
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

LUCAS MACHADO ALF

FAULT TOLERANCE FOR HIGH-LEVEL PARALLEL AND
DISTRIBUTED STREAM PROCESSING IN C++

Porto Alegre

2025

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

FAULT TOLERANCE FOR
HIGH-LEVEL PARALLEL AND

DISTRIBUTED STREAM
PROCESSING IN C++

LUCAS MACHADO ALF

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Dalvan Jair Griebler

Porto Alegre
2025

LUCAS MACHADO ALF

FAULT TOLERANCE FOR HIGH-LEVEL PARALLEL
AND DISTRIBUTED STREAM PROCESSING IN

C++

This Master Thesis has been submitted in

partial fulfillment of the requirements for

the degree of Master in Computer Science

of the Computer Science Graduate Program,

School of Technology of the Pontifical

Catholic University of Rio Grande do Sul

Sanctioned on March 24th, 2025.

COMMITTEE MEMBERS:

Prof. Dr. Mauricio Aronne Pillon (PPGCA/UDESC)

Prof. Dr. Fernando Luís Dotti (PPGCC/PUCRS)

Prof. Dr. Dalvan Jair Griebler (PPGCC/PUCRS - Advisor)

ACKNOWLEDGMENTS

I want to thank my advisor for all the support and guidance throughout the devel-

opment of this Master’s thesis. I also extend my thanks to my friends and research group

colleagues, whose contributions, exchanges of ideas, and discussions were invaluable to

the advancement of this research. I also want to acknowledge the financial support from

MCTIC/CNPq process Nº 131062/2023-9 and SAP Enterprise.

TOLERÂNCIA A FALHAS PARA PROCESSAMENTO STREAM

PARALELO E DISTRIBUÍDO DE ALTO NÍVEL EM C++

RESUMO

O processamento de stream é um paradigma computacional voltado para a co-

leta, o processamento e a análise de fluxos contínuos de dados heterogêneos em grande

volume, com o objetivo de extrair informações valiosas em tempo real. Considerando que

esses sistemas precisam ser executados por longos períodos, às vezes indefinidamente,

realizar o reprocessamento por completo dos dados em caso de falha pode ser extrema-

mente custoso ou até inviável. Sendo assim, é fundamental que um sistema de processa-

mento de stream não apenas se recupere de falhas, mas também garanta a integridade

dos resultados. A SPar consiste em uma linguagem de domínio específico para C++ base-

ada em anotações, projetada para simplificar o desenvolvimento de aplicações de proces-

samento de stream para múltiplas arquiteturas paralelas. Em arquiteturas distribuídas,

a SPar gera código utilizando a DSParLib, que não fornece mecanismos de tolerância a

falhas nem garantias de entrega de mensagens. Outras alternativas para programação

paralela existentes na literatura, como o MPI, são APIs de baixo nível com suporte restrito

para a implementação de aplicações paralelas resilientes. Grande parte das ferramentas

no atual estado da arte em relação a programação paralela e distribuída para aplicações

de stream com suporte à resiliência está disponível em Java. Diante desses fatores, o

objetivo principal desta dissertação de mestrado consiste em investigar mecanismos de

tolerância a falhas e semântica exactly-once para sistemas de processamento de stream,

de forma que possam ser suportados no ecossistema de software SPar sem a necessidade

de reescrever o código-fonte do usuário. Para esse fim, criamos a ResiPipe, uma biblio-

teca em C++ para o processamento de stream distribuído e tolerante a falhas, que se

tornou parte do ecossistema SPar para executar código paralelo. Os resultados obtidos

demonstram que a ResiPipe apresenta desempenho comparável, em alguns casos supe-

rior, a outras bibliotecas de processamento de stream analisadas, além de apresentar um

menor número de linhas de código fonte (SLOC) por aplicação e uma estimativa de tempo

de desenvolvimento reduzida, conforme o método de Halstead.

Palavras-Chave: Programação Paralela, Linguagem de Domínio Específico, Garantias de

entrega de mensagem, Pipeline Linear, Paralelismo de Stream.

FAULT TOLERANCE FOR HIGH-LEVEL PARALLEL AND DISTRIBUTED

STREAM PROCESSING IN C++

ABSTRACT

Stream processing is a computing paradigm that addresses the gathering, pro-

cessing, and analysis of a high-volume heterogeneous continuous data stream, aiming to

extract valuable information in real-time. Considering the need for these systems to run

for long periods, possibly indefinitely, reprocessing all data in case of failure can be highly

costly or even unfeasible. Thus, it is essential for a stream processing system not only

to recover after a failure but also to ensure that the generated results are correct. SPar

is an annotation-based C++ domain-specific language designed to simplify the develop-

ment of stream processing applications for multiple parallel architectures. In distributed

architectures, SPar generates code using DSParLib, which does not provide fault toler-

ance mechanisms or strong message delivery guarantees. Other parallel programming

alternatives in the literature, such as MPI, are low-level APIs with restrictive support for

implementing resilient parallel applications. Most state-of-the-art distributed parallel pro-

gramming tools for streaming applications with resilience support are available in Java.

Given these factors, the main objective of this master’s thesis is to investigate fault toler-

ance and exactly-once semantics for streaming systems so that it is possible to support

it on the SPar software ecosystem without rewriting the user source code. To this end,

we created ResiPipe, a C++ library for fault-tolerant distributed stream processing that

became a runtime system from the SPar ecosystem to execute parallel code. The results

demonstrate that ResiPipe delivers performance comparable to, and in some cases supe-

rior to, other analyzed stream processing libraries, in addition to requiring fewer source

lines of code (SLOC) per application and presenting a reduced estimated development

time, according to Halstead’s method.

Keywords: Parallel Programming, Domain-Specific Language, Resilience, Message deliv-

ery guarantees, Linear Pipeline, Stream Parallelism.

LIST OF FIGURES

1.1 The SPar software ecosystem. Adapted from [39]. 17

2.1 Stream processing applications. Adapted from [48]. 20

2.2 Batch processing model . 21

2.3 Stream processing model . 22

2.4 Micro-batch processing model . 22

2.5 At-most-once delivery guarantee . 26

2.6 At-least-once delivery guarantee . 26

2.7 Exactly-once delivery guarantee . 26

2.8 Simple stream application using SPar. Extracted from [32]. 28

2.9 SPar compiler pipeline. Extracted from [32]. 29

2.10 DSParLib block composition. Extracted from [56]. 30

2.11 DSParLib pattern composition. Extracted from [56]. 30

2.12 MPR System Architecture. Extracted from [46]. 31

4.1 ResiPipe Architecture . 53

4.2 Simplified ResiPipe class diagram . 55

4.3 Representation of the snapshot alignment . 62

4.4 Message delivery modes . 63

5.1 Simple 3-stage pipeline graph . 68

5.2 Prime numbers throughput . 69

5.3 Prime numbers average CPU and Memory usage . 69

5.4 Mandelbrot throughput . 70

5.5 Mandelbrot average CPU and Memory usage . 71

5.6 BZip2 compression throughput . 72

5.7 BZip2 compression average CPU and Memory usage 72

5.8 BZip2 decompression throughput . 73

5.9 BZip2 decompression average CPU and Memory usage 74

5.10 Eye detection throughput . 75

5.11 Eye detection average CPU and Memory usage . 76

5.12 Sentiment Analysis pipeline graph . 77

5.13 Sentiment Analysis average CPU and Memory usage 77

5.14 Use Case 1 Graph . 79

5.15 Use Case 1 throughput and failure recovery . 79

5.16 Use Case 2 Graph . 80

5.17 Use Case 2 throughput and failure recovery . 81

5.18 Use Case 3 Graph . 82

5.19 Use Case 3 throughput and failure recovery . 82

5.20 Use Case 4 Graph . 83

5.21 Use Case 4 throughput evaluation . 84

6.1 SPar code generation pipeline . 90

6.2 Modifications in SPar CLang for ResiPipe code generation 90

6.3 Representation of the stream item structs . 91

6.4 SPar code to ResiPipe pipeline representation . 92

6.5 Performance comparison between ResiPipe and SPar generated code using

the Prime Numbers application . 94

6.6 Performance comparison between ResiPipe and SPar generated code us-

ing the Mandelbrot, Eye Detector, BZip2 compression, and decompression

applications . 95

LIST OF TABLES

2.1 Halstead’s Metrics (extracted from [43]) . 34

3.1 Search string composition . 35

3.2 Inclusion and exclusion criteria . 36

3.3 Fault tolerance and processing semantics of the related systems 45

3.4 Related work comparison for high-level programming interfaces 50

4.1 Summary of the monitor process arguments . 53

4.2 ResiPipe API functions . 55

5.1 Performance results summary . 78

5.2 SLOC Evaluation . 85

5.3 Halstead Evaluation . 85

LIST OF ACRONYMS

ABS – Asynchronous Barrier Snapshotting

AST – Abstract Syntax Tree

CINCLE – Compiler Infrastructure for new C/C++ Languages Extensions

CUDA – Compute Unified Device Architecture

DSL – Domain-Specific Language

DSPARLIB – Distributed Stream Parallelism Library

EXT4 – Fourth extended file system

GCC – GNU Compiler Collection

GMAP – Parallel Applications Modeling Group

GPU – Graphics Processing Unit

GSPARLIB – GPU Stream Parallelism Library

HDFS – Hadoop distributed file system

MPI – Message Passing Interface

MPR – Message Passing Runtime

NFS – Network file system

NTFS – New technology file system

PUCRS – Pontifical Catholic University of Rio Grande do Sul

SLOC – Source lines of code

SPAR – Stream Parallelism

WAL – Write-Ahead Log

CONTENTS

1 INTRODUCTION . 16

1.1 CONTEXT AND MOTIVATION . 16

1.2 RESEARCH PROBLEM . 17

1.3 RESEARCH CONTRIBUTIONS . 18

1.4 OUTLINE AND CONTENTS . 19

2 BACKGROUND . 20

2.1 STREAM PROCESSING . 20

2.1.1 STREAM AND BATCH PROCESSING . 21

2.1.2 FAULT-TOLERANCE IN STREAM PROCESSING SYSTEMS . 22

2.1.3 ASYNCHRONOUS BARRIER SNAPSHOTTING (ABS) . 24

2.1.4 MESSAGE DELIVERY GUARANTEES . 25

2.1.5 THE OUTPUT COMMIT PROBLEM . 27

2.2 SPAR . 28

2.2.1 DSPARLIB . 29

2.2.2 MPR . 30

2.2.3 MPI - MESSAGE PASSING INTERFACE . 31

2.2.4 LLVM AND CLANG . 32

2.2.5 HALSTEAD’S METRICS . 33

3 RELATED WORK . 35

3.1 RELATED RESEARCH FOR FAULT TOLERANCE IN STREAM PROCESSING SYSTEMS 35

3.1.1 APACHE FLINK . 36

3.1.2 APACHE SPARK STREAMING . 37

3.1.3 APACHE SPARK STRUCTURED STREAMING . 38

3.1.4 APACHE STORM . 39

3.1.5 CHRONOSTREAM: ELASTIC STATEFUL STREAM COMPUTATION IN THE CLOUD . . 39

3.1.6 GOOGLE DATAFLOW . 40

3.1.7 MILLWHEEL: FAULT-TOLERANT STREAM PROCESSING AT INTERNET SCALE 41

3.1.8 NAIAD: A TIMELY DATAFLOW SYSTEM . 42

3.1.9 STREAMSCOPE: CONTINUOUS RELIABLE DISTRIBUTED PROCESSING OF BIG DATA

STREAMS . 43

3.1.10TIMESTREAM: RELIABLE STREAM COMPUTATION IN THE CLOUD 44

3.2 SUMMARY OF FINDS FOR FAULT TOLERANCE IN STREAM PROCESSING SYSTEMS 44

3.3 RELATED RESEARCH FOR HIGH-LEVEL PROGRAMMING ABSTRACTIONS FOR STREAM

PROCESSING . 46

3.3.1 DIRECTFLOW . 46

3.3.2 OMPSS-2 . 47

3.3.3 OPENSTREAM . 47

3.3.4 SPIDLE . 48

3.3.5 STREAMIT . 49

3.4 SUMMARY OF FINDS OF HIGH-LEVEL PROGRAMMING INTERFACES 50

4 THE RESIPIPE LIBRARY . 52

4.1 IMPLEMENTATION AND USAGE . 54

4.2 STATE MANAGEMENT . 60

4.3 PROGRESS TRACKING . 60

4.4 FAULT TOLERANCE . 61

4.5 LOAD BALANCING . 63

4.6 FINAL REMARKS . 64

5 RESIPIPE EVALUATION . 65

5.1 EXECUTION ENVIRONMENT . 65

5.2 DATA COLLECTION METHODOLOGY . 65

5.3 PERFORMANCE EXPERIMENTS . 67

5.3.1 PRIME NUMBERS . 68

5.3.2 MANDELBROT . 70

5.3.3 BZIP2 COMPRESSION . 71

5.3.4 BZIP2 DECOMPRESSION . 73

5.3.5 EYE DETECTOR . 74

5.3.6 SENTIMENT ANALYSIS . 76

5.4 RESIPIPE FAILURE RECOVERY EVALUATION . 78

5.4.1 USE CASE 1 . 79

5.4.2 USE CASE 2 . 80

5.4.3 USE CASE 3 . 81

5.4.4 USE CASE 4 . 83

5.5 PROGRAMMABILITY EVALUATION . 84

5.6 FINAL REMARKS . 86

6 RESILIENT SPAR CODE GENERATION . 89

6.1 IMPLEMENTATION . 89

6.2 OVERHEAD EVALUATION . 93

6.3 FINAL REMARKS . 96

7 CONCLUSION . 99

7.1 LIST OF PUBLISHED PAPERS . 101

REFERENCES . 102

16

1. INTRODUCTION

This chapter introduces the context, motivation, goals, and scientific contribu-

tions achieved in this Master’s Thesis. Finally, the chapter concludes with a summary of

the contents presented in this document.

1.1 Context and motivation

Stream processing can be defined as a computing paradigm that involves the

gathering, processing, and analysis of a high-volume heterogeneous continuous stream of

data, aiming to extract real-time insights or valuable information. It results from the last

50 years of constant evolution in technologies used to store, organize, and analyze the

increasing amount of data organizations generate [9], and can be applied over a diverse

variety of applications such as fraud detection, machine learning, and intelligent vehicles.

Before the popularization of stream processing, the batch processing model was

already widely deployed for handling high volumes of data. In the batch processing model,

the records are grouped into batches before processing, varying from a fixed number of

records to a value based on a time window, such as a minute, an hour, or a whole day

of accumulated records. Due to this accumulation process, the batch processing model

is traditionally associated with higher latency, ranging from minutes to several hours,

directly related to the batch size and the arrival of the last record[41].

In contrast, the stream processing model aims to process the data as soon as it

arrives, without the artificial delay generated by grouping records into batches. However,

according to Akidau, Chernyak, and Lax [3], stream processing systems are historically

associated with lower latency at the expense of inaccurate or speculative results. This

situation led to the emergence of the Lambda Architecture, created by Nathan Marz (the

creator of Apache Storm), which involves the simultaneous execution of a stream and

batch processing systems, both performing the same operations. While the stream pro-

cessing system provides low latency imprecise results (due to the use of approximation

algorithms or because the system itself does not provide correctness), a batch processing

system simultaneously runs overnight, eventually providing correct results. However, this

architecture comes with a series of drawbacks, as it requires building, provisioning, and

maintaining two independent versions of the same pipeline and somehow combining the

results of the two applications.

Given the drawbacks of the Lambda Architecture, new data processing systems

such as MillWheel [1] and Google Dataflow [2] were developed with the idea of unify-

ing stream and batch processing under a single model with strong consistency guaran-

17

tees. Meanwhile, other systems like Apache Spark adopted hybrid models such as micro-

batching, aiming for a balance between the lower latency of the stream processing and

the high throughput of the batch processing.

1.2 Research Problem

Nowadays, a great part of the stream processing systems found at the state-of-

the-art such as Apache Flink [13], Apache Spark Streaming [10] and Structured Streaming

[11], Apache Storm [68], ChronoStream [70], Google DataFlow [2], Naiad [54], Stream-

scope [45] and TimeStream [58] are developed over high-level programming languages

such as Go, Java and C#. However, for stream processing applications with strict latency

and throughput requirements, it becomes appealing to write the applications using a pro-

gramming language traditionally associated with the field of HPC (High-Performance Com-

puting), such as C, C++, and Fortran.

Due to the challenges associated with writing high-performance parallel stream-

ing applications, such as the trade-off between productivity and performance, and the lack

of high-level frameworks facilitating the creation of these applications, Griebler et al. [32]

developed SPar, a C++ domain-specific language, to simplify the programming of stream

processing applications for different parallel architectures. Initially, SPar focused on code

generation for multi-core systems with the FastFlow runtime. However, as depicted in

Figure 1.1, later works expanded SPar to other runtime systems such as Intel TBB [37]

and OpenMP [38], and other computer architectures, such as GSParLib [60, 62], which

allows code generation for GPUs and DSParLib [49, 56] which enables code generation for

distributed architectures.

FastFlow

Intel TBB

OpenMP

GSParLib

DSParLib

Runtime

User Code
Annotations

SPar Language SPar Compiler

GPU

Distributed

Shared memory

Figure 1.1: The SPar software ecosystem. Adapted from [39].

Other works of the research group, such as MPR [50], also approach the field of

distributed stream processing. However, MPR focuses on exploring the dynamic process

18

management features introduced in the second revision of the MPI standard (MPI-2) for

dynamic scalability, not providing any fault tolerance mechanism or support for exactly-

once semantics. Currently, SPar does not support MPR as a runtime for code generation.

However, future works could introduce MPR into the SPar software ecosystem.

None of the currently supported SPar runtimes provide fault tolerance capabili-

ties, meaning that any ongoing data and the entire computational progress are lost in case

of failure. Andrade, Gedik, and Turaga [9] state that in many cases, sporadic data loss is

acceptable in specific applications as long as the amount of data lost is limited and the fi-

nal accuracy of the results is properly evaluated. At the same time, there are applications

where data losses cannot be tolerated, as the data lost may contain critical information

for the application’s state, which must survive even catastrophic failures.

Alongside fault tolerance, a stream processing system must also provide mes-

sage delivery guarantees. Akidau, Chernyak, and Lax [3] assert that "consistency guar-

antee" in stream processing systems can generally be grouped into three categories: at-

most-once processing, at-least-once processing, and exactly-once processing. It is em-

phasized that these terms refer to the output generated by the application, not the num-

ber of times the application processes (or attempts to process) a particular record. Thus,

some applications may trade a higher consistency guarantee for lower latency, while for

others, it is essential to ensure that the pipeline has an exactly-once consistency guaran-

tee. Motivated by these factors, the primary goal of this master’s thesis is to investigate

fault tolerance and exactly-once semantics for streaming systems so that it is possible to

support it on the SPar software ecosystem without rewriting the user source code.

To achieve this goal, this work introduces ResiPipe (described in Chapter 4), a

C++ library for distributed stream processing that provides fault tolerance and exactly-

once semantics. ResiPipe is integrated into the SPar software ecosystem as an alternative

to code generation for parallel and distributed architectures. For distributed execution,

the library relies upon MPI (Message Passing Interface) for process communication and

implements the Asynchronous Barrier Snapshotting (ABS) protocol [20] to create periodic

snapshots of the application state. To achieve exactly-once semantics, ResiPipe requires

re-playable data sources and idempotent sinks. A two-phase commit mechanism can be

employed for actions over external systems through a callback feature that allows the

execution of user-defined functions after certain events of the application life cycle.

1.3 Research Contributions

This work advances the field of parallel and distributed stream processing by

achieving the following scientific contributions:

19

• A new C++ library that eases the development of fault-tolerant distributed stream

processing applications on top of OpenMPI by abstracting the parallel pattern, pro-

cesses communication, and data serialization.

• A new code generation algorithm for the SPar compiler targeting ResiPipe runtime

that allows fault-tolerance in parallel and distributed stream processing applications.

• A literature review that summarizes the fault tolerance mechanisms, progress track-

ing mechanisms, and message delivery guarantees employed by the current state-

of-the-art stream processing systems.

• A quantitative analysis composed of six performance experiments and two programma-

bility evaluations that highlight the performance and programmability aspects of Re-

siPipe compared to other existing C++ distributed stream processing libraries, and

four failure recovery experiments that evaluate the overhead introduced by the Re-

siPipe fault tolerance mechanism.

1.4 Outline and contents

The remaining chapters of this master’s thesis are organized as follows:

• Chapter 2 - Background: Presents the background necessary to understand this

work, including definitions regarding stream processing, fault tolerance, message

delivery guarantees, and the SPar software ecosystem.

• Chapter 3 - Related Work: Presents the related work, including an overview of how

the current state-of-the-art stream processing systems implement fault tolerance

and message delivery guarantees.

• Chapter 4 - The ResiPipe library: Introduces the ResiPipe library, describing its im-

plementation and usage, state management, progress tracking, fault tolerance, and

load balancing.

• Chapter 5 - ResiPipe Evaluation: Presents the ResiPipe performance and failure re-

covery evaluation, including a comparative analysis regarding the performance of

applications implemented using ResiPipe, DSParLib, MPR, and OpenMPI.

• Chapter 6 - Resilient SPar code generation: Describes the implementation of the

SPar resilient code generation using ResiPipe as runtime and presents an evaluation

of the overhead introduced by SPar-generated applications in comparison to regular

ResiPipe applications.

• Chapter 7 - Conclusion: Presents the conclusion, final remarks, and future works.

20

2. BACKGROUND

In this chapter, we present the background seen as necessary to understand this

Master’s thesis. In section 2.1, we introduce the concept of stream processing, the differ-

ences between batch processing and stream processing, the concept of message delivery

guarantee, and an introduction to fault tolerance. Section 2.2 covers the concepts related

to the SPar language and the DSParLib, a library built to provide distributed capabilities

for SPar code.

2.1 Stream Processing

According to Garofalakis, Rastogi, and Rajeev [26], traditionally data-management

systems are built on the concept of persistent data sets, which are stored in reliable stor-

age and queried/updated multiple times. In this way, the data collected during the day is

sent for overnight processing, resulting in a significant delay between collecting data and

obtaining results. However, for various applications like fraud detection in bank transac-

tions or network intrusion detection, it is necessary to process data continuously (24/7) as

it is collected. Figure 2.1 illustrates some examples of such applications.

Consumer
Behavior

Machine
Learning

Disaster
Forecasting

Financial
Transactions

Epidemic
Tracking

Smart
Farming

Sport
Analytics

Wild
Reporting

Intelligent
Vehicles

IoT Sensors

Surveillance
Health

Surveillance

Figure 2.1: Stream processing applications. Adapted from [48].

According to Akidau, Chernyak, and Lax [3], "streaming" asserts to a data pro-

cessing engine designed with an infinite number of datasets in mind, but has become a

generic term for a wide range of applications requiring low latency or approximate/specu-

lative results, leading to misunderstandings about the real meaning of this term. On the

21

other hand, Andrade, Gedik, and Turaga [9] state that stream processing is a computing

paradigm that addresses gathering, processing, and analysis of high-volume, heteroge-

neous continuous data stream, aiming to extract insights or valuable results.

Typically in stream processing systems, the applications can be represented by

a series of operator processes that perform actions over the received data. According to

Andrade, Gedik, and Turaga [9], an operator is the basic functional unit in a stream ap-

plication, containing input and output data ports and being responsible for executing an

arbitrary action over the received data, such as data conversion, aggregation, splitting,

merging, or logical and mathematical operations, and sending the result to the next oper-

ator in the sequence. However, some operators do not have input or output data ports, as

in the case of the "source" operator, responsible for receiving data from external sources,

and the "sink" operator, responsible for sending data to external systems.

