
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

LEONARDO GIBROWSKI FAÉ

A HIGH-LEVEL DSL IN RUST FOR EXPRESSING LINEAR
PIPELINES ON MULTI-CORES, CLUSTERS AND GPUS

Porto Alegre

2025

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

A HIGH-LEVEL DSL IN RUST
FOR EXPRESSING LINEAR

PIPELINES ON MULTI-CORES,
CLUSTERS AND GPUS

LEONARDO GIBROWSKI FAÉ

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Dalvan Jair Griebler

Porto Alegre
2025

LEONARDO GIBROWSKI FAÉ

A HIGH-LEVEL DSL IN RUST FOR EXPRESSING
LINEAR PIPELINES ON MULTI-CORES, CLUSTERS

AND GPUS

This Master Thesis has been submitted in

partial fulfillment of the requirements for

the degree of Master in Computer Science

of the Computer Science Graduate Program,

School of Technology of the Pontifical

Catholic University of Rio Grande do Sul

Sanctioned on March 20, 2025.

COMMITTEE MEMBERS:

Prof. Dr. Cesar Augusto Fonticielha De Rose (PPGCC/PUCRS)

Prof. Dr. Marco Danelutto (Univ. of Pisa)

Prof. Dr. Dalvan Jair Griebler (PPGCC/PUCRS - Advisor)

ACKNOWLEDGMENTS

This work was funded by PUCRS University, Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq Research Program (No

306511/2021-5), and FAPERGS call 09/2023 - PqG.

UMA DSL ALTO NÍVEL EM RUST PARA EXPRESSAR PIPELINES

LINEARES EM MULTI-CORES, CLUSTERS E GPUS

RESUMO

Aplicações modernas com uso intensivo de dados exigem o processamento efici-

ente de streams contínuos de dados, frequentemente requerendo execução paralela em

diversos ambientes de hardware, incluindo sistemas de memória compartilhada, clusters

distribuídos e GPUs. Programar esses ambientes de forma eficaz apresenta desafios signi-

ficativos devido às suas características e modelos de programação distintos. Este trabalho

apresenta uma nova linguagem de domínio específico de alto nível, incorporada em Rust,

para expressar paralelismo de pipeline linear direcionado a arquiteturas de multicore,

Clusters, e GPU. Nós a chamamos de SPar-Rust, que simplifica a expressividade do para-

lelismo de pipeline linear e fornece uma interface de programação unificada direcionada

a diferentes arquiteturas paralelas para o desenvolvimento produtivo de aplicações para-

lelas de processamento de fluxo. SPar-Rust realiza transformações de código fonte para

fonte, onde os detalhes de baixo nível são ocultados dos desenvolvedores, usando o pode-

roso sistema de macros do Rust. Analisamos as capacidades do conjunto de ferramentas

de Rust para geração e abstração de código, focando nas implicações de desempenho e

programabilidade de nossa abordagem em comparação com soluções do estado da arte,

mostrando sua eficácia e limitações. Até onde sabemos, SPar-Rust é a primeira DSL em

Rust a oferecer suporte integrado para execução em GPU e uma interface de programação

unificada direcionada a diferentes arquiteturas paralelas.

Palavras-Chave: Rust, Processamento de Stream, SPar, Transformação de Código, Para-

lelismo.

A HIGH-LEVEL DSL IN RUST FOR EXPRESSING LINEAR PIPELINES

ON MULTI-CORES, CLUSTERS AND GPUS

ABSTRACT

Modern data-intensive applications demand efficient processing of continuous

data streams, often requiring parallel execution across diverse hardware environments,

including shared-memory systems, distributed clusters, and GPUs. Programming these

environments effectively presents significant challenges due to their distinct character-

istics and programming models. This work presents a novel high-level domain-specific

language embedded in Rust for expressing linear pipeline parallelism targeting Clusters,

multi-core, and GPU architectures. We named it SPar-Rust, which simplifies the expressive-

ness of linear pipeline parallelism and provides a unified programming interface target-

ing different parallel architectures for developing productive parallel stream-processing

applications. SPar-Rust performs source-to-source code transformations where low-level

details are hidden from developers by leveraging Rust’s powerful macro system. We an-

alyze the Rust tool-chain’s capabilities for code generation and abstraction, focusing on

our approach’s performance and programmability implications compared to state-of-the-

art solutions, showcasing its effectiveness and limitations. To the best of our knowledge,

SPar-Rust is the first DSL in Rust to offer integrated support for GPU execution and a unified

programming interface targeting different parallel architectures.

Keywords: Rust, Stream Processing, SPar, Code Transformation, Parallelism.

LIST OF FIGURES

2.1 Examples of Stream Processing Applications . 19

2.2 A simple 5 stage pipeline . 20

2.3 A more complex 5-stage pipeline . 20

2.4 An example of a Data Flow processing graph. 21

2.5 The shared memory programming model. 30

2.6 The distributed programming model. 31

2.7 An heterogeneous system. 33

2.8 CPU vs GPU architectures . 33

4.1 A linear pipeline . 52

4.2 Remark 1 . 53

4.3 Remark 2 . 53

4.4 Remark 3 . 53

4.5 SPar-Rust code transformation overview . 55

5.1 Benchmark applications execution graphs. 78

5.2 Multi-threaded benchmark results . 83

5.3 Distributed benchmark results . 87

5.4 sobel GPU benchmark application results . 90

5.5 latbol GPU benchmark application results . 91

LIST OF TABLES

3.1 Related Work Comparison . 48

5.1 Best times for the multi-threaded runtimes. 84

5.2 Multi-threaded programmability metrics. 85

5.3 Best times for the MPI runtimes. 88

5.4 Distributed programmability metrics. 89

5.5 GPU programmability metrics. 92

LIST OF ACRONYMS

ACM – Association for Computer Machinery

API – Application Programming Interface

AST – Abstract Syntax Tree

CPU – Central Processing Unit

DSL – Domain Specific Language

GPS – Global Positioning System

GPU – Graphics Processing Unit

GPGPU – General Purpose Graphics Processing Unit

HPC – High-Performance Computing

IEEE – Institute of Electrical and Electronics Engineers

IR – Intermediate Representation

ISO – International Organization for Standardization

JSON – JavaScript Object Notation

MPI – Message-Passing Interface

NO-OP – No Operation

PGO – Profile-Guided Optimizations

RAM – Random Access Memory

RFC – Request for Comments

SIMD – Single Instruction, Multiple Data

SIMT – Single Instruction, Multiple Threads

SLOC – Significant Lines of Code

STL – Standard Template Library

TBB – Thread Building Blocks

UB – Undefined Behavior

XOR – Exclusive OR

CONTENTS

1 INTRODUCTION . 13

1.1 RESEARCH CONTRIBUTIONS . 16

1.2 OUTLINE AND CONTENTS . 17

2 BACKGROUND . 18

2.1 STREAM PROCESSING APPLICATIONS . 18

2.1.1 LINEAR PIPELINES . 19

2.1.2 DATA FLOW . 20

2.2 THE RUST PROGRAMMING LANGUAGE . 21

2.2.1 SAFETY AND UNDEFINED BEHAVIOR . 22

2.2.2 CODE TRANSFORMATIONS IN RUST . 24

2.2.3 TRAITS AND GENERICS . 26

2.2.4 THREADS, REFERENCES AND LIFETIMES . 26

2.2.5 THE SERDE LIBRARY . 28

2.2.6 SEND, SYNC, SERIALIZE AND DESERIALIZE TRAITS . 29

2.3 SHARED MEMORY PARALLEL PROGRAMMING . 29

2.4 DISTRIBUTED PARALLEL PROGRAMMING . 31

2.4.1 MPI . 31

2.5 HETEROGENEOUS PARALLEL PROGRAMMING . 32

2.5.1 GPU PROGRAMMING . 32

2.5.2 GPGPU PROGRAMMING APIS . 34

2.5.3 THE RUST-GPU-TOOLS LIBRARY . 35

2.6 SPAR . 36

2.6.1 SPAR LANGUAGE . 36

2.6.2 SPAR C++ EXAMPLE . 38

2.6.3 THE SPAR COMPILER . 38

2.7 INITIAL WORK . 39

3 RELATED WORK . 42

3.1 MULTI-THREAD . 42

3.2 DISTRIBUTED . 43

3.3 GPUS AND RUST . 44

3.3.1 RELATED PUBLICATIONS . 45

3.3.2 NON ACADEMIC WORK . 46

3.4 COMPARATIVE TABLE . 47

4 A HIGH-LEVEL DSL IN RUST FOR EXPRESSING LINEAR PIPELINES ON

MULTI-CORES, CLUSTERS AND GPUS . 49

4.1 SPAR LANGUAGE IN RUST . 49

4.1.1 TO_STREAM SYNTAX . 51

4.2 LINEAR PIPELINE FORMALIZATION . 51

4.3 SYSTEMATIC OVERVIEW . 54

4.4 TRAIT BASED IMPLEMENTATION . 54

4.4.1 EDGES . 55

4.4.2 WORKERS . 56

4.4.3 RUNTIME IMPLEMENTATIONS . 57

4.4.4 SOURCE AND SINK . 64

4.5 PROCEDURAL MACRO FUNCTION TRANSFORMATION . 64

4.5.1 STAGE . 65

4.5.2 SOURCE . 65

4.5.3 SINK . 66

4.5.4 ORDERING . 66

4.5.5 STATEFUL COMPUTATIONS . 67

4.5.6 SERIALIZATION . 67

4.6 THE TO_STREAM DECLARATIVE MACRO . 67

4.6.1 REPLICATION . 68

4.7 GPU-SPECIFIC TRANSFORMATIONS . 69

4.7.1 PROCEDURAL MACROS CODE GENERATION . 70

4.7.2 RUST CODE CONSTRAINS AND LIMITATIONS . 73

4.7.3 TO_STREAM IMPLEMENTATION . 74

4.7.4 A MORE COMPLEX EXAMPLE . 74

5 EXPERIMENTS . 77

5.1 APPLICATIONS . 77

5.1.1 VERIFYING CORRECTNESS . 79

5.2 LIBRARIES AND FRAMEWORKS . 79

5.3 RESULTS . 80

5.3.1 MULTI-THREADED . 81

5.3.2 DISTRIBUTED . 86

5.3.3 GPU . 90

6 CONCLUSION . 93

6.1 LIMITATIONS . 93

6.2 FUTURE WORK . 94

6.3 LIST OF PUBLISHED PAPERS . 95

REFERENCES . 97

13

1. INTRODUCTION

The Bull Gamma 60, first shipped in 1960, was the world’s first multi-threaded

computer [10]. Throughout the 60s, great research effort was spent on increasing paral-

lelism within the processor with execution pipelines and replication of function units [20],

as this was seen as the only realistic way of increasing performance, since single core

processor units had begun yielding diminishing returns [3]. In the early 1970s, the ad-

vent of microprocessors further increased our ability to connect multiple processing units

into a single CPU, and in the 1980s, we already had several approaches to dealing with

parallelism [20]. One of these was through shared-memory, which would eventually lead

the way to the modern processor units we have today. Another was the message-passing

paradigm, that we use today to program clusters of many computers.

Since its inception, programming parallel systems of all kinds has been chal-

lenging. This difficulty has manifested in several different ways, for example, the many

specialized tools invented to exploit different kinds of parallelism over the years: the Er-

lang programming language [101] in 1986, designed to handle millions of concurrent pro-

cesses1; the more modern languages Go [26] and Elixir [39] that serve similar purposes;

the Message Passing Interface (MPI) [75] that we use to program distributed systems;

OpenMP [22] that can be used to parallelize loops in C/C++ and Fortran in shared-memory

environments; and countless libraries for every modern programming language in indus-

trial use, each often focusing in one specific parallel paradigm. The difficulty is also evi-

dent in how researchers struggle to formalize modern parallel programming, because of

how few guarantees modern processor architectures offer the programmer when it comes

to instruction ordering and atomicity [99]. All of this is exacerbated further by the fact

each parallel architecture has its own set of particular considerations and algorithms that

work on them [8]: a shared-memory environment can make use of efficient semaphores

and mutexes as locking mechanisms to synchronize its computation while a distributed

system can only communicate through messages. These differences make it possible for

one to be an expert in parallelism in shared-memory, but know very little about it in the

context of distributed systems, and vice-versa.

There has been substantial research effort in the past to simplify and ease the

programming of parallel systems. For example, patterns for structured parallel program-

ming [23, 74] ameliorate the difficulty by presenting known-to-work parallel procedures

with higher-level descriptions (pipeline, map-reduce, and so on). However, the program-

mer still must be aware of each platform’s specific characteristics and programming mod-

els to be able to use them efficiently. The C++ language community has also dedicated

1Erlang has its own definition of a “process”. It is similar to a concept we today sometimes refer to as
“green threads”: a small structure containing tasks to be executed, that will be scheduled by Erlang’s own
runtime.

14

much of its time to providing high-level parallel programming abstractions. Parallel pat-

terns are instantiated via C++-based template libraries with classes and predefined func-

tions. Examples of such abstractions are Thread Building Blocks (TBB) [79], FastFlow [2],

GrPPI [25] and SkePU [29]. More recently, we can cite Kokkos [98], HPX [58] and even the

Standard Template Library (STL)’s parallel algorithms [66]. All of them are trying to make

it easier to write parallel programming. Furthermore, many of these frameworks worry

greatly about the portability of their programs to different parallel architectures, and they

can often be executed in multi-threaded and distributed systems, or even in the GPU.

Today, we live in a time where data is abundant, being produced at ever-increasing

rates [18]. Raw data is often not very useful, so there is ample need to somehow process

that data. Achieving this without parallelism is nearly impossible, and thus modern data-

processing systems tend to be made either with very powerful multi-threaded processors,

or, more commonly, many less powerful computers connected in a distributed system.

Recently, specialized hardware (Graphical Processing Units - GPUs, or other accelerators)

has also become more common, as these can achieve significant speedups in routines for

which they are suited [47]. Specialized hardware can be even more challenging to pro-

gram than more orthodox parallelism, since it involves programming for a hardware with

a completely different architecture, often with special concepts and considerations that

one would ordinarily not concern themselves with.

There are cases where data has become so large, is produced at such high rates,

and must be processed so fast that we began processing it as soon as it arrives at the

destination or reaches a time constraint. For example, to analyze comments on a social

media website, we can not simply wait for everyone to stop commenting, and only then

collect the data to analyze it. The analysis must be done while the data is being generated,

and continuously updated as more of it arrives. Thus, the field of stream-processing was

born [7].

Stream-processing can be done using any of the three aforementioned paral-

lelism architectures: in one powerful computer with shared-memory, in many distributed

computers, and using specialized hardware like GPUs. Accordingly, it can be very chal-

lenging to build correct, efficient stream-processing applications, as they can combine the

difficulties of all parallel architectures at the same time. As a result, many frameworks

and libraries have been created over the years to aid developers in this task.

Of the many stream-processing frameworks that came to be over the years, we

can mention Storm[55] and Flink[35], as two popular frameworks for the Java program-

ming language [9]. Java became an attractive language for stream-processing because of

its portability, which allows Storm and Flink to run in highly heterogeneous clusters without

many deep, low-level, programming considerations, as those are mostly handled by the

Java Virtual Machine. Storm and Flink are frameworks specialized in stream-processing,

15

and therefore expect their users to know stream-processing concepts such as processing

windows, watermarks, sources, sinks, stateful operations, and so on.

Java executes in a virtual machine, and enormous research effort has been put

into making it as fast as possible [72]. Nevertheless, the Java virtual machine still can

not beat ahead-of-time optimizing compilers, particularly of old and well-established lan-

guages like C++ [37]. And so, we began building stream-processing applications in C++,

using the previously mentioned abstractions and frameworks. Like Storm and Flink, these

frameworks often demand quite a lot from their users: for example, one must learn Kokkos’

own programming model before one can begin using it efficiently. There are projects that,

in contrast, aim to make stream-processing easier. SPar [40, 42] was created with this ex-

plicit purpose. It is a domain-specific language (DSL) aimed at simplifying and making the

development of parallel stream-processing applications productive, as demonstrated in

experiments and analysis regarding programmability[4, 5, 6]. It is based on C++11 anno-

tation mechanisms (we explore this further in Section 2.6), which does not have standard

compiler support: compilers simply ignore attributes they do not recognize2. And so, to

make SPar work, the authors had to implement their own simplified C++11 compiler to

process their annotations. C++ is a complex language3. As a result, SPar remains locked

to C++14 to this day, as updating its language support beyond that would be a monu-

mental task.

Throughout its versions and revisions, C++ has accumulated much historical

baggage. Its international standard [54] contains 2104 pages, and it is still under-specified,

as many of the language’s semantics are described in natural language, since formalizing

them in any way can often be very challenging. Macro expansion and evaluation are am-

biguous and may vary from compiler to compiler. Many modern, low-level programming

languages were designed without the backward compatibility constraints of C++, which

may be more suited for the needs of modern applications. In this work, we will be focusing

on Rust.

Rust is a relatively new programming language that has been growing in popular-

ity. One of the hallmarks of its growth and success was its inclusion in the Linux Kernel [19].

Rust is a low-level language with a minimal runtime without garbage collection and was

specifically designed as a modern and safer alternative to C/C++ [64]. It is already being

used in production systems, the Linux Kernel being perhaps the most high-profile exam-

ple. Rust’s commitment to safety, through the explicit lack of undefined behavior, makes

it an attractive option for stream processing since these applications are meant to have

very long uptimes, something that can be challenging to achieve in languages with a

lot of undefined behavior like C/C++, because these can lead to very unpredictable re-

sults (see Section 2.2.1). Rust also offers several modern facilities that C/C++ lack: a

2more specifically, the gcc compiler will ignore them, while clang will output an error.
3in fact, the C++ template system itself is Turing Complete [100].

16

modern, easy-to-use build system, well-specified code-transformations through procedu-

ral macros, a strong type system enforcing correctness, and so on. Rust’s age, compared

to languages like C, C++, and Java, explains why it still does not have a well-established

stream-processing framework. Nevertheless, as we will see in Chapter 3, Rust already has

many libraries and frameworks for all kinds of parallel architectures: multi-threaded, dis-

tributed through MPI and even GPUs. This shows the programming community believes in

Rust’s ability to produce competitive, highly efficient code. We believe Rust will let us of-

fer a more portable and safe alternative to solving problems previously tackled by C/C++,

while also not sacrificing performance.

1.1 Research Contributions

In this work, we create SPar-Rust, a DSL for writing stream-processing applica-

tions embedded in Rust. We support all 3 parallel architectures we discussed above, just

like the original SPar, while exposing the same, unified programming API to the devel-

oper. This is done leveraging Rust’s code-transformation features, which we discuss in

Section 2.2.2. More objectively, our main contributions are:

• A novel, Rust-embedded, and high-level Domain Specific Language for stream-processing

using macros to perform source-to-source code transformations, heavily based on

the original SPar.

• Code generation algorithms for shared-memory, distributed-memory and GPU archi-

tectures. To the best of our knowledge, ours is the first work to support GPUs in a

high-level manner for stream-processing in the Rust programming language.

• A unified linear pipeline abstraction and runtime that supports all three parallel ar-

chitectures.

• Analysis of the Rust tool-chain for code generation and abstractions, focusing on

macro transformations and their performance and programmability implications.

• A quantitative analysis composed of 7 applications. We measure their performance

and programmability, comparing the results produced by our work with state-of-the-

art solutions.

These research contributions were possible also due to our previous efforts in

shared-memory [31] and distributed architectures [30]. In [31], we provided annotations

similar to those of SPar when targeting shared-memory architectures. Afterward, in [30],

we reshaped our DSL to increase abstractions while targeting only distributed architec-

ture. In this master’s thesis, we took advantage of this past experience and redesigned

17

the language and runtime system so that with a single way of annotating linear pipelines,

we can target parallel code for multi-core, cluster, or GPUs without refactoring the source

code.

1.2 Outline and Contents

We begin in Chapter 2 by presenting the required background knowledge to

understand this work. We will explore steam-processing, Rust, parallel programming in

shared memory, distributed and heterogeneous environments, SPar and some of our pre-

vious work. Then, in Chapter 3, we discuss related works, comparing them to what we are

attempting in this Thesis. Chapter 4 explains our high-level abstraction: SPar-Rust, detail-

ing its implementation for all parallel environments. Chapter 5 then presents SPar-Rust’s

experimental results, comparing it to many of the works we discuss in Chapter 3. Finally,

we end with our conclusions in Chapter 6.

18

2. BACKGROUND

In this Chapter, we present the main concepts necessary to understand our work.

These include both theoretical and practical concerns and will be used in the following

chapters as a way of evaluating previous work and justifying our own. We begin by

discussing stream-processing applications in Section 2.1. Then, we introduce the Rust

programming language in Section 2.2, discussing its main differences and advantages

compared to more traditional languages used in HPC, such as C and C++, as well as cer-

tain idiosyncrasies that will be relevant when we present our work’s implementation. The

three following Sections (2.3 to 2.5) briefly explain the three parallel environments we

are interested in: shared-memory, distributed and heterogeneous hardware, respectively.

Section 2.6 is an introduction to SPar, a DSL focused on high-level abstractions for stream

parallelism, and, finally, Section 2.7 finishes with a discussion of our previous work.

2.1 Stream Processing Applications

Stream processing applications are characterized primarily by their need to pro-

cess a continuous stream of data, uninterrupted, typically for a long amount of time [7].

The data can be produced through physical devices such as cameras and sensors, or large-

scale applications, such as social networks. Processing it involves applying a series of op-

erators, which can be filters or transformations, possibly storing its results [103], or simply

presenting them in a way to enable real-time analysis. This often leads to high, strict per-

formance requirements for these applications, which are commonly implemented using

high degrees of parallelism to comply with these requirements [94]. Furthermore, these

applications have high availability requirements, since spurious shutdowns and crashes

could cost companies millions of dollars (if it is related, for example, to stock market spec-

ulation, or targeted advertisement), or worse, in the case of systems monitoring data from

sensors to determine the general safety of an environment. Stream-processing applica-

tions can consume structured or unstructured data[7, 84]. Examples of structured data

include JSON (JavaScript Object Notation) or database-style records. Unstructured data

is far more common; these could be the raw data emitted from sensors, digital media in

audio, image, and video formats, or arbitrary user text input (as may happen in social

networks). Current advances in deep learning further enhance our capacity to deal with

unstructured data, and indeed, artificial neural networks are one way of coping with the

ever-increasing amount of data to be processed [105]. Figure 2.1 shows some examples

of stream-processing applications.

The nature of these applications and the way the data they process is created

have the consequence of creating an unknown input volume. They will simply execute

19

34 Introduction to stream processing

Stock market

• Impact of weather on

securities prices

• Analyze market data at

ultra-low latencies

Law enforcement, defense

and cyber security

• Real-time multimodal

surveillance

• Situational awareness

• Cyber security detection

Fraud prevention

• Multi-party fraud detection

• Real-time fraud prevention

e-Science

• Space weather prediction

• Detection of transient events

• Synchrotron atomic research

Other

• Smart Grid

• Text Analysis

• Who’s Talking to Whom?

• ERP for Commodities

• FPGA Acceleration

Telephony

• CDR processing

• Social analysis

• Churn prediction

• Geomapping

Health and life sciences

• Neonatal ICU monitoring

• Epidemic early warning system

• Remote healthcare monitoring

Manufacturing

• Process control for

microchip fabrication

Transportation

• Intelligent traffic

management

Natural systems

• Wildfire management

• Water management

Figure 2.1 Stream processing applications.

domains like radio astronomy, water management, and wildlife and natural resource

monitoring. Consider the set of sample applications shown in Figure 2.1.

As can be seen, these applications include stock transaction analysis for market mak-

ing, process control for manufacturing, analysis of various sensors streams in natural

and physical sciences, multi-modal surveillance for law enforcement, fraud detection

and prevention for e-commerce, physiological sensor monitoring for healthcare, Call

Detail Record (CDR) processing for telecommunications, and many others.

In the rest of this section we describe three application scenarios in more detail. These

scenarios include applications in cybersecurity, transportation, and healthcare. Each one

of them demonstrates certain unique data processing and analytical characteristics.

2.2.1 Network monitoring for cybersecurity

Application context

The security of data networks is of vital importance to the operations of many institu-

tions. However, the vulnerability of these networks and the threat landscape is changing

rapidly. The sophistication of attackers as well as the scope of their activities has been

increasing, leading to data loss and theft, which in many cases results in nancial and

reputational risks.

