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DETECÇÃO DE SITUAÇÕES DE RISCO EM IDOSOS BASEADO EM

ANÁLISES DE SÉRIES TEMPORAIS

RESUMO

Pessoas em idade avançada estão mais expostas a situações de risco como que-

das, alterações bruscas em sinais vitais e desmaios. Estas situações se tornam mais

comuns neste estágio da vida devido à diminuição natural da capacidade do corpo de co-

ordenar os movimentos de forma adequada. Inúmeros estudos já propuseram sistemas

de monitorização da saúde desta faixa populacional analisando dados de acelerometria

e/ou baseados em algoritmos de aprendizado de máquina, porém o uso destes sistemas

em situações reais mostrou que esta abordagem ainda é insuficiente para que uma situa-

ção de risco possa ser diferenciada com precisão de atividades da vida diária de um idoso.

Este projeto propõe o desenvolvimento de um sistema de monitoração da saúde de idosos

eficaz e confiável, através da coleta contínua de séries temporais extraídas de sensores

de movimento associados à sinais vitais. Estes sinais alimentam uma arquitetura de rede

neural profunda do tipo Long Short-Term Memory (LSTM), capaz de interpretá-los levando

em consideração não apenas o instante da coleta, mas todo o contexto pré e pós situação

de risco. Esta arquitetura foi baseada na hipótese de que existe uma mudança signifi-

cativa nos sinais vitais associados com uma queda real. Para esta avaliação foi criado

um ambiente composto por um simulador de dispositivo wearable, um simulador de apli-

cativo de celular e um simulador de sistema em nuvem, muito próximo ao cenário real.

Este sistema, em seu modelo final, apresentou uma acurácia geral de 97%, mostrando

que a fusão de sensores em um arquitetura de análise contínua de dados contribui para o

aumento da capacidade de detecção de risco em idosos.

Palavras-Chave: detecção de situações de risco em idosos, análise de séries temporais.



RISK SITUATION DETECTOR FOR ELDERLY PEOPLE BASED ON

TIME-SERIES ANALYSIS

ABSTRACT

Elderly people are more exposed to risk situations such as falls, sudden changes

in vital signs and fainting. These situations become more common at this stage of life

due to the natural decrease in the body’s ability to coordinate movements adequately.

Numerous studies have proposed health monitoring systems for this population group

by analyzing accelerometry data and/or based on machine learning algorithms, but the

use of these systems in real situations has shown that this approach is still insufficient

to accurately differentiate a risk situation from an elderly person’s daily activities. This

project proposes the development of an effective and reliable health monitoring system

for the elderly, through the continuous collection of time series extracted from movement

sensors associated with vital signs. These signals feed a deep neural network architecture

of the Long Short-Term Memory (LSTM) type, capable of interpreting them taking into

account not only the moment of collection, but the entire context before and after the risk

situation. This architecture was based on the hypothesis that there is a significant change

in vital signs associated with a real fall. For this evaluation, an environment composed of

a wearable device simulator, a mobile application simulator and a cloud system simulator

was created, very close to the real scenario. This system, in its final model, presented

an overall accuracy of 97%, showing that sensor fusion in a continuous data analysis

architecture contributes to increasing the elderly risk detection capacity.

Keywords: elderly risk situation detection, time series analysis.



LIST OF FIGURES

Figure 2.1 – Fall event represented in a triaxial accelerometer sensor, showing

pre-fall, critical, and post-fall phases (Source: Author). . . . . . . . . . . . . . . . . 22

Figure 2.2 – Impact of sensor activity data from moving up and down three steps

on a staircase. (Source: Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.3 – The evolution to DNN - visually represents this progression (Source:

Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.4 – Typical Artificial Neural Network (Source: Author). . . . . . . . . . . . . . . 25

Figure 2.5 – Recurrent Neural Network Architecture (Source: [23]). . . . . . . . . . . . 26

Figure 2.6 – LSTM cell with its internal structure (Source: [17]). . . . . . . . . . . . . . . 27

Figure 3.1 – Type and number of machine learning algorithms found in related

work (Source: Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.2 – Machine learning algorithms most cited in related works (Source:

Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 4.1 – Real time clinical-grade monitoring vital signs device E4 from Em-

patica (Source: [19]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.2 – Pilot research study location and some examples of movements col-

lected (Source: Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.3 – Raw sensor data from an example activity (Source: Author). . . . . . . 41

Figure 4.4 – Raw acc sensor data highlighting the need for filtering (Source: Au-

thor). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4.5 – Fast Fourier Transform (FFT) applied to acc sensor data (Source: Au-

thor). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4.6 – Acc data filtered with an FIR filter based on a cutoff of 5Hz (Source:

Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 4.7 – Acc data filtered with a median filter (Source: Author). . . . . . . . . . . . 44

Figure 4.8 – Original sensor data and finished Kalman filtered data (Source: Au-

thor). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 5.1 – LifeSenior wearable device (Source: Author). . . . . . . . . . . . . . . . . . . 53

Figure 5.2 – Flowchart of operation and data traffic of the system architecture

composed of a wearable device, mobile application, and cloud service (Source:

Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 5.3 – System architecture simulator (Source: Author). . . . . . . . . . . . . . . . . 56

Figure 5.4 – Wearable device simulator main screen (Source: Author). . . . . . . . . 56



Figure 5.5 – App simulator plotting real-time series received from the wearable

simulator and predicting fall/non-fall situations based on our proposed AI

model (Source: Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.6 – Elderly risk situation model characteristics. Our model fuses motion

and vital signs data (summing seven-time series at 32 samples per second)

towards enriching the volume of information about the user’s real situation

during a risk situation (Source: Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.7 – User adaptation model proposal (Source: Author). . . . . . . . . . . . . . . 61

Figure 5.8 – LSTM architecture detailing input, LSTM, and output layers. The

input has a dimension of 150x7 because we use 150 samples as a timestep

and seven sensor information; the output is Fall or Non-Fall (Source: Author). 62

Figure 5.9 – Machine Learning metrics adopted for model analysis (Source: [24]). 66

Figure 5.10 – Methodology adopted to evaluate the performance of our user up-

date model characteristic (Source: Author). . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 6.1 – Real time-series prediction system (Source: Author). . . . . . . . . . . . . 71

Figure 6.2 – Loss and accuracy graphic for full model training process (Source:

Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 6.3 – Blood Volume pulse correlated with accelerometer data in volunteer

performing a fall simulation (Obstacle: initially walking, simulate the colli-

sion of the lower limbs with an obstacle and then simulate the movement

of falling to the ground) (Source: Author). . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 6.4 – Electrodermal Activity correlated with accelerometer data in volun-

teer performing a fall simulation (Obstacle: initially walking, simulate the

collision of the lower limbs with an obstacle and then simulate the move-

ment of falling to the ground) (Source: Author). . . . . . . . . . . . . . . . . . . . . . . 76

Figure 6.5 – Heart Rate correlated with accelerometer data in three different vol-

unteers performing a fall simulation (Obstacle: initially walking, simulate

the collision of the lower limbs with an obstacle, and then simulate the

movement of falling to the ground) (Source: Author). . . . . . . . . . . . . . . . . . 77

Figure 6.6 – Temperature correlated with accelerometer data in three different

volunteers performing a fall simulation (Obstacle: initially walking, simu-

late the collision of the lower limbs with an obstacle and then simulate the

movement of falling to the ground) (Source: Author). . . . . . . . . . . . . . . . . . 78

Figure 6.7 – Loss and accuracy graphic for final model training process (Source:

Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 6.8 – Loss and accuracy graphic for user-adapted model training process

(Source: Author). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



LIST OF TABLES

Table 3.1 – Definition of the protocol used in systematic literature mapping. . . . . 29

Table 3.2 – Articles selected in the systematic mapping of related work. . . . . . . . 31

Table 4.1 – Activities performed by each volunteer. . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 4.2 – LifeSenior Profile columns distribution. . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 5.1 – Hyperparameters and characteristics adopted in the LSTM model. . . 63

Table 5.2 – New labeling of each classification to identify only daily living activi-

ties, loss of balance, and falls, which is the main focus of this research. . . . 64

Table 5.3 – Model Performance analysis methodology. . . . . . . . . . . . . . . . . . . . . . 66

Table 6.1 – Dataset columns used in the training process of the full model. . . . . . 70

Table 6.2 – Full model performance on LifeSeniorProfile test data. . . . . . . . . . . . . 72

Table 6.3 – Influence of each physiological information in model training process. 73

Table 6.4 – influence of each physiological information in model accuracy using

LifeseniorProfile test data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 6.5 – Final model performance on LifeSeniorProfile test data . . . . . . . . . . . . 78

Table 6.6 – User adaptation model performance on LifeSeniorProfile specific user

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 6.7 – Performance comparison between state-of-the-art approaches and

our model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



LIST OF ALGORITHMS

Algorithm 5.1 – Model training algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



LIST OF ACRONYMS

ACC – Accelerometer

ADL – Activity Daily Living

AI – Artificial Intelligence

ANN – Artificial Neural Network

AVD – Activity of Daily Living

BI-LSTM – Bidirectional Long-Short Term Memory

BLE – Bluetooth Low Energy

BPM – Beats per Minute

BVP – Blood Volume Pulse

CNN – Convolutional Neural Networks

CNPQ – National Council for Scientific and Technological Development

DAI – Academic Doctoral for Innovation

DNN – Deep Neural Network

ECG – Eletrocardiogram

EDA – Electrodermal Activity

FINEP – Funding Agency for Studies and Research

FIR – Finite Impulse Responde

FFT – Fast Fourier Transform

GPU – Graphical Peripheral Units

HR – Heart Rate

HRV – Heart Rate Variability

IMU – Intertial Measuremente Unit

K-NN – K-Nearest Neighbor

LED – Light Emitting Diode

LSTM – Long-Short Term Memory

MEMS – Micro Electro Mechanical Systems

ML – Machine learning

PDE – Loss of Balance

PPG – Photopletismography

PUCRS – Pontifical Catholic University of Rio Grande do Sul

QD – Fall

RNN – Recurrent Neural Network



SVM – Support Vector Machine

TEMP – Temperature

WHO – World Health Organization



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 MAIN OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 SPECIFIC OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 THESIS’ STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 ELDERLY FALL SENSORS SIGNAL REPRESENTATION . . . . . . . . . . . . . . . . . . . . . . 21

2.2 TIME-SERIES ANALYSIS MODEL THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 RECURRENT NEURAL NETWORK (RNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 LONG SHORT-TERM MEMORY (LSTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 RELATED WORK ON MACHINE LEARNING ELDERLY RISK FALL . . . . . . . . . . . . . . . 28

3.2 RELATED WORK ON PHYSIOLOGICAL AND MOTION SENSORS FUSION FOR EL-

DERLY FALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 DATA COLLECTION METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 PILOT TRIAL RESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 DATA COLLECTED DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 DATA PREPROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 FORMATTING EACH FILE BASED ON ACTIVITY INTERVAL . . . . . . . . . . . . . . . . . . . 41

4.3.2 SAMPLE RATE EQUALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.3 FILTERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 DATASET DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 MOTION SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.2 VITAL SIGNS SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.3 PARTICIPANTS CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.4 LIFESENIORPROFILE FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 ELDERLY RISK SITUATION DETECTOR METHODOLOGY . . . . . . . . . . . . . . . 51

5.1 INNOVATIONS PROPOSED IN THE ELDERLY RISK SITUATION DETECTOR MODEL . 51

5.1.1 MOTION AND PHYSIOLOGICAL SENSORS FUSED . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 USER ADAPTATION MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 CONTEXTUALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



5.3 SYSTEM ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 SYSTEM ARCHITECTURE SIMULATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 MODEL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.1 MOTION AND PHYSIOLOGICAL SENSORS FUSED . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.2 USER ADAPTATION MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.3 ARTIFICIAL INTELLIGENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 MODEL EVALUATION METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5.1 FULL MODEL PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.2 INFLUENCE OF EACH PHYSIOLOGICAL SENSOR ON OVERALL ACCURACY . . . . . . 67

5.5.3 ANALYSIS OF THE BEHAVIOR OF VITAL SIGNS DURING THE FALL . . . . . . . . . . . . 68

5.5.4 MODEL WITH USER ADAPTATION ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5.5 COMPARISON OF THE MODEL WITH SIMILAR MODELS . . . . . . . . . . . . . . . . . . . . 69

6 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 FULL MODEL PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 INFLUENCE OF EACH PHYSIOLOGICAL SENSOR ON OVERALL ACCURACY . . . . . . 72

6.3 ANALYSIS OF THE BEHAVIOR OF VITAL SIGNS DURING THE FALL . . . . . . . . . . . . 73

6.3.1 ACCELEROMETER-BLOOD VOLUME PULSE INTER-SENSOR CORRELATION . . . . . 74

6.3.2 ACCELEROMETER-ELECTRODERMAL ACTIVITY INTER-SENSOR CORRELATION . . 75

6.3.3 ACCELEROMETER-HEART RATE INTER-SENSOR CORRELATION . . . . . . . . . . . . . . 76

6.3.4 ACCELEROMETER-SKIN TEMPERATURE INTER-SENSOR CORRELATION . . . . . . . . 77

6.4 FINAL MODEL PROPOSAL BASED ON FUSED VITAL SIGNS RESULTS . . . . . . . . . . 78

6.5 MODEL WITH USER ADAPTATION ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.6 COMPARISON OF THE MODEL WITH SIMILAR MODELS . . . . . . . . . . . . . . . . . . . . 80

6.7 LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

APPENDIX A – Publication list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



17

1. INTRODUCTION

Fall and risk situation detection in older adults using noninvasive devices still has

crucial open research questions because we do not have a solution to solve real use cases

in elderly real-life broadly. In recent years, we have experienced much research covering

paramount open research questions, but almost all focus on solving parts of the problem.

The purpose of a fall detection system is to automatically detect falls and enable

assistance by family or caregivers in the least invasive way possible. These characteris-

tics impose sensor technology restrictions to solve this problem [68]. Currently, we can

broadly classify available technologies in (i) environmental sensing-based systems, (ii)

vision-based systems, and (iii) wearable sensor-based systems

Environmental sensing-based systems [73] work by placing sensors in the envi-

ronment, such as infrared and passive infrared sensors, acoustic sensors, and sonar. This

system can monitor and detect falls using non-camera devices, increasing the elderly’s

acceptance of most privacy laws. However, the most critical disadvantage is the need for

the elderly to be in a monitored environment for the system to work.

In vision-based systems, image processing techniques are applied to camera im-

age signals in the environment. Many algorithms for fall detection in this scenario [50][83]

have excellent results, but these systems usually face problems related to privacy and el-

derly acceptance.