2.1.1 Stream and Batch Processing

Before the rise of the stream processing described in Section 2.1, the batch pro-

cessing model was already widely used for handling high volumes of data. Figure 2.2

depicts the batch processing model according to Hueske and Kalavri [41], in which the

data is initially grouped into batches before being processed. The batch size can vary

from a fixed number of records to a value based on time, such as a minute, an hour, or a

whole day of accumulated records. Due to this accumulation process, the batch process-

ing model is traditionally associated with higher latencies, ranging from minutes to several

hours, being directly related to the batch size and the arrival time of the last record.

Figure 2.2: Batch processing model

In contrast, in the stream processing model depicted in Figure 2.3, the data is

processed as soon as it arrives, without the artificial delay generated by grouping records

into batches. However, according to Akidau, Chernyak, and Lax [3], stream processing

systems are historically associated with applications that provide lower latencies at the

expense of inaccurate or speculative results. This situation led to the emergence of the

Lambda Architecture.

22

Figure 2.3: Stream processing model

According to the same author, the Lambda Architecture was created by Nathan

Marz (the creator of Apache Storm) and involves the simultaneous execution of a stream

and batch processing system, both performing the same operations. While the stream pro-

cessing system provides low latency imprecise results (due to the use of approximation

algorithms or because the stream processing system itself does not provide correctness),

a batch processing system simultaneously runs overnight, eventually providing correct re-

sults. However, this architecture comes with a series of drawbacks, as it requires building,

provisioning, and maintaining two independent versions of the same pipeline and some-

how combining the results of the two applications.

Figure 2.4: Micro-batch processing model

Given the drawbacks of the Lambda Architecture, new data processing systems,

such as MillWheel [1] and Google Dataflow [2], were developed with the idea of unifying

stream processing and batch processing under a single model with strong consistency

guarantees. Meanwhile, other systems like Apache Spark adopted hybrid models such

as the micro-batch model depicted in Figure 2.4, where conceptually the data is grouped

into small batches of finite records before processing, aiming a balance between the lower

latencies of the stream processing and the high throughput of the batch processing.

2.1.2 Fault-tolerance in Stream Processing Systems

Due to the need for stream processing systems to run for long periods of time,

even indefinitely, reprocessing all data after a failure becomes highly costly or even un-

23

feasible. Therefore, it is essential that a stream processing system not only recovers after

a failure but also ensures that the operator’s internal state is correct and the results gen-

erated by the application are accurate. Hueske and Kalavri [41] state that when receiving

a record, an operator in a stream processing system can perform the following actions:

(1) receive an event and store it in a local buffer, (2) make changes to the operator’s in-

ternal state, or (3) produce an output result. However, a failure can occur during any of

these actions, and the stream processing system must have explicit guidelines on how to

behave in each of these failure scenarios.

According to Andrade, Gedik, and Turaga [9], a failure can occur due to an error in

the user’s application logic, a software bug, a failure in the system runtime, or a failure in

the computational infrastructure, such as an unavailable machine, a network failure, or a

storage failure. Therefore, fault tolerance mechanisms in stream systems generally focus

on recovering from infrastructure-level failures, assuming that such failures are tempo-

rary and that a failed machine can be quickly replaced. In contrast, failures at the user

application logic or at the system runtime are more challenging to fix, as they may require

changes to the source code.

According to the same author, the strategies for recovering from failures in stream

processing systems are generally based on three basic mechanisms: cold restart, check-

point, and replication. In the cold restart mechanism, the affected segment is restarted

from scratch when a failure is detected. This strategy is only feasible for applications with

transient states or those able to reconstruct the state from new incoming data.

The checkpoint mechanism involves writing the application state over reliable

storage. This checkpoint can include a complete or incremental copy of the application

state and can be initiated either periodically or on-demand. In case of a system restart,

the application state can be resumed from the latest checkpoint. However, the checkpoint

mechanism alone does not guarantee that no data will be lost in the event of a failure, as

new data continues to arrive continuously while the application is being restarted.

The replication mechanism involves maintaining copies of the same application

running simultaneously, usually over multiple machines. In this mechanism, the replica

that is actually generating results is called the active replica, while the others are called

backup replicas. In this model, if the current active replica fails, a backup replica must be

able to take over, maintaining data processing intact.

In addition, Elnozahy et al. [24] classify the rollback recovery protocols into

checkpoint-based and log-based categories. Checkpoint-based protocols rely on creat-

ing checkpoints of the system state over reliable storage for further restoration. They can

be sub-classified into coordinated checkpointing, where the processes coordinate their

checkpoints in order to save a system-wide consistent state, and communication-induced

checkpointing, where the processes are forced to make checkpoints based on information

built-in on the messages received from other processes.

24

Log-based protocols rely on both checkpointing and event logging for fault tol-

erance and can be sub-classified into pessimistic logging, where the processes need to

block their execution until the event is stored over reliable storage; optimistic logging,

where the processes are not blocked and the events are persisted over stable storage

asynchronously; and causal logging, which aims for a balance between the pessimistic

and optimistic approaches.

2.1.3 Asynchronous Barrier Snapshotting (ABS)

Carbone et al. [20] states that in order to provide consistent results, a distributed

stream processing system needs to be resilient to failures, and one of the ways of provid-

ing this resilience consists of periodically capturing snapshots, like pictures of the global

state of the system, including all necessary information to restart the computation from

that specific point after a failure.

The Asynchronous Barrier Snapshotting (ABS) algorithm introduced by the same

authors consists of a lightweight snapshotting algorithm specifically designed for dis-

tributed stateful dataflow systems, aiming for a low impact on performance while also

providing a low storage cost. The main idea behind the algorithm consists of slicing the

data stream into stages by periodically injecting special snapshot markers (a.k.a barriers)

into the stream without disrupting the system’s regular execution.

Algorithm 2.1 presents a simplified representation of the Asynchronous Barrier

Snapshotting mechanism for acyclic graphs. Over regular execution, a central coordinator

periodically injects snapshot markers into all the source operators. When a source opera-

tor receives a snapshot marker, it takes a snapshot of its current state and then broadcasts

it to all its output channels. When a non-source operator receives a snapshot marker from

one of its input channels, it blocks that channel until it receives the same marker from

all its remaining input channels. Then, the operator takes a snapshot of its current state,

broadcasts the marker to its output channels, and unblocks its input channels. The global

snapshot is complete once all the operators have taken a snapshot for that given marker.

The algorithm assumes that the network channels are reliable and can handle

process crashes or messages losses, respect a FIFO delivery order, and can be blocked

and unblocked. It also assumes that the operators can trigger operations such as blocking

and unblocking channels, sending messages, and broadcasting messages to all its output

channels, and also that messages injected into source operators (e.g. snapshot markers)

can be resolved into a "Nil" input channel.

25

Algorithm 2.1 Asynchronous Barrier Snapshotting for Acyclic Graphs [20]

upon event ⟨Init | input_channels, output_channels, fun, init_state⟩ do
state := init_state; blocked_inputs := ∅; inputs := input_channels; outputs := output_channels;

upon event ⟨receive | input , ⟨barrier⟩⟩ do

if input ̸= Nil then
blocked_inputs := blocked_inputs ∪ {input};

trigger ⟨block | input⟩

if blocked_inputs = inputs then
blocked_inputs := ∅;

broadcast ⟨send | outputs, ⟨barrier⟩⟩

trigger ⟨snapshot | state⟩

for each input ∈ inputs
trigger ⟨unblock | input⟩

upon event ⟨receive | input , msg⟩ do
state′, out_records = fun(msg, state);
state := state′;

for each {output , out_record}∈out_records
trigger ⟨send | output , out_record⟩

Carbone et al. [20] also explain that several failure recovery schemes work with

this kind of consistent snapshots. However, one of the simplest forms is to merely restart

the whole system execution from the last global snapshot complete. In such a way that at

startup, every operator retrieves its associated snapshot from the persistent storage, sets

its initial state, and starts to ingest records from its input channels. The Asynchronous

Barrier Snapshotting mechanism does not provide exactly-once semantics by itself. It only

guarantees that in case of failure, the system can restart its execution from a previous

consistent state. In order to achieve exactly-once semantics, the system should be able

to replay records and ignore possible duplications.

2.1.4 Message Delivery Guarantees

Unlike in a batch processing system, where failures can be recovered simply by

reprocessing the failed batch from scratch, in a stream processing system, the failure

recovery process brings a series of challenges typically categorized into consistency guar-

antees. According to Akidau, Chernyak, and Lax [3], consistency guarantees (or message

delivery guarantees) can generally be grouped into three main categories: at-most-once

processing, at-least-once processing, and exactly-once processing. It’s important to note

that these semantics refer to the number of times a record is observed in the final result,

not the number of times the pipeline processes (or attempts to process) a record.

26

Figure 2.5: At-most-once delivery guarantee

For Hueske and Kalavri [41], the at-most-once delivery guarantee, depicted in

Figure 2.5, is also known as "no guarantee". In this scenario, when a failure occurs, no

action is taken to recover the application state or the records lost during the failure. This

guarantee level is the most straightforward, and as the name suggests, it aims to process

each record at most once. Therefore, the records are lost in a failure, and no effort is made

to ensure correct results. On the other hand, by not introducing complex failure recovery

mechanisms, this guarantee provides the lowest possible latencies.

Figure 2.6: At-least-once delivery guarantee

The at-least-once delivery guarantee depicted in Figure 2.6, ensures that all data

is processed at least once, minimizing the risk of data loss during a failure. However, some

data may be processed more than once, resulting in duplicate outcomes. This guarantee

level is appropriate for applications where the final result does not depend on the number

of times the records are processed but rather on their successful processing. For instance,

if an application is designed to determine whether an event has occurred or not, regardless

of how many times it has occurred, this level of guarantee is acceptable.

Figure 2.7: Exactly-once delivery guarantee

Finally, Figure 2.7 presents the exactly-once delivery guarantee, which ensures

that the processed records will appear just one time at the final output. This level of

27

conformity ensures that no data is lost in the event of a failure and guarantees the ab-

sence of duplicate data in the final result. This is the most challenging guarantee level to

achieve and essentially means that the application will always produce consistent results,

regardless of whether a failure occurs during processing.

2.1.5 The output commit problem

The output commit problem introduced by Strom and Yemini [64] and further de-

scribed by Elnozahy et al. [24] and Fragkoulis et al. [25], dictates that a system cannot

rely on the outside world for roll black recovery. The problem specifies that since a result

cannot be retracted from the outside world (external system) once it is sent, the results

should not be visible to the outside world until it is guaranteed that, in case of failure, the

system can recover itself from a position after the result have been published. For exam-

ple, a printer cannot undo the effects of printing a character over paper, and an automatic

teller machine cannot recover the money after that is dispensed to the customer.

This issue is particularly pertinent to stream processing systems, as most rollback

recovery mechanisms attempt to reprocess records after a failure, potentially resulting

in duplicated records being sent to external systems. By definition, stream processing

systems that solve the output commit problem provide exactly-once output. Fragkoulis et

al. [25] classify the strategies to solve the output commit problem into three categories:

transaction-based, progress-based, and lineage-based.

Transaction-based strategies such as those employed by Millwheel [1] and Trident

[12] rely on the assignment of unique identifiers that can be used to filter out duplicated

entries. Millwheel assigns a unique identifier to each record on the data stream and always

persists the output over reliable storage before sending it to downstream operators. When

an operator receives input records, it acknowledges the received records and discards

the records whose identifiers have already been seen by the operator. Trident adopts a

different strategy, where the records on the data stream are grouped into transactions

with unique identifiers. Trident uses this transaction identifier to process the batches in

order and discard the batches whose transaction identifier was already processed.

Progress-based strategies such as those employed by Naid [54] rely on a times-

tamp comparison to deliver exactly-once output based on the order of the timestamps.

On the other hand, Lineage-based strategies such as those employed by TimeStream [58]

and Streamscope [45] track the operator input and output dependencies by maintaining

a history of which records compose any given result.

28

2.2 SPar

The SPar, an acronym for Stream Parallelism, is a domain-specific language for

C++. Griebler et al. [31, 30, 32] created SPar to address the challenges associated with

developing high-performance stream parallel applications, as well as the trade-off be-

tween code productivity and performance for different parallel architectures. SPar simpli-

fies the development of stream parallel code without significant refactoring of the serial

code by introducing a set of special annotations. These annotations define the basic com-

ponents of a stream application, such as the data source and processing stages. Recent

studies have demonstrated the programmability benefits with beginners [6] and using

coding metrics [5, 7].

The code annotations introduced by SPar consist of standard C++11 attributes,

which are compiled (source-to-source) into intermediate code that makes calls to a high-

performance library. Initially, Griebler’s work [32] focused on code generation for multi-

core architectures using the FastFlow runtime. After, other works expanded SPar language

to support service level objectives [34], self-adaptive techniques [69], other runtime sys-

tems for multi-core architectures such as Intel TBB [37] and OpenMP [38], the integration

of data parallelism in stream processing [48, 47], and other computer architectures, such

as GSParLib [61, 62], which allows code generation for GPUs using CUDA and OpenCL. For

parallel distributed architectures, preliminary studies were carried out in [33] and later on

with DSParLib [56, 49] using MPI.

Figure 2.8: Simple stream application using SPar. Extracted from [32].

Figure 2.8 illustrates an example of code using SPar annotations. The code rep-

resents a simple application where a loop continuously reads data from a stream and

executes a function called "compute". After this stage, the resulting data is passed to the

"write_out" function. If the received data represents the end of the stream, the loop is

interrupted, concluding the application. This example uses the SPar annotations named

ToStream and Stage. The ToStream annotation represents a region in the code where

29

the stream processing occurs, while the Stage annotation marks different stages of the

application, receiving attributes such as Input (representing the input data of the stage)

and Output (representing the output data of the stage). The Stage annotation can also

receive an attribute called Replicate, representing the number of parallel processes used

in processing.

Figure 2.9: SPar compiler pipeline. Extracted from [32].

SPar has its own compiler based on CINCLE (Compiler Infrastructure for New

C/C++ Language Extensions) to handle these special annotations. Figure 2.9 illustrates

the compilation of a program using the SPar compiler. The compilation process starts with

a call to the GNU C++ compiler, just before invoking the scanner that performs the syntac-

tic and semantic analysis of the C++ code. The scanner produces tokens from the source

code, which are used to create an Abstract Syntax Tree (AST), which serves as input for

both the middle-end and back-end of the compiler. Finally, the compiler generates parallel

code based on the AST and then calls the GCC compiler to produce the binary.

2.2.1 DSParLib

As mentioned in Section 2.2, the DSParLib (an acronym for Distributed Stream

Parallelism Library) was developed in Pieper’s master’s thesis [56, 49], aiming to provide

SPar code generation for distributed architectures. One of the primary goals of DSParLib

is ease of use, and to achieve this, DSParLib is inspired by the structured parallel pro-

gramming paradigm. The library uses the concept of building blocks to encapsulate user

code. These blocks can be connected sequentially, forming the application’s flow. Addi-

tionally, DSParLib performs compile-time code checks to ensure that the connected blocks

are valid, avoiding potential runtime errors.

To achieve distributed stream processing, DSParLib utilizes OpenMPI, an open-

source implementation of the Message Passing Interface (MPI), a widely used library for

developing distributed applications. The building blocks provided by DSParLib abstract

the communication between processes and consist of three basic components illustrated

in Figure 2.10: the sequential wrapper (white part of the block), which wraps the user’s

sequential code, and the Input and Output Serializers (yellow and blue parts of the block),

which handle sending, receiving, and data serialization.

30

Figure 2.10: DSParLib block composition. Extracted from [56].

DSParLib provides two parallel processing patterns for distributed stream pro-

cessing: Pipeline and Farm. In this context, the Pipeline model can be implemented

through a connected sequence of sequential stages. Unfortunately, DSParLib does not

support the replication of sequential stages for parallel execution. On the other hand, the

Farm model can be implemented by connecting three blocks: the emitter, the worker, and

the collector. The worker block can be replicated in this model, allowing better perfor-

mance in high computational demand situations.

Figure 2.11: DSParLib pattern composition. Extracted from [56].

As depicted in Figure 2.11, DSParLib also allows the creation of semi-arbitrary

compositions of the parallel patterns, enabling the grouping of multiple Farm stages, which

provides stage replication within Pipeline stages that can only be executed sequentially.

2.2.2 MPR

The work of Löff et al. [46] introduces MPR (Message Passing Runtime) as a frame-

work built on top of MPI, designed to simplify the development of self-adaptive distributed

stream processing applications in C++. The MPR framework allows the applications to

reconfigure the number of parallel processes during execution time (horizontal scaling) in

response to workload variations without disrupting the application’s regular execution.

The MPR framework relies upon the MPI dynamic process management feature

introduced into the MPI-2 specification to create and remove processes over execution

time. Figure 2.12 presents an overview of the MPR architecture, which is divided into

three layers. The first layer consists of the MPR high-level API, which includes all the func-

tions, structs, and classes available to the developer. The second layer is the Processing

Engine, which includes configuration files and processes responsible for the user appli-

31

cation execution and dynamic scalability. Finally, the last layer involves communication

aspects, such as MPI calls.

Figure 2.12: MPR System Architecture. Extracted from [46].

The MPR components are into three categories: Pipeline Manager (a process re-

sponsible for decisions such as choosing processes that must be removed from the cur-

rent execution, broadcasting critical events, and maintaining a consistent state of the

pipeline), Stage Managers (intermediary processes that mediate the communication be-

tween the Pipeline Manager and the remaining processes), and Stage processes (The user

application itself, such as data sources, computational stages, and sink operators).

As a limitation, the current implementation of MPR does not provide a fault tol-

erance mechanism or strong message delivery guarantees, assuming that the underlying

environment will be equipped with a reliable high-speed and low-latency network. The

MPR also supports only 3-stage pipelines, considerably reducing the gamut of supported

applications.

2.2.3 MPI - Message Passing Interface

The Message Passing Interface Forum [52] defines MPI, an acronym for Message-

Passing Interface, as a specification for implementing library interfaces that address the

message-passing parallel programming model, in which data is moved from the address

space of one process to another using cooperative operations. The MPI specification de-

fines a base set of operations for process communication expressed as functions, subrou-

tines, or methods according to the appropriate language bindings for C and Fortran.

The MPI movement began in 1992, with formal standardization efforts started

in early 1993 as an attempt to create a standard among multiple mutually incompatible

32

and yet functionally equivalent message-passing interfaces emerging in the HPC (High-

Performance Computing) field due to the popularization of the so-called massive parallel

computing [65]. The creation of the MPI standard involved approximately 40 organizations

from the United States and Europe, including major vendors of concurrent computers,

researchers from universities, government laboratories, and industry. [42]

One of the main reasons for the wide adoption of MPI has been the ability to de-

liver portable applications with acceptable performance and scalability for multiple plat-

forms such as distributed-memory massively parallel processing (MPP) platforms, sym-

metric multiprocessing (SMP) machines with shared memory, and hybrid systems with

coupled SMP nodes [36].

Since the announcement of the first release of the MPI specification on May 5,

1994, the MPI Forum has released several revisions of the standard, including new fea-

tures such as dynamic process management, one-sided communication, and non-blocking

communication. Currently, the latest revision of the MPI standard is MPI-4.1, released on

November 2, 2023, which includes mostly corrections and clarifications to the previous

MPI-4.0 release [52].

As a specification, MPI is not a proper implementation or language. Multiple im-

plementations of the MPI specification, such as OpenMPI1, MPICH2, and MS-MPI3 can be

found in the literature, each one implementing its own set of optimizations and support

to high-performance interconnect technologies, such as Infiniband and Intel Omni-Path.

The main advantage of establishing a message-passing standard is to improve the ease

of use and portability across distributed environments, in which high-level routines and

abstractions are built on top of lower-level message-passing routines. Creating a standard

provides vendors with a clearly defined base set of routines that can be efficiently imple-

mented or, in some cases, provided with hardware support, enhancing the scalability and

efficiency of the systems.

2.2.4 LLVM and Clang

According to Murashko, Ivan [53], the LLVM project was originally designed to be

a next-generation compiler infrastructure for building optimized compilers for many pro-

gramming languages. The LLVM project was started in 2000 by Chris Lattern and Vikram

Adave as a project at the University of Illinois at Urbana-Champaign. Since the project

started, it has evolved into a full-featured platform for building various tools, such as

1https://www.open-mpi.org/
2https://www.mpich.org/
3https://learn.microsoft.com/en-us/message-passing-interface/microsoft-mpi

33

debuggers, profilers, and static analysis tools. It also has been widely adopted by the

software industry and academic research community.

Murashko, Ivan [53] states that a typical programming compiler workflow is gen-

erally divided into three stages: front-end, middle-end, and back-end. The front-end is

responsible for parsing the source code and performing the lexical analysis, generally in-

cluding a syntax analysis step that verifies if the source code is well-organized and follows

the grammar rules of the programming language and a semantic analysis step that vali-

dates if the source code is meaningful and rejects invalid programs with wrong types or

definitions. The middle-end performs optimizations over an intermediate representation

of the source code. The back-end transforms the optimized intermediate representation

of the source code into machine code or assembly code.

Initially, the LLVM project used the GCC (GNU Compile Collection) as the default

C/C++ compiler front-end. However, GCC is licensed over GLP (General Public License),

which prevents its usage as a front-end compiler in some proprietary projects. It also

had limited support for Objective-C at the time, which was a significant drawback since

Apple had made the LLVM an integral part of its development tools (Xcode development

environment). To address this issues, Chris Lattner started the Clang project in 2006.

Hsu, Min-Yih [40] defines Clang as the LLVM’s official front-end for C-family pro-

gramming languages such as C, C++, and Objective-C, that is responsible for performing

the parsing, type checking, and semantic reasoning (among others) steps over the source

code. The Clang front-end parses the input source code into an Abstract Syntax Tree (AST)

that can be manipulated and modified as required, allowing complex code generation. As

a result, Clang generates an equivalent intermediate representation (LLVM IR), which is

processed and optimized by the following stages of the compiler infrastructure, eventu-

ally becoming machine code.

2.2.5 Halstead’s Metrics

Bundschuh, M. and Dekkers, C. [18] define Halstead’s Metrics as a set of mea-

sures introduced in 1997 by Maurice H. Halstead [35] to evaluate software source code

complexity. It evaluates the complexity of a program based on the total number of op-

erators, such as comparisons, arithmetic operators, alternatives, loops, reads, and writes

(N1), the total number of operands, such as variables, constants, marks, records, and

unions (N2). The total number of distinct operators (n1), and the total number of distinct

operands (n1). As depicted in Figure 2.1, the metrics estimate the program vocabulary,

length, volume (in bits), programming difficulty, and programming effort.

34

Table 2.1: Halstead’s Metrics (extracted from [43])

Symbol Value Metric

n n1 + n2 Program vocabulary

N N1 + N2 Program length

V N × log2 n Volume

D (n1 / 2) × (N2 / n2) Difficulty

E D × V Effort

Legaux et al. [43] state that Halstead’s Metrics are not tied to a specific pro-

gramming language since they capture the complexity of writing based on the number

of operands and operators. However, there is no standard definition of what exactly is

considered an operator or an operator. The author states that a reasonable definition for

the C++ language could be presented as follows: operands are composed of type names,

constants, and user-defined identifiers. While operators are composed of storage class

specifiers (static, virtual, inline, ...), type qualifiers (const, friend, ...), reserved instruc-

tions (for, if, struct, namespace, typenames, ...), all the arithmetic and logical operators

(+, ==, &&, ...), the ";" delimiter and the parenthesis pairs.

According to Andrade [8] based on these metrics, it is possible to stipulate the

programming time (T) required to convert an algorithm to a specific programming lan-

guage by using the equation T = E/S, in which S stands for the rate in seconds the

brain makes elementary mental discriminations. Gordon et al. [27] states that the speed

the brain takes to make elementary discriminations in software science can be obtained

from psychology as 5 < S < 20 discriminations per second. However, this time may vary

according to the programmer’s concentration level and fluency in the given language.