Cybersecurity threats have traditionally arisen from individuals and informal groups

that use malware to interfere with or steal information, including online account and

credit card numbers. These exploits make use of known vulnerabilities in a host’s

Operating System (OS) or in one of the applications it runs (e.g., web servers and

DBMSs). In some cases, these attacks can be extremely disruptive not only to individual

organizations, but also to the Internet ecosystem.

Figure 2.1: Examples of Stream Processing Applications. Extracted from [7].

continuously as more and more data arrive until they are manually shut down by their

maintainers. There are two main patterns commonly used in stream-processing: linear

pipelines [73] and DataFlow [1]. This work will propose an abstraction (in Chapter 4) that

works particularly for modeling linear pipelines, but it is incapable of modeling DataFlow

patterns. We will now present the linear pipeline pattern, followed by a brief description

of the DataFlow and how they differ from each other.

2.1.1 Linear Pipelines

A pipeline is a directed acyclic graph, where its edges represent the flow of the

application’s data processing, and each node stands for a particular computation that con-

sumes the data generated in the previous stage, producing the input for the next stage.

Figure 2.2 shows a simple 5-stage pipeline. In it, stage 0 must receive, collect, or create

the data to be processed, and stage 4 must produce the pipeline’s final output. In the

context of stream processing, these stages are often called source and sink, respectively.

A more realistic pipeline for production environments is shown in Figure 2.3. In

Figure 2.2, we only exploit parallelism within the pipeline itself. For example, if in1 and in2

arrived one after the other in the source, when in1 were in stage 2, in2 would be in stage

1, both executing at the same time. However, the pipeline pattern lets us explore much

20

0 1 2 3 4

Figure 2.2: A simple 5 stage pipeline

more parallelism than that; because each stage only depends on the input created in the

previous stage, we can replicate the stages themselves to increase the degree of parallel

processing in our applications. This is visualized in 2.3.

0

2

4

1

1

1

1 2

2

2

3

3

3

3

Figure 2.3: A more complex 5-stage pipeline, with parallelism within the stages.

2.1.2 Data Flow

The fundamental difference between a linear pipeline and Data Flow based stream-

processing is that the latter does not need to be neither linear nor acyclic. Figure 2.4 shows

an example. Note how the source can route the data to multiple nodes: A and B, each

with different roles. Furthermore, the graph has two sinks: nodes E and F . This could

correspond to the processing graph deciding to write data to a database, or just sending

it through the network to a different system, for further processing. The pipeline is thus

no longer linear: different data can take different paths through it. Finally, node F may

decide instead to feed its data to node G, which would do some transformation and feed

it back into node D for re-processing, thus creating a cycle in the graph. In these systems,

the focus is no longer on stages and their connections, but on the flow of data in the sys-

tem. Systems following the Data Flow pattern usually also have robust ways of recovering

from failure states, being able to restart computation automatically by themselves.

21

Source

B

A

C

D

F

E

G

Figure 2.4: An example of a Data Flow processing graph.

Actual systems used in production tend towards the Data Flow pattern, because

they have complex dependencies between stages, and complex algorithms to ensure

exactly-once semantics [35], due to the mentioned reliability requirements of these ap-

plications. These semantics will often rely on writing transactions in a database, in order

to be able to restart the stream processing should the system fail, with the exact same

results as if it had not. As mentioned, in this work, we do not concern ourselves with these

highly complicated systems. That would entail implementing an entire stream processing

framework, such as Storm [55] or Flink [35], and it is out-of-scope for our work. Instead,

we will focus on linear pipelines at the level of complexity of Figure 2.3.

2.2 The Rust Programming Language

In this section, we strive primarily to present Rust’s advantages as a language

and justify our choice of it as a low-level language that is appropriate for stream-processing

applications. We will also briefly explain some of its constructs and features that are nec-

essary to understand this work.

The Rust programming language historically came to be as a low-level alterna-

tive to C and C++ developers that did not allow for Undefined Behavior (UB) [64]. More

precisely, Rust guarantees that, as long as the keyword unsafe is not used by the pro-

gram, if it compiles, then it does not have UB. Rust programmers refer to this property as

soundness, and code that does not contain UB is considered sound code.

As the Rust project has always had the goal of serving as a C and C++ alter-

native, the language does not have either a garbage collector nor a runtime, being able

22

to run even in embedded devices. Currently, Rust uses LLVM [67] as its primary code

generation back-end1, which allows it to create binaries for the same targets as clang,

LLVM’s C compiler. By using the same code generation back-end, Rust also ensures its

performance is comparable to C/C++, and works such as [14, 34] confirm Rust’s ability to

deliver performance on par with C/C++ in supercomputing applications.

At the language level, Rust’s main advantage over C/C++ is its safety guaran-

tees. Rust has an intimate relationship with Undefined Behavior: it introduced a keyword

just to interact with UB and was designed specifically to let the programmer do as much

as possible with resorting to constructs that might cause UB. Therefore, to truly under-

stand what Rust offers in comparison to C and C++, as well as some of its limitations, it is

necessary to have a firm grasp on what exactly UB entails.

2.2.1 Safety and Undefined Behavior

Undefined Behavior comes in many forms: in programming languages, compil-

ers intermediate representations (IR), or even hardware platforms [68]. We are primarily

interested in UB defined in programming languages and secondarily in compilers’ IRs.

The C programming language specification defines many kinds of UB [53]. Their

original purpose was to allow C to be ported and optimized to many different architectures,

where certain behaviors may differ significantly [104]. For example, several computer ar-

chitectures have different solutions for integer division by zero: x86 causes a hardware

exception, while PowerPC silently ignores it [104]. By setting the behavior of integer divi-

sion by zero as “undefined”, the C specification allows it to be easily implementable in both

these architectures. C++, being a superset of C, inherited all of C’s UBs, and introduced

some more of its own.

Because UB means that the hardware can do anything, compiler writers have

begun assuming that UB never happens when writing optimizations, allowing them to

assume certain invalid states also never happen, and putting the burden of ensuring that

on the language’s programmers [68]. Since compilers explicitly assume UB never occurs,

an unfortunate consequence is that any resulting binary is correct if the source

code contains undefined behavior. In practice, due to a compiler’s nature, it is very

unlikely that the resulting program will be significantly different than what is specified in

code; often UB manifests as strange bugs that occur in seemingly unrelated parts of the

code, in a program that otherwise behaves as expected. Indeed, UB can sometimes cause

seemingly “impossible” results, as the following example demonstrates.

1It is possible to use different back-ends, such as Cranelift [16], which could be used for debug builds.

23

Example of Undefined Behavior

This example has been largely taken and adapted from [56]. Listing 2.1, below,

contains undefined behavior. Specifically, the variable x is being read without being ini-

tialized:

1 #include <stdio .h>

2

3 int always_true (int x) {

4 return x < 100 | | x == 100 | | x > 100;

5 }

6

7 int main(void) {

8 int x;

9 pr int f ("%s \n" , always_true (x) ? " true" : " false ") ;

10 return 0;

11 }

Listing 2.1: Example of Undefined Behavior in C

Trivially, the function always_true should always return true, since any number

is either smaller than 100, equal to 100, or bigger than 100. However, depending on

the compiler’s version and the level of optimization used, this function could return false.

Indeed, the equivalent (unsafe) Rust code did return false in certain compiler versions

[56].

This is possible due to several complex interactions that happen during the com-

pilation process. Uninitialized variables are UB, therefore the compiler may assume they

do not exist. Whenever the compiler encounters one such variable, it keeps track of the

fact it is uninitialized. Whenever our code attempts to read this variable, then, the com-

piler can simply choose any arbitrary register. Since the variable is uninitialized, it can,

by definition, contain any value, and because this is UB, the compiler does not have to

assume this value is the same every time the variable is read. So, for Listing 2.1 to print

“false”, the compiler just has to pretend that x first has any value above 100, and then

any value below 100. It can then verify this always returns false and constant-fold the

function to simply:

1 int always_true (int x) {

2 return 0;

3 }

Listing 2.2: Possible result of optimizing with UB

This is just one example of how UB can lead to very unexpected results when

compiling code. There are many others in C/C++: use-after-free, access-out-of-bounds,

dereferencing a null pointer, signed integer overflow, misaligned pointer-casting, and so

on. UB can lead to bugs that are very hard to find because they result in wildly unpre-

dictable behavior, and may cause systems to crash well after they’ve been executing for a

long time, as well as crash only in some executions, but not others [68]. This is undesirable

for stream processing applications because of the reliability requirements discussed in the

24

previous Section. Furthermore, many of these cases of UB can happen frequently, even in

security-sensitive code: in [12], a group of researchers found that 37.2% of vulnerabilities

in cryptographic libraries written in C/C++ were memory related, many of which wouldn’t

happen in Rust, since null pointers do not exist in safe Rust, and access-out-of-bounds

would result in a direct crash, not leaking any information to an attacker, or allowing for

remote code execution by reading beyond the buffer limit. This is the biggest advantage

Rust offers over traditional HPC languages like C/C++. This entire category of bugs, which

could theoretically produce any arbitrary runtime behavior, and that could, historically,

only be avoided by the programmers themselves, is now detected and guarded against

statically, by the Rust compiler.

The unsafe keyword

The unsafe keyword essentially creates two versions of the Rust language: safe

Rust and unsafe Rust. Safe Rust is sound by default — any UB in safe Rust is immediately

considered a bug by the language maintainers. Unsafe Rust is sound if and only if it does

not contain UB, and the programmer must manually ensure that certain invariants are up-

held2. Generally, when programming in Rust, it is expected to only use unsafe when ab-

solutely necessary, documenting precisely the conditions under which running that code

is sound, and ensuring they are valid every time it is used. In this work, whenever there is

no explicit mention of unsafety, it is assumed we are speaking of safe Rust.

2.2.2 Code Transformations in Rust

Rust, as a programming language, has another advantage over C/C++ when it

comes to our work: meta-programming and code transformation. Rust offers us standard-

ized ways of doing things that in C/C++ could only be done, non-portably, either through

non-standardized preprocessor directives, or compiler plugins (or by writing a compiler

yourself). Meta-programming in Rust is done through macros, which differ significantly

from their counterparts in C/C++. The most important part being that Rust integrates

the macro system into the language itself [92], clearly specifying its behavior, rather than

leaving some of it to an implementation-defined preprocessor.

Macros in Rust come in 2 forms: declarative and procedural. We will examine

each of them in turn.

2Checking unsafe Rust for UB automatically is an active area of research (for example, the Stacked Bor-
rows aliasing model [57]). The Rust Project offers Miri [76] as a tool that can help with that. Though it can
not detect all cases of UB and may also report some false positives.

25

Declarative Macros

Declarative macros perform advanced text substitution on the language tokens

they receive as input. The programmer specifies exactly what kind of token can be passed

as input (for example, an identifier, a type, or an expression), and the macro will substitute

the calling code by its body, performing the specified expansions when necessary.

These can only interfere with the code outside of them in limited ways. For ex-

ample, they can only set a variable’s value if the variable was passed to it as an argument

when it was called or if the variable was declared at the macro’s definition site. In contrast,

the C/C++ preprocessor will simply perform the substitution every time, even when the

code modifies the surrounding environment in arbitrary ways. Rust calls macro that do

not modify their surrounding environment “hygienic” [92]. It is considered good practice

for declarative macros to be hygienic, since that makes their behavior more predictable

for the programmer. In Chapter 4, when we present our to_stream declarative macro,

we precisely indicate in which cases it is not hygienic. Note that even unhygienic macros

must still generated code that conforms to Rust’s safety guarantees, since they merely

generate code that will later be compiled normally.

Procedural Macros

Rust macros have advanced capabilities beyond text manipulation. Specifically,

procedural macros are implemented as user-defined programs that can receive a stream

of Rust tokens that they can analyze and transform, outputting a stream of tokens that

reflects the desired transformation. During compilation, when one of these macros is

invoked, the compiler will execute the respective program and feed the parsed Rust tokens

as input, expecting a stream of valid Rust tokens as output. Within the procedural macro,

the developer can do any arbitrary computation. It is possible to, for example, generate

code conforming to a specification contained in a separate file, detect special hardware

features, adjust the generated code accordingly, and so on.

There are 3 types of procedural macros according to the Rust Reference [92]:

1. Derive macros must precede structs or enums to generate code that implements

certain functionalities;

2. Attribute macros can define custom attributes on any item;

3. Function-like macros are similar to functions but operate on their arguments as to-

kens, not values.

In this work, we use attribute macros to perform function transformations. When

used in this way, attribute macros look very similar to annotations in other programming

26

languages such as C++ and Java. Listing 2.3 shows an example. Here, the Rust compiler

will feed the parsed tokens of function_to_transform (from the fn keyword to the last

closing curly-bracket of the function’s body) to a program called example_macro, that will

then output the transformed Rust code.

1 #[example_macro]

2 fn function_to_transform (

3 /* inputs */

4) −> /* outputs */ {

5 /* function body */

6 }

Listing 2.3: Attribute macro example

2.2.3 Traits and Generics

Traits are Rust’s names for what other languages sometimes call interface: a

contract that says a certain type implements certain methods. A type that implements

the Display trait, for example, can be formatted and printed to standard output by using

the println procedural macro, because it has a Display::fmt method. Traits let the

programmer write generic code that accepts any type that implements a certain trait. For

instance, a function with the signature “fn f<T:Display>(x:T)” will accept as input any

type that implements the Display trait. Then, at compilation time, the Rust compiler will

monomorphize the function — essentially, create a different version of the function for

every necessary type.

The following Section will introduce several traits that are important to our work.

We will also define many traits ourselves in Chapter 4.

2.2.4 Threads, References and Lifetimes

To end this Section, we will be examining what Rust offers as a language in terms

of parallelism. Parallelism is necessary to achieve acceptable performance in any serious

instance of stream-processing. We deal with 3 types of parallelism in our work: multi-

threaded based on threads, distributed computing based on MPI [75] and GPU based on

OpenCL [60]. We explain each of these in turn in the following Sections. For now, we

turn our attentions to Rust’s support of multi-threaded programs, and the challenges its

safety rules can impose on the programmer. For the purposes of this Section, it suffices to

understand that a thread is an independent sequence of instructions that will be scheduled

for execution by the operating system [91]. A single process (a program), has at least one

thread, and can have as many as the operating system will allow it. A program with

multiple threads is aptly named: multi-threaded.

27

The Rust standard library offers ways of spawning and synchronizing threads.

There are abstraction for mutexes, conditional variables, atomic operations, channels,

read-write locks, and barriers. Using these primitives can be challenging, because they

must also conform to Rust’s safety rules [38]. There are two fundamental rules to Rust’s

borrowing system:

1. there can be an arbitrary number of immutable references to the same data; XOR

2. there can be one, and only one, mutable reference to a piece of data

In Rust, all references must always be valid. In other words, they must not be null

and the value they are referring to must be in a valid state (for example, a boolean value

must be represented by a 0 or a 1. If it is a 2, then its state is invalid, and a reference to

it is also invalid)3. Furthermore, the value must exist. This is non-trivial if the value refers

to e.g. a Vec, the standard library vector type, because it uses heap-allocated memory.

When Vec goes out of scope, it will run its destructor, and all references that point to it

would be considered invalid. Rust’s solution to this problem is the concept of lifetimes.

Essentially, the Rust compiler tracks the time during which a reference is valid, and will

refuse to compile code where a reference outlives an object’s lifetime. Listing 2.4 shows

a simple example illustrating the concept4.

1 let v1 = Vec : :new() ;

2 {

3 / / This reference is valid , because v1 w i l l be valid

4 / / for a l l times while this reference exists .

5 let v1_reference = &v1;

6 } / / v1_reference l i fet ime ends here .

7 {

8 / / This reference is valid * right now*.

9 let v1_reference = &v1;

10 / / This moves the ’v1’ vector into the function .

11 / / The v1_reference is now invalid , because the

12 / / function w i l l run v1 destructor at some point .

13 function (v1) ;

14 / / ** this is a compiler error! **. We are trying to

15 / / read from an inval id reference .

16 let x = v1_reference [0] ;

17 } / / v1_reference l i fet ime would end here , but

18 / / v1 is no longer valid because i t was moved into

19 / / ‘ function ‘ . This causes the compilation to f a i l .

Listing 2.4: Lifetime example

This leads to a problem when writing multi-threaded code: a thread can be alive

for the entire duration of the program. This implies any references it uses must also be

3Note this is true of both safe and unsafe Rust. A common programming mistake in unsafe Rust is creating
a temporary invalid reference. Its mere existence is considered, itself, UB. Of course, in safe Rust, it is
impossible to create an invalid reference in the first place.

4Rust has a rich vocabulary to talk about references and lifetimes: borrowing values, dropping values,
validity, etc. We are simplifying these concepts to focus on the specific parts that will be most relevant to
our work.

28

alive while the program is running. Indeed, looking at the standard library’s implementa-

tion of thread::spawn, it demands the values we pass to it be ‘static, which is a special

lifetime indicating the value will exist during all of the program’s execution. Alternatively,

instead of passing references, one could simply clone the value, though this would in-

evitably incur in performance sacrifices. This was eventually considered to be too limiting,

and, in Rust version 1.63.0, a different API was developed: thread::scope. Scoping al-

lows the user to spawn threads with references that aren’t ‘static, by ensuring that all

threads will be waited on at the scope’s end. Listing 2.5 shows how the thread scope API

works.

1 std : : thread : :scope(| s | {

2 / / spawn 1 thread

3 s .spawn (. . .) ;

4

5 / / spawn 2 threads

6 s .spawn (. . .) ;

7

8 / / here , at the scope ’ s end, Rust w i l l wait for a l l spawned

9 / / threads to f in ish executing . Thus , any reference that

10 / / outlives the scope is allowed to be used in the threads

11 }) ;

Listing 2.5: Thread Scope

This is important because, in Chapter 5, we will examine multiple Rust multi-

threaded libraries/frameworks. These will offer us their own APIs to spawn units of work in

parallel. If they expose an API similar to thread::spawn, we will run into lifetime problems.

To solve many of these problems, without resorting to cloning values (which would negate

a lot of the performance gains), we will have to make use of unsafe to extend the duration

of the lifetimes5. In contrast, if they offer something similar to thread::scope, we will

be able to use idiomatic, fully-safe Rust. As one of Rust’s main selling points is its safety,

APIs that allow us to write fully-safe Rust and still retain performance should be considered

superior to those that do not.

Finally, note that, because of the second borrowing rule, presented above, thread::scope

is not helpful when we need mutable references, because only one thread would ever be

able to receive that reference. This will also come to play in Chapter 5, where we will have

to resort to using raw pointers, writing to them with unsafe.

2.2.5 The serde library

When executing code in parallel in a distributed environment, we can no longer

pass references to data, because the address spaces of each process in each machine

will be different. As such, we will have to copy the data between each computer, com-

5This is one of the most advanced and dangerous things one can do with unsafe[93]

29

municating through a network. These computers may not necessarily have the same

configuration, or even architecture, and so, the data must be serialized into a normalized

format, so that when the receiver gets the data, it can de-serialize it into a format it can

understand.

Serde[89] is a serialization library widely used in the Rust ecosystem. It han-

dles trivial cases of serialization through derive macros (a type of procedural macro, see

Section 2.2.2), and gives the primitives to manually write the (de)serialization procedures

when we need to do so. The serde library is used in all code targeting a distributed envi-

ronment in this work.

2.2.6 Send, Sync, Serialize and Deserialize traits

As explained above, the requirements of code that executes in a shared memory

environment and in a distributed one are different. This also translates in the traits of the

types we want to use in these contexts must implement.

For a multi-threaded scenario, types must implement the Send and/or Sync traits.

These are marker traits (so called because they do not have any methods) that indicate

that the type is safe to me moved across thread boundaries (Send), or that a reference to

it can be moved across thread boundaries (Sync). These are implemented automatically

for all types the Rust compiler know are safe, which is essentially all fundamental types

except raw pointers, and structs made up of those fundamental types. Structs with

raw pointers must be manually marked as Send and/or Sync. Because the programmer

needs to manually ensure these pointers are not pointing to data that can only exist in the

main thread, the Send and Sync traits are unsafe, and require using the unsafe keyword

to implement.

For a distributed scenario, types must implement the Serialize and Deserialize

traits from the serde library. These include methods to help serde transform those types

to and from a serialized format. Serde already implements these traits for all fundamental

types (except pointers and references), as well as some containers from the standard li-

brary (most noticeably, Vec). It can also automatically implement those traits for structs

composed of those types, through a derive macro, as mentioned. Unlike Send and Sync,

these traits are not unsafe, and can be manually implemented entirely in safe Rust.

2.3 Shared Memory Parallel Programming

As mentioned previously, our work focuses on 3 different kinds of parallel sys-

tems. The first is the shared memory model, whereby one machine has many processes

30

that all share a single physical memory address space [21]. In the context of shared

memory, it is most common to make use of threads, rather than processes. Threads are

sometimes referred to as lightweight processes [91]. In this work, we will always use pro-

cess to refer to “heavyweight” processes, so that there is no confusion between the terms.

Figure 2.5 displays the shared memory environment we are envisioning.

COMPUTER

RAM

THREADS

1 2 3

4 5 ...

Figure 2.5: The shared memory programming model.

There are a few key differences between processes and threads [91]. Processes

“own” their resources: the operating system will typically handle virtual memory ad-

dresses, file descriptor tables, and other things necessary for program execution to a

process. The process can then fire as many threads as it wants by making the appropriate

syscall6, and will have at least one: the main thread. The operating system scheduler

works at the thread level, not the process level. This is why Figure 2.5 has “threads”, and

not “processes”. It is also why many works in this model, including ours, refer to it as

a “multi-threaded” environment. It is possible to create parallel systems using multiple

processes, rather than threads, but in this work we only concern ourselves with the later.

As Figure 2.5 shows, all threads in a machine are connected to RAM. This im-

plies they have the same physical address space7, which, in turn, means that they can

communicate very cheaply. Accessing a pointer through one thread will yield the same

address as accessing it through a different thread in the same process. Communication

is, thus, virtually instantaneous; the problem is synchronization. Synchronizing threads in

a shared-memory environment is a complex topic, and we will not get into details in this

Thesis. We will simply note one of the myriad of problems that can arise: if two threads

try to modify the same value at the same time, data races can occur [21]. However, be-

cause Rust forbids two mutable references to the same data to exist at the same time,

data races are impossible in safe Rust, which is a distinct advantage the language

has over C/C++.

6In the Linux operating system, the syscall is called clone.
7Note the operating system will still associate each process with a different virtual address space.

31

2.4 Distributed Parallel Programming

The distributed programming model typically involves several machines distributed

and communicating through a network, all collaborating to solve one problem [21]. Fig-

ure 2.6 depicts a distributed system with an unknown number of computers (also called

nodes). Every node is a full-fledged machine, composed of the same parts as a single

shared-memory system.

COMPUTER

RAM

THREADS

1 2 3

4 5 ...

COMPUTER

RAM

THREADS

1 2 3

4 5 ...

NETWORK

COMPUTER

RAM

THREADS

1 2 3

4 5 ...

...

Figure 2.6: The distributed programming model.

Each machine in the system is different: their physical address space are not the

same. Therefore, we can no longer communicate simply by passing pointers to address

around. Instead, communication must be done through the network, by sending and re-

ceiving values through pre-established protocols. In this work, we will primarily be using

MPI as our means of communication in distributed systems.

2.4.1 MPI

The Message Passing Interface (MPI) is a message-passing specification used in

distributed environments to facilitate their parallel programming. MPI was developed

through a coordinated effort of several researchers and organizations as a way of stan-

dardizing a message passing interface that could be used in large parallel systems [75].

Prior to MPI, these systems would have different APIs for achieving similar goals, which

made writing parallel code very machine-specific and non-portable. Today, programmers

32

can rely on most supercomputers and large parallel system having a working MPI imple-

mentation the can use to explore their parallel computing capacity.

We will not be using any advanced features of MPI in this work, just its basic send

and receive capabilities. When sending or receiving messages, MPI lets the programmer

tag them with a number. We will use this tag to track the messages’ order, which will be

relevant in Section 4.5.4. As mentioned previously, the messages will be serialized with

the serde library. All communication done with MPI in this work follows the same pattern

of serialization→send the serialized bytes→receive the serialized bytes→deserialization.

Because of serialization considerations,

The MPI implementation we will be using in this work is OpenMPI [36]. As Open-

MPI is implemented in C, we use the rsmpi8 library to interact with it. rsmpi is a simple

library that can generate bindings to OpenMPI, and offers a high-level, more rust-like in-

terface to interact with it. It also exposes the lower level, direct C function calls, should

the programmer need it.

