens because the master receives the MR and MD messages from the four slaves
almost simultaneously. The OS prioritizes the handling of the data NoC packets to
avoid network congestion.

Table 5.2 – Average overhead (in clock cycles) for each service compared to the baseline
implementation.

Service Case Baseline
(Data)

Session
(Data+Control) Overhead

REQUEST Case 1 443.0 679.7 53.44%
Case 2 466.7 810.2 73.61%

DELIVERY Case 1 227.0 324.9 43.14%
Case 2 222.7 373.0 67.48%

Results show that the second case presents a higher overhead for both services
because data packets arrive before control packets. In this case, the packets arriving at the

99

data NoC need to be stored and then retrieved when the control packets arrive to validate
them.

This experiment also showed the difference between services: the REQUEST
takes longer than the DELIVERY. This happens because the REQUEST is also responsi-
ble for sending the packet (i.e., execute the DELIVERY) if the producer already has the
packet ready in the pipe when the REQUEST arrives.

Table 5.2 shows that message exchange transactions have a relatively high per-
centual overhead, but small if we consider it in clock cycles (less than 400 cycles in the
worst case). Thus, applications with a pipeline model (such as MPEG) have a minor ex-
ecution time penalty adding the proposed protocol, as shown in Table 5.1. On the other
hand, due to the serialization in handling messages in applications with a master-slave com-
munication model (such as AES), this overhead accumulates, explaining the higher runtime
overhead.

5.5.3 Recovery Costs

After detecting a suspicious behavior, the recovery process starts, as detailed in
Section 5.4. The recovery process adopts a rerouting mechanism. With a new path estab-
lished, all subsequent packets use this path. Thus, the overhead of the recovery process
occurs once, when detecting the suspicious behavior.

Two scenarios are simulated to evaluate the impact of the rerouting and packet
recovery mechanisms: one with a pipeline application (MPEG) and the other with a master-
slave application (AES4), both applications having five tasks. The tasks are mapped in-
side an OSZ that encloses six routers (yellow-highlighted area), one of them infected by
an HT. Figure 5.5 illustrates the MPEG and HT mapping, alongside the XY routes for the
MESSAGE_DELIVERY and MESSAGE_REQUEST packets, which are the green arrows on (a) and
blue arrows on (b), respectively. The HT activation interrupts three flows: numbers 3, 5, and
8 of Figure 5.5.

Each application executes ten iterations, with the HT configured to block all ports
of the infected router at 3 ms. Figure 5.6 shows the time taken for each iteration for both
applications. Each graph has three curves:

• Baseline, execution without the Session Manager;

• Session, execution with Session Manager, without the activation of the HT;

• Attack, execution with Session Manager, the HT activation at 3 ms, and the time spent
for the recovery process.

100
SessionManager - mpegMapping

(a) (b)

START

iDCT

PRINT

iQUANT

iVLC

1

2

3

4

START

iDCT

PRINT

iQUANT

iVLC

5

6

7

8

Figure 5.5 – Task mapping of the MPEG application with the inter-task communication on a
3x3 Mesh NoC with a 2x3 OSZ (yellow area). (a) Message Delivery packets. (b) Message
Request packets.

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

u
s
)

Iteration

Baseline
Session

Attack

(a) MPEG

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

u
s
)

Iteration

Baseline
Session

Attack

(b) AES

Figure 5.6 – Impact of the Recovery Protocol on applications (a) MPEG (b) AES. X-axis:
iteration number, y-axis: iteration latency.

Figure 5.6(a) illustrates the MPEG application. The application stalls at iteration 6,
firing the recovery process in parallel at different PEs. The next iteration, after the recovery
process, executes faster. Due to the pipeline structure of the application, data remains
buffered in the producer PEs. Once the new path is established, the data is transferred
to their targets. Figure 5.6(b) illustrates the AES application. This application also stalls
at iteration 6. Due to the master-slave communication model, it is not possible to buffer
intermediate data. Therefore, it is necessary to finish the recovery process to restore the
original latency.

As shown in Figure 5.6, the recovery process overhead happens once. After the
recovery process, the HT is still active, but applications are unaffected. Note that the latency
after the attack is the same for the ‘session’ and ‘attack’ scenarios. The latency is the same
because the new paths have the same number of hops as the original ones.

101

Table 5.3 presents the execution time for each scenario. The overheads using
the Session Manager are according to the ones presented in table 5.1, varying with the
communication model. The MPEG application increases its execution time by 0.8% when it
is necessary to reconfigure the paths due to the HT attack. The additional overhead of the
AES application is 8,85% for the execution of 10 iterations. These overheads reduce as the
number of executed iterations increases.

Table 5.3 – Applications execution time with and without the protocol.

App Baseline
(ms)

Session
(ms)

Attack
(ms)

MPEG 5.03 5.26 (4.57%) 5.30 (5.37%)
AES 4.52 5.56 (23.01%) 5.96 (31.86%)

This technique is an alternative option for those seeking HT location and isolation.
The method can detect anomalous behaviors and create a new path that avoids the original
path through rerouting.

5.6 Final Remarks

This Chapter presented the Session Manager, an original method to detect se-
curity attacks and faults in the communication architecture. Proposals available in the lit-
erature seek to add security mechanisms to the NoC itself, which may be faulty or under
attack. Thus, to avoid instrumentalizing the data NoC itself, we use a control NoC with
broadcast transmission to find alternative paths after detecting the attack or fault. The pro-
posed method does not need to precisely locate the source of the problem, which is the
objective of most works found in the literature. The cost of our proposal is the increase in
the execution time. On the other hand, the Session Manager operates efficiently to recover
from attacks, such as packet loss, packet misrouting, and port blocking, caused by HTs or
failures in NoC links.

The Session Manager does not exclude methods that locate HTs or faulty routers.
Our proposed method, combined with those methods, can simplify the rerouting procedure.
Instead of avoiding all routers in the original path, only infected or faulty routers could be
avoided in the new path. Furthermore, once an attack is detected, the System Manager can
use this information in the next decisions regarding the allocation of secure applications.

Thus, in the context of MCSoCs, this Chapter presented a step towards a unified
method to deal with security threats, manufacturing faults, aging, or application constraints
(e.g., QoS). Although this work focuses on securing the communication against HT attacks,
the method is general and applicable to fault tolerance and QoS constraints.

102

6. FRAMEWORK FOR SYSTEMIC SECURITY MANAGEMENT

This Chapter introduces the fourth original contribution of this Thesis: a framework
that consolidates all previously discussed security mechanisms, fulfilling objectives SG7 to
SG9. This comprehensive framework sends security warnings for the System Manager,
also including a set of decision heuristics and countermeasures designed to enhance the
system’s security. The principal publication associated with this framework is:

A Comprehensive Framework for Systemic Security Management in NoC-based Many-cores
Faccenda, Rafael; Comarú, Gustavo, Caimi, Luciano; Moraes, Fernando Gehm.
IEEE Access, v.11, pp. 131836-131847, November 2023.

The set of defense mechanisms implemented on the platform, described in previ-
ous Chapters, include:

D1 Opaque Secure Zones (Section 3.2);

D2 Authentication keys, used in the AP ↔ SNIP communication;

D3 MAC, protects the binary codes;

D4 Source routing, obfuscate the source and target address;

D5 Key renewal, ensures the periodic change in the authentication keys;

D6 Gray and restricted areas (Chapter 4);

D7 SNIP, a NI that authenticates the communication with IO devices.

A recurrent observation in the literature is the absence of systemic and integrated
security mechanisms that simultaneously monitor, detect and mitigate a broad spectrum
of threats in real-time. Based on that, we propose a comprehensive framework for secu-
rity management that combines the aforementioned defense mechanisms with monitoring
methods at several locations, allowing the detection of threats. Threat detection fires coun-
termeasures and generates security warnings to a Security Manager.

The proposed framework adopts an actuation loop based on Monitoring-Detection-
Countermeasure, as illustrated in Figure 6.1, which protects the system during the execution
of applications with security requirements. This framework integrates into the many-core de-
fense mechanisms, summarized above, with distributed monitoring methods (Section 6.1)
that enable the detection of threats and activation of countermeasures (detailed in Sec-
tion 6.2).

Monitoring mechanisms (M1-5) observe system resources and generate warnings
(W1-6) in case of suspicious behavior. Based on the severity of the alerts, the system
triggers countermeasures, which can be local (C1-5) or system-level actions. System-level
countermeasures are triggered upon detecting a more complex attack (A1-3).

103

Figure 6.1 – Security management framework overview.

The remainder of the Chapter is organized as follows. Section 6.1 presents the
monitoring and warning generation. Section 6.2 explains the warnings and the counter-
measures applied by the system. Section 6.3 evaluates the framework in different attack
scenarios and evaluates the area overhead due to added hardware mechanisms. Sec-
tion 6.4 evaluates the proposed framework with an aggressive attack campaign, presenting
the countermeasures executed by the framework Section 6.5 concludes this Chapter and
points out directions for future work.

6.1 Monitoring and Detection of Suspicious behavior

To protect internal communication within the OSZ, we adopted the session protocol
(M1) (Chapter 5, [Faccenda et al., 2021]). This protocol includes sending control messages
via the control NoC alongside the data messages to monitor the arrival of packets inside
the OSZ. Packets are only accepted upon receiving both control and data packets that con-
firm the source and target of this packet. The session protocol can raise two warnings: W1
(Missing Packet), when only the control message arrives or the data packet is delayed be-
yond a certain time threshold; W2 (Unexpected Data) when a data packet arrives without
the control message, making it impossible to confirm the source of the message.

The communication API (Application Programming Interface) with IO devices of
SeMAP adopts a master-slave protocol, which also works as a monitoring element (M2).
Any IO transaction must always start from the Appsec (master), and the peripheral must
always answer this request (slave). PEs monitor the packets’ arrivals. Whenever a packet
arrives without being requested, the PE raises W2 (Unexpected Data), or if an answer packet
from an IO takes too long to arrive, the PE sends an W1 (Missing Packet).

104

The Access Point (AP) (M3) monitors all packets trying to enter the OSZ. The AP
can raise four warnings:

• W2 – Unexpected Data: When a packet tries to enter the OSZ without being requested.
The AP has two counters, Cin and Cout , which count the number of packets entering
and leaving the OSZ. Due to the master-slave communication protocol, the number of
received packets cannot exceed the transmitted packets, i.e., Cin < Cout . Whenever
this condition becomes false, the AP generates the warning.

• W3 – Wrong Packet Type: The SNIPs add an identifier in the packets signalizing that
it is generated by a peripheral. This warning is raised if the packet does not have this
identifier. This monitoring avoids packets generated by applications running on PEs to
try to enter the OSZs.

• W4 – Wrong Authentication Key: The AP executes a lightweight authentication protocol
that verifies the packet’s authenticity. The warning is raised when the keys do not
match, signalizing a forged packet.

• W6 – Access Attempts: This warning signalize a potential DoS attack. A counter in the
AP monitors the number of received packets within an interval defined according to the
application profile.

Thus, a packet only enters the OSZ, passing through the AP, satisfying three con-
ditions: (i) Cin < Cout ; (ii) successful authentication; (iii) packet from a peripheral.

The SNIP also monitors packets (M4). The SNIP authenticates packets, sending
warning W4 if the authentication fails. In addition, the SNIP can raise W6 if the number of
packets received within a time window is larger than a given threshold.

The last monitoring element is the Link Control (LC) (M5). Packets should not arrive
at enabled LCs due to the routing method, which circumvents the OSZs. Thus, LCs generate
a W5 (Suspicious Route) warning for any packets arriving at an activated LC, especially if
the packet is trying to leave the OSZ (this only may occur if an HT infected the secure
application). LCs also generate warnings when packets attempt to enter the OSZ from a
router outside the boarder, signalizing a possible DoS attack (W6).

6.2 Countermeasure

Countermeasures are actions that reinforce system security upon the detection of
suspicious behavior. Such actions are divided into two groups: local and system-level, which
include immediate actions executed upon receiving warnings and actions taken based on
broader systemic information, respectively.

