
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

GABRIEL RUSTICK FIM

HIGH-LEVEL MULTI-GPU SUPPORT FOR MULTI-CORE
STREAM PARALLELISM

Porto Alegre

2025

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

HIGH-LEVEL MULTI-GPU
SUPPORT FOR MULTI-CORE

STREAM PARALLELISM

GABRIEL RUSTICK FIM

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Dalvan Griebler

Porto Alegre
2025

GABRIEL RUSTICK FIM

HIGH-LEVEL MULTI-GPU SUPPORT FOR
MULTI-CORE STREAM PARALLELISM

This Master Thesis has been submitted in

partial fulfillment of the requirements for

the degree of Master in Computer Science

of the Computer Science Graduate Program,

School of Technology of the Pontifical

Catholic University of Rio Grande do Sul

Sanctioned on March 28th, 2025.

COMMITTEE MEMBERS:

Prof. Dr. Luiz Gustavo Leao Fernandes (PPGCC/PUCRS)

Prof. Dr. Claudio Schepke (LEA/UNIPAMPA)

Prof. Dr. Dalvan Griebler (PPGCC/PUCRS - Advisor)

PARALELISMO DE STREAM EM MULTI-GPU PARA MULTI-CORES

RESUMO

Atualmente, as arquiteturas de computadores dependem frequentemente de uni-

dades de processamento gráfico (GPUs) para permitir a exploração massiva do parale-

lismo a um custo reduzido. Este paralelismo pode ser particularmente vantajoso no pro-

cessamento de streams, um domínio de aplicações que processam continuamente um

fluxo de dados de tamanho muitas vezes desconhecido. No entanto, o programador deve

empregar programação paralela para explorar os recursos de hardware da GPU subja-

cente de forma eficiente. Isso pode ser desafiador, pois envolve refatorar algoritmos, usar

técnicas de paralelismo e conhecer o hardware do ambiente, especialmente ao escrever

código portável, uma vez que os fornecedores e gerações de GPU oferecem capacida-

des diferentes. Este desafio torna-se ainda mais complexo em ambientes multi-GPU; o

programador deve escolher qual estratégia será utilizada para particionar seus dados,

qual estratégia de escalonamento de tarefas será utilizada nas GPUs, como lidar com as

necessidades de comunicação entre tarefas e como executar operações assíncronas na

GPU. Para enfrentar esses desafios, pesquisadores se concentraram na investigação de

técnicas de programação eficientes para GPUs e no desenvolvimento de abstrações que

simplificam o processo de programação. Uma dessas abstrações é a SPar, uma linguagem

de domínio específico (DSL) que permite a expressão do paralelismo de fluxo sem sacri-

ficar o desempenho. Recentemente, foi adicionada uma extensão a SPar que permite a

geração paralela de código para GPUs em aplicações de streaming. Para conseguir isso,

a SPar realiza transformações de código fonte e gera código GPU usando uma biblioteca

intermediária chamada GSParLib. No entanto, SPar oferece suporte à geração de código

somente para ambientes com uma única GPU. Neste trabalho, investigamos como permitir

a geração de código multi-GPU para processamento de streams e investigamos otimiza-

ções e técnicas para programação multi-GPU direcionado a sistemas multi-core. Nossas

contribuições são um conjunto de algoritmos de escalonamento para fluxo de dados em

multi-GPUs, que foram integrados na geração de código do SPar, suportando transpa-

rentemente o uso de multi-GPU em sistemas multi-core. Os resultados experimentais

demonstraram que é possível simplificar a exploração de multi-GPU para aplicações de

stream sem sacrificar o desempenho, utilizando políticas de escalonamento visando es-

pecificamente multi-GPU por meio de anotações de código como as fornecidas pelo SPar,

alcançando resultados semelhantes às implementações manuais visando multi-GPU, en-

quanto tendo quase metade do número de linhas de código.

Palavras-Chave: Programação paralela, paralelismo de dados, processamento de stream,

programação paralela estruturada, programação GPU, programação multi-GPU, lin-

guagem específica de domínio, esqueletos algorítmicos, computação de alto desem-

penho, C, C++.

HIGH-LEVEL MULTI-GPU SUPPORT FOR MULTI-CORE STREAM

PARALLELISM

ABSTRACT

Nowadays, computer architectures often rely on graphics processing units (GPUs)

to allow massive parallelism exploitation at a lower cost. This parallelism can be particu-

larly advantageous in stream processing, a domain of applications continuously process-

ing a data flow of often unknown size. Nonetheless, the programmer must employ par-

allel programming to exploit underlying GPU hardware capabilities efficiently. This can

be challenging since it involves refactoring algorithms, using parallelism techniques, and

knowing about the environment’s hardware, especially when writing portable code, since

GPU vendors and generations offer different capabilities. This challenge becomes even

more complex in multi-GPU environments; the programmer must choose which strategy

to partition their data, which strategy to schedule their tasks onto the GPUs, how to handle

communication needs between tasks, and how to perform GPU asynchronous operations.

To address these challenges, researchers have focused on investigating efficient program-

ming techniques for GPUs and developing abstractions that simplify the programming

process. One such abstraction is SPar, a domain-specific language (DSL) that enables the

expression of stream parallelism without sacrificing performance. Recently, an extension

was added to SPar that allows parallel code generation for GPUs in streaming applications.

To achieve this, SPar performs source-to-source code transformations and generates GPU

code using an intermediate library named GSParLib. Nonetheless, SPar supports code

generation for a single GPU environment only. In this work, we investigate how to allow

multi-GPU code generation for stream processing and investigate state-of-the-art opti-

mizations and techniques for multi-GPU programming targeting multi-core systems. Our

contributions are a set of data stream scheduling algorithms for multi-GPUs, which were

integrated in the code generation of SPar, transparently supporting multi-GPU usage in

multi-core systems. The experimental results demonstrated that it is possible to simplify

the exploitation of multi-GPU for stream applications without sacrificing performance by

utilizing scheduling policies specifically targeting multi-GPU through code annotations like

the ones provided by SPar, achieving similar results to manual implementations targeting

multi-GPU while having close to half the number of lines of code.

Keywords: Parallel programming, data parallelism, stream processing, structured paral-

lel programming, GPU programming, multi-GPU programming, domain-specific lan-

guage, algorithmic skeletons, high-performance computing, C, C++.

LIST OF FIGURES

Figure 2.1 – Stream processing applications. Taken from [6] 18

Figure 2.2 – An overview of parallel patterns. Taken from [44] [28] [52] 18

Figure 2.3 – CPU vs. GPU architecture. Taken from [21] . 20

Figure 2.4 – CUDA Thread Hierarchy. Taken from [12] . 22

Figure 2.5 – CUDA Memory Hierarchy. Taken from [12] . 23

Figure 2.6 – Block Partitioning Strategies Examples. Based on [63] 24

Figure 2.7 – Steps of the compilation process of SPar. Taken from [52] 33

Figure 4.1 – Static representation . 42

Figure 4.2 – Saturate representation . 43

Figure 4.3 – Queue representation . 44

Figure 4.4 – Work Stealing representation . 44

Figure 4.5 – AnimalRescue Flowchart. Borrowed from [23] 45

Figure 4.6 – LD, MB, and RT Flowchart. Borrowed from [23] 46

Figure 4.7 – AnimalRescue - Throughput . 48

Figure 4.8 – AnimalRescue - Resource Usage . 48

Figure 4.9 – LaneDetection - Throughput . 49

Figure 4.10 – LaneDetection - Resource Usage . 49

Figure 4.11 – Mandelbrot - Throughput . 50

Figure 4.12 – Mandelbrot - Resource Usage . 51

Figure 4.13 – Raytracing - Throughput . 51

Figure 4.14 – Raytracing - Resource Usage . 52

Figure 5.1 – Methodology for Parallel Code Generation. 54

Figure 5.2 – Flow of the transformation rules of SPar. Adapted from [52] 56

Figure 5.3 – Static code example. Based on [52] . 59

Figure 5.4 – Saturate code example. Based on [52] . 60

Figure 5.5 – AnimalRescue - Throughput Evaluation . 61

Figure 5.6 – AnimalRescue - Resource Consumption Evaluation 61

Figure 5.7 – LaneDetection - Throughput Evaluation . 62

Figure 5.8 – LaneDetection - Resource Consumption Evaluation 62

Figure 5.9 – Mandelbrot - Throughput Evaluation . 63

Figure 5.10 – Mandelbrot - Resource Consumption Evaluation 63

Figure 5.11 – Raytracer - Throughput Evaluation . 64

Figure 5.12 – Raytracer - Resource Consumption Evaluation 64

Figure 5.13 – AnimalRescue On-Demand - Throughput Evaluation 65

Figure 5.14 – AnimalRescue On-Demand - Resource Consumption Evaluation 65

Figure 5.15 – LaneDetection On-Demand - Throughput Evaluation 65

Figure 5.16 – LaneDetection On-Demand - Resource Consumption Evaluation 66

Figure 5.17 – Mandelbrot On-Demand - Throughput Evaluation 66

Figure 5.18 – Mandelbrot On-Demand - Resource Consumption Evaluation 66

Figure 5.19 – Raytracer On-Demand - Throughput Evaluation 67

Figure 5.20 – Raytracer On-Demand - Resource Consumption Evaluation 67

Figure 5.21 – Mandelbrot with Batching - Throughput Evaluation 68

Figure 5.22 – Mandelbrot with Batching - Resource Consumption Evaluation 68

Figure 5.23 – Mandelbrot with Batching and On-Demand - Throughput Evaluation 69

Figure 5.24 – Mandelbrot with Batching and On-Demand - Resource Consumption

Evaluation . 69

Figure 5.25 – LaneDetection OpenMP - Throughput Evaluation 70

Figure 5.26 – LaneDetection OpenMP - Resource Consumption Evaluation 70

Figure 5.27 – Mandelbrot OpenMP - Throughput Evaluation 70

Figure 5.28 – Mandelbrot OpenMP - Resource Consumption Evaluation 71

Figure 5.29 – Raytracer OpenMP - Throughput Evaluation . 71

Figure 5.30 – Raytracer OpenMP - Resource Consumption Evaluation 71

Figure 5.31 – Source Lines of Code of each Benchmark tested. 74

LIST OF TABLES

Table 3.1 – Frameworks based on Structured Parallel Programming 40

Table 3.2 – Frameworks based on code annotations . 41

Table 4.1 – Best Results . 52

Table 5.1 – Performance improvement of multi-GPU over single-GPU 72

Table 5.2 – Performance improvement of On-demand scheduling over Round-

robin scheduling . 73

Table 5.3 – Performance improvement of batch over non-batch execution 73

Table 5.4 – Performance improvement of SPar and OpenMP over manual imple-

mentation . 74

LIST OF ACRONYMS

API – Application Programming Interface

CINCLE – Compiler Infrastructure for New C/C++ Language Extensions

CPU – Central Processing Unit

CUDA – Compute Unified Device Architecture

DASP – Data Stream Processing

DSL – Domain-Specific Language

GCC – GNU Compiler Collection

GPU – Graphics Processing Unit

GSPARLIB – GPU Stream Parallelism Library

HPC – High-Performance Computing

MPI – Message Passing Interface

OPENACC – Open Accelerators

OPENCL – Open Computing Language

OPENMP – Open Multi-Processing

SIMT – Single Instruction Multiple Thread

SDK – Software Development Kit

SLI – Scalable Link Interface

SM – Stream Multiprocessors

SPAR – Stream Parallelism

CONTENTS

1 INTRODUCTION . 14

2 BACKGROUND . 17

2.1 STREAM PROCESSING . 17

2.2 GRAPHICS PROCESSING UNITS . 20

2.2.1 THREAD HIERARCHY . 21

2.2.2 MEMORY HIERARCHY . 21

2.2.3 EXECUTION MODEL . 22

2.2.4 OCCUPANCY . 23

2.3 MULTI-GPU PROGRAMMING . 23

2.3.1 DATA PARTITIONING . 24

2.3.2 MULTI-GPU COMMUNICATION . 24

2.3.3 MULTI-GPU SCHEDULING . 25

2.3.4 ASYNCHRONOUS OPERATIONS . 26

2.4 CUDA . 27

2.5 OPENCL . 28

2.6 OPENACC . 29

2.7 SPAR . 30

2.8 GSPARLIB . 33

3 RELATED WORK . 37

3.1 STRUCTURED PARALLEL PROGRAMMING WITH MULTI-GPU 37

3.2 ANNOTATION-BASED PROGRAMMING WITH MULTI-GPU 40

4 MULTI-GPU RUNTIME SUPPORT . 42

4.1 MULTI-GPU SCHEDULING POLICIES . 42

4.2 CHOSEN APPLICATIONS . 44

4.3 FINE-TUNING OF SCHEDULING ALGORITHMS WITH PTHREADS AND GSPARLIB . 46

4.3.1 ANIMALRESCUE . 47

4.3.2 LANEDETECTION . 48

4.3.3 MANDELBROT . 50

4.3.4 RAYTRACING . 50

4.4 FINAL REMARKS . 51

5 HIGH-LEVEL MULTI-GPU SUPPORT . 53

5.1 SPAR GPU TRANSFORMATION RULES . 53

5.1.1 CHANGES ON SPAR’S CODE GENERATION . 57

5.2 RESULTS ON SPAR . 59

5.2.1 TESTS UTILIZING ON-DEMAND SCHEDULING ON SPAR . 64

5.2.2 MULTI-GPU WITH BATCH OPTIMIZATION ON SPAR . 67

5.2.3 BATCH WITH ON-DEMAND SCHEDULING . 68

5.3 RESULTS IMPLEMENTING INTO OPENMP . 69

5.4 OVERHEAD EVALUATION . 72

5.5 IMPACT ON PROGRAMMABILITY . 74

5.6 FINAL REMARKS ABOUT MULTI-GPU WITH SPAR . 75

6 CONCLUSION . 77

REFERENCES . 80

14

1. INTRODUCTION

Stream processing applications are commonly used to process a continuous flow

of data, where the amount of data may not be known beforehand since they may be

infinite streams. These applications are widely used in today’s digital world, where data is

generated from various sources such as social media, online shopping, and sensors from

embedded systems [6]. To ensure optimal performance of stream processing applications,

it is necessary to take advantage of the parallel capacity of the hardware on which the

application is running. Programmers can achieve this by using a parallel programming

model, which involves rewriting the serial code and breaking it down into smaller problems

that can be solved concurrently [44].

To execute parallel programs more efficiently, programmers can offload each

data parallel task of their workload to GPUs. This is because many stream processing

applications can benefit from the massive parallelism offered by GPUs by implementing

data parallelism inside a stage/operator[40, 55]. Even though GPUs began to gain pop-

ularity in the mid-1990s, via the high demand for high computing power to process 3D

graphics spearheaded by the gaming industry launching games that utilized early 3D tech-

nology, their usage was extraordinarily convoluted. Because standard graphics APIs such

as OpenGL and DirectX were still the only way to interact with a GPU, any attempt to per-

form arbitrary computations on a GPU would still be subject to programming constraints

within a graphics API. Because of this, researchers explored general-purpose computation

through graphics APIs by trying to make their problems appear to the GPU as traditional

rendering [56].

According to [56] this changed in November 2006, when NVIDIA released its first

DirectX platform and CUDA programming model. This model included several new compo-

nents designed solely for GPU computing, aiming to overcome the limitations previously

preventing graphics processors from being useful for general-purpose computation.

While GPUs have become ubiquitous in modern computing, coding for these ar-

chitectures remains a complex task. It requires a thorough understanding of various pro-

gramming techniques, depending on the supported GPU language, as well as familiarity

with the hardware and concepts of many-core programming. Additionally, a deep under-

standing of the problem at hand is crucial, often necessitating the ability to leverage the

massive parallelism that GPUs are renowned for.

This became an even more significant challenge when we began to tackle multi-

GPU programming, as the architectures encompassed by this definition are highly diverse,

varying from a simple one-node two-accelerator to a multi-node multi-accelerator per

node cluster. As Sander and Kandrot [56] talk in their book, systems containing multi-

ple graphics processors have become increasingly common in recent years. Products like

15

the GeForce GTX 295 include two GPUs on a single card. NVIDIA’s Tesla S1070 contains

four CUDA-capable graphics processors in it. Systems built around recent NVIDIA chipsets

will have an integrated, CUDA-capable GPU on the motherboard, and adding a discrete

NVIDIA GPU in one of the PCI Express slots will make this system multi-GPU.

Most, if not all, of the challenges of multi-GPU usage, revolve around how to

efficiently utilize all the computational power provided by the multi-GPU environment; for

this, one of the most critical points is to design inter-GPU communication properly since

the efficiency of inter-GPU data transfers depends on how GPUs are connected within a

node and across a cluster. Cheng, Grossman, and McKercher [12] say that there are two

types of connectivity in multi-GPU systems: Multiple GPUs connected over the PCIe bus in

a single node and multiple nodes containing GPUs connected over a network switch in a

cluster, and both of these connections are not mutually exclusive.

Another challenge is efficiently partitioning the data between GPUs and splitting

computation tasks into different work items. To Cheng, Grossman, and McKercher [12], for

designing a program that takes advantage of multiple GPUs, you will need to partition the

workload across devices, and depending on the application, this partitioning can result

in two common inter-GPU communication patterns: No data exchange is necessary be-

tween partitions of a problem, and therefore no data shared across GPUs; or Partial data

exchange between problem partitions, requiring redundant data storage across GPUs. To

Wilt [65], since the GPUs can only use peer-to-peer to read or write data at PCIe rates, de-

velopers have to partition the workload in such a way that each GPU has about an equal

amount of work to do, or the GPUs only need to interchange small amounts of data.

Another challenge of utilizing multi-GPU is how to schedule the usage of the GPUs

present in the environment since it is of no use having multiple GPUs in a environment

if they are being underutilized; knowing how to efficiently split the tasks that make a

workload between the GPUs present in the environment is a must, but this challenge is

not only limited to knowing how to efficiently divide the tasks between GPUs to utilize the

environment entirely, it is intricately woven with the other challenges if the workload is

going to be split between GPUs, then the data needed by the tasks will be needed to be

partitioned. If the tasks build on each other or need to share some common data between

works, there is also the need to manage these communications between GPUs.

There are some solutions present in the current literature that try to abstract

some aspects of GPU programming, seeking to make the development of GPU-accelerated

applications more feasible to the user by providing patterns or even more abstract direc-

tives and reducing the need for the user to fully engross themselves with the intrinsical-

ities of the language extensions, directives, or non-standard libraries that target GPUs.

Although most of them have some support for multi-GPU, they still require challenging

aspects of multi-GPU from the programmer, like data partitioning, scheduling, and com-

16

munication of GPUs, since these challenges cannot be so quickly abstracted since the

multi-GPU environment has a varied spectrum of configurations.

One such solution is SPar [29, 30, 28]; it is a Domain Specific Language (DSL)

embedded in C++ that offers high-level abstractions for stream parallelism through code

annotations. The SPar compiler performs source-to-source transformations to generate

parallel C++ code. The first version of SPar supported parallelism on multi-core archi-

tectures, making calls to the FastFlow [2]. In more recent studies, SPar was extended

and enabled to generate TBB [33] and OpenMP [34] code for multi-core architectures, for

clusters utilizing DSParLib (using MPI calls) [41, 49], and code targeting single-GPU using

GSParLib (generating CUDA and OpenCL codes) [52, 53]. Showing promising results with

comparable performance to manual implementations while requiring lower programming

effort by the user [4, 3, 5].

Therefore, the main question that drives this research is: Can C++ annota-

tions, like those provided by SPar for stream parallelism, simplify multi-GPU

parallelism exploitation without impacting performance? To answer this question,

we expect to provide the following scientific contributions:

• A methodology to allow multi-code generation through C++ attribute annotations;

• An extension of SPar language seeking to expand the GPU code generation for accel-

eration of stream processing to englobe multi-GPU usage;

• Comparative analysis of our proposed solution against state-of-the-art solutions for

multi-GPU code generation.

This work is organized as follows: Chapter 2 presents the background for this

study, including an overview of GPUs, state-of-the-art GPU programming languages, some

challenges found when programming in a multi-GPU environment, GSParLib, and SPar.

Chapter 3 presents the works that allow the programming and generation of multi-GPU

codes, including frameworks based on structured parallel programming and code annota-

tions. Chapter 4 presents the study of performance regarding GSParLib using manual im-

plementations targeting multi-GPU. Chapter 5 presents the implementation of multi-GPU

policies into SPar, as well as the study of performance of the multi-GPU implementation

through the code abstractions provided by SPar. Chapter 6 presents our conclusions.