2.5 Heterogeneous Parallel Programming

Broadly speaking, an heterogeneous system is any system that has some kind of

specialized hardware to deal with specific tasks. Figure 2.7 shows a simple, general exam-

ple. Heterogeneous systems can vary widely according to the kind of hardware attached

to them. In this work, we focus only on Graphics Processing Units (GPUs)9.

2.5.1 GPU Programming

GPUs have a fundamentally different architectural design from Central Processing

Units (CPUs) [63]. This can be visualized in highly simplified form in Figure 2.8. From it, we

can see that GPUs are organized into an array of highly threaded multiprocessors. These

are organized in groups, each sharing a control unit and the cache.

Figure 2.8 is enough to show the primary advantage the GPU has over the CPU: it

is inherently highly parallel, allowing for significantly more throughput than the CPU. We

can also visualize some of its disadvantages: the presence of only one control and cache

unit per thread group implies that the GPU will struggle with highly divergent code (code

with multiple unpredictable branches) [63]. GPUs are tailor-made to handle repetitive,

independent operations on large quantities of data in a SIMD (Single Instruction, Multiple

8https://github.com/rsmpi/rsmpi
9This is potentially a misnomer, since modern GPUs are not necessarily made to accelerate graphic-

related tasks. Nevertheless, this is still how most of the literature calls them.

https://github.com/rsmpi/rsmpi

33

COMPUTER

SPECIALIZED
HARDWARE

RAM

THREADS

1 2 3

4 5 ...

Figure 2.7: An heterogeneous system.

memory system into the processors. Graphics chips have been operating

at approximately six times the memory bandwidth of contemporaneously

available CPU chips. In late 2006, GeForce 8800 GTX, or simply G80,

was capable of moving data at about 85 gigabytes per second (GB/s) in

and out of its main dynamic random-access memory (DRAM) because

of graphics frame buffer requirements and the relaxed memory model (the

way various system software, applications, and input/output (I/O) devices

expect how their memory accesses work). The more recent GTX680 chip

supports about 200 GB/s. In contrast, general-purpose processors have

to satisfy requirements from legacy operating systems, applications, and

I/O devices that make memory bandwidth more difficult to increase. As

a result, CPUs will continue to be at a disadvantage in terms of memory

bandwidth for some time.

The design philosophy of GPUs is shaped by the fast-growing video

game industry that exerts tremendous economic pressure for the ability to

perform a massive number of floating-point calculations per video frame

in advanced games. This demand motivates GPU vendors to look for ways

to maximize the chip area and power budget dedicated to floating-point

calculations. The prevailing solution is to optimize for the execution

throughput of massive numbers of threads. The design saves chip area and

power by allowing pipelined memory channels and arithmetic operations

to have long latency. The reduced area and power of the memory access

hardware and arithmetic units allows the designers to have more of them

on a chip and thus increase the total execution throughput.

The application software is expected to be written with a large number

of parallel threads. The hardware takes advantage of the large number of

Control

Cache

CPU
GPU

DRAM DRAM

ALU

ALU

ALU

ALU

FIGURE 1.1

CPUs and GPUs have fundamentally different design philosophies.

4 CHAPTER 1 Introduction

Figure 2.8: CPU vs GPU architectures. Extracted from [63].

Data) fashion. If the instructions running on the GPU contain a branching statement that

goes 50% of the time one way and 50% the other, the GPU will essentially be forced to run

both codes to completion twice, each time discarding half of the produced output. NVIDIA

refers to this process as masking, and what it actually does is disable the divergent threads

until the current ramification finishes [77].

34

Describing it in more detail, a modern NVIDIA GPU contains streaming processors,

or CUDA cores, which are similar to a CPU’s arithmetic logic units, each containing an

instruction cache and sharing control units. Streaming processors are then grouped in

streaming multiprocessors, which are analogous to AMD’s compute units. NVIDIA calls the

programming model SIMT (Single Instruction, Multiple Thread) [77], which refers to the

fact that every thread in a streaming multiprocessor will execute the same instructions.

The streaming processors are grouped in warps, which will then finally be scheduled for

execution. Thread masking only happens at the warp level, meaning that all threads

(currently a total of 32) must agree in execution flow to maximize performance [77].

Finally, we note that Franzén and Östling have showed in [34] that Rust can

achieve performance comparable to that of C++ in GPU-oriented applications. However,

they explain that certain adaptions to the code are necessary; one can not simply do a

naive line-by-line translation of the C++ code.

2.5.2 GPGPU Programming APIs

There are two widely used general-purpose GPU programming APIs: CUDA [78]

and OpenCL [60]. We will describe them briefly in this Subsection. Our code generation

currently only targets OpenCL, but it is possible to extend it to also target CUDA in future

works.

CUDA

CUDA describes itself as a general-purpose parallel computing platform and pro-

gramming model [77]. It is specific to NVIDIA graphical cards and offers two APIs: one

higher-level Runtime API, that requires the nvcc compiler and abstracts away tasks such

as driver initialization, kernel compilation, and context management; and a lower-level

API, which is a library callable from normal C/C++ code and requires the program to do

everything manually themselves. As mentioned, rust-gpu-tools will take care of that for

us.

CUDA is very similar to C, with the difference that functions to be executed on

the GPU must be annotated with __global__ (these functions are also called kernels),

and called with a special configuration syntax «<...»> before its parameters. Since, for

our particular use case, we will be calling these functions directly from Rust code, we only

care about the syntax of their definitions. Listing 2.6 shows a simple example of defining a

function that simply adds two vectors, extracted from [32]. Note the example was chosen

merely for its simplicity, and is not particularly good code for the GPU, since a for loop

will result in divergent code, and is bad for performance, for reasons previously explained.

35

1 extern "C" __global__ void add(uint num, GLOBAL uint *a , GLOBAL uint *b, GLOBAL uint * result) {

2 for (uint i = 0; i < num; i++) {

3 result [i] = a[i] + b[i] ;

4 }

5 }

Listing 2.6: CUDA example, extracted from [32]

OpenCL

The OpenCL specification states that: “OpenCL (Open Computing Language) is

an open royalty-free standard for general purpose parallel programming across CPUs,

GPUs, and other processors, giving software developers portable and efficient access to

the power of these heterogeneous processing platforms” [60]. One notices, therefore,

that OpenCL has a larger scope than CUDA: it wishes to facilitate writing parallel code for

many different platforms, not just GPUs. Furthermore, OpenCL has the advantage of not

being tied to a specific vendor, since it is open and royalty-free. Despite its capabilities,

we will only be using OpenCL to execute code in the GPU.

OpenCL includes a language, API, libraries, and a runtime system. Because of

what rust-gpu-tools (explained in the next Section) offers us, we will only interact di-

rectly with its language. Much like CUDA, OpenCL is very similar to C, demanding that

functions be executed on the GPU to be annotated with __global. Listing 2.7 shows the

previous example adapted to OpenCL.

1 __global void add(uint num, GLOBAL uint *a , GLOBAL uint *b, GLOBAL uint * result) {

2 for (uint i = 0; i < num; i++) {

3 result [i] = a[i] + b[i] ;

4 }

5 }

Listing 2.7: OpenCL example, extracted from [32]

There are other differences in regards to the naming and presence of certain

global variables that come into play when implementing the code generation. Since we

only target OpenCL for now, these differences are not important for this work. The details

of our code generation will be explained later in Chapter 4.

2.5.3 The rust-gpu-tools library

Initializing the API’s context, moving data to and fro the GPU, as well as schedul-

ing and executing kernels in it are operations specific to each API. In this work, we use

the rust-gpu-tools library that abstracts that away for us, letting the programmer write

very similar Rust code that will execute with CUDA or OpenCL. As mentioned, we will only

36

use OpenCL in this work, but this allows it to eventually be extended to support CUDA as

well in future work.

In Section 2.2.6 we explained the traits that must be implemented in data we

wish to use in multi-threaded and distributed environments. Here, the requirements are

much more stringent. Rust-gpu-tools will only let us send 4byte signed and unsigned

integers and vectors of fundamental integer or floating point types to the GPU. It is tech-

nically possible to encode a more complex type in a byte array, doing a sort of primitive

serialization. However, de-serializing that later in the GPU would be much too costly, as it

would involve complicated indexing operations, often with many conditionals, which the

GPU is terrible at executing.

2.6 SPar

SPar is a Domain Specific Language (DSL) that offers high-level abstractions for

stream processing making use of parallelism [40, 41, 42]. It was originally conceived

for C++11 and implemented using its attributes feature and a custom compiler that

processes these attributes to make source-to-source transformations on the annotated

code. The language has been extended to support data parallelism [70] and service

level objectives [45]. SPar’s compiler was developed in subsequent works to generate

code for different environments and runtimes. For shared-memory architecture, there

is support for, FastFlow [42, 69], TBB [50] and OpenMP [51]. There is also support for

self-adaptive stream-processing [45, 102]. For distributed architectures, there are the

works of Griebler [43], Loff [71] and Pieper [82]. For the GPU there are the works of Rock-

enbach [84, 85, 87]. Moreover, it has shown important usability benefits presented by

beginner developers [5] and coding metrics [4, 6]. Our work is, in essence, a recreation of

SPar implemented in Rust, targeting the same 3 environments: multi-threaded, distributed

and GPUs. This Section focuses on understanding SPar’s language and basic transforma-

tions. These will later be used and adapted to implement our own code transformations in

Rust.

2.6.1 SPar Language

SPar’s language, though originally designed for C++11, is very generic and flex-

ible, since it is largely based on stream-processing’s basic concepts, as explained in Sec-

tion 2.1. This makes it possible to adapt it and re-implement it in other languages, using

their particular constructs.

The original SPar language was composed of 5 attributes:

37

1. ToStream – used to indicate the beginning of a stream processing region. This would

typically be the equivalent to node 0 (the source) in Figure 2.3.

2. Stage – represents a pipeline stage.

3. Input – defines the input dependencies of the Stage or the stream region.

4. Output – defines the output of a Stage or stream region.

5. Replicate – specifies the number of workers in a Stage.

Note that, while ToStream will usually indicate the stream’s source stage, there

is no attribute that stands for the sink stage. This is because, in the original SPar’s imple-

mentation such an attribute was unnecessary. SPar’s compiler would figure out by itself

how to write the sink stage depending on the Output properties to the ToStream region.

There were many experiments to extend the language with extra attributes [69,

87], that help improve the generated code’s quality. Of particular interest to us is the Pure

attribute, introduced in [86, 87]. Pure indicates the annotated code is a pure function, that

is, a function whose output depends solely on its input, and does not modify any state.

More specifically, Pure guarantees that:

1. the annotated code does not have any side effects (mutates external state).

2. the annotated code does not have execution order dependency (such as depending

on values modified by previous iterations).

3. the annotated code does not access any global variable that is not listed in the Input

attribute.

These conditions are necessary to allow for efficient GPU implementation of the

underlying code. Since the GPU executes code in a massively parallel fashion, any per-

sistent state that will be mutated by the computation must be synchronized, which is

expensive and will hurt performance. Fortunately, it is possible to make our Rust API force

most of these conditions by default through its type system (we explain in more detail in

Section 2.7).

Furthermore, our implementation will do away with the attributes of Input and

Output, since those too can be inferred from the code itself, change ToStream to Source,

to explicitly stand for the source node, and add a Sink attribute, to indicate the end of the

stream. ToStream will then become a declarative macro that will connect all transforma-

tions together. This will be further explained in Chapter 4.

38

2.6.2 SPar C++ example

Listing 2.8 shows an example of how SPar’s annotations (highlighted in blue)

could be used in C++ to accelerate an image processing routine. The application applies

a series of filters to a sequence of images.

1 [[ToStream]] while((image = nextImage()) != NULL) {

2 [[Stage, Input(image) ,Output(image) ,Replicate (n)]] {

3 saturation (image) ;

4 }

5 [[Stage, Input(image) ,Output(image) ,Replicate (n)]] {

6 emboss(image) ;

7 }

8 [[Stage, Input(image) ,Output(image) ,Replicate (n)]] {

9 gamma(image) ;

10 }

11 [[Stage, Input(image) ,Output(image) ,Replicate (n)]] {

12 sharpen(image) ;

13 }

14 [[Stage, Input(image) ,Output(image) ,Replicate (n)]] {

15 grayscale (image) ;

16 }

17 }

Listing 2.8: Image processing in C++ with SPar

Each one of the filters in Listing 2.8 will become a stage in the pipeline, and the

source will simply send the image returned by the nextImage() call to the next pipeline

stage. To do this, the SPar compiler implemented complex code transformations that

consumed the annotated code and produced parallel code according to the selected back-

end [40]. Although the transformation rules are expressed generically, in a higher-order,

logical manner, they are still highly specialized to this particular version of SPar’s imple-

mentation. It is analogous to how a traditional compiler’s backend generates code only

to a specific instruction set, and thus must be re-implemented should we want to sup-

port multiple architectures. Therefore, despite SPar’s language and the general semantic

meaning of its tokens being largely unchanged (for example, a Stage will continue to rep-

resent a Stage, and Replicate continues to indicate the degree of parallelism present

in the Stage), we will have to rewrite and adapt the specific transformation rules for our

implementation.

2.6.3 The SPar Compiler

SPar has a custom compiler that consumes code annotated with the aforemen-

tioned keywords and generated parallel C++ code in one of its implemented runtimes.

The generated code can then be compiled by a regular C++ compiler. Thus, SPar com-

39

piles its C++ source twice: once to generate the parallel code, and another to generate

the final executable.

Applying the code transformations to generate parallel code is a non-trivial task,

explained in great detail in the works that implemented it for each runtime SPar support.

In essence, SPar detects the parallel pattern that best models the behavior of the written

sequential code, such as a map and/or reduce. It then creates an Abstract Syntax Tree

(AST) representing the processing pipeline with those patterns. The AST may be trans-

formed or simplified according to formal rules explained in [40]. Once SPars has applied

its transformations, it then generates code implementing those patterns for the relevant

runtime.

In contrast, our Rust implementation relies a lot more on native language fea-

tures than the original SPar. This is largely because Rust offers better tools for meta-

programming and creating custom syntax than C++.

2.7 Initial Work

In [31], we presented the first version of our Rust adaptation of SPar. It was based

on procedural function-like macros, and an example of its usage can be seen in Listing 2.9.

1 to_stream!({

2 for image in all_images {

3 let img = image;

4 STAGE(INPUT(img: Image) , OUTPUT(img: Image) , REPLICATE = n, {

5 f i l t e r : : saturation(&mut img, 0.2) .unwrap() ;

6 }) ;

7 STAGE(INPUT(img: Image) , OUTPUT(img: Image) , REPLICATE = n, {

8 f i l t e r : :emboss(&mut img) .unwrap() ;

9 }) ;

10 STAGE(INPUT(img: Image) , OUTPUT(img: Image) , REPLICATE = n, {

11 f i l t e r : :gamma(&mut img, 2.0) .unwrap() ;

12 }) ;

13 STAGE(INPUT(img: Image) , OUTPUT(img: Image) , REPLICATE = n, {

14 f i l t e r : : sharpen(&mut img) .unwrap() ;

15 }) ;

16 STAGE(INPUT(img: Image) , REPLICATE = n, {

17 f i l t e r : : grayscale(&mut img) .unwrap() ;

18 }) ;

19 }

20 }) ;

Listing 2.9: Image processing in Rust with SPar-Rust

Our explicit goal at the time was to make it syntactically similar to SPar’s C++

version we’ve shown in Listing 2.8. It uses nearly the same set of special tokens as the

original SPar, with the main difference being most of the tokens are in uppercase, and

to_stream is in snake case.

40

Since then, we’ve moved towards a different implementation based on Rust’s

procedural attribute macros, which look like function annotations in other languages. The

new version of SPar-Rust was presented in [30], already with a multi-threaded and MPI

backend. Listing 2.10 has an example it.

Because of Rust’s borrowing rules, this new version has many useful properties:

as long as it does not use unsafe, it cannot mutate global state. As long as it does not

have mutable references, it cannot mutate non-local state. These are two of the three

conditions necessary to apply the new Pure attribute we presented earlier. This means

that, while annotating code with Pure, the programmer would only have to ensure that:

1. the function does not use unsafe (we can do this automatically).

2. the function does not receive mutable references as input (we can also do this auto-

matically).

3. the function’s code does not have execution order dependency (the only thing the

programmer would have to verify manually).

1 #[source]

2 fn source () −> impl Iterator<Item = Image> {

3 all_images . into_iter ()

4 }

5 #[stage]

6 fn saturat ion_f i l ter (img: Image) −> Image {

7 f i l t e r : : saturation(&mut img, 0.2) .unwrap() ;

8 img

9 }

10 #[stage]

11 fn emboss_filter (img: Image) −> Image {

12 f i l t e r : :emboss(&mut img) .unwrap() ;

13 img

14 }

15 #[stage]

16 fn gamma_filter (img: Image) −> Image {

17 f i l t e r : :gamma(&mut img, 2.0) .unwrap() ;

18 img

19 }

20 #[stage]

21 fn sharpen_fi lter (img: Image) −> Image {

22 f i l t e r : : sharpen(&mut img) .unwrap() ;

23 img

24 }

25 #[stage]

26 fn grayscale_f i l ter (img: Image) −> Image {

27 f i l t e r : : grayscale(&mut img) .unwrap() ;

28 img

29 }

30 #[sink]

31 fn sink (img: Image) −> () {}

Listing 2.10: Image processing in Rust with SPar-Rust V2

41

This is one of the advantages of both Rust and this new version of SPar-Rust.

There are others, such as simplified implementation, because the old version could access

any variables previously declared in the same scope (i.e., its macro was not fully hygienic),

while the new version only has to deal it variables passed to the function.

This Master Thesis is based entirely on this second version of SPar-Rust. In Chap-

ter 4, we will present its code transformation strategies, for all runtimes it supports. We

also discuss its limitations, particularly regarding the GPU implementation, which is very

limited in its scope, and can only successfully transform code written in a specific way. It

is worth noting that our previous work already supported both multi-threaded and MPI.

However, the MPI implementation still had some limitations, the most important one be-

ing: we could only have one stream-processing pipeline per application. And so, there was

a semantic mismatch between the MPI and multi-threaded implementations that could

come into play when modeling more complex applications that require multiple process-

ing pipelines. This is no longer the case, as we now offer a truly unified interface for all

supported runtimes. The GPU backend does impose limitations on how one can program

the functions to be transformed. However, this is a limitation of the code transformation

algorithm, not of the DSL’s API.

42

3. RELATED WORK

To the best of our knowledge, there are no works in the literature that attempt

to offer a single unified interface to writing parallel code for multi-threaded, distributed

and GPU environments in Rust. As such, we have selected related work for each of these

runtimes and will discuss each of them in turn. Every related work presented in this Chap-

ter should be assumed to only efficiently support one runtime, unless stated otherwise.

At the end of this Chapter, we show a comparative table for an easy way to visualize the

differences between all the works.

3.1 Multi-Thread

Rust’s claim of “fearless concurrence” has attracted many developers and aca-

demics to create multi-threading libraries. Rayon [83] and Tokio [95] are two of the most

popular libraries routinely used for concurrency in multi-threaded environments.

Rayon is implemented with a thread-pool with a work-stealing algorithm based

on a double-ended queue. Its API mirrors the iterator API of Rust’s standard library,

with a par_ attached to the relevant functions. For example, into_iter() becomes

into_par_iter(). In the best-case scenario, this makes parallel code trivial to write:

simply change a handful of function calls, including the par_ prefix wherever necessary.

However, sometimes, because of Rust’s borrowing rules, the resulting code will be rejected

by the compiler, which will warrant rewriting the computation logic to appease it. Cases

where this happens will be presented in Chapter 5, when we discuss our experiments.

Tokio is a library based on Rust asynchronous computation capabilities. The pro-

grammer creates asynchronous task that are then executed in the Tokio runtime. The

runtime takes care of scheduling these tasks in multiple threads, as it deems necessary.

The model is very similar to that of Go’s goroutines [27]. Tokio’s primary use-case is cre-

ating web servers that can handle thousands of concurrent connections at once.

Besides Rayon and Tokio, there have been many academic works focused on

Rust’s multi-threaded capabilities.

Rust-SSP [80, 81], by Pieper et al., adopts a structured approach to parallelism.

It provides primitives allowing the user to create their own processing pipeline, while also

offering a declarative macro that simplifies that process. It has become a somewhat old

project, with very little maintenance. It was one of the early academic works in developing

high-level abstractions for stream processing, and has since been superseded by more

modern works. As such, we do not include Rust-SSP in our experiments in Chapter 5.

43

PPL [11], by Besozzi, is essentially a more modern, feature-full Rust-SSP. It is

also based on the concept of structured parallelism, supporting the creation of processing

pipelines like Rust-SSP, but with a richer interface and more pre-made patterns to explore.

The authors themselves compare it to Rust-SSP in their paper. PPL is one of the libraries

we will compare our work to in Chapter 5.

Sydow et al. [90] took a different approach, using profile-guided optimization

(PGO) to produced efficient parallel, stream-processing Rust code. PGO involves compiling

the program with instrumentation, running it to collect execution data, and then feeding

that data back to the compiler, to guide further optimization efforts. They have PGO

to choose a good parallelization pattern and data chunk size to maximize throughput at

the maximum possible latency. Because Sydow’s work demands two compilations and

some understanding of parallelization patterns, it operates at a lower level than ours,

since we wish to create easy-to-use abstractions that are as unintrusive as possible to the

developer.

3.2 Distributed

RStream [33], by Fino et al. is a data-processing platform written in Rust. Their

results are competitive with custom MPI implementations and have 2 to 20 times higher

throughput than Apache Flink (explained in the next Subsection). Our work does not have

the goal of creating a full-fledged platform. Rather, we are creating a library that uses

Rust’s code transformation functionalities.

In [96], Tronge, Pritchard and Brown showed that an implementation of Open

MPI’s core components used for intra-node communication inf Rust had performance sim-

ilar to that of the reference implementation in C. In [97], the authors sought to improve

the safety of point-to-point communication leveraging the extra guarantees of memory-

safe programming languages. To achieve this, they implemented type matching on top of

Open MPI, and a UCX-based library written in Rust. These works are lower-level than ours,

focusing on programming feasibility, implementation safety and low-level performance. In

theory, the distributed part of our work could have been built on top of their work, rather

than rsmpi. This is an avenue for possible future works.

Renoir [24], by Martini et al is another data-processing platform written in Rust. It

follows the Dataflow pattern we have explained in Section 2.1.2. The authors claim Renoir

to be simple and performant, though they expose a large API with many traits that interact

with each-other in complex ways. Their traits define the way the nodes communicate and

the nature of their processing (map, reduce, etc.). Renoir can be executed both locally

and remotely, and we will be using both runtimes in our experiments in Chapter 5. The

main difference with our work, besides the fact we also target GPUs, is that we have a

44

simpler interface, and do not support Dataflow-style programming, focusing instead on

simple linear pipelines. Furthermore, as we will see in Chapter 5, Renoir’s performance

lags behind most other solutions, especially in multi-threaded environments.

3.3 GPUs and Rust

At the time of writing, finding work related to ours regarding the use of GPU in

Rust is challenging. Using “rust AND (gpu OR “graphical processing unit” OR accelerator

OR gpgpu” as a search string in Scopus1, IEEE Xplore2, Web Of Science3, and Dblp4 yielded

a total of 13 publications after filtering out duplicates, non-final publications, letters, and

pieces that otherwise have nothing to do with what we are interested in (for example,

some physics and engineering publications discussing actual, physical rust). The 13 that

were left are all about computer science; however, most of them aren’t actually related to

our work.

One of the publications is about using computer vision to detect wheat diseases

known as “leaf rust”, “steam rust”, and “strip rust”; another is about a key-value storage

engine written in Rust; another merely a comparison between several languages’ perfor-

mance in parallel signal wave propagation simulations, which includes Rust and CUDA;

another still about Rust and FPGAs; another about Rust in parallel low-power embedded

systems; and finally there is one about binary code patching. This leaves us with a to-

tal of 6 publications in the literature. Examining them further, through a quick reading

of their contents, we find that most of these are inadequate as well: one uses an LLVM

plugin to speed up the computation of derivatives in the GPU; another implemented GPU

support for unikernels using an RPC library written in Rust; another just used Rust to pro-

cess photon data and send it to the GPU, to display experiments in real-time; and another

that shows a lattice Boltzmann method solver built with the ArrayFire library, that let the

authors compile the solvers into optimized kernels for CUDA, OpenCL, C++, and Rust. The

most recent one is the one that introduces Descend [65], a system programming language

targeting GPUs that is inspired by Rust’s syntax and borrow checking and memory safety

ideas. None of them explore the usage of GPUs’ compute capabilities from within Rust.