A solution that pretends to perform accurate elderly fall detection in real-life sce-

narios, preserving user privacy, working full time independently of the environment, and

increasing elderly acceptance must be based on a wearable sensor-based system [77].

This technology has received much attention recently and is a trend research topic for el-

derly fall detection. In wearable-based systems usually, the sensors are embedded within

a device worn by older people, which can be located on the wrist, waist, or chest. The

parameters monitored by such systems are, for the most part, motion data provided by

accelerometers, gyroscopes, magnetometers, barometers, and others [25].

Processing motion sensor data embedded in wearables enables us to have in-

formation about (i) movement characterization, (ii) impact detection, (iii) orientation de-

tection, and (iv) fall detection. Nevertheless, despite this apparent problem solution, this

technology alone does not provide the necessary information to differentiate an actual

emergency from a simple daily living activity because signal data representations sup-

plied by this kind of sensor in real life are irrelevant in these scenarios. Many different

approaches have been explored to solve the fall detection problem using only motion sen-

sors [2][76]; however, we have experienced significant advances in this area only with the

growth of artificial intelligence in recent years [58].
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Machine learning (ML) has solved many problems that researchers worldwide

have explored for many years, making it possible to detect falls, activities of daily living,

and risk situations based on wearable devices. However, despite this recent evolution, we

still have open research questions:

1. Algorithms (ML or not) trained with datasets containing not real-life data - Most of the

algorithms available show excellent accuracy, and it has been quite common to find

solutions with more than 98% of the ability to detect the elderly based on motion

sensors embedded in wearables. The problem is that the data used for training

these algorithms are collected in simulated environments, like controlled situations

in laboratories, which does not accurately represent what the algorithm will find in

actual use. In practice, this algorithm usually shows false positives when used in

natural environments, decreasing the reliability of these products and affecting the

acceptance of the elderly;

2. Real-life datasets for training algorithms are complex to build - Supervised machine

learning algorithms are the most common and applicable solution to the fall detec-

tion problem. This kind of strategy needs a lot of annotated data for the training

process, so we have many available datasets with simulated data. It is not easily

feasible to collect data using older people in actual falls, and we think that is also not

ethical;

3. Differences in behavior between elderlies in real-life use affect the accuracy—Even

having a real-life dataset to use in the training process for machine learning algo-

rithms, we know that older people are an extremely heterogeneous population that

suffers from many diseases and have different stages of mobility. This scenario di-

rectly affects the accuracy of traditional algorithms, even those developed using

machine learning techniques.

To address these problems, we proposed this doctoral Thesis, which consists of

developing a risk situation detector based on machine learning for older people based

on time series analysis combining motion and physiological sensors embedded in a wrist-

watch based on a model with the capacity to learn new data from the user, adapting it to

the user environment.

1.1 Main Objective

The proposed Thesis aims to develop an elderly-adapted risk situation detector

based on machine learning, which will monitor risky situations in real time using subse-

quent techniques:
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1. Context analysis - Traditional fall detection algorithms, which were mainly used be-

fore machine learning grew, are based on the advantage of detecting the peak signal

in motion sensors when a fall occurs to detect it. Traditional machine learning algo-

rithms primarily focus on techniques to detect this same point but try to reduce the

false positives. Both have problems that decrease the acceptance of the elderly. To

solve this problem, we propose using recurrent neural networks. This specific deep

learning model considers a just data moment and the past and future data associ-

ated with one particular spatio-temporal point. In other words, the main idea is to

infer a possible fall moment and analyze the associated context before and after this

point to improve the accuracy. This inference is possible thanks to the memory ca-

pacity of recurrent neural networks that can include new inputs in current prediction

and recent data in a manageable amount of past time;

2. Algorithm adapted to user - Algorithm adaptation to each user environment is one of

the most important contributions of our research. This research proposes an innova-

tive algorithm based on the user-adaptation concept to solve the worst problem in

wearable fall detection and activity classification, i.e., the high rate of false positives.

The elderly are an extremely heterogeneous population, with many different mobility

degrees, diseases, and behaviors, composing conditions that make it challenging to

develop a pre-trained algorithm that fits all these differences. To solve this problem,

we propose an algorithm that balances pre-trained information with user information

collected during use to improve the accuracy of the detectors;

3. Motion, environment, and physiological sensors fused - Traditional wearable systems

focus on motion sensors, the most known to detect activities and possible falls. As

we know, motion sensors do not have the total information capacity to do this job,

so we explore the idea of adding new sensor types to the decision-making process.

Besides motion sensor abilities, physiological sensors provide information about the

user’s health, which can improve the results. In parallel, since the environment and

location contribute to a situation being classified as risky, we also decided to include

the user location in the analysis;

4. Energy management algorithm - Based on our strategy to establish different levels

of elderly risk, we had the opportunity to manage the energy spent by sensors for

each level, building an innovative algorithm that manages battery energy to increase

battery life and consequently increase elderly acceptance.

1.2 Specific Objectives

The specific objectives and main contributions of this Thesis are listed below:
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1. To develop an elderly daily timeline detailing activities and places - Thanks to our

innovative algorithm, which detects activities and locations, we can build a timeline

for elderly daily life, which allows us to detect anomalies that can be classified as

possible problems;

2. To explore the context before and after a fall and its influences on algorithm accuracy

- The moments before and after a possible elderly fall have relevant information that

usually is not considered in traditional algorithms. For example, before a fall, the

user could have changes in vital signs that physiological sensors will monitor. On

the other hand, after a fall, the user can maintain a fixed position, which means that

it is not moving. This context will be explored to improve the accuracy of wearable

activity and fall detectors;

3. To explore vital signs influences and its benefits in traditional motion sensors analysis

for fall detection - The vital signs behavior during elderly risky situations, specifically

in falls, is not well addressed in scientific research, as is the motion behavior. Our re-

search aims to explore the behavior of vital signs in this context and include relevant

information in our algorithm.

1.3 Thesis’ Structure

This Thesis commences with Chapter 2, delving into the theoretical framework.

Subsequently, Chapter 3 offers an in-depth analysis of related works. Following this, we

elucidate our proposed methodology, including our Data Collection Methodology (Chap-

ter 4) and the Proposed Model (Chapter 5). Chapter 6 showcases the experimental results,

while Chapter 7 encapsulates the primary conclusions and outlines avenues for future re-

search
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2. THEORETICAL BACKGROUND

The prevalence of older individuals living independently is on the rise, coincid-

ing with advancements in medical care that extend life expectancy, thereby fostering a

global trend of older populations residing outside assisted living facilities. According to

the World Health Organization (WHO), the proportion of individuals aged 60 and above is

projected to nearly double from 12% to 22% between 2015 and 2020 [52]. In a related

context, WHO statistics reveal that falls are the second leading cause of accidental deaths

worldwide [51]. Although the consumer electronics market is flooded with wearable de-

vices designed to detect falls and alert family members, these products often suffer from

frequent false alarms due to poor user interfaces, high energy consumption, and outdated

communication systems, compromising reliability. The real-time automated detection of

falls using sensor data, such as triaxial accelerometers, remains a pressing research chal-

lenge [69]. The primary objective of fall detection systems is to promptly identify falls and

notify family members or caregivers for timely intervention. However, accurately recog-

nizing falls poses computational hurdles. While sudden spikes in accelerometer data can

characterize falls, they also occur in various non-risk scenarios, making precise detection

difficult [49]. The efficacy of fall detectors hinges on their ability to identify genuine falls

while minimizing false alarms accurately.

2.1 Elderly Fall Sensors Signal Representation

The rapid advancement of MicroElectroMechanical Systems (MEMS) has boosted

sensors to become multi-style, integrated, high-precision, small-size, and low-priced, thus

enabling their integration into wearable devices for information acquisition. These devices

commonly incorporate accelerometers, gyroscopes, and pressure sensors seamlessly em-

bedded into wristbands, necklaces, belts, and insoles. A typical wearable system com-

prises one or more sensors and a microcontroller, which collectively execute fall detection

by acquiring, analyzing, and processing body motion data to determine the occurrence of

a fall.

The key to accurately identifying a real fall based on motion sensor information is

understanding how a sensor behaves during fall events. Figure 2.1 illustrates the impact

resulting from a fall on a triaxial accelerometer (x, y, and z axes), from which we can

observe four phases:

• Pre-fall - Characterized by daily living activities followed by an instability period;

• Critical - Marked by a sudden movement directed towards the ground;
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• Post-fall - Usually associated with a body rest scenario;

• Recovery - The body position restoration, a phase absent in Figure 2.1.

Figure 2.1 – Fall event represented in a triaxial accelerometer sensor, showing pre-fall,
critical, and post-fall phases (Source: Author).

Figure 2.1 shows a "standard" curve representing motion impact in accelerom-

eter data due to a fall. In the Pre-fall phase, the motion data is usually composed of an

Activity Daily-Living (ADL) or a stable scenario followed by some instability in sensor data,

indicating a start of a movement toward the ground. The critical phase comprises a strong

peak of acceleration followed by a significant instability in sensors reflecting the impact on

the ground. The post-fall phase follows the crucial phase in cases where older people can-

not recover (Recovery phase), and the sensor data values remain stable for an extended

period.

Several algorithms based on wearable accelerometers and gyroscopes have been

proposed to detect falls. One common approach is to discriminate between ADL and falls

by threshold values (for acceleration and angular velocity), set primarily by observational

methods for both falls and ADL [21][38][78]. The advantage of the thresholding algorithm

is its low computational complexity and ease of implementation. However, due to the

different ways of human behavior, the recognition results of the thresholding algorithm

produce significant differences and usually bad results in a real scenario.

Until now, most researchers have focused on detecting the fall by analyzing the

critical phase, illustrated in detail in Figure 2.1; however, as can be seen in Figure 2.2,

the representation of the critical phase in motion sensors can easily be confused with an

ADL. The acceleration peak illustrated in Figure 2.2 shows that two sources of movement

can generate similar behavior in the signal captured by the accelerometer. Therefore,

more than a pure and simple identification of the signal morphology representing a fall

is required to accurately capture its occurrence, which is usually the problem associated

with a high false-positive rate in real-life fall detection.
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Figure 2.2 – Impact of sensor activity data from moving up and down three steps on a
staircase. (Source: Author).

Several studies used machine learning as an alternative to reduce false alarms

while maintaining high detection accuracy. Machine learning methods rely on a complex

algorithm to get data insights for predicting output decisions. Li, Teng, and Zhang [36]

described a survey identifying and categorizing machine learning into supervised and un-

supervised techniques.

The supervised technique trains classifiers using pre-classified data distinguish-

ing between falls and Activities of Daily Living (ADLs). Following this training, they are then

applied to unseen data. Classical machine learning algorithms such as Support Vector Ma-

chine (SVM), Artificial Neural Network (ANN), and K-Nearest Neighbor (K-NN) are examples

of supervised learning methods widely utilized for fall detection. For instance, [65] de-

veloped a wireless gait analysis sensor system for real-time fall detection employing an

SVM classifier that extracted six features for fall classification. The results demonstrated

98.8% and 98.7% fall classification accuracies for data collected from the back and belt

positions, respectively.

Unsupervised algorithms employ data clustering techniques rather than relying

on pre-classified data. Due to the nature of time series data, this approach is rare; how-

ever, [43] identified the nearest-neighbor algorithm as the most effective unsupervised

learning technique for this type of signal.

Machine learning techniques have significantly enhanced fall detection accuracy,

paving the way for extensive research. Despite promising results, these techniques still

exhibit a notable rate of false positives. This issue often arises due to the prevalent use

of datasets generated from fall simulation scenarios, which can bias algorithms towards

seeking highly standardized behaviors, deviating from real-world usage scenarios.

Furthermore, the recent advancements in machine learning algorithms based

on deep neural networks have reignited interest in this field, demonstrating promising

outcomes and emerging as the preferred technique for this proposal. Chapter 3 outlines
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related works that applied artificial intelligence to fall detection, while the subsequent

section provides a technical description of the algorithm chosen for this study.

2.2 Time-Series Analysis Model Theory

It is imperative to contextualize the tool within its broader framework to under-

stand the proposed model, which leverages the analysis and processing of time series data

through deep recurrent neural networks, specifically Long Short-Term Memory (LSTM).

Deep Neural Networks (DNN) are currently at the forefront of Artificial Intelligence

(AI) algorithms; they are renowned for their remarkable capacity to enhance accuracy

substantially compared to traditional models.

Figure 2.3 illustrates the evolution of neural network technology into Deep Learn-

ing within the expansive domain of AI. Machine Learning emerged to automate statistical

models, such as linear regression, to refine predictions by training on data that faithfully

represents the target scenario.

The term "learning" stems from the iterative process of adjusting the neurons’

weights (depicted in Figure 2.4) constituting the network. These weights are fine-tuned

during the training phase based on the outcomes observed in each iteration. Conse-

quently, each neuron in the network acquires a weight, directing hidden data with analo-

gous characteristics toward the same outcomes.

Figure 2.3 – The evolution to DNN - visually represents this progression (Source: Author).

Understanding the concept of machine learning extends to comprehending the

operation of traditional ANNs, as depicted in Figure 2.4. These networks typically have

three layers: input, hidden, and output. Within ANNs, the hidden layer encodes and as-

sesses the relevance of input features in producing an output. It effectively stores infor-

mation about the significance of individual inputs and their combinations, thus facilitating

the network’s learning process.

Deep Learning evolves artificial neural networks by augmenting the number of

hidden layers. This increase in depth enhances the network’s capacity for learning, albeit
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Figure 2.4 – Typical Artificial Neural Network (Source: Author).

at a higher computational cost. This computational barrier has been surmounted with

Graphical Processing Units (GPUs) advancements, which enable efficient DNN processing.

2.2.1 Recurrent Neural Network (RNN)

RNN represents a specific type of neural network architecture in which the out-

put from the preceding step serves as input for the current step. Unlike traditional neural

networks, where inputs and outputs are treated as independent entities, RNNs excel in

scenarios where contextual information from previous inputs is deemed crucial, necessi-

tating the retention of past states to inform current predictions or classifications.

RNNs address this need by incorporating a hidden layer pivotal in retaining infor-

mation about sequences. The hidden state within RNNs serves as a memory mechanism,

preserving essential context from previous steps in the sequence. This capability enables

RNNs to effectively process sequential data, making them particularly suited for tasks

such as language modeling, speech recognition, and time-series prediction.

As depicted in Figure 2.5, RNNs possess a built-in "memory" mechanism that

retains information from previous calculations (h0, h1, h2, ...). Unlike traditional neural

networks, where each layer operates independently with its parameters, RNNs utilize the

same weights and biases across all inputs and hidden layers, thereby reducing parameter

complexity.

