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POTENCIALIZANDO A ORQUESTRAÇÃO DE TODA A REDE PARA

MELHORAR O DESEMPENHO DE NIDS EM REDES PROGRAMÁVEIS

RESUMO

Sistemas de Detecção de Intrusão em Redes (NIDSs) desempenham um papel

crucial na proteção de redes contra ameaças cibernéticas, detectando atividades malici-

osas e alertando os operadores de rede. No entanto, devido ao crescente volume de trá-

fego de rede, os NIDSs podem enfrentar problemas de saturação, especialmente na etapa

de correspondência de padrões em NIDSs baseados em assinaturas. Para superar esse

desafio, diversos estudos exploraram a transferência de regras de assinatura dos NIDSs

para dispositivos com programabilidade no plano de dados (PDP), aproveitando sua alta

capacidade de processamento de pacotes para pré-filtrar o tráfego antes de chegar aos

NIDSs. No entanto, esses trabalhos apresentam duas limitações importantes. Primeiro,

a maioria negligencia as restrições de memória dos dispositivos programáveis. Segundo,

e mais importante, a grande maioria delega todas as capacidades de pré-filtragem a um

único dispositivo. Para abordar essas limitações, este trabalho propõe a orquestração de

toda a rede programável para pré-filtrar o tráfego destinado aos NIDSs, melhorando seu

desempenho. O objetivo é aliviar o fardo nos NIDSs e aprimorar sua eficiência por meio

da transferência estratégica de regras de assinatura para o PDP, direcionando apenas pa-

cotes suspeitos para os NIDSs. Além disso, abordamos as limitações dos trabalhos de

ponta empregando dois novos algoritmos de orquestração que levam em conta a memó-

ria e a topologia para distribuir estrategicamente as regras para vários dispositivos. A

avaliação realizada demonstrou a eficácia desses algoritmos, superando o modelo tradi-

cional de um único dispositivo e garantindo o encaminhamento estável e consistente do

tráfego suspeito para o host do NIDS, mesmo em cenários com disponibilidade limitada

de memória.

Palavras-Chave: NIDS, Desempenho, Plano de dados programáveis, Orquestração.



LEVERAGING NETWORK-WIDE ORCHESTRATION IN

PROGRAMMABLE NETWORKS FOR ENHANCED NIDS

PERFORMANCE

ABSTRACT

Network Intrusion Detection Systems (NIDSs) play a crucial role in safeguarding

networks against cyber threats by detecting malicious activity and alerting network op-

erators. Due to the escalating volume of network traffic, NIDSs are prone to saturation

issues, particularly in the pattern matching stage of signature-based NIDSs. To overcome

this, several studies have explored offloading NIDS signature rules to Programmable Data

Plane (PDP) devices, leveraging their high packet-processing capacity to pre-filter network

traffic for the NIDS. However, these works present two important limitations. First, most

of them overlook the memory constraints of programmable devices. Second, and more

importantly, the vast majority of them delegates all pre-filtering capabilities to a single

device. Neglecting these aspects may prevent the offloading of all required signature

rules compromising the effectiveness of the proposed pre-filtering approach. To address

these constraints, this work leverages the network-wide orchestration in programmable

networks to pre-filter traffic for the NIDS and enhance its performance. Our objective is

to alleviate the burden on the NIDS engine and improve its efficiency by offloading NIDS

signature rules to the PDP, redirecting only suspicious packets to the NIDS. Furthermore,

we address the limitations of state-of-the-art work by employing two novel memory- and

topology-aware orchestration algorithms to strategically offload the rules to multiple de-

vices. The evaluation demonstrated the efficacy of the proposed algorithms, as they out-

perform the traditional single-device model, ensuring the stable and consistent forwarding

of suspicious traffic to the NIDS host, even in scenarios with limited memory availability.

Keywords: NIDS, Performance, Programmable Data Plane, Orchestration.
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1. INTRODUCTION

With the ever-growing usage of computers and the inherent vulnerabilities of con-

necting these devices to the Internet, protecting the network is fundamental for guaran-

teeing the correct functioning of computer systems and the security of sensitive data.

According to Cybersecurity Ventures, by 2025, global cybercrimes will cost 10.5$ trillion

dollars annually [40]. Despite these staggering costs, cybersecurity does not receive the

investments required, especially in small businesses. In Verizon’s 2021 Data Breach In-

vestigations Report [41], 46% of all cyber breaches impacted businesses with fewer than

1,000 employees. Still, the average investment in cyber security in small businesses is

less than 500 US$ [34] according to Juniper Research. These statistics show that cyber-

crimes are a massive problem in today’s business. However, many companies are still

reluctant to invest in cybersecurity, motivating researchers to develop solutions that en-

hance commercial-grade security software.

Multiple technologies have been developed to protect computer networks from

attacks. A popular security tool to address cyberattacks is Network Intrusion Detec-

tion Systems (NIDS) [42]. NIDS can detect malicious traffic in the network using either

signature-based, anomaly-based, or both techniques. In signature-based NIDS, incoming

traffic is matched with a ruleset database to find common attack patterns. Due to the

ever-increasing volume of network traffic today, NIDSs have difficulty scaling the signa-

ture rules matching process, and intrusions might go undetected [39]. Different studies

[28, 17, 42] have examined the performance of three popular open-source NIDS (Snort,

Suricata, and Zeek), and concluded that one of the biggest potential performance bottle-

necks is the pattern matching stage. Therefore, to guarantee the proper functioning of

NIDSs and protect networks against attacks, enhancements to NIDSs must focus on the

pattern matching stage.

One way to improve the performance of the pattern matching stage is to offload

NIDS capabilities to the network’s data plane. This new idea was made possible with the

inception of the Programmable Data Plane (PDP). In the PDP paradigm, programmers have

complete control over how packets are processed and forwarded, what protocols are al-

lowed, the network statistics to collect, and much more. To make data plane programming

easy and flexible, domain-specific languages such as P4 [6] have been created. Several

works [31, 20, 25, 37, 2, 1, 26] have explored enhancing the NIDS performance by of-

floading specific capabilities to the PDP. Among these, offloading NIDS rules to the data

plane for pre-filtering network traffic for the NIDS host is a promising approach. By pre-

filtering the network traffic destined for the NIDS engine, the number of packets entering

the pattern matching stage is reduced, lowering the chance of it becoming a bottleneck

and compromising the NIDS.
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However, these solutions present important limitations. First, most of these

works overlook the memory constraints of the forwarding devices when determining the

rules for offloading, resulting in sizable rulesets to offload that may not fit within the avail-

able memory. Second, the majority of them only consider scenarios involving a single

device for pre-filtering network traffic for the NIDS host. This approach does not take into

account that computer networks are usually made up of multiple devices. By focusing on

just one device, network resources are underutilized and the security system is vulnera-

ble to the single point of failure (SPOF) problem. Additionally, relying on a single device

means that the available memory space to offload NIDS rules is limited. This is not just

because programmable switches have a small memory space, but also because the mem-

ory must be shared with other network needs, such as packet forwarding rules, which are

constantly increasing [19], and other P4 programs. If all NIDS rules cannot be offloaded to

the programmable device due to memory limitations, the effectiveness of the solution is

compromised. In such cases, suspicious packets may not be forwarded to the NIDS, caus-

ing network attacks to go unnoticed and the benefits of using the data plane as a pre-filter

lost.

To address the limitations outlined above, this work proposes the network-wide

orchestration among PDP devices to pre-filter network traffic for the NIDS host. Our ob-

jective is to alleviate the burden on the NIDS engine and enhance its performance by

distributing the NIDS signature rules to multiple P4 devices, redirecting only suspicious

network traffic to the NIDS. In order to optimize the utilization of network resources, we

introduce two network-wide orchestration algorithms that strategically offload rules to

switches based on their available memory and placement within the network’s topology.

In this way, our approach aims to minimize the saturation on the NIDS host and enhance

its performance by leveraging the network-wide orchestration of programmable nodes to

pre-filter network traffic for the NIDS instance. In summary, our work presents the follow-

ing contributions:

1. A revised and improved P4 NIDS rules compiler derived from the P4-ONIDS [37]

rule compiler. This compiler transforms the NIDS rules into P4 table entries, allowing

them to be offloaded to the data plane.

2. A P4 data plane implementation designed to receive the compiler table entries,

monitor suspicious flow, filter incoming traffic, and mirror suspicious packets for the

NIDS host.

3. A network-wide table entries orchestrator utilizing two novel algorithms to

strategically offload compiled table entries to multiple devices while considering the

resources of each device and the network topology.
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4. An extensive evaluation, including the selection of the optimal P4 data plane pa-

rameters, and the evaluation of the network-wide offloading algorithms against the

baseline method in different topologies and memory availability scenarios.

The evaluation of the proposed solutions demonstrated that, by pre-filtering the

network traffic for the NIDS, the volume of packets reaching the NIDS host significantly

reduced, alleviating the strain on the pattern matching stage. However, the number of

generated alerts using the pre-filtering approach decreased when compared to scenarios

without pre-filtering. Regarding the evaluation of the network orchestrator, our network-

wide algorithms with memory and topology awareness exhibited superiority over the tra-

ditional model, which relies on a single device, especially in scenarios with limited memory

availability. The proposed algorithms consistently forwarded the same amount of suspi-

cious traffic to the NIDS host in all memory availability scenarios, resulting in a stable

number of alerts. In contrast, the traditional approach failed to maintain a constant num-

ber of packets forwarded to the NIDS, leading to a decline in the number of generated

alerts. The stability of the proposed approach stems from the strategic offloading of table

entries to multiple devices, ensuring that a substantial number of entries are offloaded

even in scenarios with restricted memory availability.