105

The local countermeasures are triggered by receiving warnings, as depicted on Fig-
ure 6.1. Depending on the warning severity, a single warning activates the countermeasure,
or it is necessary to receive a set of notifications to trigger it. One exception is the Packet
Discarding (C4) that can happen imediately upon the detection of a suspicious behavior, i.e.
packet arriving at a blocked LC.

The C1 (New Path) action triggers the computation of a new routing path for a
message that did not reach the final target detected by the Session protocol (W1 from M1),
or detected by the Master-slave protocol (M2) in the case of an IO communication.

New IO Path (C2) is a countermeasure triggered by W1 (Missing Packet) emitted
by any PE that initiates an IO communication but does not receive the answer within a given
time window (M2 Master-slave protocol). This process is also a tool that can be requested
by other countermeasures that affect the IO paths, such as C5 (Move AP).

Key renewal can be periodic or reactive. The periodic key renewal is part of the
authentication method to enhance its security, therefore listed as a defense mechanism (D5).
Although the keys are not transmitted in plaintext, unauthorized access to the flits with the
keys could enable a brute-force attack. The reactive key renewal (C3) is a countermeasure
to refresh the keys, triggered by W2 or W3. For example, a packet with correct keys arrives
at an AP but without a request (W2), or wrong type (W3). Even though the AP blocked the
packet, a key renewal must occur since the authentication keys were correctly forged.

Packet Discarding (C4) is the fourth local countermeasure. This is the most fre-
quent countermeasure action due to the OSZ method. The AP of the OSZ discards packets
that fail authentication at any layer: whether due to the absence of request (W2), wrong type
(W3), or incorrect key (W4). Additionally, activated LCs discard packets that attempt to cross
it (W5). Moreover, the SNIP discards packets arriving with incorrect keys, and PEs still may
discard packets considered suspicious.

Move AP (C5) countermeasure is triggered when the MPE receives a W6 warning
from an AP, meaning that heavy traffic, probably malicious, on the AP is affecting the IO
communication of an Appsec. W1 also may trigger the Move AP to change the route of a
packet that could not reach the peripheral during an IO communication. The MPE then
elects new AP location and triggers C3 to refresh the keys and C2 to recalculate the IO path
since the AP coordinate changed. The Suspicious Route warning (W5) collected throughout
the application execution time can be used as information to avoid mapping the AP at ports
that could have been under attack.

106

6.3 Security Analysis and Costs

This section explores attacks identified in the Threat Model, including Denial of Ser-
vice (DoS), Spoofing, and Eavesdropping. It outlines the system’s responses in such events
(refer to fig. 6.1) and discusses the associated costs of implementing countermeasures.

The many-core system is modeled at the RTL (Register-Transfer Level) level using
VHDL and SystemC hardware description languages, meaning that the many-core descrip-
tion is synthesizable for FPGAs or ASICs. Thus, the accuracy achieved in the experiments is
at the clock cycle level, reflecting the actual system behavior. Applications run in the digital
simulator for a few dozen milliseconds due to the complexity of the low-level simulation.

We adopt two mechanisms to execute attacks. A peripheral named “packet injector”
is directly connected to the system without using the SNIP. The goal of using this peripheral
is to inject controlled traffic into the system to emulate attacks. The second mechanism is
an HT circuit (based on [Weber et al., 2020]) connected to routers. The HT trigger may be a
malicious application or a given condition (e.g., time-triggered HT).

Simulations focus on five specific attack scenarios:

A. DoS Flooding: In this attack scenario, the “packet injector” transmits packets at a high
throughput rate of 0.85 flits per clock cycle to an OSZ or SNIP. The objective is to satu-
rate the NoC links and buffers to render the NoC unavailable for legitimate operations.

B. Spoofing: This attack is analogous to the DoS flooding attack but operates at a lower
injection rate of 0.05 flits per clock cycle. Furthermore, the injected packets contain
the correct keys to bypass the AP or SNIP, simulating a situation where the keys have
been compromised.

C. Eavesdropping: a time-triggered HT infects a router inside the OSZ. The attack initiates
after 5 milliseconds of simulation time has elapsed, duplicating packets traversing the
infected router.

D. Internal OSZ DoS blocking: a time-triggered HT infects a router inside the OSZ. The
HT blocks all router links for 1 millisecond at regular intervals of every 5 milliseconds
throughout the simulation time.

E. External OSZ DoS blocking: similar to the previous attack, but in a router belonging to
the GA.

107

DoS - Flooding

Figure 6.2 depicts the first attack scenario, in which malicious flows with forged
packets target the SNIP or the AP of a given OSZ.

Figure 6.2 – DoS flooding attack scenario.

Packets that arrive in the SNIP without the correct keys are automatically discarded.
Malicious packets arriving at the LCs and the AP of a given OSZ are also discarded. How-
ever, the W6 warning signal is triggered if access attempts become too frequent. This alert
informs the AP selection heuristic running in the MPE to avoid mapping an AP to this port
due to the attack attempt and also initiates a Move AP countermeasure (C5).

If the malicious flow bypasses the hardware barrier (AP) and reaches a PE, the
Master-slave protocol may identify unexpected data and subsequently discard the packet,
as depicted by countermeasure C4.

The countermeasure C4 in hardware instantly discards the packet. Conversely,
in software (discard action performed by the PE), the process takes 378 clock cycles (cc),
measured from the point of packet arrival interruption to the complete clearing of the DMNI
slots where the packet was initially stored.

Spoofing

Figure 6.3 illustrates a Spoofing attack where the malicious flow has the correct
authentication keys, enabling it to pass through the AP or even gain access to the SNIP.

Figure 6.3 – Spoofing attack scenario.

When this malicious flow reaches the SNIP, the Master-slave protocol generates
an answer packet to the address stored in the SNIP Application Table. Note that the answer
does not go to the attacker but to the registered application. This answer packet reaches
a PE in the OSZ, and the PE triggers an unexpected packet warning (W2), given that the
application is not expecting answers from IO operations.

108

Another scenario occurs when the malicious packet reaches the AP with the correct
keys but either at the incorrect moment or with the wrong type. As a countermeasure in
both cases, a Key Renewal C3 countermeasure is executed to refresh the keys and prevent
further unauthorized access.

Figure 6.4 presents the Key Renewal cost, in clock cycles (cc), for four applications.
The graph on (a) shows the average, maximum, and minimum time taken for each applica-
tion to perform a key renewal. The values can be different, even for the same application,
because key renewal costs have fixed and variable components. The fixed part refers to the
time to process the key renewal request and decide on the new key renewal parameters.
The variable component is related to synchronization costs, which includes the time taken
to receive the key renewal acknowledgment from all tasks of the application plus the time
needed for the tasks to finish their pending IO transactions before changing the keys.

Figure 6.4 – Key renewal overhead for different applications.

For the two applications with low IO communication volume (MPEG and DTW), the
average time for key renewal is 4,000 and 4,500 clock cycles, respectively. Increasing the IO
communication volume (Synthetic) and the number of tasks (MWD) directly impact the Key
Renewal execution, reaching average values of 6,370 and 8,753 clock cycles, respectively.
The fixed component of the cost corresponds to 600 cc (average values).

Eavesdropping

Figure 6.5 presents an example of an Eavesdropping attack, where a malicious
hardware in the data NoC duplicates a packet to send it outside the OSZ. However, this
packet hits an LC or the AP at the OSZ border from inside, triggering an alert W5 to indicate
that a packet is on suspicious route. To mitigate this threat, a new path is calculated within
the OSZ that avoids passing through the identified suspicious router.

109

Figure 6.5 – Eavesdropping attack scenario.

The New Path countermeasure uses the Recovery protocol (Section 5.4) of the ses-
sion manager to build a new path avoiding the previous, now suspicious, route. To achieve
this, a searchpath message is broadcasted to all PEs in the OSZ, and a backtrack message
is subsequently received with the correct sequence of hops. Figure 6.6 presents the time to
build new paths ranging from 1 to 13 hops.

1 2 3 4 5 6 7 8 9 10 11 12 13
Path Size (hops)

1500 cc

2000 cc

2500 cc

3000 cc

3500 cc

Ti
m

e

Figure 6.6 – Searchpath overhead for different path sizes.

The overhead curve starts at a path size equal to 1, consuming 1805 clock cycles.
It then increments by 70 clock cycles per hop until the hop size reaches 6. From 7 hops,
the overhead corresponds to 100 clock cycles per hop until the hop size equals 12. These
periodic increases in the curve at every multiple of six are due to the Source Routing (SR).
SR uses flits within the packet to store the direction for forwarding the packet. Each flit may
store the directions for six hops. Consequently, the cost increases when a new word is
required in the SR path.

DoS-Blocking (OSZ)

Figure 6.7 presents an example of DoS blocking inside an OSZ. In this case, a
malicious entity (e.g., HT infecting an NoC router) blocks any communication trying to pass
through it. The Session protocol detects this behavior due to the control message emitted

110

alongside the data message. Due to the broadcast transmission, the control message ar-
rives at the PE and not the data packet. This behavior raises the Missing Packet warning
(W1).

Figure 6.7 – DoS blocking scenario inside an OSZ.

To avoid this malicious entity, the system triggers a New Path C1 countermeasure
to build a new route circumventing the suspicious router. The costs related to this counter-
measure are the same presented on section 6.3.

DoS-Blocking in the Gray Area

Figure 6.8 shows a DoS blocking attack occurring during an IO transaction in the
gray area. In this case, the Master-slave protocol detects the attack since the secure appli-
cation never receives the answer from the packet sent to the IO device.

Figure 6.8 – DoS blocking scenario in the Gray Area.

The system initiates a countermeasure if an IO packet fails to receive an answer
within a predetermined time threshold. The first countermeasure is to create a New IO Path
(C2), corresponding to a new path to the IO device, traversing the gray area. Figure 6.9
shows the time to build a new IO path for different hop counts. This path construction is
faster than the New Path (C1) because its entirely calculated by the kernel, while C1 also
uses the control-NoC to find a new path inside the SZ.

The system can also trigger a Move AP (C5) countermeasure if the IO commu-
nication is still blocked even with the execution of C2. Figure 6.10 shows the Move AP
process. The MPE decides a new position for the AP and notifies the chosen PE (PE0) that
it must now configure this new AP (AP PE0). The chosen PE then sends NEW_AP_INFO to
all Appsec tasks, informing the new AP address, and starts a key renewal. The other PEs
(PEn) receive this message, finish their pending IO transactions, update information about

111

2 3 4 5 6 7 8 9 10 11
Path Size (hops)

1000 cc

1100 cc

1200 cc

1300 cc

1400 cc

1500 cc

1600 cc

Ti
m

e

Figure 6.9 – Overhead for calculating a new path for peripherals.

the AP manager, and acknowledge the key renewal (KEY_ACK). Upon getting all the acknowl-
edgments, the new AP manager sends KEY_EVOLVE and REQ_SNIP_RENEW to synchronize the
keys and sets the registers of the new AP. When the previous AP manager (PE1) receives
the KEY_EVOLVE, it closes the previous AP (AP PE1), clearing the memory-mapped registers
(CLEAR_PREV_AP).

Figure 6.10 – Move AP sequence diagram.

Since the AP has changed, the current SR paths to IO are not valid because they
consider the old position of the AP. For this reason, PEs and SNIPs need new IO paths.
The MPE establishes a new SR path for the SNIP and sends through a IO_CONFIG. The PEs
must recalculate route because the KEY_EVOLVE for new AP clears all IO paths on the PE
(CLEAR_ROUTES).

112

Table 6.1 shows the costs of the Move AP countermeasure triggered on four appli-
cations: MPEG, DTW, Synthetic and MWD. The costs of Move AP can be analyzed as the
cost to change the AP location and synchronize the new keys (summarized on Figure 6.10),
plus the cost of the New IO Paths.

Table 6.1 – Average cost of Move AP countermeasure for different applications.