17

2. BACKGROUND

In this chapter, we introduce the main concepts related to the objectives of our

work. We start by introducing stream processing applications and their characteristics in

Section 2.1, then we present concepts of GPU and multi-GPU programming in Sections

2.2 and 2.3. In Sections 2.4, 2.5 and 2.6, we present language extensions that ease GPU

programming tasks. Finally, Sections 2.8 and 2.7 present GSParLib and SPar, the latter

being a DSL focused on stream parallelism and the focus of this study, that utilizes the

first as an intermediary to generate its GPU code.

2.1 Stream Processing

A stream is a continuous flow of data [59], often generated by cameras, sensors,

and other applications. The data that is streamed usually has business value that can only

be realized through real-time processing and analysis. This results in strict performance

requirements for the applications that process these streams, referred to as stream pro-

cessing applications. Figure 2.1 lists some examples of stream processing applications.

Data Stream Processing (DaSP) is a computing paradigm that is represented by

stream processing applications [24] [25]. These applications consume input data sources

continuously and produce streams of output results [61]. As the world becomes more

connected, digital data is produced at an ever-increasing pace, making these kinds of

applications more common [61]. They are used in various domains, including data backup

and compression, processing data from monitoring sensors and logs, financial markets,

healthcare, and cryptography, among others.

Compared to traditional applications, stream processing does not have a defined

end because the volume of data to be processed is usually unknown or unpredictable. In

many cases, data flow comes from sensor measurements, and there are strict require-

ments for the latency and throughput of the data processing. It is not feasible to store the

streamed data in a database and process them using traditional approaches [10].

In stream processing, each operator can handle a different data item from the

previous operator. As a result, the degree of parallelism that can be achieved is typically

limited by the number of operators present. However, any stateless operator can be du-

plicated to handle multiple data items simultaneously, further increasing the degree of

parallelism that can be achieved.

The concept of providing algorithmic structures to simplify the process of parallel

programming is not a new one. It has been explored under different names [28], such as

algorithmic skeletons [13] [14] and parallel patterns [44]. The idea of defining patterns of

18

Figure 2.1 – Stream processing applications. Taken from [6]

commonly used programming tasks is derived from design patterns that are widely used

in software engineering.

Figure 2.2 – An overview of parallel patterns. Taken from [44] [28] [52]

Figure 2.2 presents an overview with a visual representation of the main parallel

programming patterns, being those:

• Superscalar sequences. As the name implies, this pattern defines a sequence of

tasks that can be freely executed concurrently.

19

• Speculative Selection. In this pattern, both cases of a conditional statement run

in parallel. When the conditions finish their execution, the unnecessary branch is

canceled, and any data modification is reverted.

• Map. Applies the same computation over a set of data defined by an index. It is

commonly used in a loop where the total of iterations is known, and each iteration is

independent.

• Stencil. It is a variation of the map pattern. It accesses a data element and a set of

neighbors. This pattern needs verification of bounds.

• Fork-Join A process creates a fork with other processes to compute other data por-

tions. A process commonly waits for child processes to terminate its execution.

• Pipeline. A pipeline creates one stage for each operation, and a process or a thread

executes each stage. Additionally, all stages are executed concurrently and must

process each data element.

• Geometric Decomposition. It breaks the data into subsets that can overlap or not.

Each subset is assigned to a thread or a process.

• Partition. It is a particular case of the geometric decomposition pattern where the

subsets do not overlap.

• Farm. A farm has three stages: emitter, workers, and collector. The emitter pro-

duces data, which is processed by parallel workers in the second stage and sent to

the collector in the third stage.

• Gather. It receives a set of indexes and reads the data only in the specified positions.

• Scatter. The inverse of the gather pattern, where the pattern writes the data instead

of reading it.

• Category Reduction. Data is received and grouped utilizing a label before applying

a reduction based on the label.

• Pack. It eliminates elements that are not being used in a set. Each element is

marked with a Boolean; this indicates if the element is useful or not.

• Split. It is a variation of the pack pattern in which elements are moved to the left-

most or rightmost part of the arrays instead of removed.

• Recurrence. It is a generalization of loops where an iteration depends on another

one.

• Reduction. Combines the values of a set of elements into a single value. It is

commonly used to combine the results from different threads or processes.

20

• Scan. It is a variation of the reduction pattern; it computes every partial reduction

from a set of elements.

• Expand. In the expand pattern, a map is executed, and each thread or process

outputs zero or more elements. The result is a set with the outputs of every thread

or process.

2.2 Graphics Processing Units

In the early days of computing, the CPU performed the calculations required for

graphics applications, such as rendering 2D and 3D images, animations, and video. As

more graphics-intensive applications were developed, their demands strained the CPU

and decreased the computer’s overall performance.

GPUs were developed to offload those tasks from CPUs for graphics applications.

Some of the first graphics processing units (GPUs) were initially designed to process 2D

and 3D graphics to support the game industry’s demand.

This is reflected in the sense that the rapidly expanding video game industry

has heavily influenced the design philosophy of GPUs. This is because advanced games

require many floating-point calculations per video frame, which puts significant economic

pressure on GPU vendors to maximize the chip area and power budget dedicated to these

calculations. As a result, GPU vendor are always looking for ways to improve their products

to meet the demands of the gaming industry [36].

Figure 2.3 – CPU vs. GPU architecture. Taken from [21]

On the other hand, central processing units (CPUs) are engineered to expedite the

execution of individual tasks. This is accomplished by leveraging on-chip caches to store

frequently accessed data, reducing memory access time. Furthermore, the arithmetic

21

units and data delivery logic are optimized to expedite task completion, even if it requires

greater power consumption and chip area.

The main reason behind the discrepancy in floating-point capability between the

CPU and the GPU is that the GPU is specialized for compute-intensive, highly parallel com-

putation - exactly what graphics rendering is about - and, therefore, designed such that

more transistors are devoted to data processing rather than data caching and flow control

[19].

More specifically, the GPU is especially well-suited to address problems expressed

as data-parallel computations with high arithmetic intensity. Because the same program

is executed for each data element, sophisticated flow control is less required. Because it

is executed in many data elements and has high arithmetic intensity, the memory access

latency can be hidden with calculations instead of big data caches.

2.2.1 Thread Hierarchy

Current high-end GPUs have up to thousands of cores. They can run millions

of threads, which are organized hierarchically. A function launched to the GPU is called

kernel and is executed by a grid. A grid contains blocks, and each block has its threads.

CUDA organizes its grids and blocks in three dimensions, allowing the number of blocks

and threads to be configurable by the user [12]. Each thread on the block identifies its

position, and each block identifies its position in the grid, allowing the thread to calculate

its global ID by utilizing its position on the block and the block position on the grid [12].

Figure 2.4 presents an example of a grid of threads in CUDA. In the example, the

grid has six blocks organized in two dimensions. Each bl ck has fifteen threads organized

in three dimensions.

2.2.2 Memory Hierarchy

In general, applications do not access arbitrary data or run arbitrary code at any

time. Instead, applications often follow the principle of locality, which suggests that they

access a relatively small and localized portion of their address space at any time. Figure

reffig:memHier shows an example of the memory hierarchy in CUDA; Shared Memory is

visible to a block of threads. Global memory is visible to any thread of any grid.

Global memory is the largest, highest-latency, and most commonly used memory

on a GPU. The name global refers to its scope and lifetime. Its state can be accessed on

the device from any SM throughout the application’s lifetime. Shared memory enables

threads within the same thread block to cooperate, facilitates the reuse of on-chip data,

22

Figure 2.4 – CUDA Thread Hierarchy. Taken from [12]

and can significantly reduce the global memory bandwidth needed by kernels. Because

the application explicitly manages the contents of shared memory, it is often described as

a program-managed cache [12].

2.2.3 Execution Model

The GPU execution model is how the GPU executes the parallel code. Related to

this concept, it is essential to understand GPU stream multiprocessors (SMs) and warps.

The GPU stream multiprocessors are responsible for executing thread blocks.

When a rid of thread blocks is sent to the GPU, it gets distributed to the SMs. Then, the SMs

execute the thread blocks concurrently. The more blocks created, the more blocks can be

executed in parallel. However, each SM has a limited number of registers. If there are not

enough registers available, the SM will execute fewer thread blocks in parallel [19].

In a computing system, warps serve as the fundamental unit of execution within

an SM. When you initiate a grid of thread blocks, the thread blocks within the grid are

distributed across the SMs. Once a thread block is assigned to an SM, threads within that

block are further subdivided into warps. A warp comprises a set of 32 consecutive threads,

and all threads in a warp are executed in Single Instruction Multiple Thread (SIMT) mode.

23

Figure 2.5 – CUDA Memory Hierarchy. Taken from [12]

This means all threads execute the same instruction, and each operates on its own private

data [12].

2.2.4 Occupancy

GPU occupancy refers to the amount of parallel processing capacity a GPU uses.

Fine-grained parallelism can be applied to explore a GPU’s maximum capacity fully, which

often requires restructuring the serial code. Launching multiple blocks of threads can also

help increase GPU usage. Additionally, concurrent execution of GPU kernels is possible.

Instructions are executed sequentially within each core. When on warp stalls, the

SM switches to executing other eligible warps. Ideally you want to have enough warps

to keep the cores of the device occupied. Occupancy is the ratio of active warps to the

maximum number of warps per SM [12].

When one thread requests to execute an instruction that takes multiple clock

cycles to finish, another thread that is ready to run is scheduled, therefore, a GPU core

does not remain idle.

2.3 Multi-GPU Programming

The CUDA API directly supports multiple GPUs, allowing the distribution of tasks

between multiple GPUs. The API is low-level, utilizing it compared to using threads for

multi-core utilization. Writing multi-GPU code this way requires careful manual orchestra-

tion of kernels and data movements and tends to be tedious and error-prone [43].

24

2.3.1 Data Partitioning

In data partition, different devices perform the same task concurrently on differ-

ent parts of the input or output. There are two approaches to partitioning data: block

partitioning and cyclic partitioning. In block partitioning, many consecutive elements of

data are chunked together. Each chunk is assigned to a single thread in any order, and

threads generally process only one chunk at a time. In cyclic partitioning, fewer data el-

ements are chunked together. Neighbouring threads receive neighbouring chunks; each

thread can handle more than one chunk. Selecting a new chunk for a thread to process

implies jumping ahead as many chunks as there are threads.

Sub-space Segment Column(s)

GPU 0 GPU 1 GPU N-1 GPU N-1GPU 1GPU 0 GPU N-1GPU 1GPU 0

Figure 2.6 – Block Partitioning Strategies Examples. Based on [63]

Figure 2.6 shows three possible block partitioning strategies, all of which have

their usage; GPU partitioning is particularly beneficial for workloads that do not thoroughly

saturate the GPU’s computing capacity. A lot of GPU workloads do not require a full GPU.

2.3.2 Multi-GPU communication

When developing in a multi-GPU environment the topic of how to handle the ex-

change of messages between GPUs is not trivial, mainly because traditionally, inter-GPU

communication shares the same bus interconnect as CPU-GPU communication, such as

PCIe. This changed recently due to the introduction of GPU-oriented interconnect such

as NVLink, NVLink-SLI and NVSwitch. In this section we will briefly review some of this

technology for multi-GPU communication.

• PCIe: The Peripheral Component Interconnect Express Bus (PCIe) is a standard for

high-speed serial computer expansion. In a system with GPU integration, one or

multiple GPU devices are connected to the CPUs through PCIe. However, when com-

pared to the interconnect between CPU and DRAM, PCIe is significantly slower. This

can often result in a major performance bottleneck for GPU-acceleration [48] [67].

25

• NVLink: NVLink is a communication interface that uses wires to connect nearby

devices. It is based on High-Speed-Signaling-Interconnect (NVHS) [27] and supports

peer-to-peer (P2P) communication, which allows linking between CPU-GPU or GPU-

GPU. With NVLink, it is possible to directly read and write on the host memory of

remote CPUs and/or the device memory of peer GPUs. Additionally, remote atomic

operations can be performed. NVLink is bidirectional, which means that each link

has two sublinks - one for each direction.

• NVLink-SLI: SLI [17] has traditionally been used for graphical purposes only [35].

However, the latest GPUs based on the Turing architecture have introduced a new

form of high-speed multi-GPU bridge that utilizes NVLink interconnect technology.

This bridge allows two GPUs to communicate with each other, enabling them to co-

render games, co-run GPGPU tasks, or share GPU memory spaces.

• NVSwitch: NVSwitch [18] is designed to enable efficient all-to-all communication in

deep neural network training and other emerging applications. It is an NVLink-based

switch chip that features 18 ports of NVLink per switch for intra-node communication.

2.3.3 Multi-GPU Scheduling

Multi-GPU scheduling is a complex topic to summarize, so in this section, we will

discuss some scheduling policies that could be used to allow the total usage of the GPUs

that compose some environments. We will not talk about every single scheduling policy

in the literature.

Predictable-Response-Time policy encourages any GPU command groups to wait

for the completion of the preceding GPU command group, if any. Specifically, a new GPU

command group arriving at the device driver can be submitted to the GPU immediately if

the GPU work list is empty. Else, the corresponding task must sleep in the wait queue. The

highest-priority task in the wait queue, if any, is woken up upon every interrupt from the

GPU.

The High-Throughput policy reduces the scheduling overhead, compromising pre-

dictable response times a bit. It allows GPU command groups to be submitted to the GPU

immediately if (i) the same task is submitted to the currently executing GPU command

group and (ii) no higher-priority tasks are ready in the wait queue. Otherwise, they must

be suspended in the same manner as the PRT policy. Upon an interrupt, the highest-

priority task in the wait queue is woken up only when the GPU work list is empty.

OpenMP task-to-GPU scheduling strategy wherein OpenMP threads generate com-

putational kernels on the CPU and then work together to dynamically map the tasks (each

of which contains one or more kernels) to GPUs through a combination of application per-

26

formance tuning and runtime enhancements. The aim is that the loads are as balanced

as possible, and the costs of the load balancing itself are also reduced through reducing

dequeue and coordination overheads.

As the name implies, Centralized list scheduling with data locality is a scheduling

policy based on a list of tasks. There is a GPU manager thread for each GPU in the system.

If the GPUs are idle, the manager requests a task from a central scheduler, which initiates

a data transfer of any data the prefetched task might need.

StarPU [7] approach the scheduling of tasks to multi-GPU via an abstract queue

of tasks. Two operations can be performed on that queue: task submission (push) and

request for a task to execute (pop). Several workers may share the actual queue provided

its implementation protects it from concurrent accesses, thus making it transparent for

the drivers.

Earliest-Finish-Time scheduling selects the task with the highest priority at each

step. The chosen task is then assigned to the processor, which minimizes its earliest finish

time with an insertion-based approach. A task’s priority is the length of the critical path

(i.e., the longest path) from the task to an exit task, including the computation cost of the

task.

Work-stealing is a very well-known policy; each processor has a queue of work

items to perform. Each work item consists of a series of instructions to be executed se-

quentially. Still, during its execution, a work item may also spawn new work items that can

be executed in parallel with its other work. These new items are initially put on the queue

of the processor executing the work item. When a processor runs out of work, it looks at

the queues of the other processors and "steals" their work items.

2.3.4 Asynchronous Operations

In computer programming, asynchronous operation means that a process oper-

ates independently of other processes. In contrast, synchronous operation means the

process runs only after another process is completed or handed off.

Asynchronous programming is a way to schedule work so that the GPUs can work

concurrently with the tasks given. It is important to say that this does not mean that the

GPU will necessarily run multiple kernels simultaneously. Often, asynchronous program-

ming will mean overlapping memory transfer with kernel execution. This can improve effi-

ciency since the GPU does not sit idle while transferring memory back and forth, resulting

in improved throughput.

The general principle behind asynchronous operations on multi-GPU is to increase

the overall unit throughput by reducing the number of unused warp slots and facilitating

the simultaneous use of nonconflicting datapaths. The most basic communication setup

27

towards the GPU uses a single queue to synchronously push and execute graphics, com-

pute, and copy workloads.

2.4 CUDA

In November 2006, NVIDIA unveiled the industry’s first DirectX 10 GPU, the GeForce

8800 GTX. This was also the first GPU built with NVIDIA’s CUDA Architecture[56]. This archi-

tecture was explicitly designed for GPU computing to overcome the limitations of previous

graphics processors that could not be used for general-purpose computation.

CUDA is an extension to the C language that allows GPU code to be written in

regular C. The code is either targeted at the host processor (CPU) or the device proces-

sor (GPU). The host processor spawns multithread tasks (or kernels as they are known

in CUDA) onto the GPU device. The GPU has its internal scheduler that will allocate the

kernels to whatever GPU hardware is present. Provided there is enough parallelism in the

task, as the number of SMs in the GPU grows, so should the program’s speed.

Code 2.1 presents a CUDA implementation for a vector summation. In the lines 2 -

7, we define the GPU kernel that executes the vector summation. In line 3, we calculate the

thread’s global id; since our example is straightforward, we are using a single dimension of

the GPU, not needing to declare the formula to fully calculate the thread’s id. The thread

only calculates in line 4 if the if id corresponds to a valid position in the vectors.

1 #define N 1024

2 __global__ void addition (int *A, int *B, int *C){

3 int thread_id = threadIdx .x ;

4 i f (thread_id < N){

5 C[thread_id] = A[thread_id] + B[thread_id] ;

6 }

7 }

8 int main() { . . .

9 cudaMalloc(&a_dvc , N * sizeof (int)) ; . . .

10 cudaMemcpy(a_dvc , a_host , N * sizeof (int) , cudaMemcpyHostToDevice) ; . . .

11 vecAdd<<<1, N>>>(a_dvc , b_dvc , c_dvc) ;

12 cudaMemcpy(c_host , c_dvc , N * sizeof (int) , cudaMemcpyDeviceToHost) ; . . .

13 }

Code 2.1 – CUDA Vector Summation.

In line 9, we allocate the GPU memory for storing the vectors. In line 10, we copy

the vectors to the GPU. When programming CUDA, we must define the thread hierarchy

by specifying the number of threads per block and the number of thread blocks in the grid.

In this example, we create a GPU thread for each vector position.

In line 11, we launch the GPU kernel to execute the vector summation algorithm.

In line 12, we copy the results from the GPU memory back to the host memory. To keep

the examples simple, we decided to compress some declarations, such as allocations of

28

memory, since they are very similar, only exchanging the variables and native C++ code

since they are not the focus of our examples.

NVIDIA created CUDA C by adding a small number of keywords to the industry-

standard C language. This allowed them to utilize some unique features of the CUDA

Architecture and make it more accessible to developers. A few months after launching the

GeForce 8800 GTX, NVIDIA released a compiler for CUDA C. This made CUDA C the first

language designed by a GPU company for general-purpose computing on GPUs.

2.5 OpenCL

OpenCL is an open and royalty-free standard supported by NVIDIA, AMD, and oth-

ers. It sets out an open standard that allows using computing devices [15]. A computing

device can be a GPU, CPU, or other specialist device for which an OpenCL driver exists. As

of 2012, OpenCL supports all major brands of GPU devices, including CPUs with at least

SSE3 support.

With OpenCL, you can write a single program that can run on a wide range of

systems, from cellphones to laptops to nodes in massive supercomputers. No parallel

programming standard has such a broad reach [45]. This is one reason why OpenCL is

important and can transform the software industry, but it is also a source of criticism by

some people.

Code 2.2 presents an OpenCL implementation for the matrix multiplication equiv-

alent to the CUDA implementation from Code 2.1.

1 #include <CL/ opencl .h>

2

3 const char *kernelSource =

4 " __kernel void addition (__global int *A, . . . , const unsigned int n) { \n"

5 " int thread_id = get_global_id (0) ; \n"

6 " i f (thread_id < n) { \n"

7 " C[thread_id] = A[thread_id] + B[thread_id] ; \n"

8 " } \n"

9 "}" ;

10 int main(){

11 unsigned int N = 1024;

12 int a_host [N] ; . . .

13 cl_mem a_dvc ; . . .