The remainder of this document is structured as follows. In Chapter 2, we dis-

cuss the theoretical foundation necessary to understand the concepts of NIDS and PDP.

Following that, Chapter 3 presents a comprehensive review of related work regarding the

offloading of NIDS capabilities to the PDP and network-wide cooperation with PDP devices.

Chapter 4 introduces the P4-ONIDS [37] rules compiler work and outlines the enhance-

ments and modifications made to it. Subsequently, the proposed solution is detailed in

Chapter 5, covering the general architecture, the functioning of the P4 data plane, and

the network-wide orchestrator with its table entries offloading algorithms. Chapter 6 then

presents the evaluation of the parameters of the P4 data plane and the evaluation of

the network orchestration algorithms. Finally, Chapter 7 concludes this work, highlighting

important limitations and proposing future work directions.
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2. BACKGROUND

This chapter presents the main topics addressed in this work. First, it presents

the concept of Network Intrusion Detection Systems, as well as the main technologies and

techniques employed in this area in Section 2.1. Then, it gives a brief overview of the

Software-Defined Networking paradigm in Section 2.2. Next, in Section 2.3, this chapter

introduces the Programmable Data Plane and explains in detail the P4 language. Finally, it

details the Count-Min sketch, a probabilistic and space-efficient data structure in Section

2.4.

2.1 Network Intrusion Detection Systems

Intrusion Detection Systems (IDSs) have become a key technology to protect

communication infrastructures [18]. An IDS is a software or hardware system that iden-

tifies malicious actions in computer systems to allow the security of the system to be

maintained [23]. It is crucial to differentiate an IDS from an Intrusion Prevention System

(IPS). An IDS receives the mirrored traffic and alerts network operators if an intrusion is

detected. In contrast, an IPS receives the original network traffic and takes preventive

actions if an attack is identified.

There are two main types of IDSs based on the class of monitored events: Host-

based Intrusion Detection System (HIDS) and Network Intrusion Detection System (NIDS).

A HIDS monitors and analyzes the internal systems activities (e.g., application activity,

system logs) and the host’s incoming and outgoing network traffic. Differently, NIDSs

are found at specific points on the network to capture and analyze the stream of packets

going through a network link [16]. NIDSs can further be categorized regarding the type of

deployment. According to Kumar et al. [24], a NIDS can have an early warning, internal,

or every host deployment.

In an early warning mode deployment, the NIDS is employed outside the perime-

ter of the firewall as depicted in Figure 2.1a. The main advantages of such deployment are

that the NIDS monitors all traffic entering the network, protecting multiple hosts/devices.

Furthermore, since only one NIDS is used, management is easy. The last advantage is the

capability of the NIDS to detect attacks targeting the firewall since it monitors the inbound

pre-firewall traffic. There are three main disadvantages of this deployment. First, the NIDS

can be easily saturated since, typically, only one device with NIDS capabilities is used, and

it receives all pre-firewall network traffic. Second, network attacks from one host to an-

other can go unnoticed as the NIDS only monitors the inbound and outbound traffic, not

the traffic within the network. Finally, because both the NIDS and the firewall receive the
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(a) Early warning deployment (b) Internal deployment

Figure 2.1: NIDS deployment types

same inbound traffic, conflicting decisions can exist where the firewall classifies certain

traffic as malicious while the NIDS categorizes it as benign or vice-versa.

The internal deployment involves placing an NIDS close to the switching nodes

or access routers. In this way, the NIDS examines the network traffic passing through any

given link. This scenario is shown in Figure 2.1b. One advantage of this deployment is

that the NIDS will not have contrasting decisions with the firewall for inbound traffic, as

the NIDS receives the traffic already filtered by the firewall. Moreover, saturation becomes

harder as there is one NIDS deployed for each link/device. The main disadvantages are

maintaining and updating multiple NIDSs, and the firewall is now susceptible to attacks.

The last type of deployment is when every host in the network has its own NIDS,

as illustrated in Figure 2.2. Despite being similar to HIDS, the NIDS in each host is decou-

pled from the operating system and only manages network traffic. This decoupling from

the operating system allows a network administrator to manage the multiple NIDSs from

a central location. This scenario provides the most protection from all deployments, since

every host has a dedicated NIDS to monitor attacks. However, this distributed layout

incurs complex management of the NIDS instances, especially in large networks. Fur-

thermore, network-wide attacks will go unnoticed if no communication exchange occurs

among NIDS instances.
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Figure 2.2: Every host NIDS deployment

2.1.1 Signature and Anomaly-Based Detection

The two primary approaches to detecting intrusions in NIDSs are signature-based

and anomaly-based. A signature-based NIDS uses pattern matching techniques to find a

known attack. In this model, the network traffic is parsed and compared to a database

containing rules that characterize the profile of security threats, such as a malware or a

DoS attack. If a match is detected, an alert is sent to network administrators so they can

perform corrective actions. This technique is explained in more detail in Section 2.1.2,

since it is fundamental to our work. Anomaly-based NIDSs appeared as a solution to some

limitations of the signature-based model (i.e., detecting an unknown attack).

Anomaly-based NIDSs start by defining a network’s normal traffic behavior through

artificial intelligence, statistical, or knowledge-based methods, and then comparing this

normal traffic to the current traffic. Any significant deviation between normal behavior

and observed behavior is regarded as an anomaly, which can be interpreted as an intru-

sion [23]. The anomaly detection model must continuously update itself to detect intru-

sions properly. The biggest challenge for anomaly-based systems is defining the normal

behavior of a network. If not well-tuned, an anomaly-based NIDS can overflow the net-

work operator with false positives, causing actual attacks to pass unnoticed. Systems that

employ both signature- and anomaly-based detection are called hybrid NIDSs.
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2.1.2 NIDS Signature Rules

Open-source NIDSs, such as Snort1, Suricata2, and Zeek3, use an extensible rule-

based language syntax that allows users to specify signature rules. Besides signatures

written for a specific use case, there are also publicly available signatures rulesets of

familiar attacks. Despite having a signature language, most public signature rulesets are

not made for Zeek, since signatures are not its central defense system. Because of this,

in this chapter we will explain only the composition of rules used by Snort and Suricata.

Each signature rule describes the characteristics of a malicious activity and the

corresponding action. Snort and Suricata rules have two parts: the rule header and the

rule body. The rule header defines the action to take upon any matching traffic, as well

as the protocols, network addresses, port numbers, and traffic direction to which the rule

should be applied. The rule body defines the informational message associated with a

given rule and, most importantly, the payload and non-payload criteria that must be met

for a packet to match the rule. A signature rule consists of the following elements:

action proto src_addr src_port direction dst_addr dst_port (body)

The "action" field specifies the operation to perform when a packet matches the

rule. Table 2.1 presents some possible actions in Snort. The "proto" field is the networking

protocol to match, e.g., IPv4, ICMP, TCP.

Table 2.1: Possible actions for Snort signature rules

Action IDS/IPS Description

alert both Generates an alert

block IPS Blocks all packets of this flow

drop IPS Drops the current packet

log both Logs the current packet

pass IPS Marks the packet as passed

react IPS Responds to a client and terminates a session

reject IPS Terminates a session with TCP Reset or ICMP Unreachable

rewrite IPS Enables overwriting a packet’s content

The "src_addr" and "dst_addr" fields indicate the IP addresses for the source and

destination, respectively. It is possible to declare an IP address in four ways:

1https://www.snort.org/
2https://suricata.io/
3https://zeek.org/
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• The keyword "any", which means any IP address.

• As an IP address with an optional CIDR block (e.g., "192.168.0.5", "192.168.1.0/24").

• As a variable defined in the Snort configuration file that specifies a network address

or a set of network addresses (e.g., "$EXTERNAL_NET", "$HOME_NET").

• A combination of IP addresses, IP address variables, or both, enclosed in square

brackets and separated by commas (e.g., "[192.168.1.0/24,10.1.1.0/24]").

The "src_port" and "dst_port" fields specify the source and destination ports, re-

spectively. They can be declared in any of the following ways:

• The keyword "any", meaning any port.

• As a static port (e.g., "80", "445", "21").

• As a variable defined in the Snort configuration that specifies a port or set of ports

(e.g., "$HTTP_PORTS").

• As port ranges indicated with the range operator ":" (e.g., "1:1024", "500:").

• A list of either static ports, port variables, port ranges, or all of them, enclosed in

square brackets and separated by commas (e.g., "[1:1024,4444,$HTTP_PORTS]").

Note that the "src_addr", "src_port", "dst_addr and "dst_port" fields can have the

special "!" negation operator, which will process traffic that does not match the field’s

value. The "direction" parameter is used to define the direction of the traffic that the rule

should apply. It can be unidirectional ("–>") or bidirectional ("<–>"). The unidirectional

denotes that the IP addresses on the left side and the port pair represent the source and

the right one represents the destination. Bidirectional indicates that the two IP addresses

and port pairs can be either source or destination.