Consider a deeper network comprising one input layer, three hidden layers, and

one output layer. In a conventional neural network, each hidden layer would have distinct



26

Figure 2.5 – Recurrent Neural Network Architecture (Source: [23]).

weights and biases (w1, b1), (w2, b2), and (w3, b3) for the first, second, and third hidden

layers, respectively. Consequently, these layers would operate independently without re-

taining information from previous outputs. However, an RNN architecture transforms inde-

pendent activations into dependent activations by sharing the same weights and biases

across all layers. This facilitates the memorization of previous outputs by feeding each

output as input to the subsequent hidden layer; therefore, the three hidden layers can be

unified into a single recurrent layer, where all hidden layers share the same weights and

biases.

Let ht be the current state, ht-1 the previous state, and xt the input state; then, a

current state in a recurrent network cell can be expressed as:

ht = f (ht-1, x t)

Let Whh be the weight at the recurrent neuron and Wxh the weight at the input

neuron; then, the activation function hyperbolic tangent (tanh) is expressed as:

ht = tanh(W hhht-1+, W xhx t)

Finally, let Yt be the output and Why the weight at the output layer; then, the

output is represented by:

Y t = W hyht

Despite the advantages of RNN topology, there are also associated disadvan-

tages, including:

• Gradient vanishing and exploding problems;

• Difficult in training;

• Inability to effectively process very long sequences when using tanh or Rectified

Linear Unit (ReLU) as activation functions.
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2.2.2 Long Short-Term Memory (LSTM)

LSTM networks offer significant advantages in modeling time-series data[71] due

to their specialized structure featuring three gates: input, forget, and output (Figure 2.6).

These gates within LSTM networks serve distinct functions, with the "input" gate deter-

mining which information to retain and the "forget" gate determining which information

to discard. This capability enables LSTM networks to dynamically adjust the balance be-

tween retaining past data and assimilating new information, as highlighted in recent liter-

ature [56][37]. Such adaptability allows the system to discern each user’s behavior during

wearable usage, significantly reducing false positive rates.

In time-dependent classification tasks, past and future input features hold rele-

vance for a given period. By leveraging the capabilities of LSTM networks, this architec-

tures can effectively capture forward long-term dependencies. First successful applica-

tion of LSTM was proposed by Hochreiter [16]. LSTM architectures typically comprise a

sequence input layer, multiple LSTM layers, and a single dense layer. This architecture

enhances the network’s understanding of complex temporal patterns and is well-suited

for sequential data analysis tasks.

Figure 2.6 – LSTM cell with its internal structure (Source: [17]).
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3. RELATED WORK

Fall detection remains an exciting area of research, with numerous approaches

proposed in the literature and methods based on Machine Learning (ML) being the focus

of research efforts. Section 3.1 delves into the primary ML techniques currently employed

in state-of-the-art fall detection systems. This Thesis introduces a novel approach to fall

detection, which involves integrating motion sensor data with vital signs commonly ac-

cessible through devices like smartwatches. While limited research explicitly addresses

this relationship within the scope of our study, Section 3.2 examines the available related

work in this area.

3.1 Related Work on Machine Learning Elderly Risk Fall

We conducted a systematic literature mapping to assess the research landscape

regarding applying machine learning algorithms in fall detection. The aim was to identify

the most commonly utilized algorithms and their effectiveness in identifying falls.

This chapter outlines the development of the systematic mapping process and

presents the results obtained, which aided in defining the scope of the ongoing research.

The report commences by contextualizing the research and providing vital initial consid-

erations crucial for understanding the process. Subsequently, it details the systematic

mapping process and analyzes the results.

The systematic mapping primarily focuses on the characteristics of the proposed

model in this Thesis, particularly the type of wearable device used and the sensors it

incorporates. Specifically, the context considers primary studies that report developing or

comparing machine learning algorithms applied to fall detection by interpreting sensory

data. Studies must involve at least one accelerometer sensor fixed to the user’s watch

position, typically the left wrist. Articles describing sensors in other formats, such as

pressure or cameras, are excluded from consideration.

With these criteria in mind, a systematic mapping protocol was devised, with

further details provided in Table 3.1. This protocol is a guideline for the systematic review

process, ensuring consistency and rigor in the literature search and analysis.

For this research, various search string options were considered, such as:

• (ALL=(fall detection) AND (ALL=(machine learning) OR ALL=(deep learning)) AND

ALL=(sensors) NOT ALL=(vision))

• (ALL=(fall detection) AND (ALL=(machine learning) OR ALL=(deep learning)) AND

ALL=(sensors) NOT ALL=(camera))
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Table 3.1 – Definition of the protocol used in systematic literature mapping.
Parameter Description
Research question What machine learning algorithms are being considered

in the development of fall detectors?
Search string used ALL = (fall detection) AND (ALL = (machine learning) OR

ALL = (deep learning)) AND ALL = (sensors) NOT ALL =
(vision)

Databases Web of Science and PubMed
Acceptance criteria 1. Primary studies

2. Consider at least an accelerometer
3. Sensor attachment point: left wrist

Exclusion criteria 1. Secondary studies
2. In the identification setup, consider external sensors to
the user
3. They do not make it clear which sensors are used
4. They do not make it clear which ML algorithm is used

• (ALL=(fall detection) AND (ALL=(machine learning) OR ALL=(deep learning)) AND

ALL=(sensors) AND ALL=(wrist) NOT ALL=(vision))

Ultimately, we decided to select articles published from 2020 onwards. The

search included articles written in English or Portuguese, with all resulting article listings

being in English. These search strings were applied on the Web of Science platform, where

the string: "ALL = (fall detection) AND (ALL = (machine learning) OR ALL = (deep

learning)) AND ALL = (sensors) NOT ALL = (vision)" yielded the best results, re-

sulting in 241 articles. Article data was exported to a spreadsheet for further processing,

including the inclusion/exclusion process.

The exact search string was used on the PubMed platform to complement the

search with health-focused perspectives. The search yielded 61 articles whose data were

exported to the spreadsheet and subjected to the same inclusion/exclusion process.

After compiling articles from both platforms, 302 articles were selected. The

initial exclusion stage involved removing duplicate articles, resulting in 256 unique articles

- 46 duplicates were identified and removed from the list.

The subsequent step involved reviewing the titles of the remaining articles and

applying exclusion criteria based on specific terms found in their titles. Articles containing

terms such as "survey", "review", "camera sensing", "radar", or "pressure sensor" were

excluded from further consideration. This step removed 37 articles, leaving 219 articles

for further evaluation in subsequent steps.

Next, the inclusion and exclusion criteria were applied to the abstracts and key-

words of the remaining articles, further refining the selection. This process reduced the

number of articles to 121.
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Articles that did not provide information about the sensors used for fall detection

or the location of these sensors on the individual’s body were excluded. However, arti-

cles indicating motion sensors (e.g., accelerometers and gyroscopes) applied to the wrist

passed the following evaluation stage.

As the final step of the systematic mapping process, the results were carefully

reviewed, and conclusions from the articles were analyzed. In this step, the inclusion

and exclusion criteria were applied rigorously to identify the type of sensor used and its

position on the user’s body.

Among the selected articles, those that did not clearly specify the position of the

sensor on the user’s body were further evaluated to determine if a detailed examination

of the article’s content could infer the positioning of the sensor.

Upon completing this process, 57 articles met all criteria and were deemed suit-

able for inclusion in the study. These articles were thoroughly read and considered for the

research proposed here.

In the reviewed articles, the position of the sensor on the user’s left wrist was de-

scribed using various terms, including "watch", "bracelet", "wristband", and simply "wrist".

After careful analysis, it was determined that sensors were indeed positioned on the user’s

wrist in 24 out of the 57 selected articles for full reading. These 24 articles are listed in

Table 3.2.

Furthermore, these 24 articles were specifically considered in evaluating ma-

chine learning algorithms. The resulting data from this evaluation is presented in the

graph depicted in Figure 3.1. This graph illustrates the findings and outcomes of ML algo-

rithms, as discussed in the selected articles, which focus on left wrist sensor placement.

The analysis of the results shows that many architectures and proposals exist

to address the fall detection problem. However, it is notable that Convolutional Neural

Networks (CNN) and Long Short-Term Memory (LSTM) networks emerge as the most appli-

cable architectures, as depicted in Figure 3.2.

The recognition of CNN and LSTM architectures as the most applicable for fall

detection stems from their exceptional ability to process data sequentially. CNNs excel

due to their ability to translate the concept of a three-axis time series (e.g., accelerom-

eter data in x, y, and z axes) into the framework of a three-dimensional image, where

CNNs have demonstrated superior performance. On the other hand, LSTM networks are

adept at processing sequential data, making them particularly suited for contextualizing

sequences, a crucial aspect in analyzing time series data.

Therefore, the success of CNN and LSTM architectures in fall detection can be

attributed to their respective strengths in handling sequential data, making them versatile

and efficacious tools for addressing this vital healthcare challenge.
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Table 3.2 – Articles selected in the systematic mapping of related work.
Ref Year Title Publisher
[29] 2020 Detection of Gait Abnormalities for Fall Risk Assessment Us-

ing Wrist-Worn Inertial Sensors and Deep Learning
MDPI

[32] 2020 Deep Learning Based Fall Detection Algorithms for Embedded
Systems, Smartwatches, and IoT Devices Using Accelerome-
ters

MDPI

[47] 2020 Cluster-Analysis-Based User-Adaptive Fall Detection Using Fu-
sion of Heart Rate Sensor and Accelerometer in a Wearable
Device

IEEE

[11] 2020 Assessing the Feasibility of Augmenting Fall Detection Sys-
tems by Relying on UWB-Based Position Tracking and a Home
Robot

MDPI

[82] 2020 Hardware-Based Hopfield Neuromorphic Computing for Fall
Detection

MDPI

[53] 2020 Comparative Analysis of Real-Time Fall Detection Using Fuzzy
Logic Web Services and Machine Learning

MDPI

[55] 2020 Wearable Computing with Distributed Deep Learning Hierar-
chy: A Study of Fall Detection

IEEE

[6] 2020 FPGA-based Edge Inferencing for Fall Detection IEEE
[57] 2020 Evaluation of Feature Engineering on Wearable Sensor-based

Fall Detection
IEEE

[64] 2020 Pre-Impact Fall Detection with CNN-Based Class Activation
Mapping Method

MDPI

[84] 2020 Hierarchical Coherent Anomaly Fall Detection Low Bandwidth
System with Combination of Wearable Sensors for Identifying
Behavioral Abnormalities

IEEE

[67] 2020 Automated Development of Custom Fall Detectors: Position,
Model and Rate Impact in Performance

IEEE

[85] 2021 A Machine Learning Multi-Class Approach for Fall Detection
Systems Based on Wearable Sensors with a Study on Sam-
pling Rates Selection

MDPI

[7] 2021 DeepFoG: An IMU-Based Detection of Freezing of Gait
Episodes in Parkinson’s Disease Patients via Deep Learning

Frontiers
Media

[39] 2021 Precise Measurement of Physical Activities and High-Impact
Motion: Feasibility of Smart Activity Sensor System

IEEE

[60] 2021 Machine Learning Prediction of Fall Risk in Older Adults Using
Timed Up and Go Test Kinematics

MDPI

[33] 2021 Deep Convolutional and LSTM Networks on Multi-Channel
Time Series Data for Gait Phase Recognition

MDPI

[79] 2022 Applying deep learning technology for automatic fall detec-
tion using mobile sensors

Elsevier

[26] 2022 Automated machine learning based elderly fall detection
classification

Elsevier

[81] 2023 Toward Real-Time, Robust Wearable Sensor Fall Detection Us-
ing Deep Learning Methods: A Feasibility Study

MDPI

[34] 2023 AI based elderly fall prediction system using wearable sen-
sors: A smart home-care technology with IOT

Elsevier

[27] 2023 Convolutional neural network for wearable fall detection sys-
tems

Elsevier
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Figure 3.1 – Type and number of machine learning algorithms found in related work
(Source: Author).

Figure 3.2 – Machine learning algorithms most cited in related works (Source: Author).

3.2 Related Work on Physiological and Motion Sensors Fusion for Elderly

Fall

Establishing a relationship between physiological signals and motion sensors em-

bedded in wearable devices during actual falls is a research area that remains to be ex-

plored in the academic environment. While accelerometry sensors, gyroscopes, mag-
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netometers, and even pressure sensors have been extensively studied and detailed in

research regarding their behavior during falls, physiological data such as heart rate, tem-

perature, and skin electrical activity have received comparatively little attention.

Despite their potential to provide valuable insights, physiological signals about

falls have yet to be thoroughly investigated in the same manner as motion sensors. This

gap in research represents an opportunity to explore the synergies between physiological

and motion sensor data, which could enhance the accuracy and reliability of fall detection

systems. By integrating physiological signals with motion sensor data, it may be possible

to develop more comprehensive and robust algorithms for detecting falls and assessing

fall risk in individuals wearing wearable devices.

Therefore, further research into the relationship between physiological signals

and motion sensors during falls is warranted. This research has the potential to signifi-

cantly advance the field of fall detection and improve the safety and well-being of individ-

uals, particularly those at risk of falls.

Ivascu et al. [20] reported in their article the use of vital signs monitoring to

improve the decision alert system for emergency services. Their approach involved in-

corporating physiological information as a separate input into a multi-agent architecture

proposal, which included a feature extraction phase. The main objective was to extract

vital sign measurements from a local database, update the knowledge base, and inte-

grate this information into the analysis. While their application differs from our proposal,

it shares the inclusion of vital signs in the analysis process.

Similarly, Hanifi et al. [14] investigated the impact of vital signs (breathing and

heartbeat) in detecting falls in patients. To mitigate false positives, they correlated this

physiological data with environmental sensors, such as CW Doppler Radar. Their approach

aimed to detect falls using environmental radar and validate them with a vital sign moni-

toring window. Preliminary results showed promising outcomes, demonstrating high vital

signs monitoring and fall detection performance under real-life simulated fall scenarios.

In terms of existing datasets featuring both movement and physiological signals

recorded in real-time during activities, the PPG-DaLiA dataset [59] stands out. This pub-

licly available dataset focuses on PPG-based heart rate estimation, including physiological

and motion data from wrist- and chest-worn devices of 15 subjects performing various

activities under near real-life conditions. However, it is essential to note that this dataset

primarily aims to develop algorithms for compensating errors in heart rate measurement

using accelerometer data and does not provide fall simulations.

Through the analysis of related works, it becomes evident that the LifeSeniorPro-

file Dataset proposed in this Thesis fills a significant research gap in the detection of falls

and risk situations in older people. It stands as a pioneering dataset that provides physio-

logical and movement signals during daily living activities and fall simulations conducted
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by volunteers. This unique dataset offers valuable insights for developing and evaluating

fall detection systems tailored to the needs of the elderly population.
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4. DATA COLLECTION METHODOLOGY

Collecting data to develop the risk detection model in elderly patients proposed

in this Thesis constitutes an essential step for analyzing the patient’s context, motion

behavior, and physiological sensors in critical situations compared to daily living activities.