35

3. RELATED WORK

This chapter presents the related work exploring the literature centering scien-

tific documents within the area of streaming processing systems. Section 3.1 presents a

comprehensive literature analysis of the fault tolerance and message delivery guarantee

mechanisms employed by different systems within this domain. Section 3.3 presents an

overview of existing high-level parallel programming interfaces for stream processing.

3.1 Related Research for Fault Tolerance in Stream Processing Systems

In this section, we present a detailed review of the fault tolerance mechanisms

and message delivery guarantees present in the related research. The addressed sys-

tems include Apache Flink, Apache Spark Streaming, Apache Spark Structured Streaming,

Apache Storm, ChronoStream, Google DataFlow, MillWheel and Naiad. Table 3.1 presents

the search string used in this research. This search string has been executed over the

Scopus database approaching the terms "stream processing", "stream data processing",

"stream computation", "streaming API", "data processing system", and "dataflow." The

documents are limited to conference papers and articles related to the field of computer

science published between 2011 and 2024.

Table 3.1: Search string composition

Search String

TITLE-ABS-KEY ("stream processing" OR "stream data processing" OR "stream

computation" OR "streaming API" OR "data processing system" OR "dataflow")

AND PUBYEAR >2011 AND PUBYEAR <2024 AND (LIMIT-TO (DOCTYPE , "ar")

OR LIMIT-TO (DOCTYPE, "cp")) AND (LIMIT-TO (SUBJAREA, "COMP"))

The Scopus database was chosen because it indexes many relevant sources in

the researched area and is one of the primary databases used by the research group. The

results of the search have been sorted in descending order based on the number of cita-

tions. To include or exclude documents from the search, a set of inclusion and exclusion

criteria has been created and summarized in Table 3.2. In addition, the Google Dataflow

paper did not appear in the results of the search string and was manually included in the

list due to its relevance.

36

Table 3.2: Inclusion and exclusion criteria

Inclusion criteria

1. The publication must provide complete access to the material;

2. The document must be published in journals or conferences;

3. The publication must be related to the topic of stream processing systems.

Exclusion criteria

1. Publications written in languages other than English or Portuguese;

2. Publications in editorials, prefaces, abstracts, interviews, news, and reviews;

3. Incomplete or inconsistent publications;

4. Duplicated publications in different databases.

3.1.1 Apache Flink

The work of Carbone et al. [19] presents the state management in Apache Flink

[13], which consists of a framework and distributed stream processing engine that enables

stateful computations on data streams. Apache Flink has incorporated fault tolerance

through a distributed snapshot mechanism similar to the classical Chandy-Lamport proto-

col [21], which allows the system to revert to a previous consistent snapshot but does not

provide exactly-once guarantees on its own. In version 1.4.0, the two-phase commit fea-

ture described by Carbone et al. [19] was introduced, enabling end-to-end exactly-once

applications for data sources and sinks that support transactions.

Carbone et al. [19] state that during Apache Flink regular execution, snapshot

markers are injected on the data stream to divide the records into logical slices called

epochs. An alignment phase is executed for operators with multiple input sources to syn-

chronize all the input sources into the same epoch before proceeding with a snapshot.

During this alignment phase, when an operator receives a new snapshot marker, the op-

erator blocks the input channel that received the marker and waits for the same marker

to arrive from all the input channels. Once the snapshot marker is received from all the in-

put channels, the operator makes a snapshot of its current state, broadcasts the received

marker to all its output channels, and unblocks the input channels. The distributed snap-

shot is complete once all the operators have performed a snapshot for the given epoch.

On recovery, the system restores the most recent complete snapshot and re-

processes the records from the incomplete epoch that was active during the failure. Re-

garding state management, Apache Flink classifies states into two types: local state and

external state. The local state includes all the in-memory states or within an embedded

key-value database like RocksDB. The external state encompasses all states stored over

external databases. For local states, when a snapshot is started, a copy of the current

37

state is written to reliable storage, such as a distributed filesystem. For external states,

the approach varies based on the capabilities of the external database.

For databases with MVCC (Multi-Version Concurrency Control) support, the state

changes associated with each snapshot can be stored across multiple database versions.

Once the global snapshot is complete, the database version is incremented, and if the

snapshot fails, it is decremented. For Non-MVCC databases, each snapshot follows a two-

phase commit protocol: when an operator makes a snapshot, the state changes are logged

and pre-committed. Once the global snapshot is complete, all pre-committed changes are

fully committed by the JobManager in an atomic transaction.

3.1.2 Apache Spark Streaming

Spark Streaming [10] [72] is an extension of the Apache Spark ecosystem, devel-

oped for high-throughput and fault-tolerant data processing. On Apache Spark Streaming,

the continuous data stream is represented by an abstraction called "Discretized Stream"

or DStream. The DStream aggregates the records in batches (e.g., the 1-second interval

of records) represented as an RDD (Resilient Distributed Dataset).

Zaharia et al. [71] introduce the Resilient Distributed Datasets (RDDs) as a dis-

tributed memory abstraction that allows fault-tolerant in-memory computations over large

clusters. RDDs are read-only, partitioned data collections exclusively formed through de-

terministic operations on data stored in stable storage or other RDDs. One of the main

characteristics of RDD is that it keeps information about how it was created (its lineage) in

a way where a program cannot reference an RDD that it cannot reconstruct after a failure.

During the normal execution of Spark Streaming, the system will start running the

"driver-program", which contains the "main" method of the user application. The driver will

request the cluster manager (e.g., Mesos or YARN) for resources to launch the "executors"

responsible for running the tasks associated with the application. Once the executors are

initiated, they connect with the driver to receive work. The driver determines the number

of tasks that need to be created and generates a logical and physical execution plan.

Upon completion, the executors send back the results to the driver. When all the tasks are

completed, Spark requests the cluster manager to release all the resources associated

with the application.

Spark Streaming provides two kinds of data source operators to achieve exactly-

once delivery guarantees. The first one is called a "reliable" data source and requires that

the external system supports a confirmation that Spark has received the data, and also

supports rewinding and resending data in case of a failure. The second kind of data source

is called "unreliable". This data source is simple to implement but doesn’t provide fault-

tolerant guarantees. Spark Streaming also offers guarantees for sink operators through

38

two methods: "Idempotent updates", which ensure that multiple attempts to write data al-

ways result in the same outcome, and "Transactional updates", which execute all updates

in atomic transactions, providing exactly-once guarantees.

To prevent data loss in the event of a node failure, Spark 1.2 implemented the

write-ahead log feature. This ensures all received data is written in a persistent storage

before processing. Additionally, for cases where it is too costly to recreate RDDs from their

lineage, Spark supports periodic progress checkpoints. In the occurrence of a failure on

the driver node, the entire topology stops and needs to be restarted. Upon initialization,

the driver program utilizes the latest completed checkpoint to reconstruct the context and

restart the executor nodes.

3.1.3 Apache Spark Structured Streaming

Apache Spark Structured Streaming [11][14] consists of a fault-tolerant stream

processing engine that, similar to Apache Spark, allows the user to express the application

logic using high-level abstractions. The main difference between these two streaming

engines is that Structured Streaming is built on top of the Spark SQL engine and allows

batch and continuous stream processing.

Structured Streaming utilizes two abstractions to represent a continuous data

stream: the Dataset and DataFrame. The Dataset is a distributed collection of data that

offers the same advantages as RDDs but can operate within the Spark SQL engine. The

DataFrame abstraction, on the other hand, is a Dataset that incorporates named columns,

similar in concept to a table in a relational database. Also, Structured Streaming offers

two distinct operating modes: micro-batching and continuous processing (introduced in

Spark 2.3). By default, micro-batching is employed, which aggregates records into small

data batches, similar to Spark Streaming’s discretized streams execution model. This

approach delivers latencies up to 100 milliseconds, and offers exactly-once delivery guar-

antees. Alternatively, continuous processing mode reaches even lower latencies, up to

one millisecond, but only provides at-least-once delivery guarantees.

To provide exactly-once semantics, Structured Streaming assumes that every

data source is replayable and uses start and end offset positions to track progress. The

engine saves these offsets on checkpoint and write-ahead log. Structured Streaming also

provides sink operators designed to be idempotent for handling reprocessing.

On Spark Structured Streaming, if a failure occurs, the entire execution pipeline

is stopped, and upon restart, the system uses the latest completed checkpoint and the

information on the write-ahead logs to continue the processing from where it has stopped.

39

3.1.4 Apache Storm

Trident [12] can be described as an effort to provide exactly-once delivery guar-

antees for Apache Storm [68]. For archive exactly-once guarantees, Storm follows two

primitives. The first is that each batch of data has a unique identifier called the "transac-

tion_id". The second one is that state updates are ordered among batches, so batch "3"

updates won’t be applied before batch "2" updates have succeeded.

With these primitives, Storm stores both the value and the unique identifier in

an atomic transaction over an external database. If a failure happens and some batch is

replayed, Storm verifies if the identifier already exists on the database; if it exists, the

batch can be ignored. This verification can be turned off if the user wants to avoid paying

the cost of storing the unique identifier and verifying his existence on the database; in this

scenario, the user still has at-least-once delivery guarantee.

Storm provides a checkpoint mechanism for fault-tolerance where a message

flows through a separate channel across the topology. In this checkpoint mechanism, a

new transaction is started at a given time interval, and a special checkpoint source emits

a checkpoint message. When a stateful operator receives a checkpoint message, it saves

the current state and prepares the transaction, then notifies the checkpoint source that

the message has been received and forwards it to the next operator. The checkpoint

is completed, and the transaction is committed once the checkpoint source receives ac-

knowledgments from all the operators.

The recovery phase is initiated when the topology is launched for the first time

or in case of any detected failure. During this phase, if the previous transaction has not

been prepared, the checkpoint source will send a rollback message, causing the operators

to abort their current transaction and the data source to resend the data. However, if the

previous transaction was successfully prepared but not yet committed, the checkpoint

source will send a commit message, enabling any prepared transaction to be committed.

3.1.5 ChronoStream: elastic stateful stream computation in the cloud

The work of Y. Wu and K. -L Tan [70] describe ChronoStream as a system de-

signed to run distributed stateful stream computation in the cloud, with dynamic scaling

and failure recovery. In ChronoStream, each operator is encapsulated in a container that

periodically reports its current status, such as heartbeat and computation progress, to a

job manager. The job manager issues instructions to the containers when dynamic scal-

ing or failure recovery is required. Each container periodically makes a checkpoint of its

40

active slices of records to remote peer containers, and the job manager also records any

update on the container configuration.

To track the computation’s progress, ChronoStream labels each record in the

stream with a unique identifier and maintains a vector containing the number of con-

sumed records for each input stream. When a checkpoint is triggered, the progress vector

and a snapshot of the records are recorded.

For fault tolerance, ChronoStream implements Chained Backups and Asynchronous

delta checkpointing. On the Chained Backup, the system periodically makes a checkpoint

of the active slices of records to remote nodes for supporting elasticity and high avail-

ability; under this checkpoint, each slice of records is saved to its peer containers with

a locality-sensitive data placement scheme in a way where the backups are placed in an

interconnected chain.

The Asynchronous Delta Checkpoint divides the computation’s lifespan into three

stages: normal, checkpointing, and merging. During the normal phase, all state updates

are logged on an in-memory key-value store, with the updated entries being marked with

a "dirty" bit. During the checkpoint phase, the system scans the key-value store and saves

the updated entries to remote storage. This phase is nonblocking; any incoming updates

are buffered to a temporary data structure. Finally, all buffered updates are integrated

into the key-value store in the merging phase. And once a failure is detected, the job

manager requests neighbor nodes for slice reconstruction. The neighbor nodes use the

data from the Chained Backups to reconstruct the slice of records of the failed node, and

the normal execution flow continues.

3.1.6 Google Dataflow

The work of Akidau et al. [2] introduces Google Dataflow as a data-processing

service designed on top of years of experience from Google with FlumeJava and MillWhell.

Among the primary motivations for developing Google Dataflow was the internal need for

a model that unifies batch and streaming processing models. Other motivations came

from previous experiences with the Lambda Architecture, where the consumers ran their

streaming pipelines in a weak consistency mode, with a nightly MapReduce to verify the

reliability of the results, resulting in consumers losing trust over time in the results gener-

ated by the streaming pipelines with weak consistency, and reimplementing their systems

with strong consistency solutions.

Google Dataflow works in a software-as-a-service model, where all resources

needed to run the service are provided by the Google Cloud Platform (GPC). Once a

Dataflow task is initiated, the Dataflow service assigns a set of worker virtual machines

to carry out the tasks, dynamically scaling the number of virtual machines up or down as

41

required and disposing of them once the job is finished or terminated. The user is only

charged for the resources used during the execution of the tasks.

Dataflow reaches exactly once delivery guarantees using a strategy that involves

shuffling the data between the workers using remote procedure calls (RPCs). Each mes-

sage is tagged with a unique identifier, and the workers try to resend it until they receive

a confirmation that it has been received at the destination. Dataflow workers use a Bloom

filter over the unique message identifier to overcome duplicated messages. Upon receiv-

ing a new message, the user code is executed over the input records, which may generate

state changes or output records. These outcomes are then stored in a fault-tolerant stor-

age, in a stage similar to a checkpoint, before being sent to downstream operators.

Dataflow also requires that data sources support rewind and replay records if

needed to reach exactly-once delivery guarantee. For deterministic sources (such as

Apache Kafka or Google Pub/Sub), Dataflow uses start and end offset positions to track

progress. For non-deterministic sources, Dataflow requires that the data source informs a

unique record identifier to avoid duplication. Also, to ensure that the records are delivered

exactly-once, Dataflow provides built-in idempotent sink operators based on the Apache

Beam SDK, designed not to produce duplication.

In a failure, the Dataflow service automatically restarts the failed worker and

retries the execution of the user code. This behavior can generate unwanted results if the

user code interacts with external systems (e.g., Writing data on an external database). In

this case, the user must guarantee that his code can be executed multiple times without

generating unwanted side effects.

3.1.7 MillWheel: Fault-Tolerant Stream Processing at Internet Scale

Tyler Akidau et al. [1] describe the programming model, implementation, and

fault-tolerance guarantees of MillWheel, a low-latency data-processing framework for data-

stream applications widely used at Google. There are two modes in which MillWheel can

operate. The first mode, "Weak Productions", comes with lower resource and latency costs

but does not guarantee exactly-once delivery. The second mode "Strong Productions" of-

fers exactly-once delivery guarantee but comes with higher resource and latency costs.

On the normal execution of MilWheel in "Strong Production" mode, every time

an operator receives a record from an input stream, the record is checked against dupli-

cation using a Bloom filter, and the user code is executed for the input record, possibly

resulting in state changes or result records that are committed to the backing store (e.g.,

BigTable), in a process similar to a per record checkpoint. The computation result is deliv-

ered to the output stream; the input stream is notified that the record has been processed

successfully, and the system is informed that older checkpoints can be garbage collected.

42

By default on MillWheel, as long the application uses the state and communica-

tion abstractions, any failures and retries are hidden from the user. The stream abstraction

retries to send the records until they receive an acknowledgment that they have been re-

ceived, obtaining the at-least-once requirement, a pre-requisite for the exactly-once.

In the occurrence of a failure, only the failed operator is restarted, and the in-

put stream abstraction will replay the records from the latest completed checkpoint. The

Bloom filter will discard any duplicated record the operator has already processed. When

the sink operator receives a record, it also performs a duplication check, executes a pre-

pared action over an external system (e.g., write the output on a database), and notifies

the input stream that the record has been processed so the checkpoint of this record can

be garbage collected.

3.1.8 Naiad: A Timely Dataflow System

Murray et al. [54] describe Naiad as a high throughput distributed system for

data processing and execution of cyclic dataflow programs that has the ability to run both

interactive and incremental computations. Naiad is implemented as a library for the C#

programming language and works upon a specific computational model named "timely

dataflow". In the timely dataflow model, the records are marked with a logical timestamp

representing progress points in the computation, which are used to keep an asynchronous

coordination mechanism.

In the distributed scenario, Naiad uses the concept of local frontiers to keep a

local approximation of progress. In this scenario, each worker node keeps a local approxi-

mation of the global progress, and every time a worker node processes a record, it includes

this record to his local approximation and broadcasts the information of this event to the

other workers, allowing them to include this event to their own local approximations.

As fault-tolerance mechanism, Naiad incorporates a checkpoint and restore fea-

ture in every stateful operator. The system runs this feature as appropriate to ensure that

all workers have consistent checkpoints. During the scheduled checkpoints, all processes

and message queues are paused, and the system flushes the message queues and ini-

tiates a checkpoint on each operator. Once the checkpoint is complete, the worker and

message delivery threads are resumed. In case of a process failure, all live processes

revert to the last completed checkpoint while the remaining processes take over the data

of the failed process.

43

3.1.9 Streamscope: continuous reliable distributed processing of big data streams

The work of Lin, W et al. [45] introduces StreamScope (or “StreamS") as a stream

processing extension for the SCOPE batch-processing system [73]. On StreamScope the

user application is compiled into a DAG (Directed Acyclic Graph), which is converted into

a logical execution plan. The StreamScope optimizer evaluates the logical execution plan

and chooses the configuration that will result in the lowest estimated cost based on the

current available resources, data statistics (such as incoming rate), and an internal cost

model. Then, the optimized execution plan is mapped into an appropriate number of

physical nodes for parallel execution and scaling.

On StreamScope, the user application is created using two base abstractions

(rStream and rVertex) that respectively represent the communication channels between

the operators and the operator itself. The rStream abstraction maintains supports con-

current readers and writers, has the ability to rewind records, and assigns a continuously

increasing number to each record for progress tracking. The rVertex abstraction is re-

sponsible for the event processing, it keeps the operator state, and periodically saves its

current progress using checkpoints.

StreamScope provides three different recovery approaches for fault tolerance

and allows each operator to recover from failures independently. The first approach in-

volves a checkpoint-based recovery mechanism where each operator conducts periodic

checkpoints on reliable storage. If a failure occurs, the operator is restarted, and execu-

tion resumes from the most recent checkpoint.

The second strategy is replay-based recovery, where entire event windows (e.g.,

the last 5 minutes) are reprocessed instead of using checkpoints. In this method, the

event window that was active at the time of failure is reprocessed, potentially resulting

in a large number of records being reprocessed. However, this approach eliminates the

overhead associated with checkpointing.

The third strategy is replication-based recovery, where multiple instances exe-

cute the same operator simultaneously. In this scenario, some instances may perform

checkpoints, while others focus solely on regular application execution. Consequently,

the additional latency caused by checkpoints does not impact the final result. If a failure

occurs, an instance can recover the checkpoint from another instance to speed up the

recovery process.

44

3.1.10 TimeStream: Reliable Stream Computation in the Cloud

The work of Qian et al. [58] introduces TimeStream as a distributed stream pro-

cessing system designed for low-latency processing of high volumes of data across large

clusters of commodity machines. The development of TimeStream was inspired by the

StreamInsight [4] programming model, allowing applications written for StreamInsight to

run on TimeStream without any modifications. Therefore, both TimeStream and StreamIn-

sight applications are written in LINQ (Language-Integrated Query) [51], using a Microsoft

.NET programming language such as C#.

TimeStream uses a "resilient substitution" mechanism to replace or reallocate

operators in case of failures or adjust the system to workload changes. This mechanism

assigns a unique sequential identifier to each record on the stream and tracks the output

dependencies and the state of each operator to minimize the number of records repro-

cessed during recovery. When a failure occurs, the recovery process involves initiating a

recovery task for each failed operator. This task retrieves the output dependencies and

the operator state, recursively initializing a new recovery task for any necessary records

unavailable in the input stream. Once all the required data is retrieved, the recovery

task clones the operator in its initial state and supplies it with all the recovered records.

Given that each operator performs deterministic computation, the data generated after

the recovery task is the same as that generated by regular execution.

The resilient substitution mechanism retrieves a set of records to recover to-

gether rather than recovering each one individually. For operators whose state depends

on all previously processed records, the recursive recovery task would imply restoring

and reprocessing all the records since the beginning of the application. For this specific

scenario, TimeStream also supports periodic state checkpoints.

3.2 Summary of finds for Fault Tolerance in Stream Processing Systems

Table 3.3 presents a summary of fault tolerance mechanisms and message de-

livery guarantees discussed in the related work, where it is evident that the checkpoint

mechanism emerges as the most popular among the analyzed solutions. However, de-

spite its popularity, there is a lack of uniformity in implementing this mechanism, with

each application seemingly addressing the checkpoint in a distinct manner.

45

Table 3.3: Fault tolerance and processing semantics of the related systems

Fault tolerance Progress tracking
Year System

Programming

Language

Delivery

Guarantee Checkpoint Log Transaction-based Progress-based Lineage-based

2011 Apache Flink [13, 19, 20] Java, Scala, Python Exactly-once X X

2011 Apache Storm [12] Java, Python Exactly-once X X

2013 MillWheel [1] Exactly-once X X

2013 Naiad [54] C# Exactly-once X X

2013 TimeStream [58] C# Exactly-once X X

2014
Apache Spark

Streaming [10]
Scala, Python, Java Exactly-once X X

2015 ChronoStream [70] C++ Exactly-once X X

2015 Google Dataflow [2] Java, Python, Go Exactly-once X X

2016 Streamscope [45] C# Exactly-once X X

2018
Apache Spark Structured

Streaming [11, 14]
Scala, Python, Java Exactly-once X X

2025 ResiPipe C++ Exactly-once X X

Regarding message delivery guarantees, all the analyzed systems provide exactly-

once semantics in some way, even if it is necessary to comply with a series of prerequi-

sites to reach this level of conformity. For instance, Spark Structured Streaming offers

an exactly-once guarantee only in micro-batch mode; MilWheel provides this guarantee

only in "Strong Productions" mode; Flink requires sources and sinks that support trans-

actions; DataFlow requires data sources that support rewind and replay records; And

Spark Streaming demands data sources which acknowledgment support and the ability

to rewind and replay records as needed.

Concerning the programming language of the analyzed stream processing sys-

tem, only ChronoStream is written in C++. However, since ChronoStream does not pro-

vide public access to its source code or executable binaries, it’s not possible to compare

the performance and usability aspects between ChronoStream and ResiPipe. In contrast,

the other analyzed systems are written in programming languages such as Java, Scala,

Python, and Go. The MillWheel work does not provide any information regarding its pro-

gramming language, and since it is a proprietary software internally used at Google, it was

not possible to find additional public information regarding its implementation.

Compared to the related work, this master’s thesis introduces ResiPipe, a fault-

tolerant C++ distributed stream processing library built on top of MPI that eases the de-

velopment of stream processing applications over clusters of commodity machines. The

fault-tolerance approach used by ResiPipe draws inspiration from the same mechanisms

used by Apache Flink [20]. The system creates periodic incremental checkpoints through

the Asynchronous Barrier Snapshotting (ABS) protocol, and the two-step commit mecha-

nism can be applied to applications requiring exactly-once delivery guarantees.

46

3.3 Related Research for High-Level Programming Abstractions for Stream

Processing

This section presents a set of related high-level programming abstractions for the

development of stream processing applications, including domain-specific languages and

programming models. Only programming abstractions that provide a streaming interface

are included.

3.3.1 DirectFlow

DirectFlow [44] is a domain-specific language (DSL), a compiler and a runtime

system for the development of Information-Flow System (a.k.a stream processing sys-

tems) for the Java programming language. As depicted in Listing 3.1, the DirectFlow lan-

guage defines the stream processing components using pipes as basic building blocks.

The pipes can be used to filter, prioritize, duplicate, split or decompose the stream items.

Listing 3.1: DirectFlow example. Extracted from [44].

pipe Filter {

inport in;

outport out;

process {

Object packet;

packet = in ?;

out ! packet;

}

}

The DirectFlow pipe modules contain the definition of the stream processing op-

erator input and output data ports, the data processing blocks, and an optional Java su-

perclass declaration. The DirectFlow compiler verifies if the pipe modules are valid and

generates one or more Java classes for each specified module. The DirectFlow runtime

system allows the developers to integrate these custom components with standard Java

components. The DirectFlow also validates if the components are consistent and does not

generate unimplementable pipelines. Finally, the composed pipeline is generated and can

be executed as a regular Java program.