Of the 2 works left, [52] is the closest to our work and attempted to implement

high-level abstractions to GPU programming in Rust, but it has the severe limitation that

was published in 2013, before Rust’s first stable release in 2015.

Because of this, in this Section, we’ve also selected works that are not associated

with the scientific literature and exist mainly in the form of libraries (also called crates

1https://www.scopus.com
2https://ieeexplore.ieee.org/Xplore/home.jsp
3https://www.webofscience.com
4https://dblp.org/

https://www.scopus.com
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.webofscience.com
https://dblp.org/

45

in Rust) and open-source repositories (Subsection 3.3.2). Our goal is to show what has

already been produced in this space, even through non-academic means, and how our

work can benefit and is different from it.

3.3.1 Related Publications

As mentioned, [52] was published before Rust’s first stable release, making it

largely obsolete. Nevertheless, we present it here since it is by far the closest to our work.

The authors leveraged the new (at the time) LLVM compilation target of PTX, NVIDIA’s low-

level virtual instruction set for GPUs to extend Rust with support for GPU kernels. The

end result bears some similarities with CUDA and OpenCL. For example, much like the
__global__ annotations in CUDA, in [52] kernels must be annotated with #[kernel], as

is shown in Listing 3.1.

1 #[kernel]

2 fn add_float (x : &float , y : &float , z : &mut f loat) {

3 *z = *x + *y

4 }

Listing 3.1: Kernel in Rust example, from [52]

We use annotations in a very similar way in this work (though they are SPar-

inspired). Furthermore, they had to manually add a set of intrinsics that map into low-level

GPU-specific values, such as the current thread ID, which is commonly used in GPU code.

They also briefly mention that certain advanced language constructs will be impossible to

reproduce or translate to the GPU and that the compiler will have to include a pass ensur-

ing kernels do not include code containing such constructs. These are both problems we,

too, will face. To complete their work, the authors then used these new low-level features

to implement common abstractions on top, such as operations on ranges, reductions, and

five-point stencil.

Although very promising, [52]’s primary limitation remains the time at which it

was written. Rust has since had dramatic changes (in fact, Listing 3.1 is no longer valid

Rust code since the primitive float was renamed to f32). Patching the compiler’s code

generation, as the authors did, is no longer feasible, at least not without a full-time team.

Rust’s issue tracker at GitHub5, at the time of writing, routinely reports around 9000 open

issues, despite having a large team of full-time contributors, mostly constituted by Rust

and compiler writers veterans that are intimately familiar with the code base. Rust has

become a very complex language, and maintaining (or adapting, in our case) its compiler

is a huge undertaking. This is why our work is based on code transformations; we merely

change the written Rust code according to our rules, and then call the regular compiler to

create the final binary.

5https://github.com/rust-lang/rust/issues

https://github.com/rust-lang/rust/issues

46

In [15], the authors discuss Rust’s theoretical capabilities in GPU programming

and compare the Rust’s performance to C++’s using the CUDA ecosystem. The paper

is ultimately quite limited in its scope and is essentially a comparison between different

CUDA runtime implementations. Overall, especially because we do not have access to

the codes used in the benchmarks, it is not very useful to us, but it represents the only

instance, in the entire literature that we were able to find that directly attempts to use a

GPU’s compute capabilities with Rust.

3.3.2 Non Academic Work

In contrast to the current state of academic publication, Rust enjoys a fairly signif-

icant ecosystem for interfacing with the GPU in the form of libraries. At the time of writing,

Searching for “gpu” in crates.io6 yields 1190 results, “CUDA” 422, and “OpenCL” 169.

Even though many of these libraries may be old, unmaintained, related to GPU graphics

rather than compute, or otherwise irrelevant to us, it is still a far more promising result

than what we found in the search databases for academic publications. For this Subsec-

tion, we’ve selected the most relevant crates we’ve found, based on their public presence,

measured by the number of total downloads and general repository activity, and their in-

tellectual value (for example, we exclude crates that are merely bindings to an underlying

C library, even though they may be important, because there is nothing to be said about

them; they are just bindings).

rust-gpu-tools

rust-gpu-tools [32] was already mentioned in Chapter 2. It is an abstraction

layer on top of CUDA and OpenCL and essentially creates a thin wrapper that allows you

to set up a computation on both runtimes using a singular macro call. It has the disad-

vantage that it does not handle the specific differences between the languages for us, so

we must take care to write specific CUDA or OpenCL code, as appropriate. On the other

hand, this library will greatly simplify the implementation of our proposed abstraction and

is an example of how Rust’s type system and language features can be used to create

convenient GPU programming abstractions.

Rust CUDA

The Rust CUDA Project [88] was what the authors of [15] used to benchmark

Rust’s CUDA runtime implementation. The project is trying to compile Rust to PTX, in much

the same way as [52] attempted to do in 2013 (including the #[kernel] annotation). Thus,

6https://crates.io/

https://crates.io/

47

this project nicely ties our two GPU-related academic works together. Being essentially a

continuation of [52], it suffers from the same major problem: it is a very complex, difficult

undertaking. Accordingly, development had stagnated: almost 4 years passed without

the project seeing any commits, but it appears to have been picked up again recently.

rust-gpu

EmbarkStudios are taking a very similar route with rust-gpu [28], except their

compilation target is SPIR-V [61]. SPIR-V is a binary language made to represent graphical

shaders and compute kernel primitives. It is most prominently used with Vulkan [62] in

the rendering pipeline, but it can also be used in the compute pipeline, and with OpenCL.

It is worth noting that, even if Vulkan is commonly associated with graphical applications,

it is entirely possible to use it just for its compute capabilities, though the academic HPC

literature hasn’t explored this very much, most likely because Vulkan is significantly more

complex, verbose, and may have certain missing features from CUDA or OpenCL. Never-

theless, [28] is a more promising attempt than [88], because it has a much larger team

of contributors, corporate backing, and commits are still being submitted daily. Our focus

is not on creating a new compilation target for Rust, but rather just transforming some

Rust code into OpenCL kernels, and thus our scope is entirely different from EmbarkStu-

dios’ work. Furthermore, compiling Rust to SPIR-V does not yield an executable binary;

the SPIR-V file must then be fed into a Vulkan compute pipeline or OpenCL runtime for it

to actually run. This does not simplify or abstract away the difficulties of programming for

the GPU, like we wish to do, rather, it is merely creating a new language that can be used

for writing programs for Vulkan compute and OpenCL.

3.4 Comparative Table

This Chapter’s presentation is summarized in Table 3.1. “MT” stands for “multi-

threaded” and “DIST” for “distributed”.

Explaining Table 3.1’s columns in more detail:

• High-Level – indicates whether we consider the abstraction to be high-level. We

have made the case for whether we consider an abstraction high or low level earlier

throughout the Chapter.

• API – the API the work exposes to its users. In this context, we call something a

“framework” when it is a collection of libraries, or very disparate functionalities that

do not make up a single unified API, but several of them. We also use it when the

original work refers to itself as such. Note that [15] does not have an API because it

48

Solution High-Level API MT DIST GPU
Rayon [83] Yes Parallel Iterators Yes No No
Tokio [95] Mixed Framework Yes No No
Ppl [11] Yes Library Yes No No
Rust-SSP [80, 81] Yes Library Yes No No
RStream [33] No Framework Yes Yes No
Renoir [24] No Framework Yes Yes No
Sydow et. al. [90] No PGO Yes No No
Tronge et. al. [96, 97] No Library Yes Yes No
Holk et. al. [52] No Compiler Support for PTX No No Yes
Bychkov, A. et. al. [15] No None No No Yes
rust-gpu-tools [32] No Library No No Yes
Rust CUDA [88] No Compiler Support for PTX No No Yes
rust-gpu [28] No Library No No Yes
SPar-Rust Yes Macro-based DSL Yes Yes Yes

Table 3.1: Related Work Comparison

is a simple literature review. Note also that [90] does not really have an API. Rather,

it presents an approach for doing PGO that others would have to reproduce to attain

the same performance gains.

• MT – whether the work offers abstractions for multi-threaded programming.

• DIST – whether the work offers abstractions for distributed programming.

• GPU – whether the work offers abstractions for GPU programming.

To summarize Table 3.1 results, this Master’s thesis is the first to provide high-

level abstractions for all 3 environments: shared-memory, distributed and GPU. Moreover,

it is the first work that provides working, high-level abstractions for general-purpose GPU

compute in Rust, and the first one to do it entirely based on macro transformations.

49

4. A HIGH-LEVEL DSL IN RUST FOR EXPRESSING LINEAR

PIPELINES ON MULTI-CORES, CLUSTERS AND GPUS

This Chapter is dedicated to explaining our implementation of SPar’s program-

ming model, adapted to the Rust programming language and so-named SPar-Rust. We

begin by presenting the adaptations we have had to make to SPar’s language to make it

work more naturally in Rust. Then we proceed to a formalization of linear pipelines that

will guide our implementation in the following Sections. We offer a systematic overview of

our approach in Section 4.3, and then present the implementations for every supported

parallel architecture. In the final architecture we consider, the GPU, we also explain the

special considerations it imposed in our code generation implementation.

This research began with [31] where we first tried to adapt SPar’s methodology

to Rust. One year later, we created a new version of SPar-Rust [30]. We have already

presented these advancements in Section 2.7. Here, we consolidate all previous work,

such that programming for all 3 parallel environments can be seamlessly integrated into a

single unified API. There are many small, but important differences to what we presented

in [30] that were necessary to make this possible. For example, we had to rework the

MPI implementation, and introduce a “roundtrip” operation that did not exist in [30], be-

cause some applications required creating more than one processing stream, and [30]’s

implementation would only allow for a single stream pipeline per application. The multi-

threaded version, on the other hand, always allowed for any arbitrary number of stream

pipelines. This created a semantic mismatch between the two environments, which we

have solved in this work. Finally, a lot of extra work had to be put into us supporting

OpenCL code generation for GPUs.

4.1 SPar Language in Rust

Listing 4.1 contains a simple example using most of SPar-Rust’s functionalities.

1 #[source]

2 fn source(input : Input) −> impl Iterator<Item = SourceOutput> {

3 / / sequential code

4 . . .

5 }

6 #[stage(State (s))]

7 fn stage1(elem: SourceOutput , s : Stage1State) −> Stage1Output {

8 / / sequential code

9 . . .

10 }

11 #[stage]

12 fn stage2(elem: Stage1Output) −> Stage2Output {

13 / / sequential code

14 . . .

50

15 }

16 #[sink (Ordered)]

17 fn sink (elem: Stage2Output) −> SinkOutput {

18 / / sequential code

19 . . .

20 }

21 pub fn process (input : Input) {

22 let replicate_stage_1 = 2;

23 let replicate_stage_2 = 3;

24 let s = Stage1State : :new() ;

25 let stream_iterator = to_stream! ([multithreaded :

26 source(input) ,

27 (stage1(s) , replicate_stage_1) ,

28 (stage2 () , replicate_stage_2) ,

29 sink () ,

30]) ;

31 / / consume the stream_iterator however you l ike

32 }

Listing 4.1: SPar-Rust simple example

Of the five attributes in the original SPar we presented in Section 2.6.1, only

ToStream and Stage remain. They were renamed to to_stream and stage, to comply

with typical Rust naming conventions. The Input and Output attributes are no longer

necessary because they can be completely inferred by the code. Trivially, Input is simply

the input to each function, while Output is its output. Replicate has also been replaced

by a simple parameter you can pass to the to_stream declarative macro. There are new

extra attributes: source and sink, corresponding to the nodes that will represent the

source and sink of the processing pipeline, respectively. Both stage and sink can accept

an optional State(...), which declares that certain input parameters are going to be

shared among all instances, as an internal state. This state will be passed as an argument

at the to_stream call site. The sink node also has an optional Ordered parameter. This

will make the sink generated code order its output so that items leave the pipeline in the

same order the source node sent them in. Finally, in Section 4.7, we will see that source,

stage and sink all have optional OpenCL and a Cuda parameters (with Map and Reduce as

arguments), for generating code transformations that will run on the GPU1. This leaves us

with the following keywords for SPar-Rust:

• to_stream - declarative macro that establishes a stream processing pipeline. The

macro’s implementation will call each function in the pipeline correctly.

• source - attribute macro that transforms the associated function into a linear pipeline

source node.

• stage - attribute macro that transforms the associated function into a linear pipeline

stage node.

1We have currently only implemented the transformations for OpenCL, but the attribute already exists

51

• sink - attributes macro that transforms the associated function into a linear pipeline

sink node.

• State(...) - optional parameter for stage and sink. Declares that certain param-

eters are permanent states for that node, set at to_stream’s call site.

• Ordered - optional parameter for sink. Declares that the sink should sort its output.

• OpenCL - optional parameter for all attribute macros. Declares this function will exe-

cute in an OpenCL environment.

• Cuda - optional parameter for all attribute macros. Declares this function will execute

in a CUDA environment.

• Map and Reduce - passed as arguments to OpenCL and Cuda stages. Currently, these

do not do anything. See Section 4.7.

4.1.1 to_stream syntax

The special to_stream declarative macro connects all nodes in the pipeline. It

has the following syntax:

Listing 4.2: to_stream syntax

to_stream ! ([ENVIRONMENT :

SOURCE_FUNCTION_NAME (SOURCE_FUNCTION_INPUTS) ,

(STAGE1_FUNCTION_NAME (STAGE1_STATEFUL_ARGUMENTS) , STAGE1_REPLICATION) ,

(STAGE2_FUNCTION_NAME (STAGE2_STATEFUL_ARGUMENTS) , STAGE2_REPLICATION) ,

. . .

SINK_FUNCTION_NAME (SINK_STATEFUL_ARGUMENTS)

]) ;

Where ENVIRONMENT is one of multithreaded, mpi or gpu. All other elements are

self-explanatory.

4.2 Linear Pipeline Formalization

We reproduce Figure 2.3 as Figure 4.1 to make it easier to follow.

Let the graph G represent a linear pipeline with V vertices and E edges. Each

vertex corresponds to a unit of computation, while each edge represents the communica-

tion between them. V contains two special vertices, V0 and Vf , which stand for the sink

52

0

2

4

1

1

1

1 2

2

2

3

3

3

3

Figure 4.1: A linear pipeline (copied from Figure 2.3)

and the source, respectively (the f in Vf stands for “final”). The operations performed

by the sink and the source are unique, meaning they cannot be duplicated in any other

vertex in V . Any other computation performed by any other vertex may be duplicated

indefinitely. We represent this by annotating the vertices with the same number, as we

have done in Figure 4.1. We may also say that vertices with the same number belong to

the same stage of the pipeline.

Because the final goal is to implement this in a statically typed programming

language, let us consider what happens in the pipeline in terms of datatypes. Since the

edges represent simple communication between independent processes, no edge e can

change the underlying type of the data they are transferring. On the other hand, because

the vertices stand for arbitrary computation, they can change the underlying datatypes.

Specifically:

Remark 1 All vertices labeled with the same number consume the same type of input

and produce the same kind of output.

This puts constraints on how edges and vertices can be connected to build the

linear pipeline. All edges that lead to a vertex must be transferring data of the same type.

Similarly, for all edges leading from a vertex. More formally:

Remark 2 Let (v1, v2) represent an edge that starts at v1 and ends in v2, and vx is an

arbitrary vertex. Given a vertex v ∈ V , all edges (v , vx) must transfer the datatype vx

expected as input, and all edges (vx , v) must transfer the datatype vx generated as output.

Remark 3 Because edges do not transform data, Remark 2 implies that, for every edge

(v1, v2), v1’s output must be of the same type as v2’s input.

53

2

2

2

Same
Input Type

Same
Output Type

Figure 4.2: Remark 1

V

Vx

Vx

Vx

V

Vx

Vx

Vx

V's output type
=

Vx's input types

Vx's output type
=

V input types

Figure 4.3: Remark 2

V2V1

∀V1,V2 V1's output type
=

V2's input type

Figure 4.4: Remark 3

54

Figures 4.2, 4.3 and 4.4 depict these remarks visually.

Given the internal computations of V , Remarks 1- 3 are sufficient to fully specify

the types of every element of G. To see why, consider a more straightforward pipeline,

without any replication. It would be equivalent to just using the top nodes in Figure 4.1.

Once the programmer has specified which computations will occur in each stage, with their

inputs and outputs, the type of every edge is forced by Remark 2. If one stage’s input does

not correspond to its previous stage’s output (in other words, if Remark 3 is false), that

is a detectable type error made by the developer. To transform the simplified pipeline

into the one in Figure 4.1, we can simply create more vertices at any stage between the

source and the sink that will execute the exact same code as the other vertices with the

same label, and fill in the edges as necessary. Remark 1 guarantees that if we have a

valid implementation for one vertex, we can simply replicate it for all vertices in the same

stage, and the pipeline will still be valid.

4.3 Systematic Overview

Figure 4.5 shows an overview of the code transformation strategy we will detail

in the following Sections.

Note how the multi-threaded and MPI targets will generate the same code in the

procedural macro, while the to_stream declarative macro will generate different code

for every target. Also, note how, when the procedural macro is targeting the GPU, we

generate both a rust function and GPU code (see Section 4.7). The GPU code is outputted

to a file and standard output, and will be used in subsequent compilations as the code that

will execute on the GPU. Within the Rust transformed functions, we will use many traits

and structures we will now proceed to define.

4.4 Trait based implementation

This and the following Sections are all dedicated to explaining how the code trans-

formations were implemented. We start by defining general traits that will represent the

constraints we have noted in Section 4.2. At the end of this Section, we will show the

implementations for these traits for all 3 runtimes.

55

Procedural Macro
source
stage
sink

Original
Function

Feeds Rust
Tokens to

Is
GPU?

Simple trait-
based code
generation

No

Validate and
parse special

syntax

Yes

Transform
Rust Tokens

into GPU
equivalents

Write output to
__SPAR_RUST_GENERATED

and standard output

Recompile
program

to_stream
declarative

macro

Is used in

Output
transformed

function

Which
environment?

Multi-threaded MPI GPU

Figure 4.5: SPar-Rust code transformation overview

4.4.1 Edges

The Sender and Receiver traits (Listing 4.3) represent an edge’s ability to send

and receive data. Note that the type T that Sender and Receiver communicate, as well

as Sender and Receiver themselves, must all implement the Send trait. Clone is a trait

that indicates a type can be cloned with a self.clone() method. The ReceiveResult

enum lets the implementer define any custom error type, as long as we can print it in

a debug context. The Continue variant represents a “ping” message, and can be used

to implement a “roundtrip” operation, ensuring all messages sent before the roundtrip

began have arrived. Now, one needs only define a struct that implement these traits for

56

a given runtime, and the nodes in SPar-Rust’s pipelines will be able to communicate with

each other in that runtime.

1 pub trait Sender<T: Send>: Send + Clone {

2 type Error : std : : fmt : :Debug;

3

4 fn send(&mut self , elem: T) −> SendResult<Self : : Error>;

5 }

6 pub trait Receiver<T: Send>: Send {

7 type Error : std : : fmt : :Debug;

8

9 fn recv(&mut self) −> ReceiveResult<T, Self : : Error>;

10 fn into_iter (self) −> ReceiverIterator<T, Self>

11 where

12 Self : Sized ;

13 }

14 pub enum ReceiveResult<T, E>

15 where

16 E: std : : fmt : :Debug,

17 {

18 Ok(T) ,

19 Continue,

20 End,

21 Error (E) ,

22 }

Listing 4.3: Sender and Receiver traits

4.4.2 Workers

Now that we can communicate, we must perform the actual computations. We

define, in Listing 4.4, a Worker as a data type that has a Receiver and a Sender of inde-

pendent types (since, as discussed, nodes can perform arbitrary code transformations).

1 pub trait Worker<In : Send, Out : Send>: Sized {

2 type R: Receiver<In>;

3 type S: Sender<Out> + ’static ;

4

5 / / / returns this worker ’ s sender

6 fn sender(&self) −> &Self : : S;

7

8 / / / returns this worker ’ s receiver

9 fn receiver(&mut self) −> &mut Self : :R;

10

11 / / / execute the worker ’ s code . Note we accept a function

12 / / / that is defined elsewhere as an argument .

13 fn run<F: FnOnce(Self) + Send + ’static>(self , f : F) ;

14

15 / / / This spawns a compute unit in this worker ’ s

16 / / / implementation . Note this is only relevant to

17 / / / the multithreaded implementation , since the

18 / / / others cannot just f i r e new units of execution

19 / / / a rb i t ra r i l y .

20 fn spawn<F>(&self , f : F)

21 where

57

22 F : FnOnce() + Send + ’static ;

23

24 / / / Execute the worker ’ s code

25 fn run<F>(self , f : F)

26 where

27 F : FnOnce(Self) + Send + ’static ;

28

29 / / / This is only relevant to the MPI implementation .

30 / / / I t allows the workers to ensure a l l previously

31 / / / sent messages have arrived

32 fn roundtrip(&mut self) {}

33 }

Listing 4.4: Worker trait

Listing 4.4 explains much of its interface in its comments. The existence of both

a run and spawn function may be confusing, but will become clearer once we look at the

multi-threaded implementation. The above specification also does not include a way of

replicating workers. This is because replication of independent execution units is highly

dependent on the environment we are developing for. In order to fully understand how

replication is achieved for every implementation, we will have to first see the specific

implementations of the above traits for every runtime, and combine that with their re-

spective implementation of the to_stream macro.

4.4.3 Runtime Implementations

This Subsection shows the implementation of the Sender, Receiver and Worker

traits for each of the runtimes we are interested in.

Multi-threaded

1 pub struct MtSender<T: Send> {

2 sender : mpsc: :Sender<T>

3 }

4 impl<T: Send> Sender<T> for MtSender<T> {

5 type Error = () ;

6

7 fn send(&mut self , elem: T) −> SendResult<Self : : Error> {

8 match self . sender .send(elem) {

9 Ok(()) => SendResult : :Ok,

10 Err (_) => SendResult : :End,

11 }

12 }

13 }

14 pub struct MtReceiver<T: Send> { receiver : mpsc: : Receiver<T> }

15 impl<T: Send> Receiver<T> for MtReceiver<T> {

16 type Error = () ;

17

18 fn recv(&mut self) −> ReceiveResult<T, Self : : Error> {

19 match self . receiver .recv () {

58

20 Ok(elem) => ReceiveResult : :Ok(elem) ,

21 Err (_) => ReceiveResult : :End,

22 }

23 }

24 }

Listing 4.5: Multi-threaded Sender and Receiver

As Listing 4.5 shows, the multi-threaded implementation of Sender and Receiver

is a simple wrapper around the standard libraries mpsc2 channels. Rust’s standard li-

brary already implement the semantics we need, so our implementation can be very

simple. When the standard library’s mpsc channel element returns an error, it is be-

cause the other side of the channel disconnected, so we return a SendResult::End, or

ReceiveResult::End, as appropriate.

1 pub struct MtWorker<In : Send, Out : Send> {

2 thread_pool : ThreadPool , / / any implementation w i l l do

3 receiver : MtReceiver<In>,

4 sender : MtSender<Out>,

5 }

6 impl<In : Send + ’static , Out : Send + ’static> Worker<In , Out>

7 for MtWorker<In , Out> {

8 type R = MtReceiver<In>;

9 type S = MtSender<Out>;

10

11 / / / runs the code in a separate thread

12 fn run<F: FnOnce(Self) + Send + ’static>(self , f : F) {

13 std : : thread : :spawn(move | | f (self)) ;

14 }

15

16 / / / spawns a new unit of execution

17 fn spawn<F: FnOnce() + Send + ’static>(&self , f : F) {

18 self . thread_pool .spawn(f) ;

19 }

20

21 fn sender(&self) −> &Self : : S { &self . sender }

22 fn receiver(&mut self) −> &mut Self : :R { &mut self . receiver }

23 fn roundtrip(&mut self) { /* NO−OP */ }

24 }

Listing 4.6: Multi-threaded Worker

Listing 4.6 shows why it is necessary to have both a run and a spawn method in

the worker trait. run is used to execute the worker’s code in a separate thread (other-

wise, the pipeline would block while executing just a single worker). spawn, on the other

hand, is used to actually spawn a unit of execution – a node in the pipeline, doing the

actual work. The ThreadPool implementation we are using is that of rayon’s. The library

exposes a low-level interface allowing us to interact directly with its thread-pool. It is,

however, possible to use any other implementation that allows us to spawn threads in a

pool with a configurable amount of workers. This could be done in future works. We use

a thread-pool both because it makes it easier to reuse resources (spawning a thread is a

2mpsc stands for “multiple producer, single consumer”.