Table 2.2: Common Snort options

Option Description

msg The message to be printed out when a rule matches

sid The unique signature number assigned to a given rule

classtype
A classification to the rule indicating the type of attack

associated with an event

priority Sets the severity level for appropriate event prioritizing

metadata Additional and arbitrary information for a rule

content Used to perform basic pattern matching on strings, hexadecimal, or both

distance Informs content where to start searching for a pattern
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Finally, the rule body or rule options defines a series of options. Each option has

its own set of option-specific criteria, but the general structure is the same. First, all op-

tions are enclosed in parentheses after the rule header. Then, each rule option is declared

with its name followed optionally by a ":" character and any option-specific criteria. Lastly,

each rule option ends with a ";" character. The options are divided into four groups: Gen-

eral options provide additional context; Payload options are for payload-specific criteria;

Non-payload is for non-payload criteria (mainly header related); Post-detection options are

triggered after a rule has matched. Table 2.2, presents some common Snort options.

As an example of a Snort and Suricata signature rule, suppose that a network

administrator desires to receive an alert for any Domain Name System (DNS) messages

containing the string "yourdomain.com" as the Uniform Resource Locator (URL). The sig-

nature rule would be the following:

alert dns any any -> any any

(msg:"DNS LOOKUP for yourdomain.com"; dns.query; content:"yourdomain.com"; sid:1;)

2.1.3 Open-Source NIDS

This subsection presents an overview of the architecture and design of the most

popular open-source NIDSs: Snort, Suricata, and Zeek (Bro).

Snort

Snort [35] is one of the most widely used signature-based Network Intrusion De-

tection and Prevention System (NIDPS), that supports both IDS and IPS modes [42]. It

was created in 1998 by Marin Roesch and is now maintained by Cisco Systems with the

contribution of a substantial and active community of users, special interest groups, and

developers. Snort can sniff network packets, log packets to the disk, compare monitored

traffic against signature rules, and present attack statistics on the console.

Snort’s architecture is depicted in Figure 2.3a. First, the packets are captured

with Libcap and sent to the Decoding Module. Next, the Pre-processor normalizes the

packets in a format the Detection Engine can comprehend. The Detection Engine com-

pares the signatures rules with the traffic to detect malicious activity. If a packet matches a

rule, the appropriate action is taken. Older Snort versions only supported single-thread de-

tection modules, but Snort 3 now supports multi-thread detection, enhancing the match-

ing capabilities. Finally, the Output module saves the logs and alerts.
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Suricata

Suricata is a high-performance signature-based NIDPS. It was initially funded by

the Department of Homeland Security’s Directorate for Science and Technology [44] and

is currently maintained by the Open Information Security Foundation (OISF), a 501(c)3

non-profit foundation. Suricata uses the same rule format as Snort and similar detection

algorithms. The main advantage of Suricata over Snort is that Suricata was designed

to support multiple detection engines via multi-threading. Despite Snort 3 adding multi-

thread support to its design, A. Walled et al. [42] conducted an extensive open-source

NIDPS evaluation, which showed that Suricata still outperforms Snort 3, even with its new

multiple detection modules.

Suricata’s architecture is shown in Figure 2.3b. The Packet Capture module col-

lects packets from the network, which are then forwarded to the Decode and Stream Ap-

plication Layer, where they are decoded. Next, the Detection Engine threads compare the

packets with the Signature Database to find matches and emit alerts if a match is found.

Finally, the Output module processes the alerts and events into statistics so that users can

better understand the network’s behavior.

(a) Snort (b) Suricata

Figure 2.3: Open-source NIDS architectures
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Zeek (Bro)

Zeek, formerly Bro, is a network analysis framework for inspecting network traf-

fic against malicious activities. Zeek is not a classic signature-based NIDS; while it sup-

ports such standard functionality, Zeek’s scripting language facilitates a much broader

spectrum of different approaches to finding malicious activity. These include detection of

semantic misuse, anomaly detection, and behavioral analysis. In addition to these custom

functionalities, Zeek provides some out-of-the-box ones. Zeek’s built-in defense mecha-

nisms encompass a wide range of functionalities, including, but not limited to, extract-

ing files from HTTP sessions, detecting malware by interfacing with external registries,

reporting vulnerable versions of software seen on the network, identifying popular web

applications, detecting SSH brute-forcing, validating SSL certificate chains, etc.

Zeek’s architecture is highly scalable in that performance improvements can be

easily achieved by dedicating more hardware resources to workers and the manager [42].

Figure 2.4 shows the two main components of Zeek’s architecture, the Event Engine and

the Script Interpreter. The Event Engine reduces the stream of incoming packets into

higher-level events. These events reflect network activity in policy-neutral terms. The

Script Interpreter executes a set of event handlers written in Zeek’s custom scripting lan-

guage. Zeek’s scripts allow users to specify security actions according to the events cap-

tured.

Figure 2.4: Zeek’s architecture
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2.1.4 NIDS Performance Limitations

NIDSs play an important role in the detection of malicious activities in computer

networks. However, due to the increase in link capacity and speeds, NIDSs face the

computational challenge of handling higher traffic volumes and performing complex per

packet rules [44]. Several studies have tried to find and reduce the factors that affect

the performance of NIDS. The authors of [17] evaluated the performance of Snort, Suri-

cata, and Bro (now Zeek) using their default setting and an optimized version on a 10Gb/s

network. They demonstrated that the default settings of all open-source NIDSs are un-

suitable, as these settings incur a high CPU usage and packet drop rate. Even with the

proposed optimizations, the CPU usage was still very high for Snort, although it dropped

fewer packets than with the default setting. For Suricata, CPU usage increased slightly

with optimizations, but the number of dropped packets was reduced. Bro does not allow

the user to modify the pattern matching algorithm, so it was not possible to verify the

effectiveness of the optimizations. Overall, Suricata achieved the best results, since it

employs multi-threading.

In [18], the authors studied the feasibility of popular open-source NIDS, including

Snort and Suricata, on a 100Gb/s network without relying on new packet capture mech-

anisms or updating existing hardware. Their results have shown that NIDSs can keep

accuracy high, but only by considerably increasing CPU usage. In [42], a comprehensive

performance evaluation of Snort, Suricata, and Zeek was conducted in both the IDS and

IPS modes. Similar to [18], their results demonstrate that CPU usage starts to saturate

as throughput increases. Moreover, they showed that packets spend most of the time

inside the detection engine and that selecting an efficient pattern-matching algorithm will

enhance the performance of the NIDPS.

As elucidated in [42], the most consuming task of a signature-based NIDS is com-

paring the packets and the signature rules. With the advent of SDN and PDP, researchers

have proposed offloading NIDS capabilities from the host to other network nodes to al-

leviate the work done by the NIDS host. One proposed solution is to use the forwarding

devices as a pre-filter mechanism. There are two main ways to achieve this. First, offload-

ing a whitelist of flows to the devices and forwarding only unknown or malicious traffic

to the NIDS. This idea is only possible when the network’s benign traffic is small and well-

known. The second and more realistic approach is to offload signature rules, which identify

suspicious traffic, to programmable devices. Only the traffic that matches these rules is

then forwarded to the NIDS host for further examination. Regardless of the approach,

the benefits are the same: reduced workload on the NIDS host and increased security

scalability.
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2.2 Software-Defined Networking

Software-Defined Networking (SDN) delineates a clear separation between the

control plane and the data plane while consolidating the control plane so that a single

centralized controller can control multiple remote data planes [22]. The SDN paradigm

is based on the following ideas: decoupling of the control plane from the data plane;

the forwarding decision can be based on other features instead of the destination ad-

dress; the network control is logically centralized; and network functionalities are pro-

grammable through applications running in combination with the controller. Due to the

above-mentioned characteristics, SDN is ideal for today’s applications’ high-bandwidth

and dynamic nature. Figure 2.5 presents the SDN reference model according to the Open

Networking Foundation (ONF), a nonprofit consortium dedicated to the development, stan-

dardization and commercialization of SDN.

Figure 2.5: SDN reference model.

One of the first proponents of SDN was the ForCES [46] framework released by

the Internet Engineering Task Force (IETF). The idea of ForCES was to standardize the in-
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formation exchange between the control and forwarding planes, allowing them to become

physical-separated standard components. Following the ideas proposed by ForCES, Open-

Flow [30] was introduced in 2008 and since then has become the de facto protocol in SDN

for communication between the controller and the forwarding devices [32]. The OpenFlow

protocol is rooted in the fact that most modern Ethernet switches and routers contain flow

tables (typically built from TCAMs) that run at line rate to implement firewalls, NAT, QoS

and to collect statistics. Despite each vendor’s flow table being different, there is a set

of common functions in them that OpenFlow exploits. With OpenFlow, the controller can

populate the flow tables of switches according to the network administrator’s needs. At

the same time, the controller can query network statistics from the OpenFlow switch. Al-

though OpenFlow started as a solution for academia to run experiments on the university

network, it has gained significant traction in the industry over the past few years.

The OpenFlow protocol and the SDN paradigm present certain advantages over

the traditional network model: greater control of a network through programming, per-

mitting real-time centralized control of a network based on instantaneous network status

and user-defined policies, and offering a convenient platform for experimentation of new

techniques [45]. Despite these benefits, the traditional SDN model has some important

limitations. Specifically, the data plane is not programmable, as it is limited to a fixed set

of protocols and actions made available by the forwarding devices and provided by the

controller through an API [15]. Moreover, SDN suffers from scalability and performance

issues because SDN switches heavily depend on the control plane to forward the packets,

which increases the data control communication overhead [21]. To address these limita-

tions, a new branch of SDN, called the Programmable Data Plane (PDP), was introduced.