47

3.3.2 OmpSs-2

The OmpSs-2 [29] is the second generation of the OmpSs programming model for

the development of concurrent applications. The OmpSs-2 model follows the fundamental

design principles of OpenMP, which consists of a high-level abstraction that uses pragmas

of the C language to express parallelism, and StarSs (Star Superscalar) which consists of

a task-based programming model that aims to the enable automatic exploitation of task

parallelism while keeping the application unaware of the target execution platform.

Listing 3.2: OmpSs example. Extracted from [15].

int main(int argc, char *argv[])

{

int x = argc;

#pragma omp task inout(x)

{

x++;

}

#pragma omp task in(x)

{

printf("argc + 1 == %d\n", x);

}

#pragma omp taskwait

return 0;

}

As depicted in Listing 3.2, similar to the OpenMP model, the OmpSs also uses C

pragmas to express parallel code regions. The data dependencies are expressed in the

task construct by using the in, out and inout clauses, which specify the input, output, and

input/output data from the task respectively. Currently, the OmpSs-2 has two reference

implementations, one of which uses the nOS-V [74] and NODES [16] as runtime systems

with the Clang compiler. A second implementation that is being deprecated is based on

the Nano6 [17] runtime with the Clang compiler.

3.3.3 OpenStream

The OpenStream [57] programming model is a data-flow extension of OpenMP

that aims to ease the development of dynamic dependent tasks by abstracting the task

communication, and providing support for complex data structures and unbounded fan-in

and fan-out communications.

48

Listing 3.3: OpenStream example.

int main (int argc, char **argv)

{

int i, x __attribute__((stream));

for (i = 0; i < 10; ++i)

{

#pragma omp task firstprivate (i) output (x)

{

x = i;

printf ("Task 1: write %d to stream.\n", i);

}

#pragma omp task input (x) firstprivate (i)

{

printf (" => Task 2: read from stream %d (%d).\n", x, i);

}

}

return 0;

}

As depicted in Listing 3.3, OpenStream uses OpenMP pragmas to define par-

allel code regions, and allows the specification of the tasks input, outputs, and private

data dependencies. The OpenStream model is implemented on top of the GCC compiler

OpenMP expansion pass, which was modified to parse the newly introduced input and out-

put clauses for the OpenMP task constructs, allowing the GCC compiler to generate an

intermediate representation while preserving typing information.

3.3.4 Spidle

Spidle [22] is a domain-specific language (DSL) designed explicitly for develop-

ing stream processing applications. The language allows the development of applications

through the usage of high-level components that perform filtering and mapping opera-

tions over the data stream. Spidle also performs verifications to check if the user-defined

components express valid programs to enhance the robustness of the applications.

Listing 3.4: Spidle example. Extracted from [22].

filter Weighting {

interface {

stream in bit[50][16] e;

stream out bit[40][16] x;

49

}

import {

func Weighting_filter from "rpe.c";

}

run {

Weighting_filter (e, x);

}

}

A Spidle is defined as a network of stream tasks, in which Flow declarations (com-

ponents) specify how the stream items flow through the stream tasks (nodes and edges),

as well as the data type of the items. Listing 3.4 provides an example of a Spidle filter

component. The input and output ports of the component are defined inside the interface

attribute. Functions from other files can be imported using the import attribute. And the

computation that is executed over the stream items is defined inside the run attribute.

3.3.5 StreamIt

StreamIt [66, 67] is a domain-specific language (DSL) and a compiler for the de-

velopment of stream processing applications in the Java programming language. The

StreamIt language has the goal of providing a high-level abstraction for improving the

programmer productivity and robustness, while the StreamIt compiler has the goal of per-

forming optimizations to achieve high performance.

Listing 3.5: StreamIt example. Extracted from [66].

class FIRFilter extends Filter {

float[] weights;

int N;

void init(float[] weights) {

setInput(Float.TYPE); setOutput(Float.TYPE);

setPush(N); setPop(1); setPeek(N);

this.weights = weights;

this.N = weights.length;

}

void work() {

float sum = 0;

for (int i=0; i<N; i++)

sum += input.peek(i)*weights[i];

input.pop();

output.push(sum);

}

50

}

class Main extends Pipeline {

void init() {

add(new DataSource());

add(new FIRFilter(N));

add(new Display());

}

}

As presented in Listing 3.5, the most basic unit of computation inside a StreamIt

application is the Filter. The filter class implements the work function which is responsible

for consuming and processing items from the input channels and forwarding its results

to the output channels, which consist of FIFO queues declared in the Filter base class.

StreamIt supports both shared-memory and distributed architecture using the TCP/IP pro-

tocol for processes communication.

3.4 Summary of finds of high-level programming interfaces

Table 3.4 summarizes the high-level programming abstractions discussed in the

related work. Among the analyzed abstractions, DirectFlow, Spidle, and StreamIt are ex-

ternal domain-specific languages, which means that they implement their own set of syn-

tax and grammar rules instead of being built on top of another programming language,

requiring the user to rewrite any existing application using the DSL syntax.

Table 3.4: Related work comparison for high-level programming interfaces

Work Interface Type
Supported

Architecture

Programming

Language

Supported

Runtimes

Fault Tolerance

Mechanism

DirectFlow [44] External DSL Multi-core Java Threads None

OmpSs-2 [29] C pragmas
Multi-core,

Distributed
C/C++

nOS-V [74], NODES [16],

Nano6 [17]
None

OpenStream [57] C pragmas Multi-core C/C++ Threads None

Spidle [22] External DSL Multi-core C Threads None

StreamIt [66, 67] External DSL
Multi-core,

Distributed
Java Custom None

SPar [31, 30, 32] C++ annotations
Multi-core,

GPU, Distributed
C++

FastFlow [32], OpenMP [38],

Intel TBB [37], GSParLib [61, 62],

DSParLib [56, 49], ResiPipe

ABS [20] using

ResiPipe

OpenSs-2 and OpenStream extend the existing OpenMP capabilities by introduc-

ing new specific stream processing clauses to the existing OpenMP pragmas for task paral-

lelism, requiring fewer modifications over the user source code than external DSLs. How-

ever, some level of adaptation over the source code is still expected to implement the

task parallelism model used by these abstractions. In comparison to the analyzed pro-

51

gramming interfaces, SPar is the only abstraction that uses C++ annotations to express

parallel regions in the source code, provides multi-core support, distributed, and GPU ar-

chitectures, and provides fault tolerance through the ResiPipe runtime, which is further

described in Chapter 4.

52

4. THE RESIPIPE LIBRARY

In this section, we introduce the fundamental concepts of ResiPipe, a C++ library

designed to simplify the development of fault-tolerant distributed stream processing ap-

plications on clusters of commodity machines. ResiPipe is a header-only library that uses

OpenMPI to create/communicate processes across multiple machines. It can be utilized as

a standalone library or as a target for code generation within the SPar software ecosystem.

In ResiPipe, the only file that needs to be compiled alongside the user application

is the monitor agent. This agent is responsible for launching, monitoring, and restart-

ing processes when failures are detected. For process communication, ResiPipe utilizes

OpenMPI, which is an open-source implementation of the Message Passing Interface (MPI)

library. However, other MPI implementations can also be easily supported.

One of the main goals of the ResiPipe library is ease of use, allowing the user to

create distributed stream processing applications without worrying about communication,

serialization, or fault tolerance. To achieve this goal, the ResiPipe library exposes a series

of well-defined functions to the end user, divided into four namespaces: pipeline, utility,

keyStore, and serialization.

The pipeline namespace includes functions for creating applications using the

pipeline parallel pattern, such as the definition of the data source, middle stages, and sink

operators. Currently, the library only supports linear pipelines, which are translated into

a directed acyclic graph. However, other patterns can be further implemented. The utility

namespace groups useful functions, such as getting the machine’s name where the pro-

cess is running, the current MPI process identifier, or the total number of processes com-

posing the pipeline. The keyStore namespace provides functions for storing and retrieving

data from an embedded in-memory key store. The serialization namespace provides func-

tions for serializing and deserializing data to a binary representation. Under the hood,

ResiPipe uses the cereal library [28], which allows fast serialization of almost every type

in the C++ standard and supports the serialization of complex data types such as structs.

Each function the ResiPipe API provides will be further detailed in the section 4.1.

As depicted in Figure 4.1, one of the main components of the ResiPipe architec-

ture is the monitor agent, which is responsible for launching the MPI processes over the

cluster nodes, monitoring the machines using a heartbeat mechanism, and restarting the

application in case of failure. At startup, the monitor process receives a series of argu-

ments, such as the application path, the hostname of the machines, and the number of

processes that must be executed per machine. A detailed summary of the arguments

supported by the monitor agent is presented in Table 4.1.

The heartbeat mechanism used by the monitor agent can be classified as a par-

tial synchronous unreliable failure detection mechanism, which means that it can produce

53

Distributed File System

Operators Operators Operators

1 2 n

Monitor

Launch MPI
processes Heartbeat Restart processes

on failure

Figure 4.1: ResiPipe Architecture

Table 4.1: Summary of the monitor process arguments

Argument Description Type Default
-np Number of processes. int
-file Application path. string

-host
List host machines.
Format: "machine:max-processes".

string

-timeout Defines a time limit in seconds for the application execution. int
-max-retries Number of times the application will be restarted in case of failure. int 3
-clear-logs Clear the existing snapshots before running the application. bool false
-snapshot-each-time Time between each snapshot in seconds. (-1 for disable) int 30
-snapshot-each-records Number of records between each snapshot. (-1 for disable) int -1

false positives by misidentifying a live machine as a failed machine due to network insta-

bilities, causing the monitor agent to restart the application without necessity.

When the monitor agent is initiated, it starts by verifying whether all the host

machines are available before launching the user application. If one or more machines

are unavailable, the processes are redistributed over the remaining machines, possibly

exceeding the maximum number of processes per machine defined at the startup. Once

the user application is running, the monitor agent starts to send heartbeat requests every

5 seconds to verify if the machines are alive. If a machine previously identified as un-

available becomes available, the monitor automatically redistributes the processes over

the newly available machines. Using the same logic, if a machine previously identified as

available stops responding to the heartbeat requests, the monitor tags the machine as

unavailable and redistributes its processes over the remaining machines.

Regarding the high availability of the monitor agent, it can be executed both over

a dedicated machine or over one machine that shares the monitor agent and the user

application processes. Ideally, the monitor agent would be deployed across all machines,

54

using a consensus algorithm to elect a leader. This setup would reduce the risk of down-

time if the machine running the monitor agent fails. However, this kind of topology is

not yet supported and needs further implementation studies since it may handle network

partition (or split-brain) situations.

Also, regarding the current topology implementation, it is recommended that all

the machines must be connected to a fault-tolerant distributed file system, such as the

Hadoop Distributed File System (HDFS), to store snapshots in production environments.

This setup ensures that any machine can retrieve the latest complete snapshot of any

process during failure recovery, even if the process was running on a different machine.

However, for testing environments, ResiPipe can also be deployed over a network file

system (NFS) for distributed execution or over a regular file system such as NTFS (New

Technology File System) or Ext4 (fourth extended file system) for single-node execution.

In this case, it is recommended that the user create periodic backups of the snapshot

files over reliable storage to prevent data loss in case of machine or storage failure. The

ResiPipe library also can be easily modified to store snapshots in distributed databases

with concurrent access support.

4.1 Implementation and usage

With ease of use and fault tolerance as the primary goals, the ResiPipe library pro-

vides a high-level interface for the development of stream processing operators, including

a fault-tolerant in-memory key store, periodic state checkpointing, support for different

message delivery modes between operators, and a callback feature that allows the exe-

cution of user-defined functions after certain events of the application life cycle. In this

section, we describe the implementation and usage of the main features of the ResiPipe

library, which are provided through a series of well-defined functions, also referred to as

ResiPipe API, further summarized in Table 4.2.

In summary, the ResiPipe applications are expressed by the implementation of

three C++ class interfaces, named ISourceOperator, IMiddleOperator, and ISinkOperator,

that respectively represent the data source responsible for ingesting data from external

systems, the middle operators responsible from processing the stream items, and the sink

operator responsible for outputting the results to external systems. All the ResiPipe oper-

ator interfaces inherit the IBaseOperator interface, which contains the basic functions and

methods shared between all the ResiPipe operators. All the operators that send messages

inside the application have the sendMode attribute, which can vary between the default,

broadcast, and affinity mode, which are further detailed in Section 4.5.

In addition, all the operators exchange messages using the rp::Message struct,

which contains information regarding the message’s unique identifier, snapshot marker,

55

Table 4.2: ResiPipe API functions

Namespace Function Returns Description
rp init(argc, argv) void Initializes the ResiPipe environment
rp finalize() void Finalizes the ResiPipe environment
rp::serialization serialize(value) std::string Serialize the given value to a binary representation.
rp::serialization deserialize<type>(value) template type Deserialize a string to the given type.
rp::keyStore store(key, value) void Store a value in the key store.
rp::keyStore retrieve<type>(key) template type Retrieve a value from the key store.
rp::keyStore contains(key) bool Verifies if the given key exists on the key store.
rp::pipeline run(...) void Starts the pipeline execution.
rp::utility getRank() int Returns the process MPI identifier (rank).
rp::utility getCommunicatorSize() int Returns the MPI communicator size.
rp::utility getProcessorName() std::string Returns the processor/machine name.

rp::utility getExecutionPlan() struct
Returns a struct containing information regarding the
distribution of the processes among the machines.

rp::utility getNode() struct
Returns a struct containing information regarding the
current node, such as input and output channels.

the identifier of the operator that sent the message, and the message payload serialized

into a binary string format. Internally, ResiPipe wraps operators classes implemented by

the user inside a rp::PipelineNode class, which contains information regarding the node

identifier, the MPI processes rank that will execute the operator, and the input and output

channels of the operator. Figure 4.2 presents a simplified class diagram demonstrating

the relationship between these interfaces within ResiPipe.

rp::M essage

id : long

isBarrier : bool

isEndOfStream : bool

m arker : long

reprocessing : bool

source : int

value : std::string

rp::SendM ode

Default

Broadcast

Affinity

rp::IBaseOperator

onInit() : void

onExit() : void

onError(std::exception e) : void

onLocalSnapshotComplete(long marker) : void

onGlobalSnapshotComplete(long marker) : void

rp::ISourceOperator

ISourceOperator(rf::SendMode sendMode) : void

Emit(...) : void

onProduce() : void

sendM ode : rf::SendM ode

rp::IMiddleOperator

IMiddleOperator(int replicate, rf::SendMode sendMode) : void

Emit(...) : void

onReceive(rf::Message input) : void

replicate : int

sendM ode : rf::SendM ode

rp::ISinkOperator

ISinkOperator(bool ordered, long orderedStartAt) : void

onReceive(rf::Message input) : void

ordered : bool

orderedStartAt : long

rp::PipelineNode

PipelineNode() : void

id : int

rank : int

inputR anks : vector< int>

outputR anks : vector< int>

isSource : bool

isM iddle : bool

isSink : bool

isLastMiddleStage : bool

sourceStage : ISourceOperator *

middleStage : IMiddleOperator *

sinkStage : ISinkOperator *

sendMode
 sendMode

sourceStage
 m iddleStage
 sinkStage

Figure 4.2: Simplified ResiPipe class diagram

Listing 4.1 provides an example of a source operator in ResiPipe. Following the

stream processing model concepts, the source operator is responsible for ingesting data

from external systems such as databases, messaging systems, or sensors. It is expected

that ResiPipe supports any external system that provides a C++ API for integration such

56

as librdkafka1 for Apache Kafka and rabbitmq-c2 for RabbitMQ. In ResiPipe, the source op-

erator class must implement the ISourceOperator interface, which requires the definition

of the onProduce method. This method specifies how data is ingested from external sys-

tems. Within the onProduce method, users can call the Emit method to send new records

over the pipeline. The Emit method takes two arguments: The first is a numeric identifier

that must be incremental and unique for each record. If the sink operator is configured

to maintain order, this identifier will help ensure the correct sequence of messages. The

second argument of the Emit method is the record itself.

In ResiPipe, all operators exchange messages using the string datatype. There-

fore, if the record consists of a struct, class, number, pointer, or any other variable type,

it must be serialized to a string format using the provided serialize function. When the

record is received at the other end, it should be deserialized to its original type using the

deserialize function. If a programmer needs to use a datatype not supported by the Cereal

library, which covers almost all types in the C++ standard, they must implement their own

serialization functions.

Listing 4.1: ResiPipe source operator example

// Source Operator

class Source : public rp::ISourceOperator

{

public:

void onProduce()

{

// Continuously consume events from an external system

while(true)

{

Event item = consumeEvent();

Emit(item.id, rp::serialization::serialize(item));

}

}

};

Listing 4.2 provides an example of a middle operator, also known as a worker

stage. In ResiPipe, all middle operators must implement the IMiddleOperator interface.

This interface requires the implementation of the onReceive method, which defines how

the middle operator handles the reception of new records. Within the onReceive method,

the user receives the input record wrapped inside the Message struct. This struct contains

information regarding the record identifier, the operator that sent the record, the current

snapshot marker, a flag indicating whether the current marker is being reprocessed, and

1https://github.com/confluentinc/librdkafka
2https://github.com/alanxz/rabbitmq-c

57

the record data. Inside the onReceive method, the user can call the Emit method to

forward results to the next operator in the pipeline. Currently, it is not possible to choose

which operator the message will be sent to since, under the hood, ResiPipe abstracts the

load balancing and automatically chooses the output operator based on the application

pipeline. Unlike the source operator, the Emit method of the middle operator only takes

the output record as an argument. The record identifier is automatically assigned as the

same identifier as the input record.

Listing 4.2: ResiPipe middle operator example

// Middle Operator

class Middle : public rp::IMiddleOperator

{

public:

void onReceive(const rp::Message &input)

{

// Deserialize the input

Event item = rp::serialization::deserialize<Event>(input.value);

// Run some computation

int output = compute(value);

// Forward the result

Emit(rp::serialization::serialize(output));

}

};

Listing 4.3 presents an example of a Sink operator. In ResiPipe, the sink oper-

ator must implement the ISinkOperator interface, which, similar to the middle operator

interface, also requires the specification of the onReceive method and also receives the

input data wrapped over the Message struct. Conceptually, the ISinkOperator interface is

almost identical to the middle IMiddleOperator interface. However, it does not provide a

Emit method since the sink operator is always the last operator of the pipeline.

Listing 4.3: ResiPipe sink operator example

// Sink Operator

class Sink : public rp::ISinkOperator

{

public:

void onReceive(const rp::Message &input)

{

// Deserialize the input

int value = rp::serialization::deserialize<int>(input.value);

58

// Print the result

printf("Event Id: %lu, Value: %d\n", input.id, value);

}

};

Finally, the listing 4.4 presents an example of how the ResiPipe API is called inside

the main function of the application. All the features of ResiPipe, including the serializa-

tion functions and operator interfaces, are available using a single include statement. At

the beginning of the application, the user must call the init function to start the ResiPipe

environment. The init function receives the argc and argv values of the application and

is responsible for initializing the underlying MPI environment, starting the communication,

snapshot processes, and recovering previous snapshots at startup.

After initializing the ResiPipe environment, the user can declare the pipeline oper-

ators and set configurations, such as the number of replicas of each operator, and define

whether or not the sink operator must be ordered. Once the ResiPipe environment is

started and the operators have been properly declared and configured, the user must call

the pipeline::run function to start the pipeline execution. If the application requires mul-

tiple middle-stage operators, the user can give a vector of operators to the pipeline::run

function. At the end of the application, the user must call the finalize function to properly

stop the ResiPipe processes and finalize the underlying MPI environment.

Listing 4.4: ResiPipe main example

#include "resipipe/resipipe.hpp"

int main(int argc, char **argv)

{

// Initialize the environment

rp::init(argc, argv);

// Create the operators

Source source;

Middle middle;

Sink sink;

// Set the number of replicas

middle.setReplicate(2);

// Set the sink as ordered

sink.setOrdered(true);

59

// Start the pipeline

rp::pipeline::run(&source, &middle, &sink);

// For multiple middle operators:

// rp::pipeline::run(

// &source,

// std::vector<rp::IMiddleOperator*>{

// &middle1,

// &middle2,

// ...

// },

// &sink

//);

// Finishes the environment

rp::finalize();

}

The ResiPipe library provides a callback feature that allows the execution of user-

defined functions after specific events of the application life cycle through the implemen-

tation of the methods onInit, onExit, onError, onLocalSnapshotComplete, and onGlobal-

SnapshotComplete on the operator class. This feature was developed to allow users to

implement a two-phase commit mechanism for applications that interact with external

systems, such as databases or messaging brokers.

1. onInit: This method is executed at the operator startup before it starts to ingest

messages, allowing the user to allocate resources or open connections to external

systems.

2. onExit: This method is executed just before the operator exits, allowing the user to

release resources before the application stops.

3. onError: This method is triggered when a failure is detected, enabling users to

handle exceptions before the application exits or restarts. The onExit method is

always triggered after the execution of the onError method.

4. onLocalSnapshotComplete: This method is executed after the operator completes

a local snapshot.

5. onGlobalSnapshotComplete: This method is executed after a global snapshot

completes, allowing the user to output data to external systems with the guarantee

that any data before the global snapshot will not be reprocessed in case of failure.

60

4.2 State Management

ResiPipe implements a built-in fault-tolerant key store for state management

where stateful operators can store variables of almost every type of the C++ 11 stan-

dard, including complex types such as structs. The values inside the key store are limited

to the scope of the operator process, so one process cannot access the values from the

key store of another process. As exemplified on the Listing 4.5, the user can call the func-

tions store, retrieve, and contains of the keyStore namespace to manipulate values inside

the embedded key store.

Listing 4.5: Key Store usage example

// Stores a value in the key store

rp::keyStore::store("key", 123);

// Retrieves the value from the key store, assuming zero as the default value.

int value = rp::keyStore::retrieve<int>("key").value_or(0);

// Verifies if the key is defined

bool exists = rp::keyStore::contains("key");

The function store receives the key that identifies the value as its first argument

and the value itself as the second argument. When the store function is called, it serial-

izes the given value to binary representation, then places the value inside an in-memory

data structure, similar to an std::map. The retrieve function receives the key as its first

argument and the type that the value must be parsed as a template. The retrieve function

returns an std::optional for the given type, allowing the user to verify if the key contains

a value using the empty() function or define a default value using the value_or() function.

Finally, the contains function verifies if a given key exists inside the key store without

parsing its value; it receives the key as the first argument and returns a boolean.

4.3 Progress tracking

In ResiPipe, each message emitted by the source operator is associated with a

unique numeric identifier. This identifier is provided by the user as the first argument of

the emit function and represents a unit of progress within the application, such as the

current index of a loop, the offset position from an external messaging system, or the

line number in a text file. ResiPipe automatically stores the identifier of the last emitted

message in the key store, which is accessible by the key "RESIPIPE_SOURCE_POSITION".

In the event of a failure or system restart, this stored identifier enables the application to

61

resume from the latest complete checkpoint, thereby avoiding the need to reprocess all

records from the beginning. Also, for applications that require ordered sink operators, the

message identifier can be used to maintain a processing order among the messages.

It is important to note that the position retrieved from the latest checkpoint may

not correspond to the last emitted message, as checkpoints are typically created at reg-

ular time intervals rather than after each emitted record. Consequently, both middle and

sink operators must handle potential duplicate messages. To ease the management of

this situation, all the messages received by middle and sink operators are encapsulated

in a struct that includes the message identifier, the identifier of the processes that have

sent the message, the current checkpoint marker, the message value, and a flag indicat-

ing whether the checkpoint marker is being reprocessed or not. If the user application

interacts with external systems, this information can be used to implement additional val-

idations for records flagged as being reprocessed.