App Overhead (cc)

Change AP Path
Config. Total

MPEG 5,754 3,132 8,887
DTW 5,634 3,118 8,753

Synthetic 7,467 3,182 10,047
MWD 11,457 3,433 14,890

The MPEG and DTW applications show similar overheads when changing the AP
location as they have a small number of tasks (5 and 6, respectively). Conversely, the Syn-
thetic application requires an additional 1,200 clock cycles due to its higher communication
volume, while the MWD application requires around 5,800 additional clock cycles due to its
larger task count (12). Both characteristics, IO communication volume and task number,
affect the synchronization of the new AP location and key renewal. As all applications in-
teract with two SNIPs, the costs of calculating a new IO path (column “Path Configuration”)
remain similar, around 3,100 cc. This value refers to the cost of searching for the affected
SNIPs, constructing the new IO paths (one for each SNIP - Figure 6.9), building the path,
and sending the new path packets.

This countermeasure, which involves relocating the AP, is one of the most complex
in terms of protocols and processing time. The worst-case scenario observed corresponds
to 14,890 clock cycles, equivalent to 0.1489 ms@100 MHz. Besides its complexity, the
proposed countermeasures add a negligible impact on applications’ performance due to its
low computational overhead.

6.3.1 Final Remarks on Security Analysis and Costs

This section evaluated the framework against security threats such as Denial of
Service, Spoofing, and Eavesdropping. The framework can help designers and developers
to identify and mitigate security risks and threats, and to ensure the security and reliability
of the system. The framework can also contribute to developing secure and trustworthy
many-core systems for various applications.

Five attack scenarios were used to measure the costs of the countermeasures that
the System Manager can apply to reinforce the system security. Table 6.2 illustrates the

113

costs of each countermeasure, considering the observed worst-case. The cost to create
the OSZ (20.5K clock cycles in [Caimi et al., 2018b]) does not impact the application per-
formance since it is executed before its execution starts. The table shows that the highest
costs are related to renewing the keys and moving the AP location. The wost-case is 0.15
ms @ 100 MHz, demonstrating that the proposed countermeasures are lightweight, adding
security to the applications.

Table 6.2 – Summary of the countermeasure costs, in clock cycles.
Countermeasure Worst-case (cc)

New OSZ path 3,205
New IO path 1,538
Key Renewal 10,912
Packet discarding 378
Move AP location 14,890

The hardware to support the framework added an overhead of 48,8% in the com-
munication infrastructure (NoC). This is an acceptable cost considering that the communi-
cation infrastructure is a part of the processing element (PE) and may lead to an actual area
overhead at the PE level between 5% and 10% (Section 4.4).

These defense mechanisms outline a set of rules that strengthen the platform by
reducing the vulnerabilities, consequently preventing and mitigating attacks. Even though
some of these mechanisms apply an immediate countermeasure, such as an OSZ discard-
ing a packet, system-level countermeasures can‘ terminate an attack, for example:

• Task Migration: Secure applications under attack, can be migrated to less susceptible
regions of the MCSoC.

• Abort Application: if the MPE identifies that a given PE is the source of an attack, it
identifies the tasks running in the PE, and thus the malicious application(s), sending a
message to abort the potential malicious application(s).

• Block PE: if the previous countermeasure fails, the identified PE may contain, e.g., an
HT, generating malicious traffic. Thus, the MPE sends a control message to activate
the LC of the local port, isolating it from the rest of the system.

• Change peripheral Port: SNIPs may have a secondary channel connected to another
router. When an attacker targets the SNIP, the primary channel can be swapped to the
secondary one.

Collecting and recording information related to attacks is necessary to enable these
systemic countermeasures. The next section evaluates the proposed framework with an in-
tense attack campaign, showing that it correctly detects attacks, executes countermeasures
and reports the occurences to the MPE.

114

6.4 Framework Evaluation

The attacks executed in the previous section were made with an individual simu-
lation for each attack and with pre-defined static values. For example, the spoofing attack
needed the AP key extracted from a previous simulation and directly inserted into the packet
injector code. Consequently, only one spoofing attempt was possible due to the reactive key
renewal. In the case of Hardware Trojans (HT), the router was selected randomly, and the
blocking happened by forcing values in the simulation tool (Modelsim force command) at a
predefined time chosen based on a previous simulation of the platform.

6.4.1 Attack Campaign

To perform complex attacks and distribute them into the system, we use three tools:
dynamic HT emulation, configurable packet injector, and malicious application combined with
packet injector.

Dynamic HT Emulation

This tool uses a script to read the traffic log of each router and count how many
packets passed through them. Whenever this number reaches a threshold value, all router
transmission signals (tx) are forced to logical ‘0’ for 500 µs. After that, the counter starts
again, from zero until it reaches the threshold again and repeats the process.

The router affected by this tool receives packets, its switch control module decides
the output port and then directs the packet to the next router. If the tx signal is inactive due
to the HT, the packet is dropped.

Any router can be selected to receive this HT. The user needs to configure the
following parameters:

• pe: which routers to monitor and insert the faults. This parameter may receive the PEs
coordinates in [x,y]1 or random;

• infection_rate: the percentage of routers to monitor and insert the faults in case of
random in the pe above parameter;

• time_step: simulation step (in µs) to check if there are faults to input;

• scan_time: time between scans of the traffic file (in seconds);

• trigger_value: number of packets to block the router, the threshold value.

115

Figure 6.11 shows three example the dynamic HT configuration on a 5x5 MCSoC
with the gray area being the first row and the first column: (a) with 5 PEs defined by the user;
(b) random PEs at 25% infection rate, in this case 6 out of 25 routers are infected; (c) similar
to previous, but with 50% infection rate: 12 out of 25 routers infected.

Figure 6.11 – Example of the dynamic HT configuration on a 5x5 MCSoC.

Configurable packet injector

The configurable packet injector is a malicious peripheral connected to any side of
the MCSoC, without the SNIP. This injector can perform DoS attacks by sending packets in
a high rate to the same target. The packets constructed the injector have the standard data
packet size of the platform: 26 flits. From those flits, the user can configure the following
fields:

• HEADER_HI: The first flit of the packet, holds the authentication values analyzed in the
AP. To enter the OSZ, this value must be configured with the correct key.

• HEADER_LO: Second flit of the packet, holds the target address of the packet in XY
coordinates.

• SERVICE: Defines the service of the packet. To perform attacks, usually has IO_ACK or
IO_DELIVERY services.

• F1_FLIT: First authentication flit - f1 from the authentication protocol.

• F2_FLIT: Second authentication flit - f2. Combined with f1 must have the correct value
to be approved by the OS.

1The PEs are identified by its coordinate on the x-axis and y-axis as in a Cartesian plane with the origin in
the bottom-left corner PE

116

• SOURCE: The address of the source of the packet by default, used by the SNIP to define
the response packet’s target.

Besides those specific fields of the packet, the user can also configure the simula-
tion time to start and finish the transmission (T_START and T_END, respectively), and time
between each packet (PERIOD).

Malicious task combined with packet injector

To perform spoofing attacks, it is essential to have the values of k1 and k2 to bypass
the AP and the OS. So, we implemented applications with malicious tasks that leak k1 and
k2 values every time a key renewal is performed. These values are sent to a malicious
peripheral via the data-NoC inside a packet. The packet injector, therefore, can use this
value on HEADER_HI to bypass the AP and in F1_FLIT and F2_FLIT to the packet be accepted
in the OS.

One more vulnerability exposed by this scenario is the opening of the AP. Since
the malicious task is inside the OSZ, one IO packet leaves the OSZ through an AP and
increases the Cout counter, leaving the AP opened to receive one packet.

Note that this behavior was done exclusively for this attack, as the tasks do not
have access to k1 and k2. To execute the spoofing attack without this mechanism, it would
be necessary to obtain these keys by trial and error, which is impractical by simulation at
the RTL level; or to have an HT capable of capturing the flits in the correct position of the
packets, which is also not feasible due to the complexity of this task (snoop the packets,
evaluate its contents, and transmit it to the malicious peripheral).

6.4.2 Experimental Setup

To show the effectiveness of the security mechanisms developed throughout this
Thesis, we simulated the scenario depicted on Figure 6.12 with the following specifications:

• Size: 8x8;

• Gray Area: two rows (6 and 7) and two columns (3 and 4);

• Two peripherals connected on routers (2,7) and (5,7);

• Two malicious peripherals connected on routers (4,7) and (6,7);

• MPE running in the top-right PE, with the application injector connected directly to it;

• Six applications to run in secure mode. Four Appsec communicate with IO devices
(those with AP).

117

Figure 6.12 – Experimental setup to evaluate the security framework.

We performed the attack campaign to this scenario using the following threats:

• HT that drop packets.

One inside each Secure Zone: (1,0), (1,2), (1,4), (6,0), (6,2), (6,4).

One in the Gray-Area: (3,6).

• MALDoS on (4,7): malicious IO device injecting packets at high rate to flood the NoC.

Packets target PEs that are inside the three OSZ on the right, selected randomly.

PERIOD of the injector is 2,000 clock cycles.

The other injector parameters are not used.

• MALSpoof on (6,7): malicious IO device that receives keys and tries to access the
OSZ.

Receives the keys from a malicious task running on PE (5,4).

Tries to send packets to task (7,5).

Packets contain the correct keyd on the first flit to enter the AP.

118

The F1_FLIT also contain the correct key.

The F2_FLIT is blank, which is detected as an attack by the OS.

• MalApp0: malicious application that tries to send packets to PEs outside the OSZ.

On each iteration of the application, the task in PE (2,4) sends packets to PE (0,0)

• MalApp1: malicious application with a task that leaks key to IO device (MalSpoof).

Every two key renewals, task in PE (5,4) send a packet leaking the keys to the IO
in (6,7)

6.4.3 Results

This section presents two analyses using the scenario presented above, starting
with the warnings reported to the MPE during the attack campaign and then discussing the
execution time overhead.

Table 6.3 presents the number of warnings of each type registered throughout the
scenario execution. In addition, the third column presents the detection mechanism, includ-
ing the number of warnings emitted by each. The fourth column shows the countermeasure
applied by the system.

Table 6.3 – Warning reported on attack scenario

Warning Occurence Detection Action

Missing Packet (W1) 95 Session (75)
Master-Slave (20)

New Path (C1)
Resend Packet

Unexpected Data (W2) 4 Access Point (2)
Master-Slave (2)

Discard Packet (C4)
Key Renew (C3)

Wrong Key (W4) 101 Access Point (101) Discard Packet (C4)

Suspicious Route (W5) 19 Link Control (19) Discard Packet (C4)

Access Attempt (W6) 248 Link Control (248) Discard Packet (C4)

TOTAL 467

Missing Packet (W1) happened 95 times. The HTs inside the OSZ dropped 75
packets, which were recovered using the Session Manager. The HT in the GA dropped the
other 20 packets, which were detected by the Master-Slave protocol of the IO communication
and requested retransmission with a new path (C1).

The MPE registered four cases of Unexpected Data (W2): two from the AP and
one from a PE. These four packets are from the Spoofing (MALSpoof) attack, in which the
injector received the keys and tried to enter the OSZ. Four of the packets sent by this injector

119

had the correct keys, but two of them were blocked by the AP counters (Cin = Cout), and the
other two passed through the AP and reached the PE that was not expecting IO data. Since,
in these four cases, the attack packets had the correct keys, OSZ triggered a key renewal
(C3).

Wrong Type (W3) does not appear in this scenario because the MALSpoof injector
is configured to send all packets with the correct type. However, if the packets arrived at the
AP with the wrong key, the AP would trigger the same countermeasures as the Unexpected
Data (W2) explained above.

The forged packets from the MALSpoof injector that tried to enter the OSZ but had
the wrong key triggered Wrong Key (W4) at the AP. The action is only packet discarding (C3)
since the key does not match, meaning that the MALSpoof has not discovered them.

Suspicious Route (W5) are warnings from the Link Controls reporting that packets
are trying to leave the OSZ. These are the packets sent by the malicious task on PE (2,4),
from MalApp0.

Access Attempt (W6) shows 248 attempts to enter an OSZ. These are packets from
the injector MALDoS that was sending packets to random PEs inside the three OSZ on the
right. All of them were immediately discarded (C3).