The response for each sensor is compared individually in each scenario, forming a set of

data and tools capable of consolidating the proposed model.

For the data collection, we conducted a pilot trial research, which allowed us to

collect and generate a motion and fall patterns database named the LifeSenior Dataset.

This dataset served as a subsidy for the development of our model. This pilot research

had the following specific objectives:

• Collect data from wrist signals during Activity of Daily Living (ADL);

• Collect data from wrist signals during loss of balance (pre-fall);

• Collect data from wrist signals during actual falls;

• Collect, besides traditional motion data from the Inertial Measurement Unit (IMU),

data from physiological sensors, like heart rate, temperature, electrodermal activity,

and blood volume pulse.

4.1 Pilot Trial Research

To collect data, volunteers willing to participate in the pilot trial research used

a vital signs collector developed by the company Empatica (www.empatica.com) named

E4 (Figure 4.1), positioned on the left wrist precisely like a watch. This device is recog-

nized worldwide as a research tool, having medical grade certification in several countries

worldwide, and provides accuracy in the data collected [41] [63] [10].

In addition to their sequence, the activities’ characterization and performance

were monitored by a physiotherapist who recorded the type of movement of each volun-

teer in each situation. These records, from the physiotherapist and the E4 device, formed

the basis for developing the LifeSenior dataset. The present study was developed in the

physiotherapy sector of Nossa Senhora da Conceição Hospital, approved by their ethical

committee with identification CAAE 58855716.9.0000.5336/ Number 1.743.168.

Volunteers were recruited for convenience in the Home Care Program of Hospital

Nossa Senhora da Conceição and Teaching and Research Management of Grupo Hospitalar

Conceição, in the Municipality of Porto Alegre, RS, having to meet the following inclusion

criteria:
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Figure 4.1 – Real time clinical-grade monitoring vital signs device E4 from Empatica
(Source: [19]).

• Healthy;

• Age between 18 and 40 years;

• Both genders.

Volunteers who met any of the criteria below were also considered unfit to par-

ticipate in the study:

• Those with neurological diseases, such as stroke or Parkinson’s disease;

• Gait disorders and musculoskeletal diseases;

• Uncorrected visual impairment;

• Inability to maintain a standing position;

• Need assistance to move around;

• Functional dependence;

• Recent orthopedic trauma.

The inclusion and exclusion criteria adopted aim to collect data from healthy adult

patients without mobility problems. These criteria can be considered controversial, con-

sidering that the research’s target population is an older age group with possible health

and mobility problems. The study was designed in this way because, from an ethical point
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of view, the target population is highly vulnerable, making it unsafe to carry out a study

that involves abrupt movements and simulated falls in this population group.

However, this Thesis aims precisely to develop an adaptive algorithm, making it

possible to develop data collection in less vulnerable patients and subsequent use of the

application in the target population.

4.2 Data Collected Description

The procedure for collecting data and developing the dataset necessary to de-

velop the model proposed in this Thesis was applied to ten volunteers who performed

twelve movement simulations, including daily activities, loss of balance, and falls. Ta-

ble 4.1 resumes the activities performed by each volunteer, and these activities are rep-

resented with letters and numbers as below.

• AVD - Activity Daily Living:

– 1. Stopped - no movement;

– 2. Walking - walking in a straight line;

– 3. Getting up and sitting on the chair - perform the complete movement of

sitting on a seat approximately 50cm high, wait 30 seconds, and get up from

the seat;

– 4. Squatting and returning - starting from an upright posture, perform the squat-

ting movement until rest on their heels, wait 30 seconds, and return to an up-

right position;

– 5. Lying down and getting up - perform the complete movement of lying face up

on a bed approximately 40 cm high, wait 30 seconds, and get up from the bed,

standing upright again.

• PDE - Loss of Balance:

– 6. Sitting and standing up - perform the complete movement of sitting on a seat

approximately 50 cm high, wait 30 seconds, and when standing up, simulate

the loss of balance forward and finish the upright movement;

– 7. Standing and sitting - perform the complete movement of sitting on a seat

approximately 50 cm high, simulating loss of balance due to incorrect transfer

to the seat and finishing the movement upright;

– 8. Changing direction - while initially standing still, perform a 180-degree change

of direction and, in the end, simulate loss of balance to the side and complete

the upright movement;
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– 9. Reaching for an object on the floor - being initially stationary, moves to look

for an object on the floor and, at the end, simulates loss of balance forward and

ends the upright movement.

• QD - Fall:

– 10. Obstacle - initially walking, simulate the collision of the lower limbs with an

obstacle and then simulate the movement of falling to the ground;

– 11. Cadence continuity - initially walking, simulate sliding forward, and then

simulate the movement of falling onto a mattress;

– 12. Syncope - initially standing still, relax the lower limbs to simulate falling

onto a mattress.

Three types of dynamic gait preceded all movement simulations targeted by the

research, adding an extra element of behavior that aims to simulate real situations. Dy-

namic gaits are everyday movements that have a high chance of preceding a real risk

situation. These dynamic gaits are in Table4.1 with the following representation:

• A - Walk on a flat surface at an average speed of 6 meters;

• D - Gait with vertical head movements (up, down, and forward);

• G - Walking around a figure-eight obstacle.

The total number of simulations carried out by each volunteer, 36 movements,

summarized in Table 4.1, generated 360 files. All movements were carried out in an area

covered by 50cm x 50cm and 20mm thick EVA plates to absorb impacts and avoid discom-

fort. A mattress with a fall area measuring 3m x 2m and 0.30m thick will also be positioned

for fall simulations. Figure 4.2 illustrates how the pilot research was developed.

The sensors in the watch used to collect data during activities form what we will

call a data time series over time in this Thesis. These time series comprise movement

(accelerometry) and physiological (heart rate frequency, skin temperature, electrodermal

activity, and blood volume pulse) information the sensors detailed below provide.

ACCELEROMETRY (ACC) - The volunteer’s motion information is provided by a

sensor called an accelerometer distributed across the three acceleration axes: x, y, and z.

An accelerometer is a sensor commonly used in wearable devices to measure an object’s

acceleration degree. This sensor is essential for activity analysis and fall detection, as

changes in movement made by the volunteer are directly captured by it. The device used

for data collection is equipped with an accelerometer that measures signals between -2g

and +2g acceleration (1g = 9,8m/s2) based on 32 Hz resolution.

HEART RATE (HR) - The heart rate frequency of each volunteer was measured by

a sensor called PhotoPletismoGrah (PPG). This sensor produces optical light in a specific
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Figure 4.2 – Pilot research study location and some examples of movements collected
(Source: Author).

optical wavelength and measures its refraction, which changes based on blood circulation

below it in response to heart rate pulses. The heart rate is measured at a frequency of 1

Hz from 0 to 300 beats per minute.

SKIN TEMPERATURE (TEMP) - The skin temperature of each volunteer was mea-

sured using a contact sensor that works with the principle of thermal balance. This prin-

ciple shows that the sensor and the skin temperature will enter a balanced temperature;

the sensor measures that. The temperature is measured at a frequency of 4 Hz in a range

of -40 ºC to 115 ºC.

ELECTRODERMAL ACTIVITY (EDA) - The electrodermal activity refers to electrical

changes, measured at the skin’s surface, that arise when the skin receives innervating

signals from the brain. EDA signals are measured at a frequency of 4 Hz with a range

between 0.01 and 100 uS.

BLOOD VOLUME PULSE (BVP) - A blood volume pulse measures the volume of

blood passing below the sensor in either red or infrared light. It is measured at a 64 Hz

resolution, ranging from -500 to +500.

4.3 Data Preprocessing

Data preprocessing is a step that occurs before model training begins and plays

a vital role in adapting data to a standard that can be absorbed during the different stages

of the process.

Hence, it becomes imperative to implement preprocessing procedures on data,

rectifying inconsistencies and often augmenting the data to enhance its utility, thereby
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Table 4.1 – Activities performed by each volunteer.
Target simulation Dynamic gate Time Movement Time Filename Label

AVD
A

30s 1 10s
VX_AVD_A_1

0D VX_AVD_D_1
G VX_AVD_G_1

AVD
A

30s 2 10s
VX_AVD_A_2

1D VX_AVD_D_2
G VX_AVD_G_2

AVD
A

30s 3 2 rep
VX_AVD_A_3

2D VX_AVD_D_3
G VX_AVD_G_3

AVD
A

30s 4 2 rep
VX_AVD_A_4

3D VX_AVD_D_4
G VX_AVD_G_4

AVD
A

30s 5 2 rep
VX_AVD_A_5

4D VX_AVD_D_5
G VX_AVD_G_5

PDE
A

30s 6 10s
VX_PDE_A6

5D VX_PDE_D_6
G VX_PDE_G_6

PDE
A

30s 7 10s
VX_PDE_A_7

6D VX_PDE_D_7
G VX_PDE_G_7

PDE
A

30s 8 10s
VX_PDE_A_8

7D VX_PDE_D_8
G VX_PDE_G_8

PDE
A

30s 9 10s
VX_PDE_A_9

8D VX_PDE_D_9
G VX_PDE_G_9

QD
A

30s 10 10s
VX_QD_A_10

9D VX_QD_D_10
G VX_QD_G_10

QD
A

30s 11 10s
VX_QD_A_11

10D VX_QD_D_11
G VX_QD_G_11

QD
A

30s 12 10s
VX_QD_A_12

11D VX_QD_D_12
G VX_QD_G_12

Notes: VX - X represents each volunteer;

facilitating the knowledge discovery process and yielding high-quality results. Common

issues with poor data quality include missing values, noisy data, inconsistent values, at-

tributes of diverse natures, and data redundancy. Addressing these challenges through

robust preprocessing ensures that the data is suitable for subsequent analysis, leading to

more accurate insights and improved decision-making outcomes.
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These characteristics are not evident in the data set but can be revealed by ex-

ploratory analysis procedures. To develop the dataset used in this Thesis, we performed a

series of preprocessing steps described next.

4.3.1 Formatting each File based on Activity Interval

The data collection process for each volunteer consisted of several periods that

went beyond the moment the data was recorded. Upon entering the experiment site, each

volunteer received the data collection device and placed it on their wrist. From this stage

onwards, pairing with the system began recording all information.

Based on that, the people involved in data collection were instructed to mark the

beginning and end of each activity, which is done through the device’s functionality. The

collection file is marked whenever the button is pressed.

Our first step in data preprocessing was to remove the original data files and

maintain only interest data. Figure 4.3 shows an example of a complete register, with the

initial and end points of the interest activity highlighted.

Figure 4.3 – Raw sensor data from an example activity (Source: Author).
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4.3.2 Sample Rate Equalization

After the file formatting step based on the beginning and end of each activity,

it was observed that each sensor, despite simultaneous collection, had different sizes in

the files. This fact is due to the different sampling rates at which the device performs the

collection, which can be seen below:

• Accelerometer (ACC) - 32 Hz;

• Blood volume pulse (BVP) - 64 Hz;

• Electrodermal activity (EDA) - 4 Hz;

• Heart rate (HR) - 1 Hz;

• Temperature (TEMP) - 4 Hz.

We adopted the accelerometer sampling rate (32 Hz) as the default to equalize

the different sampling rates. To construct the dataset, we needed to downsample the

Blood Volume Pulse parameter by 50% and upsample the other parameters. We used the

value repetition technique for upsampling; all odd data were excluded for downsampling.

These sampling rate customizations can also be readily applied in real-time applications,

which validates the proposed technique.

4.3.3 Filtering

Filtering the signal recorded by an accelerometer is essential to remove noise

recorded by the sensor; however, to calculate gait parameters correctly, choosing a suit-

able cutoff frequency of the filter, specifically the filter, is critical. The need for filtering

accelerometry data comes from the fact that the data is characterized by fast signals and

highly susceptible to noise sources. This fact was not observed in the other parameters

that have slower dynamics. Figure 4.4 shows the noise components in x, y, and z data

that highlight the need for filtering.

Several techniques exist to filter accelerometer data [13], most focusing on fre-

quency cutoff points and smoothing techniques. To address this problem, we proposed

a methodology based on an evaluation of the most known techniques (low pass and me-

dian) and a new technique based on Kalman filtering, in which the literature shows good

results [3][31].
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Figure 4.4 – Raw acc sensor data highlighting the need for filtering (Source: Author).

Figure 4.5 – Fast Fourier Transform (FFT) applied to acc sensor data (Source: Author).

The most traditional approach to filtering is the use of frequency filters. Figure 4.5

displays the behavior in the signal’s frequency domain under analysis, demonstrating that

the signal has components mostly at low frequencies.

Based on that, we proposed implementing a low-pass Finite Impulse Response

(FIR) filter with a cutoff frequency set at 5 Hz. Figure 4.6 depicts the outcomes of this

technique, showcasing its effectiveness within this context. As evident from the results,

filtering frequencies beyond 5 Hz effectively eliminates noise components, as illustrated

in Figure 4.5, which are not predominant in the dataset. This approach enhances the

data quality by reducing noise interference, thus improving the reliability of subsequent

analyses and interpretations.
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Figure 4.6 – Acc data filtered with an FIR filter based on a cutoff of 5Hz (Source: Author).

We also tried using a median filter. This filter is generally desirable when we want

to remove big spikes. Nevertheless, Figure 4.7 shows that this filter is more aggressive,

removing more signals than expected.

Figure 4.7 – Acc data filtered with a median filter (Source: Author).

Although the results presented are acceptable, our objective is to remove the

high-frequency noise in the sampled signals as much as possible, taking care not to cause

distortions. With this objective, we implemented a Kalman-type filter. A Kalman filter is

a mathematical method created by Rudolf Kalman. Its purpose is to use measurements

of quantities carried out over time (contaminated with noise and other uncertainties) and
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predict results that tend to approximate the natural values of the measured quantities and

associated values.

The advantage of Kalman-type filters is that they can filter out high-frequency

noise in the signal while not cutting off signal peaks, which a traditional low-pass filter

would filter. We developed a series of filter parameterization variations until we reached

the optimal version for our application, illustrated in Figure 4.8.

Figure 4.8 – Original sensor data and finished Kalman filtered data (Source: Author).

The Kalman Filter is an optimal linear filter primarily designed for linear systems

affected by Gaussian noise. It effectively addresses two types of noise: process noise and

measurement noise, both impacting the filter’s gain matrix calculation. Unlike traditional

filters, where the user predefines the gain matrix, the Kalman Filter dynamically calculates

this matrix based on historical data, the covariance of measurements, and the covariance

of the process noise.