14 cl_platform_id platform ;

15 cl_device_id device ;

16 c l _ in t status = clGetPlatformIDs (1 , &platform , NULL) ;

17 status = clGetDeviceIDs (platform , CL_DEVICE_TYPE_GPU, 1, &device , NULL) ;

18 cl_context context = clCreateContext (NULL, 1, &device , NULL, NULL, &status) ;

19 cl_command_queue queue = clCreateCommandQueueWithProperties(context , device , 0, &status) ;

20 a_dvc = clCreateBuffer (context , CL_MEM_READ_ONLY, sizeof (int) * N, NULL, &status) ; . . .

21 c_dvc = clCreateBuffer (context , CL_MEM_WRITE_ONLY, sizeof (int) * N, NULL, &status) ;

22 status = clEnqueueWriteBuffer (queue, a_dvc , CL_FALSE, 0, sizeof (int) * N, a_host , 0, NULL, NULL) ; . . .

23 cl_program program = clCreateProgramWithSource(context , 1, (const char **)&kernelSource , NULL, &status) ;

24 status = clBuildProgram(program, 1, &device , NULL, NULL, NULL) ;

29

25 cl_kernel kernel = clCreateKernel (program, "addition" , &status) ;

26 status = clSetKernelArg (kernel , 0, sizeof (cl_mem) , &a_dvc) ; . . .

27 status = clSetKernelArg (kernel , 3, sizeof (unsigned int) , &N) ;

28 size_t localSize = 64; size_t globalSize = N;

29 status = clEnqueueNDRangeKernel(queue, kernel , 1, NULL, &globalSize , &localSize , 0, NULL, NULL) ;

30 status = clEnqueueReadBuffer (queue, c_dvc , CL_TRUE, 0, sizeof (int) * N, c_host , 0, NULL, NULL) ; . . .

31 }

Code 2.2 – OpenCL Vector Summation.

In the OpenCL example, in lines 3 - 9, we are defining the computations of the

OpenCL kernel. Like the CUDA example, the thread will only execute if its id corresponds

to a valid vector position. In lines 13 - 17, we create some of the variables related to the

OpenCL API. In line 18 and 19, we make the OpenCL context and command_queue. In lines

20 - 21, we allocate the memory for storing the vectors and copy them in line 22. In lines

23 - 25, we create and build the OpenCL kernel using the string from lines 3 - 9, lines 26 -

27 set the arguments for the OpenCL kernel. In the line 28, we define the thread hierarchy;

local is the number of threads per block, and global is the total amount of threads in the

grid. In line 29, we execute the OpenCL kernel. And in line 30, copy the results from the

GPU to the host.

[15] says that anyone familiar with CUDA can pick up OpenCL relatively quickly,

as the fundamental concepts are similar. On the other hand, OpenCL is undeniably more

complex than CUDA as it requires the programmer to perform many tasks automatically

done by the CUDA runtime API.

This complexity is due to OpenCL delivering high portability levels by expos-

ing the hardware, not hiding it behind abstractions like CUDA. This means the code with

OpenCL must explicitly define the platform, its context, and how work is scheduled onto

the devices.

2.6 OpenACC

The OpenACC Application Program Interface (API) describes a collection of com-

piler directives to specify loops and regions of code in standard C, C++, and Fortran to

be offloaded from a host CPU to an attached accelerator, providing portability across op-

erating systems, host CPUs, and accelerators. OpenACC is similar to OpenMP regarding

program annotation. Still, unlike OpenMP, which can only be accelerated on CPUs, Ope-

nACC programs can be accelerated on a GPU or other accelerators also [8]. OpenACC aims

to overcome the drawbacks of OpenMP by making parallel programming possible across

heterogeneous devices. OpenACC standard describes directives and APIs to accelerate

the applications.

30

OpenACC is a high-level, directive-based programming model for C/C++ and For-

tran. It is designed to require significantly less programming effort than using a low-level

model to program heterogeneous high-performance computing (HPC) hardware architec-

tures [11].

Code 2.3 presents an OpenACC implementation for the matrix multiplications

with a similar parallelism strategy adopted in the CUDA and OpenCL examples.

1 #define N 1024

2 void vecAdd(int *A, int *B, int *C){

3 #pragma acc kernels loop independent copyin (A[0:N] , B[0:N]) , copyout(C[0:N])

4 for (int i = 0; i < N; i++){

5 C[i] = A[i] + B[i] ;

6 }

7 }

8 int main(){

9 int a[N] , b[N] , c[N] ;

10 vecAdd(a , b, c) ; . . .

11 }

Code 2.3 – OpenACC Vector Summation.

In the OpenACC example, we have a lower programming effort than CUDA and

OpenCL. We apply the directive #pragma acc kernels loop independent on the vector

summation algorithm, specifying that both the variables A and B are the inputs and that C

is the output. Then, OpenACC creates a GPU thread for each position of the vectors. We do

not need to specify memory transfers between the CPU and the GPU. OpenACC manages

the memory automatically.

The OpenACC programming model is designed to help programmers parallelize

their C/C++ or Fortran code without worrying about the complex details of the hardware

platform. Programmers insert "hints" into their code to guide the compiler when compiling

the code. This way, the compiler handles most of the translation details, leaving the

programmer to concentrate on the code instead of the architecture.

OpenACC is a directive-based model that supplements a given codebase with

"hints." This means the code can be compiled serially, disregarding the directives and

producing accurate results. This approach maintains a single code base while providing

portability across multiple platforms.

2.7 SPar

SPar is a domain-specific language (DSL) focused on expressing stream paral-

lelism and was created by Dalvan Griebler in his PhD thesis [29, 28, 30]. The primary

objectives of SPar are to optimize programmer productivity by eliminating the need for

sequential code rewriting to exploit parallelism and to provide efficient programming ab-

stractions that eliminate the need for the programmer to work on low-level or architecture-

31

dependent code. Recent studies have demonstrated the programmability benefits with

beginners[4] and using coding metrics[3, 5].

In SPar, the parallelism is expressed using C++ attributes. Attributes are in-

serted between double square brackets and can be used to annotate types, classes, and

code blocks, and may be put almost anywhere on the code [30]. SPar focuses on gener-

ating pipeline and farm parallel patterns, which are the parallel patterns best suited for

stream parallelism. Initially, SPar focused on code generation for multi-core systems[34,

33], including the extension for defining service level objectives [32] and self-adaptive

techniques[62]. Also, extension on the language for data parallelism were developed for

shared-memory architectures [40, 39] and GPUs[54, 55], including GSParLib [52, 53] that

enables code generation for GPUs using CUDA and OpenCL. For parallel distributed archi-

tectures, preliminary studies were carried out in [31] and later on [49] and with DSParLib

[41] using MPI.

Code 2.4 shows an example of using SPar annotations to realize the vector sum-

mation with just data parallelism. In the example, the for loop reads, computes, and

outputs the summation of the vectors.

1 [[spar : :ToStream, spar : : Input(size , arrayA[size] , . . .) , spar : :Output(size , arrayC[size])]]

2 for (int i = 0; i < MAX_SIZE; i++){

3 [[spar : :Stage, spar : :Pure, spar : : Input(size , arrayA[size] , . . .) , spar : :Output(size , arrayC[size])]]

4 {

5 arrayC[i] = arrayA[i] + arrayB[i] ;

6 }

7 }

Code 2.4 – SPar Data Parallelism Vector Summation.

In line 1, the ToStream annotation indicates that the following line is a stream

region, and the stage is created. In this example, the first stage realizes the sum of the

vectors arrayA and arrayB into the output vector arrayC.

Code 2.5 shows an example of combining stream and data parallelism in SPar to

realize the sum of vectors. In line 1, the ToStream annotation indicates that the following

line is a stream region, and the stage is created. This first stage realizes the count of how

many items the stream currently has.

1 [[spar : :ToStream, spar : : Input(item , size , arrayA[size] , . . .) , spar : :Output(item , size , arrayC[size])]]

2 for (int i = 0; i < MAX_STREAM_ITEMS; i++){

3 item = i ;

4 arrayA = (int *)malloc (sizeof (int) * size) ; . . .

5 [[spar : :Stage, spar : : Input(item , size , arrayA[size] , . . .) , spar : :Output(item , size , arrayA[size] , . . .)]]{

6 item++;

7 }

8 [[spar : :Stage, spar : : Input(item , size , arrayA[size] , . . .) , spar : :Output(item , size , arrayC[size]) , spar : :

Replicate ()]]{

9 [[spar : :Pure, spar : : Input(item , size , arrayA[size] , . . .) , spar : :Output(item , size , arrayC[size])]]

10 for (int thd = 0; thd < MAX_ARRAY_SIZE; thd++){

11 arrayC[thd] = arrayA[thd] + arrayB[thd] ;

12 }

13 }

32

14 [[spar : :Stage, spar : : Input(item , size , arrayC[size]) , spar : :Output(item , size , arrayC[size])]]{

15 for (int thd = 0; thd < MAX_ARRAY_SIZE; thd++){

16 merge += arrayC[thd] ;

17 }

18 }

19 }

Code 2.5 – SPar Stream Processing Vector Summation.

In line 8, the attributed stage is utilized to indicate the second stage of the al-

gorithm. In this case, the second stage processes the elements, realizing the sum of the

elements belonging to the stream. The third and last stage acts as a reduce stage, sum-

ming the results of the vector.

SPar uses C++ attributes as the mechanism of annotations to identify parallel

regions in the serial code. Then, SPar generates the parallel code, making the necessary

transformations in the serial code. SPar has five attributes defined for stream processing.

Spar organizes the attributes into identifiers (ID) and auxiliary (AUX). Each SPar annotation

inserted in the serial code must have an ID attribute and an optional list of AUX attributes.

The two identifier (ID) attributes are ToStream and Stage. ToStream identifies the

code region (a compound statement or a single iteration statement such as for or while)

on which stream parallelism should be employed. Inside this region, the Stage attribute is

used to identify the pipeline stages or computing phases analogous to an assembly line.

Each ToStream region should contain at least one Stage region.

There are three auxiliary (AUX) attributes: Input , Output , and Replicate. Input
specifies the variables that represent the input data of the stream region (when used

together with ToStream) or the stage region (when used together with Stage). Output
specifies the variables that represent the output generated by the stream or stage region

according to the ID attribute in the same annotation. The Replicate attribute should only

be used together with the Stage attribute. It specifies that the stage has no internal state

and can run in parallel. Thus, increasing its degree of parallelism (i.e. the number of

worker replicas). If the number of replicas is not specified, SPar uses the environment

variable SPAR_NUM_WORKERS.

The SPar compiler was generated from CINCLE (Compiler Infrastructure for New

C/C++ Language Extensions) [28]. CINCLE provides functionalities for C++ code analysis

and an API for transformations in ASTs (Abstract Syntax Trees). Figure 2.7 illustrates the

steps of the compilation process of the SPar compiler. The first step receives a C++ code

annotated with C++ attributes. The second step performs a semantics analysis of the

C++ code using GCC (GNU Compiler Collection). The third step scans the code and parses

it to an AST. The fourth step applies the SPar transformation rules in the AST, generating

a new AST. The fifth step compiles the source code transformed using GCC. The sixth step

outputs a binary executable file of the parallel code generated.

33

Figure 2.7 – Steps of the compilation process of SPar. Taken from [52]

The compiler supports three compilation flags that allow the programmer to con-

trol runtime behaviors in the stream processing. The flags are spar_ondemand , spar_blocking,

and spar_ordered :

spar_ondemand uses the on-demand scheduler to control the flow of data. This

scheduler keeps only one stream element at a time, which is processed by the stages of

the stream pipeline. The default behavior is to continuously read stream elements and

insert them into the communication queues between the stages of the stream pipeline.

spar_blocking uses blocking queues to communicate between the stages of the

stream pipeline. Thus, only a single thread can access each communication queue. The

default behavior is non-blocking queues. The performance of each type of queue can vary

depending on the application.

spar_ordered sorts the stream’s output data according to the input data’s order.

This functionality is critical when the order of the stream elements must be preserved.

Dinei’s thesis [52, 55] adds two more flags to SPar, spar_gpu and spar_opencl;
these flags are only used for the generation of GPU code:

spar_gpu activates the GPU extension of SPar, and SPar generates GSParLib source

code when applicable. When using this flag, GSParLib uses the CUDA driver by default.

spar_opencl makes GSParLib use the OpenCL driver when the GPU extension of SPar is

activated.

2.8 GSParLib

GSParLib [52, 53] is a C++ library that aims to provide a C++ skeleton-based

API, wrapping both CUDA and OpenCL languages. The library is divided into two APIs: a

low-level API called Driver API and a high-level API called Pattern API. Driver API is a wrap-

per over CUDA and OpenCL languages, while the Pattern API comprises a set of parallel

patterns built upon the Driver API.

Both APIs allow writing GPU codes without knowing the intricacies of writing CUDA

or OpenCL codes by using a compilation flag; when using the flag GSPARDRIVER_CUDA,

GSParLib compiles the code with CUDA, and when using GSPARDRIVER_OPENCL, GSParLib

34

compiles the code with OpenCL. Differently from these languages, on GSParLib, the GPU

kernels must be defined as a string inside the code; this allows GSParLib to modify the

kernel source code to better suit the hardware characteristics collected during execution.

Code 2.6 presents the vector summation utilizing the Driver API. In lines 1 - 7 we

define the compiling language that will be used throught the compilations flags provided

by GSParLib. Lines 15 - 19 declare the kernel code, following a similar implementation to

CUDA and OpenCL. Lines 20 - 30, we allocate the GPU memory and compile the kernel

code together with any additional routine, such as the one present in line 13. Lines 31 -

39 sets the variables the kernel utilizes and runs the GPU kernel.

1 #ifdef GSPARDRIVER_CUDA

2 #include "GSPar_CUDA.hpp"

3 using namespace GSPar : : Driver : :CUDA;

4 #else

5 #include "GSPar_OpenCL.hpp"

6 using namespace GSPar : : Driver : :OpenCL;

7 #endif

8 int *array_1 ; . . .

9 Instance* driver ;

10 MemoryObject* array_1_dvc ; . . .

11 Kernel* array_summation_kernel ;

12 extern std : : str ing source_array_summation_kernel ;

13 std : : str ing source_additional_routines = "#define SIZE 1024\n" ;

14

15 std : : str ing source_array_summation_kernel = GSPAR_STRINGIZE_SOURCE(

16 __gspar_device_kernel__ void array_summation_gpu(

17 __gspar_device_global_memory__ int* array_1 , . . .) { int thread_id = gspar_get_global_id(0) ;

18 i f (thread_id >= SIZE){return;}

19 array_3 [thread_id] = array_1 [thread_id] + array_2 [thread_id] ;}) ;

20 void i n i t i a l i za t i on (int *array_1 , int *array_2 , int *array_3){ . . .

21 driver = Instance : : getInstance () ;

22 driver−>i n i t () ;

23 int numGpus = driver−>getGpuCount() ;

24 i f (numGpus == 0) { . . . exit(−1);}

25 auto gpus = driver−>getGpuList () ;

26 auto gpu = driver−>getGpu(0) ;

27 array_1_dvc = gpu−>malloc (sizeof (int *) * SIZE , array_1) ; . . .

28 try{ std : : str ing complete_kernel_source = "" ; complete_kernel_source .append(source_additional_routines) ;

complete_kernel_source .append(source_array_summation_kernel) ;

29 array_summation_kernel = new Kernel (gpu, complete_kernel_source , "array_summation_gpu") ;

30 } catch (GSPar : : GSParException &ex) { . . . exit(−1);}}

31 void array_summation (){

32 int threads = 64; int blocks = SIZE ;

33 try { array_summation_kernel−>clearParameters () ;

34 array_summation_kernel−>setNumThreadsPerBlockForX(threads) ;

35 array_summation_kernel−>setParameter (array_1_dvc) ; . . .

36 unsigned long dimensions[3] = {(unsigned long) (blocks) , 0, 0};

37 array_summation_kernel−>runAsync(dimensions) ;

38 array_summation_kernel−>waitAsync () ;

39 } catch (GSPar : : GSParException &ex) {.. .}}

40 int main(int argc , char const *argv []){

41 array_1 = (int *)malloc (sizeof (int *) * SIZE) ; . . .

42 i n i t i a l i za t i on (array_1 , array_2 , array_3) ;

43 array_1_dvc−>copyIn () ; . . .

44 array_summation () ;

45 array_3_dvc−>copyOut () ; . . . }

35

Code 2.6 – GSParLib Driver API Vector Summation.

The Driver API abstracts most concepts shared between the CUDA and OpenCL

languages from the programmer, while some specific concepts are wrapped in helper

classes to ease the programming. The Driver API class and methods have simple names

directly related to the domain of GPU programming, which anyone with some GPU pro-

gramming knowledge should recognize.

Code 2.7 presents the vector summation utilizing the Pattern API. It has very

similar code to the example using the Driver API, the significant difference being that the

kernel declaration only contains the code that needs to be executed. Another difference

is how to build the kernel and call its execution.

1 #include "GSPar_PatternMap .hpp"

2 #include "GSPar_PatternReduce .hpp"

3 #include "GSPar_PatternComposition .hpp"

4 using namespace GSPar : : Pattern ;

5 #ifdef GSPARDRIVER_CUDA

6 #include "GSPar_CUDA.hpp"

7 using namespace GSPar : : Driver : :CUDA;

8 #else

9 #include "GSPar_OpenCL.hpp"

10 using namespace GSPar : : Driver : :OpenCL;

11 #endif

12 int *array_1 ; . . .

13 Instance* driver ;

14 MemoryObject* array_1_dvc ; . . .

15 Map* array_summation_kernel ;

16 extern std : : str ing source_array_summation_kernel ;

17 std : : str ing source_additional_routines = "#define SIZE 1024\n" ;

18

19 std : : str ing source_array_summation_kernel = GSPAR_STRINGIZE_SOURCE(

20 int thread_id = gspar_get_global_id(0) ;

21 i f (thread_id >= SIZE){return;}

22 array_3 [thread_id] = array_1 [thread_id] + array_2 [thread_id] ;

23) ;

24 void i n i t i a l i za t i on (int *array_1 , int *array_2 , int *array_3) { . . .

25 driver = Instance : : getInstance () ;

26 driver−>i n i t () ;

27 int numGpus = driver−>getGpuCount() ;

28 i f (numGpus == 0) { std : : cout << "No GPU found , interrupting the benchmark" << std : : endl ; exit(−1);}

29 auto gpus = driver−>getGpuList () ;

30 auto gpu = driver−>getGpu(0) ;

31 array_1_dvc = gpu−>malloc (sizeof (int *) * SIZE , array_1) ; . . .

32 array_1_dvc−>copyIn () ; . . .

33 int threads = 64; int blocks = SIZE ;

34 try { unsigned long dimensions[3] = {(unsigned long) (blocks) , 0, 0};

35 array_summation_kernel = new Map(source_array_summation_kernel) ;

36 array_summation_kernel−>setStdVarNames({"gspar_thread_id"}) ;

37 array_summation_kernel−>setParameter<int*>("array_1" , array_1_dvc , GSPAR_PARAM_PRESENT) ; . . .

38 array_summation_kernel−>setNumThreadsPerBlockForX(threads) ;

39 array_summation_kernel−>addExtraKernelCode(source_additional_routines) ;

40 array_summation_kernel−>compile<Instance>(dimensions) ;

41 } catch (GSPar : : GSParException &ex) { . . . exit(−1) ; } }

42 void array_summation () {

36

43 array_summation_kernel−>setParameter<int*>("array_1" , array_1_dvc , GSPAR_PARAM_PRESENT) ; . . .

44 array_summation_kernel−>run<Instance>();}

45 int main(int argc , char const *argv []){

46 array_1 = (int *)malloc (sizeof (int *) * SIZE) ; . . .

47 i n i t i a l i za t i on (array_1 , array_2 , array_3) ;

48 array_summation () ;

49 array_3_dvc−>copyOut () ; . . .

50 }

Code 2.7 – GSParLib Pattern API Vector Summation.

The Pattern API builds upon the Driver API. It offers the programmer a set of

parallel patterns, with the Map and Reduce patterns already created as classes. The pro-

grammer can also write their patterns for later use.

37

3. RELATED WORK

In this chapter, we present and analyze related research. For this purpose, we

consider related scientific documents that addressed programming in a multi-GPU envi-

ronment, be it utilizing structured parallel programming frameworks or frameworks that

generate GPU code through annotations on the host code. As well as works that touch on

the different techniques for multi-GPU programming.

3.1 Structured Parallel Programming with multi-GPU

This section briefly presents GPU frameworks based on wrappers and parallel

patterns closely related to GSParLib, which SPar uses to generate GPU code for stream

processing acceleration.