2.3 Programmable Data Plane

With the advent of the SDN paradigm, the programmability of the control plane

became possible. However, in the traditional SDN model, the data plane is not pro-

grammable and is highly dependent on the control plane. To address these restrictions,

the idea of a programmable forwarding device was first proposed through the Protocol In-

dependent Switch Architecture (PISA) [7]. Since the inception of PISA, other architectures

have been created based on it to address other needs, such as the SimpleSumeArchi-

tecture for FPGA-based targets [15]. In the PISA model, the packets go through a set of

stages, each programmable by the user. The PISA architecture is illustrated in Figure 2.6

and contains the following elements: a programmable parser, a programmable match-

action pipeline, and a programmable deparser.

1. The programmable parser allows programmers to define how protocol headers (cus-

tom or standard protocols) should be parsed. The parser can be represented as a
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finite state machine with only one starting point, multiple intermediate states, and

two final states. The packet is either accepted or rejected at the end of the parsing

stage. If the packet is accepted, the extracted header fields are forwarded to the

match-action pipeline. Conversely, if the packet is rejected, the action depends on

the implementation, but it is usually discarded.

2. Following the parsing stage, the packet continues through the match-action pipeline,

which is further divided into the ingress and egress pipelines. In both pipelines, pro-

grammers define one or more Match-Action Tables(MATs) to match packets and exe-

cute actions based on each packet’s data. The lookup keys and corresponding action

data for MATs are stored in the programmable device using either Static Random-

Access Memory (SRAM) or Ternary Content-Addressable Memory (TCAM). The control

plane manages the content of each MAT by writing, modifying, or deleting table en-

tries during runtime. In addition to MATs, this stage allows the definition of separate

actions, utilization of stateful objects (e.g., counters, meters, and registers), and the

execution of arithmetic and logic operations.

3. The last stage is the programmable deparser, where the desired packet headers are

reinserted into the outgoing packet.

Figure 2.6: Protocol-Independent Switch Architecture (PISA).

In addition to the programmable switches and the PISA model, there is a need

for a high-level programming language capable of leveraging the data plane programma-

bility enabled by these technologies. The Programming Protocol-Independent Packet Pro-

cessors language (P4) [6] is one of the most widely used domain-specific programming

languages for describing data plane algorithms for PISA and other data plane architec-

tures. Section 2.3.1 details the main components of the P4 language and highlights some

of its limitations that are relevant to our work.
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2.3.1 P4 Language

The P4 language is an open-source, domain-specific programming language for

network devices, specifying how data plane devices (switches, routers, NICs, filters, etc.)

process packets. The pillars of the P4 language consist of reconfigurability, protocol inde-

pendence, and target independence. Reconfigurability is the ability to change the behav-

ior of the forwarding device during runtime. Protocol independence refers to the fact that

the network is not limited to any specific networking protocol. Lastly, target independence

guarantees that the underlying hardware is hidden from the P4 programmer and it is up to

the P4 compiler to turn a target-independent P4 program into a target-dependent binary.

The main components of the P4 language are described below:

• Headers: Headers describe the sequence and structure of a series of fields [6].

Headers are naturally associated with well-known protocols such as Ethernet, IPv4,

TCP, etc., but P4 also allows the declaration of custom headers. Figure 2.1 shows an

example of the IPv4 protocol represented as a header in the P4 language.

• Parsers: The P4 parser is a finite state machine with a starting state, two final states,

and multiple user-defined intermediate states. The primary purpose of the parser is

to extract the desired header fields to input them into the match-action stage. For

example, an IPv4 header parser would extract the fields displayed in Figure 2.1, and

according to the "protocol" field, the next parser could be a TCP or UDP parser.

• Match-Action Tables (MATs): P4 tables are data structures that contain forwarding

instructions. Each table entry contains a key and the corresponding set of actions.

The matching key consists of one or more header or metadata fields (stateless data)

and a match type. The match type field is the algorithm used to match the data

plane values with those informed by the control plane. For example, a MAT could be

an IPv4 forwarding table, where the destination address is the key while the corre-

sponding action decrements the Time-To-Live (TTL) field and updates the MAC source

and destination address.

• Actions: Actions are code fragments that describe how packet header fields and

metadata are manipulated. For example, an action could decrement the TTL field or

update the MAC addresses.

• Control flow: Control flow is an imperative program that describes the packet pro-

cessing on a target, including the data-dependent sequence of match-action unit

invocations.

• Metadata: Metadata is information about a packet that is not directly related to its

headers. There are two types of metadata in a P4 program: the user-defined and
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the intrinsic. The user-defined metadata are user-defined data structures associated

with each packet. The intrinsic metadata is provided by the architecture and is also

associated with each packet, such as the timestamp when the packet arrived at the

forwarding device.

Listing 2.1: IPv4 protocol as a P4 header� �
1 header ipv4_h {
2 bit<4> version;
3 bit<4> ihl;
4 bit<8> tos;
5 bit<16> total_len;
6 bit<16> identification;
7 bit<3> flags;
8 bit<13> flag_offset;
9 bit<8> ttl;

10 bit<8> protocol;
11 bit<16> hdr_checksum;
12 bit<32> src_addr;
13 bit<32> dst_addr;
14 }� �

2.3.2 P4 Target and Architecture

P4 targets are the programmable nodes on the network where the P4 logic is

embedded. P4 supports software-based and hardware-based targets, including NPUs, FP-

GAs, and ASICs. These targets feature a packet processing pipeline whose structure is

target-specific and is described by an architecture model.

As P4 evolved, the P4 architecture concept was introduced to bring more flexi-

bility to the P4 environment. A P4 architecture is a model that identifies the capabilities

and logical view of a target’s P4 processing pipeline. Each architecture has its functional

blocks, fixed functions, and control flow. The P4 programmer only needs to define the be-

havior of each functional block, since the target manufacturers define the fixed functions.

In addition to exposing the functional block of the processing pipeline, a P4 architecture

may provide additional functionalities that are not part of the P4 language; these are

called externs. It is essential to note that P4 programs are not expected to be portable

across different architectures, but should be portable across all targets that faithfully im-

plement the corresponding architectural model, provided there are sufficient resources.
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2.3.3 P4 Compiler

The P4 compiler translates the P4 programs created for a P4 architecture into

target-specific binary code that is executed on the desired P4 target. The compiler works

in two stages: the front-end and the back-end. The front-end stage converts the P4 pro-

gram into an intermediate table dependency graph that represents the dependencies be-

tween tables. Then the target-specific back-end maps this graph onto a specific target.

Each P4 compiler is designed for a specific P4 target. For example, FPGA-based devices

mainly use compilers such as Xilinx P4-SDNet and P4FPGA; BMv2 software switches use

compilers such as p4c, PISCES, and P4-to-OVS; while Barefoot Tofino’s programmable ASIC

uses the Barefoot P4 compiler [13].

2.3.4 P4 Runtime

The P4 runtime is an API that the control plane uses to communicate with the

data plane. With the P4 runtime, the controller can reconfigure the behavior of the for-

warding devices that already run P4 programs according to new rules or objectives. This

means that the control plane can update MATs and externs or even load an entirely new

P4 program onto the P4 target.

2.3.5 P4 Challenges and Limitations

Recent surveys by AlSabeh et al. [3] and Kfoury et al. [22] have enumerated the

latest challenges and limitations for the programmable data plane and the P4 language.

Among the many that they have listed, we chose two from each review that are most

relevant to our work.

• Memory Size and Accessibility [3]: The limited on-chip memory in the switch

(e.g., a limited number of SRAM per stage and a limited number of stages), as well

as the restrictions on memory access (e.g., a packet can only access few addresses

in the memory) have affected several applications. For example, several straightfor-

ward functions cannot be performed (e.g., finding the minimum across all elements).

Among the affected applications are those related to network security implementa-

tions. For instance, it is not feasible to maintain a significant per-flow state, i.e., to

track and store every flow in the switch.

• Processing Capabilities [3]: Programmable switches process a limited number of

primitives, that is, they cannot perform arbitrary operations. Instead, they support a
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small set of simple operations. For example, since division is much slower than addi-

tion, the switching hardware usually does not support division. Moreover, loops are

not supported, and floating-point arithmetic is not a mandatory feature that P4 en-

forces. In addition, programmable switches support a limited number of operations

per packet to operate at a line rate. These limitations affect the number of security

applications that are implemented in the network.

• Control Plane Intervention [22]: Delegating tasks to the control plane incurs la-

tency and affects the performance of the application. For instance, in congestion

control, rerouting-based schemes often use tables to store alternative routes. Since

the data plane cannot directly modify table entries, intervention from the control

plane is required. The interaction with the control plane in this application ham-

pers the promptness of rerouting. Ideally, the control plane intervention should be

minimized when possible. For example, to synchronize the state among switches,

in-network cooperation should be considered.

• Network-Wide Cooperation [22]: SDN architecture suggests using a centralized

controller for network-wide switch management. Through centralization, the state

of each programmable switch can be shared with other switches. Consequently,

applications can make better decisions as network-wide data is available locally on

the switch. The problem with such architecture is the requirement of continuously

exchange packets with a software-based system. As an alternative, switches can

exchange messages to synchronize their states in a decentralized manner.