Measurement covariance may decrease if they exhibit low levels of noise. It is es-

sential to assess the range of variances present in the measurements. By "increasing" the

measurement matrix, the influence of current observations on the estimation diminishes.

Conversely, the process noise covariance represents the covariance of the cur-

rent state given the previous state (and its covariance). If the process noise covariance

is increased, it implies an error in the transition between two consecutive time stamps

that cannot be accounted for by the transition matrix alone and is deemed random. This
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adjustment acknowledges uncertainties in the system dynamics and allows the filter to

adapt accordingly to achieve optimal estimation performance.

To achieve these results, we configured a filter matrix with a 6x6 size with mea-

surement noise covariance equal to 1 and process noise covariance equal to 0.2.

4.4 Dataset Description

Falls are among the most significant risks to the health and well-being of older

people becoming a significant problem in today’s society. Approximately one in every

three adults aged 65 years old or older falls each year, creating physical injuries and psy-

chological harm. In addition, this problem has significant economic effects. According to

the WHO, in 2030, the estimation of falls-related injuries will increase by 100%. Therefore,

distinguishing between ADL and falls is a significant problem.

Aiming to provide the research environment with a new set of data with physio-

logical information associated with data already commonly used for this type of analysis,

like accelerometer and gyroscope, we developed the LifeSeniorProfile dataset [46].

Real-time tracking and detection of risky situations in older people, such as falls

and sudden changes in vital signs, requires reliable, continuous, and automated monitor-

ing systems based on relevant information. Wireless biosensors provide a great oppor-

tunity to remotely detect and monitor hazardous situations, allowing for a fast response

in an emergency. Motion data is widely used to track daily activities. Physiological data

can also be used for this exact purpose. However, there is yet to be a database available

in the field of research in which the patient’s physiological and movement information

were collected simultaneously, considering daily activities and simulation of falls. LifeSe-

niorProfile presents a multisensor dataset for developing real-time tracking systems for

the daily activities of older people. The data sensed refer to movement, using a triaxial

accelerometer, and physiology, considering blood volume pulse, electrodermal activity,

heart rate, inter-beat interval, and skin temperature. We collected these data from ten

volunteers while performing 36 daily activities in a simulated environment.

Monitoring, detecting, and classifying activities of older people through non-invasive

wearable systems is an open research area due to the similarity between movement data

sensed in daily activities and risky situations, such as falls. Recently, many machine learn-

ing algorithms, especially those that explore deep layers of neural networks [40][37][62],

have tried to search for hidden details of motion data of accelerometers, gyroscopes,

barometers, and magnetometers to identify features that filtering and thresholding al-

gorithms cannot identify. Despite the promising results, even these high-performance

algorithms hardly reveal a real risk capable of achieving a false positive rate close to zero.
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Accelerometers are the most common motion sensors used to identify human ac-

tivities, providing real-time relative acceleration in a given direction, which varies accord-

ing to available freedom degrees. In the rest state, the accelerometers share quasi-static

values, and at excessive movement, they provide an acceleration peak. This behavior is

adequate for developing a low-precision thresholding algorithm to detect fall situations

and identify elderly risk situations. On the one hand, this algorithm is ineffective since

many risk-free activities also have the same data signature. On the other hand, the foun-

dation is the same for many fall detection systems developed in various research. Over

the years, many studies have tried to improve these results by adding different motion

sensors, but this problem is still an open research area.

Our primary motivation for this work is based on the direct correlation between

accidental falls and vital signs [75]; this correlation is not explored in most of the research

data available to develop systems that explore risk situations for older people. Integrating

vital signs with motion signals offers a considerable advantage for identifying, detecting,

and classifying daily activities and fall risks. However, this integration is rarely addressed

in the available works [44].

This work provides a dataset of multisensory information, which includes, in ad-

dition to traditional movement sensors, some physiological sensors collected during activ-

ities of daily living and risky situations. We designed this database to analyze changes in

vital signs caused by daily activities and falls. These data enable us to explore the fusion

of physiological and movement data and classify all sensors based on their importance in

detecting daily activities and falls, allowing us to give weight to each element sensed.

Some datasets are available for research in this area, but almost all are based

only on motion sensors. We propose a novel approach bringing up important vital signs

correlated with motion data during simulated daily living activities and risk situations.

In addition to the proposed dataset’s pioneering nature in correlating vital signs

with motion sensors, the proposal to use a device already widely clinically validated for

research and certified by several regulatory agencies in the health area makes the Life-

SeniorProfile dataset unique.

We developed this dataset to record natural and provoked human actions, such

as a fall, using several sensors that enable us to gather information from multiple points of

view about each human action. We planned to include a triaxial accelerometer to detect

human movement and insert sensors of temperature, EDA, and PPG to extract vital signs.

4.4.1 Motion Sensors

All datasets evaluated presented data on daily activities and falls collected through

motion sensors, primarily accelerometers. The main reason for focusing on motion sen-
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sors is that most activities usually vary significantly in the sensing signal. For example, a

fall is registered by a sequence of peaks and valleys in an accelerometer signal.

An accelerometer is an electromechanical device that measures the change in

velocity over time [54]. Acceleration measurements can be static, such as the force of

gravity, or dynamic, caused by motion. In general, accelerometers translate an external

acceleration signal into a displacement of their moving mass, called inertial mass. An

accelerometer reports a drop as an abrupt change in values, represented by peaks and

valleys [9]; a graph generated by an accelerometer during a fall shows the pre-fall, critical,

and post-fall phases. Within the crucial phase, it is still possible to identify the free fall,

impact, and adjustment [61].

On the one hand, a high peak of acceleration followed by inactivity is a solid

indicator to detect falls; on the other hand, more information is needed to avoid false

alarms. For example, lying on a bed satisfies this accelerator sequence, making a fall

detection system with exclusive use of this approach somewhat limited. Therefore, we

structured this dataset by collecting vital signs to analyze how this information can be

composed with motion information to decide about a daily activity or a fall.

4.4.2 Vital Signs Sensors

The temperature sensor enables us to identify body changes that may indicate

simple disorders, such as a fever crisis, or more severe disorders that can compromise the

functioning of vital organs. If the body temperature exceeds 42ºC, the individual is at risk

of dying. The temperature sensor, combined with a motion sensor, can help to identify

the cause of a fall or fainting.

EDA is the term used to define autonomous changes in the electrical properties

of the skin. For this reason, the EDA sensor works by identifying electrical changes on

the surface of the skin, allowing the monitoring of episodes of stress, anxiety, and the

neurological state of an individual since it is much more susceptible to human emotions

than just the analysis of heart rate [8].

The PPG sensor uses an optical technique to identify blood volume changes in

the microvascular tissue bed under the skin due to the pulsatile nature of the circulatory

system [4]. The sensor system comprises a light source and a red and infrared light-

emitting diode (LED) detector. The PPG sensor monitors light intensity changes through

reflection or tissue transmission [72]. Studies report that through PPG, it is possible to

estimate signals non-invasively, such as an electrocardiogram (ECG), heart pulse rate,

saturation [48], respiratory rate [22], and blood pressure [35].
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4.4.3 Participants Characteristics

The dataset consists of data from 10 volunteers with an average age of 36 years;

all of them meet the acceptance criteria, 60% male with average weight and height of

85kg and 1.74m, respectively. Regarding female volunteers, the average weight and

height were 72kg and 1.65m. Further information about the volunteers was preserved

for confidentiality reasons provided in the consent form for participation in the research.

4.4.4 LifeSeniorProfile Format

LifeSeniorProfile consists of 36 different activities simulated by ten volunteers for

a total of 360 simulations. The dataset is organized into a division by activity (36 folders),

where within each activity, each volunteer performs ten different simulations once. Details

of each activity’s execution have already been presented in Section 4.2.

All files in the dataset are in .csv format, and the formatting of each file name

follows the pattern:

< VX > _ < TARGET −SIMULATION > _ < DYNAMIC−GATE > _ < MOVEMENT > .csv

• VX - The letter V always indicates the volunteer, and the X varies from 1 to 10 to

indicate which volunteer performed the simulation;

• TARGET-SIMULATION - The target simulation is a group of everyday activity volun-

teers. They can assume the names AVD (activity daily living - 15 simulations), PDE

(Loss of Balance - 12 simulations), and QD (Fall - 9 simulations);

• DYNAMIC-GATE - Three dynamic gate simulations precede each MOVEMENT. This

field can assume the names A (walk on a flat surface at average speed for 6 me-

ters), B (gait with vertical head movements: up, down, and forward), or G (walk

around an obstacle forming the number 8);

• MOVEMENT - This part of the file indicates which movement was simulated and can

assume values between 1 and 12 (more details about each movement can be seen

in Section 4.2).

Each file in the dataset follows the specific structure detailed in Table 4.2.

The first three columns refer to the accelerometry signal distributed between its

axes (x, y, and z). The fourth column stores the physiological parameter Blood Volume
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Table 4.2 – LifeSenior Profile columns distribution.
acc_x acc_y acc_z BVP EDA hr temp label
... ... ... ... ... ... ... ...

Pulse (BVP), followed by EDA. The sixth column stores the heart rate (hr) and the volun-

teer’s body temperature. The last column (number 7 - label) stores the movement that

is being simulated. It is essential to highlight that all sensors are equalized at the same

sampling rate (32 Hz) and that each file has a different number of lines because the simu-

lations also have different execution times; however, to avoid classification overlap, each

line of the dataset is identified individually, instead of there being a unique classification

for the file.

The format described above was proposed to facilitate processing by artificial in-

telligence algorithms since the training input and definitive use are easily given in frames

(lines) of the dataset, and each one has both the values of x (sensors) and y (expected

output).
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5. ELDERLY RISK SITUATION DETECTOR METHODOLOGY

Over the last few years, many researchers have proposed different architectures

to overcome the fall detection problem using noninvasive wearables in older people. In a

timeline scenario, the first fall detectors based on wearable devices sensing motion data

proposed threshold-based algorithms [9] to identify the peak values from the accelerom-

eter sensor that represent a fall. Still, researchers verified that this topology is unsuitable

outside a laboratory environment due to the high rate of false positives. Researchers

started to aggregate new motion sensors into accelerometers to decrease the high rate of

false fall detections, like a gyroscope, magnetometer, and barometric pressure [18]. Other

researchers also tried to fuse motion and vital signs data but considered vital signs only

as complementary information to the fall detector [30]. With the recent development of

deep learning algorithms, the reliability of fall detection has evolved to the desired quality

standards, opening up a significant area of research.

The methodology proposed for this research was developed to obtain a risk de-

tection model for use in real elderly monitoring devices. To do this, we carried out the

following: data collection, clinical study, analysis of the collected data, development of

the AI algorithm, analysis related to the influence of the proposed innovations, and, fi-

nally, creation of a simulator to perform system performance tests.

5.1 Innovations Proposed in the Elderly Risk Situation Detector Model

Continuing the legacy of research carried out in this area and based on the anal-

ysis of related work, we developed a model for detecting risk situations in older people,

focusing on falls, one of the biggest problems in this population group who live alone.

5.1.1 Motion and Physiological Sensors Fused

Vital signs are paramount health indicators for detecting and monitoring medical

conditions [12]. Any deviation from an individual’s reference range can be a significant

warning sign, signaling potential health concerns. Various indicators, such as skin temper-

ature fluctuations, sudden heart rate spikes, reduced oxygen saturation levels, or changes

in blood pressure associated with specific movements, can signal the onset of a risk situ-

ation. Stressful events, such as falls among older individuals, often trigger alterations in

vital signs [28].
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Since the relationship between vital signs and actual falls remains unexplored in

existing literature, we recognized this as a valuable research opportunity for investigating

how vital signs behave in such scenarios. We initiated the LifeSeniorProfile project to col-

lect vital sign data during daily activities and fall simulations; leveraging this dataset, we

conducted thorough data analysis to gain insights into the behavior of vital signs in vari-

ous contexts, particularly during fall events. Subsequently, we utilized this knowledge to

develop an innovative elderly risk situation detection model. By integrating vital signs into

our fall detection algorithm, we gained a significant advantage in accurately identifying

and detecting actual falls. This integration is a crucial innovation of our proposed model,

offering enhanced capabilities in distinguishing genuine fall events from other activities

or false alarms. Our approach fills a critical gap in the existing literature and, by incor-

porating vital sign data as valuable input, paves the way for more effective fall detection

systems.

5.1.2 User Adaptation Model

Our model is based on an LSTM network, which is an extended structure of the

RNN [16] that has been used for a lot of fall detection past research [37][80]. Despite the

excellent ability of this network in processing data time series, when we train generalized

machine learning models from human data, the common problem is that the distributions

of the data may vary from one participant to another due to individual differences. Two

participants with the same fall characteristics may have different vital signs behavior,

which causes internal covariate shifts among datasets and inequality in feature represen-

tation. To solve this problem, we propose a user adaptation LSTM structure that adapts

their capacity to the user environment through a validation train phase in the first use.

The main idea behind this proposal is to provide a way to fit user environment, routine,

and behavior to the initial generalist model, trying to increase the model’s performance in

each user.

5.2 Contextualization

Understanding the context in which this research is linked is necessary to explain

the model we propose in this Thesis. The development of this Thesis is the final phase of

a project that began in 2015, called Lifesenior - Continuous Monitor of Emergency Situa-

tions, developed at PUCRS under the coordination of Professor Doctor César Marcon and

supported by the Financiadora de estudos e pesquisas (FINEP).
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Lifesenior (Figure 5.1) is an elderly monitoring system capable of alerting people

or healthcare systems about any abnormal situation detected. The system consists of a

traditional wearable watch-type device connected via Bluetooth to a cellular device run-

ning an application developed specifically for the project. The application is responsible

for receiving the data processed on the wearable device and processing and making no-

tifications whenever necessary. Initially, the device was designed with a radio frequency

connection operated by the manufacturer Sigfox [66]; however, during the development

of the project, there were changes in technology and technical instability of the service,

leading to a change in the project that altered the topology of the device to have a con-

nection Bluetooth and connection system via cell phone and no longer a direct connection

to cloud servers.

In addition to the features above, Lifesenior has an array of monitoring sensors

designed to enhance the system’s information-gathering capabilities, thereby improving

the accuracy of detections. Among these sensors, PPG stands out, enabling the calcula-

tion of vital parameters such as heart rate, breathing rate, oxygen saturation, and even

blood pressure. Additionally, the system incorporates a temperature sensor to monitor

body temperature and motion sensors, including accelerometers and gyroscopes, to de-

tect movement patterns and postural changes. This comprehensive suite of sensors em-

powers Lifesenior to gather rich and diverse data, enabling robust analysis and precise

detection of potential risk situations, such as falls, thereby enhancing users’ overall safety

and well-being.