The attack campaign induced a total of 467 attacks, and our platform managed to
recover the missing data and reinforced the protection of secure applications.

To analyze the impact of such attacks and their respective countermeasures in
terms of execution time, Table 6.4 shows the execution time in terms of absolute values
(second and third columns) and the relative overhead (fourth column). The baseline column
corresponds to the execution without attacks. The malicious applications, when simulated in
the baseline scenario, have their malicious behavior deactivated.

Table 6.4 – Time overhead for Framework scenario (in ms)

Apps Baseline Attack Campaign Overhead

AppSec0 9,74 11,23 15,26%

AppSec1 9,94 10,28 3,36%

AppSec2 9,78 11,21 14,68%

AppSec3 9,92 10,53 6,15%

MalApp0 9,93 10,05 1,15%

MalApp1 5,06 5,53 9,21%

Scenario 13,69 14,30 4,47%

120

The highest overheads are on AppSec0 and AppSec2. As these applications do
not communicate with IO devices, a communication-intensive task was probably mapped to
the PE with an HT-infected router, and this caused more packets to be lost. Applications 1
and 3 presented a low overhead on the execution time: 3,36% and 6,15%, respectively. The
reason might be the HT activation time that dropped different packets and affected these
applications differently.

MalApp0 presents the lowest overhead of 1,15%, probably because the top AP was
favorably mapped to avoid the HT in the GA. MalApp1 is the one that had their keys leaked
by a task and attacked by MALSpoof, which triggered extra key renewals that affected the
execution time, reaching 9,21% overhead.

The overall execution time for the scenario with attacks reveals that the implemented
countermeasures, designed to protect the system against an extensive attack, resulted
in an overhead of 4.47%. This overhead includes the countermeasures execution and
the time required for reporting and recording the attacks. This data emphasizes the
efficiency of the proposed countermeasures, demonstrating that the cost of securing
applications in terms of execution time is remarkably low.

6.5 Final Remarks

The seven defense mechanisms included in the framework, complemented by mon-
itoring and countermeasures, establish a comprehensive set of rules and procedures that
protect the platform. They do so by diminishing vulnerabilities and facilitating recovery from
attacks. While some mechanisms initiate immediate countermeasures, such as an OSZ dis-
carding a packet, systemic countermeasures are absent. These systemic countermeasures
could, for instance, identify and terminate an attack by aborting an application injecting ma-
licious packets. Enhancing the recovery protocol of the Session proposal with information
about the location of HTs could be beneficial. Furthermore, SeMAP might consider access
attempts on OSZs to place the AP.

Consequently, this framework paves the way for developing system-level heuristics
to increase security in many-core systems. Integrating monitoring data through a Security
Manager, as illustrated in Table 6.3, would enable the detection of more complex attacks and
facilitate a broader range of countermeasures than those currently proposed.

The attack campaign revealed limitations in the platform that restricted the scope
of attacks. First, the NIs and SNIPs are not able to handle cropped packets. For instance,
when an HT is activated, forcing the tx signal to 0 in the middle of packet transmission results
in a cropped packet and the loss of the EoP signal. The NIs and SNIPs depend on receiving
the EoP to complete packet reading, failing to function correctly after receiving a cropped

121

packet. A potential solution is to verify both the EoP and packet size at the end of reception.
If there is a discrepancy, the packet should be discarded.

Another issue found during the attack campaign is the absence of recovery mech-
anisms for the Security Manager functions (MPE) and the application injector. The MPE
transmits SNIP configuration packets via the data-NoC, and the application injector dis-
patches task source code to the PEs also through the data-NoC. If HTs intercept any of
these packets, the MPE cannot currently detect and recover these messages. Implement-
ing timeout mechanisms for resending packets without an acknowledgment message could
address this issue.

122

7. CONCLUSION

In this Thesis, we introduced the following statement: It is feasible to integrate a
comprehensive suite of methods to secure application execution in MCSoCs, with low im-
pact on execution time and area footprint, through a framework that monitors and detects
suspicious behavior and applies countermeasures to reinforce security. The focus is to pro-
tect simultaneously the computation and communication resources of sensitive applications,
including access to IO devices.

Below, we evaluate the statement in parts, demonstrating that the strategic and
specific objectives were achieved.

“It is feasible to integrate a comprehensive suite of methods to secure application execu-
tion in MCSoCs...” – demonstrated by integrating SeMAP, Session Manager, and Opaque
Secure Zones into a framework that systemically manages security.

The IO transactions, treated by SeMAP, are protected using a lightweight authen-
tication protocol based on LFSR and XOR gates instead of cryptography and complex key
exchange mechanisms. Inner OSZ communication, treated by the Session Manager, is mon-
itored using a control NoC disjointed from the data NoC to detect attacks from HT-infected
routers and recover the communication. Note that cryptography is not mentioned in the set
of defense mechanisms. The inter-OSZ does not require cryptography due to the spatial iso-
lation of the application. The exposed flows between the AP to the SNIP may be encrypted
with lightweight cryptography, but this is out of the scope of this Thesis.

“..with low impact on execution time and area footprint...” - refer to the costs of each pro-
posal. Regarding execution time, the SeMAP showed 0.5% overhead to create and map an
application into the system, compared to the baseline OSZ method. The authentication pro-
tocol presented 2.56% increase with frequent key renewal protocols. The Session Manager
execution time overhead varies depending on the application profile, being low for pipeline
applications (3.55%) and 33.81% in the worst case. The defense mechanisms can have
impacts on system startup, to insert MAC on the task source code, or on application allo-
cation, to decide the placement and activate the secure zones. Even though such impacts
may delay the application start, they do not effect the total application execution time.

Regarding hardware overhead, Table 4.2 compared the baseline router area (17,973
µm2) to the new communication infrastructure (control and secure router – 26,766 µm2), the
area overhead corresponded to 48.8%. Note that the control NoC is an important element
of all the contributions presented in this Thesis. Considering that the communication infras-
tructure represents no more than 20% of the PE area, the increase in the PE area, in the
worst case, stays between 5% and 10%.

123

“..through a framework that monitors and detects suspicious behavior and applies counter-
measures to reinforce security.’ - we presented systemic and integrated security mecha-
nisms that simultaneously monitor, detect and mitigate a broad spectrum of threats in real
time. The proposed framework monitors the system at several locations, allowing the detec-
tion of threats. Threat detection fires countermeasures and generates security warnings to
a Security Manager.

“The focus is to protect simultaneously the computation and communication resources of
sensitive applications, including access to IO devices.’ - was confirmed by the last attack
campaign performed on the 8x8 scenario. There, threats to computation are represented by
Spoofing and DoS attacks that attempt to deliver forged packets to a protected application.
Threats to communication are the Hardware Trojans, which dropped packets even inside the
OSZs. HTs also threatened the IO access in the Gray area and the malicious peripherals
trying to access PEs inside the OSZ. The Security Manager identified 467 attacks, and the
platform managed to recover missing data and reinforced the protection of the applications,
which all of them executed correctly, with only 4.47% execution time overhead (average
value).

In conclusion, this Thesis fulfilled all the proposed objectives and significantly ad-
vanced MCSoC security by combining several defenses instead of approaching them indi-
vidually. Furthermore, this Thesis opened several research opportunities by structuring a
registry of warnings inside a Security Manager, which can be processed to make even more
effective countermeasures, extend the system’s protection, and include more attack types
and sources in the threat model.

7.1 Future Work

As a guideline for future work, this Thesis has room for improvement as follows:

1. Systemic Countermeasures. The next step of this platform is to utilize the security
reports generated by the framework to apply more complex countermeasures, such
as migrating tasks away from a detected HT, terminating tasks that are trying to leak
information, blocking routers that are impairing the packet transmission, or even use a
secondary port for access to IO devices.

2. HT localization. The Session Manager does not rely on the HT locating to be effective.
However, finding the infected routers can help with new path creation and OSZ allo-
cation since both can exclude the infected router. A technique to locate HT can use
packet probing and establishing a route of trust based on the arriving packets. Work-
ing in this direction would fix the issue on the SEARCHPATH, which is only able to find

124

one alternative route, enhancing the path construction algorithm to include information
about the NoC to avoid specific routers or ports.

3. OSZ defragmentation. The utilization of Secure Zones brings fragmentation in the
long term. Fragmentation refers to non-contiguous regions with PEs not executing
tasks, negatively affecting resource utilization. As SeMAP enforces restrictions to the
placement of OSZs, it is expected to have fragmentation in the restricted areas during
extensive simulations, limiting the deployment of applications with security constraints.
Fragmentation analysis on scenarios with dynamic workloads, varying the number of
applications and tasks per application, is a research opportunity, followed by a defrag-
mentation technique.

4. Protect the MPE transactions. During the final attack campaign, we observed a lim-
itation regarding the attacks on MPE and AppInj packets. If an HT drops a packet
coming from the MPE or from the AppInj, there are no mechanisms to detect the miss-
ing packet and, consequently, not be able to recover them. Creating an ack-timeout
protocol that can identify the missing packet and ask for retransmission is a way to
solve this limitation.

5. Incomplete Packets. Also during the final attack campaign, the DMNI and SNIP showed
a limitation on receiving incomplete packets. These packets were cropped due to the
HT activation in the middle of their transmission. Because of that, part of the packet
would arrive at the destination and the targets were not able to process it. Adding an
automatic discard mechanism in the DMNI that ignores packets which packet size and
the end-of-packet signal do not match is a possible solution.

6. Formalization of security and threat concepts. To reinforce the theoretical basis of the
concepts adopted in the security evaluations and the threat models, a further develop-
ment of the concepts would help delimit the extent of the countermeasures and even
categorize the level of threats.

125

REFERENCES

[Aghaei et al., 2020] Aghaei, B., Reshadi, M., Masdari, M., Sajadi, S., Hosseinzadeh, M.,
and Darwesh, A. (2020). Network adapter architectures in network on chip: compre-
hensive literature review. Cluster Computing, 23(1):321–346. https://doi.org/10.1007/
s10586-019-02924-2.

[Ahmed et al., 2021] Ahmed, M. M., Dhavlle, A., Mansoor, N., Dinakarrao, S. M. P., Basu, K.,
and Ganguly, A. (2021). What Can a Remote Access Hardware Trojan do to a Network-
on-Chip? In IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5.
https://doi.org/10.1109/iscas51556.2021.9401297.

[Ali and Khan, 2021] Ali, U. and Khan, O. (2021). Connoc: A practical timing channel attack
on network-on-chip hardware in a multicore processor. In IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 192–202. https://doi.org/10.
1109/HOST49136.2021.9702280.

[ARM, 2013] ARM (2013). AMBA® AXITM and ACETM Protocol Specification. https:
//developer.arm.com/documentation/ihi0022/e/, January 2024.

[Avizienis et al., 2004] Avizienis, A., Laprie, J. C., Randell, B., and Landwehr, C. (2004).
Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33. https://doi.org/10.1109/tdsc.2004.2.

[Azad et al., 2019] Azad, S. P., Jervan, G., Tempelmeier, M., and Sepúlveda, J. (2019).
CAESAR-MPSoC: Dynamic and Efficient MPSoC Security Zones. In IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 477–482. https://doi.org/10.1109/
isvlsi.2019.00092.

[Azad et al., 2018] Azad, S. P., Niazmand, B., Jervan, G., and Sepúlveda, J. (2018). En-
abling Secure MPSoC Dynamic Operation through Protected Communication. In IEEE
International Conference on Electronics, Circuits, and Systems (ICECS), pages 481–484.
https://doi.org/10.1109/icecs.2018.8617940.

[Baron et al., 2013] Baron, S., Wangham, M. S., and Zeferino, C. A. (2013). Security mech-
anisms to improve the availability of a Network-on-Chip. In IEEE International Conference
on Electronics, Circuits, and Systems (ICECS), pages 609–612. https://doi.org/10.1109/
icecs.2013.6815488.