4.4 Fault tolerance

Andrade, Gedik, and Turuga [9] state that a failure in a stream processing sys-

tem can happen due to a software bug, such as a mistake in the application logic, a failure

at the system runtime, or a failure in the computational infrastructure, such as an un-

available machine, a network failure or storage failure. Since a failure in the user logic

may require changes in the application source code, ResiPipe focuses on providing fault

tolerance for fail-stop failures, crash failures, and infrastructure-level failures. Omission

failures are handled by the TPC protocol used by MPI, which tries to resend messages in

case of network malfunction. By default, if the MPI tries to send a message to an inacces-

sible machine, it generates a system crash, and ResiPipe restarts the application. ResiPipe

also assumes that the software stack and the network inside the cluster are closed and

controlled by the cluster infrastructure team, so ResiPipe does not handle Byzantine fail-

ures such as the intervention of malicious agents.

We choose to implement the fault tolerance mechanism at the runtime level in-

stead of using fault-tolerant implementations of MPI, such as LAM/MPI, FT-MPI, or the ULFM

(User-Level Failure Mitigation) implementation of OpenMPI, because the mechanisms em-

ployed by these MPI implementations are not specifically designed for stream processing

systems and can be discontinued at any time. OpenMPI deprecated the checkpoint/restart

feature in version 1.7 due to its limited adoption and lack of maintenance. Implementing

the fault tolerance mechanism at the runtime level also allows for greater flexibility to

implement exactly-once mechanisms, such as the two-step commit protocol.

Similarly to Apache Flink, the ResiPipe library implements a distributed snap-

shot mechanism for fault tolerance named Asynchronous Barrier Snapshotting (ABS) [20],

62

which is conceptually similar to the classical Chandy-Lamport algorithm [21]. Under reg-

ular execution, the ResiPipe source operator periodically injects a snapshot message over

the data stream. The snapshot message only carries a snapshot marker (aka. barrier),

which consists of a unique sequential number that identifies the current snapshot. After

the emission of the marker, all the messages emitted by the source operator are tagged

with the same marker, allowing the user to identify which snapshot marker is currently

being processed. By default, the ResiPipe library emits a new snapshot marker every 30

seconds. However, the user can set a custom snapshot interval at the application startup.

Source

Operator

Operator

Operator Sink

Snapshot
messages

Alignment

Figure 4.3: Representation of the snapshot alignment

As depicted in Figure 4.3, when a middle or sink operator receives a new snap-

shot marker, it blocks the input channel from which the snapshot marker has been re-

ceived in a step called alignment and waits until the same snapshot marker arrives on

all its input channels. Once the operator receives the same snapshot marker from all its

input channels, it stores the current state (the values at the embedded key store) over a

fault-tolerant distributed file system, broadcasts the new snapshot marker to all its output

channels, and unblocks all its input channels allowing the application to processed with

the regular execution. The global snapshot is considered complete once all the operators

have received the snapshot marker and persisted their states over reliable storage.

In the event of a failure or system restart, at startup, all the processes restore

the latest complete snapshot. It is essential to highlight that the events being processed

during the failure/restart are lost, and after the startup recovery, the system will continue

processing the events from the position of the last snapshot. Therefore, for data sources

that cannot rewind and replay records, all received records must be persisted in reliable

storage before processing, allowing these records to be recovered in the event of fail-

ure/restart. However, the current implementation of the ResiPipe library does not provide

functions that ease this process, requiring the user to implement a logging mechanism for

this situation. Also, restarting the application from its last snapshot may result in record

reprocessing, which generates duplicated interactions over external systems. For applica-

tions that require exactly-once semantics, a sink operator with idempotent capabilities is

63

required, or a two-phase commit mechanism, which can be employed using the callback

feature.

4.5 Load balancing

Regarding load balancing, in ResiPipe, all the operators exchange messages using

the on-demand model, in which the operators send their results to the first channel that

asks for work. This strategy aims for a better load balance between the operators since

it prioritizes sending work to operators who are not busy at the expense of exchanging

extra work request messages. In the current implementation, each operator starts by

sending work requests to all its input channels. These work request messages are sent

asynchronously using MPI non-blocking communication. After sending the work request

messages, the operator waits until a work message arrives from one of its input channels.

If the next stage of the pipeline is the sink operator, the output is directly sent to the sink

since the current implementation only supports one sink per pipeline. Otherwise, it sends

the output result to the first output operator that has requested work.

Default Affinity-based

Stage 2

Stage 2

Stage 1
2

Stage 2

Stage 2

Stage 1

Broadcast

1 1

1

2

2

Stage 2

Stage 2

Stage 1

1

2

3

4 even

odd

Figure 4.4: Message delivery modes

Also, in the ResiPipe library, each stage within the application pipeline can send

messages distinctly based on the application’s requirements. Figure 4.4 illustrates the

currently supported message delivery modes: the default mode, the broadcast mode, and

the affinity-based mode. In the default mode, each message is sent just once to the first

operator that has requested work. This mode is the most straightforward and is suitable

for most applications. In the broadcast mode, a copy of the same message is sent to all

the output channels. This mode is useful for applications where each replicated stage

performs a different action over the same record. In the affinity-based mode, all records

with a common user-defined property are grouped into the same output channel. For

example, in Figure 4.4, all messages with odd numbers are always sent to the first output

channel, while messages with even numbers are sent to the second output channel.

64

4.6 Final Remarks

This chapter introduced the basic concepts, implementation, and usage exam-

ples of ResiPipe, a C++ library that eases the development of fault-tolerant distributed

stream processing applications on clusters of commodity machines. The ResiPipe library

abstracts the implementation of the pipeline parallel pattern, message passing between

processes, data serialization, fault tolerance, and exactly-once semantics.

In summary, ResiPipe applications are created by implementing a set of C++

class interfaces representing different processing stages (also named operators) within a

stream processing application. To achieve fault tolerance, ResiPipe implements the Asyn-

chronous Barrier Snapshotting (ABS) protocol to create periodic consistent snapshots of

the application state and relies upon a monitor agent that uses a heartbeat mechanism to

detect when a machine becomes unavailable inside the cluster and automatically restart

and redistributes the processes among the remaining machines.

To achieve exactly-once semantics, ResiPipe requires replayable data sources or

the implementation of a logging mechanism that saves the input records before process-

ing. Regarding the sink operator, to achieve exactly-once semantics, ResiPipe requires a

sink operator with idempotent capabilities or the implementation of a two-step commit

mechanism in which the output results are only visible to external systems after a global

snapshot encompassing these results is complete. To implement the two-step commit

mechanism, ResiPipe provides a feature that allows the execution of user-defined func-

tions after certain events in the application lifecycle, such as when an operator starts or

exits, when an exception is detected, or when a local or global snapshot is complete.

However, in its current implementation, ResiPipe has some limitations that could

be improved in future works. These limitations can be summarized as follows:

• Supported parallelism: ResiPipe only provides support for linear pipelines without

feedback loops and only allows a single source and sink operator per application.

• Failure recovery: ResiPipe does not support dynamic process recovery. When a

failure happens, the entire application must be restarted from the latest snapshot.

• Dynamic scalability: ResiPipe does not support dynamic process scalability. After

the application starts running, it is not possible to dynamically change the replication

factor of the operators.

• High-Availability: Currently, there is no High-Availability deployment for the mon-

itor agent, which is responsible for detecting machine failures inside the cluster. If

the machine that is running the monitor agents fails, ResiPipe is unable to restart

and recover the application.

65

5. RESIPIPE EVALUATION

In this section, we present the results and the methodology used to evaluate

the performance overhead introduced by the ResiPipe library compared to the Open-

MPI, DSParLib, and MPR implementations of the same applications. We also evaluate as-

pects related to the throughput, failure recovery, and scalability concerning the number

of nodes. Thus, Section 5.1 describes the environment where the experiments are con-

ducted. Section 5.2 describes the data collection methodology. Section 5.3 presents the

results of the performance experiments. Section 5.4 describes the results of the failure

recovery experiments. Section 5.5 presents a programmability evaluation of the parallel

interfaces. Finally, Section 5.6 presents the final remarks obtained from the experiments.

5.1 Execution environment

The Cerrado cluster provided by the High-Performance Computing Laboratory

(LAD)1 of the Pontifical Catholic University of Rio Grande do Sul (PUCRS) was used to ex-

ecute the experiments. The cluster consists of 14 nodes running the Ubuntu 20.04.6 LTS

operating system with OpenMPI 1.10.7. Each node is equipped with two Intel(R) Xeon(R)

CPU E5-2620 0 @ 2.00GHz processors, totaling 12 cores and 24 threads, 24 GB of RAM,

2 Gigabit-Ethernet networks, and one Infiniband QDR 4x (32 Gbit/s) network. Among the

clusters provided by LAD, we choose the Cerrado cluster since it features an Infiniband

QDR network, which can benefit the execution of distributed applications.

5.2 Data collection methodology

To collect metrics regarding the throughput, CPU, and memory consumption of

the applications over a distributed environment, a new utility library named "Spot" has

been developed. Spot is a C++ library developed for collecting memory and CPU usage

metrics in shared memory or distributed (MPI) applications. The motivation behind de-

veloping this library was the lack of monitoring tools such as Zabbix, Ganglia, or Nagios

available to users of the High-Performance Computing Laboratory (LAD) at PUCRS. The

Spot library gathers metrics by asynchronously querying the Linux files "/proc/meminfo"

to obtain memory usage and "/proc/stat" to gather CPU usage. As a result, the collected

metrics reflect the overall resource consumption of the machine, not just the consumption

of the current process. Currently, the output generated by Spot is a .csv file containing

the following information:

1https://www.pucrs.br/ideia/laboratorios-ideia/lablad

66

• Probe timestamp (ms)

• Machine name

• Process rank (only for distributed applications)

• Total machine memory (Kb)

• Baseline free memory (Free memory before the application starts in Kb)

• Baseline available memory(Available memory before the application starts in Kb)

• Baseline used memory (Used memory before the application starts in Kb)

• Free memory (Kb)

• Available memory (Kb)

• Used memory (Kb)

• Overall CPU usage (%)

• Per core CPU usage (%)

At the end of the application execution, a .csv summary file is also generated

containing the following information:

• Machine name

• Process rank (only for distributed applications)

• Startup timestamp (ms)

• End timestamp (ms)

• Total elapsed time (ms)

Listing 5.1 presents an example of usage of the Spot library for MPI applica-

tions. This library can be easily integrated into existing applications by including either

the header file "spot/distributed.hpp" for MPI applications or "spot/sharedmemory.hpp"

for shared memory applications. Spot provides a "start" function to initiate monitoring

and a "stop" function to stop the metrics collection. Additionally, custom parameters can

be set at the "start" function, such as the probe interval in milliseconds, output direc-

tory, output file name, format, and the default MPI communicator. Since the Spot library

asynchronously collects the metrics using a different thread from the main program, it

is expected that it does not introduce a significant overhead over the application execu-

tion. However, as with any other process in the machine, this metrics collection thread

67

also competes for the machine’s resources, and theoretically, if the host machine does

not have enough resources to run simultaneous processes (e.g., a single-core CPU), it can

introduce a noticeable overhead due to resource contention.

Listing 5.1: Spot library usage example in an MPI application

#include "spot/distributed.hpp"

int main(int argc, char **argv)

{

// Initialize MPI

MPI_Init(&argc, &argv);

// Spot configuration

spot::distributed::Config cfg;

cfg.outputPrefix = "sample";

// Start monitoring

spot::distributed::start(cfg);

// Do some work

compute();

// Stop monitoring

spot::distributed::stop();

// Finalize MPI

MPI_Finalize();

}

5.3 Performance experiments

This section introduces the applications chosen to evaluate the ResiPipe perfor-

mance compared to DSParLib [49], MPR [46], and OpenMPI [52], as well as the methodol-

ogy used to collect the metrics (throughput, CPU, and memory usage) over a distributed

environment. Due to time constraints, this work does not include a comparison with Java-

based stream processing systems, such as Apache Flink, as it would require writing the

experiments in both Java and C++. The experiment set consists of 6 stream process-

ing applications with varied computational characteristics. Since the current implemen-

tation of the MPR framework only supports 3-stage pipelines, five of six applications on

the experiment set (prime numbers, mandelbrot, eye detection, and bzip2 compression

68

and decompression) consist of simple 3-stage pipelines. As depicted in Figure 1, a 3-stage

pipeline contains one source operator responsible for producing data, one middle operator

(with possible replication) responsible for processing the stream items, and one sink op-

erator responsible for accumulating the results. To evaluate the support of pipelines with

multiple processing stages on ResiPipe and DSParLib, one of the applications (sentiment

analysis) consists of a four-stage pipeline containing two different middle-stage operators.

Stage 1

Source

Stage 1

SinkReplicate

3-Stage Pipeline

Figure 5.1: Simple 3-stage pipeline graph

All performance experiments were conducted with the fault tolerance mechanism

disabled in ResiPipe, as the goal is to evaluate the API overhead compared to other eval-

uated libraries that do not offer this feature. A set of experiments specifically designed

to assess the overhead of the fault tolerance mechanism is detailed in Section 5.4. Each

experiment was conducted 10 times for greater precision. All the applications were devel-

oped using on-demand scheduling for load balancing.

5.3.1 Prime Numbers

Prime Numbers is a simple synthetic application that calculates the number of

primes within a given range using a brute-force algorithm [31]. The algorithm verifies if,

for a given number n, there is any number between 2 and n-1 that n is divisible. Despite

being simple, this application is highly unbalanced since even numbers are much easier to

process than odd numbers. Our implementation of the prime numbers application is based

on the implementation made by the DSParLib work [49], which uses a farm-like pattern

(3-stage pipeline) with reordering of the records disabled. In this application, a source

operator produces a range of integer numbers (from 2 to 500000), a middle operator

(with replication) receives a number, validates if it is a prime, and then forwards the result

to the sink operator. The sink operator receives the result as a boolean and increments a

counter for each positive value it receives.

69

4 8 12 16 20 24 28 32 36 40 44 48
Number of processes

50000

100000

150000

200000

250000

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

Higher is better
OpenMPI ResiPipe DSParLib MPR

Prime numbers throughput

Figure 5.2: Prime numbers throughput

Figure 5.2 presents a comparative analysis of the throughput between the Open-

MPI, ResiPipe, DSParLib, and MPR implementations of the prime numbers application,

according to the increase in the replication factor of the middle operator (from 4 to 48

processes). DSParLib outperforms the other implementations, notably performing better

than OpenMPI when using 4, 8, and 12 processes. This finding aligns with the observa-

tions made by Junior et al. [49], who attributed this advantage to the superior parallelism

strategies employed in DSParLib. ResiPipe and OpenMPI exhibit very similar throughput,

although ResiPipe tends to be slightly slower than OpenMPI, regardless of the number of

parallel processes. Meanwhile, MPR demonstrates a higher throughput than OpenMPI and

ResiPipe when using 4, 8, and 12 processes.

cerrado09 cerrado10 cerrado11 cerrado12
Machine

0

20

40

60

80

100

Ov
er

al
l C

PU
 U

sa
ge

 (%
)

Prime numbers average overall CPU usage (%)
OpenMPI ResiPipe DSParLib MPR

cerrado09 cerrado10 cerrado11 cerrado12
Machine

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
em

or
y

us
ag

e
(G

Bs
)

Prime numbers average memory usage (GBs)
OpenMPI ResiPipe DSParLib MPR

Figure 5.3: Prime numbers average CPU and Memory usage

70

Figure 5.3 overviews the average CPU and memory usage of the prime numbers

experiment with 48 processes. The resource utilization indicates that MPR groups all the

processes on a single machine. This behavior has been observed over all the experiments

and may explain why it struggles to scale efficiently as the number of parallel processes

increases. In terms of CPU utilization, OpenMPI, ResiPipe, and DSParLib presented a max-

imum of 50% CPU usage. This is expected, given that the experiment only employed 48

processes, and each machine in the cluster is equipped with a CPU with 12 cores and 24

threads. Regarding memory usage, MPR consumed 3.84 GB of the node performing the

computations and, surprisingly, still used 1.55 GB across the remaining nodes. OpenMPI’s

memory consumption ranged between 1.76 GB and 1.86 GB. DSParLib demonstrated the

lowest memory usage, with values between 1.64 GB and 1.80 GB, while ResiPipe exhibited

the highest memory consumption, ranging from 1.84 GB to 1.86 GB.

5.3.2 Mandelbrot

Mandelbrot is a mathematical application that aims to create a fractal image from

a set of complex numbers [23]. Our implementation of the Mandelbrot application is based

on the implementation made by the MPR work [46], which uses a 3-stage pipeline graph.

In this implementation, a source operator emits 2000 integer numbers representing the

lines of the image, and a middle operator (with replication) calculates the pixels for the

given line and forwards a matrix of pixels for the sink operator. The sink operator receives

the matrix of pixels for each line in an orderly manner and assembles the final image. The

final image is only kept in memory to avoid the overhead of writing the image over disk.

4 8 12 16 20 24 28 32 36 40 44 48
Number of processes

200

400

600

800

1000

1200

1400

1600

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

Higher is better
OpenMPI ResiPipe DSParLib MPR

Mandelbrot throughput

Figure 5.4: Mandelbrot throughput

71

Figure 5.4 illustrates the average throughput (records per second) of the Mandel-

brot application using 4 to 48 parallel processes. Among the evaluated libraries, ResiPipe

achieved the best speed-up, increasing the throughput from 115.07 with 4 processes to

1516.38 with 48 processes. DSParLib and OpenMPI delivered similar results, with the

throughput increasing from 117.18 and 115.91 with 4 processes to 1121.28 and 1207.91,

respectively, with 48 processes. In contrast, MPR presented the lowest scalability, starting

at 109.46 with 4 processes and reaching its best throughput of 895.30 with 24 processes.

MPR was unable to scale efficiently beyond 24 processes.

cerrado09 cerrado10 cerrado11 cerrado12
Machine

0

20

40

60

80

100

Ov
er

al
l C

PU
 U

sa
ge

 (%
)

Mandelbrot average overall CPU usage (%)
OpenMPI ResiPipe DSParLib MPR

cerrado09 cerrado10 cerrado11 cerrado12
Machine

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
em

or
y

us
ag

e
(G

Bs
)

Mandelbrot average memory usage (GBs)
OpenMPI ResiPipe DSParLib MPR

Figure 5.5: Mandelbrot average CPU and Memory usage

Figure 5.5 presents the average CPU and memory usage across the cluster ma-

chines for the Mandelbrot application with 48 processes. MPR concentrates all its worker

processes into a single machine, achieving a peak CPU utilization of 97.59% and 3.86 GB

of memory consumption over a single node. In contrast, OpenMPI, DSParLib, and ResiP-

ipe distribute their workload evenly across all nodes, achieving approximately 50% CPU

utilization per node. DSParLib exhibited the lowest memory usage among the libraries,

peaking at 1.78 GB. OpenMPI followed closely with a peak memory consumption of 1.79

GB, while ResiPipe showed the highest memory usage, reaching 1.86 GB.

5.3.3 BZip2 Compression

BZip2 is a widely used, freely available, and patent-free data compressor that

uses the Burrows-Wheeler block sorting text compression algorithm and the Huffman cod-

ing algorithm [63]. Our implementation of the BZip2 compression application is based on

the implementation made by the MPR work [46]. In this application, the source operator

reads an input file from the disk (we used a 532Mb text file for the experiment), splits its

72

content into smaller data blocks of 900Kb, and forwards the blocks to the middle opera-

tor. The middle operator (with replication) receives the input blocks, runs the compression

algorithm, and forwards the compressed data block to the sink operator. Finally, the sink

operator receives the compressed data blocks in an ordered manner, assembles the final

compressed file, and writes its content over the disk.

4 8 12 16 20 24 28 32 36 40 44 48
Number of processes

25

50

75

100

125

150

175

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)
Higher is better

OpenMPI ResiPipe DSParLib MPR

BZip2 compression throughput

Figure 5.6: BZip2 compression throughput

Figure 5.6 presents the throughput of the BZip2 compression application, ranging

from 4 to 48 parallel processes. OpenMPI, ResiPipe, and DSParLib presented very simi-

lar results of 14.15, 14.05, and 14.62 records per seconds with 4 processes, to 181.52,

173.09, and 152.49, respectively, with 48 processes. MPR could not efficiently scale af-

ter 16 parallel processes, presenting a throughput of 13.55 records per second using 4

processes and 56.49 using 48 processes.

cerrado09 cerrado10 cerrado11 cerrado12
Machine

0

20

40

60

80

100

Ov
er

al
l C

PU
 U

sa
ge

 (%
)

BZip2 compression average overall CPU usage (%)
OpenMPI ResiPipe DSParLib MPR

cerrado09 cerrado10 cerrado11 cerrado12
Machine

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
em

or
y

us
ag

e
(G

Bs
)

BZip2 compression average memory usage (GBs)
OpenMPI ResiPipe DSParLib MPR

Figure 5.7: BZip2 compression average CPU and Memory usage

73

Figure 5.7 depicts the average CPU and memory usage across the cluster ma-

chines for the BZip2 compression application with 48 processes. DSParLib, OpenMPI, and

ResiPipe presented a similar CPU utilization of around 50% across the nodes. DSParLib

presented the lowest memory consumption, ranging from 1.69 to 1.95 GB. OpenMPI con-

sumed around 1.86 to 1.92 GB of memory. ResiPipe presented the highest memory con-

sumption, ranging from 1.89 to 1.92 GB across the nodes. MPR grouped all the working

processes into a single node, reaching a peak of 100% CPU utilization and 4.09 GB of

memory over a single node.

5.3.4 BZip2 Decompression

The BZip2 decompression application consists of the same application described

in Section 5.3.3, using the decompression algorithm instead of compression. In this ap-

plication, the source operator reads a compressed input file (we used the same output

file generated by the compression application, which has 75Mb), splits the input file into

smaller data blocks by searching for the BZip2 block headers (magic number) inside the

file content, and forwards the data blocks to the middle operator. The middle operator

(with replication) receives the compressed data blocks, runs the decompression algorithm,

and forwards the decompressed data blocks to the sink operator. Finally, the sink receives

the decompressed data blocks in an ordered manner, assembles the final file, and writes

its content over the disk.

4 8 12 16 20 24 28 32 36 40 44 48
Number of processes

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

Higher is better
OpenMPI ResiPipe DSParLib MPR

BZip2 decompression throughput

Figure 5.8: BZip2 decompression throughput

74

Figure 5.8 presents a comparative analysis of the throughput of the BZip2 de-

compression application, ranging from 4 to 48 parallel processes. MPR could not efficiently

scale after 20 processes and presented the lowest throughput across all the variations. Re-

siPipe presented the best scalability across the implementations, reaching a throughput

of 100.18 records per seconds using 44 processes. OpenMPI and DSParLib have also effi-

ciently scaled according to the increase in the number of processes, presenting a through-

put of 95.94 and 90.74 records per seconds, respectively, using 48 processes.

cerrado09 cerrado10 cerrado11 cerrado12
Machine

0

20

40

60

80

100

Ov
er

al
l C

PU
 U

sa
ge

 (%
)

BZip2 decompression average overall CPU usage (%)
OpenMPI ResiPipe DSParLib MPR

cerrado09 cerrado10 cerrado11 cerrado12
Machine

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
em

or
y

us
ag

e
(G

Bs
)

BZip2 decompression average memory usage (GBs)
OpenMPI ResiPipe DSParLib MPR

Figure 5.9: BZip2 decompression average CPU and Memory usage

Figure 5.9 depicts the average resource utilization (CPU and memory) across the

cluster machines for the BZip2 decompression application using 48 parallel processes.