59

costly operation), and because it makes it easier to implement a configurable amount of

replication: simply create the thread-pool with the desired amount of threads.

MPI

The MPI implementation is a lot more involved than the multi-threaded one. We

will omit logging and simplify other unessential details for didactical purposes.

1 use mpi : : datatype : : Equivalence ;

2 use mpi : : point_to_point : : Destination ;

3 use mpi : : point_to_point : : Source ;

4 use mpi : : topology : : * ;

5

6 const MPI_TAG_NORMAL: i32 = 0;

7 const MPI_TAG_ROUNDTRIP: i32 = 1;

8 const MPI_TAG_END: i32 = 2;

9

10 pub struct MPISender<T>

11 where

12 T: serde : : Serial ize ,

13 {

14 / / / to whom this Sender sends i t s messages

15 dst : Vec<mpi : :Rank>,

16 / / / the index of dst that w i l l receive the current message

17 cur : usize ,

18 }

19

20 impl<T> Sender<T> for MPISender<T>

21 where

22 T: serde : : Serial ize ,

23 {

24 type Error = String ;

25

26 fn send(&mut self , elem: T) −> SendResult<Self : : Error> {

27 let i = self . cur % self . dst . len () ;

28 let dst_rank = self . dst [i] ;

29

30 let world = SimpleCommunicator : : world () ;

31 let process = world . process_at_rank (dst_rank) ;

32

33 let buf = ser ia l ize(&elem) .unwrap() ;

34 process . send_with_tag(&buf , MPI_TAG_NORMAL) ;

35 SendResult : :Ok

36 }

37 }

38

39 impl<T> MPISender<T>

40 where

41 T: serde : : Serial ize ,

42 {

43 pub fn roundtrip(&mut self) {

44 let world = SimpleCommunicator : : world () ;

45 for dst_rank in &self . dst {

46 let process = world . process_at_rank (* dst_rank) ;

47 process . send_with_tag(&0u64, MPI_TAG_ROUNDTRIP) ;

48 }

49 }

50

60

51 pub fn end(&mut self) {

52 let world = SimpleCommunicator : : world () ;

53 for dst_rank in &self . dst {

54 let process = world . process_at_rank (* dst_rank) ;

55 process . send_with_tag(&0u64, MPI_TAG_END) ;

56 }

57 }

58 }

59

60 pub struct MPIReceiver<T>

61 where

62 T: serde : : de : : DeserializeOwned ,

63 {

64 / / / keeps track of how many Senders who send to this node

65 / / / have not sent an "end" message

66 in i t ia l_sources : u32,

67 / / / keeps track of how many Senders who send to this node

68 / / / have not sent a " roundtrip " message

69 sources : u32,

70 / / / buffer to receive messages

71 buf : Vec<u8>,

72 }

73

74 impl<T> Receiver<T> for MPIReceiver<T>

75 where

76 T: serde : : de : : DeserializeOwned + std : : fmt : :Debug,

77 {

78 type Error = String ;

79

80 fn recv(&mut self) −> ReceiveResult<T, Self : : Error> {

81 let world = SimpleCommunicator : : world () ;

82 let mut status = world . any_process () . probe () ;

83

84 while status . tag () == MPI_TAG_ROUNDTRIP {

85 / / consume the message

86 _ = world

87 . process_at_rank (status . source_rank ())

88 . receive_with_tag::<u64>(MPI_TAG_ROUNDTRIP) ;

89

90 self . sources −= 1;

91 / / i f we have finished the roundtrip , reset our sources

92 i f self . sources == 0 {

93 self . sources = self . in i t ia l_sources ;

94 return ReceiveResult : :Continue ;

95 }

96 status = world . any_process () . probe () ;

97 }

98

99 while status . tag () == MPI_TAG_END {

100 / / consume the message

101 _ = world

102 . process_at_rank (status . source_rank ())

103 . receive_with_tag::<u64>(MPI_TAG_END) ;

104

105 self . in i t ia l_sources −= 1;

106 / / i f we have received END from a l l sources , exit

107 i f self . in i t ia l_sources == 0 {

108 std : : process : : exit (0) ;

109 }

110 status = world . any_process () . probe () ;

61

111 }

112

113 / / discover the message’ s size and make sure our buffer

114 / / i s big enough

115 let size = status . count (u8 : : equivalent_datatype ()) ;

116 self . buf . resize (size as usize , 0) ;

117

118 let _status = world

119 . process_at_rank (status . source_rank ())

120 . receive_into_with_tag(&mut self . buf [0 . .] , MPI_TAG_NORMAL) ;

121

122 let de = deserial ize(&self . buf) .unwrap() ;

123

124 / / i f everything went right , return the deserialized element

125 ReceiveResult : :Ok(de)

126 }

127 }

Listing 4.7: MPI Sender and Receiver

Listing 4.7 shows the MPI implementation of the Sender and Receiver traits.

Note how we demand the type being communicated to always be Serialize and/or

Deserialize, through the “where T: serde::Serialize” notation. Our communication

strategy is a round-robin, where the sender has a list of MPI ranks it can send to, and

will rotate between them as it sends its messages. Experimenting with different ways of

distributing tasks (for example, implementing an on-demand scheme) could be done in

future work. In [30], we had implemented communication by sending two messages at

once: the first containing just a number representing the size of the message, the second

the message itself. Using MPI’s probe functionality, we can detect the message’s size by

itself, without having to send its length in a previous message. Like this, we halved the

amount of communication compared to our previous work.

In this implementation, compared to the multi-threaded one, ending the stream

is a more involved operation. The Senders will send an END message to all the processes

they can send to, and each process will exit only after receiving the END message from all

its sources. This ensures all pending messages will always arrive.

Finally, we have implemented the roundtrip operation (it is a NO-OP in the multi-

threaded version). Roundtrip is the same as END, but the node won’t exit after receiving it.

Its purpose is to ensure all previous messages have arrived, without ending the stream.

The roundtrip operation did not exist in our previous work [30], which represented a limi-

tation on the kinds of applications it could be used on. Specifically, [30] could only model

applications that instantiated a single processing stream, because once the stream pro-

cessing ended, we would exit the MPI environment automatically. Now, we only begin

sending the END messages when the application exits3. This allows us to create as many

processing pipelines as we want, thus achieving parity with the multi-threaded backend.

3we use the C atexit function to execute code before the program’s termination. C’s standard library
functions can be called in Rust by using the libc library (https://github.com/rust-lang/libc).

62

1 pub struct MPIWorker<In , Out>

2 where

3 Out: serde : : Serial ize ,

4 In : serde : : de : : DeserializeOwned ,

5 {

6 receiver : MPIReceiver<In>,

7 sender : MPISender<Out>,

8 }

9

10 impl<In , Out> Worker<In , Out> for MPIWorker<In , Out>

11 where

12 Out: serde : : Serial ize ,

13 In : serde : : de : : DeserializeOwned + std : : fmt : :Debug,

14 {

15 type R = MPIReceiver<In>;

16 type S = MPISender<Out>;

17

18 fn run<F>(self , f : F)

19 where

20 F : FnOnce(Self) + Send,

21 {

22 f (self) ;

23 }

24

25 fn spawn<F>(&self , f : F)

26 where

27 F : FnOnce() + Send,

28 {

29 f () ;

30 }

31

32 fn sender(&self) −> &Self : : S { &self . sender }

33 fn receiver(&mut self) −> &mut Self : :R { &mut self . receiver }

34 fn roundtrip(&mut self) { self . sender . roundtrip () }

35 }

36

37 impl<In , Out> Drop for MPIWorker<In , Out>

38 where

39 Out: serde : : Serial ize ,

40 In : serde : : de : : DeserializeOwned ,

41 {

42 fn drop(&mut self) {

43 self . sender . roundtrip () ;

44 }

45 }

Listing 4.8: MPI Worker

Listing 4.8 shows two important differences to the multi-threaded implementa-

tion. The first is the implementation of roundtrip, and the fact that we call it on drop.

drop is called by Rust whenever a variable goes out of scope. So we are ensuring, every

time a MPIWorker type goes out of scope, we are waiting so that all of the messages it

sent have, indeed, arrived.

The second difference is that the run and spawn implementations are essentially

NO-OPs. This is because MPI does not let us easily spawn new processes after the initial

63

call to MPI_Init. So we will have to do replication in a different way. This problem will be

solved later, in Section 4.6.1, when we talk about the to_stream macro.

GPU

We will discuss the GPU implementation later in Section 4.7. Originally, we had

created many NO-OP implementations of the above traits to comply with our defined inter-

faces. These structures relied on passing simple pointers around, which would be equiv-

alent to just moving a register value in assembly. However, because we are generating

code, we have concluded that, as long as the to_stream macro exposes the same API for

all 3 runtimes, the details of how we achieve parallelism do not matter. As such, there is

no reason to incur the extra overhead of wrapping our types in a pointer just for the sake

of complying with an interface the user will never interact with. Therefore, we decided

to abandon the above trait definitions and work directly with the GPU types themselves,

while keeping in mind our considerations in Section 4.2. Note that it is possible to define

several NO-OP operators for the GPU that represent every trait we defined above, and

indeed, that is what we did for our first implementation (this is not, therefore, a problem

with our formal framework). We have simply deemed it unnecessary, as it would increase

overhead and make some of the code transformations less direct.

A reasonable question that arises from this is whether the same could not be done

for the multi-threaded and MPI versions. The main difference is that the multi-threaded

and MPI versions actually do work in their implementations; they aren’t simple NO-OPs.

The reason the GPU implementation would consist entirely of NO-OPs is that we only man-

aged to send data to the GPU within the stream functions (source, stage and sink), and

so Sender and Receiver will never have anything to send or receive. This makes them

NO-OPs. Similarly, executing kernels on the GPU will also be done within the stream func-

tions, turning the Worker into a NO-OP. In essence, the main issue with the GPU

implementation is that we have moved the Sender, Receiver and Worker logic

inside the function we are transforming. Therefore, we do not need implementations

of these traits for the GPU backend.

The implementations had to be moved inside the transformed function because

we need more information to make the transformation correctly. Specifically, we need to

know whether the type we are receiving is a vector or a scalar. If it is a vector, we must

copy it onto a GPU buffer. If it is a scalar, we can send it to the GPU as-is. Detecting this

is possible in a procedural macro, but not in a trait implementation, and so implementing

the traits is not only unnecessary, but impossible, due to a language limitation. This would

be possible if Rust supported specialization, as Rust RFC 12104 proposes, but, as of right

now, it is not the case.

4https://rust-lang.github.io/rfcs/1210-impl-specialization.html

https://rust-lang.github.io/rfcs/1210-impl-specialization.html

64

4.4.4 Source and Sink

The Source and Sink traits are still missing. We will not offer code Listings

for them because they are very trivial. Source is the same as Worker, but without the

receiver, spawn and roundtrip functions. Sink, on the other hand, has just a method to

turn itself into a Receiver, so we can call recv on it to retrieve the data that is exiting the

pipeline.

4.5 Procedural Macro Function Transformation

In this Section, we will present the function transformation implementation for

the multi-threaded and MPI environments only. The GPU function transformations will be

presented later in Section 4.7. This is because the implementation of these procedural

macros is for multi-threaded and MPI are identical, while the GPU implementation has

many special considerations. After showing the function transformations, we will also

touch on ordering considerations, and how stateful computation is implemented.

We call the original function fo and the generated function fg. In our transfor-

mations, we must not change fo’s internal semantics, lest the results differ from their

sequential implementations. This is trivially handled by simply copying fo’s body into fg5.

Furthermore, because fg will use types that implement the traits we discussed in the pre-

vious Section, and those have already been adapted to each runtime, the exact same

function transformations work for both multi-threaded and MPI. We will now consider what

transformations we must do to each function in Listing 4.9, starting with the stage.

1 #[source]

2 fn source(/* inputs */) −> /* outputs */ {/* sequential source logic */}

3

4 #[stage]

5 fn stage(/* inputs */) −> /* outputs */ {/* sequential stage logic */}

6

7 #[sink]

8 fn sink (/* inputs */) −> /* outputs */ {/* sequential sink logic */}

9

10 / / later , the developer cal ls to_stream! () , using these functions

Listing 4.9: Desired application level code

5note this is not possible if the function has to run in the GPU

65

4.5.1 stage

For this function, fg will accept a Worker implementation with a Receiver that

will receive a tuple consisting of fo’s input and a Sender that will send the same type as

fo’s output. In between them, we execute fo to perform the desired computation. Listing

4.10 shows the result of that. As usual, the code is slightly simplified from the actual

implementation.

1 / / we demand the stage to implement the Worker t ra i t with the

2 / / correct inputs and outputs

3 fn stage(worker : impl Worker<(/* inputs */) , /* outputs */>) {

4 loop {

5 / / receive messages in a loop

6 match spar_rust_worker . receiver () .recv () {

7 ReceiveResult : :Ok(elem) => {

8 let mut sender = spar_rust_worker . sender () . clone () ;

9 spar_rust_worker .spawn(move | | {

10 let output = {

11 / / copy a l l of f_o ’ s logic here and

12 / / execute i t with the ’elem’ we received

13 };

14 sender .send(output) ;

15 }) ;

16 },

17 / / i f we get a continue , do a roundtrip to ensure a l l

18 / / previous messages have been received

19 ReceiveResult : :Continue => spar_rust_worker . roundtrip () ,

20 ReceiveResult : :End => break,

21 ReceiveResult : : Error (e) => panic! ("spar receiver panicked : {e:?}")

22 }

23 }

24 }

Listing 4.10: stage’s transformed function

4.5.2 source

The source function has an extra requirement to let us transform it: it must re-

turn an iterator as its output. If it does not, the procedural macro returns an error

(this is trivially detectable since we only need to see if the function’s signature output be-

gins with Iterator). This corresponds to the notion that the source function must create

the units of work that will be sent through the pipeline. A function that simply returns an

integer does not make sense for the source of a pipeline. Since source must return an

iterator, fg just executes fo and iterates over its results, sending each of those to a worker

in the next stage in the pipeline. Listing 4.11 shows what that looks like.

1 fn source(mut src : impl Source<(/* output */)>) {

2 / / the or iginal f_o returns an iterator .

3 / / So we iterate over i t s results

66

4 for item in f_o () {

5 spar_rust_source . sender () .send(item) ;

6 }

7 }

Listing 4.11: source’s transformed function

4.5.3 sink

While the source’s fo function must return an iterator, the sink, being the op-

posite of source, generates an fg that returns an iterator. This allows the developer to

iterate over the results outputted by the pipeline. The iterator’s implementation will call

receiver .recv () to get the next item, executing fo before returning it to the caller. List-

ing 4.12 shows how simple the implementation becomes. The into_iter function in line

3 transform the sink into an iterator, by repeatedly calling snk.receiver().recv() until

it returns ReceiverResult::End.

1 fn sink (snk : impl Sink</* input */>) −> impl Iterator<Item = /* output */> {

2 sink

3 . into_iter ()

4 .map(/* ca l l f_o function here to transform every element */)

5 }

Listing 4.12: sink’s transformed function

4.5.4 Ordering

Some data streams demand the processed items be outputted in the same or-

der as they were inputted. Two typical examples are video frames and compressed data

blocks. This means our sink’s fg must allow for that. As mentioned in Section 4.1, to spec-

ify that we want the output to be ordered, we use #[sink(Ordered)]. When we detect

the use of the Ordered keyword, we generate code implementing the algorithm described

in [44] to order the output. It works by tagging each item in the source with a monoton-

ically increasing integer. As a result, every item in the pipeline is actually a tuple (item,

tag)6. Then, in the sink, we use a priority queue to determine which item should be

outputted next. The current implementation is not robust against data losses throughout

the pipeline (it would wait for the missing data forever), though that could be improved in

future works.

6Because this makes the code harder to read, omitting the tag was one of the simplifications we made in
the above code Listings.

67

4.5.5 Stateful Computations

Some workers may benefit from having some kind of immutable state for per-

forming their computations. For example, they could read a specification from a file. If we

do not allow fg to receive extra variables representing that state, fo would have to read

the specification on every execution, which would clearly be sub-optimal. To accommo-

date stateful computations, sink and stage accept an optional State(args) argument

(#[stage(State(var1, var2, ...))], see Section 4.1). Upon parsing this argument, we

make fg accept extra parameters: one for each element in args. The elements in args

must have the same name as one of the fo’s parameters. They will have the same type

in fg, and be removed from the type list of the stream’s element. For example, if fo had

signature “fn f(p1:Vec<i32>, p2:u32)”, and we declared p2 as State(p2), fg’s stream

element would be just “Vec<i32>”, and fg would have an extra “p2:u32” parameter, to be

set at the call-site.

4.5.6 Serialization

Serializing data for execution in distributed environments is, as mentioned, provied

by the serde library. As explained in Section2.2.6, serde provides default serialization

strategies for all of Rust’s fundamental types, and standard library containers that use

them (such as Vec). Furthermore, using procedural macros, serde can recursively define

a serialization strategy for any struct whose fields are all serializable themselves. So, for

example, a struct with only vectors of integers could have a serialization implementa-

tion derived automatically by serde’s procedural macros. However, there are some cases

which serde can not handle. For example, in the next chapter, for the face-detector

application, we have had to write the serialization implementation ourselves, since the

application is dealing with opaque structs that were defined in C code we have to inter-

act with.

4.6 The to_stream declarative macro

To create a linear pipeline, one must simply call and concatenate the above trait

implementations together. We created a declarative macro called to_stream to facilitate

this. Its syntax was already explained in Section 4.1.1. Then, to_stream is called as

depicted in Listing 4.13, generating, for the multi-threaded environment, roughly the code

in Listing 4.14.

68

1 to_stream!(multithread : [

2 f_0 (/* stateful args for f_0 */) ,

3 (f_1 (/* stateful args for f_1 */) , /* number of workers */) ,

4 (f_2 (/* stateful args for f_2 */) , /* number of workers */) ,

5 . . .

6 f _ i ,

7]) ;

Listing 4.13: to_stream multi-thread example

1 let (snd_0 , rcv_1) = create_sender_receiver_pair () ;

2 let f_0 = SequentialSource : :new(snd_0) ;

3 f_0 . run(f_0 , (/* args for f_0 */)) ;

4

5 let (snd_1 , rcv_2) = create_sender_receiver_pair () ;

6 let worker =

7 MultiThreadedWorker : :new(/* number of workers */ , rcv_1 , snd_1) ;

8 worker . run(move |w| f_1 (w, /* stateful args for f_1 */)) ;

9

10 let (snd_2 , rcv_3) = create_sender_receiver_pair () ;

11 let worker =

12 MultiThreadedWorker : :new(/* number of workers */ , rcv_2 , snd_2) ;

13 worker . run(move |w| f_2 (w, /* stateful args for f_2 */)) ;

14 . . .

15 let sink = SequentialSink : :new(rcv_i) ;

16 sink / / sink is returned at end

Listing 4.14: to_stream multi-thread generated code

4.6.1 Replication

The to_stream macro is responsible for replicating the workers, evident by the

fact it accepts the number of workers as a parameter. This is a very different operation for

all 3 runtimes.

The GPU runtime simply ignores the parameter. When using the GPU, we execute

everything in the same CPU thread, and will use as many GPU threads as the problem will

accommodate.

The multi-threaded implementation passes the parameter on to the Worker im-

plementation, as we can see in Listing 4.14. The MultiThreadedWorker::new function

will create a thread-pool with the requested number of threads. The Worker::spawn func-

tion will then spawn a job in this thread-pool. The thread-pool’s size ensures the correct

amount of replication.

The MPI implementation is much more involved. In MPI, we establish the number

of processes during initialization, and can not trivially change this number during runtime.

This means the to_stream macro must spawn all necessary processes at once, and co-

ordinate them all so that each process is running the correct function. To this end, we

implemented a simple algorithm, as follows:

69

1. sum all the requested worker numbers. We will call this S.

2. if S + 1 is smaller than the number of MPI processes, exit with an error. The +1 is

necessary for the source and sink process.

3. any process with rank ≥ S + 1 exits successfully immediately, since we will not be

using it.

4. source and sink will be executed by process of rank 0.

5. let Ri be the requested amount of replication for worker i . Source will send its ele-

ments to processes of rank [1..Ri).

6. processes of rank [1..Ri) will send their elements to processes of rank [Ri ..Ri + Ri+1).
Processes of rank [Ri ..Ri + Ri+1) will send their elements to processes of rank [Ri +
Ri+1..Ri + Ri+1 + Ri+2). And so on.

7. the processes associated with the final worker all send their elements to process of

rank 0.

Remember that the MPI Sender and Receiver implementations (Listing 4.7) have

internal structures that keep track of the processes they send to and receive from. So we

can simply initialize every worker with the correct parameters, as explained above, and

our implementation will take care of the rest.

4.7 GPU-specific transformations

In this Section we will discuss all the special considerations the GPU implemen-

tation imposes on us. In particular, we will present how we do automatic code generation

for the GPU, how we prevent extra copies between CPU and GPU buffers, and the several

constraints and limitations our implementation imposes on the programmer. Our general

strategy was to force the programmer to use certain patterns so that we could parse them

predictably when generating the GPU kernels. Much of the following explanations involve

revealing a constraint in the way the Rust must be written, followed by what that allows

us to do when generating code.

We have mentioned before that the Map and Reduce keyword currently do not

affect code generation. It is important to keep in mind, while reading this Section, that we

do not use the Map and Reduce keywords to generate specialized code for these patterns.

Instead, our strategy is to simply transform the Rust code into GPU executable code in the

most straightforward way possible. It is the programmer’s responsibility to know whether

they are currently working with a Map or Reduce pattern, and manually change the code

70

within fo accordingly. Therefore, the methodology we will show is technically lower level

than that of parallel patterns, since one can use it build the parallel patterns on top of it,

making for a relatively generic API, that can be used to program anything, as long as it

conforms with our limitations (see Section 4.7.2).

4.7.1 Procedural macros code generation

Generating code that will execute in the GPU is not as straightforward as gener-

ating code for multi-threaded and MPI environments. First, we have limitations: we can

only transform functions that use fundamental types (u32, i32, f32, etc) or vectors of

those fundamental types. Passing fundamental types to the GPU is trivial; we must simply

map the Rust type to its GPU equivalent (for example, u32→ unsigned int). For the vec-

tors, we can simply initialize a Buffer from the rust-gpu-tools library with the vector’s

content.

We demand the first statement in fo to be in the form ”let mut output = vec![0;

<size>]“. We use the expression in <size> to discover the output buffer’s size. We al-

ways generate an output buffer, even if it the function’s body does not use it. The second

statement in fo must be in the form ”for global_id in <range>“. We use <range> to

find how many GPU threads we will have to spawn when creating the kernel. Currently,

we assign a different GPU thread to every value in range. Making this configurable could

be the subject of future work. The body of the for loop will constitute the body of the

GPU’s kernel. We then create a kernel with the same name as that of the function being

transformed and the required number of threads, and proceed to execute it passing in all

the function arguments we transformed.

GPU kernel generated body

The GPU kernel’s body is created by copying the Rust code with some syntactic

adaptations. Rust code is often similar in syntax to C, which makes this possible. The most

important adaptation we make is that “let” statements (let var: i32 = 0) have their

type translated to their GPU equivalent and placed before the variable’s identifier (int

var = 0). This implies they must always include the optional type specification. For a list

of all constrains and limitations, see Section 4.7.2.

Besides the syntactic adaptations, we use the <range> token in fo’s second state-

ment to discover whether the current thread is out-of-bounds for the kernel. If its global id

is either smaller than the range’s starting point, or equal to or larger than its ending point,

we exit immediately. Otherwise, the global id will serve as an index in the exact same way

71

it serves as an index in the original Rust code. Listings 4.15 and 4.16 contain a simple

example of a vector sum Rust stage function and its generated equivalent in the GPU.