[Benhani et al., 2019] Benhani, E. M., López, C. M., and Bossuet, L. (2019). Secure Inter-
nal Communication of a Trustzone-Enabled HeterogeneousSoc Lightweight Encryption.
In International Conference on Field-Programmable Technology (FPT), pages 239–242.
https://doi.org/10.1109/icfpt47387.2019.00037.

https://doi.org/10.1007/s10586-019-02924-2
https://doi.org/10.1007/s10586-019-02924-2
https://doi.org/10.1109/iscas51556.2021.9401297
https://doi.org/10.1109/HOST49136.2021.9702280
https://doi.org/10.1109/HOST49136.2021.9702280
https://developer.arm.com/documentation/ihi0022/e/
https://developer.arm.com/documentation/ihi0022/e/
https://doi.org/10.1109/tdsc.2004.2
https://doi.org/10.1109/isvlsi.2019.00092
https://doi.org/10.1109/isvlsi.2019.00092
https://doi.org/10.1109/icecs.2018.8617940
https://doi.org/10.1109/icecs.2013.6815488
https://doi.org/10.1109/icecs.2013.6815488
https://doi.org/10.1109/icfpt47387.2019.00037

126

[Benini and Micheli, 2002] Benini, L. and Micheli, G. (2002). Networks on chips: a new SoC
paradigm. IEEE Computer, 35:70–78. https://doi.org/10.1109/2.976921.

[Bisht and Das, 2022] Bisht, B. and Das, S. (2022). BHT-NoC: Blaming Hardware Trojans
in NoC Routers. IEEE Design & Test, 39(6):39–47. https://doi.org/10.1109/MDAT.2022.
3202998.

[Bohnenstiehl et al., 2016] Bohnenstiehl, B., Stillmaker, A., Pimentel, J., Andreas, T., Liu,
B., Tran, A., Adeagbo, E., and Bass, B. (2016). A 5.8 pJ/Op 115 billion ops/sec, to 1.78
trillion ops/sec 32nm 1000-processor array. In IEEE Symposium on VLSI Circuits (VLSIC),
pages 1–2. https://doi.org/10.1109/vlsic.2016.7573511.

[Boraten and Kodi, 2016] Boraten, T. and Kodi, A. K. (2016). Mitigation of Denial of Service
Attack with Hardware Trojans in NoC Architectures. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 1091–1100. https://doi.org/10.1109/
ipdps.2016.59.

[Caimi, 2019] Caimi, L. L. (2019). Secure Admission and Execution of Applications in NoC-
based Many-cores Systems. PhD thesis, PPGCC-PUCRS. 121p.

[Caimi et al., 2021] Caimi, L. L., Faccenda, R., and Moraes, F. G. (2021). A Survey on
Security Mechanisms for NoC-based Many-Core SoCs. Journal of Integrated Circuits and
Systems, 16(2):1–15. https://doi.org/10.29292/jics.v16i2.485.

[Caimi et al., 2018a] Caimi, L. L., Fochi, V., and Moraes, F. G. (2018a). Secure Admission
of Applications in Many-Cores. In IEEE International Conference on Electronics, Circuits
and Systems (ICECS), pages 761–764. https://doi.org/10.1109/icecs.2018.8618021.

[Caimi et al., 2018b] Caimi, L. L., Fochi, V., Wachter, E., and Moraes, F. G. (2018b). Runtime
creation of continuous secure zones in many-core systems for secure applications. In
Latin American Symposium on Circuits and Systems (LASCAS), pages 1–4. https://doi.
org/10.1109/lascas.2018.8399904.

[Caimi and Moraes, 2019] Caimi, L. L. and Moraes, F. (2019). Security in Many-Core SoCs
Leveraged by Opaque Secure Zones. In IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), pages 471–476. https://doi.org/10.1109/isvlsi.2019.00091.

[Carara et al., 2009] Carara, E. A., de Oliveira, R. P., Calazans, N. L. V., and Moraes, F. G.
(2009). HeMPS - a framework for NoC-based MPSoC generation. In IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1345–1348. https://doi.org/10.1109/
iscas.2009.5118013.

[Charles et al., 2022] Charles, S., Bindschaedler, V., and Mishra, P. (2022). Digital Wa-
termarking for Detecting Malicious Intellectual Property Cores in NoC Architectures.

https://doi.org/10.1109/2.976921
https://doi.org/10.1109/MDAT.2022.3202998
https://doi.org/10.1109/MDAT.2022.3202998
https://doi.org/10.1109/vlsic.2016.7573511
https://doi.org/10.1109/ipdps.2016.59
https://doi.org/10.1109/ipdps.2016.59
https://doi.org/10.29292/jics.v16i2.485
https://doi.org/10.1109/icecs.2018.8618021
https://doi.org/10.1109/lascas.2018.8399904
https://doi.org/10.1109/lascas.2018.8399904
https://doi.org/10.1109/isvlsi.2019.00091
https://doi.org/10.1109/iscas.2009.5118013
https://doi.org/10.1109/iscas.2009.5118013

127

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 30(7):952–965.
https://doi.org/10.1109/TVLSI.2022.3167606.

[Charles et al., 2020a] Charles, S., Logan, M., and Mishra, P. (2020a). Lightweight Anony-
mous Routing in NoC based SoCs. In Design, Automation Test in Europe Conference
(DATE), pages 334–337. https://doi.org/10.23919/date48585.2020.9116572.

[Charles et al., 2020b] Charles, S., Lyu, Y., and Mishra, P. (2020b). Real-Time Detection
and Localization of Distributed DoS Attacks in NoC-Based SoCs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(12):4510–4523. https:
//doi.org/10.23919/date.2019.8715009.

[Charles and Mishra, 2020a] Charles, S. and Mishra, P. (2020a). Lightweight and Trust-
Aware Routing in NoC-Based SoCs. In IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), pages 160–167. https://doi.org/10.1109/isvlsi49217.2020.00038.

[Charles and Mishra, 2020b] Charles, S. and Mishra, P. (2020b). Securing Network-on-Chip
Using Incremental Cryptography. In IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 168–175. https://doi.org/10.1109/isvlsi49217.2020.00039.

[Charles and Mishra, 2022] Charles, S. and Mishra, P. (2022). A Survey of Network-on-Chip
Security Attacks and Countermeasures. ACM Computing Surveys, 54(5):101:1–101:36.
https://doi.org/10.1145/3450964.

[Chaves et al., 2019] Chaves, C., Azad, S., Hollstein, T., and Sepúlveda, J. (2019). DoS at-
tack detection and path collision localization in NoC-based MpsoC architectures. Journal
of Low Power Electronics and Applications, 9. https://doi.org/10.3390/jlpea9010007.

[Comarú et al., 2023] Comarú, G., Faccenda, R. F., Caimi, L. L., and Moraes, F. G. (2023).
Secure network interface for protecting IO communication in many-cores. In Symposium
on Integrated Circuits and Systems Design (SBCCI), pages 1–6. IEEE. https://doi.org/10.
1109/SBCCI60457.2023.10261655.

[Costa et al., 2021] Costa, W. N., Lima, L. P., and de Lima Junior, O. A. (2021). Extracting
Packet Dependence from NoC Simulation Traces Using Association Rule Mining. Analog
Integrated Circuits and Signal Processing, 106(1):235–247. https://doi.org/10.1109/sbcci.
2018.8533244.

[Daoud and Rafla, 2019a] Daoud, L. and Rafla, N. (2019a). Analysis of Black Hole Router
Attack in Network-on-Chip. In IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS), pages 69–72. https://doi.org/10.1109/mwscas.2019.8884979.

[Daoud and Rafla, 2019b] Daoud, L. and Rafla, N. (2019b). Detection and prevention pro-
tocol for black hole attack in Network-on-Chip. In IEEE/ACM International Symposium on
Networks-on-Chip (NOCS), pages 22:1–22:2. https://doi.org/10.1145/3313231.3352374.

https://doi.org/10.1109/TVLSI.2022.3167606
https://doi.org/10.23919/date48585.2020.9116572
https://doi.org/10.23919/date.2019.8715009
https://doi.org/10.23919/date.2019.8715009
https://doi.org/10.1109/isvlsi49217.2020.00038
https://doi.org/10.1109/isvlsi49217.2020.00039
https://doi.org/10.1145/3450964
https://doi.org/10.3390/jlpea9010007
https://doi.org/10.1109/SBCCI60457.2023.10261655
https://doi.org/10.1109/SBCCI60457.2023.10261655
https://doi.org/10.1109/sbcci.2018.8533244
https://doi.org/10.1109/sbcci.2018.8533244
https://doi.org/10.1109/mwscas.2019.8884979
https://doi.org/10.1145/3313231.3352374

128

[Diffie and Hellman, 1976] Diffie, W. and Hellman, M. (1976). New directions in cryptogra-
phy. IEEE Transactions on Information Theory, 22(6):644–654. https://doi.org/10.1145/
3549993.3550007.

[Dinechin et al., 2014] Dinechin, B. D. D., Amstel, D. V., and Lager, G. (2014). Time-critical
computing on a single-chip massively parallel processor. In Design, Automation Test in
Europe Conference (DATE), pages 1–6. https://doi.org/10.7873/date.2014.110.

[Elkanishy et al., 2019] Elkanishy, A., Badawy, A. A., Furth, P. M., Boucheron, L. E., and
Michael, C. P. (2019). Supervising Communication SoC for Secure Operation Using
Machine Learning. In IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS), pages 582–585. https://doi.org/10.1109/mwscas.2019.8885273.

[Ellinidou et al., 2019] Ellinidou, S., Sharma, G., Rigas, T., Vanspouwen, T., Markowitch, O.,
and Dricot, J. (2019). SSPSoC: A Secure SDN-Based Protocol over MPSoC. Security and
Communication Networks, 2019:4869167:1–4869167:11. https://doi.org/10.1155/2019/
4869167.

[Faccenda et al., 2021] Faccenda, R. F., Caimi, L. L., and Moraes, F. G. (2021). Detection
and Countermeasures of Security Attacks and Faults on NoC-Based Many-Cores. IEEE
Access, 9:153142–153152. https://doi.org/10.1109/access.2021.3127468.

[Fernandes et al., 2016] Fernandes, R., Marcon, C., Cataldo, R., Silveira, J., Sigl, G., and
Sepúlveda, J. (2016). security aware routing approach for NoC-based MPSoCs. In
Symposium on Integrated Circuits and Systems Design (SBCCI), pages 1–6. https://doi.
org/10.1109/SBCCI.2016.7724054.

[Fiorin et al., 2008] Fiorin, L., Lukovic, S., and Palermo, G. (2008). Implementation of a Re-
configurable Data protection Module for NoC-based MPSoCs. In IEEE International Par-
allel and Distributed Processing Symposium, pages 1–8. https://doi.org/10.1109/IPDPS.
2008.4536514.

[Fiorin et al., 2013] Fiorin, L., Palermo, G., and Silvano, C. (2013). A configurable mon-
itoring infrastructure for NoC-based architectures. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 22(11):2438–2442. https://doi.org/10.1109/TVLSI.
2013.2290102.

[Fiorin et al., 2007] Fiorin, L., Silvano, C., and Sami, M. (2007). Security Aspects in
Networks-on-Chips: Overview and Proposals for Secure Implementations. In Euromicro
Conference on Digital System Design Architectures, Methods and Tools (DSD), pages
539–542. https://doi.org/10.1109/dsd.2007.4341520.

[Forlin et al., 2019] Forlin, B., Reinbrecht, C., and Sepúlveda, J. (2019). Security Aspects
of Real-Time MPSoCs: The Flaws and Opportunitiesof Preemptive NoCs. In IEEE In-

https://doi.org/10.1145/3549993.3550007
https://doi.org/10.1145/3549993.3550007
https://doi.org/10.7873/date.2014.110
https://doi.org/10.1109/mwscas.2019.8885273
https://doi.org/10.1155/2019/4869167
https://doi.org/10.1155/2019/4869167
https://doi.org/10.1109/access.2021.3127468
https://doi.org/10.1109/SBCCI.2016.7724054
https://doi.org/10.1109/SBCCI.2016.7724054
https://doi.org/10.1109/IPDPS.2008.4536514
https://doi.org/10.1109/IPDPS.2008.4536514
https://doi.org/10.1109/TVLSI.2013.2290102
https://doi.org/10.1109/TVLSI.2013.2290102
https://doi.org/10.1109/dsd.2007.4341520

129

ternational Conference on Very Large Scale Integration (VLSI-SoC), pages 209–233.
https://doi.org/10.1007/978-3-030-53273-4_10.