DSParLib, OpenMPI and ResiPipe presented a similar CPU utilization of around 50% over

the nodes cerrado10 and cerrado11. DSParLib presented a reduced CPU utilization of

40.05% over the node cerrado09, while OpenMPI and ResiPipe also presented a reduced

CPU utilization of around 38.96% and 36.06% respectively over node cerrado12. DSPar-

Lib presented the lowest memory consumption, ranging from 1.68 to 1.87 GB. OpenMPI

presented a memory consumption ranging from 1.79 to 1.87 GB. ResiPipe achieved the

highest memory usage, from 1.86 to 1.90 GB. MPR grouped all the working processes over

a single node, reaching a peak of 100% CPU usage and 4.07 GB of memory.

5.3.5 Eye Detector

Eye Detector is an application that performs face and eye recognition in a video.

It was inspired by the Eye Detector application presented in the work of Piper et al. [55].

The application consists of a pipeline where the source operator reads a video file, trans-

forms each video frame into an OpenCV matrix, links each matrix to a number that identi-

75

fies the frame’s relative position within the video, and sends each matrix to be processed

by the middle operator. Upon receiving an input, the middle operator uses a pre-trained

machine learning model (Haar Cascade Classifier) provided by OpenCV to detect faces in

the input frame. If any face is detected, a second classifier is used to detect the eye’s po-

sition within the face. The middle operator outputs the input frame with transparent boxes

with blue borders drawn around the detected faces and eyes. The sink operator is respon-

sible for receiving the frames processed by the middle operator, reassembling the frames

in order, and saving the output video. Differently from the implementation presented in

the work of Piper et al. [55], in which face detection and eye detection are separated into

two stages, we choose to implement both the face detection and eye detection in a single

stage since MPR does not support pipelines with multiple middle stages.

4 6 8 10 12 14
Number of processes

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

Higher is better
OpenMPI ResiPipe DSParLib MPR

Eye detector throughput

Figure 5.10: Eye detection throughput

Figure 5.10 presents the throughput (records per second) of the eye detector

application, ranging from 4 to 14 processes. Unlike the other applications, this setup dis-

tributes just one process per node and uses the OpenCV parallel capabilities to spawn

several threads to process the images. OpenCV has been configured to use the maximum

concurrency level (number of parallel threads) supported by the CPU. In this application,

OpenMPI, ResiPipe, and DSParLib presented virtually identical results, reaching a through-

put of 3.53, 3.52, and 3.53 respectively with 4 processes, and 20.01, 20.06, and 20.37

respectively with 14 processes. MPR presented the lowest throughput among the parallel

interfaces of 0.99 records per seconds with 4 processes and 6.32 with 14 processes.

76

cerrado01 cerrado02 cerrado03 cerrado04
Machine

0

5

10

15

20

25

30

Ov
er

al
l C

PU
 U

sa
ge

 (%
)

Eye detector average overall CPU usage (%)
OpenMPI ResiPipe DSParLib MPR

cerrado01 cerrado02 cerrado03 cerrado04
Machine

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
em

or
y

us
ag

e
(G

Bs
)

Eye detector average memory usage (GBs)
OpenMPI ResiPipe DSParLib MPR

Figure 5.11: Eye detection average CPU and Memory usage

Figure 5.11 overviews the average memory and CPU usage of the Eye Detector

application over 4 distinct nodes. OpenMPI, ResiPipe, and DSParLib presented a similar

29% CPU usage over the worker nodes and around 4.20% over the source and sink nodes.

The CPU usage also indicates that OpenMPI and ResiPipe used a similar allocation strategy,

using the nodes cerado02 and cerrado03 as worker nodes and cerrado01 and cerrado04

as source and sink nodes. DSParLib presented a different allocation strategy, using the

nodes cerrado03 and cerrado04 as worker nodes and cerrado01 and cerrado02 as source

and sink nodes. MPR presented a CPU usage of around 4.20% over all the nodes, indi-

cating that some bottleneck is preventing MPR from achieving a higher processing rate.

Regarding memory consumption, all libraries presented similar results. MPR presented

the lowest memory consumption, ranging between 1.47 and 1.59 GB. OpenMPI consumed

around 1.51 and 1.59 GB. DSParLib consumed around 1.53 and 1.59 GB. And ResiPipe

presented the highest memory consumption, ranging from 1.50 to 1.60 GB.

5.3.6 Sentiment Analysis

Sentiment Analysis is a conceptual application developed in this work to eval-

uate the support for pipelines with multiple middle operators in ResiPipe and DSParLib,

as the other abstractions do not provide support for such pipeline implementation. This

application transcribes text from audio using the OpenAI Whisper model2 and performs

sentiment analysis over the resulting texts using the AFINN-111 lexicon dataset [75]. This

dataset classifies the English words as positive or negative. As illustrated in Figure 5.12,

the application is a four-stage pipeline in which the source operator reads four audio files

with approximately one minute of conversation and forwards the binary data to the next

2https://openai.com/index/whisper/

77

stage. The first processing stage is replicated with two instances. Each instance loads

the whisper model at startup using the whisper.cpp library3, transcribes the text for each

received input and forwards the result to the next stage. The second processing stage

receives the transcription, runs the sentiment analysis algorithm, and sends the results

to the sink operator. Finally, the sink operator receives the transcriptions along with the

sentiment analysis and prints the results over the default output console.

Stage 1

Source

Stage 1

SinkStage 2Replicate

Sentiment Analysis Pipeline

Figure 5.12: Sentiment Analysis pipeline graph

Table 5.1 presents a comparative analysis of the sentiment analysis through-

put between DSParLib and ResiPipe. DSParLib presented a slightly higher throughput

of 0.005025 records per seconds in comparison to ResiPipe with reach a throughput of

0.005008. The results indicate the extra operator (multiple-stage pipelines in DSParLib

are composed of two 3-stage pipelines interconnected by a bypass operator) does not in-

troduce a significant overhead over the DSParLib execution, or the optimizations employed

by DSParLib compensate the overhead.

cerrado11 cerrado12 cerrado13 cerrado14 cerrado16
Machine

0

5

10

15

20

25

30

35

Ov
er

al
l C

PU
 U

sa
ge

 (%
)

Sentiment Analysis average overall CPU usage (%)
ResiPipe DSParLib

cerrado11 cerrado12 cerrado13 cerrado14 cerrado16
Machine

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

us
ag

e
(G

Bs
)

Sentiment Analysis average memory usage (GBs)
ResiPipe DSParLib

Figure 5.13: Sentiment Analysis average CPU and Memory usage

3https://github.com/ggerganov/whisper.cpp

78

Figure 5.13 presents the average memory and CPU usage of the sentiment anal-

ysis application across the cluster machines. ResiPipe and DSParLib presented similar

results in both memory consumption and CPU usage. DSParLib has a slightly higher CPU

usage, with a peak of 36.69%, while ResiPipe presented a peak CPU usage of 35.62%.

Regarding memory consumption, ResiPipe presented a slightly higher consumption with a

peak of 3.09 GB, while DSParLib presented a peak memory consumption of 3.07 GB. The

metrics indicate that ResiPipe and DSParLib used a different scheme to distribute the pro-

cesses across the cluster machines, with ResiPipe presenting a higher CPU usage across

the nodes cerrado12 and cerrado13. In comparison, DSParLib presents a higher CPU usage

across the nodes cerrado13, cerrado14, and cerrado16.

Table 5.1 summarizes the best throughput for each experiment according to the

number of parallel processes. The table highlights in bold text the implementation that

presented the best throughput for each application.

Table 5.1: Performance results summary

Experiment Implementation
Best throughput

(records/s)

Number of

processes
Experiment Implementation

Best throughput

(records/s)

Number of

processes

DSParLib 247084.18 48 DSParLib 95.19 28

MPR 136354.10 24 MPR 88.20 20

OpenMPI 232386.92 48 OpenMPI 96.94 32
Prime numbers

ResiPipe 210283.26 44

BZip2 Decompression

ResiPipe 100.18 44

DSParLib 1132.59 44 DSParLib 20.37 14

MPR 895.30 24 MPR 6.32 14

OpenMPI 1207.91 48 OpenMPI 20.01 14
Mandelbrot

ResiPipe 1548.19 44

Eye detector

ResiPipe 20.06 14

DSParLib 152.49 48 DSParLib 0.005025 5

MPR 67.27 24
Sentiment Analysis

ResiPipe 0.005008 5

OpenMPI 181.52 48
BZip2 Compression

ResiPipe 173.09 48

5.4 ResiPipe failure recovery evaluation

This section presents a series of experiments specifically designed to evaluate

the fault tolerance capabilities of ResiPipe, as well as the overhead introduced by the

snapshot mechanism during regular execution. Four distinct use cases were developed

to evaluate various aspects of stream processing applications. These include simple lin-

ear pipelines without replication, pipelines with replication and unbalanced workloads,

pipelines experiencing multiple failures across different processing stages, and pipelines

with large state sizes. The experiments for each use case were conducted with snap-

shot intervals of 15, 30, 45, and 60 seconds, in addition to a failure-free execution and a

snapshot-disabled execution. The Spot library, detailed in Section 5.2, was used through-

out all experiments to collect metrics such as the application throughput.

79

5.4.1 Use Case 1

Use case 1 is an experiment developed to evaluate the failure recovery capabil-

ities by creating a synthetic failure over a stateful operator. As depicted in Figure 5.14,

use case 1 is a four-stage linear pipeline in which the source operator (P0) produces 100

integer numbers. The first processing stage (P1) calculates the Fibonacci sequence for the

given input and sleeps for a second to simulate a heavy computation. The second pro-

cessing stage (P2) is a stateful operator that aggregates 25 items and throws a synthetic

failure after processing 50 items. The sink operator (P3) receives the results and prints

the values over the output console. This experiment aims to verify ResiPipe’s ability to

recover a stateful operator after a failure and the overhead introduced by the snapshot

mechanisms over the system using different snapshot intervals.

P1P0 P3P2

Source Stage 1 Stage 2 Sink

Use Case 1

Figure 5.14: Use Case 1 Graph

Figure 5.15 provides a comparative analysis of the snapshot impact over a failure-

free execution of Use Case 1 using snapshot intervals of 15, 20, 45, and 60 seconds. It also

presents the application throughput in an failure-prone execution. The results indicate that

the snapshot mechanism does not impose a significant impact on the regular execution of

Use Case 1, independently of the evaluated snapshot interval.

Use Case 1
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

1.
00

1.
00

1.
00

1.
00

1.
00

Higher is better
Impact of the snapshot over the throughput

Use Case 1
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

0.
88

0.
78

0.
70 0.

78

0.
53

1.
00

Higher is better

Snapshot
Configuration

15s
30s
45s
60s
Disabled
Failure Free

Throughput with failure recovery

Figure 5.15: Use Case 1 throughput and failure recovery

80

Regarding failure recovery, the results demonstrate that independent of the fre-

quency in which the snapshots are taken, restarting the application from a snapshot in

a failure scenario is way faster than performing a cold restart (restarting the application

from scratch). However, the results also demonstrate that a higher snapshot frequency is

not necessarily associated with a faster recovery time. In this specific scenario, it appears

that the best snapshot frequencies are every 15, 30 and 60 seconds.

5.4.2 Use Case 2

Use case 2 aims to verify the recovery capabilities for pipelines with stage repli-

cation and unbalanced workloads. Figure 5.16 presents the pipeline graph of the use case

2 application, in which a source operator (P0) produces a sequence of 100 integer num-

bers. The first processing stage has two replicas (P1 and P2) that calculate the Fibonacci

sequence for the input value and sleep for one second to simulate a heavy computation.

The second replica (P2) has an additional 300-millisecond delay to simulate an unbalanced

workload and throws a synthetic failure after processing 50 items. The second process-

ing stage (P3) is a stateful operator that performs an aggregation of 25 items. The sink

operator (P4) receives the results and prints the values over the standard output console.

P1

P0

P2

P4P3

Source

Stage 1

Stage 2 Sink

Use Case 2

Figure 5.16: Use Case 2 Graph

Figure 5.17 presents the impact of the snapshot over Use Case 2 in a failure-free

and failure-prone scenario. The results indicate that, independent of the evaluated snap-

shot interval, the snapshot mechanisms do not introduce a significant overhead over the

application throughput, even when using a replicated stage and an unbalanced workload.

81

Use Case 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Th

ro
ug

hp
ut

 (r
ec

or
ds

/s
)

1.
54

1.
54

1.
54

1.
54

1.
54

Higher is better
Impact of the snapshot over the throughput

Use Case 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

1.
33

1.
09 1.

31

0.
81

0.
81

1.
54

Higher is better

Snapshot
Configuration

15s
30s
45s
60s
Disabled
Failure Free

Throughput with failure recovery

Figure 5.17: Use Case 2 throughput and failure recovery

Regarding the Use Case 2 failure recovery results, the 15-second snapshot inter-

val presented the best recovery time across the variations, exhibiting a throughput of 1.33

records per second, 13.64% slower than the failure-free execution. The 45-second snap-

shot interval presented the second-best recovery time, exhibiting a throughput of 1.31

records per second. The 30-second snapshot interval presented a considerably slower re-

covery time, achieving a throughput of 1.09 records per second. The 60-second snapshot

interval was ineffective in this use case, taking the same time as the snapshot disabled

(cold restart) execution. This behavior happens because the total execution time of a

failure-free execution (65.03 seconds) is too close to the 60-second snapshot interval, so

the snapshot mechanism does not have enough time to complete a snapshot before the

failure happens.

5.4.3 Use Case 3

Use case 3 aims to verify the recovery capabilities for pipelines with multiple

failures across different processing stages. Figure 5.18 presents the use case 3 pipeline

graph, in which a source operator (P0) produces a sequence of 100 integer numbers. The

first processing stage has two replicas (P1 and P2) that calculate the Fibonacci sequence

for the input values and sleep for one second to simulate a heavy computation. The

second replica (P2) has an additional 300-millisecond delay to simulate an unbalanced

workload and throws a synthetic failure after processing 26 items. The second processing

stage also has two replicas (P3 and P4). Similarly to the first processing stage, it calculates

the Fibonacci sequence for the input value and sleeps for one second to simulate a heavy

computation. In the second processing stage, the first replica (P3) has an additional 300-

millisecond delay and fails after processing 51 items. In this application, the operators

exchange messages using an even/odd affinity scheme based on the message identifier, in

which the messages with odd identifiers are always sent to the first replica of the stage (P1

82

and P3), and the messages with even identifiers always are sent to the second replica of

the stage (P2 and P4). The third processing stage (P5) is a stateful operator that performs

an aggregation of 25 items. Finally, the sink operator (P6) receives the results and prints

the values over the standard output console.

P1

P0

P2

P6

P3

P4

Source

Stage 1 Stage 2

Sink

P5

Stage 3

Use Case 3

Figure 5.18: Use Case 3 Graph

Figure 5.19 presents a comparative analysis of the Use Case 3 throughput in

a failure-free scenario and a failure-prone scenario with varied snapshot intervals. The

results demonstrate that the regular throughput of Use Case 3 was not affected by the

snapshot mechanism, independent of the snapshot interval variation. This result indicates

that the snapshot mechanism implemented by ResiPipe can efficiently handle complex

pipeline graphs in which multiple operators need to perform an alignment phase (P3, P4,

and P5) without introducing major overheads during regular execution.

Use Case 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

0.
76

0.
76

0.
76

0.
76

0.
76

Higher is better
Impact of the snapshot over the throughput

Use Case 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

0.
59

0.
42 0.

48

0.
33

0.
33

0.
76

Higher is better

Snapshot
Configuration

15s
30s
45s
60s
Disabled
Failure Free

Throughput with failure recovery

Figure 5.19: Use Case 3 throughput and failure recovery

The Use Case 3 failure recovery results demonstrate that even with a 15-second

snapshot interval, the system exhibits a throughput of 0.59 records per second in the

83

failure-prone scenario, which is 22.37% slower than the failure-free execution. The 30-

second and 45-second snapshot intervals presented a significantly longer recovery time,

exhibiting a throughput of 0.42 and 0.48 records per second, respectively. The 60-second

snapshot interval was ineffective, taking the same time to finish the execution as the

snapshot disabled (cold-restart) execution. This behavior happens because the 60-second

snapshot interval is so long that the system does not have enough time to complete a

snapshot before a failure happens between operators P2 and P3, generating a cold restart

of the application.

5.4.4 Use Case 4

Use case 4 is a simple 3-stage pipeline designed to verify the impact of the snap-

shot mechanism over the throughput of pipelines containing stateful operators with a large

state size. Figure 5.20 illustrates the pipeline graph of the use case 4 application, in which

a source operator (P0) produces a sequence of 100 integer numbers. The middle stage

operator (P1) does not apply any computation over the input; it just holds a 100 MB static

state to simulate a large state size. The sink operator (P2) receives the results and prints

the values over the standard output console. This use case does not simulate failures

since its primary goal is to evaluate how a large state size affects the application through-

put across different snapshot intervals.

P1P0 P2

Source Middle Sink

100 MB

Use Case 4

Figure 5.20: Use Case 4 Graph

Figure 5.21 provides a comparative analysis of the throughput for Use Case 4

in a failure-free scenario with varied snapshot intervals. The results indicate that for a

pipeline containing a single operator with 100 MB of persistent state, the fault tolerance

mechanism introduces an overhead of 8.17% when using a 15-second snapshot interval.

84

When using snapshot intervals of 30, 45, and 60 seconds, the overhead decreases to

4.26%, 6.25%, and 7.22%, respectively.

Use Case 4
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

0.
90 0.
94 0.
96 0.
97 0.
98

Higher is better

Snapshot
Configuration

15s
30s
45s
60s
Disabled

Impact of the snapshot over the throughput

Figure 5.21: Use Case 4 throughput evaluation

These results indicate that the snapshot mechanism employed by ResiPipe is sen-

sitive to large state sizes, presenting a decrease in the application’s throughput as snap-

shot frequency increases. This behavior happens because ResiPipe implements a syn-

chronous snapshot mechanism, requiring operators to pause regular processing to store

the snapshot files over reliable storage. Consequently, this synchronous approach intro-

duces significant I/O overhead, which scales according to the state size.

5.5 Programmability evaluation

This section presents an evaluation regarding the programmability aspects of Re-

siPipe in comparison to DSParLib, MPR, MPI, and SPar, including metrics such as the num-

ber of source lines of code (SLOC) and the estimated development time using Halstead’s

method. Table 5.2 exhibits a comparative analysis of the number of source lines of code

for each application described in section 5.3. The table highlights the lowest values using

bold text. The results indicate that SPar requires fewer lines of source code (SLOC) across

the analyzed programming interfaces. However, this is already expected since SPar is a

domain-specific language with a higher abstraction level than the remaining analyzed li-

braries. Removing SPar from the analysis, ResiPipe presented the lowest number of lines

of code for most applications, except for the BZip2 compression, in which ResiPipe and

DSParLib presented the same number of lines.

85

Table 5.2: SLOC Evaluation

SLOC (Source Lines of Code)

Framework Prime

Numbers
Mandelbrot

Eye

Detector

BZip2

Decompression

BZip2

Compression

Sentiment

Analysis

SPar 25 56 64 104 72 -

ResiPipe 60 130 106 133 106 120

DSParLib 65 157 146 139 106 196

MPR 74 140 138 164 131 -

MPI 119 157 154 204 171 -

The number of source lines of code required to implement the applications varies

between DSParLib and MPR. While DSParLib presents the lowest number of lines for the

application prime numbers, BZip2 decompression, and BZip2 compression, MPR presents

the lowest number of lines for the applications mandelbrot and eye detector. MPI presents

the highest number of lines for all the applications. However, this was already expected

since MPI primarily abstracts process communication. In contrast, the other analyzed

programming interfaces also abstract the parallel patterns and data serialization.

Table 5.3 presents a comparative analysis regarding the estimated development

time in hours of each application described in section 5.3. The PHalstead (Parallel Hal-

stead) tool developed by Andrade et al. [7] has been used to estimate the development

time of each application. The table highlights the lowest values using bold text. The

results indicate that SPar requires the lowest development time across the analyzed pro-

gramming interfaces. However, this is already expected since SPar is a domain-specific

language with a higher abstraction level than the remaining analyzed libraries. Removing

SPar from the analysis, the results indicate that for most of the applications (mandelbrot,

eye detector, BZip2 compression, decompression, and sentiment analysis), ResiPipe re-

quires the lowest development time, except for the prime numbers application, in which

DSParLib presented the lowest development time.

Table 5.3: Halstead Evaluation

Halstead (development time in hours)

Framework Prime

Numbers
Mandelbrot

Eye

Detector

BZip2

Decompression

BZip2

Compression

Sentiment

Analysis

SPar 0.67 2.61 1.63 6.12 2.82 -

ResiPipe 1.53 6.43 3.46 6.29 3.41 6.52

DSParLib 1.39 10.27 7.39 6.94 3.49 14.50

MPR 2.10 7.09 6.77 10.19 5.90 -

MPI 8.33 13.04 11.61 18.44 13.46 -

The development time between DSParLib and MPR also varies, with DSParLib pre-

senting the lowest development time for the applications: prime numbers, BZip2 compres-

sion, and BZip2 decompression. Meanwhile, MPR presents the lowest development time

86

for the applications mandelbrot and eye detector. MPI presents the longest development

time across all the analyzed programming interfaces, taking more than 6x of the time re-

quired to implement the prime numbers application using DSParLib, and more than 5x the

time to implement the same application using ResiPipe.

From a qualitative perspective, although MPR requires fewer lines of code than

MPI, it is the most challenging programming interface since, until the writing of this the-

sis, it does not provide any documentation regarding its usage other than two examples

(mandelbrot and prime numbers) in its official GitHub repository4. Additionally, the MPR

API presents confusing methods and functions. For instance, in the source operator class,

the developer must call the Produce or ProduceMulti methods to send an item to the next

processing stage. For the remaining processing stages, the developer must call the Pub-

lish or PublishMulti methods. However, the Publish and PublishMulti methods also exist

in the source operator class; they are just not implemented, making the application stall

if the developer makes a mistake and calls the wrong method. DSParLib also does not

provide extensive documentation; however, its API is way more consistent. While MPI,

despite exhibiting the highest number of lines and the longest development time, benefits

from decades of robust documentation and widely available examples.

5.6 Final remarks

This chapter presented a set of six performance experiments with varied com-

putational characteristics, a set of four failure recovery experiments that evaluate the

ResiPipe fault tolerance capabilities and the impact of its fault tolerance mechanism over

regular execution, and a programmability evaluation of ResiPipe, DSParLIB, MPR, and MPI

using SLOC and Halstead’s metrics. The performance and failure-recovery experiments

were validated by comparing an MD5 hash of the output generated by the parallel im-

plementations with an MD5 hash of the output produced by their equivalent sequential

programs to ensure the correctness of the results.

Overall, the ResiPipe library presented similar performance results and, in some

cases (Mandelbrot and BZip2 decompression), as good as those of the remaining ana-

lyzed libraries while providing fault tolerance, out-of-the-box data serialization, and sup-

port for pipelines with multiple processing stages, a set of features that together are un-

seen over the remaining analyzed C++ stream processing libraries. Regarding resource

utilization, ResiPipe, DSParLib, and OpenMPI presented similar CPU usage. However, Re-

siPipe presented the highest memory consumption across the experiments (disregarding

MPR, which grouped all processes over a single machine), and DSParLib presented the

4https://github.com/GMAP/MPR/tree/main

87

lowest memory consumption in most of the experiments (except for the eye detector ap-

plication).

MPR struggled to scale efficiently with the increasing number of parallel pro-

cesses across all experiments. The cluster resource utilization metrics indicate that this

issue happens due to the load-balancing scheme employed by MPR, which, by default, allo-

cates all processes to the same machine until it reaches the limit of parallel MPI processes

instead of distributing the processes evenly across the cluster nodes. While it is possible

to change this behavior by manually specifying the maximum number of processes per

machine in the MPI configurations, fine-tuning these settings for each variation of every

experiment for MPR would be unfair to the other libraries. For this reason, all libraries were

tested using the same default MPI configurations set by the cluster, and the results exhibit

the performance that each library reaches using its out-of-the-box configurations.