SkePU [26] is a C++ library based on parallel patterns. It provides the parallel

patterns Map, Reduce, MapReduce, Stencil, Scan, MapOverlap, MapPairs, and MapPairsRe-

duce. To apply parallelism using the available parallel patterns, a programmer must use

C++ templates. SkePU is a tool that can generate OpenMP code for CPUs or CUDA and

OpenCL for GPUs. Unlike GSParLib, SkePU uses smart data containers and custom data

structures resident in the host memory. The smart data containers automatically man-

age the memory device using accelerators like GPUs. These containers identify when to

allocate memory or transfer data. However, one drawback of this approach is that it pro-

vides a non-native C++ data structure. Another drawback is when the algorithm behind

the smart data containers does not choose the optimal method to optimize the memory

transfers.

SkeCL [58] is a C++ framework that generates OpenCL code. It provides Map,

Reduce, Zip, Scan, and Stencil patterns. To utilize parallel patterns, the programmer needs

to create a class containing the desired pattern and then use a string parameter contain-

ing the code to be executed in parallel. SkelCL will generate the low-level OpenCL code

automatically. The approach used by SkelCL is quite similar to that of GSParLib.

Musket is an alternative to the Muesli library; in [66], the authors expand Musket

to generate C++ code and additional project files for multi-core and multi-GPU environ-

ments in CUDA and OpenACC. Differently from SPar, which is an internal DSL for anno-

tating a sequential program, which is then transformed into a FastFlow application, their

implementation provides an external DSL, reducing the complexity since there is no need

for annotations or pragmas to be embedded within another language.

MGPU [57] is a C++ programming library aimed at single-node multi-GPU envi-

ronments depending on a few Boost C++ libraries. It works as a layer on top of exist-

38

ing GPU computing frameworks and numerical libraries, supporting frameworks such as

CUDA and OpenCL, focusing more on CUDA. Application built with MGPU can detect var-

ious performance-relevant architecture features, such as the number of devices present

and the capabilities of each device. This allows MGPU to enable optimized versions of

functions such as peer-to-peer for inter-GPU communication, which is much faster than

transfers staged through the host.

MultiSkel [37] is a library built upon the CUDA framework and pthreads library;

the library plays a role at the abstract level, taking away the need to pay attention to

details of the model of architecture or implementation of CUDA or how to make multi-

threads to control multi-GPUs.

dOCAL [50] is a C++ library that combines major advantages over the state-of-

the-art approaches, simplifying implementation of both OpenCL and CUDA codes by auto-

matically managing low-level details such as data transfers and synchronization, execut-

ing user-provided OpenCL and CUDA kernels; it enables conveniently targeting the devices

of multi-node systems by automatically managing the node-to-node network communica-

tion; it simplifies data transfer optimizations by providing different, specially allocated

memory classes, pinned main memory for overlapping data transfers with computations;

it optimizes memory management by automatically detecting and avoiding unnecessary

data transfers; it enables interoperability between OpenCL and CUDA host code by auto-

matically handling the communication between OpenCL and CUDA data structures and by

automatically translating between the OpenCL and CUDA kernel programming languages.

HIP [16] is a C++ API that allows the programmer to use a single source code that

can run on AMD and NVIDIA GPUs. The HIP programming language can generate code for

AMD GPUs using Radeon Open Compute (ROCm) and NVIDIA GPUs using CUDA. ROCm,

like CUDA, is a platform designed specifically for AMD GPUs. It acts as a wrapper around

the GPU’s mechanisms and provides a unified interface for both GPU backends. It also

doesn’t have any noticeable overhead compared to CUDA.

Kokkos [60] is an API written in C++, which allows code portability across vari-

ous high-performance computing platforms. Currently, Kokkos supports several backends,

such as CUDA, HIP, SYCL, HPX, OpenMP, OpenMPTarget, and C++ threads, providing par-

allel execution and data management abstractions. This means that when using Kokkos,

a single source code can be used on different HPC platforms. However, the programmer

must manually provide CUDA or HIP code when targeting a particular architecture, such

as a GPU.

SYCL [51] is a programming model designed for heterogeneous systems that en-

ables using different devices, such as CPUs, GPUs, and FPGAs, in a single application. It is

an open standard managed by the Khronos Group and utilizes a single-source embedded

domain-specific language based on pure C++17. The primary aim of SYCL is to provide a

39

consistent language, APIs, and ecosystem for writing and optimizing code for accelerator

architectures while allowing optimized kernel code to vary across different architectures.

FastFlow [1] is a C++ framework that supports stream and data parallelism based

on parallel patterns. It provides several parallel patterns for CPUs, including pipeline, farm,

map, mapReduce, and stencil. For GPUs, a single parallel pattern called loop-of-stencil-

reduce can implement the patterns map, reduce, and stencil.

NVIDIA HPC SDK [22] is a Software Development Kit created by NVIDIA to maxi-

mize developer productivity and the performance and portability of HPC applications. One

of its compilers, NVC++ [20], allows the compilation of GPU-accelerated Standard C++

without language extensions, directives, pragmas, or non-standard libraries. This allows

any code written to be easily ported between systems and automatically accelerated with

high-performance NVIDIA GPUs. CUDA Unified Memory implicitly and automatically con-

trols all data movement between host and GPU device memory.

Table 3.1 presents general information about the related work compared to GSPar-

Lib. Column GPU Backend indicates which backend is supported for each framework; for

example, FastFlow supports both CUDA and OpenCL. Column Backend Abstraction indi-

cates if the framework requires low-level code from the backend; for example, both Kokkos

and FastFlow require that the GPU kernels be written utilizing the desired backend syntax.

Column Supported Patterns lists all the GPU parallel patterns supported by the frame-

work. Column Multi-GPU Support indicates if the framework supports the generation of

multi-GPU code. Column Stream Accessible indicates if the GPU mechanisms required

for programming stream applications are transparent to the user or facilitated through

high-level abstractions.

SkePU, dOCAL, FastFlow, and GSParLib support both CUDA and OpenCL. CUDA is

the standard form for exploiting parallelism on NVIDIA GPUs, the prominent GPU-based

environments. However, CUDA only supports NVIDIA GPUs. On the other hand, OpenCL

offers fewer resources than CUDA but permits exploiting parallelism on GPUs from differ-

ent vendors and even other accelerators. Thus, supporting both backends is essential for

the code’s best performance and portability.

GSParLib offers fewer parallel patterns than most related work because GSParLib

is still an initial project. Still, the parallel patterns already supported by it provide consid-

erable flexibility to approach different problems if used to the fullest.

All related works allow the generation of multi-GPU code through their frame-

work. Still, most of them are straightforward implementations, leaving the bulk of the

challenge of multi-GPU usage to the user since the environment variances are too signifi-

cant to be entirely abstracted. In contrast, most related works don’t provide an accessible

stream abstraction for stream processing and GPU processing. GSParLib automatically

provides mutual exclusion sessions for CPU threads when the programmer manipulates

critical GPU resources, such as allocating or freeing memory. Also, GSParLib automatically

40

Table 3.1 – Frameworks based on Structured Parallel Programming
Ref Name GPU

Backend
Backend
Abstraction

Supported Patterns Multi-GPU
Support

Stream
Accessible

[26] SkePU CUDA,
OpenCL

Yes Map, Reduce, Scan,
MapReduce, MapOver-
lap, MapPairs–Reduce,
Call

Yes No

[58] SkeCL OpenCL Yes Gather, Map, Reduce,
Scan, Stencil

Yes No

[66] Musket CUDA,
OpenACC

Yes Fold, MapFold, Reduce,
MapReduce

Yes No

[57] MPGU CUDA Yes Map, Reduce Yes No
[37] MultiSkel CUDA Yes Map, Reduce, ZipWith,

Scan, MapReduce, Zip-
WithReduce

Yes No

[50] dOCAL CUDA,
OpenCL

Yes Not Available Yes No

[16] HIP CUDA,
ROCm

Yes Not Available Yes No

[60] Kokkos CUDA,
HIP, SYCL

No For, Reduce, Scan Yes No

[51] SYCL OpenCL Yes Not Available Yes No
[1] FastFlow CUDA,

OpenCL
No Map, Reduce, Stencil No No

[22] HPC SDK CUDA,
OpenMP,
OpenACC

Yes Not Available Yes No

[52] GSParLib CUDA,
OpenCL

Yes Map, Reduce Yes Yes

creates CUDA streams and OpenCL queues and manages them to allow asynchronous

GPU kernels. The related work commonly only provides wrappers over CUDA streams

and OpenCL command queues. Consequently, the user must manually implement and

manage all the GPU mechanisms required for stream processing, imposing a significant

programming effort.

3.2 Annotation-based Programming with multi-GPU

This section presents frameworks based on code annotations, similar to SPar,

that allow the generation of code targeting multi-GPU environments.

OpenMP [9] is a standard for multi-core CPUs and allows parallelism in code

through directives. From version 4.0, OpenMP supports generating code for GPUs. It en-

ables the usage of multi-GPU through a multi-thread approach, where each thread controls

one GPU or one node containing one or more GPUs.

OpenACC [47] is a framework that utilizes code annotations to generate GPU

code. Like OpenMP, the basic directives are available on OpenACC; however, OpenACC

has a more extensive set of directives and functionalities.

XACC [46] is an extension of the XMP framework that focuses on generating GPU

code using OpenACC instead of CUDA. Although XACC and CUDA are similar in improving

41

programmability, they still require knowledge of GPU and distributed programming details,

such as memory transfers between CPU and GPU or nodes.

MACC [42] is a transpiler that extends the OpenACC programming model to allow

applications to be seamlessly used in multi-GPU Environments. Their approach is a source-

to-source transformation from the OpenACC code into post-source code that exploits both

OpenACC and OpenMP.

Table 3.1 presents general information about the related work compared to SPar.

Column Annotation Method indicates the mechanism used by the framework to offer the

functionality of annotations. Column GPU Backend indicates which backend is supported

for each framework. Column Backend Abstraction indicates if the framework requires

low-level code from the backend. Column Multi-GPU Support indicates if the framework

supports the generation of multi-GPU code. Column Stream Paralellism lists the capacity

of simultaneous parallelism offered by the framework.

Table 3.2 – Frameworks based on code annotations
Ref Name Annotation

Method
GPU
Backend

Backend
Abstraction

Multi-GPU
Support

Stream
Paralellism

[9] OpenMP Pragma Compiler
depen-
dent

Yes Yes CPU, GPU

[47] OpenACC Pragma Compiler
depen-
dent

Yes Yes GPU

[46] XACC Pragma OpenACC Yes Yes GPU, Dis-
tributed

[42] MACC Pragma OpenACC Yes Yes GPU, Dis-
tributed

[28] SPar C++ At-
tributes

GSParLib Yes No CPU, GPU,
Distributed

Although all of the frameworks present in Table 3.2 offer portability between

GPUs of different vendors by being able to generate CUDA and OpenCL code. Only SPar

offers the opportunity to explore three levels of parallelism: CPU, GPU, and Distributed. It

is also the only one not to use pragma as the annotation method, utilizing C++ Attributes.

The user provides the source code annotated with C++ attributes. Then, the compiler

generates parallel code for the CPU, GPU, or cluster without requiring any other low-level

mechanisms.

In comparison to related work, SPar requires significantly less programming ef-

fort. It uniquely abstracts stream parallelism on the CPU and data parallelism on the

GPU, providing portability for various GPU vendors. However, SPar has certain limitations.

OpenMP and OpenACC directives optimize the serial code before applying GPU parallelism.

Unfortunately, SPar does not currently offer attributes for GPU optimization, so program-

mers have to manually apply transformations to the serial code before annotating the

C++ attributes.

42

4. MULTI-GPU RUNTIME SUPPORT

In this chapter, we briefly introduce the initial policies planned to be implemented

into SPar to multi-GPU scheduling Section 4.1), what were the chosen applications utilized

to test the performance of the policies (Section 4.2), and some fine-tuning tests done

utilizing the policies in chosen applications (Section 4.3).

4.1 Multi-GPU Scheduling policies

This section presents the multi-GPU scheduling policies tested in our experi-

ments. To choose the policies that we planned to implement into SPar, we sought policies

currently used when working with multi-GPU in the literature and common approaches to

work division between multiple processors, in the end, we chose to test four policies, two

focusing on scheduling techniques and two focusing on load-balancing between proces-

sors.

We can divide the policies tested into three main variations: one based on fully

saturating a GPU with work before electing to send it to another, a static policy where each

processing thread has access to a designated GPU, and a queue approach where all work

is stored in a queue so that each GPU can take a work to be done.

The Static approach, shown in Figure 4.1, sends works to each processing thread

spawned; these threads each have a set GPU linked to them, and the linked GPU is based

on the remainder of the processing thread ID divided by the number of GPUs in the en-

vironment, this approach will work as our comparison base since it is simple, easy to

implement, and starvation-free.

Thread A

Thread B.0
GPU 0

Source

Stage

Thread B.1
GPU 1

...

Thread B.n
GPU n

Thread B.2
GPU 0

0

1

n

2

Figure 4.1 – Static representation

43

Saturate, shown in Figure 4.2, seeks to fill a GPU with work before sending any

work to the following GPU, in short it tries to achieve a 100% usage of the GPU while also

trying to not overfill the available memory of the targeted GPU. Since our test environment

was comprised of a machine with 2 GPUs, we divided this policy into two branches, one

targeting the stronger GPU on the environment, aliased as Strong in the later graphs, and

other targeting the weaker GPU, denoted as Weak in the tests. On this policy, the threads

do not have a set GPU for executing their processing; instead, when generating the work

the source operator query the current usage and available memory of the GPUs and uses

this information to decide to which GPU the work is going to be sent, sending the chosen

GPU ID together with the work needed to processed.

Thread A

Thread B.0

Source

Stage

Thread B.1

...

Thread B.n

Thread B.2

1
GPU 0

2
GPU 1

0
GPU 0

n
GPU 0

Figure 4.2 – Saturate representation

The Queue approach shown in Figure 4.3 was created due to its similarities to

FastFlow’s load-balancing approach, giving early insight into how the policies could be-

have when ported to SPar, but differently from FastFlow’s queue per worker thread. In

contrast, it has the same idea present on StarPU’s work[7] in creating a queue for each

GPU present in the environment. This approach is easily modified to introduce the usage

of Work Stealing, shown in Figure 4.4. Between the GPUs, where if the queue belonging to

its GPU is empty, it can take a task from the other queues. It follows the same approach

as the Static, with a set GPU for usage in each thread that is spawned.

While there are other scheduling policies, such as priority scheduling or shortest

job first, that could be used, after some deliberation, we reached a consensus that they

are not feasible to be implemented for SPar without changing the underlying FastFlow

execution structure or do not provide an explicit usage when targeting the usage of multi-

GPU for streaming.

44

Thread A

Thread B.0
GPU 0

Source

Stage

Thread B.1
GPU 1

...
Thread B.n

GPU n

Thread B.2
GPU 0

Queue 0

Queue 1

0

...

Queue N

1

2

3

4

n

Figure 4.3 – Queue representation

Thread A

Thread B.0
GPU 0

Source

Stage

Thread B.1
GPU 1...

Thread B.n
GPU n

Queue 0

Queue 1

0

...

Queue N

1

2

3

4

n

Figure 4.4 – Work Stealing representation

4.2 Chosen applications

In this Section, we describe the applications chosen to be tested using the poli-

cies, the choice of this applications was based on the fact that they were previously utilized

to evaluate GSParLib’s and SPar’s codes targeting GPU environments. AnimalRescue (AR)

is a reduced version of the application shown in the work of [23]. It is a synthetic stream

processing application that simulates a continuous stream of data collected from drones.

The application is composed of heavy computations and allows data parallelism to be ex-

ploited in each stream element. Each element contains a list of coordinates captured by

a drone and a list of animals; the objective of each drone is to find the best coordinate for

each animal from its list. Each animal has a different type and requirements for a proper

localization.

Figure 4.5 shows the flowchart of the AnimalRescue application. According to

[23], the application could be replicated in stages B, C, and D because they are stateless.

45

Both stages A and E are operations of IO, meaning that they read the inputted data or

write the processed data to the disk. Stage B is responsible for extracting information

from each drone’s coordinates, such as average height. Stage C is responsible for finding

the best coordinate for each animal utilizing the extracted data from Stage B. Stage D’s

objective is to validate the results found in Stage C.

... Thread A

Thread B.1

Thread B.n

Thread E

Stage A

......

Stage B

Stage E

Legend

Stream element

Communication Stage

Offload to
GPUThread

Thread C.1

Thread C.n

...

Stage C

Thread D.1

Thread D.n

...

Stage D

Figure 4.5 – AnimalRescue Flowchart. Borrowed from [23]

LaneDetection (LD) is a computer vision task that involves identifying the bound-

aries of driving lanes in a video or image of a road scene. The goal is to accurately locate

and track the lane markings in real-time, even in challenging conditions such as poor light-

ing, glare, or complex road layouts. The algorithms typically use a combination of com-

puter vision techniques, such as edge detection, color filtering, and Hough transforms, to

identify and track the lane markings in a road scene. This application is useful mainly for

autonomous vehicles since they often have an integrated camera that captures several

frames per second. A robust LD application can be very complex. It should cover vari-

ables such as illumination, appearance, and age of a lane marking [38]. The implemen-

tation presented by [52, 53] is a simplified version and does not consider such variables.

The code for this application is divided into three stages. The first stage reads an element

from the input. The second stage processes an element by applying a Gaussian and a

Sobel filter, and the third stage writes an element in the output.

Mandelbrot (MB) is an algorithm that generates fractal images. It is defined by

the quadratic polynomial z = z2 + c, where c is a constant and z receives the initial value.

Although MB is usually approached as data parallelism when targeting GPUs, Rockenbach

[53] adapted it as a stream processing application. In the modified version, each row of

the generated image is considered a stream element. The first stage of this application

reads an element. The second stage processes the fractal. The third stage writes an

element in the output.

The Raytracing (RT) algorithm generates a sequence of frames depicting a CGI

scene composed of a pre-defined number of animated spheres with a resolution inputted

by the user. The techniques presented in this algorithm are used mainly in applications

such as 3D animations and 3D games. Much like the above applications, this is also divided

46

into three main stages. The first stage is the reading of an element. In the second stage,

we process a frame. The third stage sends the frames to the output.

All three applications, LD, MB, and RT, were provided in Rockenbach’s master’s

thesis [52] as a way to evaluate stream parallelism with GSParLib. Because of this, they

share many similarities in their flowcharts of execution, being divided into three primary

stages as shown in Figure 4.6, focusing especially on leveraging the GPU for the processing

required in the second stage of each application.

... Thread A

Thread B.1

Thread B.n

Thread C

Stage A

......

Stage B

Stage C

Legend

Stream element

Communication Stage

Offload to
GPUThread

Figure 4.6 – LD, MB, and RT Flowchart. Borrowed from [23]

4.3 Fine-tuning of Scheduling Algorithms with Pthreads and GSParLib

As a preliminary step to the implementations on SPar, we ported versions of the

previously described applications utilizing POSIX Threads, since we already have familiar-

ity with the library and had already made a simple stream application that could be easily

modified into the described applications, testing rough drafts of our approaches into them,

and analyzed the different performances achieved using the policies; in this section, we

will only talk about the last drafts and the results obtained when running them into an en-

vironment containing multiple GPUs. As an execution environment, we chose a machine

running the Ubuntu 20.04.6 LTS operating system, equipped with Intel Xeon E5-2620 (6

cores and 12 threads) and 64 GB of RAM and two GPUs, a NVIDIA Titan X (Pascal) and a

Quadro K2200. This machine is the same utilized in Rockenbach’s [52] and Gabriell’s [23]

works, and as such, will work as a suitable comparison to test if our multi-GPU policies are

satisfactory. The policies were tested with configurations of 2, 4, 6, 8, 10, and 12 threads

in their processing stages. Besides each execution, we also did a solo execution of each

application using each GPU with the configurations tested. These dataset used to test

each configuration were as follows:

47

• AnimalRescue 2048 drones, 6144 coordinates per drone, 1536 military units per

drone, a 2048x2048 land size.

• LaneDetection A 1280x720 resolution video with 609 frames.

• Mandelbrot A 1500x1500 matrix and 50000 iterations.

• RayTracing 500 images of 3840x2160 resolution.