[Ge et al., 2019] Ge, J., Gao, N., Tu, C., Xiang, J., and Liu, Z. (2019). AdapTimer: Hard-
ware/Software Collaborative Timer Resistant to Flush-BasedCache Attacks on ARM-
FPGA Embedded SoC. In IEEE International Conference on Computer Design (ICCD),
pages 585–593. https://doi.org/10.1109/iccd46524.2019.00085.

[Gondal et al., 2020] Gondal, H., Fayyaz, S., Aftab, A., Nokhaiz, S., Arshad, M., and
Saleem, W. (2020). A method to detect and avoid hardware trojan for network-on-
chip architecture based on error correction code and junction router (ECCJR). In-
ternational Journal of Advanced Computer Science and Applications, 11(4):581–586.
https://doi.org/10.14569/ijacsa.2020.0110476.

[Halder et al., 2023] Halder, D., Merugu, M., and Ray, S. (2023). Obnocs: Protecting
network-on-chip fabrics against reverse-engineering attacks. ACM Transactions on Em-
bedded Computing Systems, 22(5s). https://doi.org/10.1145/3609107.

[Harttung et al., 2019] Harttung, J., Franz, E., Moriam, S., and Walther, P. (2019).
Lightweight Authenticated Encryption for Network-on-Chip Communications. In ACM
Great Lakes Symposium on VLSI, pages 33–38. https://doi.org/10.1145/3299874.
3317990.

[Hemani et al., 2000] Hemani, A., Jantsch, A., Kumar, S., Postula, A., Öberg, J., Millberg,
M., and Lindqvist, D. (2000). Network on chip: An architecture for billion transistor era. In
Nordic Circuits and Systems Conference (NORCHIP), pages 166–173.

[Ho et al., 2019] Ho, W., Pammu, A. A., Ne, K. Z. L., Chong, K., and Gwee, B. (2019).
Reconfigurable Routing Paths As Noise Generators Using NoC Platformfor Hardware Se-
curity Applications. In IEEE International System-on-Chip Conference (SoCC), pages
86–91. https://doi.org/10.1109/socc46988.2019.1570557958.

[Hussain and Guo, 2019] Hussain, M. and Guo, H. (2019). A Bandwidth-Aware Authentica-
tion Scheme for Packet-Integrity Attack Detection on Trojan Infected NoC. In IEEE/IFIP
International Conference on VLSI and System-on-Chip, VLSI-SoC, pages 201–206. https:
//doi.org/10.1109/vlsi-soc.2018.8645051.

[Hussain et al., 2018] Hussain, M., Malekpour, A., Guo, H., and Parameswaran, S. (2018).
EETD: An Energy Efficient Design for Runtime Hardware Trojan Detection in Untrusted
Network-on-Chip. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages
345–350. https://doi.org/10.1109/isvlsi.2018.00070.

[Indrusiak et al., 2019] Indrusiak, L. S., Harbin, J., Reinbrecht, C., and Sepúlveda, J. (2019).
Side-channel protected MPSoC through secure real-time networks-on-chip. Microproces-
sors and Microsystems, 68:34–46. https://doi.org/10.1016/j.micpro.2019.04.004.

https://doi.org/10.1007/978-3-030-53273-4_10
https://doi.org/10.1109/iccd46524.2019.00085
https://doi.org/10.14569/ijacsa.2020.0110476
https://doi.org/10.1145/3609107
https://doi.org/10.1145/3299874.3317990
https://doi.org/10.1145/3299874.3317990
https://doi.org/10.1109/socc46988.2019.1570557958
https://doi.org/10.1109/vlsi-soc.2018.8645051
https://doi.org/10.1109/vlsi-soc.2018.8645051
https://doi.org/10.1109/isvlsi.2018.00070
https://doi.org/10.1016/j.micpro.2019.04.004

130

[JYV et al., 2018] JYV, M. K., Swain, A. K., K, S. K., Sahoo, S. R., and Mahapatra, K. (2018).
Run Time Mitigation of Performance Degradation Hardware Trojan Attacks in Network on
Chip. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 738–743.
https://doi.org/10.1109/isvlsi.2018.00139.

[Kashi et al., 2021] Kashi, S., Patooghy, A., Rahmati, D., and Fazeli, M. (2021). An En-
ergy Efficient Synthesis Flow for Application Specific SoC Design. Integration, the VLSI
Journal, 81:331–341. https://doi.org/10.1016/j.vlsi.2021.08.005.

[Kenarangi and Partin-Vaisband, 2019] Kenarangi, F. and Partin-Vaisband, I. (2019). Se-
curity Network On-Chip for Mitigating Side-Channel Attacks. In ACM/IEEE Interna-
tional Workshop on System Level Interconnect Prediction (SLIP), pages 1–6. https:
//doi.org/10.1109/slip.2019.8771328.

[Kornaros et al., 2018] Kornaros, G., Tomoutzoglou, O., and Coppola, M. (2018). Hardware-
Assisted Security in Electronic Control Units: Secure Automotive Communications by Uti-
lizing One-Time-Programmable Network on Chip and Firewalls. IEEE Micro, 38(5):63–74.
https://doi.org/10.1109/mm.2018.053631143.

[Kulkarni et al., 2016] Kulkarni, A., Pino, Y., and Mohsenin, T. (2016). SVM-based real-time
hardware Trojan detection for many-core platform. In International Symposium on Quality
Electronic Design (ISQED), pages 362–367. https://doi.org/10.1109/isqed.2016.7479228.

[Kulkarni et al., 2021] Kulkarni, V. J., Rajan, M., Gupta, R., Jose, J., and Nandi, S. (2021).
Packet header attack by hardware trojan in noc based TCMP and its impact analysis. In
IEEE/ACM International Symposium on Networks-on-Chip (NOCS), pages 21–28. https:
//doi.org/10.1145/3479876.3481597.

[Kumar et al., 2021] Kumar, J. M., Swain, A. K., Mahapatra, K., et al. (2021). Fortified-noc: A
robust approach for trojan-resilient network-on-chips to fortify multicore-based consumer
electronics. IEEE Transactions on Consumer Electronics, 68(1):57–68. https://doi.org/10.
1109/TCE.2021.3129155.

[Kumar et al., 2018] Kumar, S., Seth, S., Sahoo, S. R., Mahapatra, A., Swain, A. K., and
Mahapatra, K. (2018). PUF-Based Secure Test Wrapper for SoC Testing. In IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI), pages 672–677. https://doi.org/10.
1109/isvlsi.2018.00127.

[Li et al., 2016] Li, H., Liu, Q., and Zhang, J. (2016). A survey of hardware Trojan threat
and defense. Integration, the VLSI Journal, 55:426–437. https://www.sciencedirect.com/
science/article/pii/S0167926016000067.

[Linder and Harden, 1991] Linder, D. H. and Harden, J. C. (1991). An Adaptive and Fault
Tolerant Wormhole Routing Strategy for k-ary n-cubes. IEEE Transactions on Computer,
40(1):2–12. https://doi.org/10.1109/12.67315.

https://doi.org/10.1109/isvlsi.2018.00139
https://doi.org/10.1016/j.vlsi.2021.08.005
https://doi.org/10.1109/slip.2019.8771328
https://doi.org/10.1109/slip.2019.8771328
https://doi.org/10.1109/mm.2018.053631143
https://doi.org/10.1109/isqed.2016.7479228
https://doi.org/10.1145/3479876.3481597
https://doi.org/10.1145/3479876.3481597
https://doi.org/10.1109/TCE.2021.3129155
https://doi.org/10.1109/TCE.2021.3129155
https://doi.org/10.1109/isvlsi.2018.00127
https://doi.org/10.1109/isvlsi.2018.00127
https://www.sciencedirect.com/science/article/pii/S0167926016000067
https://www.sciencedirect.com/science/article/pii/S0167926016000067
https://doi.org/10.1109/12.67315

131

[Manju et al., 2020] Manju, R., Das, A., Jose, J., and Mishra, P. (2020). SECTAR: Secure
NoC using Trojan Aware Routing. In IEEE/ACM International Symposium on Networks-
on-Chip (NOCS), pages 1–8. https://doi.org/10.1109/nocs50636.2020.9241711.

[Meng et al., 2023] Meng, X., Raj, K., Ray, S., and Basu, K. (2023). SeVNoC: Security Val-
idation of System-on-Chip Designs With NoC Fabrics. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 42(2):672–682. https://doi.org/10.1109/
TCAD.2022.3179307.

[Moraes et al., 2004] Moraes, F. G., Calazans, N., Mello, A., Möller, L., and Ost, L. (2004).
HERMES: an infrastructure for low area overhead packet-switching networks on chip. In-
tegration, the VLSI Journal, 38(1):69 – 93. https://doi.org/10.1016/j.vlsi.2004.03.003.

[Mountford et al., 2023] Mountford, T., Dhavlle, A., Tevebaugh, A., Mansoor, N., Dinakarrao,
S. M. P., and Ganguly, A. (2023). Address Obfuscation to Protect against Hardware Tro-
jans in Network-on-Chips. Journal of Low Power Electronics and Applications, 13(3):50.
https://doi.org/10.3390/jlpea13030050.

[Oliveira et al., 2018] Oliveira, B., Reusch, R., Medina, H., and Moraes, F. G. (2018). Evalu-
ating the Cost to Cipher the NoC Communication. In Latin American Symposium on Cir-
cuits and Systems (LASCAS), pages 1–4. https://doi.org/10.1109/lascas.2018.8399914.

[Oracle, 2017] Oracle (2017). Oracle’s SPARC T8 and SPARC M8 Server Architecture.
Technical report, Oracle Corporation. 44p.

[Patooghy et al., 2023] Patooghy, A., Hasanzadeh, M., Sarihi, A., Abdelrehim, M., and
Badawy, A. A. (2023). Securing Network-on-chips Against Fault-injection and Crypto-
analysis Attacks via Stochastic Anonymous Routing. ACM Journal on Emerging Tech-
nologies in Computing Systems, 19(3):22:1–22:21. https://doi.org/10.1145/3592798.

[Peckham, 2020] Peckham, O. (2020). Esperanto Unveils ML Chip with
Nearly 1,100 RISC-V Cores. https://www.hpcwire.com/2020/12/08/
esperanto-unveils-ml-chip-with-nearly-1100-risc-v-cores, March 2022.

[Philomina, 2021] Philomina, J. (2021). A Study on the Effect of Hardware Trojans in
the Performance of Network on Chip Architectures. In International Conference on
Smart Computing and Communications (ICSCC), pages 314–318. https://doi.org/10.
1109/icscc51209.2021.9528249.

[Popovici et al., 2010] Popovici, K., Rousseau, F., Jerraya, A. A., and Wolf, M. (2010). Em-
bedded Software Design and Programming of Multiprocessor System-on-Chip: Simulink
and System C Case Studies. Springer Publishing Company. 290p.

[Ramachandran, 2002] Ramachandran, J. (2002). Designing Security Architecture Solu-
tions. John Wiley & Sons, Inc., 483p. 483p.

https://doi.org/10.1109/nocs50636.2020.9241711
https://doi.org/10.1109/TCAD.2022.3179307
https://doi.org/10.1109/TCAD.2022.3179307
https://doi.org/10.1016/j.vlsi.2004.03.003
https://doi.org/10.3390/jlpea13030050
https://doi.org/10.1109/lascas.2018.8399914
https://doi.org/10.1145/3592798
https://www.hpcwire.com/2020/12/08/esperanto-unveils-ml-chip-with-nearly-1100-risc-v-cores
https://www.hpcwire.com/2020/12/08/esperanto-unveils-ml-chip-with-nearly-1100-risc-v-cores
https://doi.org/10.1109/icscc51209.2021.9528249
https://doi.org/10.1109/icscc51209.2021.9528249

132

[Raparti and Pasricha, 2019] Raparti, V. Y. and Pasricha, S. (2019). Lightweight Mitigation
of Hardware Trojan Attacks in NoC-based Manycore Computing. In ACM/IEEE Design
Automation Conference (DAC), pages 1–6. https://doi.org/10.1145/3316781.3317851.