The main objective of this Thesis is to develop a reliable model for detecting risky

situations in older people. The model should be capable of mainly identifying falls with a

low rate of false positives.

Figure 5.1 – LifeSenior wearable device (Source: Author).
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In addition to the context of the LifeSenior project, this Thesis was developed with

the support of the Doutorado Acadêmico para Inovação (DAI) program within call 23/2018

of the National Council for Scientific and Technological Development (CNPq), submitted by

the student and being awarded a research grant throughout the doctoral research. The

project submitted to the DAI program was a partnership between the doctoral student, the

PUCRS university, and the company TOTH LIFECARE and aimed to develop parts related

to the LifeSenior software.

5.3 System Architecture

Figure 5.2 details our proposed system architecture, which will serve as a plat-

form for the risk detection model in older people; this architecture covers a wearable

device with Bluetooth Low Energy (BLE) communication, Lifesenior application, and cloud

service.

Figure 5.2 – Flowchart of operation and data traffic of the system architecture composed
of a wearable device, mobile application, and cloud service (Source: Author).

The wearable device was designed to resemble a traditional watch, improving the

acceptance of older people. However, the wearable is much more complex than a simple

watch. Inside the wearable case, dedicated circuits acquire vital user signs through a PPG

sensor; besides, the wearable covers a complete motion system focused on learning the

user’s biological activity and detecting anomalies. The wearable device is most critical in

this system architecture because it performs the measures with a medical classification

in a noisy and dynamic environment. It provides a way to continuously monitor vital signs
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and motion information from users, not in a diagnostic character but continuously, to send

data uninterruptedly for processing in a mobile application using BLE.

As a part of this system architecture, we have a mobile application that receives

user data in real-time, sent by the wearable, and is responsible for processing and running

our proposed model to detect risky elderly situations. The mobile app communicates with

a cloud service over the internet to send new training data with their respective classifi-

cations made by the user to the generalist model and receive updated models adjusted to

the user’s reality.

5.3.1 System Architecture Simulator

Aiming to operationalize all the steps foreseen in the proposed architectural sys-

tem and taking into account that at the time of development of this research, the tools

foreseen in the initial project (wearable devices, application, and cloud system) were not

yet available to researchers, it was decided to develop a complete simulation of the archi-

tecture in a computational environment capable of filling this research gap, but at least

validating all stages of the research, so that when the physical architecture is available, it

would be easily connected to the results achieved.

This simulation environment allows us to simulate the stages of receiving events

from sensors positioned on the wearable device (wearable simulator) and the interpreta-

tion of these events by machine learning algorithms positioned on the server (APP simula-

tor). Additionally, commands coming from the App Simulator can be evaluated, as well as

their effects on reducing the wearable’s energy consumption and the variation of events

transmitted from the wearable to the App Simulator. The simulated architecture flowchart

is detailed in Figure 5.3 and comprises a wearable device simulator, App simulator, and

cloud simulator.

The wearable device simulator is fed with data from previously selected and stan-

dardized datasets, and its sampling rate is adequate with the power commands coming

from the App Simulator. As the datasets have temporal information, the wearable sim-

ulator can pass on to the App Simulator the precise times that events occur to evaluate

if an older adult is being monitored. Periodically, the App Simulator can automatically

communicate with the Cloud Simulator and retrain the neural network, with the new data

recorded by the wearable, updating the neural network weights. This command can also

be done manually by the simulator operator.

The implementation of the simulated environment is composed of two applica-

tions/modules developed in Python. An application implements the operation of the wear-

able, receiving data from the datasets and communicating with the App Simulator - send-

ing this data and receiving commands. The other application implements the App Sim-
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Figure 5.3 – System architecture simulator (Source: Author).

ulator, which receives data from the wearable and inserts it into the machine learning

algorithm that detects falls, risk situations, and daily activities. According to the detected

events, the App Simulator sends commands to the wearable. It should be noted that for

this work, the objective is only to identify falls, and it is not necessary to explore other

identifications, as well as commands for the wearable device.

Figure 5.4 – Wearable device simulator main screen (Source: Author).

Communication between the wearable and the concentrator application in the

real environment takes place via BLE; in the simulator, it is carried out via the TCP protocol.

In both modules, it is possible to see the data being sent/received and the commands in
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real-time. Figure 5.4 shows the application screen that simulates the wearable, while

Figure 5.5 illustrates the App simulator.

Figure 5.5 – App simulator plotting real-time series received from the wearable simulator
and predicting fall/non-fall situations based on our proposed AI model (Source: Author).

The simulation referring to the cloud system (Cloud Simulator) was implemented

locally in the App Simulator, being operated through commands exchanged between the

two simulations. The objective is to send new data collected during the User Adaptation

Model phase to the Cloud Simulator for a retraining and network adjustment stage.

5.4 Model Characteristics

This Thesis presents a model capable of expanding the discussion on the topic

through the exploration of two new concepts: evaluating the influence and advantage

of associating information from physiological vital signs, such as heartbeat, temperature,

electrical activity of the skin, and volume pulse, an approach that is already commonly

used in most models explored so far, which is based on the processing of motion sensors;

explore a model capable of adjusting to user behavior through a personal training stage

able to improve the accuracy of the detector.
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5.4.1 Motion and Physiological Sensors Fused

To identify risk situations, the system proposed in this Thesis is based on a hy-

pothesis that there is a significant change in the behavior of the user’s vital signs before,

during, and after an actual fall. If captured correctly, these variations in vital signs can and

should help validate a risk situation usually detected more easily by movement sensors.

The theory proposed here is still poorly addressed in the literature, and it is im-

possible to fully affirm that this hypothesis is valid only through scientific research. Despite

the lack of information regarding the behavior of vital signs during a fall, our objective is

to analyze whether hypothetical changes generate relevant information to improve the

accuracy of detecting a fall without increasing the number of false positives.

Unlike the behavior of vital signs, the result of a fall and daily activities on move-

ment sensors is already consolidated in the literature [9], contributing to this Thesis’s

deeper investigation into clarifying the behavior of vital signs in risk situations.

Information such as fluctuations in skin temperature, a sudden increase in heart

rate, and a peak in EDA due to a nervous moment are some of the hypotheses we explore

in this Thesis. Integrating vital signs information into a traditional fall detection algorithm

could give an enormous advantage in increasing the model’s accuracy.

Since the proposed hypothesis does not have significant evidence in the liter-

ature, the first stage of the system development methodology was data collection, de-

scribed in detail in Chapter 4. One of the concerns during the research was the quality

of the vital signs collected during the study. Usually, wearable watch-type devices have a

poor commitment to the veracity of the information passed on, given that their use is pri-

marily recreational. To overcome this problem, we acquired a specific device for research

data collection in the watch format, capable of simulating actual future use and providing

reliable medical-grade vital signs information.

Data collection occurred in a population range lower than the elderly, as the pro-

cess involved falls and abrupt movements, which would not be ethically correct for older

people. However, another feature of the model proposed here was developed for this

problem, which is the ability of the model to adjust to the user based on a more generalist

model. After data collection, we proceed with the pre-processing and data preparation

steps detailed in Chapter 4, culminating in developing the risk situation detection model,

detailed below.

The model proposed here is based on artificial intelligence, specifically LSTM re-

current neural networks. This model was adopted thanks to its great capacity for process-

ing time series, memory capacity, and context analysis. It was highlighted in the analysis

of related works as an architecture most suitable for this type of application.
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The model generally works as described in Figure 5.6; it was built to receive and

process the three axes from the accelerometry sensor (motion data) in real time and four

physiological signals (heartbeat, blood volume pulse, electrodermal activity, and temper-

ature). This data comes from the wearable at a rate of 32 samples per second, and we

have a new prediction of a Fall or Non-Fall situation at every 150 samples or 4.68 sec-

onds. This prediction window, which we call timestep, is the time window we consider

for a prediction. This interval was chosen based on an empirical view of common sen-

sor data representing falls; larger and smaller window sizes were also analyzed without

performance gains.

Figure 5.6 – Elderly risk situation model characteristics. Our model fuses motion and vital
signs data (summing seven-time series at 32 samples per second) towards enriching the
volume of information about the user’s real situation during a risk situation (Source: Au-
thor).

5.4.2 User Adaptation Model

The main problem detected in models with only simulated content operating in

real scenarios is not detecting a fall when it happens (what we call true positive); however,

the system identifies non-real falls (false positives) [1]. Commonly, some activities of daily

living are erroneously reported as falls, thus reducing the user’s confidence.

The leading cause of this problem is the high heterogeneity in the behavior of

this type of device user. The device can be used by older people with mobility problems,

chronic diseases that affect movement [15], elderly with low or high degrees of activity,

and other variables that affect the performance of fall detection algorithms.

Analyzing the problem, we concluded that the best solution would be to train

a model that covered all these behavioral and environmental variations. This approach

encounters a limitation when the raw material for a model of this type is the dataset;

accessing or collecting data for this population group is extremely difficult.

To address this challenge, we propose the "User Adaptation Model", which pro-

gresses from a generalized solution to one capable of adapting to the user’s specific envi-
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ronment and behaviors. Figure 5.7 illustrates the detailed operation of this model, which

involves the following steps:

• Training the Model with Available Data - The model initially undergoes training using

available data, primarily sourced from the LifeSeniorProfile dataset. The accuracy of

this initial training is assessed, and if satisfactory, the model advances to the next

stage;

• User Training Phase - A user training phase is initiated upon the user’s first use of a

wearable device. During this phase, users perform coordinated movements guided

by the application, mirroring those executed by volunteers while creating the Life-

SeniorProfile dataset. Notably, falling movements are excluded from this phase due

to safety considerations. The application annotates the collected data, which is then

transmitted to the cloud system for retraining. Given that false positives are a pri-

mary concern, users provide feedback by classifying instances of false alarms. We

retrain the model using this user data and deploy the updated version to the appli-

cation;

• Continuous Check Phase - The model enters continuous check mode following the ini-

tial user training phase. If the model outputs a "FALL" situation, the user is prompted

to confirm this classification. The confirmed data, along with the classification, are

then submitted to the cloud for further retraining;

• Retraining the Model with New User Data - All new data received by the cloud system,

including confirmed classifications, are aggregated with existing data and subjected

to a model retraining phase.

Following these iterative steps, the User Adaptation Model continuously refines

its accuracy and adaptability, ultimately providing users with a personalized and reliable

fall detection solution.

5.4.3 Artificial Intelligence

This Thesis proposes constructing and using an AI model based on recurrent neu-

ral networks, specifically LSTM, where data input is done directly through time series. This

model is supervised learning; for training, it is necessary to input data previously classi-

fied by a domain expert. This data collection and classification stage was fully developed

during the construction of the LifeSeniorProfile dataset.

LSTM provides a high capacity for modeling time-series data [71] thanks to its

structure containing three gates: input, forget, and output. LSTM uses the "input" and
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Figure 5.7 – User adaptation model proposal (Source: Author).

"forget" gates to decide which information to remember and drop. This skill makes it pos-

sible to modulate the ratio between remembering old data and learning new information,
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as reported in recent articles [56][37], helping the system identify each user’s natural be-

havior during LifeSenior use. This unique feature from LSTM is decisive in understanding

the real emergency applicable to each user, decreasing the false positive rate hugely.

Regarding the time-dependent classification task, the context around specific in-

put joint features can be helpful information. Let A be information from the sensors and

B be the time step (we use 150 samples for window timestep in 32 Hz sampling that pro-

duces 4.68 s of window frames), so the deep neural network proposed for this application

uses continuous time-series of motion and physiological sensors as A × B input dimension.

The dense layer output turns the output vector into an equal-length probability matrix, and

the class that receives the highest probability is chosen.

Figure 5.8 details the proposed architecture, which allows the continuous analysis

of the temporary series generated by the sensors without the need to carry out manual

feature engineering.

The architecture proposed here is the result of an extensive analysis of different

topologies that included changing the size of the viewing windows, ranging from windows

smaller than 1 second to windows of more than 10 seconds, and changing the number of

LSTM cells from using a single cell to the final number of cells proposed here.

Varying the size of the viewing window has a direct impact on the real represen-

tation of a fall. Analyzing a 1-second window does not make sense in real life, while a very

large window makes the point of interest less significant. The time windows adopted was

the one that presented the best results.

Similarly, the number of LSTM cells adopted in this architecture was the one that

presented the best results when the network was subjected to test data. Simpler archi-

tectures had extreme difficulty in classifying unseen data. To avoid overfitting, we chose

to use a Dropout of 10%.

Figure 5.8 – LSTM architecture detailing input, LSTM, and output layers. The input has a
dimension of 150x7 because we use 150 samples as a timestep and seven sensor infor-
mation; the output is Fall or Non-Fall (Source: Author).
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The training phase encompasses 252 simulated movements associated with co-

herent simulated vital signs, divided into 189 daily living situations and 63 falls. We used

70% of the dataset for training and 30% for tests. Table 5.1 summarizes the characteristics

and hyperparameters of the proposed deep neural network.

Table 5.1 – Hyperparameters and characteristics adopted in the LSTM model.
Information Value

Dropout 0.1
Learning Rate 0.0001
Epochs 2000
Training Steps 50000
Batch Size 128

The proposed model was developed to achieve performance based on available

data. Notably, the volume of data used to train the model is small due to the difficulty

of collecting larger data. However, we understand that despite this fact, the proposal

validates the concept addressed in the research.

The model also has a simplicity characteristic due to the low volume of data avail-

able. During the research, more complex models were created that achieved a higher de-

gree of accuracy but suffered from the overfitting effect; that is, the model was overfitted

to the training data, presenting low classification capacity on unseen data.

5.5 Model Evaluation Methodology

To evaluate the performance of the proposed model, we carried out a series of

experiments to analyze whether the hypothesis proposed in this Thesis is true. The basis

of our analysis is the collection of data carried out during the research that culminated

in the formation of the LifeSeniorProfile dataset, a set of data that made fall simulations

and daily activities monitored by a motion sensor and physiological sensors collected by a

wearable device available to the academic environment. of the watch type with a degree

of medical accuracy, something not yet available in the academic environment.

As this research aims to detect elderly falls and not individually evaluate which

specific activity the user is carrying out, we changed to the LifeSeniorProfile format de-

tailed in Table 5.2. This change consists of classifying activities only into daily living activ-

ities (ADL), loss of balance (PDE), and falls (QD) and no longer discriminating individually

on which activity is being developed.

As discussed in Chapter 4, the LifeSeniorProfile dataset had 360 files in total, and

based on our new division, we have 150 AVDs, 90 QDs, and 120 PDEs. To perform the

train, test, and update model process, we divide the dataset into three categories:
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Table 5.2 – New labeling of each classification to identify only daily living activities, loss of
balance, and falls, which is the main focus of this research.