When employing the PDP to address the processing limitations of NIDSs, it is cru-

cial to design algorithms and data structures that take into account the PDP constraints,

such as the reduced memory size and the restricted set of processing capabilities. An

essential function of NIDSs is the monitoring of network flows, which demands significant

memory resources as a result of the large number of flows in a network. To efficiently

offload this function to programmable devices, researchers [10, 12, 37] have employed

sketches. Sketches store summarized information of flows rather than the complete data,

significantly reducing the required memory for monitoring flows. Among existing sketch

solutions, the Count-Min sketch is widely used to efficiently and accurately store frequen-

cies related to flows.

2.4 Count-Min Sketches

A sketch is a synopsis data structure typically used in algorithms that process

data streams, which are also known as data streaming algorithms [43]. The primary ob-

jective of a sketch is to provide a summarized representation of a dataset, particularly in
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scenarios where storing the entire dataset is prohibitively expensive. This condition often

arises when relying solely on memory for data stream processing or when dealing with

resource-constrained devices with limited storage capacity. Sketches allow operations to

be performed on the data, enabling the retrieval of information about the dataset with a

certain probability of error. This error probability can be configured by the programmer by

adjusting the amount of resources used. Allocating more resources reduces the probabil-

ity of errors, while using fewer resources increases it. Examples of sketch data structures

include Count-Sketch, Count-Min sketch, and Bloom Filters.

Figure 2.7: Count-Min sketch operations [43]

The Count-Min sketch [9] was first proposed in 2003 as an alternative to several

other sketch techniques [8]. Its primary objective is to determine the frequency or count

of appearances of a specific element. One notable advantage of the Count-Min sketch

over the traditional approach of using a hash table is that it uses sublinear space to store

information. However, this advantage comes at the cost of potentially overestimating the

frequency of an element. The Count-Min sketch is composed of multiple arrays and hash

functions, where each hash function is associated with an array, and a hash’s output is

used to determine the position to store an element’s frequency in the associated array.

The depth of a Count-Min sketch determines the number of hash functions to use, while

the width defines the length of the hash arrays.
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There are two main operations in a Count-Min sketch: update and query. Figure

2.7 details these operations. The update operation updates the frequency of appearances

for a certain element. For each array, the position to update the frequency of an element

is calculated based on the hash function for that array. The query procedure works by

retrieving the smallest frequency from all the frequencies stored in the arrays. The fre-

quencies to be returned are determined by the positions in the arrays calculated based on

their hash functions. With a certain error probability, the query operation returns the real

count or a larger count due to the possibility of collisions with other data.
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3. RELATED WORK

This chapter explores the related work on offloading NIDS capabilities to the PDP,

network-wide security cooperation with the PDP, or scenarios involving both topics. It

begins by detailing the search methodology, search queries, and inclusion and exclusion

criteria in Section 3.1. Subsequently, in Section 3.2, it showcases works that focus on

offloading NIDS capabilities to the PDP, with a particular emphasis on those that offload

pre-filtering rules. Next, this chapter presents works that leverage either the data plane

alone or a combination of the data plane and the control plane to enhance network-wide

security in Section 3.3. Lastly, Section 3.4 discusses related work and highlights the re-

search gap addressed in this work.

3.1 Search Methodology

To find the desired related work, we selected three important research reposi-

tories in Computer Science: Association for Computing Machinery (ACM) Digital Library1,

Institute of Electrical and Electronics Engineers (IEEE) Xplore2, and Scopus3. ACM and IEEE

were selected for their prominence as primary sources in Computer Science, while Sco-

pus was chosen for its extensive coverage, indexing studies from various sources such

as Springer, ScienceDirect, Wiley, and Inderscience, among others. Furthermore, we use

Google Scholar4 to find works that are not normally referenced in the three previously

mentioned repositories (e.g., dissertations, thesis, or publications in national events) and

to search for citations for some highly related works. The search queries presented next

were not used for Google Scholar (only for ACM, IEEE, and Scopus) as it does not provide

a comprehensive search tool. Instead, we searched using variations of key ideas, e.g.,

"offload NIDS P4", "offload NIDS PDP," and "network-wide security P4".

We used two search queries to find relevant work. In both queries, we searched

for all fields of the papers (i.e., "AllField" for ACM DL, "Full Text & Metadata" for IEEE Xplore

and "ALL" for Scopus). The first query, illustrated in Figure 3.1, focuses on identifying

studies that offload NIDS capabilities to the data plane, with particular emphasis on work

involving the offloading of signature rules. Since NIDS signature rules typically come from

open-source NIDS, we created a query to return PDP works that mentioned Snort, Suricata,

or Zeek (Bro). Additionally, we included the term "Intrusion detection system" to encom-

pass works integrating PDP with proprietary NIDS solutions rather than open-source ones.

1https://dl.acm.org/
2https://ieeexplore.ieee.org/
3https://www.scopus.com/
4https://scholar.google.com/
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To expand the search scope even further, we incorporated the keyword "signature rule".

The "?" symbol at the end of some keywords represents one wildcard character.

Figure 3.1: Query for works that offload NIDS capabilities to the PDP

To find works on network-wide security cooperation in the PDP, the query in Fig-

ure 3.2 was used. Our idea was to add terms that imply a system with multiple compo-

nents, such as "Framework", "Architecture", or "Orchestrator". Moreover, we added the

term "Network-wide" to specifically target works addressing security cooperation across

the entire network. To filter out non-NIDS-related works, we added the terms "Intrusion

detection system" and "Intrusion prevention system" to the query.

Figure 3.2: Query for works that employ network-wide security cooperation in the PDP

After retrieving the papers, we filtered out unrelated work. We first removed

duplicates, surveys, drafts, and non-computer science works. Then, we investigated the

titles and abstracts to remove works that are not security related or have their primary

focus on another technology that is not SDN or PDP (e.g., GPU, IoT, Cloud). Afterward, we

looked into the manuscript and kept only works that offload NIDSs capabilities (i.e., sig-

nature rules and NIDS-related functions) to the PDP or employ some type of network-wide

security cooperation (e.g., cooperation among switches, data and control plane cooper-

ation and frameworks). Finally, we compared this final set of works with the ones from

Google Scholar search, performed citation searches, and identified the most relevant pa-

pers for each search query topic.

3.2 Offloading NIDS Capabilities to the PDP

Since the introduction of P4 in 2014, several studies have explored offloading

complex NIDS functions to programmable devices. In P4DDPI [2], P4 is used for the Deep

Packet Inspection (DPI) domain name, where the Internet domains are parsed and filtered

in the data plane without using the control plane. After extracting the domain name,

P4DDPI uses a table containing well-known malicious domain names to filter out malicious
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packets. P4DM [1] proposes a new probe-based approach for measuring one-way delays

(OWD). In P4DM, hosts generate lightweight probe packets that are then exploited by

the P4 programs in the switches to implement the measure. Expanding the scope to

include multiple network devices, [4] demonstrates an architecture that uses P4 devices to

implement network analysis functions related to IDSs. The proposed model has a complete

view of the network and, according to the needs of the system’s IDS, offloads to different

P4 devices the required functionalities. They implemented three IDS-related functions to

be offloaded to programmable devices: DPI, link delay measurement, and asymmetric

flow detection.

Instead of deploying complex NIDS functions to the PDP, other works have inves-

tigated using the data plane as a pre-filter for network traffic to alleviate the workload on

the NIDS host. This approach has advantages over offloading complex NIDS capabilities to

the PDP, as the PDP has limited resources and functionalities, but it is specifically designed

for packet matching. In [31], the authors propose a two-level network-based IDS for an

SDN-based Industrial Control System (ICS). At the first level, a Modbus protocol whitelist

is implemented in P4 on network switches. Packets not on the whitelist are forwarded to

the second level, where a security engine is used to determine if the packet is malicious

and update the off-loaded whitelist accordingly. Although the evaluation of this work pro-

duced positive results, offloading a whitelist to the data plane is only feasible in static and

easily controlled networks, such as ICS networks. For traditional IT networks, the signifi-

cant number of normal flows makes offloading whitelists impractical due to the restricted

memory of programmable devices.

Unlike [31], the authors of [20] aim to systematically offload Zeek filters of sus-

picious traffic to programmable switches instead of using a whitelist. By delegating the

task of filtering regular traffic to the PDP and forwarding only suspicious packets to the

NIDS host, more processing power becomes available for the NIDS host to conduct the

thorough analysis of suspicious flows that it needs to perform. Nevertheless, it is worth

noting that only a small subset of Zeek traffic filters were offloaded, limiting the solution’s

security scope. Still trying to reduce the workload on the NIDS host, P4ID [25] proposes to

pre-filter network traffic in the data plane by offloading rulesets designed for traditional

NIDSs, such as Snort, to the data plane. The architecture of P4ID consists of two com-

ponents: the Rule Parser and the P4 implementation. The Rule Parser consumes rules

made for the popular Snort NIDS and produces table entries that can be installed in the

implementation of P4. Although improving the number of rules offloaded compared to

[20], P4ID does not take into account the limited memory of the device and performs only

basic deduplication to optimize the number of rules to offload.

Motivated by the ideas presented by P4ID, P4-ONIDS [37] seeks to optimize the

parsing and compilation of NIDS signature rules. This optimization reduces the number

of rules offloaded to devices with limited resources while maintaining the accurate for-
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warding of suspicious packets to the NIDS host. Additionally, P4-ONIDS uses a Count-Min

sketch-based solution to monitor information about suspicious flows and to limit the num-

ber of packets redirected to the NIDS. This structure addresses the issue of saturation at-

tacks that could otherwise overwhelm the NIDS with a large number of packets. However,

P4-ONIDS has certain limitations. It lacks support for certain types of NIDS rules, such as

bidirectional rules, those with negation syntax, and those involving IPV6 addresses. Fur-

thermore, the compilation process is not optimized, leading to long compilation times and

excessive memory usage.