[Rauber and Rünger, 2013] Rauber, T. and Rünger, G. (2013). Parallel Programming for
Multicore and Cluster Systems. Springer. 463p.

[Ravikumar et al., 2019] Ravikumar, C., Swamy, S., and Uma, B. (2019). A hierarchi-
cal approach to self-test, fault-tolerance and routing security in a Network-on-Chip. In
IEEE International Test Conference India (ITC India), pages 1–6. https://doi.org/10.1109/
itcindia46717.2019.8979997.

[Real et al., 2018] Real, M. M., Wehner, P., Lapotre, V., Göhringer, D., and Gogniat, G.
(2018). Application Deployment Strategies for Spatial Isolation on Many-Core Acceler-
ators. ACM Transaction on Embedded Computing Systems, 17(2):55:1–55:31. https:
//doi.org/10.1145/3168383.

[Reinbrecht et al., 2020] Reinbrecht, C., Aljuffri, A., Hamdioui, S., Taouil, M., Forlin, B., and
Sepúlveda, J. (2020). Guard-NoC: A Protection Against Side-Channel Attacks for MP-
SoCs. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 536–541.
https://doi.org/10.1109/isvlsi49217.2020.000-1.

[Reinbrecht et al., 2019] Reinbrecht, C., Forlin, B., and Sepúlveda, J. (2019). Cache timing
attacks on NoC-based MPSoCs. Microprocessors and Microsystems, 66:1–9. https://doi.
org/10.1016/j.micpro.2019.01.007.

[Rout et al., 2020] Rout, S. S., Singh, A., Patil, S. B., Sinha, M., and Deb, S. (2020). Security
Threats in Channel Access Mechanism of Wireless NoC and Efficient Countermeasures.
In IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5. https:
//doi.org/10.1109/iscas45731.2020.9180581.

[Rovinski et al., 2019] Rovinski, A. et al. (2019). Evaluating Celerity: A 16-nm 695 Giga-
RISC-V Instructions/s Manycore Processor With Synthesizable PLL. IEEE Solid-State
Circuits Letters, 2(12):289–292. https://doi.org/10.1109/lssc.2019.2953847.

[Ruaro et al., 2018] Ruaro, M., Caimi, L. L., Fochi, V., and Moraes, F. G. (2018). A Frame-
work for Heterogeneous Many-core SoCs Generation. In Latin American Symposium
on Circuits and Systems (LASCAS), pages 89–92. https://doi.org/10.1109/lascas.2019.
8667590.

[Ruaro et al., 2020] Ruaro, M., Caimi, L. L., and Moraes, F. G. (2020). A Systemic and
Secure SDN Framework for NoC-Based Many-Cores. IEEE Access, 8:105997–106008.
https://doi.org/10.1109/access.2020.3000457.

https://doi.org/10.1145/3316781.3317851
https://doi.org/10.1109/itcindia46717.2019.8979997
https://doi.org/10.1109/itcindia46717.2019.8979997
https://doi.org/10.1145/3168383
https://doi.org/10.1145/3168383
https://doi.org/10.1109/isvlsi49217.2020.000-1
https://doi.org/10.1016/j.micpro.2019.01.007
https://doi.org/10.1016/j.micpro.2019.01.007
https://doi.org/10.1109/iscas45731.2020.9180581
https://doi.org/10.1109/iscas45731.2020.9180581
https://doi.org/10.1109/lssc.2019.2953847
https://doi.org/10.1109/lascas.2019.8667590
https://doi.org/10.1109/lascas.2019.8667590
https://doi.org/10.1109/access.2020.3000457

133

[Sepúlveda et al., 2018] Sepúlveda, J., Willgerodt, F., and Pehl, M. (2018). SEPUFSoC:
Using PUFs for Memory Integrity and Authentication in Multi-Processors System-on-Chip.
In Great Lakes Symposium on VLSI (GLSVLSI), pages 39–44. https://doi.org/10.1145/
3194554.3194562.

[Shakya et al., 2017] Shakya, B., He, T., Salmani, H., Forte, D., Bhunia, S., and Tehra-
nipoor, M. (2017). Benchmarking of hardware trojans and maliciously affected cir-
cuits. Journal of Hardware and Systems Security, 1(1):85–102. https://doi.org/10.1007/
s41635-017-0001-6.

[Sharma et al., 2021] Sharma, G., Bousdras, G., Ellinidou, S., Markowitch, O., Dricot, J.-M.,
and Milojevic, D. (2021). Exploring the security landscape: Noc-based mpsoc to cloud-of-
chips. Microprocessors and Microsystems, 84:103963. https://doi.org/10.1016/j.micpro.
2021.103963.

[Sharma et al., 2019] Sharma, G., Kuchta, V., Sahu, R. A., Ellinidou, S., Bala, S., Markow-
itch, O., and Dricot, J. (2019). A Twofold Group Key Agreement Protocol for NoC
based MPSoCs. Transactions on Emerging Telecommunications Technologies, 30(6):1–
18. https://doi.org/10.1109/pst.2018.8514117.

[Siddiqui et al., 2019] Siddiqui, A. S., Shirley, G., Joseph, S. R., Gui, Y., Plusquellic, J., van
Dijk, M., and Saqib, F. (2019). Multilayer Camouflaged Secure Boot for SoCs. In Inter-
national Workshop on Microprocessor/SoC Test, Security and Verification (MTV), pages
56–61. https://doi.org/10.1109/mtv48867.2019.00019.

[Sodani et al., 2016] Sodani, A., Gramunt, R., Corbal, J., Kim, H. S., Vinod, K., Chinthamani,
S., Hutsell, S., Agarwal, R., and Liu, Y. C. (2016). Knights Landing: Second-Generation
Intel Xeon Phi Product. IEEE Micro, 36(2):34–46. https://doi.org/10.1109/mm.2016.25.

[Sudusinghe et al., 2022] Sudusinghe, C., Charles, S., Ahangama, S., and Mishra, P.
(2022). Eavesdropping Attack Detection Using Machine Learning in Network-on-Chip
Architectures. IEEE Design & Test, 39(6):28–38. https://doi.org/10.1109/MDAT.2022.
3202995.

[Tecnhlogies, 2018] Tecnhlogies, M. (2018). TILE-Gx72 Processor Overview. http://www.
mellanox.com/page/products_dyn?product_, March 2022.

[Tibaldi et al., 2021] Tibaldi, M., Pilato, C., and Ferrandi, F. (2021). Automatic Generation
of Heterogeneous SoC Architectures With Secure Communications. IEEE Embedded
Systems Letters, 13(2):61–64. https://doi.org/10.1109/les.2020.3003974.

[Tran et al., 2021] Tran, T.-K., Dang, T.-P., Bui, T.-T., and Huynh, H.-T. (2021). A reliable
approach to secure iot systems using cryptosystems based on soc fpga platforms. In

https://doi.org/10.1145/3194554.3194562
https://doi.org/10.1145/3194554.3194562
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1007/s41635-017-0001-6
https://doi.org/10.1016/j.micpro.2021.103963
https://doi.org/10.1016/j.micpro.2021.103963
https://doi.org/10.1109/pst.2018.8514117
https://doi.org/10.1109/mtv48867.2019.00019
https://doi.org/10.1109/mm.2016.25
https://doi.org/10.1109/MDAT.2022.3202995
https://doi.org/10.1109/MDAT.2022.3202995
http://www.mellanox.com/page/products_dyn?product_
http://www.mellanox.com/page/products_dyn?product_
https://doi.org/10.1109/les.2020.3003974

134

International Symposium on Electrical and Electronics Engineering (ISEE), pages 53–58.
https://doi.org/10.1109/ISEE51682.2021.9418709.

[Wachter et al., 2017] Wachter, E., Caimi, L. L., Fochi, V., Munhoz, D., and Moraes, F. G.
(2017). BrNoC: A broadcast NoC for control messages in many-core systems. Microelec-
tronics Journal, 68:69 – 77. https://doi.org/10.1016/j.mejo.2017.08.010.

[Weber et al., 2020] Weber, I., Marchezan, G., Caimi, L., Marcon, C., and Moraes, F. G.
(2020). Open-Source NoC-Based Many-Core for Evaluating Hardware Trojan Detection
Methods. In IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5.
http://dx.doi.org/10.1109/ISCAS45731.2020.9180578.

[Wu et al., 2021] Wu, Q., Wang, X., and Chen, J. (2021). Defending against thermal covert
channel attacks by task migration in many-core system. In IEEE International Conference
on Circuits and Systems (ICCS), pages 111–120. https://doi.org/10.1109/ICCS52645.
2021.9697251.

[Xiao et al., 2020] Xiao, Y., Xin, J., and Shen, Y. (2020). CNN Based Electromagnetic Side
Channel Attacks on SoC. IOP Conference Series: Materials Science and Engineering,
782(3):1–7. https://doi.org/10.1088/1757-899x/782/3/032055.

[Yao et al., 2023] Yao, J., Zhang, Y., Hua, Y., Li, Y., Yang, J., and Chen, X. (2023). Spotlight:
An impairing packet transmission attack targeting specific node in noc-based TCMP. In
IEEE European Test Symposium (ETS), pages 1–4. https://doi.org/10.1109/ETS56758.
2023.10174197.

[Zhang et al., 2018] Zhang, L., Wang, X., Jiang, Y., Yang, M., Mak, T. S. T., and Singh, A. K.
(2018). Effectiveness of HT-assisted sinkhole and blackhole denial of service attacks
targeting mesh networks-on-chip. Journal of Systems Architecture, 89:84–94. https://doi.
org/10.1016/j.sysarc.2018.07.005.

[Zhang et al., 2022] Zhang, Y., Li, Y., Chen, X., Yang, J., Hua, Y., and Yao, J. (2022). Puf-
based secure test wrapper design for network-on-chip. In IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 181–184. https://doi.org/10.
1109/HOST54066.2022.9840115.