Target simulation Dynamic gate Time Movement Time Filename Label

AVD
A

30s 1 10s
VX_AVD_A_1

0D VX_AVD_D_1
G VX_AVD_G_1

AVD
A

30s 2 10s
VX_AVD_A_2

0D VX_AVD_D_2
G VX_AVD_G_2

AVD
A

30s 3 2 rep
VX_AVD_A_3

0D VX_AVD_D_3
G VX_AVD_G_3

AVD
A

30s 4 2 rep
VX_AVD_A_4

0D VX_AVD_D_4
G VX_AVD_G_4

AVD
A

30s 5 2 rep
VX_AVD_A_5

0D VX_AVD_D_5
G VX_AVD_G_5

PDE
A

30s 6 10s
VX_PDE_A6

2D VX_PDE_D_6
G VX_PDE_G_6

PDE
A

30s 7 10s
VX_PDE_A_7

2D VX_PDE_D_7
G VX_PDE_G_7

PDE
A

30s 8 10s
VX_PDE_A_8

2D VX_PDE_D_8
G VX_PDE_G_8

PDE
A

30s 9 10s
VX_PDE_A_9

2D VX_PDE_D_9
G VX_PDE_G_9

QD
A

30s 10 10s
VX_QD_A_10

1D VX_QD_D_10
G VX_QD_G_10

QD
A

30s 11 10s
VX_QD_A_11

1D VX_QD_D_11
G VX_QD_G_11

QD
A

30s 12 10s
VX_QD_A_12

1D VX_QD_D_12
G VX_QD_G_12

Notes: VX - X represents each volunteer; 0 - represents and Daily living activity (AVD); 1- represents
a Fall (QD) and 2 - represents a Loss of Balance (PDE);

• Update data - We segregated one complete volunteer with all 36 activities to be

used after the model training process to simulate adapting the model to the user.

This complete volunteer was not part of either the model training process or the

testing process, reimaining 324 files for train an test phase;
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• Train data - From the remaining 324 files, we randomly separated 252 files to be

used in the training phase.

• The remaining 72 files were used as model test data to verify accuracy.

It is important to emphasize that the number of predictions depends not on the

number of files but on the size of each file and, specifically, the size of the timestep used.

For example, in a 45-second file, we have 1440 samples (32 samples/second x 45 sec-

onds), and nine classifications will be made (1440/150 = 9) due to the window size being

150 samples.

All the experiments were performed on a local workstation using Python as a

programming language in the Visual Studio Code platform. Standard Python modules such

as Tensorflow, Pandas, and Numpy were utilized at different stages of the experimentation.

The workstation had a 20 GB main memory and an NVIDIA TITAN XP with 20 GB RAM

capacity.

The model training process is detailed in algorithm 5.1. The training process

consists of ordering all training files into a single file, where each line is classified among

the three possible LABEL variations. At each training step, the three-dimensional tensor

(batch size, timestep, num-sensors) is fed with training data into the artificial intelligence

architecture until the number of total iterations is reached.

1: function Train (trainingConfigParameters)
2: netconfig← trainingConfigParameters
3: dropout← 0.1
4: lstm[num-units]← 128
5: data← files
6: while train-step < cfg-iterations do
7: inputtensor[batchsize, timestep, num-sensors]← data
8: lstm← inputtensor , labels
9: compute→ loss, accuracy

10: end while
11: return model

Algorithm 5.1 – Model training algorithm detailing steps involved.

Aiming to automate the evaluation process, we developed a series of logs capable

of detailing the necessary information from the model. For all model analyses, we perform

detailed monitoring and calculations as follows. During the training phase, the information

stored was:

• Sensors - each file contains the sensors used to train the model. This information is

relevant, as several models were trained with different combinations;
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• Training steps - loss and accuracy were accounted for in each training step of the

proposed models. Each training step represents a forward and backward in the net-

work with a part of the dataset. For our model, we use a size of (128, 150, SENSORS)

where 128 is the batch size, 150 is the timestep, and SENSORS is the number of

sensors used for training that vary according to each configuration.

Figure 5.9 depicts the metrics adopted to analyze the proposed models. The

metrics analysis culminates in the Precision, Recall, and F1-score information, which gives

a finer-grained idea of how well the classifier is doing instead of just looking at overall

accuracy.

Figure 5.9 – Machine Learning metrics adopted for model analysis (Source: [24]).

We need to start calculating the True Positives, True Negatives, False Positives,

and False Negatives classifications to achieve this information. Table 5.3 shows the method-

ology adopted for this process, and the result can be seen below. For this analysis, we

consider Falls (QD) as Positives and Activity Daily Living (AVD) or Loss of Balance (QD) as

negative classifications.

Table 5.3 – Model Performance analysis methodology.
Labeled training data

Classifier predictions Falls (True) Non-Falls (False) Total
Positive a b a+b
Negative c d c+d

Total a+c b+d a+b+c+d
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Considering Table 5.3, we obtain the following considerations for Accuracy, Pre-

cision, Specificity, and F1-Score:

• Accuracy is the probability of the model providing correct results, being positive in

falls and negative in non-falls. Expressed another way, the probability of true posi-

tives and true negatives as a proportion of all results and is calculated as (a+d)/(a+b+c+d),

also expressed as (a+d)/N, where N is the total amount of samples;

• Precision measures how many positive predictions are correct (true positives). The

formula for it is a/(a+b);

• Recall/Sensitivity measures how many positive cases the classifier correctly pre-

dicted over all the positive cases in the data. It is sometimes also referred to as

Sensitivity. The formula for it is a/(a+c);

• Specificity measures how many negative predictions are correct (true negatives).

The formula for it is d/(d+b);

• F1-Score is a measure combining precision and recall, generally described as the

harmonic mean of the two. Harmonic mean is another way to calculate an "average"

of values, generally described as more suitable for ratios (such as precision and

recall) than the traditional arithmetic mean. The formula used for the F1-score in

this case is 2 x ((Precision x Recall) / (Precision + Recall)).

This model’s performance was evaluated in the following ways, and the results

are in Chapter 6.

5.5.1 Full Model Performance

The complete model predicts fall and non-fall situations using all available infor-

mation as input: three axes of accelerometry, blood volume pulse, electrodermal activity,

heart rate, and temperature.

Exploring the performance of the complete model is essential to extract infor-

mation regarding whether or not the performance of the risk situation detection model

improved due to the inclusion of vital signs data, our proposal theory.

5.5.2 Influence of Each Physiological Sensor on Overall Accuracy

Based on the hypothesis of this Thesis that vital signs can carry information that

improves the quality of fall detection and reduces the number of false positives, we carried
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out an individual analysis of the performance of each physiological information associated

with the traditional fall detection model. which only considers accelerometry data. This

analysis allows the most significant information to be identified while it is possible to list

relevant information. The following combinations were evaluated:

• ACC - only the three accelerometry axes, an architecture commonly used for fall

detection;

• ACC+BVP - accelerometry data fused with blood volume pulse information;

• ACC+EDA - accelerometry data fused with electrodermal activity;

• ACC+HR - accelerometry data fused with heart rate;

• ACC+TEMP - accelerometry data fused with skin temperature.

5.5.3 Analysis of the Behavior of Vital Signs During the Fall

One of our most important objectives is to address the behavior of the vital signs

during fall and non-fall situations. To clarify this behavior and generate evidence that

can contribute to new research, we collected data that culminated in the LifeSeniorProfile

dataset, with relevant information to develop this analysis.

We analyzed all the data collected and sought to identify situations that could

characterize behavior identifiable by algorithms, with the results covered in the following

chapter.

5.5.4 Model with User Adaptation Analysis

To evaluate the performance of the proposed model’s adaptation functionality to

the user’s environment, we conducted a training simulation by the user, collecting new

information to update and retrain the model.

This simulation is detailed in Figure 5.10. It consists of starting from the complete

model explored in Section 5.5.1 and updating the model’s training data with the new data

from the newly trained volunteer. After updating the data, retraining was carried out,

generating a new model evaluated with new data from the volunteer himself.
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Figure 5.10 – Methodology adopted to evaluate the performance of our user update model
characteristic (Source: Author).

5.5.5 Comparison of the Model with Similar Models

We also analyzed, in the same way, the proposed model’s performance, compar-

ing it to the current state of the art in this usage scenario. Based on our related work

research detailed in Section 3.1, we focused on comparing models with similar character-

istics, and the results can be seen in the next chapter.
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6. RESULTS

The hypothesis proposed in this thesis and detailed in the methodology considers

two new factors: the inclusion of information regarding vital signs in the model and the

model’s ability to adjust to user behavior.

The construction of a truly effective model for fall detection using a wearable

device correlating information on vital signs and movement imposes some limitations,

such as the heterogeneity of this type of information in this population range (explored in

more detail in Section 6.3), the difficulty in accessing data in large quantities and the dif-

ficulty in accessing data collected in real situations from patients in this population group.

These limitations significantly harm any research in this area (I believe that it is one of

the reasons why it is still an open research subject); however, with the development of

the collections carried out during the doctoral research and assembly of the LifeSenior-

Profile dataset, it was possible to put the concept proposed here, generating the results

described in the following sections.

In all test cases below, we use a real simulation of the model in practice to eval-

uate its performance with test data. This analysis is slightly different from the traditional

approach, where data not known by the network (test data) is passed for direct classifi-

cation. To do this, we send the test data set through a stream at 32 Hz to be classified

every 150 samples (4.68s), generating a new prediction. All predictions were tallied and

analyzed as detailed in Section 5.5, and an example of the screen that shows the time

series and predictions can be seen in Figure 6.1.

6.1 Full Model Performance

In its full version, the model consists of training using all available sensors associ-

ated with the classification imposed in the development of the dataset. These inputs and

outputs can be observed in Table 6.1.

Table 6.1 – Dataset columns used in the training process of the full model.
X Y

acc_x acc_y acc_z bvp eda hr temp label

For this training process, we used a total of 431542 inputs classified individually

as falls (QD), daily activities (ADL), and loss of balance (PDE). We used a timestep of 150

samples and a batch size of 128 for a total of 50,000 timesteps, which caused the model

to be trained for 2000 epochs. In Figure 6.2, we can see the loss and accuracy during
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Figure 6.1 – Real time-series prediction system (Source: Author).

the training process until it reaches 50,000 steps. We achieve in this model a final train

accuracy was 0.9373 and the final train loss was 0.156289.

Figure 6.2 – Loss and accuracy graphic for full model training process (Source: Author).
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The performance results of this model using test data in real-time are summa-

rized in Table 6.2.

Table 6.2 – Full model performance on LifeSeniorProfile test data.
Model version Accuracy Specificity Precision Recall/Sensitivity F1-Score

Full 0.76 0.76 0.10 0.94 0.19

Based on the results outlined in Table 6.2, it is evident that the constructed model

exhibits a high sensitivity to detecting falls in the test data, achieving a rate of 94%. How-

ever, this high sensitivity comes at the expense of a high incidence of false positives. In

other words, the model tends to predict falls in instances where no falls have occurred,

leading to a significant number of erroneous predictions. This behavior aligns with what

happens in practice, showing that simply adding vital signs information to the model can-

not alleviate the problem. In the following sections, we will continue exploring this prob-

lem.

6.2 Influence of Each Physiological Sensor on Overall Accuracy

Aiming to detail the influence of each physiological sensor added to the model

to identify its impact on the overall accuracy, we proceed with an individualized train-

ing process, always correlating the traditional accelerometry model with a physiological

signal.

We begin our individualized analysis with the traditional model, which counts

as input-only accelerometry data and has as output the classification between Fall (QD),

Daily Activity (ADL), and Loss of Balance (PDE). After that, we correlate each physiological

sensor with the traditional model.

For this training process, we used 431542 inputs classified individually as QD,

ADL, and PDE. We used a timestep of 150 samples and a batch size of 128 for a total of

50,000 timesteps, which caused the model to be trained for 2000 epochs. Table 6.3 and

Table 6.4 summarize the train accuracy and performance using test data, respectively.

It is possible to observe that adding physiological information from the blood vol-

ume pulse and electrodermal activity parameters adds valuable information to the model

and improves fall detection accuracy. The correlation with the Heart Rate and Temp pa-

rameters was not performed as the data from these signals show a high variability that

could not be related to non-fall and fall activities, as will be detailed in Section 6.3 below.

The growth in accuracy during training shows that the model converges more

efficiently as we associate information that contributes to the classifications already pre-
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Table 6.3 – Influence of each physiological information in model training process.
Model Sensors Final Loss Final train accuracy
ACC accx ,

accy ,
accz

0.4469 0.7877

ACC+BVP accx ,
accy ,
accz ,
bvp

0.310961 0.874271

ACC+EDA accx ,
accy ,
accz ,
eda

0.233567 0.911667

Table 6.4 – influence of each physiological information in model accuracy using Lifesenior-
Profile test data.
Model Sensors Accuracy Specificity Precision Recall F1-Score
ACC accx ,

accy ,
accz

0.95 0.96 0.27 0.49 0.35

ACC+BVP accx ,
accy ,
accz ,
bvp

0.98 0.99 0.97 0.91 0.94

ACC+EDA accx ,
accy ,
accz ,
eda

0.91 0.97 0.79 0.54 0.64

established by the accelerometry data. Both BVP and EDA show convergence in behavior,

contributing significantly to improving the model’s accuracy, with evidence detailed below.

6.3 Analysis of the Behavior of Vital Signs During the Fall

To analyze the inter-sensor correlation between motion and vital signs, we used

the accelerometer as a base sensor to identify a volunteer’s movement, daily activities,

loss of balance, and fall. We looked for variations in the other sensors at the points where

the events were identified on the accelerometer graph.
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6.3.1 Accelerometer-Blood Volume Pulse Inter-sensor Correlation

We noticed that the Blood Volume Parameter (BVP) strongly correlated with the

events recorded by the accelerometer. Figure 6.3 shows the collision with an obstacle.

Figure 6.3 – Blood Volume pulse correlated with accelerometer data in volunteer perform-
ing a fall simulation (Obstacle: initially walking, simulate the collision of the lower limbs
with an obstacle and then simulate the movement of falling to the ground) (Source: Au-
thor).

The BVP is reported in µV and is expected to show the graph a deflection and

peak with every heartbeat. Physiologically, it measures the volume of blood passing the

sensor below the watch. This measure is done by the PPG sensors in either red or infrared

light.

In LifeSeniorProfile, we have a total of 90 fall simulations. In at least 62 (68%)

of them, we have significant changes in Blood Volume Pulse, such as those highlighted in

Figure 6.3 during and immediately after the fall.