More recently, the authors of P4ID [25] updated their solution in [26]. In this im-

proved version, they optimized the data plane memory required for P4ID to track and limit

the flows for redirection. Furthermore, they developed a feedback system where Suri-

cata logs are parsed and alerts are translated into 5-tuple table entries within the switch.

Through this mechanism, P4ID’s new version dynamically identifies suspicious flows and

decides whether more packets for this flow should be forwarded to the NIDS or not. How-

ever, it is worth noting that P4ID’s lack of consideration for the memory limitations of the

forwarding devices (regarding the table entries to offload) and the challenge of offloading

a large number of rules to them, as demonstrated in [37], remains a limitation of this new

version.

One common and crucial limitation observed in most of the works that offload

pre-filtering rules to the PDP mentioned above ([20, 25, 26, 37]) is their design to offload

to only one forwarding device. This approach introduces multiple drawbacks, including

scalability issues, limited NIDS performance enhancements, and reduced switch perfor-

mance due to the overload of security functionalities on a single switch. The only work

that considers more than one forwarding device is [31]. Nevertheless, this work focuses

on whitelist instead of signature rules, and it offloads the same filtering rules to all forward-

ing devices. With this uniform offloading approach, insufficient memory in devices may

result in some rules not being offloaded, potentially allowing attacks to go undetected. In

contrast, if there is sufficient space for all rules, the network’s memory usage might be

inefficient, as devices will have multiple duplicate rules that will be unused depending on

the network’s topology. To address this lack of network-wide security solutions and un-

derstand the challenges involved in designing them, we have studied works that employ

network-wide security cooperation in the PDP.

3.3 Network-Wide Security Cooperation in the PDP

To thoroughly protect computer networks, it is fundamental that all network de-

vices have security capabilities. However, achieving this goal is difficult, as forwarding

and routing devices have limited memory and reduced processing capabilities to protect
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themselves against the ever-growing number of attacks. To overcome this issue, instead

of delegating the same security functions to all devices, each device performs different

security functions, and by cooperating with other devices, individual security limitations

are solved. With this architecture, the idea of a completely secure network becomes at-

tainable. In [33], the authors combined programmable network switches, edge devices,

and cloud servers to provide scalable and line speed IDS. They achieve this goal by imple-

menting Binarized Neural Networks (BNNs) at the data plane for line-speed packet classifi-

cation; using the control plane to train the classification model locally; and using federated

learning on a cloud server to scale the training process.

Although providing a robust IDS for a distributed scenario, [33] assumes the pres-

ence of one edge device for each programmable switch and a cloud server, requirements

that may not be feasible in certain environments. Moreover, it is heavily dependent on

the control plane and cloud, which could cause congestion in the communication chan-

nel when an attack is in progress. In contrast, BUNGEE [14] is a collaborative push-back

mechanism in the network for DDoS attack mitigation that runs entirely in the data plane.

BUNGEE first detects DDoS attacks through the entropy analysis of the addresses of in-

coming packets and immediately propagates to upstream devices the detected entropy

disturbances. Upstream devices apply filtering rules for suspicious flows and, if necessary,

push back these alerts to their upstream counterparts.

Using a similar concept of sharing information among forwarding devices as BUNGEE,

the authors of [11] devised a lightweight NIDS that can be embedded in a chain of resource-

constrained switches. The idea is to divide a classification model into numerous binary

submodels, with each submodel offloaded to a programmable device to detect a specific

attack type. The outputs of each device are combined and a final classification of the

network traffic is produced on the last device. In [14] and [11], the authors rely basically

on the data plane for security decisions. This reliance has positive outcomes as the com-

munication overhead between the data plane and control plane is minimal or nonexistent,

thereby decreasing the response time for detecting and responding to attacks. However,

depending entirely on the data plane may impact the network’s security capabilities, given

the restricted functionalities of the data plane compared to the control plane. An ideal

solution should balance the communication overhead between the control and the data

plane while fully utilizing the resources of the control plane.

Instead of focusing on providing a new algorithmic or theoretical contribution to

the network security field, Poseidon [27] proposes a practical and system-level defense

system for DDoS attacks using PDP. With Poseidon, users can specify defense policies for

different DDoS attacks, and Poseidon takes care of partitioning the policy-needed func-

tions across switches and servers for effective defense. Additionally, Poseidon uses a

runtime management mechanism to reconfigure the defense system for dynamic protec-

tion without interrupting legitimate flows. Poseidon’s biggest limitation is that it does not
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consider the resource constraints of programmable devices when deploying the policies.

This limitation is evident in [29] when it was found that Poseidon recorded 65K legitimate

sessions for an SYN proxy table, making it non-scalable.

Jaqen [29] is a switch-native approach to volumetric DDoS defense that can run

detection and mitigation functions entirely inline on switches without relying on additional

data plane hardware. Jaqen’s API allows users to configure sketches, query relevant met-

rics, compute detection decisions, and define the mitigation actions for the data plane

to perform. In addition, Jaqen incorporates a network-wide resource manager that opti-

mally deploys detection and mitigation modules on the network. Despite being resource-

efficient, Jaqen’s mitigation response is too slow, a limitation relevant to our work. Summa-

rizing, we can conclude from the limitations observed in Poseidon and Jaqen that security

solutions working with the PDP should consider the restrictions of the network devices in

order to become scalable and that time is an important factor.

3.4 Discussion

In the previous sections, we analyzed several works that offload NIDS capabili-

ties to the PDP, employ network-wide security cooperation in programmable networks, or

both. In the following discussion, we will outline some key characteristics of the works that

offload pre-filtering rules to the PDP (Section 3.2). This discussion is summarized in Table

3.1.

Table 3.1: Related work comparison table

Work
Pre-filtering
Rules Type

Ruleset
Optimization

Resource
Aware

Offloading

Runtime
NIDS

Feedback

Deployment
Type

[31] Whitelist None No Yes
Network-wide rules

replication

[20] Zeek filters None No No One device

P4ID [25, 26]
Snort/Suricata

rulesets
Basic

deduplication
No Yes One device

P4-ONIDS [37]
Snort/Suricata

rulesets
Deduplication

and aggregation
Yes No One device

This Work
Snort/Suricata

rulesets
Deduplication

and aggregation
Yes No

Memory- and
topology-aware
network-wide
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As presented in Table 3.1, open-source NIDS rulesets [25, 37, 26] are favored over

Zeek filters [20] and whitelists [31] due to their ability to provide protection against a wide

range of well-known attacks. When dealing with NIDS rulesets, it is crucial to implement

rule optimization strategies to prevent overloading the network devices’ memory with an

excessive number of rules. Alongside the removal of duplicates, rule aggregation is a

strategy that can help reduce the necessary number of rules.

In addition to creating an optimized ruleset for offloading, understanding the re-

sources of the networking devices and offloading accordingly is essential to avoid exces-

sive memory usage and potential operational impacts. However, most works lack this

resource-aware offloading, except for [37]. Following the offloading of rules to the PDP, a

feedback mechanism, as employed by [31, 26], is fundamental for the continuous moni-

toring of attacks and the corresponding update of the offloaded rules. Despite the diverse

characteristics of the related work, their deployment approaches are not comprehensive,

as most of them consider only one device [20, 25, 37, 26]. Even when multiple devices

are considered [31], the proposed approach is to distribute the same set of rules to all

devices. These strategies can lead to the incomplete offloading of rules and the inefficient

utilization of the network’s available memory, compromising the solutions’ objectives.

Based on this discussion and the observed characteristics and limitations of the

related work, we propose to address the lack of a comprehensive rules offloading method

by developing a network-wide orchestrator capable of offloading NIDS rules to multiple

devices, considering the memory of each device and the network topology. By addressing

this gap in existing research, our work aims to provide a more comprehensive approach

capable of improving NIDS performance in more scenarios, ultimately enhancing network

security. To achieve this goal, we first improve the existing P4-ONIDS [37] rules compiler

in Chapter 4. Subsequently, in Chapter 5, we detail our proposal, including the P4 data

plane to pre-filter network traffic for the NIDS, as well as the memory- and topology-aware

orchestrator that distributes the table entries based on two novel offloading algorithms.
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4. IMPROVEMENTS TO THE P4-ONIDS RULES COMPILER

This chapter outlines the improvements made to the P4-ONIDS rules compiler.

It begins by providing a detailed overview of the P4-ONIDS rules compiler in Section 4.1.

This chapter then details the improvements made to the P4-ONIDS rules compiler and the

results obtained from these modifications in Section 4.2.

4.1 The P4-ONIDS Rules Compiler

The P4-ONIDS architecture is divided into two components: the P4 NIDS Rules

Compiler and the P4 Switch Data Plane. The P4 NIDS Rules Compiler is responsible for

converting the NIDS rules into P4 table entries, while the P4 Switch Data Plane is responsi-

ble for detecting, filtering, and redirecting suspicious traffic to the NIDS host. This section

introduces the P4 NIDS Rules Compiler, detailing its input and the compilation steps re-

quired to convert NIDS rules to P4 table entries. Figure 4.1 illustrates the architecture of

the P4 NIDS Rules Compiler.