1 #[stage(OpenCL(Map))]

2 fn stage(a: Vec<u32>, b: Vec<u32>) −> Vec<u32> {

3 let mut output = vec![0; a . len ()] ;

4 for global_id in 0. .a . len () {

5 output [global_id] = a[global_id] + b[global_id] ;

6 }

7 output

8 }

Listing 4.15: Rust code to be transformed to the GPU

1 __kernel void stage(

2 __global unsigned int * a ,

3 unsigned int a_len ,

4 __global unsigned int * b,

5 unsigned int b_len ,

6 __global unsigned int * output ,

7 unsigned int output_len)

8 {

9 unsigned int global_id =

10 get_global_id (1) * get_global_size (0) + get_global_id (0) ;

11 i f (global_id < 0 | | global_id >= a_len) return ;

12 output [global_id] = a[global_id] + b[global_id] ;

13 }

Listing 4.16: GPU generated code

These Listings also show other implementation artifacts: we always transform a

Rust vector into a pointer and a length. Also, the OpenCL annotation comes with a Map

argument. One of either Map or Reduce must be specified at every stage. This is because

we originally planned to implement different transformations for the map and reduce pro-

cessing patterns. Ultimately, these were deemed unnecessary, and the implementation is

the same regardless of whether Map or Reduce is specified. The keywords still exist to facil-

itate future work where specializing the implementations may be possible. As it currently

stands, our implementation is far more amenable to maps than reduces. Writing a reducer

would be technically possible: create a chain of several stages, each outputting a vector

smaller than the previous one. This would, however, probably be very inefficient. On the

other hand, a map can be written naturally, by creating an output vector of the desired

size and filling it with the relevant results of your calculations. Note, nevertheless, that

it remains the responsibility of the programmer to understand that they are using a map

or reduce pattern. We simply transform the Rust code to OpenCL as best we are able to,

without taking into account the parallel programming pattern the user is operating with.

The generated Rust function is printed to both standard output and a file called

“__SPAR_RUST_GENERATED_OPENCL”. To perform a full compilation from scratch, it is actu-

ally necessary to compile the code twice: the first time will print out the transformation to

the generated file, the second will copy the file’s content into the binary to instantiate the

72

GPU kernel. It is not necessary to do a full compilation; one can run just “cargo check” to

verify the source’s syntax, as that will already trigger the procedural macro’s execution.

Rust generated code

To send data to the GPU, we must make the appropriate calls to rust-gpu-tools.

Therefore, the original Rust function must be transformed to do that. Listing 4.17 shows a

simplified and commented result of Listing 4.15’s transformation.

1 fn stage(

2 / / every Buffer must be accompanied by i t s length as a u32

3 mut elem: (

4 (spar_rust : : rust_gpu_tools : : opencl : : Buffer<u32>, u32) ,

5 (spar_rust : : rust_gpu_tools : : opencl : : Buffer<u32>, u32) ,

6) ,

7) −> (spar_rust : : rust_gpu_tools : : opencl : : Buffer<u32>, u32) {

8 / / rust_gpu_tools demand we execute a closure

9 let gpu_execute = |

10 program: &spar_rust : : rust_gpu_tools : : opencl : : Program,

11 args : (

12 (spar_rust : : rust_gpu_tools : : opencl : : Buffer<u32>, u32) ,

13 (spar_rust : : rust_gpu_tools : : opencl : : Buffer<u32>, u32) ,

14) ,

15 | −> (spar_rust : : rust_gpu_tools : : opencl : : Buffer<u32>, u32) {

16 / / We deduce the size of the output buffer based on the output ’ s length

17 / / in the or iginal code . In this case , the length was the f i r s t argument’ s

18 / / length , so that is what we use here .

19 let output_buffer_len = (args .0.1) as u32;

20 / / Create the kernel , with as many threads as necessary such that every

21 / / position in the output buffer i s assigned to a different thread .

22 let kernel = program

23 . create_kernel ("stage" , ((a_len) as usize) . d iv_cei l (1024) , 1024) .unwrap() ;

24 / / creating the output buffer i s unsafe

25 let output_buffer = unsafe {

26 program. create_buffer ::<u32>(output_buffer_len as usize) .unwrap()

27 };

28 / / Execute the kernel passing in a l l arguments .

29 / / Every buffer i s followed by i t s length .

30 kernel

31 . arg(&args .0.0)

32 . arg(&args .0.1)

33 . arg(&args .1.0)

34 . arg(&args .1.1)

35 . arg(&output_buffer)

36 . arg(&(output_buffer_len))

37 . run () .unwrap()

38 (output_buffer , output_buffer_len)

39 };

40 / / this w i l l be the input

41 let elem = ((elem.0.0 , elem.0.1) , (elem.1.0 , elem.1.1)) ;

42 / / create the program with the generated GPU code

43 let program = spar_rust : :gpu : : opencl_program(

44 include_str! (" . . / __SPAR_RUST_GENERATED_OPENCL")) ;

45 / / run the code with our input

46 program. run(gpu_execute , elem) . expect (" fa i led to execute worker gpu program")

47 }

Listing 4.17: Rust generated GPU code

73

Note the transformation is very specific to GPUs, as we do not use any of the traits

we defined in the previous Sections. We explained this in Section 4.4.3: the fundamental

problem is that we have to generate different code depending on whether the argument

we are passing is a vector or a scalar value, but this is currently impossible to detect at the

trait implementation layer. And so, we had to resort to ad-hoc transformations instead.

Preventing extra copies between the CPU and the GPU

To achieve decent performance, we want to minimize the amount of copying be-

tween the CPU and the GPU. To this end, we only copy data from the CPU to the GPU in

the source node, and copy it back in the sink node. All intermediate worker nodes receive

and send rust-gpu-tools’s Buffers directly, so data is never copied back to the CPU.

4.7.2 Rust Code Constrains and Limitations

There are several limitations in how the original Rust code may be written so that

we can transform it into GPU code using our method. Summarizing all the limitations we

have presented in this Section, and adding some missing ones, we arrive at the following

list:

1. every input and output must be either a fundamental type, or a vector of a funda-

mental type;

2. type inference is disallowed. The programmer must always use the “let i: <type>”

syntax;

3. functions are disallowed. The programmer must manually inline all functions. The

exceptions are functions in the standard library’s f32 and f64 modules, called specif-

ically through the syntax “f32::name” and “f64::name” (not using imports), whose

names match exactly to functions that exist in OpenCL;

4. the first statement in the function must be in the format ”let mut output = vec![0;

<size>]“;

5. the second statement in the function must be in the format ”for global_id in

<range>“;

6. after the “for” loop’s body, there must be only 1 statement: the variables the func-

tion will return;

7. no other for statements are allowed;

74

8. while and if statements’ conditions must be surrounded with parenthesis: while

(<condition>) and if (<condition>). This is not necessary in Rust, but it is in

OpenCL and CUDA;

9. no statement can use any type that is not fundamental. The only vector types al-

lowed are the function’s input and the the output vector; and

10. the only operations allowed on vectors are reading and writing through the indexing

syntax: “vector[<index>]”, and getting the vector’s length through “vector.len()”.

All these constraints ultimately make the Rust code look very non-idiomatic, even

if it is still valid Rust code.

4.7.3 to_stream implementation

Because the Sender and Receiver implementations are just NO-OPS, the Worker

implementation is simple, and we ignore the replication argument, the to_stream im-

plementation for the GPU runtime is much more straightforward than the others. Call the

source function, returning an iterator, and use map to call every stage in turn, until we

reach the sink (see Listing 4.18).

1 source(inputs)

2 .map(| args | stage1(args))

3 .map(| args | stage2(args))

4 /* . . . * /

5 .map(| args | sink (args))

Listing 4.18: to_stream generated GPU code

4.7.4 A more complex example

Listings 4.19 and 4.20 show a complex example of generating code for the GPU.

It is the Sobel filter of one of our applications in the next Chapter. It shows nearly every

limitation we discussed above. We have commented the code (and formatted the GPU

code) to make it easier to follow.

We can observe the many limitations imposed on the Rust code: the format of

lines 5 and 9 in Listing 4.19 is fixed. The lines must always be, first, a mutable vector

named “output”, followed by a for loop. The GPU function is composed primarily of what

is inside this for loop. Each element of the loop will execute in a different thread. Within

the loop, we see that we had to use a while loop, even though another for would make

for more idiomatic Rust code. Furthermore, all the types are specified with the syntax let

75

var: <type>, which is also not idiomatic Rust. Finally, we use two functions prefixed by

f64: f64::min and f64::sqrt. These functions have direct OpenCL equivalent, and so

we can transform them by simply removing their prefixes in the GPU code.

1 fn sobel_ f i l ter (img_vec : Vec<u8>, width : u32, height : u32) −> (Vec<u8>, u32, u32) {

2 / / These f i r s t two l ines MUST be in this exact general format , as

3 / / we explained above. We wi l l use this f i r s t l ine to calculate the

4 / / GPU’ s output buffer ’ s size

5 let mut output = vec![0u8; (width * height) as usize] ;

6 / / This l ine w i l l be used to know how many threads we should spawn.

7 / / We execute every element in the range in a different thread .

8 / / In this case , we w i l l be executing ’width ’ GPU threads .

9 for global_id in 0. . width as usize {

10 let str ide : usize = 2 + width as usize ;

11 / / For loops besides the above are not allowed , so we use a while loop instead

12 let mut j : usize = 0;

13 while (j < height as usize) {

14 / / Note a l l the expl ic i t typing with ’ : i32 ’ and ’as i32 ’ .

15 / / This is very non−idiomatic Rust , but i t i s necessary for

16 / / us to be able to transform i t .

17 let val0 : i32 = img_vec[global_id + (j * str ide)] as i32 ;

18 let val1 : i32 = img_vec[global_id + 1 + (j * str ide)] as i32 ;

19 let val2 : i32 = img_vec[global_id + 2 + (j * str ide)] as i32 ;

20 let val3 : i32 = img_vec[global_id + ((j + 1) * str ide)] as i32 ;

21 let val5 : i32 = img_vec[global_id + 2 + ((j + 1) * str ide)] as i32 ;

22 let val6 : i32 = img_vec[global_id + ((j + 2) * str ide)] as i32 ;

23 let val7 : i32 = img_vec[global_id + 1 + ((j + 2) * str ide)] as i32 ;

24 let val8 : i32 = img_vec[global_id + 2 + ((j + 2) * str ide)] as i32 ;

25 let gx: f64 = ((−val0) + (−2 * val3) + (−val6) + val2 + (2 * val5) + val8) as f64 ;

26 let gy: f64 = ((−val0) + (−2 * val1) + (−val2) + val6 + (2 * val7) + val8) as f64 ;

27 / / cal l ing the min and sqrt functions is allowed because

28 / / they are prefixed by ’ f64 : : ’ . No other functions can be called .

29 let mag: f64 = f64 : :min(f64 : : sqrt ((gx * gx) + (gy * gy)) , 255.0) ;

30 output [global_id + (j * width as usize)] = mag as u8;

31 j += 1;

32 }

33 }

34 (output , width , height)

35 }

Listing 4.19: Sobel filter in Rust (commented)

1 / / The f i r s t four parameters are the same as those of the Rust function .

2 / / The output is a new parameter that a l l generated GPU functions have.

3 / / Note how every array had a length accompaning i t

4 __kernel void sobel_ f i l ter (

5 __global unsigned char * img_vec ,

6 unsigned int img_vec_len ,

7 unsigned int width ,

8 unsigned int height ,

9 __global unsigned char * output ,

10 unsigned int output_len)

11 {

12 / / We begin by calculaing the global Id and seeing i f i t i s in the Rust ’s for

13 / / loop ’s range . As explained , we wi l l distr ibute the work by sending each

14 / / value in the range to a different GPU thread .

15 unsigned int global_id = get_global_id (1) * get_global_size (0) + get_global_id (0) ;

16 i f (global_id < 0 | | global_id >= width) return ;

17 unsigned long str ide = 2 + width ;

18 / / Note how we use a while loop , and not a for loop . This is one of the

76

19 / / l imitat ions we mentioned above.

20 unsigned long j = 0;

21 while (j < height) {

22 / / in here , we use only indexing operations on vectors , which are one of

23 / / the only 2 operations allowed on them.

24 int val0 = img_vec[global_id + (j * str ide)] ;

25 int val1 = img_vec[global_id + 1 + (j * str ide)] ;

26 int val2 = img_vec[global_id + 2 + (j * str ide)] ;

27 int val3 = img_vec[global_id + ((j + 1) * str ide)] ;

28 int val5 = img_vec[global_id + 2 + ((j + 1) * str ide)] ;

29 int val6 = img_vec[global_id + ((j + 2) * str ide)] ;

30 int val7 = img_vec[global_id + 1 + ((j + 2) * str ide)] ;

31 int val8 = img_vec[global_id + 2 + ((j + 2) * str ide)] ;

32 double gx = ((−val0) + (−2 * val3) + (−val6) + val2 + (2 * val5) + val8) ;

33 double gy = ((−val0) + (−2 * val1) + (−val2) + val6 + (2 * val7) + val8) ;

34 / / here , we ca l l the sqrt and min functions . This is allowed because in

35 / / Rust these functions are prefixed by ’ f64 : : ’ , which we can transform .

36 double mag = min(sqrt ((gx * gx) + (gy * gy)) , 255.0) ;

37 output [global_id + (j * width)] = mag;

38 j += 1;

39 }

40 }

Listing 4.20: Sobel filter GPU generated code (commented and formatted manually)

77

5. EXPERIMENTS

In this Chapter, we will present several benchmarks to show the effectiveness

of our abstraction and implementation. We begin by presenting the applications we will

use in our benchmarks. Then, we will briefly discuss the libraries and frameworks we will

compare our work to (all of which were already presented in Chapter 3). Then, we will

show our results, which include performance and programmability metrics.

5.1 Applications

We have extended and improved RustStremBench1 provided by [81]. The original

work contained 4 applications. We removed the mandelbrot benchmark (called micro-bench)

because we considered it an unorthodox implementation, and too artificial even for a

benchmark application. We then added 4 new programs to the benchmark, 2 of which we

specifically created to let us benchmark GPU applications. Thus, we have the following

list:

1. bzip2 – performs compression and decompression with the bzip2 algorithm;

2. face-detector – uses OpenCV [13] to detect people’s eyes from a video;

3. image-processing – applies a series of filters to a list of images (uses the raster

Rust library2);

4. kmeans – calculates centroids for a list of points, improving results iteratively;

5. word-count – counts the number of times a word appears in a stream;

6. sobel – applies a sobel filter [59] to a list of images, after turning them into gray-

scale. Unlike image-processing, here we wrote the filters manually3, so that we

could later adapt them to the GPU easily; and

7. latbol – performs a fluid simulation using the Lattice Boltzmann method [17]4. This

is the other application we will execute on the GPU.

These seven applications all have different execution properties, and will give us

insight into the libraries’ performance. Their execution graphs can be seen in Figure 5.1.

For simplicity, the graphs only show parallelism of two workers per stage, but any arbitrary

number of workers could be used for any stage.

1original source code available at https://github.com/GMAP/RustStreamBench
2available at https://github.com/kosinix/raster
3the code was adapted from https://github.com/dangreco/edgy/blob/master/src/main.rs
4code adapted from https://github.com/ndbaker1/bloe

https://github.com/GMAP/RustStreamBench
https://github.com/kosinix/raster
https://github.com/dangreco/edgy/blob/master/src/main.rs
https://github.com/ndbaker1/bloe

78

bzip2 sobel

face-detector image-processing

word-count

kmeans

latbol

Figure 5.1: Benchmark applications execution graphs.

Figure 5.1 shows that only bzip2 and word-count have the exact same pipeline.

Furthermore, kmeans and latbol are not, strictly speaking, linear pipelines, as we defined

them in Section 2.1.1, since they form a cycle. In essence, both these applications run

in a loop, with a configurable number of iterations. Each loop iteration is itself a linear

pipeline. As we will see in Section 5.3, this has profound implications for the effectiveness

of our abstraction.

We will leave discussing the details of the applications’ implementations to Sec-

tion 5.3, where we will mention them as they become relevant to understanding our ex-

perimental results.

79

5.1.1 Verifying correctness

Each application has its own strategy to verify the sequential and parallel imple-

mentation generates the same result. For bzip2 and face-detector, we do a simple hash

calculation with the SHA256 algorithm. For word-count, image-processing and kmeans,

we sort the output after the stream has ended before running the hash algorithm, since the

stream itself does not order its elements in these applications. For sobel and latbol, we

also run the SHA256 algorithm, but the GPU applications create slightly different results

due to hardware differences in how the CPU and GPU handle floating point operations.

Floating point arithmetic is not associative, and so small variations can propagate through

the calculations. All GPU implementations’ hashes are equal among themselves, but to

compare them to the CPU versions, we resorted to printing and manually verifying the

numbers. In sobel, each pixel value is at most 2 units different from the sequential ver-

sion, with most pixels being exactly identical, which we consider acceptable. In latbol,

values are identical up to 4 decimal places, which we also consider acceptable.

5.2 Libraries and Frameworks

For the shared-memory environment, we will use std-threads, rayon, tokio,

ppl, and renoir. We have chosen the first to represent a “manual” implementation using

the Rust’s standard library facilities; the second and third representing the Rust commu-

nity default choices for parallelism; the fourth because it is a very recent work of trying to

simplify stream-processing in Rust for shared-memory environments; and finally renoir

was chosen because it is supposed to work in both shared-memory and distributed envi-

ronments, being therefore the most direct competitor with our own abstraction.

For the distributed environment, we will use mpi and renoir. As we just men-

tioned, renoir is important because it is trying to do something similar to us. The mpi

implementation is simply an implementation using mpi function calls directly (done with

rsmpi), without a library to abstract them away. Because SPar-Rust also uses MPI in

its implementation, we will sometimes use the term “raw MPI” to refer to the pure mpi

implementation.

Finally, for the GPU, we have just the manually written GPU implementation to

compare with SPar-Rust. As we explained in Section 3.3, there are not many academic

works that try to simplify using GPU compute in Rust, and so there is not much we can use

to compare with. Extending the benchmark to use more GPU libraries, when those come

to be, can be the subject of future works.

80

In all cases, we tried to implement the benchmarks in a “normalized” way. That is,

all benchmarks use the same parallelization strategy for every library. Any instance where

we had to deviate from this will be explicitly mentioned in the following Sections. This also

entailed having to rewrite some of the original benchmarks in RustStreamBench, and we

have used the opportunity to also update their dependencies to their latest releases. The

versions we are using for every library is as follows:

• rayon – version 1.10;

• tokio – version 1.42;

• ppl – commit aeb4589c304d4cb426b5f57261fb530b596635cd;

• renoir – version 0.25;

• rsmpi – version 0.8; and

• rust-gpu-tools – version 0.7.

5.3 Results

For all experiments in this Section, we are using Rust nightly, version 1.86.0, from

2025-01-08, hash a580b5c37. For every environment, we will present, in order, perfor-

mance and programmability experimental results. Also, for every benchmark, we ensure

that all the necessary states are initialized before measuring. This means we read entire

files to memory before starting execution. renoir, in particular, has facilities to start a

processing stream from a file, which could have been a more natural implementation, but

we did not use it because the IO could interfere with the measurements.

To measure programmability, we will use two metrics: significant lines of code

(SLOC) and Halstead [46] estimated development time. SLOC will be measured with the

scc tool6. Halstead is a method of measuring programming complexity based on tokens:

operands and operators. It counts the number of operators and operands, their total oc-

currences and uses that to calculate a development effort estimate (in estimated hours of

work). We will be using Andrade’s work in [6], which extended Halstead to be more suit-

able for measuring parallel programming complexity. Since Andrade’s tool was focused

in C++, we had to add the relevant keywords for Rust and all used libraries manually

ourselves.

5renoir, at the time of writing, just released version 0.4. However, looking at the changes, they should
not affect the results in this work, since they affect functionalities we do not use.

6available at: https://github.com/boyter/scc

https://github.com/boyter/scc

81

Also, in the programmability sections, we will note which implementations de-

manded that we write unsafe Rust code. As was explained in Section 2.2, lack of unde-

fined behavior in safe Rust is one of its big selling points. As such, if we ever had to use

the unsafe keyword in one of our implementations, this should be noted as a failure of the

library’s API, for not allowing us to write performant code without it.

5.3.1 Multi-Threaded

The multi-threaded experiments were executed on a machine with two Intel(R)

Xeon(R) Silver 4210, 144GB of RAM and 4 hard-drives with 2TB in RAID10. The inputs for

each application were as follows:

• bzip2 – A 532MB file of Wikipedia indexes;

• face-detector – a 450 frames video showing a crowd with several faces. More faces

to detect is more computationally costly;

• image-processing – 1000 images, sized 1920 by 1280;

• kmeans – 1000000 points, 250 centroids and 100 iterations;

• word-count – A file containing 30640350 words;

• sobel – the same image set as image-processing; and

• latbol – a field 10000 by 10000 large, with a circle of radius 10 to block the flow

centered at point (50,5000). Executed 100 iterations.

There are a few special implementations in this set of benchmarks:

1. word-count with rayon is very slow using a map followed by a reduce, which is the

natural programming pattern for this application. Instead, we use a fold followed

by a reduce. In terms of parallel programming patterns, these two correspond to

roughly the same thing. But semantically, fold will incur in many less copies of the

data than map in rayon’s internal implementation, making it much more efficient.

2. renoir does not have a way of sorting the streams’ items, nor a stateful sequen-

tial sink. This means we can not retrieve the stream elements in sorted order,

and can not even implement a sorting algorithm manually, as we have done for

the std-threads implementations. Instead, for bzip2 and face-detector (the two

applications that require sorting), we simply sort the elements after the stream has

completed. This will decrease the amount of parallelism used, which would typically

make it slower, but it is ultimately a limitation of renoir’s current API.

82

Performance

Figure 5.2 shows the performance results, measured in throughput, of all bench-

mark programs executed in a shared-memory environment. In all graphs, 0 worker repli-

cation stands for the sequential version of the program. Furthermore, every stage in the

pipeline is replicated with the same number of threads. Some frameworks do not give

us fine-grained control over how many threads will execute in a given stage, since they

schedule them dynamically on the fly (like rayon). In those cases, we initialized them with

nostages× replication threads total. Table 5.1 shows the best throughput we attained with

each runtime, alongside the replication factor they used.

Overall, rayon emerges as the clear winner in these benchmarks, consistently

achieving either the best or close to the best performance. This is expected, as rayon

has been optimized by the Rust community for running parallel code efficiently in shared

memory environments for many years. tokio is also very efficient, but its performance

does not always match rayon, and in word-count in particular, greatly lags behind it.

Both rayon and tokio are faster than std-threads in almost all cases, because they use

optimized scheduling and load-balancing algorithms (such as a thread-pool with work-

stealing) to better distribute the computation across the available CPUs.

renoir forces our types to implement Serialize, as opposed to just Send and

Sync, even when running in a multi-threaded environment. This implies it is doing seri-

alization for communication, which can be costly in terms of performance and memory

usage. In fact, renoir can not execute image-processing and sobel with the full range

of threads because it exhausts the system’s memory, and the operating system kills the

process. It also can not execute latbol at all, exiting with a stack overflow even with just

one process. Considering this, it is remarkable how renoir achieves performance similar

to the best libraries in kmeans and face-detector. With some optimizations, it is possible

that renoir could also be competitive in the other benchmarks as well.

ppl shows very strange behavior for the word-count application. It seems inca-

pable of properly scheduling the work. We tried multiple implementations, all extracted

from ppl’s word count examples, and this was the best result we could come up with. ppl

also does poorly on kmeans and bzip2 decompression. In both word-count and bzip2 de-

compression, the amount of work a single worker has to do for each item received is very

light. This suggests that ppl is not good at scheduling light workloads. kmeans, on the

other hand, can be explained by the fact that the application is not a true linear pipeline,

which ppl is optimized for. Accordingly, it does very poorly.