All the graphs follow the same template; the values on the X-axis represent the

number of threads that are spawned to the processing stage of the applications; we chose

to keep them in pairs, having at least one thread for each GPU present in the environment.

The y-axis presents the GPU usage or throughput (elements per second) of the configu-

ration tested depending on the viewed graph. For the graph of GPU usage, we split the

multi-GPU execution into two thinner bars, each representing a GPU; they share the same

color but have different hatches for each bar. We used the same color to represent the

multi-GPU policy on the graphs discussing the throughput of each configuration.

4.3.1 AnimalRescue

The AnimalRescue application was executed using a default workload denomi-

nated WORKLOAD_C. This workload is comprised of 2048 drones with 6144 coordinates

each on a 2048x2048 land; in this configuration, the application must find a suitable point

for 1536 animals on each drone.

The AnimalRescue executions, shown in Figure 4.8, display that each policy has

very similar usage across the tested configurations, with the Static policy showing a more

even usage of both GPUs in the environment, both Saturate policies did not offload any

work to the other GPU, meaning that there were no changes in usage to be detected, so

they are not shown in the graph, both Queue and WorkStealing share similar usages since

WorkStealing was built on top of the Queue work division core policy.

Figure 4.7 displays the throughput obtained by the executions, much like the

usage results, the policies share very similar results in the tested configurations, with

the Static policy having a higher throughput since the data is evenly split between GPUs,

Queue and WorkStealing sharing the same results with some slight variation, and the

Saturate having somewhat lackluster results since the application was not able to reach

the limits of usage to require the offloading of work to the other GPU in the environment.

Fortunately, only this application could not somewhat utilize the Saturate policy.

The policies independent of the configuration also share very similar runtime,

mainly the Static, Queue, and WorkStealing policies. These last two have a slightly higher

execution time than the one obtained by the Titan X only execution and much lower than

48

the Quadro K2200 only execution, while the Static policy displayed a similar runtime to

the solo Titan X execution. The Saturate policy does not follow this trend, with the Weak

variation having a higher runtime than its solo counterpart.

In terms of comparison between the policies, for the AnimalRescue application,

the Static policy displayed a better edge over the other tested policies, having a more

evenly distributed usage of the GPUs while also providing a higher throughput of elements

during the executions.

2 4 6 8 10 12
Amount of Workers

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (s

ec
.)

Animal Rescue - Throughput
Static
Queue

Work Stealing
Saturate Strong

Saturate Weak

Figure 4.7 – AnimalRescue - Throughput

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

Us
ag

e
(%

)

Animal Rescue - Resource Consumption
TITAN X Static
Quadro Static
TITAN X Queue

Quadro Queue
TITAN X Work Stealing
Quadro Work Stealing

TITAN X Saturate Strong
Quadro Saturate Weak

Figure 4.8 – AnimalRescue - Resource Usage

4.3.2 LaneDetection

The execution of the LaneDetection application was done by utilizing a dataset

comprised of 609 frames of a 1280x720 resolution video.

49

The LaneDetection results, shown in Figures 4.10 and 4.9, show that the Static,

Queue and WorkStealing policies share similar results in both usage of GPUs and how

much throughput each of them can produce. The Saturate policy, on the other side, the

Saturate policy only displayed an insignificant usage of the Titan X on the run seeking to

saturate the Quadro K2200, so much that it is almost unable to be seen in Figure 4.10.

Much like the AnimalRescue executions, the policies share a similar runtime be-

tween themselves, with the exception of the saturate weak, which achieved a runtime of

more than double the other policies.

Leaving this aside, the Static, Queue, and WorkStealing policies also seem to

be the wiser choice when running the LaneDetection application, all three sharing the

same basic GPU usage and returning comparable throughput between themselves. But we

cannot ignore that the Saturate in its Strong variation shows a more scalable throughput,

obtaining a higher result with the addition of more workers to the configurations.

2 4 6 8 10 12
Amount of Workers

40

60

80

100

120

140

160

180

Th
ro

ug
hp

ut
 (s

ec
.)

Lane Detection - Throughput
Static
Queue

Work Stealing
Saturate Strong

Saturate Weak

Figure 4.9 – LaneDetection - Throughput

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

Us
ag

e
(%

)

Lane Detection - Resource Consumption
TITAN X Static
Quadro Static
TITAN X Queue

Quadro Queue
TITAN X Work Stealing
Quadro Work Stealing

TITAN X Saturate Strong
Quadro Saturate Weak

Figure 4.10 – LaneDetection - Resource Usage

50

4.3.3 Mandelbrot

For the Mandelbrot execution, since there is no recommended workload to test

the application, we choose to generate a 1500x1500 fractal using 50000 iterations. The

reason behind such high amount of iterations is that MB generates extremely small load

for the GPU, and one of the ways to remedy this is by using a high number of iterations.

Figures 4.12 and 4.11 show the execution of the Mandelbrot application with the

different policies tested. Much similar to the LaneDetection executions, the Static, Queue
and WorkStealing policies shared a similar usage of resources in the different configura-

tions. Both of the Saturate policies seem to work perfectly with this application, offloading

work to the other GPU when fulfilling the required usage thresholds or when memory is

lacking to process a new input.

Like in the AnimalRescue application, the Static, Queue and WorkStealing policies

on the MB application share a similar execution time between themselves, with them

having a slightly higher execution time than when running the application using only the

Titan X, but at the same time displaying a similar time to the execution using only the

Quadro K2200.

2 4 6 8 10 12
Amount of Workers

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (s

ec
.)

Mandelbrot - Throughput
Static
Queue

Work Stealing
Saturate Strong

Saturate Weak

Figure 4.11 – Mandelbrot - Throughput

4.3.4 Raytracing

The execution of the Raytracing application consisted of generating 500 images

with a resolution of 3840x2160 pixels, which is 4K UHD. We chose this configuration for its

heavy resource usage, especially for the solo execution using the Quadro K2200.

The Raytracing execution, Figures 4.14 and 4.13, much like the LD and MB exe-

cutions, shows the policies Static, Queue, and WorkStealing sharing a similar GPU usage

51

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

Us
ag

e
(%

)

Mandelbrot - Resource Consumption
TITAN X Static
Quadro Static
TITAN X Queue
Quadro Queue

TITAN X Work Stealing
Quadro Work Stealing
TITAN X Saturate Strong

Quadro Saturate Strong
TITAN X Saturate Weak
Quadro Saturate Weak

Figure 4.12 – Mandelbrot - Resource Usage

and throughput between themselves, different from the other application the RT was not

able to scale in terms of throughput when increasing the number of workers, this is mainly

because of the fact that the computations done in the application are executed solely in

the GPU, while the other applications have a mix of CPU and GPU computations.

2 4 6 8 10 12
Amount of Workers

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
 (s

ec
.)

Raytracing - Throughput
Static
Queue

Work Stealing
Saturate Strong

Saturate Weak

Figure 4.13 – Raytracing - Throughput

The results obtained show that the Saturate policy, using its Strong variation,

seems to be the most beneficial to the Raytracing execution on multi-GPU, having a similar

throughput compared to the other policies but using a lower percentage of the GPU to

realize the processing of the elements.

4.4 Final Remarks

This chapter presented the chosen policies of multi-GPU scheduling that were

planned to be implemented into SPar’s GPU code generation, as well as the applications

52

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

Us
ag

e
(%

)

Raytracing - Resource Consumption
TITAN X Static
Quadro Static
TITAN X Queue

Quadro Queue
TITAN X Work Stealing
Quadro Work Stealing

TITAN X Saturate Strong
TITAN X Saturate Weak
Quadro Saturate Weak

Figure 4.14 – Raytracing - Resource Usage

that were utilized to test if such policies were beneficial when compared against single-

GPU executions. Table 4.1 shows that when comparing the policies, in terms of through-

put, the Saturate, in its Strong variation, shows the most promise, especially in more

processing-intensive applications, with the Static being a closer contender. The utilization

of multiple queues as utilized on the Queue approach also does not seem to impact the

performance of the applications, and an approach such as WorkStealing does not seem

to bring any increase in results, and as such, we do not see any usefulness of applying

such approach to the usage of multi-GPU. It is difficult to, in terms of resource usage, say

which approach is the most promising since Saturate seeks to focus work on a single GPU;

comparing its resource consumption to other approaches that intend to balance the usage

of multiple GPUs seems unfit and unfair with the approach, and since at its core Queue
and WorkStealing use Static’s scheduling policy, their results are very similar.

Table 4.1 – Best Results
Benchmark Throughput Policy Amount of Workers

AR 53.68 Static 2
LD 174.05 Saturate Strong 12
MB 182.07 Saturate Strong 8
RT 15.07 Saturate Strong 10

While the Queue approach was somewhat based on FastFlow’s, its feasibility of

implementation onto SPar would require significant restructuring of the code generation

as well as changes to FastFlow’s load-balancing implementations, which would not be

feasible inside the scope of this work, as such we focused on adding the Static and Saturate
scheduling approaches to SPar’s code generation, with the Saturate appearing to be the

most beneficial for the SPar code generation for multi-GPU environments.

53

5. HIGH-LEVEL MULTI-GPU SUPPORT

This chapter briefly presents the current transformation rules of SPar for multi-

GPU code generation, the implementation of the policies into SPar’s code generation and

the changes done to accommodate the generation of codes needed by the policies, section

5.1.1, as well as executions utilizing the implemented policies in SPar using the previously

discussed stream processing applications, section 5.2.

5.1 SPar GPU transformation rules

This section describes the transformation rules and the code generation mecha-

nisms on SPar compiler targeting CPUs and GPUs, and is based on the descriptions pro-

vided by [52, 55] about its implementation of GPU code generation on SPar. Figure 5.1 was

taken from [55]. It provides an overview of SPar’s approach to parallel code generation.

The transformation rules can be divided into three steps: parse and extract information

from annotated source code, match and apply transformation rules, and perform the ac-

tual code generation. The initial step gathers all the information needed for generating

code for both the CPU and GPU. The second and third steps have specific implementations

that cater to each architecture. The GPU is utilized solely for exploiting data parallelism,

whereas the CPU can take advantage of both stream and data parallelism. Therefore, to

support a combination of stream and data parallelism using both the CPU and GPU, the

compiler first processes these three steps for the GPU and then repeats the second and

third steps for the CPU.

The first step, called "Parsing", is divided into two separate tasks: (1) C++ syn-

tax parsing, where the SPar compiler verifies the correctness of the semantics of the an-

notated C++ code it received as input and generates the AST from the code; and (2)

extracting information from the code, where it performs static code analyses on the AST

to extract all the necessary information to generate the parallel code. Since GPUs have

dedicated memory, SPar must perform data copies between the host and GPU memories

whenever necessary to keep the data updated.

The SPar compiler analyzes the Abstract Syntax Tree (AST) to extract essential

information for GPU parallelism by considering the following aspects: (1) Data: identifying

which data and their sizes are necessary for GPU computations; (2) Source Code: deter-

mining which portions of the code will execute as GPU kernels; and (3) Dependencies:

identifying the data structures and methods that the GPU kernels utilize during compu-

tation. Conversely, achieving CPU parallelism does not require such detailed information

since the parallelism regions share the same memory space. To extract information from

the AST, the SPar compiler follows these steps:

54

Code annotation rules
Annotations
TSt

Sta

In Out

Pur

[[]]
[[]] [[]]

Attributes
TSt Sta In Out
Pur Imp Rep Bat

Rules
Sta I/O Farm

Pur

RepI/O

Sta I/O Map

Compiler Implementation

Parsing Applying
rules

Code
generation

C++ syntax
parsing

Extract
information
from code

Matching rules
and annotations

Farm
Map

[[]]Attr Attr

Pipeline
MapReduce

Farm
Map
Pipeline

MapReduce

Runtime
libraries

Multicore GPU
Distributed

Figure 5.1 – Methodology for Parallel Code Generation.

1. Reference List Creation: It creates a list of references with pointers to the code blocks

annotated with an SPar identifier attribute, such as ToStream, Stage, Pure, and Im-

pure, along with their auxiliary attributes. These lists are organized in a tree struc-

ture, indicating the hierarchical relationships between the attributes.

2. Information Extraction: The compiler extracts information from the annotated code

blocks necessary for code generation for both CPUs and GPUs. For example, upon

encountering a block of code containing a Pure annotation, the compiler adds a ref-

erence to this code block into an internal stack of Pure annotated code blocks.

3. Recursive List Generation: It recursively generates a list of all non-standard data

types and methods referenced within each annotated code block. While generating

CPU parallel code requires only the specific code block itself, generating GPU code

necessitates mapping all external definitions used by that code block, including data

structure definitions and functions, as these must be provided alongside the GPU

kernel at compile time.

After extracting the relevant information from the code, the SPar compiler moves

on to the second step of its implementation, referred to as "Applying Rules," as illustrated

in Figure 5.1. In this step, the SPar compiler iterates through the tree structure of the

identifier attributes collected during the information extraction phase and attempts to

match them with predefined transformation rules. When a transformation rule is satisfied,

the SPar-annotated code is replaced with a code block that calls a Map or MapReduce

55

parallel pattern. A parallel pattern is essentially a function that takes the code block, its

dependencies, along with inputs and outputs (all of which were identified in the previous

step), as parameters. This phase is crucial in determining which parallel pattern should be

generated.

Following this, the definition of the chosen parallel pattern is employed to exe-

cute the actual source-to-source code transformation, converting the parallel pattern into

routines that are specifically designed for the underlying hardware. It is important to note

that CPUs and GPUs require entirely different routines during this code generation process.

Figure 5.2 outlines the logic used by the SPar compiler to match the transforma-

tion rules. For each ‘ToStream‘ annotation, the compiler attempts to transform it into a

purely data-parallel form using either Map or MapReduce. A match is confirmed when the

code block annotated with ‘ToStream‘ is also marked with either Pure or Impure and does

not contain any code blocks annotated with Stage. This verification is indicated as “Is pure

data parallelism?” in the flow diagram of Figure 5.2.

If this check yields a positive result, the entire code block annotated with ‘ToStream‘

is replaced by a node that calls a parallel pattern for data parallelism. If the code block has

an Impure attribute, the compiler generates a MapReduce pattern; otherwise, it generates

a Map pattern. This completes the compilation step.

If pure data parallelism is not found, the compiler proceeds to examine the list

of Stage attributes within the ‘ToStream‘ region. For each Stage, it checks if the Pure

attribute is present in the Stage code block. This step is noted as “Is Stage Pure?”. If

the Pure attribute is present, the compiler replaces the entire Stage code block with one

that invokes a Map or MapReduce pattern. If the multi-GPU flag is set, the Stage receives

additional transformations targeting the usage of multiple GPUs depending on which pol-

icy was chosen, if the flag is not set, no additional transformations are required and the

compilation continues as normal.

If the Pure attribute is absent, the compiler then checks for any Pure attributes

that serve as identifier attributes within the Stage code block. If a match occurs, the

compiler transforms the Pure code block into one that calls a Map or MapReduce pattern,

depending on whether the Impure attribute is present. After processing all Stage, Pure,

and Impure attributes, this step concludes its execution.

After reviewing all the transformation rules for data parallelism, the compiler re-

sumes its original code generation algorithm for stream parallelism in SPar. In this phase,

the compiler applies the original transformation rules using the remaining SPar annota-

tions in the code to generate stream parallelism, specifically Farm and Pipeline. This ap-

proach allows for the combination of stream and data parallelism since a Pipeline stage

can include computations executed on the GPU.

56

Start

ToStream

Stage

Stage

ToStream

End

Is pure
data

parallelism?

Is Stage Pure?

Is
there any

Pure region
inside
Stage?

Apply rules
on ToStream

Apply rules
on Stage

Yes

Yes

Yes

No

No

No

Is Multi-GPU
Flag Set?

Yes

No

Apply multi-GPU
transformations

Figure 5.2 – Flow of the transformation rules of SPar. Adapted from [52]

Following the extraction of information from the source code in the first step and

the matching of transformation rules in the second step, the compiler advances to the

third and final step, as illustrated in Figure 5.1: “Code Generation.” The main objective of

this step is to replace the parallel pattern calls produced in the previous step with low-level

code optimized for the target hardware, whether it is the CPU or GPU.

The system uses information from the for loop statement to generate Map and

MapReduce patterns. This includes details such as the iterator variable name, the starting

and ending expressions, and the loop body. When targeting the GPU, it creates a parallel

pattern optimized for GPU execution using GSParLib, assigning a GPU thread to each iter-

ation. For CPU targeting, it generates a parallel pattern optimized for CPU using FastFlow,

statically assigning a group of iterations to each thread. Users can select the number of

threads by setting an environment variable; if not set, the default is the number of physical

CPU cores.

57

For MapReduce code generation, the code block annotated with the Impure at-

tribute is analyzed to extract the application variables that will be reduced. When target-

ing the GPU, definitions of data types and functions referenced in the for loop body are

incorporated into the GPU kernel code for compilation. However, when targeting the CPU,

this information is not included. The compiler generates the Map and MapReduce parallel

patterns and stores them as global objects. It replaces the pure code blocks with calls to

these patterns and inserts all necessary definitions at the beginning of the source code,

including additional structs and headers for the underlying runtime backends to effectively

leverage CPU and GPU parallelism.

After generating the data parallel patterns for the GPU, the compiler begins the

CPU code generation process. This process starts with generating parallel patterns fo-

cused on data parallelism (such as Map and MapReduce) and then proceeds to generate

patterns for stream parallelism (including Pipeline and Farm). This approach has two main

benefits:

1. If a ToStream region can be represented as either a data or a stream parallel pattern,

it is generated as a data parallelism pattern. This is because data parallelism typ-

ically involves less coordination overhead and enables greater speedups compared

to stream parallelism.

2. When a data parallel pattern is generated for a Stage or Pure region, the trans-

formations focused on streaming parallelism effectively "wrap" this pattern into a

Pipeline stage or Farm worker during the generation of these patterns. This allows

for a seamless combination of stream and data parallelism, utilizing both CPU and

GPU parallelism.

By generating GSParLib code, the SPar compiler takes advantage of its thread

safety, synchronization mechanisms, and automatic memory transfers. As a result, only

minor adjustments to the original compiler algorithm for stream parallelism are needed

to integrate the new GPU code generation process effectively. One such adjustment in-

volves the compilation of the GPU kernel. Since GSParLib uses runtime compilation, which

can significantly degrade performance if executed repeatedly, the compiler moves the

GPU kernel compilation step to occur before the stream region (outside the loop). It also

clones the GPU pattern objects for each CPU thread to reuse the compiled kernel, avoiding

additional overhead costs.

5.1.1 Changes on SPar’s code generation

Since our main focus was adding the generation of code targeting multi-GPU

into SPar we focused our efforts on first learning how the annotation transformations are

58

done inside of SPar. Thankfully, SPar has a clear division of files, with the transforma-

tions targeting GPUs having their own separated files, called gpu_transformation.hpp and

gpu_transformation_definitions.hpp; these two files contain everything regarding the trans-

formation of the annotated code into GPU capable code. As demonstrated before, the two

best proposed scheduling policies were Static and Saturate, therefore, they were chosen

to generate inside SPar compiler.

Figure 5.3 shows an example, borrowed from [52], of code generated using GPU

transformations of SPar, for simplicity we colored the parts added when using the Static
policy in red. The addition of the policy into SPar’s code transformation was very simple

since GSParLib already offers a method of setting the desired GPU for each generated

kernel, as well as a method that returns the number of GPU present in the environment,

together with a method provided by FastFlow that returns the ID of the worker thread,

allowed easy construction of the needed code for multi-GPU usage.

While not previously talked when talking about the Saturate policy, one of its main

needs is a way to retrieve information regarding the usage of each GPU; for this, we tested

different ways of getting such data, like querying the nvidia−smi command to extract the

needed data or even using the CUDA API, but these methods prove themselves very slow,

and as such we choose to use the NVIDIA Management Library, a C-based programmatic

interface for monitoring and managing various states within the GPUs; unfortunately, this

library only works when running using NVIDIA accelerators which limits the usability of the

policy.

Regarding the implementation of the policy into the code generation phase, we

choose to implement its main component into the FastFlow’s Emitter component since

the usage query could become a bottleneck if multiple workers try to get the information

regarding GPU usage at the same time, as well as put a strain on the GPUs. Figure 5.4

shows an example of code generated using the Saturate policy, for simplicity, we split the

generated code into two parts, the code regarding GPU Usage Retrieval is appended at

the beginning of the generated code, and account to the needed methods for retrieving

the usage data from the GPUs, much like the previous figure, all the code relative to the

Saturate policy is highlighted in red.