[Zhao et al., 2020] Zhao, Y., Wang, X., Jiang, Y., Wang, L., Yang, M., Singh, A. K., and Mak,
T. S. T. (2020). On hardware-trojan-assisted power budgeting system attack targeting
many core systems. Journal of Systems Architecture, 109:1–11. https://doi.org/10.1109/
socc.2018.8618565.

https://doi.org/10.1109/ISEE51682.2021.9418709
https://doi.org/10.1016/j.mejo.2017.08.010
http://dx.doi.org/10.1109/ISCAS45731.2020.9180578
https://doi.org/10.1109/ICCS52645.2021.9697251
https://doi.org/10.1109/ICCS52645.2021.9697251
https://doi.org/10.1088/1757-899x/782/3/032055
https://doi.org/10.1109/ETS56758.2023.10174197
https://doi.org/10.1109/ETS56758.2023.10174197
https://doi.org/10.1016/j.sysarc.2018.07.005
https://doi.org/10.1016/j.sysarc.2018.07.005
https://doi.org/10.1109/HOST54066.2022.9840115
https://doi.org/10.1109/HOST54066.2022.9840115
https://doi.org/10.1109/socc.2018.8618565
https://doi.org/10.1109/socc.2018.8618565

135

APPENDIX A – LIST OF PUBLICATIONS

Journal Publications

A Comprehensive Framework for Systemic Security Management in NoC-based Many-cores
FACCENDA, Rafael; COMARÚ, Gustavo; CAIMI, Luciano; MORAES, Fernando Gehm
IEEE Access, vol. 11, pp 131836 - 131847, November 2023
https://doi.org/10.1109/ACCESS.2023.3336565

SeMAP - A Method to Secure the Communication in NoC-based Many Cores
FACCENDA, Rafael; COMARÚ, Gustavo; CAIMI, Luciano; Moraes, Fernando Gehm
IEEE Design & Test, vol. 40(5), pp 42-51, October 2023
https://dx.doi.org/10.1109/MDAT.2023.3277813

Detection and Countermeasures of Security Attacks and Faults on NoC-based Many-Cores
FACCENDA, Rafael; CAIMI, Luciano; MORAES, Fernando Gehm
IEEE Access, vol. 9, pp. 153142-153152, November 2021
https://doi.org/10.1109/ACCESS.2021.3127468

A Survey on Security Mechanisms for NoC-based Many-Core SoCs
CAIMI, Luciano; FACCENDA, Rafael; MORAES, Fernando Gehm
Journal of Integrated Circuits and Systems, vol. 16(2), pp. 1-15. November 2021
https://doi.org/10.29292/jics.v16i2.485

Conference Publications

Lightweight Authentication for Secure IO Communication in NoC-based Many-cores
FACCENDA, Rafael; COMARÚ, Gustavo; CAIMI, Luciano; MORAES, Fernando Gehm
In: ISCAS, 2023
http://dx.doi.org/10.1109/ISCAS46773.2023.10181962

Secure Network Interface for Protecting IO Communication in Many-cores
COMARÚ, Gustavo; FACCENDA, Rafael; CAIMI, Luciano; MORAES, Fernando Gehm
In: SBCCI, 2023
http://dx.doi.org/10.1109/SBCCI60457.2023.10261655

Secure Communication with Peripherals in NoC-based Many-cores
FACCENDA, Rafael Follmann; COMARÚ, Gustavo; CAIMI, Luciano; MORAES, Fernando Gehm
In: SBCCI, 2022
http://dx.doi.org/10.1109/SBCCI55532.2022.9893244

https://doi.org/10.1109/ACCESS.2023.3336565
https://dx.doi.org/10.1109/MDAT.2023.3277813
https://doi.org/10.1109/ACCESS.2021.3127468
https://doi.org/10.29292/jics.v16i2.485
http://dx.doi.org/10.1109/ISCAS46773.2023.10181962
http://dx.doi.org/10.1109/SBCCI60457.2023.10261655
http://dx.doi.org/10.1109/SBCCI55532.2022.9893244

136

APPENDIX B – CTG OF THE APPLICATIONS

����

����� ���� �	
��� ���� ����

���

����

�� �� ����

����������

�������

�������

� �!��

"�"��

#$��

�������

������

���%���!�$��

�$��

$�������

 �!%��

�����

�	
����

���

��&�������

��&�������

��&�������

��&�������

��&�������

�������

#�'�

�(�

�

)$*�

+� '#�

",(+�
�(�

�
�(

)$*�

�(�

� +

�����

#,��� �$+�� �!�+��

�%� �(���

 �!%���

 -$�+%��

�!�!��

�����

#.��(��

$������� #.��(!��

����

���

�(���������

�(��������� �(���������

�(��/�����

Figure B.1 – CTG of the used benchmarks.

137

APPENDIX C – SEARCH STRING

((TITLE ("MPSoC") AND TITLE ("security"))1

OR (TITLE ("MPSoC") AND TITLE ("secure"))2

OR (TITLE ("MP-SoC") AND TITLE ("secure"))3

OR (TITLE ("MPSoC") AND TITLE ("firewall"))4

OR (TITLE ("MPSoC") AND ("demilitarized"))5

OR (TITLE ("MPSoC") AND ("dos"))6

OR (TITLE ("MPSoC") AND ("cryptography"))7

OR (TITLE ("Many-Core") AND TITLE ("secure"))8

OR (TITLE ("Many-Core") AND TITLE ("attack"))9

OR (TITLE ("Many-Core") AND TITLE ("trojan"))10

OR (TITLE ("Many-Core") AND ("cryptography"))11

OR (TITLE ("NoC") AND TITLE ("security"))12

OR (TITLE ("NoCs") AND TITLE ("security"))13

OR (TITLE ("network-on-chip") AND TITLE ("security"))14

OR (TITLE ("NoC") AND TITLE ("trojan"))15

OR (TITLE ("network-on-chip") AND TITLE ("trojan"))16

OR (TITLE ("NoC") AND TITLE ("attack"))17

OR (TITLE ("network-on-chip") AND TITLE ("attack"))18

OR (TITLE ("NoC") AND ("cryptography"))19

OR (TITLE ("network-on-chip") AND ("cryptography"))20

OR (TITLE ("SoC") AND TITLE ("firewall"))21

OR (TITLE ("SoC") AND TITLE ("attack"))22

OR (TITLE ("SoC") AND TITLE ("secure"))23

OR (TITLE ("SoC") AND TITLE ("dos"))24

OR (TITLE ("zone") AND TITLE ("secure")))25

AND (SUBJAREA(COMP) OR SUBJAREA(ENGI) OR SUBJAREA(MATH))26

AND (LANGUAGE(English))27

AND (DOCTYPE(cp) OR DOCTYPE(ar) OR DOCTYPE(bk) OR DOCTYPE(ch) OR28

DOCTYPE(ip))29

AND (LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO30

(PUBYEAR, 2018))31

138

APPENDIX D – OSZ API DETAIL

Figure D.1 presents a sequence diagram, covering the Appsec lifetime, from its ad-
mission into the system, up to its finishing. Yellow circles in the Figure (1) are functions
of the kernel related to the task allocation. Blue circles (1) are the kernel functions moved
to the OSZ API. The communication among Injector, Manager, and PEs is represented
by arrows, being white arrows flows transferred through the data-NoC while the black ar-
rows transferred through the control-NoC. Dotted black arrows illustrate a broadcast control
message that reaches all PEs of the Appsec.

The OSZ protocol follows these main steps:

• The protocol starts with a request, from the Injector, for a new Appsec to be executed.
The Manager reads and registers the resources required by Appsec (functions 1 and
2), creates and maps the OSZ (3 to 7).

• The Manager executes the task mapping (8), and sends the mapping result to the
Injector (APP_ALLOC_MAP) and the TASK_RELEASE to the PEs, notifying the task
that will be executed at each PE. The Injector sends the task object code to each PE.
Once the allocation process finishes, the PEs send the TASK_ALLOCATED control
message to the Manager.

• With all tasks mapped, the manager executes the OSZ Setting (9 to 11), and release
the Appsec to execute (START_APP_SERVICE control message).

• When the application finishes, the Manager executes the OSZ Unsetting (11 to 12),

and releases the resources reserved for Appsec (13).

The OSZ API functions are detailed below.

3 get_static_SZ()
Defines the OSZ when it is statically defined at design time. This is used mostly for
debug purposes, to choose the location of an OSZ.

4 create_shapes()
Based on the number of Appsec tasks and the number of tasks the PEs execute, it
creates a set of rectangular shapes that can receive Appsec. Many shapes are created
and sorted, being the first the closest to a square without CPU sharing (i.e., 1 task per
PE).

5 shape_location()
This function sweeps the platform with the shape set to find a free region that can
receive Appsec. Initially, it goes from the largest shapes to the smaller ones, without

139

Manager PEInjector
(Repository)

1 handle_new_app()

2 read_and_create_app()

3 get_static_SZ()

4 create_shapes()

5 shape_location()

application_mapping()8

TASK_ALLOCATED

9 set_RH_Address()

SET_SECURE_ZONE

Set_Secure_Zone()

11 Unset_Secure_Zone()

NEW_APP_SERVICE

NEW_APP_ACK

10

PE TR
(Top Right)

SECURE_ZONE_CLOSED

TASK_ALLOCATION

APP_ALLOC_MAP

END_TASK_SERVICE

...

SECURE_ZONE_OPENED

13 handle_app_terminated()

6 alloc_Secure_Zone()

7 set_SZ_migrations()

12 free_Secure_Zone()

NEW_APP

TASK_RELEASE

SET_SZ_RECEIVED

SET_EXCESS_SZ

START_APP_SERVICE

11 Unset_Secure_Zone()

OPEN_SZ_SERVICE

Application
Admission

Task
Allocation

11

10

OSZ
Location

OSZ
Setting

Task
Execution

11 OSZ
Unsetting

Free
Application

Shape
Creation

Legend

control
Message

data
Message

Kernel
function

Unit

Kernel
Operation

Task
Execution

OSZ
function

END_TASK_SERVICE

Figure D.1 – Sequence diagram of the OSZ method.

CPU sharing. Next, the shapes that assume two tasks per PE are used. The process
continues until the maximum amount of tasks the PEs can execute is reached.

140

6 alloc_Secure_Zone()
This function registers the selected shape position and size in an internal structure of
the manager.

7 set_SZ_migrations()
If the shape_location() function returns null, it is necessary to free some PEs to map
Appsec. In this case, the shape_location() sorts the shapes in the reverse order, starting
with the maximum allowed CPU sharing and the smaller shapes first. The goal is to
select the region that minimizes the number of task migrations. Once selected the
shape location and size, the manager fire the task(s) migration(s) and re-executes the
alloc_Secure_Zone() function. Note that if the system has most of its resources used,
it may be unfeasible to admit Appsec.

9 set_RH_address()
Stores the address of the PE which is in the upper right corner of the OSZ (PE TR).
This is the most distant PE from the Manager (mapped at PE (0,0)), being the PE that
will notify that the OSZ has been closed.

10 Set_Secure_Zone()
When the Manager sends the SET_SECURE_ZONE control message, the PEs that
will execute Appsec tasks verify if they are at the borders of the OSZ. If true, the kernel
computes which the wrappers to set. The PE TR notifies the Manager that the OSZ
was closed, through the SET_SZ_RECEIVED control message.

11 Unset_Secure_Zone()
This function has two roles. The first one is to remove PEs not used in the OSZ. The
mapping function verifies the number of required PEs to execute Appsec, leaving the
leftmost PEs, from the bottom to the top, free. Thus, this function changes the wrapper
status of the PEs not used in the OSZ, modifying the OSZ shape.

12 free_Secure_Zone()
This function, executed by the he manager, clears the structure with the information
related to the OSZ of the Appsec that finished.

	Introduction
	Thesis Statement
	Objectives
	Original Contributions
	Document Organization

	Contemporary Research in MCSoC Security
	Proposed Taxonomy
	Criterion 1 - Attack
	Source
	Type
	Discussion

	Criterion 2 - Countermeasure
	Discussion

	Criterion 3 - Phase
	Discussion

	Criterion 4 - Cost
	Discussion

	Criterion 5 - Integration
	Taxonomy Final Remarks
	Comparative Analysis and Positioning within the State-of-the-Art

	Background Knowledge
	Baseline platform
	Data NoC
	Control NoC - BrNoC
	Software Model

	Opaque Secure Zone
	IO Communication
	Peripheral Interface
	Application Table
	Packet Handler
	Packet Builder
	Key Generator

	Hardware Trojan - HT

	SeMAP - Secure Mapping with Access Point
	MCSoC Partitioning for Security
	Resource Allocation with Gray Area
	OSZ Shape, Location and Mapping
	Access Point (AP) Definition
	IO Path configuration
	DSZ and SeMAP comparison

	Securing the Message Exchange
	Authentication Protocol
	Key Renewal
	Access Point Architecture
	IO API

	Results
	Final Remarks

	Session Manager
	Threat Model
	Message Exchange Monitoring
	Detection
	Dynamic Timeout

	Recovery Protocol
	Results
	Application Overhead Results
	Kernel Overhead
	Recovery Costs

	Final Remarks

	Framework for Systemic Security Management
	Monitoring and Detection of Suspicious behavior
	Countermeasure
	Security Analysis and Costs
	Final Remarks on Security Analysis and Costs

	Framework Evaluation
	Attack Campaign
	Experimental Setup
	Results

	Final Remarks

	Conclusion
	Future Work

	References
	Appendix A – List of Publications
	Appendix B – CTG of the Applications
	Appendix C – Search String
	Appendix D – OSZ API detail