83

0 5 10 15 20 25 30 35 40
Worker Replication per Stage

0
25
50
75

100
125
150
175
200
225

Th
ro

ug
hp

ut
 (c

hu
nk

s/
se

c) ppl
rayon
renoir
spar-rust
std-threads
tokio

(a) bzip2 compression

0 5 10 15 20 25 30 35 40
Worker Replication per Stage

0
100
200
300
400
500
600
700
800
900

Th
ro

ug
hp

ut
 (c

hu
nk

s/
se

c) ppl
rayon
renoir
spar-rust
std-threads
tokio

(b) bzip2 decompression

0 5 10 15
Worker Replication per Stage

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
) ppl

rayon
renoir
spar-rust
std-threads
tokio

(c) face-detector

0 2 4 6 8
Worker Replication per Stage

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
) ppl

rayon
renoir
spar-rust
std-threads
tokio

(d) image-processing

0 5 10 15 20 25 30 35 40
Worker Replication per Stage

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

/s
ec

)

ppl
rayon
renoir
spar-rust
std-threads
tokio

(e) kmeans

0 5 10 15 20 25 30 35 40
Worker Replication per Stage

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (w

or
ds

/s
ec

)

1e6

ppl
rayon
renoir

spar-rust
std-threads
tokio

(f) word-count

0 5 10 15 20
Worker Replication per Stage

0

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
) ppl

rayon
renoir
spar-rust
std-threads
tokio

(g) sobel

0 2 4 6 8 10
Worker Replication per Stage

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

/s
ec

)

ppl
rayon
spar-rust
std-threads
tokio

(h) latbol

Figure 5.2: Multi-threaded benchmark results

84

bzip2
compression

bzip2
decompression

face-detector image-processing

Rep Thr Rep Thr Rep Thr Rep Thr
std-threads 40 162.75 38 750.07 16 11.04 8 38.28

rayon 39 166.25 40 552.73 16 20.24 8 49.78
tokio 40 148.76 39 661.95 16 10.74 8 50.38

ppl 39 148.58 18 192.28 16 10.93 8 35.87
renoir 17 69.58 18 299.02 13 14.86 2 9.21

spar-rust 38 165.12 7 196.87 16 10.90 8 38.25

word-count kmeans sobel latbol
Rep Thr Rep Thr Rep Thr Rep Thr

std-threads 10 455.99e4 40 26.41 19 427.86 10 1.14
rayon 11 326.39e4 40 20.94 20 490.55 8 1.49
tokio 38 134.92e4 39 25.71 20 461.65 8 1.35

ppl 1 80.27e4 3 0.92 20 405.87 8 1.48
renoir 24 396.43e4 37 22.08 2 47.56 X X

spar-rust 7 278.43e4 14 0.36 19 443.18 10 0.98

Table 5.1: Best times for the multi-threaded runtimes.
“Rep” stands for “replication”, and “Thr” stands for “throughput”.

Finally, spar-rust, our own abstraction, does well on most situations. In bzip2

compression and sobel, we match the best performing libraries. In image-processing,

we match std-threads and ppl, losing only to tokio and rayon. In face-detector, we

match ppl, tokio and std-threads. In word-count we are the third slowest library, but

we do not display the problematic behaviors of tokio and ppl. In bzip2 decompression,

we match ppl as the worst library, with poor scalability. Once again, decompression has

little work per item for every node, implying our abstraction struggles with this kind of

workload. In latbol, we are the worst library (besides renoir which did not even run)

because latbol has heterogeneous processing stages, with the two outer stages being

much more computationally cheap than the inner ones. As such, latbol greatly bene-

fits from proper load-balancing, which neither we nor std-threads do, thus resulting in

us being comparatively slower. At last, spar-rust’s performance in kmeans is atrocious.

This is expected, since kmeans is a data-flow application, not a linear pipeline. Therefore,

to model it correctly, many concessions had to be made, that ultimately killed its per-

formance. In particular, we re-initialize the library in every iteration, which adds a large

constant cost to the computation. We can see that spar-rust does get faster as we in-

crease the number of workers up to 20 workers, after which it begins using the virtual

cores and its performance flattens. The fact that spar-rust is still getting some speed-up

up to 20 workers indicates that it can schedule the workload properly, it is just incurring

an enormous initialization constant cost at every iteration, making it slower than every

other implementation by a large factor.

Table 5.1 must be interpreted alongside Figure 5.2, to evaluate how well each

runtime can scale on each application. The results confirm most of Figure 5.2’s analysis. It

85

is interesting that in bzip2 compression and decompression, word-count and latbol, the

fastest implementations attained their execution speed with a lower replication factor than

other implementations, suggesting they could scale even further if we were to increase

their workload.

Programmability

Table 5.2 shows the programmability metrics for the multi-threaded implemen-

tations. In it, “Hours” stands for Halstead estimated development effort, in hours, and

“U” stands for whether the implementation used the unsafe keyword in it, with “Y” being

“Yes” and “N” “No”.

bzip2 image-processing face-detector word-count
SLOC Hours U SLOC Hours U SLOC Hours U SLOC Hours U

sequential 94 5.15 N 26 0.48 N 50 1.87 N 10 0.11 N
std-threads 171 14.5 N 80 2.75 N 80 9.94 N 35 0.73 N

rayon 106 6.42 N 43 0.99 N 131 7.54 N 22 0.26 N
tokio 126 8.26 N 67 2.09 N 67 4.79 N 30 0.58 Y

ppl 121 7.31 N 49 1.27 N 49 4.21 N 14 0.14 N
renoir 173 14.36 N 101 4.56 N 101 11.74 N 29 0.59 Y

spar-rust 132 9.75 N 63 1.75 N 63 6.24 Y 29 0.92 Y

kmeans sobel latbol
SLOC Hours U SLOC Hours U SLOC Hours U

sequential 38 1.02 N 40 2.42 N 86 7.59 N
std-threads 60 2.24 N 69 4.38 N 159 15.32 Y

rayon 52 1.52 N 49 3.07 N 115 9.73 Y
tokio 67 3.16 Y 57 3.79 N 128 14.32 Y

ppl 39 1.09 N 50 3.46 N 113 8.67 Y
renoir 73 2.46 N 60 3.71 N 121 13.38 Y

spar-rust 56 2.44 Y 57 3.82 N 133 12.74 Y

Table 5.2: Multi-threaded programmability metrics.

We see that almost every library is better in terms of programmability than us-

ing std-threads, with a few exceptions. Because renoir demands us to implement the

Serialize trait for some types, it leads to more code and complexity in image-processing,

face-detector and kmeans. spar-rust is worse at word-count and kmeans because the

implementations demanded some working around Rust’s safety demands, which is why

we had to use unsafe in them. The unsafe in face-dectector for spar-rust is merely to

implement Sync and Send on some custom types, so it is not a huge problem.

Overall, the two best libraries in terms of programmability seem to be rayon

and ppl. rayon’s complexity increases significantly in face-detector because we had to

interact with its internals to achieve good performance, leading to more verbose code.

86

Finally, latbol demanded we use unsafe for every implementation, because we

access a vector mutably from multiple threads at once. We calculate the indexes based on

the threads’ id in such a way that data races will never occur, but Rust’s borrow checker

can not prove that, and thus it would be impossible to write it in safe Rust. Also, bzip2 has

unsafe code in its implementation, but only to interact with the bzip2 system library, so

we chose to ignore it because it is not a consequence of an API limitation from the libraries

we are testing.

5.3.2 Distributed

The distributed experiments were executed on 4 machines connected through

1Gb ethernet, each equipped with two Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40GHz, and

32GB of RAM, for a total of 48 physical cores. The application’s inputs remain the same,

except for image-processing, sobel and latbol. The first two now use 640 by 427 im-

ages and the third a field 3000 by 3000 large. Their inputs had to be reduced because

they exhausted the RAM available on the cluster’s machines.

In its current format, we could not get renoir to work in the cluster. Upon execu-

tion of most benchmarks, renoir’s stack overflows. This would imply it is storing a lot of

data in its stack, or calling many functions recursively until the stack space is exhausted.

In any event, we decided to exclude renoir from the distributed environment benchmark,

as we have found it to be simply too unreliable.

Performance

Figure 5.3 shows the results of executing the experiments in a distributed envi-

ronment. As in the multi-threaded graphs, the 0 worker replication case stands for the

sequential version of the program. Table 5.3 shows the best throughput we attained with

each runtime, alongside the replication factor they used.

Figures 5.3a to 5.3d follow the same pattern they did in our previous work[30].

In essence, bzip2’s decompression does not need to serialize its messages, since it is

already sending raw bytes of data. However, we do not do that optimization in spar-rust;

we always serialize the data when communicating, which, because the actual work to be

performed is relatively small, makes our scalability halt at around a 16 replication factor.

spar-rust shows very poor performance for kmeans for the same reason as in the multi-

threaded case: we have to reinitialize the library at every loop, which is even costlier here

than it was in the shared memory environment.

87

0 10 20 30 40
Worker Replication per Stage

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (c

hu
nk

s/
se

c) mpi
spar-rust

(a) bzip2 compression

0 10 20 30 40
Worker Replication per Stage

0

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (c

hu
nk

s/
se

c) mpi
spar-rust

(b) bzip2 decompression

0 5 10 15
Worker Replication per Stage

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (f

ra
m

es
/s

ec
) mpi

spar-rust

(c) face-detector

0 2 4 6 8
Worker Replication per Stage

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
) mpi

spar-rust

(d) image-processing

0 10 20 30 40
Worker Replication per Stage

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

/s
ec

)

mpi
spar-rust

(e) kmeans

0 10 20 30 40
Worker Replication per Stage

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
 (w

or
ds

/s
ec

)

1e6

mpi
spar-rust

(f) word-count

0 5 10 15 20
Worker Replication per Stage

100

200

300

400

500

600

700

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
) mpi

spar-rust

(g) sobel

0 5 10 15
Worker Replication per Stage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

/s
ec

)

mpi
spar-rust

(h) latbol

Figure 5.3: Distributed benchmark results

88

bzip2
compression

bzip2
decompression

face-detector image-processing

Rep Thr Rep Thr Rep Thr Rep Thr
mpi 47 185.80 16 276.21 16 9.90 8 116.32

spar-rust 47 166.62 8 116.90 16 9.61 9 115.66

word-count kmeans sobel latbol
Rep Thr Rep Thr Rep Thr Rep Thr

mpi 8 285.61e4 47 22.50 4 602.16 2 0.36
spar-rust 8 180.96e4 8 1.11 4 553.24 2 0.35

Table 5.3: Best times for the MPI runtimes.
“Rep” stands for “replication”, and “Thr” stands for “throughput”.

The sobel application had limited scalability already in the shared memory en-

vironment. Here, its performance peaks at a replication factor of 4. It seems sobel can

not offer enough work to compensate for the extra communication costs of adding more

workers beyond 4 per stage. This is corroborated by the large standard deviations in the

graph, indicating the network’s instability must have greatly affected our measurements.

Nevertheless, spar-rust performs equivalently to mpi at all points, within error.

word-count shows very poor scalability in both implementations. word-count

was implemented as a pipeline that sends lines of text to every worker. This leads to a lot

of small messages being communicated through the system, which causes a large over-

head that dwarfs any performance boosts from parallelism. Ideally, a word-count applica-

tion for a distributed environment would instead be programmed by sending much larger

chunks of text to each worker. We did not do it this way, because we wanted to maintain

symmetry among all implementations. Through the mpi implementation could have been

made a lot faster, but our goal is not to create the fastest possible mpi implementation

of the word-count application, but rather have an implementation that closely mirrors

the strategy spar-rust is employing, to measure how much overhead our abstraction is

incurring compared to manual implementation.

Finally, latbol, like word-count, also shows very poor scalability. The explana-

tion for latbol is different, however, as, being a fluid simulation, there is a lot of work

to be done, as opposed to just counting words. This is further corroborated by how long

the sequential execution takes. Rather, as previously mentioned, latbol is an applica-

tion with very asymmetric processing requirements between its stages, with the outer

stages being cheap, while the two inner stages are computationally costly. Because we

are assigning an equal number of workers for every stage, half the workers are idle most

of the time. So we are not fully exploiting the system parallelism. The existence of two

cheap stages also implies the communication costs of those stages add enough overhead

to compensate for the gains in parallelism. In a production application, we would perhaps

merge the two outer stages with the inner stages, thus reducing the amount of idle work-

89

ers and decreasing communication costs. As mentioned, the application was developed

like this to maintain symmetry among all implementations.

These results show that spar-rust offers performance on par to that of a manual

implementation of the same parallelization strategy, with the exceptions being kmeans,

since it represents a processing graph spar-rust was not designed for, and bzip2 de-

compression, because the manual version can skip the data serialization process. This

is further corroborated by the results in Table 5.3, where spar-rust always matches (or

comes reasonably close to) mpi for its best timings, except in bzip2 decompression and

latbol. Our performance is similar to that of a manual implementation even in degener-

ate cases, such as in word-count and latbol, and even shows the same local peaks in

performance in cases like the sobel application.

Programmability

Table 5.4 shows programmability metrics for distributed environments. We have

reproduced the sequential version from Table 5.2 to serve as a reference point.

bzip2 image-processing face-detector word-count
SLOC Hours U SLOC Hours U SLOC Hours U SLOC Hours U

sequential 94 5.15 N 26 0.48 N 50 1.87 N 10 0.11 N
mpi 255 29.19 N 307 53.89 N 378 58.39 Y 93 6.06 N

spar-rust 132 9.75 N 111 4.75 N 205 16.89 Y 30 1 Y

kmeans sobel latbol
SLOC Hours U SLOC Hours U SLOC Hours U

sequential 38 1.02 N 40 2.42 N 86 7.59 N
mpi 102 6.25 N 162 24.15 N 277 55.1 Y

spar-rust 69 3.81 Y 57 5.33 N 128 15.74 Y

Table 5.4: Distributed programmability metrics.

As expected, spar-rust is significantly easier to program than mpi. The only

difference in the spar-rust implementations for a distributed system, compared to the

shared-memory one, is that we have implement Serialize on the types we wish to com-

municate, and changing the term multithreaded to mpi in the to_stream! declarative

macro call. Perhaps more surprising is the fact that mpi achieved good performance with-

out using unsafe code in cases where it was necessary in spar-rust. Unsafe Rust was

used in word-count to prevent extra line copies that would affect performance, and in

kmeans to avoid having to duplicate the points and/or the centroids at every iteration.

Is it worth noting we are disregarding unsafe calls to MPI_Finalize in the mpi imple-

mentation in nearly all applications. This is because MPI_Finalize is only unsafe to call

because it is a C function. In actuality, calling it is perfectly fine as long as we exit the

90

program soon after. Since every MPI_Finalize call is immediately followed by a call to

std::process:exit, we choose to ignore this function when evaluating unsafe usage.

5.3.3 GPU

For the GPU, we use just the sobel and latbol applications, since all others use

libraries we can not call from within the GPU. Moreover, we will also include the results

of using rayon with the maximum number of available threads, to see how well the GPU

compares to the most performant CPU implementation. Their inputs are the same as that

of the multi-threaded versions. We conducted the experiments in two systems: System

A with a AMD Ryzen 5 5600X 6-Core, 32GB of RAM and a NVIDIA GeForce RTX 3090 GPU;

and System B with two Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz, 190GB of RAM, and an

NVIDIA Tesla M40 GPU. System A, therefore, has a rather weak CPU and a powerful GPU,

while System B has two powerful CPUs, and a comparatively weaker GPU, making for two

distinct testing environments.

Performance

sequential rayon gpu spar-rust-gpu
Runtime

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

70.14

390.46

484.54 501.58

(a) System A

sequential rayon gpu spar-rust-gpu
Runtime

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

29.04

561.25

232.01 222.16

(b) System B

Figure 5.4: sobel GPU benchmark application results

91

sequential rayon gpu spar-rust-gpu
Runtime

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Th

ro
ug

hp
ut

 (i
te

ra
tio

ns
/s

ec
)

0.20
1.19

18.31

7.67

(a) System A

sequential rayon gpu spar-rust-gpu
Runtime

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (i

te
ra

tio
ns

/s
ec

)

0.08

0.91

2.66

1.54

(b) System B

Figure 5.5: latbol GPU benchmark application results

Figures 5.4 and 5.5 show the results of executing the programs on both machines.

We call gpu the manual GPU implementation in OpenCL we use to compare spar-rust to.

Figure 5.4 shows that in System B, which contains two powerful CPUs and a relatively

weaker GPU, we can actually attain greater throughput by executing the program in the

CPUs with the maximum number of threads instead. On the other hand, System A already

benefits from executing on GPU, being slightly faster than rayon. spar-rust performs

very closely to the manual implementation. The latbol benchmark is where we can see

more clearly the advantages os the GPU. In System A, GPU timings are 20 times more

efficient on average than using rayon with the maximum number of threads. spar-rust

is around 2.5 times less efficient than the manual GPU implementations. In System B, the

GPU is still around 3 times faster than rayon, with spar-rust being around 1.75 slower

than the manual implementation.

Programmability

When comparing programmability for the GPU environment, it is important to

keep in mind that OpenCL demands we program in two languages: Rust and OpenCL

(which is a modified C). Furthermore, spar-rust demands its code be written in a very

specific way (see Section 4.7.2). These factors make measuring programmability effort

very unreliable, since they do not take into account the extra cognitive load of having

two languages in the same project, or the extra work that writing code conforming to

spar-rust’s limitations entails. Having made these caveats, the results can be seen in

Table 5.5.

Halstead estimated development hours give an edge to spar-rust. Note we had

to use unsafe to make latbol fast on spar-rust. Furthermore, we actually did not use

92

sobel latbol
SLOC Hours U SLOC Hours U

sequential 40 2.42 N 86 7.59 N
gpu 95 9.06 Y 199 75.8 N

spar-rust 58 8.1 N 311 55.44 Y

Table 5.5: GPU programmability metrics.

the to_stream macro in the latbol implementation, as that would cause the GPU buffers

to be transferred over at every iteration. Instead, we called the transformed functions

directly, something only a very advanced user of SPar-Rust would do. Also, because the

Rust code that will be transformed into GPU code can not make arbitrary function calls,

it leads to a lot of code duplication that could be avoided in OpenCL, which explains the

extra SLOC in latbol. Despite all these extra complications, Halstead still estimates it

would be easier to program with SPar-Rust than with the raw GPU bindings.

SPar-Rust’s main strength lies in the fact that it works well by both performance

and programmability metrics on all three different environments. Between multi-threaded

and distributed, in particular, only minimal changes to the source code must be made.

Even though SPar-Rust may not be the most performant or more straightforward to pro-

gram in all cases, it remains the only programming abstraction that allows such flexibility.

93

6. CONCLUSION

In this work, we have presented SPar-Rust, a new high-level DSL in Rust for ex-

pressing linear pipelines on multi-cores, clusters, and GPUs. We presented a simple for-

malization of linear pipelines that guided our DSL implementation, and we have shown the

runtime and code generation implementation for all target architectures, where choices

and limitations were discussed. We also conducted experiments demonstrating our ab-

straction behaves efficiently in most scenarios. Our most significant limitation remains

the one represented by the kmeans application in the previous Section, that is, applica-

tions that can not be entirely modeled as a linear-pipeline.

Rust’s procedural macros proved capable of performing all code transformations

we needed in this work. In the original SPar, the authors were forced to develop a whole,

albeit simplified, C++ compiler to make their code transformations. Rust gives the pro-

grammer enough power with its macro system, and this was not necessary here. However,

using procedural macros is still not trivial. The input is raw Rust tokens, meaning it is up

to the developer to parse them. More importantly, the output must be valid Rust code,

which can be complicated due to the many rules it imposes on the programmer. Generally

speaking, procedural macro transformations should try to limit themselves to simple, re-

peatable routines, transforming code in predictable ways, with well-defined rules. Looking

at Section 4.5, the procedural macros we used in this work for both the shared-memory

and distributed environments generate the same code. The code itself is simple, because

it is based on our formalization, which is also very simple.

Generating code for the GPU was very challenging because of the syntactic and

semantic differences between the two environments. In this work, we only managed to

do it after severely limiting how the Rust code could be written. Overall, this would seem

to indicate that GPU abstractions in this direction may not be feasible in ways that are

both efficient and not restricting. The GPU has many different properties from the CPU,

and so it makes intuitive sense that approaches that work well in one environment may

not work as well in the other. Section 5.3.3 shows our abstraction loses around 2 times

performance, even with all the concessions we have had to make for our approach to

be even feasible. Efficient GPU programming abstraction must take into consideration

all of the GPU’s idiosyncrasies and find a way to explore them well. A simple abstract

formalization is not enough to achieve that.

6.1 Limitations

Our work has many limitations, most of which we have presented throughout this

document. Section 4.7.2 lists the several constraints that GPU code generation imposes

94

on how the function to be transformed can be written. Furthermore, as mentioned, we

do poorly on applications that can not be fully modeled with a linear pipeline. We also

do poorly in the distributed environment, when a manual implementation can bypass the

data serialization step, as is the case in the bzip2 application. 3 of our 7 applications in

Chapter 5 show poor scalability in a distributed environment. Ideally, we would like to

have more programs that can scale reasonably in a cluster so that we can conduct more

thorough testing for the distributed runtime. In the same vein, ideally, we would also like

to include more GPU applications with different levels of complexity.

When it comes to load distribution, we only implemented a round-robin strategy

for the distributed environment. Also, our shared-memory implementation does not fully

exploit work-stealing on all stages since each stage has its own thread pool.

Finally, our programmability metrics are somewhat fragile. Ideally, we would

like to measure this by having a group of people try to create parallel programs with all

the mentioned frameworks. Then, we would collect metrics such as: development time,

subjective perceived difficulty by the participants, correctness and amount of bugs, and so

on. However, finding the resources to conduct this kind of experiment can be challenging.

6.2 Future Work

Throughout this Thesis, we have made many mentions of possible future work.

Many of these are small and incremental improvements over the work we have presented

here. Nevertheless, there are a few major directions one could take with this research:

• first, one could experiment with relaxing the constraints on code that we can trans-

form to execute on the GPU. This would be very challenging as each constraint we

added in our implementation allowed us to make extra assumptions when generat-

ing the GPU code. In practice, we would have to develop a static analyzer to under-

stand what the sequential code is doing and try to reproduce that in the GPU. Some

constraints will be easier to relax than others. For example, the restriction that the

function may contain only one for loop could be relaxed by simply running the same

parsing logic twice, with the correct adaptions. On the other hand, it is likely that

other restrictions will not be able to be relaxed at all This would represent a great

advancement in automatic GPU code generation, and would allow a more seamless

integration of the three parallel runtime implementations.

• a second, different, direction, would be to explore options to do automatic load-

balancing for our implementations. Many of our execution problems could be solved

by having more efficient load-balancing techniques. This would possibly involve de-

veloping a more complex formal framework, to account for possible imbalances in

95

the execution graph. We would also have to adapt the implementations with new

ideas that supported load-balancing methods. A similar, but ultimately different,

idea is to try deducing replication levels for every stage automatically, based on

their internal computations. This could also improve performance by better distribut-

ing computational resources.

• a third possibility would be to explore leaning more into the parallel patterns paradigm.

We could generate specific, optimized code for map and reduce patterns for all im-

plementations. The keywords and syntax to support this in SPar have already been

worked out, as we showed in Section 4.1. As in the previous item, this would also

entail revisiting our formal framework, and adapting it to work with all these specific

patterns. We would then have to implement these patterns for all parallel runtimes.

• finally, we could try to extend SPar’s syntax so that it could handle Data Flow pro-

cessing patterns, as opposed to just Linear Pipelines. This would also contribute to

the original SPar’s implementation, which also struggles to handle data flow pat-

terns. This would be a major improvement on the language’s expressivity and reach

in terms of applications that could be modeled with it.

6.3 List of Published Papers

The following list contains the papers we have published during our Master’s pro-

gram, in chronological order. The most important ones are 1 and 4, which correspond to

the advancements in SPar-Rust’s implementation:

1. Source-to-Source Code Transformation on Rust for High-Level Stream Par-

allelism [31] – accepted and presented at the 27th Brazilian Symposium on Pro-

gramming Languages (SBLP), in 2023. This paper presents the first version of SPar-

Rust (corresponding to Listing 2.9 in Section 2.7). It only implements a multi-threaded

runtime.

2. Analyzing C++ Stream Parallelism in Shared-Memory when Porting to Flink

and Storm [49] – presented at a workshop in the 2023 International Symposium on

Computer Architecture and High Performance Computing (SBAC-PADW). This paper

reports our findings when comparing SPar applications to their equivalents in Flink

and Storm, concluding that SPar is more performant, and makes better use of the

machine’s resources.

3. An internal domain-specific language for expressing linear pipelines: a

proof-of-concept with MPI in Rust [30] – accepted and presented at the 28th

Brazilian Symposium on Programming Languages (SBLP), in 2024. This paper presents

96

the second version of SPar-Rust (corresponding to Listing 2.10). This represented an

advancement compared to our previous work in 2023, since we managed to create

a much more rigorous implementation method, which we used to implement both a

multi-threaded and distributed (MPI) runtime.

4. Automatic Synthesis of Specialized Hash Functions [48] – accepted at the In-

ternational Symposium on Code Generation and Optimization (CGO), in 2025. This

was a joint project with the Federal University of Minas Gerais and Professor Fernando

Magno Quintão Pereira.

97

REFERENCES

[1] Akidau, T.; Chernyak, S.; Lax, R. “Streaming Systems: The What, Where, When, and

How of Large-Scale Data Processing”. O’Reilly Media, Inc., 2018, 1st ed., 352p.

[2] Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Torquati, M. “Fastflow: High-Level and

Efficient Streaming on Multicore”. John Wiley & Sons, Ltd, 2017, chap. 13, pp. 261–

280.

[3] Amdahl, G. M. “Validity of the single processor approach to achieving large scale

computing capabilities”. In: Proceedings of the April 18-20, 1967, Spring Joint

Computer Conference, 1967, pp. 483–485.