Regarding fault tolerance, the experiments indicate that ResiPipe can efficiently

handle complex pipelines in which multiple operators must perform a snapshot alignment

phase (use case 3) without introducing significant overheads during regular execution.

Independently of the snapshot interval, the snapshot mechanisms do not introduce a sig-

nificant overhead over the throughput of the use cases 1, 2, and 3 since these applications

have a relatively small state size. However, the snapshot mechanism employed by ResiP-

ipe appears to be sensitive to large state sizes (use case 4), exhibiting a decrease in the

application’s throughput as snapshot frequency increases. This happens because ResiPipe

persists the snapshot file over disk using a blocking operation, which makes the system

susceptible to I/O overheads relative to the state size of the operator. The results also

demonstrate that a higher snapshot frequency is not necessarily associated with a faster

recovery time, with the 45-second snapshot interval presenting a faster recovery time

than the 30-second interval for use cases 2 and 3.

Finally, the programmability evaluation demonstrates that SPar requires both

fewer lines of code (SLOC) and less development time, according to the Halstead method,

for all the applications. However, this is already expected since SPar is a domain-specific

language with a higher abstraction level than the remaining analyzed libraries. Removing

SPar from the analysis, the results indicate that ResiPipe requires fewer lines of code to im-

plement all the applications and less development time for most of the applications (Man-

delbrot, Eye Detector, BZip2 Decompression, BZip2 Compression, and Sentiment Analy-

sis) when compared to the other evaluated abstractions. This happens because ResiPipe

abstracts the process communication, parallel pattern, and data serialization, while the

remaining analyzed libraries only abstract a subset of these features.

The number of lines and the development time between DSParLib and MPR varies.

DSParLib presented the lowest development time for the applications: prime numbers,

BZip2 compression, and BZip2 decompression. Meanwhile, MPR presented the lowest

development time for the applications mandelbrot and eye detector. MPI presented the

88

longest development and the highest number of lines across all the analyzed program-

ming interfaces, taking more than 6x the time required to implement the prime numbers

application using DSParLib, and more than 5x the time to implement the same application

using ResiPipe. However, from a qualitative perspective, it is worth noting that MPR and

DSParLib do not provide documentation, while MPI, despite exhibiting the highest number

of lines and the longest development time, benefits from decades of robust documentation

and widely available examples.

89

6. RESILIENT SPAR CODE GENERATION

The goal of this research involves exploring ways of introducing fault tolerance

and exactly-once message delivery guarantees over the SPar software ecosystem. In the

last chapter, ResiPipe was introduced as a C++ library designed to simplify the develop-

ment of fault-tolerant distributed stream processing applications on clusters of commodity

machines. This chapter describes how SPar was modified to generate ResiPipe code, as

well as the limitations of its current implementation, and a performance evaluation re-

garding native ResiPipe code and SPar generated code.

6.1 Implementation

SPar is a domain-specific language that aims to simplify the development of

stream processing applications by introducing high-level C++ annotations over sequen-

tial source code. These annotations are compiled (source-to-source) into an intermediate

code that calls a parallel programming interface. To handle these C++ annotations, SPar

provides its compiler based on CINCLE (Compiler Infrastructure for New C/C++ Language

Extensions), which uses the GNU C++ compiler for the semantic analysis of the source

code, and Flex and Bison for token extraction and the generation of the Abstract Syntax

Tree (AST). The AST serves as input for the middle-end and back-end components of the

compiler, which perform code transformations and ultimately generate the output binary.

Differently from GSParLib [59, 62, 60] and DSParLib [49, 56], this work imple-

ments ResiPipe code generation support over an experimental version of SPar built upon

the CLang compiler front-end rather than the CINCLE compiler infrastructure. The SPar

CLang project has been started as an effort to bring SPar to a commercial-grade compiler

front-end since the CINCLE project was first developed as a prototype and does not have

a dedicated team to keep the project updated. Currently, CINCLE is limited to the C++14

standard and operates under the GNU license. By adopting CLang, SPar gains support for

newer C++ standard features and a license compatible with commercial software.

As depicted in Figure 6.1, the SPar CLang project comprises two major stages. In

the first stage, the input source code is processed by a customized version of the CLang

front-end, which has been modified to accept the SPar attributes as valid code. The CLang

front-end performs the lexical and semantic analysis, parses the source code tokens, and

generates an Abstract Syntax Tree (AST). In the second stage, the resulting AST is pro-

cessed by an implementation of SPar developed using the LibTooling library, which is a

library that eases the creation of standalone tools based on CLang. In this stage, a new

semantic analysis step is performed to identify the SPar annotations inside the AST. The

input and output variables of the SPar stages are identified and transformed into a struct

90

that represents the data exchanged between stages, and the SPar stages are transformed

into a pipeline for the target programming interface. Currently, the SPar CLang prototype

project only supports ResiPipe and Intel TBB as targets for code generation. Finally, the

stream item struct and the resulting pipeline are assembled into the output source code.

Parser
SPar
Code

Semantic
analysis

CLang frontend SPar using LibTooling

Build AST

Lexer
A

C D
B

F
E

AST

Generate stream
item struct

Generate
pipeline

Assemble
Source code

Semantic
analysis Output

code

Figure 6.1: SPar code generation pipeline

Internally, the LibTooling stage of the SPar CLang project follows the same trans-

formation rules as the original SPar work [30, 32] by implementing a set of CLang classes

responsible for consuming the input AST. The first class, SParFrontendAction, is the entry

point of the project and is responsible for calling the SParConsumer class, which consumes

the AST by allowing the execution of recursive functions (also named RecursiveASTVisi-

tor) that navigate through the AST. The SPar CLang project only implements visitors for

function declarations (VisitFunctionDecl) and attributed statements (VisitAttributedStmt),

which encompasses the SPar annotations. When the visitor identifies a ToStream annota-

tion inside the AST, it captures the variables inside the Input and Output attributes and the

definition of the first loop after the annotation. Then, a second visitor named StageVisitor

recursively navigates the ToStream statement, searching for Stage annotations.

When the StageVisitor identifies a Stage statement inside the AST, it captures the

variables inside the Input, Output, and Replicate attributes, and the block of code inside

the stage scope. With this information, a validation is performed to verify if the ToStream

has more than zero Stages and if the input variables of a stage always match the output

variables of the previous stage. If the validation is successful, a function that generates

code for the target runtime is called, and the block of code wrapped by the ToStream

annotation is replaced by the resulting code. Otherwise, a compilation error is generated.

SParFrontendAction

SParConsumer

ToStreamVisitor

ASTConsumer

RecursiveASTVisitor

ASTFrontendAction

VisitAttributedStmt

VisitFunctionDecl

StageVisitor

RecursiveASTVisitor

Rewrite main
function

Rewrite ToStream
code block

Generate ResiPipe
code

Generate TBB
code

SPar CLang Modified for ResiPipe

Inject ResiPipe
Init and Finish

API calls

Figure 6.2: Modifications in SPar CLang for ResiPipe code generation

91

Figure 6.2 presents the components of the SPar CLang project that have been

modified to support ResiPipe as a runtime for code generation. The modifications include

changes at the VisitFunctionDec visitor to inject the API calls that initialize and finalize the

ResiPipe environment at the main function of the input source code. The modifications also

include implementing the code generation function that generates the ResiPipe operator

classes and the structs representing the data exchanged between the stages based on

the information extracted from the SPar annotations.

Figure 6.3 demonstrates an example of ResiPipe stream item structs generated

from the stage Input and Output attributes. To generate this structs, the VisitAttributed-

Stmt visitor captures information regarding the type and the name of the input and output

variables of the stage from the AST. Then, this information is used inside the ResiPipe code

generation function to create the stream item structs containing the same set of variable

names and types in addition to the serialization function required by the Cereal library.

[[spar::Stage, spar::Input(i, isPrime, total), spar::Output(isPrime, total), spar::Replicate(2)]]

struct SParStream1 {
int i;
bool isPrime;
int total;

template <class Archive>
void serialize(Archive &archive)
{

archive(i, isPrime, total);
}

};

struct SParStream2 {
bool isPrime;
int total;

template <class Archive>
void serialize(Archive &archive)
{

archive(i, isPrime, total);
}

};

Figure 6.3: Representation of the stream item structs

In summary, the logic behind the ResiPipe code generation function can be de-

scribed by the following transformations over the input source code:

• The the first loop that follows the spar::ToStream annotation is wrapped inside a Re-

siPipe ISourceOperator class. The loop iterator is stored as a persistent state inside

the ResiPipe key store, and in case of failure, the value of the iterator is restored from

the latest snapshot. Any input variables at the spar::ToStream annotation are given

as a reference on the class constructor. The input variables of the next spar::Stage

are used as the output of the current stage. These variables are wrapped inside a

struct that is serialized using the ResiPipe serialization function and forwarded to the

next stage.

• The code inside the spar::Stage is wrapped inside a ResiPipe IMiddleOperator class.

A new variable named streamItem is injected at the beginning of the stage code.

92

This variable receives the deserialized output scruct from the previous stage. All the

input variables of the current stage are replaced by the values inside the streamItem

struct. The input variables of the next stage are wrapped inside an output struct

that is serialized and forwarded to the next stage. This pattern repeats for every

spar::Stage annotation.

Figure 6.4 demonstrates a representation of a ResiPipe pipeline generated from

SPar code. Currently, ResiPipe does not provide support for multiple sink operators, and

since any non-ordered spar::Stage can be replicated, in the current implementation of

ResiPipe code generation, an extra operator is included at the end of the pipeline. This

operator only implements the ResiPipe ISinkOperator class and receives the outputs of

the previous stage. This sink operator performs no computation over the input records

and only exists to fulfill a ResiPipe limitation.

So
ur

ce
St

ag
e

1
St

ag
e

2

Source

Stage 1

Stage 2

SPar code

ResiPipe pipeline

int main(int argc, char **argv)
{
 int total = 0;
 [[spar::ToStream, spar::Input(total)]]
 for (int i = 2; i <= 500000; i++)
 {
 bool isPrime = true;

[[spar::Stage, spar::Input(i, isPrime, total), spar::Output(isPrime, total), spar::Replicate(2)]]
 for (int j = 2; j < i; j++)
 {
 if (i % j == 0)
 {
 isPrime = false;
 break;
 }
 }

[[spar::Stage, spar::Input(isPrime, total), spar::Output(total)]]
 if (isPrime)
 total++;
 }
}

Sink

Replicate

Figure 6.4: SPar code to ResiPipe pipeline representation

93

All the applications that SPar generates using ResiPipe as the target parallel inter-

face benefit from the ResiPipe fault tolerance mechanism. In case of failure, the ResiPipe

monitor agent automatically restarts the application. The position of the loop iterator that

follows the spar::ToStream annotation is recovered from the latest completed snapshot,

and the application continues its regular processing. Regarding message delivery guar-

antees, the SPar generated applications only provide at-most-once semantics by default.

To achieve at-least-once semantics, the programmer must implement a replayable data

source that resends the records in case of failure. To achieve exactly-once semantics, the

programmer must implement a replayable data source and idempotent sinks.

As limitations, SPar does not provide a way to declare persistent states, change

the default load balancing mode between operators, or implement the operator life cy-

cle events onInit, onExit, onError, onLocalSnapshotComplete, and onGlobalSnapshotCom-

plete provided by ResiPipe. This prevents the implementation of the two-step commit

protocol required by ResiPipe to achieve exactly-once semantics. Additionally, exchang-

ing raw pointers between processing stages is not supported. To enable this feature, the

spar::Input attribute needs to be modified to accept the size of the pointer, similar to the

adaptation made in [33, 56] works. Furthermore, the current implementation of ResiPipe

code generation does not support multiple parallel regions within SPar code. This limi-

tation happens because the presence of multiple spar::ToStream annotations results in

multiple pipelines, and ResiPipe treats each pipeline as the entire application rather than

just one parallel region within a sequential code structure.

6.2 Overhead evaluation

This section provides a comparative analysis regarding the throughput (records

processed per second) between native ResiPipe applications and those generated by SPar.

The evaluation uses the same set of performance experiments described in Section 5.3.

The Sentiment Analysis application has been excluded from this comparison, as it was

specifically designed to assess the capabilities of ResiPipe and DSParLib in supporting

pipelines with multiple processing stages and due to development time constraints. All

the experiments were executed 10 times to ensure the consistency of the results, and the

fault tolerance mechanism was turned off over all the executions since the goal of these

experiments is to verify the performance difference between native ResiPipe and SPar

generated code, not the overhead of the fault tolerance mechanism, which was previously

evaluated. The Spot library described in Section 5.2 was used to collect the throughput

metrics.

Figure 6.5 presents an analysis of the throughput of the Prime Numbers applica-

tion ranging from 4 to 48 parallel processes, in which it is possible to verify that the SPar

94

generated application presents a lower throughput than the native ResiPipe application

independently of the number of processes, and was unable to efficiently scale after 16

parallel processes. In contrast, the native ResiPipe application continues to scale accord-

ing to the increase in the number of parallel processes.

4 8 12 16 20 24 28 32 36 40 44 48
Number of processes

25000

50000

75000

100000

125000

150000

175000

200000

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

Higher is better
ResiPipe SPar Generated

Prime numbers throughput

Figure 6.5: Performance comparison between ResiPipe and SPar generated code using the
Prime Numbers application

This performance difference happens because the prime numbers application

does not impose a heavy computational workload over the stream items, being mainly

limited by the time required for serialization and message passing. In this scenario, the

code generated by SPar suffers the disadvantage of requiring the serialization of a struct,

which is used for generalizing the code generation. In contrast, the native ResiPipe code

only needs to serialize primitive data types, such as the integer numbers exchanged be-

tween the data source and the processing stages. In addition, the pipeline generated by

SPar also has one extra process to simulate the sink operator. Although this extra process

does not perform any computations over the input records, it still introduces overhead

by requiring the application to wait for the operator to receive all the messages before it

finishes.

Figure 6.6 exhibits the throughput evaluation of the applications Mandelbrot,

BZip2 compression and decompression ranging from 4 to 48 parallel processes, and the

Eye Detector application ranging from 4 to 12 parallel processes. Unlike the other applica-

tions, the eye detector application distributes just one process per node (using 12 nodes)

and relies upon the OpenCV parallel capabilities to spawn several threads to process the

95

images. OpenCV has been configured to use the maximum concurrency level (number of

parallel threads) supported by the CPU.

In the Mandelbrot application, the code generated by SPar exhibited a lower

throughput than the native ResiPipe code, ranging from 92.45 records per second using

4 parallel processes to 1516.38 using 48 parallel processes. While ResiPipe presented a

throughput of 115.07 records per second using 4 parallel processes and 1251.15 using 48

parallel processes. On the Eye Detector application, both the code generated by SPar and

the native ResiPipe code presented virtually identical throughput. The lower throughput

presented in the Mandelbrot application generated using SPar could be explained by the

extra sink operator introduced as a current limitation of the ResiPipe code generation in

SPar CLang.

4 8 12 16 20 24 28 32 36 40 44 48
Number of processes

200

400

600

800

1000

1200

1400

1600

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

Higher is better
ResiPipe SPar Generated

Mandelbrot throughput

4 6 8 10 12
Number of processes

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)
Higher is better

ResiPipe SPar Generated

Eye detector throughput

4 8 12 16 20 24 28 32 36 40 44 48
Number of processes

0

25

50

75

100

125

150

175

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

Higher is better
ResiPipe SPar Generated

BZip2 compression throughput

4 8 12 16 20 24 28 32 36 40 44 48
Number of processes

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

)

Higher is better
ResiPipe SPar Generated

BZip2 decompression throughput

Figure 6.6: Performance comparison between ResiPipe and SPar generated code using the
Mandelbrot, Eye Detector, BZip2 compression, and decompression applications

Regarding the BZip2 compression application, the application generated by SPar

exhibits similar performance to ResiPipe native code, achieving a throughput of 6.84

96

records per second using 4 parallel processes and 164.69 using 48 parallel processes.

The native ResiPipe application presented a throughput of 14.05 records per second using

4 parallel processes and 173.09 using 48 parallel processes.

In contrast, in the BZip2 decompression application, the code generated by SPar

presented a lower throughput across all variations, ranging from 38.73 records per sec-

ond using 4 parallel processes to 90.67 using 48 parallel processes. The ResiPipe native

implementation for the same application represented a throughput of 43.36 records per

second using 4 parallel processes and 99.30 using 48 parallel processes.

For all the experiments, the performance difference between the native ResiPipe

applications and the SPar-generated ones appears to be related to the serialization and

the presence of an extra sink operator. The overhead is more evident in applications with

low computational costs, such as Prime Numbers, which only verify if the given integer

number is prime, and BZip2 decompression, which is mainly limited by the I/O overhead

of writing the decompressed output file over disk.

6.3 Final remarks

This chapter presented the implementation of ResiPipe code generation over the

SPar CLang project and a set of five experiments that evaluate the performance over-

head of SPar generated applications compared to native ResiPipe applications. In general,

the current implementation of ResiPipe code generation allows the development of fault-

tolerant distributed stream processing applications with some limitations compared to the

native ResiPipe applications.

These limitations vary between some restrictions of the current implementation

of the SPar CLang project, which is an experimental project and does not implement all

the features present in the CINCLE implementation of SPar, and some limitations of the

SPar language itself. Currently, the SPar language does not provide a clear way to im-

plement the ResiPipe operator life cycle events onInit, onExit, onError, onLocalSnapshot-

Complete, and onGlobalSnapshotComplete. As depicted in Listing 6.1, a new set of SPar

annotations spar::OnInit, spar::OnExit, spar::OnSnapshot, and spar::onError could be in-

troduced to address this feature by defining function references for each life cycle event.

The spar::OnSnapshot and spar::onError annotations would be ResiPipe specific, but the

remaining annotations could be implemented regardless of the target runtime. Due to

time constraints, this work has not implemented this new set of SPar annotations.

Listing 6.1: Example of SPar operator life cicle events implementation

#include <database.h>

97

void openDatabase()

{

database.open("localhost",);

database.openTransaction();

}

void closeDatabase()

{

if (database.isTransactionOpen())

database.commitTransaction();

database.close();

}

void commitTransaction()

{

database.commitTransaction();

database.openTransaction();

}

void rollbackTransaction()

{

database.rollbackTransaction();

}

int main(int argc, char **argv)

{

[[spar::ToStream]]

while (true)

{

// Ingest event from source

int event = ingestEvent();

// Process event

[[spar::Stage, spar::Input(event), spar::Output(event)]]

{

event = processEvent(event);

}

// Persist the result in the database

[[spar::Stage, spar::Input(event),

spar::OnInit(openDatabase),

98

spar::OnExit(closeDatabase),

spar::OnSnapshot(commitTransaction),

spar::onError(rollbackTransaction)

]]

{

database.insert(event);

}

}

}

Due to the lack of the life cycle events feature, the applications generated using

SPar only support at-most-once semantics by default since it is impossible to implement

the two-step commit protocol employed by ResiPipe to achieve exactly-once without in-

troducing a new set of SPar annotations. Another way to achieve exactly-once semantics

would be to implement replayable data sources and idempotent sinks. However, this will

require extensive modifications to the user source code, which is against the objective of

this research. It was also expected that both native ResiPipe applications and those gener-

ated by SPar would have similar performance results since both use ResiPipe as the engine

for data processing. However, the limitations regarding the data serialization and the ex-

tra sink operator introduce a noticeable overhead over the application execution, which is

more evident in applications that do not perform computationally intensive operations.

In future work, ResiPipe could be improved to allow more flexible pipelines, such

as pipelines with only 2-stages, and support for sink operators with replication when the

input ordering is disabled. These changes eliminate the need for the extra sink operator

present in the current SPar ResiPipe code generation implementation, reducing the over-

head in the generated applications. Regarding exactly-once semantics and the ResiPipe

operator life cycle events, there is no easy way to implement these features using the

existing mechanisms employed by the SPar language without introducing a new set of

annotations that will bring SPar closer to regular ResiPipe classes.

99

7. CONCLUSION

This work introduced a new algorithm for resilient code generation inside the

SPar software ecosystem, allowing parallel and distributed stream processing applications

to be generated with fault-tolerance capabilities, completely abstracted from the appli-

cation developer. The presence of fault-tolerance mechanisms in stream processing sys-

tems is highly important since these systems run for long periods, possibly indefinitely,

and reprocessing all the data in case of failure is highly costly or even unfeasible. To

address this issue, this work conducted a literature review regarding the implementation

of fault-tolerance mechanisms in the current state-of-the-art stream processing systems

and presented a new C++ library for distributed stream processing with fault-tolerance

capabilities and exactly-once semantics.

The research goal of introducing fault-tolerance and exactly-once semantics in

the SPar software ecosystem, preferably in such a way that the end user does not need

to change their existing code, was partly achieved through the development of a new

runtime for code generation named ResiPipe that provides fault tolerance through the

implementation of the Asynchronous Barrier Snapshotting (ABS) protocol and supports

exactly-once semantics through the implementation of the two-step commit protocol. The

research goal was partially achieved since, despite ResiPipe supporting the two-step com-

mit protocol for exactly-once semantics, it is impossible to implement it on the SPar gen-

erated applications since SPar does not abstract the operator life cycle events required

to implement the two-step commit protocol. Currently, the only way to achieve exactly-

once semantics on SPar is to implement replayable data sources and independent sink

operators, which require significant modifications over the user code.

The performance experiments demonstrate that ResiPipe presents similar and,

in some cases, better performance results compared to the remaining analyzed libraries

while providing fault tolerance, out-of-the-box data serialization, and support for pipelines

with multiple processing stages, a set of features that together are unseen over the re-

maining analyzed libraries. Regarding resource utilization, ResiPipe, DSParLib, and Open-

MPI presented similar CPU usage. However, ResiPipe presented slightly higher memory

consumption across the experiments (without considering MPR, which grouped all pro-

cesses over a single machine).

The fault tolerance experiments indicate that ResiPipe can efficiently handle com-

plex pipelines with multiple operators without introducing significant performance penal-

ties. Independently of the snapshot interval, the snapshot mechanisms do not exhibit

a significant overhead over the throughput of the use cases 1, 2, and 3 since these ap-

plications have a relatively small state size. However, the snapshot mechanism appears

sensitive to large state sizes (use case 4), exhibiting a decrease in the throughput as snap-

100

shot frequency increases. This happens because ResiPipe persists the snapshot files over

disk using a blocking operation, which makes the system susceptible to I/O overheads.

The programmability evaluation demonstrates that SPar requires fewer lines of

code (SLOC) and less development time for all the applications. However, this is already

expected since SPar is a domain-specific language with a higher abstraction level than the

remaining analyzed libraries. Removing SPar from the analysis, ResiPipe requires fewer

lines of code (SLOC) to implement all the applications of the experiment set and less de-

velopment time (using the Halstead metrics) for most of the applications (Mandelbrot,

Eye Detector, BZip2 Decompression, BZip2 Compression, and Sentiment Analysis). This

advantage is justified since ResiPipe abstracts the process communication, parallel pat-

tern, and data serialization, while the remaining analyzed libraries only abstract a subset

of these features.

ResiPipe was included in the SPar software ecosystem as a target for code genera-

tion in the SPar CLang project, which is an experimental project and does not implement all

the features present in the CINCLE implementation of SPar. Five experiments have been

conducted to evaluate the performance overhead of SPar-generated applications com-

pared to native ResiPipe applications. In general, the current implementation of ResiPipe

code generation allows the development of fault-tolerant distributed stream processing

applications with some limitations compared to the native ResiPipe applications.

The limitations vary between some restrictions of the current implementation of

the SPar CLang project and some limitations of the SPar language itself for distributed

applications. Currently, the SPar language does not provide a clear way to implement op-

erator life cycle events, a feature required to implement the two-step commit protocol for

exactly-once semantics on ResiPipe. The overhead evaluation also indicates that the data

serialization limitations and the extra sink operator required by the current implemen-

tation of ResiPipe code generation introduce a noticeable overhead over the application

execution, which is more evident in applications that do not perform computationally in-

tensive operations.