Figure 4.1: P4 NIDS Rules Compiler architecture [38]

4.1.1 Inputs

The P4 NIDS Rules Compiler requires three inputs: (i) a NIDS Ruleset, (ii) a De-

ployment Configuration, and (iii) a Compiler Goal. The NIDS Ruleset is composed of a list

of signature rules written using Snort and Suricata’s syntax. These rules define suspi-

cious network behavior and the appropriate action to take in case a packet complies with
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the rule (see Section 2.1.2). Listing 4.1 shows a sample of rulesets containing two TCP

signature rules targeting browser attacks.

Listing 4.1: Snort signature rules� �
alert tcp $EXTERNAL_NET 80 -> $HOME_NET any ( msg:"BROWSER-OTHER Netscape 4.7

client overflow"; flow:to_client,established; content:"3|C9 B1 10|?|E9
06|Q<|FA|G3|C0|P|F7 D0|P"; metadata:ruleset community; reference:bugtraq,822;
reference:cve,1999-1189; reference:cve,2000-1187; classtype:attempted-user;
sid:283; rev:14; )

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 ( msg:"BROWSER-OTHER Netscape 4.7
unsucessful overflow"; flow:to_server,established; content:"3|C9 B1 10|?|E9
06|Q<|FA|G3|C0|P|F7 D0|P"; metadata:ruleset community; reference:bugtraq,822;
reference:cve,1999-1189; reference:cve,2000-1187;
classtype:unsuccessful-user; sid:311; rev:15; )� �

Rules can have configuration variables, such as $HOME_NET, enabling the reuse

of a ruleset in different deployments. The Deployment Configuration outlines the ad-

dresses and ports related to the configuration variables and the priority for each type

of rule. The configuration of each deployment directly impacts the number of processed

rules due to the different possibilities in defining the addresses and ports (see Section

2.1.2). Therefore, using the same NIDS ruleset with distinct deployment configurations

can lead to significant differences in the final number of rules. Lastly, the Compiler Goal

defines specific goals for the compiler, such as the maximum number of rules to offload,

the P4 target architecture, and the prioritization scheme (e.g., random, severity, etc.).

4.1.2 Compilation Steps

The P4-ONIDS compiler performs six main steps: (1) file parsing and rule adjust-

ing, (2) rule filtering, (3) transforming the NIDS rules into P4 table entries, (4) removing

duplicate P4 table entries, (5) aggregating table entries, and (6) prioritizing certain table

entries. The compiler begins by parsing the three inputs: the NIDS Ruleset, the Deploy-

ment Configuration and the Compiler Goal. For the NIDS Ruleset input, the compiler reads

the Snort/Suricata file(s), parses each rule, and saves them into a data structure. Subse-

quently, the compiler adjusts the rules by replacing the configuration variables in them

by the actual addresses and ports defined in the Deployment Configuration. Once the

rules are adjusted, invalid rules are removed. Invalid rules include those containing IPv6

headers, bidirectional flow, negation syntax, and rules composed only of "any" matches.

The next step involves converting the adjusted and filtered NIDS rules into P4

table entries. Each P4 table entry is composed of the action and the following 6-tuple

match: the protocol type, source IP address, source port range, destination IP address,
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destination port range, and TCP flags if available. Before converting a NIDS rule to P4 table

entries, the compiler groups the ports of a rule into ranges, with the aim of minimizing the

number of ungrouped ports. With the ports combined into ranges, the compiler iterates

through every combination of source IP address, source port, destination IP address, and

destination port of a rule to create a unique P4 table entry. These procedures can generate

a single entry into the P4 table or multiple entries, depending on the number of addresses

and ports involved. Listing 4.2 presents the Snort rules from Listing 4.1 in the table entries

format, considering the configuration variables $HOME_NET as "[10.0.10.0/24, 10.0.20.5]"

and $EXTERNAL_NET as "any." The protocol is represented in hexadecimal format. The IP

addresses have the host address separated from the network mask using "&&&", and the

"any" address is translated to "0.0.0.0&&&0.0.0.0". The ports are converted into ranges

by default, even if there is only one port, to align with the P4 data plane restrictions.

Lastly, the TCP flags are represented in binary form.

Listing 4.2: P4 table entries from NIDS rules� �
// Alerts for the first Snort rule

alert 0x6 0.0.0.0&&&0.0.0.0 80->80 10.0.10.0&&&255.255.255.0 0->65535 00000000

alert 0x6 0.0.0.0&&&0.0.0.0 80->80 10.0.20.5&&&255.255.255.255 0->65535 00000000

// Alerts for the second Snort rule

alert 0x6 10.0.10.0&&&255.255.255.0 0->65535 0.0.0.0&&&0.0.0.0 80->80 00000000

alert 0x6 10.0.20.5&&&255.255.255.255 0->65535 0.0.0.0&&&0.0.0.0 80->80 00000000� �
Due to the aforementioned procedure, the P4 table entries of one rule can be

duplicates of another rule. Consequently, the compiler needs to remove duplicates and

merge them into one. When merging duplicate rules, the final rule retains the severity

level and identifier of all merged rules. Following the deduplication stage, the number of

rules is further reduced by aggregating rules within the same IP address range or port

range. For example, consider that table entries A and B have the same source IP, source

port, destination IP, and protocol, but the destination port of rule A is "1024", and the

destination port of rule B is the range "[0:2000]". In the aggregation stage, rule A can be

grouped into rule B since packets that would match rule A are covered by rule B. Similarly

to the deduplication stage, the aggregation process retains the severity level and the

identifier of the original rules. The last step is to select the final ruleset based on the

Compiler Goal. For instance, the final goal could be to return 100 table entries, ordered by

severity.
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4.2 Improvements Performed

Although the P4-ONIDS compiler successfully achieved its goal of reducing the to-

tal number of P4 table entries to offload compared to the P4ID compiler [25], it has some

important limitations. This work addresses two of its main limitations. The first limitation

addressed is the lack of support for certain types of NIDS rules, such as those with IPv6

headers and negation syntax. In this work, we expand the set of accepted rules to include

those not accepted by P4-ONIDS. The second one is that the compilation process of the

P4-ONIDS compiler takes too long and uses a significant amount of memory, rendering it

impractical. As a result, we have tackled this issue by modifying parts of the P4-ONIDS

compiler that were causing prolonged compilation time and excessive memory usage.

This section outlines these improvements along with the results obtained. It begins by pre-

senting the inputs used to evaluate the improvements implemented. Subsequently, this

section describes the modifications made to the original P4-ONIDS compiler and presents

the results obtained from these improvements. Finally, the modified P4-ONIDS compiler

architecture is depicted.

4.2.1 Experiments Input

The evaluation of the original P4-ONIDS compiler and the improved version re-

quires two inputs: a NIDS ruleset and a Deployment Configuration. Table 4.1 provides

details on the rulesets tested, including the number of valid rules according to the Snort

3 engine and the date of download, as these rulesets are updated daily or weekly. The

Snort 3 Community1 ruleset is the basic ruleset provided by Snort, which does not require

an account to access. It consists of 3944 rules and receives daily updates. The Snort 2

Emerging Threats2 is a publicly maintained ruleset consisting of 31405 rules with daily

updates. Lastly, the Snort 3 Registered3 is an extensive ruleset maintained by Snort that

requires an account for download. It has 44705 valid rules and is updated weekly.

Table 4.1: NIDS rulesets information

NIDS ruleset Amount of rules Download date

Snort 3 Community 3944 April 5, 2023

Snort 2
Emerging Threats

31405 April 27, 2023

Snort 3 Registered 44705 May 19, 2023

1https://snort.org/downloads
2https://rules.emergingthreats.net/open/snort-2.9.0/
3https://snort.org/downloads
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For the deployment configuration, Listing 4.3 displays the IP (ipvar) and port

(portvar) configuration variables used by the NIDS rulesets. The network addresses are

based on the CICIDS2017 dataset [36], since this dataset is later used in Chapter 6 as

input for the main experiments of this work. The ports and file structure are derived from

Snort’s default configuration file.

Listing 4.3: Deployment configuration� �
# List of IP network addresses
ipvar HOME_NET [192.168.10.0/24,172.16.0.0/16,205.174.165.68,205.174.165.66]
ipvar EXTERNAL_NET any
ipvar DNS_SERVERS [192.168.10.3/32]
ipvar SMTP_SERVERS $HOME_NET
ipvar HTTP_SERVERS $HOME_NET
ipvar SQL_SERVERS $HOME_NET
ipvar TELNET_SERVERS $HOME_NET
ipvar SSH_SERVERS $HOME_NET
ipvar FTP_SERVERS $HOME_NET
ipvar SIP_SERVERS $HOME_NET