[4] Andrade, G.; Griebler, D.; Santos, R.; Danelutto, M.; Fernandes, L. G. “Assessing

Coding Metrics for Parallel Programming of Stream Processing Programs on Multi-

cores”. In: 47th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA 2021), 2021, pp. 291–295.

[5] Andrade, G.; Griebler, D.; Santos, R.; Fernandes, L. G. “A parallel programming

assessment for stream processing applications on multi-core systems”, Computer

Standards & Interfaces, vol. 84, March 2023, pp. 103691.

[6] Andrade, G.; Griebler, D.; Santos, R.; Kessler, C.; Ernstsson, A.; Fernandes, L. G.

“Analyzing Programming Effort Model Accuracy of High-Level Parallel Programs for

Stream Processing”. In: 48th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA 2022), 2022, pp. 229–232.

[7] Andrade, H. C. M.; Gedik, B.; Turaga, D. S. “Fundamentals of Stream Processing:

Application Design, Systems, and Analytics”. Cambridge: Cambridge University

Press, 2014, 529p.

[8] Andrews, G. R. “Foundations of Parallel and Distributed Programming”. USA:

Addison-Wesley Longman Publishing Co., Inc., 1999, 1st ed., 664p.

[9] Arnold, K.; Gosling, J. “The Java programming language (2nd ed.)”. USA: ACM

Press/Addison-Wesley Publishing Co., 1998, 442p.

[10] Bataille, M. “Something old: the Gamma 60 the computer that was ahead of its

time”, SIGARCH Comput. Archit. News, vol. 1–2, Apr. 1972, pp. 10–15.

[11] Besozzi, V. “PPL: Structured Parallel Programming Meets Rust”. In: 2024 32nd

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP), 2024, pp. 78–87.

98

[12] Blessing, J.; Specter, M. A.; Weitzner, D. J. “You Really Shouldn’t Roll Your Own

Crypto: An Empirical Study of Vulnerabilities in Cryptographic Libraries”, arXiv,

2021, pp. 15, 2107.04940.

[13] Bradski, G. “The OpenCV Library”, Dr. Dobb’s Journal of Software Tools, vol. 25,

2000, pp. 120, 122–125.

[14] Bychkov, A.; Nikolskiy, V. “Rust Language for Supercomputing Applications”. In:

Supercomputing, Voevodin, V.; Sobolev, S. (Editors), 2021, pp. 391–403.

[15] Bychkov, A.; Nikolskiy, V. “Rust Language for GPU Programming”. In:

Supercomputing, Voevodin, V.; Sobolev, S.; Yakobovskiy, M.; Shagaliev, R. (Editors),

2022, pp. 522–532.

[16] Bytecode Alliance. “Cranelift”. Source: https://cranelift.dev/, January 2025.

[17] Chen, S.; Doolen, G. D. “LATTICE BOLTZMANN METHOD FOR FLUID FLOWS”, Annual

Review of Fluid Mechanics, vol. 30–Volume 30, 1998, 1998, pp. 329–364.

[18] Christophides, V.; Efthymiou, V.; Palpanas, T.; Papadakis, G.; Stefanidis, K. “An

overview of end-to-end entity resolution for big data”, ACM Computing Surveys

(CSUR), vol. 53–6, 2020, pp. 1–42.

[19] Cook, K. “Git Pull that introduces Rust to the Linux Kernel”. Source: https://lore.

kernel.org/lkml/202210010816.1317F2C@keescook/, Oct 2022.

[20] Culler, D.; Singh, J. P.; Gupta, A. “Parallel Computer Architecture: A

Hardware/Software Approach”. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 1998, 1056p.

[21] Czech, Z. J. “Introduction to Parallel Computing”. Cambridge University Press, 2017,

354p.

[22] Dagum, L.; Menon, R. “OpenMP: An Industry-Standard API for Shared-Memory

Programming”, IEEE Comput. Sci. Eng., vol. 5–1, Jan. 1998, pp. 46–55.

[23] Darlington, J.; Field, A. J.; Harrison, P. G.; Kelly, P. H. J.; Sharp, D. W. N.; Wu, Q.;

While, R. L. “Parallel programming using skeleton functions”. In: PARLE ’93 Parallel

Architectures and Languages Europe, Bode, A.; Reeve, M.; Wolf, G. (Editors), 1993,

pp. 146–160.

[24] De Martini, L.; Margara, A.; Cugola, G.; Donadoni, M.; Morassutto, E. “The

Renoir Dataflow Platform: Efficient Data Processing without Complexity”, Future

Generation Computer Systems, vol. 160, 2024, pp. 472–488.

https://cranelift.dev/
https://lore.kernel.org/lkml/202210010816.1317F2C@keescook/
https://lore.kernel.org/lkml/202210010816.1317F2C@keescook/

99

[25] del Rio Astorga, D.; Dolz, M. F.; Fernández, J.; García, J. D. “A generic parallel pattern

interface for stream and data processing”, Concurrency and Computation: Practice

and Experience, vol. 29–24, 2017.

[26] Donovan, A. A.; Kernighan, B. W. “The Go programming language”. Addison-Wesley

Professional, 2015, 400p.

[27] Donovan, A. A.; Kernighan, B. W. “The Go Programming Language”. Addison-Wesley

Professional, 2015, 1st ed., 400p.

[28] EmbarkStudios. “rust-gpu”. Source: https://github.com/EmbarkStudios/rust-gpu,

January 2025.

[29] Enmyren, J.; Kessler, C. W. “SkePU: a multi-backend skeleton programming library

for multi-GPU systems”. In: Proceedings of the Fourth International Workshop on

High-Level Parallel Programming and Applications, 2010, pp. 5–14.

[30] Faé, L.; Griebler, D. “An internal domain-specific language for expressing linear

pipelines: a proof-of-concept with MPI in Rust”. In: Anais do XXVIII Simpósio

Brasileiro de Linguagens de Programação, 2024, pp. 81–90.

[31] Faé, L.; Hoffmann, R. B.; Griebler, D. “Source-to-Source Code Transformation

on Rust for High-Level Stream Parallelism”. In: XXVII Brazilian Symposium on

Programming Languages (SBLP), 2023, pp. 41–49.

[32] Filecoin Project. “rust-gpu-tools”. Source: https:

//github.com/filecoin-project/rust-gpu-tools, January 2025.

[33] Fino, A.; Margara, A.; Cugola, G.; Donadoni, M.; Morassutto, E. “RStream: Simple

and Efficient Batch and Stream Processing at Scale”. In: 2021 IEEE International

Conference on Big Data (Big Data), 2021, pp. 2764–2774.

[34] Franzén, V.; Östling, C. “Evaluation of Rust for GPGPU high-performance

computing”, Master’s Thesis, Chalmers University of Technology and University of

Gothenburg, 2022, 77p.

[35] Friedman, E.; Tzoumas, K. “Introduction to Apache Flink: stream processing for real

time and beyond”. " O’Reilly Media, Inc.", 2016, 107p.

[36] Gabriel, E.; Fagg, G. E.; Bosilca, G.; Angskun, T.; Dongarra, J. J.; Squyres, J. M.; Sahay,

V.; Kambadur, P.; Barrett, B.; Lumsdaine, A.; Castain, R. H.; Daniel, D. J.; Graham,

R. L.; Woodall, T. S. “Open MPI: Goals, Concept, and Design of a Next Generation MPI

Implementation”. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting,

2004, pp. 97–104.

https://github.com/EmbarkStudios/rust-gpu
https://github.com/filecoin-project/rust-gpu-tools
https://github.com/filecoin-project/rust-gpu-tools

100

[37] Gherardi, L.; Brugali, D.; Comotti, D. “A java vs. c++ performance evaluation: a

3d modeling benchmark”. In: Proceedings of the Third International Conference

on Simulation, Modeling, and Programming for Autonomous Robots, 2012, pp.

161–172.

[38] Gjengset, J. “Rust for Rustaceans: Idiomatic Programming for Experienced

Developers”. No Starch Press, 2021, 258p.

[39] Gospodinov, S. “Concurrent Data Processing in Elixir: Fast, Resilient Applications

with OTP, GenStage, Flow, and Broadway”. Pragmatic Bookshelf, 2021, 176p.

[40] Griebler, D. “Domain-Specific Language & Support Tool for High-Level Stream

Parallelism”, Ph.D. Thesis, Faculdade de Informática - PPGCC - PUCRS, Porto Alegre,

Brazil, 2016, 243p.

[41] Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “An Embedded C++

Domain-Specific Language for Stream Parallelism”. In: Parallel Computing: On

the Road to Exascale, Proceedings of the International Conference on Parallel

Computing, 2015, pp. 317–326.

[42] Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “SPar: A DSL for High-

Level and Productive Stream Parallelism”, Parallel Processing Letters, vol. 27–01,

March 2017, pp. 1740005.

[43] Griebler, D.; Fernandes, L. G. “Towards Distributed Parallel Programming Support

for the SPar DSL”. In: Parallel Computing is Everywhere, Proceedings of the

International Conference on Parallel Computing, 2017, pp. 563–572.

[44] Griebler, D.; Hoffmann, R. B.; Danelutto, M.; Fernandes, L. G. “Stream Parallelism

with Ordered Data Constraints on Multi-Core Systems”, Journal of Supercomputing,

vol. 75–8, July 2018, pp. 4042–4061.

[45] Griebler, D.; Vogel, A.; De Sensi, D.; Danelutto, M.; Fernandes, L. G. “Simplifying

and implementing service level objectives for stream parallelism”, Journal of

Supercomputing, vol. 76, June 2019, pp. 4603–4628.

[46] Halstead, M. H. “Elements of Software Science (Operating and programming

systems series)”. USA: Elsevier Science Inc., 1977, 128p.

[47] He, B.; Zheng, X.; Chen, Y.; Li, W.; Zhou, Y.; Long, X.; Zhang, P.; Lu, X.; Jiang,

L.; Liu, Q.; Cai, D.; Zhang, X. “DxPU: Large-scale Disaggregated GPU Pools in the

Datacenter”, ACM Trans. Archit. Code Optim., vol. 20–4, Dec. 2023.

[48] Hoffmann, R. B.; Faé, L. G.; Griebler, D.; Li, X. D.; Quintão Pereira, F. M.

“Automatic Synthesis of Specialized Hash Functions”. In: Proceedings of the 23rd

101

ACM/IEEE International Symposium on Code Generation and Optimization, 2025,

pp. 317–330.

[49] Hoffmann, R. B.; Faé, L.; Manssour, I.; Griebler, D. “Analyzing C++ Stream

Parallelism in Shared-Memory when Porting to Flink and Storm”. In: International

Symposium on Computer Architecture and High Performance Computing Workshops

(SBAC-PADW), 2023, pp. 1–8.

[50] Hoffmann, R. B.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Stream Parallelism

Annotations for Multi-Core Frameworks”. In: XXIV Brazilian Symposium on

Programming Languages (SBLP), 2020, pp. 48–55.

[51] Hoffmann, R. B.; Löff, J.; Griebler, D.; Fernandes, L. G. “OpenMP as Runtime

for Providing High-Level Stream Parallelism on Multi-Cores”, Journal of

Supercomputing, vol. 78–6, apr 2022, pp. 7655–7676.

[52] Holk, E.; Pathirage, M.; Chauhan, A.; Lumsdaine, A.; Matsakis, N. D. “GPU

programming in rust: Implementing high-level abstractions in a systems-level

language”. In: Proceedings - IEEE 27th International Parallel and Distributed

Processing Symposium Workshops and PhD Forum, IPDPSW 2013, 2013, pp. 315

– 324, cited by: 15.

[53] ISO. “Information technology – Programming languages – C”, ISO 9899:2018,

International Organization for Standardization, Geneva, Switzerland, 2018, 520p.

[54] ISO. “Programming languages – C++”, ISO 14882:2024, International Organization

for Standardization, Geneva, Switzerland, 2024, 2104p.

[55] Jankowski, M.; Pathirana, P.; Allen, S. “Storm Applied: Strategies for real-time event

processing”. Simon and Schuster, 2015, 280p.

[56] Jung, R. ““What The Hardware Does” is not What Your Program Does: Uninitialized

Memory”. Source: https://www.ralfj.de/blog/2019/07/14/uninit.html, July 2019.

[57] Jung, R.; Dang, H.-H.; Kang, J.; Dreyer, D. “Stacked borrows: an aliasing model for

Rust”, Proc. ACM Program. Lang., vol. 4–POPL, Dec. 2019.

[58] Kaiser, H.; Diehl, P.; Lemoine, A. S.; Lelbach, B. A.; Amini, P.; Berge, A.; Biddiscombe,

J.; Brandt, S. R.; Gupta, N.; Heller, T.; Huck, K.; Khatami, Z.; Kheirkhahan, A.;

Reverdell, A.; Shirzad, S.; Simberg, M.; Wagle, B.; Wei, W.; Zhang, T. “HPX - The

C++ Standard Library for Parallelism and Concurrency”, Journal of Open Source

Software, vol. 5–53, 2020, pp. 2352.

[59] Kanopoulos, N.; Vasanthavada, N.; Baker, R. L. “Design of an image edge detection

filter using the Sobel operator”, IEEE Journal of solid-state circuits, vol. 23–2, 1988,

pp. 358–367.

https://www.ralfj.de/blog/2019/07/14/uninit.html

102

[60] Khronos Group. “The OpenCL Specification”. Source: https://registry.khronos.org/

OpenCL/specs/3.0-unified/html/OpenCL_API.html, January 2025.

[61] Khronos Group. “SPIR-V Specification”. Source: https://registry.khronos.org/SPIR-V/

specs/unified1/SPIRV.html, January 2025.

[62] Khronos Group. “Vulkan 1.3.* - A Specification

(with all registered extensions)”. Source: https:

//registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html,

January 2025.

[63] Kirk, D. B.; Wen-Mei, W. H. “Programming massively parallel processors: a hands-on

approach”. Morgan kaufmann, 2016, 576p.

[64] Klabnik, S.; Nichols, C. “The Rust Programming Language, 2nd Edition”. No Starch

Press, 2023, 560p.

[65] Köpcke, B.; Gorlatch, S.; Steuwer, M. “Descend: A Safe GPU Systems Programming

Language”, Proc. ACM Program. Lang., vol. 8–PLDI, Jun. 2024.

[66] Laso, R.; Krupitza, D.; Hunold, S. “Exploring Scalability in C++ Parallel STL

Implementations”. In: Proceedings of the 53rd International Conference on Parallel

Processing, 2024, pp. 284–293.

[67] Lattner, C.; Adve, V. “LLVM: A Compilation Framework for Lifelong Program Analysis

& Transformation”. In: Proceedings of the International Symposium on Code

Generation and Optimization: Feedback-Directed and Runtime Optimization, 2004,

pp. 75.

[68] Lee, J.; Kim, Y.; Song, Y.; Hur, C.-K.; Das, S.; Majnemer, D.; Regehr, J.; Lopes,

N. P. “Taming Undefined Behavior in LLVM”. In: Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation, 2017,

pp. 633–647.

[69] Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “High-Level Stream and Data

Parallelism in C++ for Multi-Cores”. In: XXV Brazilian Symposium on Programming

Languages (SBLP), 2021, pp. 41–48.

[70] Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “Combining stream with data

parallelism abstractions for multi-cores”, Journal of Computer Languages, vol. 73,

December 2022, pp. 101160.

[71] Löff, J.; Hoffmann, R. B.; Pieper, R.; Griebler, D.; Fernandes, L. G. “DSParLib: A

C++ Template Library for Distributed Stream Parallelism”, International Journal of

Parallel Programming, vol. 50–5, 2022, pp. 454–485.

https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html
https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html
https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html

103

[72] Manchana, R. “Java Virtual Machine (JVM): Architecture, Goals, and Tuning Options”,

International Journal of Scientific Research and Engineering Trends, vol. 1, 05 2015,

pp. 42–52.

[73] Mattson, T.; Sanders, B.; Massingill, B. “Patterns for Parallel Programming”. Addison-

Wesley Professional, 2004, first ed., 355p.

[74] McCool, M.; Reinders, J.; Robison, A. “Structured parallel programming: patterns for

efficient computation”. Elsevier, 2012, 432p.

[75] Message Passing Interface Forum. “MPI: A Message-Passing Interface Standard

Version 4.1”, 2023, Source: https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.

pdf.

[76] Miri Contributors. “Miri: An interpreter for Rust’s mid-level intermediate

representation”. Source: https://github.com/rust-lang/miri, January 2025.

[77] NVIDIA. “CUDA C++ Programming Guide”. NVIDIA, 2024, 540p.

[78] NVIDIA; Vingelmann, P.; Fitzek, F. H. “CUDA, release: 12.6”. Source: https://

developer.nvidia.com/cuda-toolkit, January 2025.

[79] Pheatt, C. “Intel® threading building blocks”, Journal of Computing Sciences in

Colleges, vol. 23–4, 2008, pp. 298–298.

[80] Pieper, R.; Griebler, D.; Fernandes, L. G. “Structured Stream Parallelism for Rust”.

In: XXIII Brazilian Symposium on Programming Languages (SBLP), 2019, pp. 54–61.

[81] Pieper, R.; Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “High-level and

Efficient Structured Stream Parallelism for Rust on Multi-cores”, Journal of Computer

Languages, vol. 65, July 2021, pp. 101054.

[82] Pieper, R. L. “High-level Programming Abstractions for Distributed Stream

Processing”, Master’s thesis, School of Technology - PPGCC - PUCRS, Porto Alegre,

Brazil, 2020, 170p.

[83] Rayon. “Rayon”. Source: https://github.com/rayon-rs/rayon, January 2025.

[84] Rockenbach, D. A. “High-Level Programming Abstractions for Stream Parallelism on

GPUs”, Master’s thesis, School of Technology - PPGCC - PUCRS, Porto Alegre, Brazil,

2020, 163p.

[85] Rockenbach, D. A.; Araujo, G.; Griebler, D.; Fernandes, L. G. “GSParLib: A multi-level

programming interface unifying OpenCL and CUDA for expressing stream and data

parallelism”, Computer Standards & Interfaces, vol. 92, March 2025, pp. 103922.

https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://github.com/rust-lang/miri
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://github.com/rayon-rs/rayon

104

[86] Rockenbach, D. A.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “High-Level

Stream Parallelism Abstractions with SPar Targeting GPUs”. In: Parallel Computing

is Everywhere, Proceedings of the International Conference on Parallel Computing

(ParCo), 2019, pp. 543–552.

[87] Rockenbach, D. A.; Löff, J.; Araujo, G.; Griebler, D.; Fernandes, L. G. “High-Level

Stream and Data Parallelism in C++ for GPUs”. In: XXVI Brazilian Symposium on

Programming Languages (SBLP), 2022, pp. 41–49.

[88] Rust-GPU. “Rust CUDA Project”. Source: https://github.com/Rust-GPU/Rust-CUDA,

January 2025.

[89] Serde Contributors. “Serde: Serialization framework for Rust”. Source: https:

//github.com/serde-rs/serde, January 2025.

[90] Sydow, S.; Nabelsee, M.; Glesner, S.; Herber, P. “Towards Profile-Guided

Optimization for Safe and Efficient Parallel Stream Processing in Rust”. In: 2020 IEEE

32nd International Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD), 2020, pp. 289–296.

[91] Tanenbaum, A. S.; Bos, H. “Modern Operating Systems”. USA: Prentice Hall Press,

2014, 4th ed., 1136p.

[92] The Rust Project. “The Rust Reference”. Source:

https://doc.rust-lang.org/reference/, January 2025.

[93] The Rust Project. “Rustonomicon: The Dark Arts of Advanced and Unsafe Rust

Programming”. Source: https://doc.rust-lang.org/nomicon/, January 2025.

[94] Thies, W.; Karczmarek, M.; Amarasinghe, S. “StreamIt: A Language for Streaming

Applications”. In: International Conference on Compiler Construction, 2017, pp.

179–196.

[95] Tokio. “Tokio - The asynchronous runtime for the Rust programming language”.

Source: https://tokio.rs, January 2025.

[96] Tronge, J.; Pritchard, H. “Embedding Rust within Open MPI”. In: Proceedings of the

SC ’23 Workshops of The International Conference on High Performance Computing,

Network, Storage, and Analysis, 2023, pp. 438–447.

[97] Tronge, J.; Pritchard, H.; Brown, J. “Improving MPI Safety for Modern Languages”. In:

Proceedings of the 30th European MPI Users’ Group Meeting, 2023, pp. 1–11.

[98] Trott, C. R.; Lebrun-Grandié, D.; Arndt, D.; Ciesko, J.; Dang, V.; Ellingwood, N.;

Gayatri, R.; Harvey, E.; Hollman, D. S.; Ibanez, D.; Liber, N.; Madsen, J.; Miles, J.;

https://github.com/Rust-GPU/Rust-CUDA
https://github.com/serde-rs/serde
https://github.com/serde-rs/serde
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/nomicon/
https://tokio.rs

105

Poliakoff, D.; Powell, A.; Rajamanickam, S.; Simberg, M.; Sunderland, D.; Turcksin,

B.; Wilke, J. “Kokkos 3: Programming Model Extensions for the Exascale Era”, IEEE

Transactions on Parallel and Distributed Systems, vol. 33–4, 2022, pp. 805–817.

[99] Turon, A.; Vafeiadis, V.; Dreyer, D. “GPS: navigating weak memory with ghosts,

protocols, and separation”, SIGPLAN Not., vol. 49–10, Oct. 2014, pp. 691–707.

[100] Veldhuizen, T. “C++ Templates are Turing Complete”. Source: https:

//www.researchgate.net/publication/2475343_C_Templates_are_Turing_Complete,

January 2025.

[101] Virding, R.; Wikström, C.; Williams, M. “Concurrent programming in ERLANG”.

Prentice Hall International (UK) Ltd., 1996, 351p.

[102] Vogel, A.; Griebler, D.; Fernandes, L. G. “Providing High-Level Self-Adaptive

Abstractions for Stream Parallelism on Multicores”, Software: Practice and

Experience, vol. 51–6, January 2021, pp. 1194–1217.

[103] Vogel, A.; Rista, C.; Justo, G.; Ewald, E.; Griebler, D.; Mencagli, G.; Fernandes, L. G.

“Parallel Stream Processing with MPI for Video Analytics and Data Visualization”. In:

High Performance Computing Systems, 2020, pp. 102–116.

[104] Wang, X.; Chen, H.; Cheung, A.; Jia, Z.; Zeldovich, N.; Kaashoek, M. F. “Undefined

Behavior: What Happened to My Code?” In: Proceedings of the Asia-Pacific

Workshop on Systems, 2012, pp. 1 – 7.

[105] Wang, X.; Zhao, Y.; Pourpanah, F. “Recent advances in deep learning”, International

Journal of Machine Learning and Cybernetics, vol. 11, 2020, pp. 747–750.

https://www.researchgate.net/publication/2475343_C_Templates_are_Turing_Complete
https://www.researchgate.net/publication/2475343_C_Templates_are_Turing_Complete

	Introduction
	Research Contributions
	Outline and Contents

	Background
	Stream Processing Applications
	Linear Pipelines
	Data Flow

	The Rust Programming Language
	Safety and Undefined Behavior
	Code Transformations in Rust
	Traits and Generics
	Threads, References and Lifetimes
	The serde library
	Send, Sync, Serialize and Deserialize traits

	Shared Memory Parallel Programming
	Distributed Parallel Programming
	MPI

	Heterogeneous Parallel Programming
	GPU Programming
	GPGPU Programming APIs
	The rust-gpu-tools library

	SPar
	SPar Language
	SPar C++ example
	The SPar Compiler

	Initial Work

	Related Work
	Multi-Thread
	Distributed
	GPUs and Rust
	Related Publications
	Non Academic Work

	Comparative Table

	A High-Level DSL in Rust for Expressing Linear Pipelines on Multi-cores, Clusters and GPUs
	SPar Language in Rust
	to_stream syntax

	Linear Pipeline Formalization
	Systematic Overview
	Trait based implementation
	Edges
	Workers
	Runtime Implementations
	Source and Sink

	Procedural Macro Function Transformation
	stage
	source
	sink
	Ordering
	Stateful Computations
	Serialization

	The to_stream declarative macro
	Replication

	GPU-specific transformations
	Procedural macros code generation
	Rust Code Constrains and Limitations
	to_stream implementation
	A more complex example

	Experiments
	Applications
	Verifying correctness

	Libraries and Frameworks
	Results
	Multi-Threaded
	Distributed
	GPU

	Conclusion
	Limitations
	Future Work
	List of Published Papers

	References