As a direction for future works, this research could be improved and extended by

exploring the following topics:

• Dynamic scalability and dynamic process recovery: ResiPipe currently only

supports static linear pipelines without the possibility of increasing or decreasing

the number of replicated operators on the fly. ResiPipe also requires a complete

pipeline restart to recover the application in case of failure. Exploring ways to intro-

duce dynamic scalability and dynamic process recovery capabilities in ResiPipe has

the potential to reduce the overhead introduced by the failure recovery, allowing

the application to dynamically restart a failed operator without stopping the entire

pipeline.

101

• Dynamic snapshot intervals: ResiPipe currently only supports static snapshot in-

tervals based on a time interval (e.g., every 30 seconds) or based on the number

of processed records (e.g., every 1000 records). An adaptive snapshot mechanism

based on metrics such as the system throughput and latency could be explored to

dynamically increase or decrease the snapshot frequency, possibly reducing its over-

head over the regular execution.

• Support for more flexible pipelines: The data stream pipeline pattern currently

implemented by ResiPipe requires one data source operator, one or more middle-

stage operators, and one sink operator. However, the system could be improved to

support feedback loops, multiple data sources, and multiple sink operators.

• High availability for the ResiPipe monitor agent: Currently, ResiPipe has a sin-

gle point of failure over the machine running the monitor agent, which is responsible

for detecting failures and restarting the applications. A high-availability implemen-

tation of the monitor agent could be explored by distributing the process over the

cluster machines and using a consensus algorithm to elect a leader. In case of fail-

ure of the leader machine, another machine on the cluster could take responsibility

for running the monitor agent process.

7.1 List of published papers

Over the course of the author’s Master’s Thesis, one paper has been published

at a national-level conference, WSCAD (Workshop em Sistemas Computacionais de Alto

Desempenho), further renamed to SSCAD (Simpósio em Sistemas Computacionais de Alto

Desempenho). A second publication, in the format of an extended abstract, was published

at a regional school of high-performance computing named ERAD (Escola Regional de Alto

Desempenho).

1. ALF, Lucas M.; HOFFMANN, Renato B.; MÜLLER, Caetano; GRIEBLER, Dalvan. Análise

da Execução de Algoritmos de Aprendizado de Máquina em Dispositivos

Embarcados. In: SIMPÓSIO EM SISTEMAS COMPUTACIONAIS DE ALTO DESEMPENHO

(SSCAD), 24. , 2023, Porto Alegre/RS. Anais [...]. Porto Alegre: Sociedade Brasileira

de Computação, 2023 . p. 61-72. DOI: https://doi.org/10.5753/wscad.2023.235915.

2. ALF, Lucas M.; GRIEBLER, Dalvan. Tolerância a Falhas para Paralelismo de

Stream de Alto Nível. In: ESCOLA REGIONAL DE ALTO DESEMPENHO DA REGIÃO

SUL (ERAD-RS), 24. , 2024, Florianópolis/SC. Anais [...]. Porto Alegre: Sociedade

Brasileira de Computação, 2024 . p. 119-120. ISSN 2595-4164. DOI: https://doi.org/10

.5753/eradrs.2024.238679.

102

REFERENCES

[1] Akidau, T.; Balikov, A.; Bekiroğlu, K.; Chernyak, S.; Haberman, J.; Lax, R.; McVeety,

S.; Mills, D.; Nordstrom, P.; Whittle, S. “MillWheel: Fault-Tolerant Stream Processing

at Internet Scale”, Proc. VLDB Endow., vol. 6–11, aug 2013, pp. 1033–1044.

[2] Akidau, T.; Bradshaw, R.; Chambers, C.; Chernyak, S.; Fernández-Moctezuma, R. J.;

Lax, R.; McVeety, S.; Mills, D.; Perry, F.; Schmidt, E.; Whittle, S. “The Dataflow Model:

A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale,

Unbounded, out-of-Order Data Processing”, Proc. VLDB Endow., vol. 8–12, aug 2015,

pp. 1792–1803.

[3] Akidau, T.; Chernyak, S.; Lax, R. “Streaming Systems: The What, Where, When, and

How of Large-Scale Data Processing”. O’Reilly Media, 2018, 352p.

[4] Ali, M. H.; Gerea, C.; Raman, B. S.; Sezgin, B.; Tarnavski, T.; Verona, T.; Wang,

P.; Zabback, P.; Ananthanarayan, A.; Kirilov, A.; Lu, M.; Raizman, A.; Krishnan, R.;

Schindlauer, R.; Grabs, T.; Bjeletich, S.; Chandramouli, B.; Goldstein, J.; Bhat, S.; Li,

Y.; Di Nicola, V.; Wang, X.; Maier, D.; Grell, S.; Nano, O.; Santos, I. “Microsoft CEP

server and online behavioral targeting”, Proc. VLDB Endow., vol. 2–2, aug 2009, pp.

1558–1561.

[5] Andrade, G.; Griebler, D.; Santos, R.; Danelutto, M.; Fernandes, L. G. “Assessing

Coding Metrics for Parallel Programming of Stream Processing Programs on Multi-

cores”. In: 47th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA 2021), 2021, pp. 291–295.

[6] Andrade, G.; Griebler, D.; Santos, R.; Fernandes, L. G. “A parallel programming

assessment for stream processing applications on multi-core systems”, Computer

Standards & Interfaces, vol. 84, March 2023, pp. 103691.

[7] Andrade, G.; Griebler, D.; Santos, R.; Kessler, C.; Ernstsson, A.; Fernandes, L. G.

“Analyzing Programming Effort Model Accuracy of High-Level Parallel Programs for

Stream Processing”. In: 48th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA 2022), 2022, pp. 229–232.

[8] Andrade, G. L. “Improving parallel programming assessment : challenges, methods,

and opportunities in coding productivity”, Ph.D. Thesis, School of Technology -

PUCRS, Porto Alegre, Brazil, 2023, 201p.

[9] Andrade, H. C. M.; Gedik, B.; Turaga, D. S. “Fundamentals of Stream Processing:

Application Design, Systems, and Analytics”. Cambridge University Press, 2014,

529p.

103

[10] Apache Software Foundation. “Spark Streaming Programming Guide”. Source: https:

//spark.apache.org/docs/latest/streaming-programming-guide.html, Dez 2023.

[11] Apache Software Foundation. “Structured Streaming Programming Guide”. Source:

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.

html, Dez 2023.

[12] Apache Software Foundation. “Trident Tutorial”. Source: https://storm.apache.org/

releases/2.4.0/Trident-tutorial.html, Dez 2023.

[13] Apache Software Foundation. “Apache Flink”. Source: https://flink.apache.org, May

2024.

[14] Armbrust, M.; Das, T.; Torres, J.; Yavuz, B.; Zhu, S.; Xin, R.; Ghodsi, A.; Stoica, I.;

Zaharia, M. “Structured Streaming: A Declarative API for Real-Time Applications in

Apache Spark”. In: Proceedings of the International Conference on Management of

Data, 2018, pp. 601–613.

[15] BSC Programming Models. “OmpSs User Guide”. Source: https://pm.bsc.es/ftp/

ompss/doc/user-guide/OmpSsUserGuide.pdf, Mar 2025.

[16] BSC Programming Models. “NODES - nOS-V-based Dependency System”. Source:

https://www.bsc.es/research-and-development/software-and-apps/software-list/

nodes, Mar 2025.

[17] BSC Programming Models. “NODES - nOS-V-based Dependency System”. Source:

https://www.bsc.es/research-and-development/software-and-apps/software-list/

nanos6, Mar 2025.

[18] Bundschuh, M.; Dekkers, C. “The IT Measurement Compendium: Estimating

and Benchmarking Success with Functional Size Measurement”. Springer Berlin

Heidelberg, 2008, 644p.

[19] Carbone, P.; Ewen, S.; Fóra, G.; Haridi, S.; Richter, S.; Tzoumas, K. “State

Management in Apache Flink®: Consistent Stateful Distributed Stream Processing”,

Proc. VLDB Endow., vol. 10–12, aug 2017, pp. 1718–1729.

[20] Carbone, P.; Fóra, G.; Ewen, S.; Haridi, S.; Tzoumas, K. “Lightweight Asynchronous

Snapshots for Distributed Dataflows”. 1506.08603, Source: https://arxiv.org/abs/

1506.08603, Apr 2025.

[21] Chandy, K. M.; Lamport, L. “Distributed snapshots: determining global states of

distributed systems”, ACM Trans. Comput. Syst., vol. 3–1, feb 1985, pp. 63–75.

https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://storm.apache.org/releases/2.4.0/Trident-tutorial.html
https://storm.apache.org/releases/2.4.0/Trident-tutorial.html
https://flink.apache.org
https://pm.bsc.es/ftp/ompss/doc/user-guide/OmpSsUserGuide.pdf
https://pm.bsc.es/ftp/ompss/doc/user-guide/OmpSsUserGuide.pdf
https://www.bsc.es/research-and-development/software-and-apps/software-list/nodes
https://www.bsc.es/research-and-development/software-and-apps/software-list/nodes
https://www.bsc.es/research-and-development/software-and-apps/software-list/nanos6
https://www.bsc.es/research-and-development/software-and-apps/software-list/nanos6
https://arxiv.org/abs/1506.08603
https://arxiv.org/abs/1506.08603

104

[22] Consel, C.; Hamdi, H.; Réveillère, L.; Singaravelu, L.; Yu, H.; Pu, C. “Spidle: A dsl

approach to specifying streaming applications”. In: Generative Programming and

Component Engineering, Pfenning, F.; Smaragdakis, Y. (Editors), 2003, pp. 1–17.

[23] Dolotin, V.; Morozov, A. “The Universal Mandelbrot Set”. WORLD SCIENTIFIC, 2006,

176p, https://www.worldscientific.com/doi/pdf/10.1142/6136.

[24] Elnozahy, E. N. M.; Alvisi, L.; Wang, Y.-M.; Johnson, D. B. “A survey of rollback-recovery

protocols in message-passing systems”, ACM Comput. Surv., vol. 34–3, sep 2002, pp.

375–408.

[25] Fragkoulis, M.; Carbone, P.; Kalavri, V.; Katsifodimos, A. “A survey on the evolution of

stream processing systems”, The VLDB Journal, vol. 33–2, Mar 2024, pp. 507–541.

[26] Garofalakis, M.; Gehrke, J.; Rastogi, R. “Data Stream Management: Processing High-

Speed Data Streams”. Springer Publishing Company, Incorporated, 2018, 1st ed.,

537p.

[27] Gordon, R. D.; Halstead, M. H. “An experiment comparing fortran programming times

with the software physics hypothesis”. In: Proceedings of the National Computer

Conference and Exposition, 1976, pp. 935–937.

[28] Grant, S.; Voorhies, R. “cereal - A C++11 library for serialization”. Source: http:

//uscilab.github.io/cereal/, Jun 2024.

[29] Grant, S.; Voorhies, R. “The OmpSs Programming Model”. Source: https://pm.bsc.es/

ompss-2, Mar 2025.

[30] Griebler, D. “Domain-Specific Language & Support Tool for High-Level Stream

Parallelism”, Ph.D. Thesis, Faculdade de Informática - PPGCC - PUCRS, Porto Alegre,

Brazil, 2016, 243p.

[31] Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “An Embedded C++

Domain-Specific Language for Stream Parallelism”. In: Parallel Computing: On the

Road to Exascale, Proceedings of the International Conference on Parallel Computing,

2015, pp. 317–326.

[32] Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “SPar: A DSL for High-

Level and Productive Stream Parallelism”, Parallel Processing Letters, vol. 27–01,

March 2017, pp. 1740005.

[33] Griebler, D.; Fernandes, L. G. “Towards Distributed Parallel Programming Support for

the SPar DSL”. In: Parallel Computing is Everywhere, Proceedings of the International

Conference on Parallel Computing, 2017, pp. 563–572.

http://uscilab.github.io/cereal/
http://uscilab.github.io/cereal/
https://pm.bsc.es/ompss-2
https://pm.bsc.es/ompss-2

105

[34] Griebler, D.; Vogel, A.; De Sensi, D.; Danelutto, M.; Fernandes, L. G. “Simplifying

and implementing service level objectives for stream parallelism”, Journal of

Supercomputing, vol. 76, June 2019, pp. 4603–4628.

[35] Halstead, M. H. “Elements of Software Science (Operating and programming systems

series)”. USA: Elsevier Science Inc., 1977, 128p.

[36] Hoefler, T.; Dinan, J.; Buntinas, D.; Balaji, P.; Barrett, B.; Brightwell, R.; Gropp, W.;

Kale, V.; Thakur, R. “Mpi + mpi: a new hybrid approach to parallel programming with

mpi plus shared memory”, Computing, vol. 95–12, Dec 2013, pp. 1121–1136.

[37] Hoffmann, R. B.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Stream Parallelism

Annotations for Multi-Core Frameworks”. In: XXIV Brazilian Symposium on

Programming Languages (SBLP), 2020, pp. 48–55.

[38] Hoffmann, R. B.; Löff, J.; Griebler, D.; Fernandes, L. G. “OpenMP as runtime

for providing high-level stream parallelism on multi-cores”, The Journal of

Supercomputing, vol. 78–1, January 2022, pp. 7655–7676.

[39] Hoffmann Filho, R. B. “Impacts of parallel programming on limited-resource

hardware”, Master’s Thesis, Pontifical Catholic University of Rio Grande do Sul, Porto

Alegre, RS, Brasil, 2023, 102p.

[40] Hsu, M.-Y. “LLVM Techniques, Tips, and Best Practices Clang and Middle-End Libraries:

Design powerful and reliable compilers using the latest libraries and tools from

LLVM”. Packt Publishing, 2021, 370p.

[41] Hueske, F.; Kalavri, V. “Stream Processing with Apache Flink: Fundamentals,

Implementation, and Operation of Streaming Applications”. O’Reilly Media, 2019,

310p.

[42] Laguna, I.; Marshall, R.; Mohror, K.; Ruefenacht, M.; Skjellum, A.; Sultana, N. “A large-

scale study of mpi usage in open-source hpc applications”. In: Proceedings of the

International Conference for High Performance Computing, Networking, Storage and

Analysis, 2019, pp. 14.

[43] Legaux, J.; Loulergue, F.; Jubertie, S. “Development effort and performance trade-

off in high-level parallel programming”. In: International Conference on High

Performance Computing Simulation (HPCS), 2014, pp. 162–169.

[44] Lin, C.-k.; Black, A. P. “Directflow: A domain-specific language for information-flow

systems”. In: ECOOP: Object-Oriented Programming, Ernst, E. (Editor), 2007, pp.

299–322.

106

[45] Lin, W.; Fan, H.; Qian, Z.; Xu, J.; Yang, S.; Zhou, J.; Zhou, L. “STREAMSCOPE:

continuous reliable distributed processing of big data streams”. In: Proceedings of

the 13th Usenix Conference on Networked Systems Design and Implementation,

2016, pp. 439–453.

[46] Löff, J.; Griebler, D.; Fernandes, L. G.; Binder, W. “MPR: An MPI Framework

for Distributed Self-adaptive Stream Processing”. In: Euro-Par 2024: Parallel

Processing, 2024, pp. 400–414.

[47] Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “High-Level Stream and Data

Parallelism in C++ for Multi-Cores”. In: XXV Brazilian Symposium on Programming

Languages (SBLP), 2021, pp. 41–48.

[48] Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “Combining stream with data

parallelism abstractions for multi-cores”, Journal of Computer Languages, vol. 73,

December 2022, pp. 101160.

[49] Löff, J.; Hoffmann, R. B.; Pieper, R.; Griebler, D.; Fernandes, L. G. “DSParLib: A C++

Template Library for Distributed Stream Parallelism”, International Journal of Parallel

Programming, vol. 50–5, 2022, pp. 454–485.

[50] Löff, J. H. “Simplifying Self-Adaptive Distributed Stream Processing in C++”, Master’s

thesis, School of Technology - PPGCC - PUCRS, Porto Alegre, Brazil, 2023, 146p.

[51] Meijer, E.; Beckman, B.; Bierman, G. “LINQ: reconciling object, relations and XML in

the .NET framework”. In: Proceedings of the ACM SIGMOD International Conference

on Management of Data, 2006, pp. 706.

[52] Message Passing Interface Forum. “Mpi: A message-passing interface standard

version 4.1”. Source: https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf,

Apr 2025.

[53] Murashko, I. “Clang Compiler Frontend: Get to grips with the internals of a C/C++

compiler frontend and create your own tools”. Packt Publishing, 2024, 326p.

[54] Murray, D. G.; McSherry, F.; Isaacs, R.; Isard, M.; Barham, P.; Abadi, M. “Naiad: A

Timely Dataflow System”. In: Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles, 2013, pp. 439–455.

[55] Pieper, R.; Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “High-level and

Efficient Structured Stream Parallelism for Rust on Multi-cores”, Journal of Computer

Languages, vol. 65, July 2021, pp. 101054.

[56] Pieper, R. L. “High-level Programming Abstractions for Distributed Stream

Processing”, Master’s thesis, School of Technology - PPGCC - PUCRS, Porto Alegre,

Brazil, 2020, 170p.

https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf

107

[57] Pop, A.; Cohen, A. “Openstream: Expressiveness and data-flow compilation of

openmp streaming programs”, ACM Trans. Archit. Code Optim., vol. 9–4, Jan. 2013,

pp. 25.

[58] Qian, Z.; He, Y.; Su, C.; Wu, Z.; Zhu, H.; Zhang, T.; Zhou, L.; Yu, Y.; Zhang, Z.

“TimeStream: reliable stream computation in the cloud”. In: Proceedings of the 8th

ACM European Conference on Computer Systems, 2013, pp. 1–14.

[59] Rockenbach, D. A. “High-Level Programming Abstractions for Stream Parallelism on

GPUs”, Master’s thesis, School of Technology - PPGCC - PUCRS, Porto Alegre, Brazil,

2020, 163p.

[60] Rockenbach, D. A.; Araujo, G.; Griebler, D.; Fernandes, L. G. “GSParLib: A multi-level

programming interface unifying OpenCL and CUDA for expressing stream and data

parallelism”, Computer Standards & Interfaces, vol. 92, March 2025, pp. 103922.

[61] Rockenbach, D. A.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “High-Level

Stream Parallelism Abstractions with SPar Targeting GPUs”. In: Parallel Computing

is Everywhere, Proceedings of the International Conference on Parallel Computing

(ParCo), 2019, pp. 543–552.

[62] Rockenbach, D. A.; Löff, J.; Araujo, G.; Griebler, D.; Fernandes, L. G. “High-Level

Stream and Data Parallelism in C++ for GPUs”. In: XXVI Brazilian Symposium on

Programming Languages (SBLP), 2022, pp. 41–49.

[63] Seward, J. “bzip2 and libbzip2 - a program and library for data compression”. Source:

https://sourceware.org/bzip2/manual/manual.html, Apr 2025.

[64] Strom, R.; Yemini, S. “Optimistic recovery in distributed systems”, ACM Trans.

Comput. Syst., vol. 3–3, aug 1985, pp. 204–226.

[65] Supalov, A. “Inside the Message Passing Interface: Creating Fast Communication

Libraries”. De Gruyter, Incorporated, 2018, 384p.

[66] Thies, W.; Karczmarek, M.; Amarasinghe, S. P. “Streamit: A language for streaming

applications”. In: Proceedings of the 11th International Conference on Compiler

Construction, 2002, pp. 179–196.

[67] Thies, W.; Karczmarek, M.; Gordon, M.; Maze, D.; Wong, J.; Hoffmann, H.; Brown,

M.; Amarasinghe, S. “StreamIt: A Compiler for Streaming Applications”, Technical

Report, Massachusetts Institute of Technology, 2001, 11p.

[68] Toshniwal, A.; Taneja, S.; Shukla, A.; Ramasamy, K.; Patel, J. M.; Kulkarni, S.; Jackson,

J.; Gade, K.; Fu, M.; Donham, J.; Bhagat, N.; Mittal, S.; Ryaboy, D. “Storm@twitter”. In:

https://sourceware.org/bzip2/manual/manual.html

108

Proceedings of the ACM SIGMOD International Conference on Management of Data,

2014, pp. 147–156.

[69] Vogel, A.; Griebler, D.; Fernandes, L. G. “Providing High-Level Self-Adaptive

Abstractions for Stream Parallelism on Multicores”, Software: Practice and

Experience, vol. 51–6, January 2021, pp. 1194–1217.

[70] Wu, Y.; Tan, K.-L. “ChronoStream: Elastic stateful stream computation in the cloud”.

In: IEEE 31st International Conference on Data Engineering, 2015, pp. 723–734.

[71] Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley, M.; Franklin, M. J.;

Shenker, S.; Stoica, I. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction

for in-Memory Cluster Computing”. In: Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation, 2012, pp. 2.

[72] Zaharia, M.; Xin, R. S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen,

J.; Venkataraman, S.; Franklin, M. J.; Ghodsi, A.; Gonzalez, J.; Shenker, S.; Stoica, I.

“Apache spark: A unified engine for big data processing”, Communications of the

ACM, vol. 59–11, Nov 2016, pp. 56 – 65.

[73] Zhou, J.; Bruno, N.; Wu, M.-C.; Larson, P.-A.; Chaiken, R.; Shakib, D. “Scope: parallel

databases meet mapreduce”, The VLDB Journal, vol. 21–5, oct 2012, pp. 611–636.

[74] Álvarez, D.; Sala, K.; Beltran, V. “nos-v: Co-executing hpc applications using system-

wide task scheduling”. In: IEEE International Parallel and Distributed Processing

Symposium (IPDPS), 2024, pp. 312–324.

[75] Äruprup Nielsen, F. “A new evaluation of a word list for sentiment analysis in

microblogs”, CoRR, vol. abs/1103.2903, Mar 2011, pp. 6, 1103.2903.

	INTRODUCTION
	Context and motivation
	Research Problem
	Research Contributions
	Outline and contents

	BACKGROUND
	Stream Processing
	Stream and Batch Processing
	Fault-tolerance in Stream Processing Systems
	Asynchronous Barrier Snapshotting (ABS)
	Message Delivery Guarantees
	The output commit problem

	SPar
	DSParLib
	MPR
	MPI - Message Passing Interface
	LLVM and Clang
	Halstead's Metrics

	RELATED WORK
	Related Research for Fault Tolerance in Stream Processing Systems
	Apache Flink
	Apache Spark Streaming
	Apache Spark Structured Streaming
	Apache Storm
	ChronoStream: elastic stateful stream computation in the cloud
	Google Dataflow
	MillWheel: Fault-Tolerant Stream Processing at Internet Scale
	Naiad: A Timely Dataflow System
	Streamscope: continuous reliable distributed processing of big data streams
	TimeStream: Reliable Stream Computation in the Cloud

	Summary of finds for Fault Tolerance in Stream Processing Systems
	Related Research for High-Level Programming Abstractions for Stream Processing
	DirectFlow
	OmpSs-2
	OpenStream
	Spidle
	StreamIt

	Summary of finds of high-level programming interfaces

	The ResiPipe library
	Implementation and usage
	State Management
	Progress tracking
	Fault tolerance
	Load balancing
	Final Remarks

	RESIPIPE EVALUATION
	Execution environment
	Data collection methodology
	Performance experiments
	Prime Numbers
	Mandelbrot
	BZip2 Compression
	BZip2 Decompression
	Eye Detector
	Sentiment Analysis

	ResiPipe failure recovery evaluation
	Use Case 1
	Use Case 2
	Use Case 3
	Use Case 4

	Programmability evaluation
	Final remarks

	Resilient SPar code generation
	Implementation
	Overhead evaluation
	Final remarks

	Conclusion
	List of published papers

	References