This change can be interpreted in several ways. Physiologically, BVP can be

affected by heart rate, heart rate variability (HRV, which is the interval between heart-

beats), and respiration rate. Certain emotions can trigger the release of hormones, such

as epinephrine and norepinephrine, raising blood flow and muscle oxygen. Blood volume
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can also change due to widening or contraction of blood vessels. These emotions can then

be interpreted using BVP, as the blood flow will be affected.

From the point of view of the model developed based on artificial intelligence,

these variations associated with signal peaks manifested in the accelerometry signal con-

tribute to the identification of an actual fall, as they will contribute to differentiating a real

fall from a daily activity from an abrupt movement. In comparative terms, only in 19%

of the daily activity simulations and 16% of the loss of balance simulations did we have

significant changes in the blood volume pulse directly correlated with a significant peak in

accelerometer data, showing that this parameter is relevant for the proposed model.

We cannot also rule out that these variations are technical, such as the displace-

ment of the watch on the volunteer’s wrist or a greater incidence of light between the

volunteer’s wrist and the base of the watch (which would affect the reading of the PPG

sensor), despite the watch being buckled to avoid these problems in all volunteers.

Despite the apparent high correlation between the variation in blood volume

pulse and the moment of the fall, it is essential to point out that a considerable volume

(28%) of volunteers did not show this variation during the fall simulation. We attribute this

fact to each person’s natural and individual behavior, highlighting the need for a model

that can adapt to the user’s natural behavior, described in Section 6.5.

6.3.2 Accelerometer-Electrodermal Activity Inter-sensor Correlation

Electrodermal activity (EDA) assesses the naturally occurring changes in the elec-

trical properties of human skin and is a noninvasive way to measure the human nervous

system in real-time. EDA is a marker of sympathetic network activity and reflects the

activity of the sympathetic nerve on sweat glands.

By measuring the EDA sensor, it is possible to indirectly estimate the behavior of

the volunteer’s nervous system, but it is well accepted in academia [5]. As seen in Fig-

ure 6.4, right after the point marked on the accelerometer as a fall, there is a significant

variation in the skin’s electrical activity. This variation occurred in 78 of the 90 falls simu-

lated in LifeSeniorProfile (86%) but manifested in several ways. The vast majority (75.6%)

of the variations presented were variations aimed at increasing the EDA signal, however in

24.3% there was a decrease in EDA after the fall and in 19% of the simulations the signal

remained stable.

From the proposed model’s point of view, integrating the EDA signal into the

model brings benefits in most cases. Since the data indicates an oscillatory behavior dur-

ing the fall, this behavior contributes to the intelligence-based model’s artificial absorption

of this variation as a confirmation of the fall.
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Figure 6.4 – Electrodermal Activity correlated with accelerometer data in volunteer per-
forming a fall simulation (Obstacle: initially walking, simulate the collision of the lower
limbs with an obstacle and then simulate the movement of falling to the ground) (Source:
Author).

Comparing these numbers with the execution of daily activities (ADL), it is pos-

sible to observe that this behavior is not present in 82% of activities, contributing to the

hypothesis that the use of this sensor provides valuable information to the model.

However, this behavior is more present in loss-of-balance activities (PDE); signif-

icant peaks in the accelerometry signal do not accompany it.

6.3.3 Accelerometer-Heart Rate Inter-sensor Correlation

The PPG sensor acquires the heart rate, and its signal represents the number of

heartbeats per minute (bpm). Analyzing the 90 fall simulations available in LifeSeniorPro-

file, it was not possible to find a behavior that would contribute to increasing accuracy in

fall detection since, as can be seen in Figure 6.5, the behavior is completely random, no

correlation was found with the recorded drop.

In all simulations, we had a completely stable signal, an increase in heart rate,

and a decrease in heart rate, with none of the behaviors standing out. Likewise, no behav-
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Figure 6.5 – Heart Rate correlated with accelerometer data in three different volunteers
performing a fall simulation (Obstacle: initially walking, simulate the collision of the lower
limbs with an obstacle, and then simulate the movement of falling to the ground) (Source:
Author).

ior could be interpreted as a valid pattern in the simulations of daily activities (ADL) and

loss of balance (PDE).

These results, in a way, are not surprising since the heart rate (HR) is a signal

that has a slow transition behavior; that is, the effects of a fall tend to be represented in

the heart rate late, around 1 to 2 minutes depending on the algorithm implemented in the

device. In this scenario, it would only make sense to include this information in the model

if an increased window size was used (around 3840 samples to cover the two minutes

projects with the 32 Hz rate - as a comparison, the current model works with a window of

150 samples which comprises less than 5 seconds at 32 Hz).

6.3.4 Accelerometer-Skin Temperature Inter-sensor Correlation

We also correlated, in the same way, the accelerometry with the volunteer’s skin

temperature data during the execution of all LifeSeniorProfile activities, paying greater

attention to moments of falling. Based on this analysis, it is possible to see that there is

no direct relationship between the drop and the behavior of skin temperature. As seen in

Figure 6.6, where we have an example of three patients performing the same activity, the

temperature behavior is completely random from the point of view of fall detection. We

also analyzed all activities classified as non-falling and found the same behavior.

The nature of the temperature signal behavior can justify these results. The sen-

sor used in the collection device is of the contact type, having naturally associated with its

operation a latency arising from the need for thermal balance between the watch’s metal

and the skin in contact with it. This balance takes some time to stabilize; therefore, a

possible variation, possibly towards a decrease in temperature, would only be noticed a

considerable time after the drop.
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Figure 6.6 – Temperature correlated with accelerometer data in three different volunteers
performing a fall simulation (Obstacle: initially walking, simulate the collision of the lower
limbs with an obstacle and then simulate the movement of falling to the ground) (Source:
Author).

Therefore, it can be concluded that the temperature vital sign contributes little to

the proposed model and can be easily removed from the analysis without compromising

accuracy.

6.4 Final Model Proposal based on Fused Vital Signs Results

Based on the results detailed in the previous sections, we propose the final model

for detecting risk situations in older people. In addition to the accelerometry signals, which

have already shown their importance for models of this type, the data indicate that the

physiological signal blood volume pulse and electrodermal activity have behavior that can

help validate a fall.

Based on this analysis, we propose that the movement sensor (accelerometer)

be associated with BVP and EDA physiological signals.

We analyzed the performance of this proposal, and from the graph in Figure 6.7

it is possible to observe that the model migrates to an accuracy close to 90% in a much

shorter time than in other models (around train step 5000 it is already possible observe

an accuracy of 85% of the model, a fact that was achieved only close to training step

20,000 for other models.), showing that it has training data that tends to make the model

converge faster. The final train accuracy was 0.951146, and the final loss was 0.158591.

The metrics of the model in operation with real-time data through the wearable

simulator are detailed in Table 6.5.

Table 6.5 – Final model performance on LifeSeniorProfile test data
Model version Accuracy Specificity Precision Recall/Sensivity F1-Score

Final 0.97 0.99 0.90 0.84 0.87
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Figure 6.7 – Loss and accuracy graphic for final model training process (Source: Author).

6.5 Model with User Adaptation Analysis

As the previous sections have proven, the hypothesis that the behavior of vital

signs is much more heterogeneous than the behavior of signals expected for movement

sensors is fulfilled. Interpersonal behavior is highly variable, which tends to harm the

models developed in the laboratory in real-use situations.

As detailed in the methodology, we simulate a model capable of adapting to

user behavior through a training process during the first use and through confirmation

by the user whenever a fall is detected. This generates a collaborative model that aims

to enrich training data with real information, which is difficult to reproduce in simulated

environments.

To simulate this behavior, we start from the final model proposed in Section 6.4

and evaluate its performance in detecting data from a new user with data not seen by

the model. This new user performed the simulation of each activity twice, one used for

training and the other used for testing the model. We evaluate the performance of the

test data using the model from Section 6.4, and after collecting the results, we perform

training with the new data. Later, we used the same test data in the latest model to

evaluate whether the data from that user contributed to the improvement of the specific

model for him and the general model.
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Figure 6.8 – Loss and accuracy graphic for user-adapted model training process (Source:
Author).

In Figure 6.8, we can see that this model converged usually, as expected, without

any significant increase in general accuracy. But, how can be seen in Table 6.6 the accu-

racy taking in account fall detection probability increase a lot when we tested this model

using only data test from him (b), compared with previous model testing same data (a).

Table 6.6 – User adaptation model performance on LifeSeniorProfile specific user data.
Model version Accuracy Specificity Precision Recall F1-Score

a) Final model with new data 0.85 0.93 0.44 0.33 0.38
b) User adapted with new data 0.91 0.92 0.58 0.85 0.69
c) User adapted with test data 0.69 0.94 0.98 0.63 0.77

In Table 6.6, we can also see that the increment of new data did not cause any

harm to the overall performance of the model, as can be seen in part (c), where the model

was tested with the same general test data used in the previous steps.

6.6 Comparison of the Model with Similar Models

We have demonstrated a more generalized and detailed architecture of the risk

detection model, which is a closer representation of real-life fall situations. Our model
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shows significant results and proved to be relevant in its area. The proposed model is

a pioneer in using vital signs and correlated movement data to increase fall detection

accuracy. The relation between recent articles and our model can be seen in Table 6.7.

Comparatively, Yhdego et al. [81] obtained an F1-score of 97% through a mixed

model composed of a feature extractor feeding an LSTM, followed by a linear classifier.

However, the article proposes using only accelerometry data, a type of sensor that pro-

duces non-differentiable signals in real life.

Also, Kulurkar et al. [34] obtained an F1-Score of 98% using MobiAct Dataset [74],

a know available dataset for fall detection. Analyzing this article, we can see that, besides

these excellent results, the model could identify a fall only with 0.85 precision, 0.66 recall,

and 0.862 accuracy when they simulated data streaming. This is important to understand

why our Accuracy and F1-Score do not achieve values near 100% as other studies.

Khawnuan et al. [27] similarly explored a model based on convolutional neural

networks applied to the tFall [42] and SisFall [70] datasets, obtaining significantly better

metrics than other techniques on the same datasets.

Table 6.7 – Performance comparison between state-of-the-art approaches and our model.
Reference Classes F1 Score Accuracy

[81] 3 0.97 0.98
[34] 9 0.98 0.99
[27] 9 0.9915 0.9915

Proposed 5 0.87 0.97

Analyzing these recent works comparatively, it is possible to observe that the

metrics achieved were far superior to the model proposed in this thesis. The following

factors can explain this:

• Data Streaming: a fall simulation in LifeSeniorProfile comprises a series of different

gait simulations that aim to approximate the actual behavior of a pre-fall situation.

However, these simulations do not fall but are part of the process. Depending on

the window size, it is possible to "see" only one pre-crash period, which generates a

correct classification of the model as non-crash but is counted as a false prediction

due to the file belonging to a file initially classified as a drop. For example, LifeSenior-

Profile has files where it is possible to have up to 8 different windows, and only one

has information regarding the fall. This limitation considerably lowers the F1-Score,

a fact that can be improved in future works;

• low volume of data: LifeSeniorProfile is the first dataset version of this research.

We think there is space to increase it with more data and make it a more relevant

dataset in this research area. Unfortunately, it was developed during the world pan-

demic, and acquiring more data was impossible. As a result, we believe that the
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low volume of data significantly harmed the results achieved. For a model based on

deep learning, a high volume of data is necessary for the best performance to be

achieved.

6.7 Limitations

The proposal model in this thesis has some limitations that need to be taken into

consideration:

• Emulated falls: One of the critical limitations of our work, and most of them available

in the literature, is that the datasets utilized for experimentation are emulated fall

datasets. Our model proposes a user adaptation phase that aims to reverse the

proportion between simulation and real-life over time; however, it is necessary to

recognize that the basis is a simulated model;

• Limited number of volunteers - as the number of volunteers performing the simulated

movements is not higher than other datasets, the researcher needs to consider spe-

cific algorithms; some insights can be the product of a poor number of collections

and not from the algorithm performance;

• Age of volunteers - the average age of volunteers is lower than that of the elderly,

generating a loss of specific characteristics found only in older adults. This choice

prevents older adults from getting injured, even with the falls being controlled and

assisted by a medical team. Since the subjects were young and healthy, will the

model remain equally efficient for the elderly population, which is the target popula-

tion? Will the user adaptation model be sufficient to convert this simulated scenario

into another population range for an elderly user? These questions need further

investigation, thus opening doors for future research directions;

• Artificial Intelligence hyperparameters: The current configuration of the proposed

model is aimed at a small database. The researcher must be careful when expanding

this model, as adjusting the dropout layers, batch size, and number of LSTM layers

may be necessary.
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7. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a novel methodology for improving the accuracy

of a risk situation detector in elderly people, associated with the development of an in-

novative dataset with motion and physiological sensors correlated and collected in a joint

way.

Our model achieves significant results in real-time stream data, which is more

difficult than traditional static analysis of test data. It shows that the correlation of vital

signs with accelerometry data is relevant for detecting risk situations in the elderly. The

initial results are promising and open doors for further experimentation.

This work can be used to build new models or improve the proposed associations

between vital signs, sensors, and other possible combinations, helping to increase the

quality of older people’s lives.

We believe that the work could have advanced by connecting the device used

in the collection to the App simulator developed. This would have made it possible to

receive the collected time series in real-time, better evaluating the capacity of the model

to adapt to the user and the variation present in the signals while performing different fall

simulations or daily activities. This step will remain a proposal for future work that can be

developed in additional research.

We agree that the data used in this work do not exactly reflect the target popu-

lation of the developed system, however, it is expected that the system’s adaptability will

be able to cushion these differences over time and through retraining.

Our training process took into account the use of a specialized device, which

has sensors certified for medical-grade use. It is known that the reality of a device to

be used on humans in a real scenario is much lower and so we explored the concept of

adaptability of the algorithm, in an attempt to compensate for these adversities, having

achieved satisfactory results.

Through this research, it was also possible to conclude that the physiological sig-

nals of heartbeat and skin temperature do not produce relevant information for the model

when using significantly small monitoring windows to detect a fall (high-speed signal). The

behavior of these signals has a slower variation dynamic, mainly due to the technologies

used for monitoring, which means that their influence is exerted on the signals in an inter-

val well ahead of the moment of the fall. A workaround for this problem would be to use

larger observation windows, but detections would be significantly slower as a side effect.

For future work, we are considering expanding the LifeSeniorProfile dataset to in-

clude more volunteers and increase its heterogeneity, aiming to contribute more relevant

data to the academic environment.
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For future research using this as a basis, we recommend connect a real wearable

sending in real time data to app simulator and analyze the results considering simulations

performed in real time.

All content developed during this research, including data processing scripts,

source code adopted in the proposed model and the complete dataset produced during

this thesis are available in a public domain [45].
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