As a simple way of allowing the usage of multi-GPU into SPar, we choose to wrap

the code generation utilizing a compilation flag, we called this flag USE_MULTI_GPU. This

flag, when set, generates the Static policy, when used on code targeting GPUs, we also use

a second flag that only works in conjunction with the first, SATURATE_GPU, that when set

generates the needed codes for the Saturate policy. This means that no new annotation

is required to leverage multi-GPU, meaning that any code previously done in SPar that

leveraged GPU can be recompiled to use multi-GPU without changing the annotated serial

code.

59

float scalar = 5;

int main(int argc, char * argv[]) {

 int vecsize = 20;

[[spar::ToStream , spar::Input(vecsize, scalar)]]

 while (true) {

 float *vecA = get_next_input_vecA();

 float *vecB = get_next_input_vecB();

 float *res = new float[vecsize];

[[spar::Stage, spar::Pure, spar::Replicate(N),

 spar::Input(vecsize, scalar, vecA[vecsize],

vecB[vecsize]), spar::Output(res[vecsize])]]

 for (int x = 0; x < vecsize; x++) {

 res[x] = scalar*vecA[x]+vecB[x];

 }

[[spar::Stage, spar::Input(res[vecsize])]] {

 stateful_op(res);

 }

 }

}

E

C

W

struct Task {

 Task(int size, float *a, float *b, float *r):

 size(size),a(a),b(b),r(r){};

int size;

 float *a;

 float *b;

 float *r;

};

struct Emitter: ff_node {

 int vecsize;

 void *svc(void*) {

while (true) {

 float *vecA = get_next_input_vecA();

 float *vecB = get_next_input_vecB();

 float *res = new float[vecsize];

 Task *t = new Task(vecsize, vecA, vecB, res);

 ff_send_out(t);

}

 return EOS;

 }

};

struct Worker: ff_node_t<Task> {

 Map *map;

 int gpuCount = Instance::getInstance() -> getGpuCount();

 Task *svc(Task *in) {

map->setGpuIndex(get_my_id()%gpuCount);

.setParameter("vecA", sizeof(float)*vecsize, in->vecA)

 .setParameter("vecB", sizeof(float)*vecsize, in->vecB)

 .setParameter("res", sizeof(float)*vecsize, in->res, GSPAR_PARAM_OUT);

 .run<Instance>();

 return in;

 }

 void svc_end() { delete map; }

};

struct Collector: ff_node_t<Task> {

 Task *svc(Task *in) {

stateful_op(in->res);

 return static_cast<Task*>(GO_ON);

 }

};

int main(int argc, char * argv[]) {

 float scalar = 5;

 int vecsize = 20;

 auto map = new Map("res[x] = scalar*vecA[x]+vecB[x];");

 map->setParameter("scalar", scalar)

 .setParameterPlaceholder<float*>("vecA")

 .setParameterPlaceholder<float*>("vecB")

 .setParameterPlaceholder<float*>("res",

 GSPAR_PARAM_POINTER, GSPAR_PARAM_OUT)

 .compile<Instance>({vecsize});

Emitter emitter;

 emitter.vecsize = vecsize;

 Collector collector;

 std::vector<std::unique_ptr<ff_node> > workers;

 for(size_t i=0; i<4; ++i) {

 workers.push_back(make_unique<Worker>());

 workers.back().get().map = map->clone<Instance>();

 }

 ff_Farm<> farm(std::move(workers), emitter, collector);

 farm.run_and_wait_end();

 delete map;

}

Figure 5.3 – Static code example. Based on [52]

5.2 Results on SPar

We performed experiments using the same methodology and machine described

in Section 4.3. We compile each of the applications in SPar utilizing the latest version of

FastFlow, version 3.0.0, as well as the flags −DBLOCKING_MODE and −DNO_DEFAULT
_MAPPING, the first enables blocking run-time on FastFlow, and the second tells FastFlow

to avoid thread pinning when running the applications, which could impose a performance

degradation when executing some of our tests. For all the tests we utilized the code gener-

ated by SPar, with the only exception being the single executions, as SPar only generates

60

typedef struct tgpuInfos{

int gpuUsage;

long memoryFree;

long memoryUsed;

long memoryTotal;

} gpuInfos;

gpuInfos getGPUutil(int idx = 0) {

gpuInfos infos;

nvmlReturn_t result;

result = nvmlInit();

nvmlDevice_t device;

result = nvmlDeviceGetHandleByIndex(idx,& device);

char device_name[NVML_DEVICE_NAME_BUFFER_SIZE];

result = nvmlDeviceGetName(device,device_name,

NVML_DEVICE_NAME_BUFFER_SIZE);

nvmlUtilization_st device_utilization;

result = nvmlDeviceGetUtilizationRates(device,

&device_utilization);

nvmlMemory_t device_mem;

result = nvmlDeviceGetMemoryInfo(device,& device_mem);

nvmlShutdown();

infos.gpuUsage = device_utilization.gpu;

infos.memoryFree = device_mem.free;

infos.memoryTotal = device_mem.total;

infos.memoryUsed = device_mem.used;

return infos;

}

struct Task {

 Task(int size, float *a, float *b, float *r, int gpuIdx):

 size(size),a(a),b(b),r(r),gpuIdx(gpuIdx){};

int size;

 float *a;

 float *b;

 float *r;

int gpuIdx;

};

struct Emitter: ff_node {

 int vecsize;

 int gpuIdx;

 void *svc(void*) {

while (true) {

 float *vecA = get_next_input_vecA();

 float *vecB = get_next_input_vecB();

 float *res = new float[vecsize];

int gpuIdx = 0;

 for(int idx = 0; idx < gpuCount; idx++) {

 gpuInfos gpu = getGPUutil(idx);

 if(gpu.gpuUsage < 85 && gpu.memoryFree > (gpu.memoryTotal*0.15)){

 gpuIdx = idx;

 break;

}

 }

 Task *t = new Task(vecsize, vecA, vecB, res, gpuIdx);

 ff_send_out(t);

}

 return EOS;

 }

};

struct Worker: ff_node_t<Task> {

 Map *map;

 Task *svc(Task *in) {

map->setGpuIndex(in->gpuIdx);

.setParameter("vecA", sizeof(float)*vecsize, in->vecA)

 .setParameter("vecB", sizeof(float)*vecsize, in->vecB)

 .setParameter("res", sizeof(float)*vecsize, in->res, GSPAR_PARAM_OUT);

 .run<Instance>();

 return in;

 }

 void svc_end() { delete map; }

};

struct Collector: ff_node_t<Task> {

 Task *svc(Task *in) {

stateful_op(in->res);

 return static_cast<Task*>(GO_ON);

 }

};

int main(int argc, char * argv[]) {

 float scalar = 5;

 int vecsize = 20;

 auto map = new Map("res[x] = scalar*vecA[x]+vecB[x];");

 map->setParameter("scalar", scalar)

 .setParameterPlaceholder<float*>("vecA")

 .setParameterPlaceholder<float*>("vecB")

 .setParameterPlaceholder<float*>("res",

 GSPAR_PARAM_POINTER, GSPAR_PARAM_OUT)

 .compile<Instance>({vecsize});

Emitter emitter;

 emitter.vecsize = vecsize;

 Collector collector;

 std::vector<std::unique_ptr<ff_node> > workers;

 for(size_t i=0; i<4; ++i) {

 workers.push_back(make_unique<Worker>());

 workers.back().get().map = map->clone<Instance>();

 }

 ff_Farm<> farm(std::move(workers), emitter, collector);

 farm.run_and_wait_end();

 delete map;

}

float scalar = 5;

int main(int argc, char * argv[]) {

 int vecsize = 20;

[[spar::ToStream , spar::Input(vecsize, scalar)]]

 while (true) {

 float *vecA = get_next_input_vecA();

 float *vecB = get_next_input_vecB();

 float *res = new float[vecsize];

[[spar::Stage, spar::Pure, spar::Replicate(N),

 spar::Input(vecsize, scalar, vecA[vecsize],

vecB[vecsize]), spar::Output(res[vecsize])]]

 for (int x = 0; x < vecsize; x++) {

 res[x] = scalar*vecA[x]+vecB[x];

 }

[[spar::Stage, spar::Input(res[vecsize])]] {

 stateful_op(res);

 }

 }

}

E

C

W

GPU Usage Retrieval

Figure 5.4 – Saturate code example. Based on [52]

code targeting the first GPU present in the environment, we modified the generated code

to include the call of GSParLib method that changes which GPU is going to be utilized

for processing. We divided the workloads into two classes, B and C. The classes of each

benchmark are composed of the following parameters:

• AR.B. 2048 drones, 3072 coordinates per drone, 1024 military units per drone, a

2048x2048 land size.

• AR.C. 2048 drones, 6144 coordinates per drone, 1536 military units per drone, a

2048x2048 land size.

• LD.B. A 640x360 resolution video with 248 frames.

61

• LD.C. A 1280x720 resolution video with 609 frames.

• MB.B. A 1500x1500 matrix and 50000 iterations.

• MB.C. A 2000x2000 matrix and 100000 iterations.

• RT.B. 1000 images of 2560x1440 resolution.

• RT.C. 2000 images of 3840x2160 resolution.

Figures 5.5, 5.7, 5.9 and 5.11 illustrate the number of elements processed per

second (throughput) in the LD, MB, RT, and AR benchmarks. The x-axis denotes the num-

ber of worker threads, corresponding to each stage’s replicas (where applicable). For in-

stance, we can replicate stages B, C, and D in the AR benchmark, as well as stage B in the

other benchmarks. If we set the worker threads to 2 for the AR benchmark, the application

will create two copies of stages B, C, and D, resulting in a total of 6 threads, in addition to

one in stage A and another in stage E. Concerning the versions: 1) We tested the Static
and Saturate policies with SPar; 2) We executed each benchmark using only a single GPU

with SPar, seeking to compare them against our policies. Similar to our preliminary tests,

we also took the usage of each GPU during the executions, seeking to compare how each

GPU is used when targeted by our policies, shown in Figures 5.6, 5.8, 5.10 and 5.12.

2 4 6 8 10 12
Amount of Workers

25

30

35

40

45

El
em

en
ts

 p
er

 S
ec

on
d

Animal Rescue - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

20

25

30

35

40

El
em

en
ts

 p
er

 S
ec

on
d

Animal Rescue - Performance Evaluation with Class C
Saturate
Static

TITAN X Only
Quadro K2200 Only

Figure 5.5 – AnimalRescue - Throughput Evaluation

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

140

Us
ag

e
(%

)

Animal Rescue - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

140

Us
ag

e
(%

)

Animal Rescue - Performance Evaluation with Class C
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

Figure 5.6 – AnimalRescue - Resource Consumption Evaluation

In the AR benchmark (Figures 5.5 and 5.6), the results show that no relevant

improvement was achieved by the usage of multi-GPU over a parallel single-GPU version

62

using the stronger GPU in the environment (Titan X Only), with the Saturate policy showing

similar results in throughput and resource consumption to the single-GPU version using

the Titan X in both workloads, while the Static show promising results in regards to GPU

usage it lacks throughput when using a higher amount of workers which could be explained

by its equal division of work between the workers, and in consequence being hindered by

the workers that use the Quadro K2200, this is corroborated by the lower throughput also

received by the execution using only the Quadro K2200 when using higher amounts of

workers. It is imperative to say that; unfortunately, SPar was not able to generate a viable

version of the AR benchmark through its annotations, and as such, we chose to implement

the benchmark using FastFlow, mimicking the way that SPar generate the compiled code.

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

El
em

en
ts

 p
er

 S
ec

on
d

Lane Detection - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

60

El
em

en
ts

 p
er

 S
ec

on
d

Lane Detection - Performance Evaluation with Class C
Saturate
Static

TITAN X Only
Quadro K2200 Only

Figure 5.7 – LaneDetection - Throughput Evaluation

2 4 6 8 10 12
Amount of Workers

0

1

2

3

4

5

6

7

8

Us
ag

e
(%

)

Lane Detection - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

5

10

15

20

25

Us
ag

e
(%

)

Lane Detection - Performance Evaluation with Class C
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

Figure 5.8 – LaneDetection - Resource Consumption Evaluation

The LD benchmark (Figures 5.7 and 5.8), does not show any improvement by the

usage of multi-GPU with the tested workloads; this could be caused by its high amount of

communication between the CPU and GPU, with the application applying three separate

transformations via GPU with more transformations done by the CPU in-between the GPU

calls. Static results closely mimic the results obtained by using only the Quadro K2200;

this signals that the division of work done in this policy is highly hindered when using

GPUs with different computational powers since the benchmark does not explore robust

strategies or GPU resources the GPU with lower power dictates the throughput. Saturate
suffers a similar fate, with a lower throughput compared to a Titan X only execution of

the benchmark; this is mainly due to the time expended consulting the GPU usage when

63

sending works; since the computations are very simple, the time used to decide which

GPU to use quickly adds up and hinders the results of the executions. This is also reflected

in the GPU resource consumption, with workload B having one of the smallest usages of

all the applications and workload C also not reaching high usages.

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

60

El
em

en
ts

 p
er

 S
ec

on
d

Mandelbrot - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

60

El
em

en
ts

 p
er

 S
ec

on
d

Mandelbrot - Performance Evaluation with Class C
Saturate
Static

TITAN X Only
Quadro K2200 Only

Figure 5.9 – Mandelbrot - Throughput Evaluation

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

Us
ag

e
(%

)

Mandelbrot - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

Us
ag

e
(%

)

Mandelbrot - Performance Evaluation with Class C
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

Figure 5.10 – Mandelbrot - Resource Consumption Evaluation

Every limitation of the LD benchmark is evident in the MB benchmark (Figures

5.9 and 5.10). However, MB generates even smaller loads for the GPU than LD because

computing a matrix row is less computing-intensive than processing a whole frame. Al-

though both Static and Saturate show similar throughput in both workloads, they are still

lower than just using solely the Titan X. Still, because of the computational simplicity of

the benchmark, Static was not so hindered by the lack of computational power provided

by the Quadro K2200. In a question about resource usage, it shows a higher usage than

the LD benchmark executions, although with very large standard deviations; this could be

explained by our tests using extremely large workloads to compensate for the lower com-

putational load present in the benchmark. It is essential to note that only the Mandelbrot

was able to reach the required threshold of Saturate to require the offloading of work to

the second GPU, which could also explain its results being a middle-ground between the

single GPU executions.

The RT benchmark (Figures 5.11 and 5.12) is similar to the LD and MB benchmark,

with RT performing fewer communications between the CPU and the GPU than LD and has

larger loads for the GPU than MB. The policies also do not seem to show any improvement

64

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

El
em

en
ts

 p
er

 S
ec

on
d

Raytracer - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

El
em

en
ts

 p
er

 S
ec

on
d

Raytracer - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

Figure 5.11 – Raytracer - Throughput Evaluation

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

Us
ag

e
(%

)

Raytracer - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

Us
ag

e
(%

)

Raytracer - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

Figure 5.12 – Raytracer - Resource Consumption Evaluation

to the executions, with Static being impacted by the lower power of the second GPU and

showing slightly higher throughput than only using the Quadro K2200, and Saturate having

similar results to only using the Titan X.

5.2.1 Tests utilizing on-demand scheduling on SPar

Although we could not implement the WorkStealing approach into our policies

thanks to limitations imposed by FastFlow, we realized that FastFlow already has a method

call that turns the executions from a Round-Robin scheduling into an On-Demand schedul-

ing, in which the workers spawned by FastFlow request works from the Emmiter thread,

this approach is very similar to our intent when using the WorkStealing, dividing the work-

load in a more even matter, with the GPU(s) with higher computational power taking a

higher share of work, and can be easily set up via SPar by compiling the code utilizing the

flag −spar_ondemand . Figures 5.13 to 5.20 show the throughput and resource consump-

tion of the on-demand scheduling when using multi-GPU with the applications.

The AR benchmark does not achieve any improvement in a general sense when

using on-demand scheduling, with the exception of the Static that shows a higher through-

put than the round-robin scheduling (Figure 5.5) used by default in FastFlow, while all the

other executions kept the same throughput. Resource usage was also kept the same when

using on-demand, with the exception of the Saturate that reached its threshold of offload-

65

ing with 12 workers, causing the throughput to also drop thanks to the lower capability of

the second GPU.

2 4 6 8 10 12
Amount of Workers

25

30

35

40

45

El
em

en
ts

 p
er

 S
ec

on
d

Animal Rescue - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

20

25

30

35

40

45

El
em

en
ts

 p
er

 S
ec

on
d

Animal Rescue - Performance Evaluation with Class C
Saturate
Static

TITAN X Only
Quadro K2200 Only

Figure 5.13 – AnimalRescue On-Demand - Throughput Evaluation

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

140

Us
ag

e
(%

)

Animal Rescue - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

140
Us

ag
e

(%
)

Animal Rescue - Performance Evaluation with Class C
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

Figure 5.14 – AnimalRescue On-Demand - Resource Consumption Evaluation

The LD benchmark also does not achieve any improvement outside of the higher

throughput gained by the Static policy when running utilizing the on-demand scheduler,

but differently from the other applications, even this is not enough to pass the throughput

obtained when running singly using the Titan X, as well as introduce a lot of deviation to

the Static policy, since it does not take in mind the current consumption of the GPUs when

requesting a work.

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

El
em

en
ts

 p
er

 S
ec

on
d

Lane Detection - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

60

El
em

en
ts

 p
er

 S
ec

on
d

Lane Detection - Performance Evaluation with Class C
Saturate
Static

TITAN X Only
Quadro K2200 Only

Figure 5.15 – LaneDetection On-Demand - Throughput Evaluation

Just like the other benchmarks, the MB benchmark executions, with the exception

of the Static policy, do not gain any improvement when using the on-demand scheduling.

66

2 4 6 8 10 12
Amount of Workers

0

1

2

3

4

5

6

7

8

Us
ag

e
(%

)

Lane Detection - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

5

10

15

20

25

Us
ag

e
(%

)

Lane Detection - Performance Evaluation with Class C
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

Figure 5.16 – LaneDetection On-Demand - Resource Consumption Evaluation

Resource usage was also very similar to the default round-robin executions (Figure 5.10),

although with a much higher standard deviation for the workload B.

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

60

El
em

en
ts

 p
er

 S
ec

on
d

Mandelbrot - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

60
El

em
en

ts
 p

er
 S

ec
on

d

Mandelbrot - Performance Evaluation with Class C
Saturate
Static

TITAN X Only
Quadro K2200 Only

Figure 5.17 – Mandelbrot On-Demand - Throughput Evaluation

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

Us
ag

e
(%

)

Mandelbrot - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

Us
ag

e
(%

)

Mandelbrot - Performance Evaluation with Class C
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

Figure 5.18 – Mandelbrot On-Demand - Resource Consumption Evaluation

The RT benchmark, much like the other benchmarks, only showed an improve-

ment by using the on-demand scheduling in the Static policy, achieving the highest through-

put in both workloads when comparing the resource usage of the on-demand (Figure 5.20)

against the round-robin (Figure 5.12) is possible to note what we expected of this policy,

an equal level of utilization of both GPUs.

The tests using on-demand reveal that only the Static policy have achievable im-

provements, since it is mainly based on an equal distribution of GPU per worker, meaning

that it is highly influenced by how the workers are distributed between the workers, and

the round-robin scheduler utilized by default in FastFlow does an equal division of work

67

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

El
em

en
ts

 p
er

 S
ec

on
d

Raytracer - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

El
em

en
ts

 p
er

 S
ec

on
d

Raytracer - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

Figure 5.19 – Raytracer On-Demand - Throughput Evaluation

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

Us
ag

e
(%

)

Raytracer - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

Us
ag

e
(%

)

Raytracer - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

Figure 5.20 – Raytracer On-Demand - Resource Consumption Evaluation

between workers in environments with distinct GPUs the workers assigned with the less

powerful GPU becomes a bottleneck in terms of throughput, by utilizing the on-demand

scheduler the workers assigned the weaker GPU do not receive tasks while their current

task is being performed.

5.2.2 Multi-GPU with batch optimization on SPar

Besides testing the policies in broader workloads than our manual tests, we also

tested the usage of multi-GPU with other processing strategies supported via SPar’s code

annotations, the main being a batch approach to bring the stream parallelism of the

benchmarks closer to the data parallelism that is typically used when working with GPUs

by grouping a determined amount of work into a single transfer for the GPUs. Unfortu-

nately, only the Mandelbrot benchmark could be executed using the batch approach since

the other benchmarks did not meet the required rules for batch optimization, this being

that the entire stage must be annotated as Pure. The throughput of such execution is

shown in Figure 5.21, and its GPU usage is shown in Figure 5.22.

For the tests using batch, we tested using batch size in multiples of 10 inputs. All

the tests obtained very similar results, and as such, we chose to show only a single test to

avoid repetition when talking about the tests; the chosen execution uses a batch size of

50 inputs. By using batch, both of the single-GPU executions show similar results to each

68

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

60

El
em

en
ts

 p
er

 S
ec

on
d

Mandelbrot - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

60

El
em

en
ts

 p
er

 S
ec

on
d

Mandelbrot - Performance Evaluation with Class C
Saturate
Static

TITAN X Only
Quadro K2200 Only

Figure 5.21 – Mandelbrot with Batching - Throughput Evaluation

other, which helps the Static policy to obtain higher results than the normal streaming

execution done by SPar, Saturate still suffers the limitations of needing to choose a GPU

to use, which bring its throughput down. Compared to the non-batch execution of MB

(Figures 5.9 and 5.10) the resource consumption by using batch is kept low since most

execution time is used grouping the required batch, the usage is diluted with periods of

no GPU usage, corroborated by the still somewhat high standard deviation present in the

execution.

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

Us
ag

e
(%

)

Mandelbrot - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

Us
ag

e
(%

)

Mandelbrot - Performance Evaluation with Class C
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

Figure 5.22 – Mandelbrot with Batching - Resource Consumption Evaluation

5.2.3 Batch with on-demand scheduling

We also combined both strategies of batching the tasks into a single transfer

to the GPUs and using FastFlow’s on-demand worker scheduling, since only Mandelbrot

could be executed using the batch approach, our results of combining both strategies are

limited to only this application, but it already give us an idea of how this combination could

perform in other applications. Figure 5.23 shows the throughput of the execution, while

Figure 5.24 shows the GPU usage.

There was not much difference in results by using both batching and an on-

demand scheduler, which was somewhat expected since the main drive of using the batch

approach is to reduce unnecessary exchanges between CPU and GPU, it also hinders the

execution by limiting the amount of data that can be processed in a determined time unit.

69

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

60

El
em

en
ts

 p
er

 S
ec

on
d

Mandelbrot - Performance Evaluation with Class B
Saturate
Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

60

El
em

en
ts

 p
er

 S
ec

on
d

Mandelbrot - Performance Evaluation with Class C
Saturate
Static

TITAN X Only
Quadro K2200 Only

Figure 5.23 – Mandelbrot with Batching and On-Demand - Throughput Evaluation

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

Us
ag

e
(%

)

Mandelbrot - Resource Evaluation with Class B
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

20

40

60

80

100

120

Us
ag

e
(%

)

Mandelbrot - Performance Evaluation with Class C
TITAN X Static
Quadro Static
TITAN X Only

TITAN X Saturate
Quadro Saturate
Quadro K2200 Only

Figure 5.24 – Mandelbrot with Batching and On-Demand - Resource Consumption Evalua-
tion

5.3 Results implementing into OpenMP

In order to evaluate the performance and overhead of our approaches against

other possible solutions, we chose to also implement the tested applications utilizing

OpenMP annotations in conjunction with CUDA; we limited our tests to the LD, MB, and

RT benchmarks, seeing as their execution flowchart are small and very easy to be ported.

Based on the above tests done using our policies and the fact that Saturate was not able

to be fully utilized in most applications, we focused on bringing the Static policy into our

OpenMP+CUDA implementation of the applications using multi-GPU. The throughput and

resource consumption of these tests are shown in Figures 5.25 to 5.30. It is important to

note that although SPar can generate OpenMP code, we chose not to utilize the generated

code and opted for manual implementation.

Despite its small loads for the GPU and high quantity of communications between

the CPU and the GPU, the LD benchmark achieved a much higher throughput than any of

our tests using GSParLib. It showed higher usage of resources, meaning that the tasks

were more efficiently passed to the GPUs when using the CUDA library than the abstrac-

tions provided by GSParLib, as well as better scalability, growing its throughput and usage

when more workers were used, this is especially seem in the Static policy using workload

70

C, while the single-GPU executions stagnate their throughput, the Static can continue to

grow since it is not limited by the resources contained in a single GPU.

2 4 6 8 10 12
Amount of Workers

0

50

100

150

200

250

300

350

El
em

en
ts

 p
er

 S
ec

on
d

Lane Detection - Performance Evaluation with Class B
Static
TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

50

100

150

200

250

300

El
em

en
ts

 p
er

 S
ec

on
d

Lane Detection - Performance Evaluation with Class C
Static
TITAN X Only
Quadro K2200 Only

Figure 5.25 – LaneDetection OpenMP - Throughput Evaluation

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

Us
ag

e
(%

)

Lane Detection - Resource Evaluation with Class B
TITAN X Static
Quadro Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

60

70

80
Us

ag
e

(%
)

Lane Detection - Performance Evaluation with Class C
TITAN X Static
Quadro Static

TITAN X Only
Quadro K2200 Only

Figure 5.26 – LaneDetection OpenMP - Resource Consumption Evaluation

The MB benchmark, when run using the OpenMP+CUDA, shows its simplicity

since it generates even smaller loads for the GPU than the LD benchmark, its results are

highly similar in both workloads and uses a fraction of the resources used when run using

the SPar+GSParLib implementations, be it in single or multi-GPU modes.

2 4 6 8 10 12
Amount of Workers

0

50

100

150

200

250

300

350

400

El
em

en
ts

 p
er

 S
ec

on
d

Mandelbrot - Performance Evaluation with Class B
Static
TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

50

100

150

200

250

300

350

400

El
em

en
ts

 p
er

 S
ec

on
d

Mandelbrot - Performance Evaluation with Class C
Static
TITAN X Only
Quadro K2200 Only

Figure 5.27 – Mandelbrot OpenMP - Throughput Evaluation

Assessing the RT benchmark using OpenMP+CUDA in comparison to the SPar im-

plementation (Figures 5.11 and 5.19), we can see that OpenMP+CUDA presents similar

results to the execution utilizing the on-demand scheduler of FastFlow (Figure 5.19), al-

though with both single-GPU executions being close in results. We can also see that the

71

2 4 6 8 10 12
Amount of Workers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Us
ag

e
(%

)

Mandelbrot - Resource Evaluation with Class B
TITAN X Static
Quadro Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Us
ag

e
(%

)

Mandelbrot - Performance Evaluation with Class C
TITAN X Static
Quadro Static

TITAN X Only
Quadro K2200 Only

Figure 5.28 – Mandelbrot OpenMP - Resource Consumption Evaluation

Static policy was able to better scale when used on OpenMP+CUDA, probably due to the

elimination of the abstraction layer that is present when running the kernel code in GSPar-

Lib.

2 4 6 8 10 12
Amount of Workers

0

10

20

30

40

50

El
em

en
ts

 p
er

 S
ec

on
d

Raytracer - Performance Evaluation with Class B
Static
TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

5

10

15

20

25

30

El
em

en
ts

 p
er

 S
ec

on
d

Raytracer - Performance Evaluation with Class C
Static
TITAN X Only
Quadro K2200 Only

Figure 5.29 – Raytracer OpenMP - Throughput Evaluation

2 4 6 8 10 12
Amount of Workers

0

5

10

15

20

25

30

35

40

Us
ag

e
(%

)

Raytracer - Resource Evaluation with Class B
TITAN X Static
Quadro Static

TITAN X Only
Quadro K2200 Only

2 4 6 8 10 12
Amount of Workers

0

5

10

15

20

25

30

35

40

Us
ag

e
(%

)

Raytracer - Performance Evaluation with Class C
TITAN X Static
Quadro Static

TITAN X Only
Quadro K2200 Only

Figure 5.30 – Raytracer OpenMP - Resource Consumption Evaluation

Comparing the benchmark on OpenMP+CUDA to the implementation in SPar we

can see that the results obtained by using GSParLib benefit more from the single-GPU

executions, with these executions normally achieving the highest throughput when using

the Titan X, in contrast, the OpenMP+CUDA seems to efficiently use the GPUs, giving

similar results independent of which is chosen to run the code, which in turn benefits our

policies, since they seek to use multiple GPUs in an efficient manner.

72

5.4 Overhead Evaluation

In this section, we will compare the performance of the implemented policies in

SPar, Table 5.1 summarizes the results by presenting the performance improvement of the

usage of multi-GPU against single-GPU in SPar. The first column indicates the benchmark

application. The second indicates the workload used. The third indicates the metric mea-

sured. The fourth column indicates the percentage of performance improvement of the

Static policy over the usage of only the Titan X. The fifth column indicates the percentage

of performance improvement of the Saturate policy over the usage of only the Titan X.

Based on the results obtained, the Static policy offers the best improvements, at

least in our tested environment, Saturate loses a lot of power since it needs to regularly

query the current usage and available memory to decide which GPU should be used, as

well as when targeting the other GPUs on the environments needing some time to return

the send of tasks to the first GPU on the environment, which contributes to its loses.

Table 5.1 – Performance improvement of multi-GPU over single-GPU

Benchmark Workload Metric
Static improve
over Titan X

Saturate improve
over Titan X

AR B Throughput 10.99% 0.20%
AR C Throughput 7.10% -0.05%
LD B Throughput -2.42% -30.47%
LD C Throughput -13.88% -31.33%
MB B Throughput 1.37% -33.08%
MB C Throughput -2.20% -31.93%
RT B Throughput 2.36% -6.43%
RT C Throughput 8.57% -2.22%

Table 5.2 summarizes the results by presenting the performance improvement of

the usage of the default Round-robin scheduling against the On-demand scheduling, both

part of the FastFlow backend utilized by SPar. The first column indicates the benchmark

application. The second indicates the workload used. The third indicates the metric mea-

sured. The fourth column indicates the percentage of performance improvement of the

On-demand scheduler over the usage of the Round-robin scheduler.

Table 5.2 only takes into account the results regarding the Static policy since only

it obtained improvements when using the on-demand scheduler, these results are mainly

because of an equal division of work between both GPUs, as done when using the round-

robin scheduler, is detrimental to the runtime, since the second GPU, Quadro K2200, has

less computational power, it takes more time to process the tasks which leads to a backlog

of tasks on the workers targeting this GPU.

Table 5.3 summarizes the results by presenting the performance improvement of

the usage of the batch grouping of tasks provided by SPar when utilizing GPU. The first col-

73

Table 5.2 – Performance improvement of On-demand scheduling over Round-robin
scheduling

Benchmark Workload Metric
On-demand improve
over Round-robin

AR B Throughput 7.19%
AR C Throughput 34.04%
LD B Throughput 235.13%
LD C Throughput 269.31%
MB B Throughput 22.39%
MB C Throughput 21.87%
RT B Throughput 130.06%
RT C Throughput 96.59%

umn indicates the benchmark application. The second indicates the workload used. The

third indicates the metric measured. The fourth column indicates the percentage of per-

formance improvement of the batch optimization over the default stream parallelism. The

fifth column indicates the percentage of performance improvement of the batch optimiza-

tion in conjunction with the On-demand scheduler over the default stream parallelism.

The results show that the Static policy is the most improved when using the batch

grouping, this is mainly due to the reduced amount of transfers done when utilizing such

optimization to run the application. Utilizing on-demand in conjunction with batch opti-

mization does not add any significant improvements, having a reduced throughput over

simply utilizing the on-demand scheduler. Saturate as a whole did not scale with the batch

optimization, mainly due to the grouping aspect of the optimization.

Table 5.3 – Performance improvement of batch over non-batch execution
Benchmark Workload Metric

Static/Batch
improve

Static/Batch
On-demand improve

Saturate/Batch
improve

Saturate/Batch
On-demand improve

MB B Throughput 20.20% -1.71% -0,39% -0,24%
MB C Throughput 53.56% 0.25% -2,02% -0,96%

Table 5.4 summarizes the results by presenting the performance improvement

of the SPar’s generated code over the manual implementations, discussed in Chapter 4,

and the performance improvement of the OpenMP manual implementation over the man-

ual implementations. The first column indicates the benchmark application. The second

indicates the workload used. The third indicates the metric measured. The fourth column

indicates the percentage of performance improvement of SPar’s generated code over the

manual implementations. The fifth column indicates the percentage of performance im-

provement of the OpenMP codes over the manual implementations.

The results show that for the simpler applications, LD and MB, SPar’s generated

code suffers a significant loss of throughput, this could be mainly due to the large amount

74

Table 5.4 – Performance improvement of SPar and OpenMP over manual implementation

Benchmark Workload Metric
SPar improve
over manual

OpenMP improve
over manual

LD C Throughput -62.74% 146.80%
MB B Throughput -53.55% 232.51%
RT C Throughput 98.54% 89.15%

of memory transfers necessary to process the streams or the excessive amount of kernel

clones done to abstract GSParLib to cover all the possible generations present in SPar.

5.5 Impact on programmability

This section discusses aspects of SPar’s programmability compared to the other

implementations. Figure 5.31 presents the results for each implemented benchmark. Fig-

ure 5.31(a) presents the results for the AR benchmark. Figure 5.31(b) presents the re-

sults for the benchmarks LD, MB, and RT. The x-axis lists the benchmarks, and the y-axis

presents the number of source lines of code. We used the software SLOC [64] to collect

the source lines of code. This metric does not represent code productivity.

AR
0

200

400

600

800

1000

1200

1400

1600

So
ur

ce
 li

ne
s o

f c
od

e

(a) AR benchmark

Serial
Serial-GPU

FastFlow
FastFlow-GPU

Pthreads
Pthreads-GPU

Pthreads-GPU-Static
Pthreads-GPU-Saturate

LD MB RT
0

200

400

600

800

1000

So
ur

ce
 li

ne
s o

f c
od

e

(b) LD, MB and RT benchmarks

Serial
Serial-GPU

SPar
SPar-GPU

FastFlow
FastFlow-GPU

Pthreads
Pthreads-GPU

OpenMP

Figure 5.31 – Source Lines of Code of each Benchmark tested.

When it comes to multi-core versions, using Pthread necessitates a manual im-

plementation of each component required for a stream processing application. This in-

cludes creating queues for communication between stages, functions for adding elements

to the queues, and techniques to manage communications among different threads. In

contrast, FastFlow provides algorithmic skeletons specifically designed for programming

stream processing applications. This means that users do not have to create queues for

stage communications or scheduling mechanisms. However, users still need to implement

detailed routines, such as defining C++ classes for the computations of each stage.

SPar significantly enhances programmability compared to Pthread and FastFlow

by automatically generating all the routines necessary for a stream application. As a

75

result, SPar requires less programming effort than FastFlow, which, in turn, requires less

effort than Pthread.

The challenges of programming become even greater when dealing with GPUs.

SPar’s annotations simplify GPU programming by eliminating the need for multiple mech-

anisms essential for parallelizing code. This allows for straightforward CPU parallelism

combined with GPU utilization. Consequently, the source lines of code in SPar are es-

sentially equivalent to the serial versions of the applications, whereas manually coded

versions that utilize both CPU and GPU can require up to three times more lines of code

due to the components necessary for stream processing and GPU kernels.

5.6 Final Remarks about Multi-GPU with SPar

In this chapter, we roughly presented the implementation and evaluation of two

policies to target multi-GPU via GSParLib’s code abstraction, and we evaluated SPar over-

head by comparing its performance to a manual implementation using OpenMP combined

with CUDA. Our tests highlighted several limitations in the usage of GPU as a whole in SPar,

although we do not talk much about them when discussing the results of our tests, most

of them were already thoroughly explored on Gabriell’s thesis[23], including an exces-

sive amount of GPU kernel copies, and somewhat excessive amount of memory transfers

due to the stream parallelism inherent overhead such as allocating memory for each new

stream element.

When comparing all our tests as a whole, we can see that the Static policy should

be used in conjunction with schedulings such as On-Demand or Work Stealing, where the

workers paired with the less computationally endowed GPUs do not become overflow by a

backlog of tasks while the more potent GPUs are idle.

Our tests also show that the Saturate policy seems extremely dependent on the

GPUs having similar computational powers, as seen on the executions of the MB bench-

marks when targeting the second GPU, the benchmark suffers some loss in exchange for

not overloading a GPU. One of the problems that we did not discuss, at least on the tests,

is that Saturate has an overhead in the sense that the choice of which GPU to use is made

based on a consultation with a library, and this could become a bottleneck if done too

frequently, as such we limited the consultation to be done in the emitter, which intro-

duces a delay since new works will be sent before the first one began to process and the

consultation began to receive data regarding the executions. This could be resolved by

executing the consultation on the workers, but this introduces a new problem in that more

consultations would be done, which would overwhelm the GPUs and hinder the processing

of tasks.

76

Regarding the usage of batch to help alleviate the inherent overhead present in

streaming, only Static appears to get some improvement, reaching results akin to the

executions using singular GPUs, and bringing the Quadro K2200 up to throughput with

the Titan X. Using batch in conjunction with an on-demand scheduling does not bring

any improvement, to the contrary, with the workload C the execution targeting only the

Quadro K2200 suffers a degradation of throughput if compared to only using the batch

approach.

Our tests with OpenMP+CUDA show that there is much improvement to be gained

by using multi-GPU, but much improvement could not be achieved in our main tests utiliz-

ing SPar with GSParLib. This is due to the limitation imposed by FastFlow or even because

the abstractions implemented by GSParLib are hindering the efficient usage of GPUs. More

tests could be done in the future seeking to pinpoint where the bottlenecks of execution

are present in our tests by reviewing our rough implementations in PThread to make a full

comparison or even introducing new implementations, like the OpenMP+CUDA that we

used to test if our implementations worked outside of the confines of the SPar implemen-

tation.

By analyzing the results and the number of source code lines of different ideas to

explore multi-GPU, we can somewhat say that regarding our main research question, Can

C++ annotations, like those provided by SPar for stream parallelism, simplify

multi-GPU parallelism exploitation without impacting performance?, that yes, it

is possible to simplify the exploitation of multi-GPU for stream parallelism without sacrific-

ing the performance of the application, although SPar’s usage of FastFlow imposes some

difficulties due to the overheads present in the FastFlow, especially when targeting GPU

problems without much loads, such as MB and LD.

77

6. CONCLUSION

In this work, we began by seeking possible scheduling policies for multi-GPU us-

age in stream applications in the current literature. Based on our search, we selected four

possible scheduling policies, which were tested and fine-tuned by implementing them into

four applications. After the fine-tuning, the policies were abstracted and integrated into

SPar’s code generation, where more tests were done, with the purpose of evaluating the

performance of the policies into SPar, as well as how much overhead impact these policies

had when integrated onto SPar execution.

Our tests show that the current environment of SPar and GSParLib already sup-

ports the usage of multi-GPUs, although it appears that this support still presents some

limitations thanks to the abstractions present in GSParLib. Although our tests using SPar

and GSParLib show no improvement when compared to a single-GPU execution of the ap-

plications, by combining our approaches with methods already present in FastFlow, we

achieved equal results with less consumption of resources. Our tests utilizing OpenMP

and CUDA, also show that our approaches have more scalability, being able to surpass

the single-GPU executions and also showing that the implementations utilizing SPar and

GSParLib were not able to fully extract the computational power present in the environ-

ment, be it because of FastFlow’s code limitations when processing streams or the ex-

cessive amount of transfers and copies done to allow the stream parallelism done in the

applications.

We summarize the main insights and achievements of our tests as follows: 1)

Multi-GPU methodologies for easy usage inside SPar; 2) Evaluation of how the current

SPar environment merges with our multi-GPU methodologies; 3) Comparison of one of our

methodologies against a state-of-the-art framework that supports multi-GPU.

GSParLib and SPar stand out with unique characteristics among various frame-

works in industry and academia. GSParLib fully supports a unified interface for standard

APIs in GPU programming. The system’s mechanisms for utilizing stream parallelism are

seamlessly integrated for users. It automatically handles mutual exclusion during GPU

memory allocation and deallocation, along with the creation and management of CUDA

streams and OpenCL command queues to enable asynchronous GPU kernel execution.

GSParLib employs standard C/C++ containers, eliminating the need for a new data type,

and works with standard C/C++ compilers like g++, without requiring a separate com-

piler. Meanwhile, SPar distinguishes itself by using code annotations to generate code for

stream processing targeting CPU and GPU, effectively combining stream and data paral-

lelism.

The results obtained in this work may be improved in different ways. We describe

the primary research opportunities in the following items:

78

Deeply evaluate and improve the support for multi-GPU on GSParLib:

Currently, GSParLib allows the user to allocate memory or launch a GPU kernel by specify-

ing the GPU ID that they desire to use. However, there is currently no deep evaluation of

the possible overhead in the internal mechanisms of GSParLib when using multiple GPUs.

Another point is that GSParLib should be able to distribute the computations of a parallel

pattern among several GPUs, but is currently only able to assign the computations to a

single GPU.

Provide GPU runtime optimizations to SPar: Much like our Saturate policy,

future improvements could focus on GPU optimizations for SPar during execution. For ex-

ample, SPar might autonomously adjust the number of threads per block while processing

a GPU kernel, selecting optimal configurations to handle new stream elements. In the cur-

rent state of SPar, even with the usage of our policies, the GPUs can accept new stream

elements even if there is not sufficient device memory available, causing the executions

to fail. Moreover, there are still instances where CPU threads retain copies of GPU kernels

until the application completes, even though SPar tries to free up memory by deleting

specific GPU kernels it no longer needs, sometimes this is not done correctly. These op-

timizations are essential for enhancing SPar’s performance and adaptability in managing

various stream applications that require substantial data processing.

Provide multi-GPU runtime optimizations to GSParLib: Although GSParLib

supports multi-GPU, its usage is limited to only the setting in which GPU the kernel code is

going to be run. Future work could improve the runtime of GSParLib by targeting multi-GPU

communication technologies, such as NVLink and NVSwitch, which would allow a broader

usage of multi-GPU and the processing of more robust benchmarks.

Evaluate the performance of multi-GPU on distributed environments:

Multi-GPU is a broad term, varying from single-node multi-GPU to a distributed multi-GPU

per node environment, our work focused only on the single-node aspect of multi-GPU, but

in a future work, the distributed side of multi-GPU could be evaluated, to do this, GSParLib

would need to receive some improvements, mainly targeting the single-node nature of its

implementations. This would also embrace multi-GPU evaluations using GPUs belonging

to different vendors, such as NVIDIA and AMD.

Evaluate the performance of multi-GPU on other accelerators: Although

GSParLib supports only GPUs, the framework could support other many-core accelerators

such as Field Programmable Gate Arrays (FPGA), Intel Many Integrated Core (MIC). Like

GPUs from AMD manufacture, the OpenCL can be used to exploit parallelism on other

many-core accelerators. This was not touched on in our tests; it could open a wide range

of tests regarding different accelerators.

Provide new parallel patterns to GSParLib and test their usability for

multi-GPU: There are still a good amount of parallel patterns not implemented in GSPar-

Lib, such as gather, stencil, scan, and scatter; if these patterns were available in GSPar-

79

Lib’s Pattern API, then the programmer would not need to implement a variation of the

map parallel pattern to use those functionalities, requiring less programming effort. Al-

though these patterns are mainly for data parallelism, it would also be essential to support

streaming-related features such as thread safety and batching when implementing these

patterns to allow their usage in possible stream parallelism applications.

Provide new scheduling approaches for multi-GPU on SPar and GSPar-

Lib: In this study, we presented two scheduling methods for multi-GPU usage within SPar,

utilizing GSParLib, and examined how existing task distribution methods in SPar interact

with our multi-GPU strategies. Future research could explore either the avenue of inte-

grating novel work scheduling methods into SPar or developing new multi-GPU scheduling

techniques based on other frameworks found in current literature. Additionally, future

projects might adapt our approaches to integrate with other frameworks supported by

SPar, such as OpenMP.

Automatic and hybrid parallelism support in SPar: In its current form, the

SPar compiler always offloads pure code regions to the GPU accelerator when set with the

corresponding flag. Future works may explore algorithms to automatically choose if such

offloading would present improvements to the execution. They may also choose the best

scheduling approaches by analyzing the code characteristics and querying all the devices’

properties present in the environment.

80

REFERENCES

[1] Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Torquati, M. “Fastflow: High-Level and

Efficient Streaming on Multicore”. 2014.

[2] Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Torquati, M. “Fastflow: High-Level and

Efficient Streaming on Multicore”. John Wiley & Sons, Ltd, 2017, chap. 13, pp. 261–

280.

[3] Andrade, G.; Griebler, D.; Santos, R.; Danelutto, M.; Fernandes, L. G. “Assessing

Coding Metrics for Parallel Programming of Stream Processing Programs on Multi-

cores”. In: 47th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA 2021), 2021, pp. 291–295.

[4] Andrade, G.; Griebler, D.; Santos, R.; Fernandes, L. G. “A parallel programming

assessment for stream processing applications on multi-core systems”, Computer

Standards & Interfaces, vol. 84, March 2023, pp. 103691.

[5] Andrade, G.; Griebler, D.; Santos, R.; Kessler, C.; Ernstsson, A.; Fernandes, L. G.

“Analyzing Programming Effort Model Accuracy of High-Level Parallel Programs for

Stream Processing”. In: 48th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA 2022), 2022, pp. 229–232.

[6] Andrade, H.; Gedik, B.; Turaga, D. S. “Fundamentals of stream processing:

application design, systems, and analytics”. Cambridge, England: Cambridge

University Press, 2014.

[7] Augonnet, C.; Thibault, S.; Namyst, R.; Wacrenier, P.-A. “Starpu: a unified platform

for task scheduling on heterogeneous multicore architectures”, Concurrency

and Computation: Practice and Experience, vol. 23–2, 2011, pp. 187–198,

https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1631.

[8] Banger, R.; Bhattacharyya, K. “OpenCL programming by example”. Birmingham,

England: Packt Publishing, 2013.

[9] Board, O. A. R. “Openmp application programming interface version 5.2”. Source:

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf, Jan

2024.

[10] Chakravarthy, S.; Jiang, Q. “Stream Data Processing: A Quality of Service

Perspective. Modeling, Scheduling, Load Shedding, and Complex Event Processing”.

New York, NY: Springer, 2009.

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

81

[11] Chandrasekaran, S.; Juckeland, G. “OpenACC for Programmers”. Boston, MA:

Addison-Wesley Educational, 2017.

[12] Cheng, J.; Grossman, M.; McKercher, T. “Professional CUDA C Programming”.

Indianapolis, IN: Wrox Press, 2014.

[13] Cole, M. “Algorithmic skeletons: structured management of parallel computation”.

Cambridge, MA, USA: MIT Press, 1991.

[14] Cole, M. “Bringing skeletons out of the closet: a pragmatic manifesto for skeletal

parallel programming”, Parallel Computing, vol. 30–3, 2004, pp. 389–406.

[15] Cook, S. “CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs”.

Cambridge, MA: Elsevier Science, 2013.

[16] Corporation, A. “Hip”. Source: https://github.com/ROCm/HIP, Jan 2024.

[17] Corporation, N. “Sli best practices”. Source: http://developer.download.nvidia.com/

whitepapers/2011/SLI_Best_Practices_2011_Feb.pdf, Jan 2024.

[18] Corporation, N. “Nvidia nvswitch – the world’s highest-bandwidth on-node switch”.

Source: http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf, Jan

2024.

[19] Corporation, N. “Cuda c programming guide”. Source: https://docs.nvidia.com/cuda/

archive/10.1/pdf/CUDA_C_Programming_Guide.pdf, August 2019.

[20] Corporation, N. “Nvidia hpc compilers”. Source: https://docs.nvidia.com/hpc-sdk/

archive/20.7/pdf/hpc207c++_par_alg.pdf, August 2020.

[21] Corporation, N. “Cuda c++ programming guide”. Source: https://docs.nvidia.com/

cuda/archive/12.2.1/pdf/CUDA_C_Programming_Guide.pdf, Jan 2024.

[22] Corporation, N. “Nvidia hpc sdk”. Source: https://developer.nvidia.com/hpc-sdk,

August 2023.

[23] de Araujo, G. A. “Data and stream parallelism optimizations on gpus”, Master’s

Thesis, Porto Alegre, RS, Brasil, 2022, 113p.

[24] De Matteis, T.; Mencagli, G. “Keep calm and react with foresight: strategies for low-

latency and energy-efficient elastic data stream processing”. In: Proceedings of the

21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

2016.

[25] De Matteis, T.; Mencagli, G. “Proactive elasticity and energy awareness in data

stream processing”, Journal of Systems and Software, vol. 127, 2017, pp. 302–319.

https://github.com/ROCm/HIP
http://developer.download.nvidia.com/whitepapers/2011/SLI_Best_ Practices_2011_Feb.pdf
http://developer.download.nvidia.com/whitepapers/2011/SLI_Best_ Practices_2011_Feb.pdf
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://docs.nvidia.com/cuda/archive/10.1/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/10.1/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/hpc-sdk/archive/20.7/pdf/hpc207c++_par_alg.pdf
https://docs.nvidia.com/hpc-sdk/archive/20.7/pdf/hpc207c++_par_alg.pdf
https://docs.nvidia.com/cuda/archive/12.2.1/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/12.2.1/pdf/CUDA_C_Programming_Guide.pdf
https://developer.nvidia.com/hpc-sdk

82

[26] Ernstsson, A.; Ahlqvist, J.; Zouzoula, S.; Kessler, C. “Skepu 3: Portable high-level

programming of heterogeneous systems and hpc clusters”, International Journal of

Parallel Programming, vol. 49–6, May 2021, pp. 846–866.

[27] Foley, D.; Danskin, J. “Ultra-performance pascal gpu and nvlink interconnect”, IEEE

Micro, vol. 37–2, 2017, pp. 7–17.

[28] Griebler, D. “Domain-Specific Language & Support Tool for High-Level Stream

Parallelism”, Ph.D. Thesis, Faculdade de Informática - PPGCC - PUCRS, Porto Alegre,

Brazil, 2016, 243p.

[29] Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “An Embedded C++

Domain-Specific Language for Stream Parallelism”. In: Parallel Computing: On the

Road to Exascale, Proceedings of the International Conference on Parallel Computing,

2015, pp. 317–326.

[30] Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “SPar: A DSL for High-

Level and Productive Stream Parallelism”, Parallel Processing Letters, vol. 27–01,

March 2017, pp. 1740005.

[31] Griebler, D.; Fernandes, L. G. “Towards Distributed Parallel Programming Support for

the SPar DSL”. In: Parallel Computing is Everywhere, Proceedings of the International

Conference on Parallel Computing, 2017, pp. 563–572.

[32] Griebler, D.; Vogel, A.; De Sensi, D.; Danelutto, M.; Fernandes, L. G. “Simplifying

and implementing service level objectives for stream parallelism”, Journal of

Supercomputing, vol. 76, June 2019, pp. 4603–4628.

[33] Hoffmann, R. B.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Stream Parallelism

Annotations for Multi-Core Frameworks”. In: XXIV Brazilian Symposium on

Programming Languages (SBLP), 2020, pp. 48–55.

[34] Hoffmann, R. B.; Löff, J.; Griebler, D.; Fernandes, L. G. “OpenMP as runtime

for providing high-level stream parallelism on multi-cores”, The Journal of

Supercomputing, vol. 78–1, January 2022, pp. 7655–7676.

[35] Kim, G.; Lee, M.; Jeong, J.; Kim, J. “Multi-gpu system design with memory networks”.

In: 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, 2014,

pp. 484–495.

[36] Kirk, D. B.; Hwu, W.-M. W. “Programming Massively Parallel Processors”. Cambridge,

MA: Elsevier Science, 2017, 576p.

[37] Le, D. T.; Nguyen, H. D.; Pham, T. A.; Ngo, H. H.; Nguyen, M. T. “An intermediate library

for multi-gpus computing skeletons”. In: 2012 IEEE RIVF International Conference on

83

Computing; Communication Technologies, Research, Innovation, and Vision for the

Future, 2012.

[38] Li, H.; Tarik, K.; Arefnezhad, S.; Magosi, Z. F.; Wellershaus, C.; Babic, D.; Babic, D.;

Tihanyi, V.; Eichberger, A.; Baunach, M. C. “Phenomenological modelling of camera

performance for road marking detection”, Energies, vol. 15–1, 2022.

[39] Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “High-Level Stream and Data

Parallelism in C++ for Multi-Cores”. In: XXV Brazilian Symposium on Programming

Languages (SBLP), 2021, pp. 41–48.

[40] Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “Combining stream with data

parallelism abstractions for multi-cores”, Journal of Computer Languages, vol. 73,

December 2022, pp. 101160.

[41] Löff, J.; Hoffmann, R. B.; Pieper, R.; Griebler, D.; Fernandes, L. G. “DSParLib: A C++

Template Library for Distributed Stream Parallelism”, International Journal of Parallel

Programming, vol. 50–5, 2022, pp. 454–485.

[42] Matsumura, K.; Sato, M.; Boku, T.; Podobas, A.; Matsuoka, S. “MACC: An OpenACC

Transpiler for Automatic Multi-GPU Use”. Springer International Publishing, 2018, pp.

109–127.

[43] Matz, A.; Doerfert, J.; Fröning, H. “Automated partitioning of data-parallel kernels

using polyhedral compilation”. In: Workshop Proceedings of the 49th International

Conference on Parallel Processing, 2020.

[44] McCool, M.; Reinders, J.; Robison, A. “Structured Parallel Programming: Patterns for

Efficient Computation”. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

2012, 1st ed..

[45] Munshi, A.; Gaster, B.; Mattson, T. G.; Fung, J.; Ginsburg, D. “OpenCL Programming

Guide”. Boston, MA: Addison-Wesley Educational, 2011.

[46] Nakao, M.; Murai, H.; Shimosaka, T.; Tabuchi, A.; Hanawa, T.; Kodama, Y.; Boku, T.;

Sato, M. “Xcalableacc: Extension of xcalablemp pgas language using openacc for

accelerator clusters”. In: 2014 First Workshop on Accelerator Programming using

Directives, 2014.

[47] OpenACC-Standard.org. “The openacc application programming interface”. Source:

https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.

1-final.pdf, Jan 2024.

[48] Pabst, S.; Koch, A.; Straßer, W. “Fast and scalable cpu/gpu collision detection for rigid

and deformable surfaces”, Computer Graphics Forum, vol. 29–5, 2010, pp. 1605–

1612, https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01769.x.

https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.1-final.pdf

84

[49] Pieper, R. L. “High-level Programming Abstractions for Distributed Stream

Processing”, Master’s thesis, School of Technology - PPGCC - PUCRS, Porto Alegre,

Brazil, 2020, 170p.

[50] Rasch, A.; Bigge, J.; Wrodarczyk, M.; Schulze, R.; Gorlatch, S. “docal: high-level

distributed programming with opencl and cuda”, The Journal of Supercomputing,

vol. 76–7, March 2019, pp. 5117–5138.

[51] Rep., K. G. T. “Sycl 2020 specification (revision 8)”. Source: https://registry.khronos.

org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf, Jan 2024.

[52] Rockenbach, D. A. “High-Level Programming Abstractions for Stream Parallelism on

GPUs”, Master’s thesis, School of Technology - PPGCC - PUCRS, Porto Alegre, Brazil,

2020, 163p.

[53] Rockenbach, D. A.; Araujo, G.; Griebler, D.; Fernandes, L. G. “GSParLib: A multi-level

programming interface unifying OpenCL and CUDA for expressing stream and data

parallelism”, Computer Standards & Interfaces, vol. 92, March 2025, pp. 103922.

[54] Rockenbach, D. A.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “High-Level

Stream Parallelism Abstractions with SPar Targeting GPUs”. In: Parallel Computing

is Everywhere, Proceedings of the International Conference on Parallel Computing

(ParCo), 2019, pp. 543–552.

[55] Rockenbach, D. A.; Löff, J.; Araujo, G.; Griebler, D.; Fernandes, L. G. “High-Level

Stream and Data Parallelism in C++ for GPUs”. In: XXVI Brazilian Symposium on

Programming Languages (SBLP), 2022, pp. 41–49.

[56] Sanders, J.; Kandrot, E. “CUDA by example: An Introduction to General-Purpose GPU

Programming”. Boston, MA: Addison-Wesley Educational, 2010.

[57] Schaetz, S.; Uecker, M. “A Multi-GPU Programming Library for Real-Time

Applications”. Springer Berlin Heidelberg, 2012, pp. 114–128.

[58] Steuwer, M.; Kegel, P.; Gorlatch, S. “Towards high-level programming of multi-gpu

systems using the skelcl library”. In: 2012 IEEE 26th International Parallel and

Distributed Processing Symposium Workshops; PhD Forum, 2012.

[59] Thies, W.; Amarasinghe, S. “An empirical characterization of stream programs and

its implications for language and compiler design”. In: 2010 19th International

Conference on Parallel Architectures and Compilation Techniques (PACT), 2010, pp.

365–376.

[60] Trott, C. R.; Lebrun-Grandie, D.; Arndt, D.; Ciesko, J.; Dang, V.; Ellingwood, N.; Gayatri,

R.; Harvey, E.; Hollman, D. S.; Ibanez, D.; Liber, N.; Madsen, J.; Miles, J.; Poliakoff, D.;

https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

85

Powell, A.; Rajamanickam, S.; Simberg, M.; Sunderland, D.; Turcksin, B.; Wilke, J.

“Kokkos 3: Programming model extensions for the exascale era”, IEEE Transactions

on Parallel and Distributed Systems, vol. 33–4, April 2022, pp. 805–817.

[61] Turaga, D.; Andrade, H.; Gedik, B.; Venkatramani, C.; Verscheure, O.; Harris, J. D.;

Cox, J.; Szewczyk, W.; Jones, P. “Design principles for developing stream processing

applications”, Softw. Pract. Exper., vol. 40–12, nov 2010, pp. 1073–1104.

[62] Vogel, A.; Griebler, D.; Fernandes, L. G. “Providing High-Level Self-Adaptive

Abstractions for Stream Parallelism on Multicores”, Software: Practice and

Experience, vol. 51–6, January 2021, pp. 1194–1217.

[63] Wang, Z.; Li, P.; Hou, R.; Li, Z.; Cao, J.; Wang, X.; Meng, D. “He-booster: An efficient

polynomial arithmetic acceleration on gpus for fully homomorphic encryption”, IEEE

Transactions on Parallel and Distributed Systems, vol. 34–4, 2023, pp. 1067–1081.

[64] Wheeler, D. A. “Sloccount”. Source: https://dwheeler.com/sloccount/, Feb 2025.

[65] Wilt, N. “CUDA handbook”. Boston, MA: Addison-Wesley Educational, 2013.

[66] Wrede, F.; Kuchen, H. “Towards high-performance code generation for multi-

gpu clusters based on a domain-specific language for algorithmic skeletons”,

International Journal of Parallel Programming, vol. 48–4, May 2020, pp. 713–728.

[67] Xu, Q.; Jeon, H.; Annavaram, M. “Graph processing on gpus: Where are the

bottlenecks?” In: 2014 IEEE International Symposium on Workload Characterization

(IISWC), 2014, pp. 140–149.

https://dwheeler.com/sloccount/

	Introduction
	Background
	Stream Processing
	Graphics Processing Units
	 Thread Hierarchy
	 Memory Hierarchy
	 Execution Model
	 Occupancy

	 Multi-GPU Programming
	 Data Partitioning
	 Multi-GPU communication
	 Multi-GPU Scheduling
	 Asynchronous Operations

	CUDA
	OpenCL
	OpenACC
	SPar
	GSParLib

	Related Work
	 Structured Parallel Programming with multi-GPU
	 Annotation-based Programming with multi-GPU

	Multi-GPU Runtime Support
	Multi-GPU Scheduling policies
	Chosen applications
	Fine-tuning of Scheduling Algorithms with Pthreads and GSParLib
	AnimalRescue
	LaneDetection
	Mandelbrot
	Raytracing

	Final Remarks

	High-Level Multi-GPU Support
	SPar GPU transformation rules
	Changes on SPar's code generation

	Results on SPar
	Tests utilizing on-demand scheduling on SPar
	Multi-GPU with batch optimization on SPar
	Batch with on-demand scheduling

	Results implementing into OpenMP
	Overhead Evaluation
	Impact on programmability
	Final Remarks about Multi-GPU with SPar

	Conclusion
	References