# List of ports
portvar HTTP_PORTS [36,80,81,82,83,84,85,86,87,88,89,90,311,383,443,555,591,593,

631,801,808,818,901,972,1158,1220,1414,1533,1581,1719,1720,1741,1801,1830,
1942,2231,2301,2375,2381,2578,2809,2869,2980,3000,3029,3037,3057,3128,3443,
3702,4000,4343,4592,4848,5000,5054,5060,5061,5117,5222,5250,5416,5443,5450,
5555,5600,5814,5894,5984,6080,6173,6988,7000,7001,7005,7070,7071,7144,7145,
7180,7181,7510,7770,7777,7778,7779,8000,8001,8008,8014,8015,8020,8028,8040,
8080,8081,8082,8085,8088,8090,8095,8118,8123,8180,8181,8182,8222,8243,8280,
8300,8333,8344,8393,8400,8443,8484,8500,8509,8694,8787,8800,8852,8880,8888,
8899,8983,9000,9002,9060,9080,9090,9091,9111,9200,9201,9290,9443,9447,9700,
9710,9788,9830,9850,9999,10000,10080,10100,10250,10255,10297,10443,11371,
12601,13014,14592,15489,16000,17000,18081,19980,29991,30007,30018,33300,
34412,34443,34444,36099,40007,41080,44449,49152,49153,50000,50002,50452,
51423,53331,55252,55555,56712]

portvar SHELLCODE_PORTS !80
portvar MAIL_PORTS [110,143]
portvar ORACLE_PORTS 1024:
portvar SSH_PORTS 22
portvar FTP_PORTS [21,2100,3535]
portvar SIP_PORTS [5060,5061,5600]
portvar FILE_DATA_PORTS [$HTTP_PORTS,110,143]
portvar GTP_PORTS [2123,2152,3386]� �

4.2.2 Improvements and Results

The first improvement’s objective is to expand the types of NIDS rules that the

compiler can parse. The new rules supported include those with IPv6 headers, that are
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bidirectional, or contain negated ports. Adding support for rules with IPv6 headers in-

volved programming the necessary parsing capabilities. For bidirectional rules, the ap-

proach required splitting the rule into two new rules with opposite source and destination

fields. And for rules with ports using the negation syntax, the negated ports were re-

placed with the corresponding nonnegated ports within the TCP port range (0 to 65535).

Despite adding support for these rules, rules containing negated IP addresses are not yet

supported.

The results of the first improvement are evident when comparing the "Parsing,

Adjusting, and Filtering Rules" column of Table 4.2 between P4-ONIDS and this work. Table

4.2 compares the number of rules and table entries between P4-ONIDS [37] and this work

at every stage of the P4-ONIDS rules compiler and the new stage introduced in this work

(i.e., "Rule Dedup.") for the three rulesets of Table 4.1.

Table 4.2: Number of rules and P4 table entries during each stage

Work Ruleset

Parsing,

Adjusting, and

Filtering Rules

Rule

Dedup.

P4 Table

Entries

P4 Table

Entries

Dedup.

P4 Table

Entries

Aggregation

Snort 3

Community
2937 - 1199677 4328 854

P4-ONIDS [37]

Snort 2

Emerging

Threats

24462 - 9188484 105219 750

Snort 3

Registered
41115 - 15732312 13251 1699

Snort 3

Community
3955 318 8980 5052 1841

This Work

Snort 2

Emerging

Threats

31408 554 145356 111830 839

Snort 3

Registered
44223 1721 53247 14202 14202

The second improvement focuses on reducing the compilation time and memory

usage. After examining the source code, it was found that the third stage, which involves

converting NIDS rules into P4 table entries, is the slowest and most time-consuming. This

is due to the fact that the number of table entries generated from a rule corresponds to

every combination of its source IP addresses, source ports, destination IP addresses, and

destination ports. The necessity to iterate over all combinations of these fields is because

the P4 table entries do not allow lists, unlike the NIDS rules. Due to this constraint, the

algorithm itself cannot be optimized, as lists of IPs and ports in a NIDS rule need to be

unwound to generate valid P4 table entries.
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Taking into account this limitation, the chosen approach was to reduce the num-

ber of NIDS rules and the number of IPs and ports per rule before starting the rule-to-table

entry conversion stage. With this goal in mind, we noticed that multiple NIDS rules had

the same fields used to uniquely identify a table entry. These fields are: protocol, source

IP addresses, source ports, destination IP addresses, destination ports, and TCP flags, if

available. Knowing this information, duplicate NIDS rules are removed based on these

fields on the new "Rule Dedup." stage before converting them into table entries. Addition-

ally, for further optimization, ports are grouped into ranges. For instance, by converting

the list of ports "[10,11,12,13]’ into the port range "[10:13]", the number of elements to

iterate goes from four to just one. This reduction is noticeable by comparing the number

of table entries in the "P4 Table Entries" stage between P4-ONIDS and this work in Table

4.2.

The last stage of the P4-ONIDS compiler, the aggregation stage, poses another

significant bottleneck. This is because for each table entry, the P4-ONIDS compiler it-

erates over all the other table entries to determine which ones can be grouped. This

time-consuming process results in an O(N2) algorithm, where N is the number of table

entries entering the aggregation stage. The key insight to improve this algorithm was ob-

tained by analyzing the two rightmost columns of Table 4.2 in the "P4-ONIDS" row. The

notable reduction in table entries between the pre-aggregation stage compared to the

post-aggregation stage indicates the presence of numerous groups. With this knowledge,

we modified the aggregation algorithm so that the nested (inner) loop iterates over a

hashmap containing the groups’ key (i.e., the 6-tuple match) rather than iterating over the

table entries list. Although the worst-case scenario of this new algorithm still is O(N2) (i.e.,

no groups), we exploit the fact that there are multiple groups in the evaluated datasets,

resulting in a smaller inner loop to iterate.

The results of the performance improvements obtained after modifying the P4-

ONIDS compiler to improve the compilation time and memory usage are shown in Table

4.3. As presented in the table, our modifications significantly decreased the compilation

time and memory usage, with a reduction of over 80% for all metrics in the three evaluated

datasets. One of the main reasons for this is the decrease of input rules to the rule-to-

table entry conversion stage ("P4 Table Entries" column). This is evident by comparing

the "‘Parsing, Adjusting, and Filtering Rules" column for the "P4-ONIDS" row against the

"Rule Dedup." column for the "This Work" row in Table 4.2.

The benefits of the modifications to the aggregation stage are evident when com-

paring the results of the "Snort 2 Emerging Threats" rows with the "Snort 3 Registered"

rows in Table 4.3. Although the Snort 2 Emerging Threats ruleset has 13k fewer rules than

the Snort 3 Registered ruleset (see Table 4.1), compiling it takes nine times longer than

compiling the Snort 3 Registered ruleset with P4-ONIDS. The main cause of this problem is

the considerable number of table entries remaining after deduplication of P4 table entries
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Table 4.3: Performance improvements results

Work Ruleset Compilation time Memory usage

Snort 3

Community
101.53s 1875.7 MiB

P4-ONIDS [37]

Snort 2

Emerging

Threats

11219.18s 14073.7 MiB

Snort 3

Registered
1252.36s 23648.0 MiB

Snort 3

Community

19.60s

(80.6% reduction)

124.1 MiB

(93.38% reduction)

This Work

Snort 2

Emerging

Threats

70.07s

(99.37 % reduction)

1205.3 MiB

(91.43% reduction)

Snort 3

Registered

69.45s

(94.45% reduction)

1021.8 MiB

(95.67% reduction)

for the Snort 2 Emerging Threats ruleset, as illustrated in the column "P4 Table Entries

Deduplication" in Table 4.2. Our modifications to the aggregation stage addressed this

issue, and with them, the Snort 2 Emerging Threats compilation time is now similar to the

Snort 3 Registered one. More importantly, this work’s compilation time for the Snort 2

Emerging Threats ruleset is 158 times faster than the compilation time with P4-ONIDS.

4.2.3 Modified P4-ONIDS Compiler Architecture

The modified P4-ONIDS compiler architecture is illustrated in Figure 4.2. The in-

puts of the original P4-ONIDS compiler are preserved, but the structure of the compilation

steps and the content of some steps has been modified. The only structural change was

the addition of the "NIDS Rule Deduplication" stage. In the new version, the "NIDS Rules

Loader" not only loads IPv4, ICMP, TCP, and UDP rules but also parsers IPv6 rules. As

for the "NIDS Rule Filter," the only types of rules removed are those with negated IPs. It

also removes rules with UDP or TCP without flags that contain "any" for both the source

and destination ports and at least one "any" IP address, as they are excessively inclusive.

Lastly, the "P4 Rule Aggregation" stage still performs the same function, but the algorithm

has been modified to improve the compiler’s performance.
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Figure 4.2: P4-ONIDS modified compiler architecture
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5. NETWORK-WIDE ORCHESTRATION IN PROGRAMMABLE

NETWORKS

Network Intrusion Detection Systems play a crucial role in securing computer net-

works, providing a comprehensive defense system that identifies multiple network attacks

and suspicious behaviors. One method employed by NIDSs to detects attacks is by match-

ing network traffic with signature rules created from known patterns of malicious activity.

One drawback of this approach is that it is a time-consuming and resource-intensive proce-

dure, as all packets undergo the pattern matching process. Consequently, this stage can

become a bottleneck [42], leading to detection delays and potentially allowing attacks to

go unnoticed, particularly in high-throughput networks with limited resources. Therefore,

to minimize the likelihood of the NIDS not functioning as expected, improvements must

address the saturation problem in the pattern matching stage.

With the advent of the Programmable Data Plane, researchers have explored

ways to overcome the saturation problem in the NIDS pattern matching process by of-

floading certain functionalities to the PDP. A prevalent approach employed by these works

is to offload NIDS signature rules to the PDP in order to pre-filter the network traffic for the

NIDS host. The idea is to reduce the overall traffic that goes to the NIDS host, sending only

suspicious packets to it, thus addressing the saturation problem of the packet matching

stage without damaging the attack detection performance of the NIDS.

However, most of these approaches overlook the memory constraints of the for-

warding devices when offloading the rules, resulting in sizable rulesets to offload that may

not fit within the available memory. Furthermore, the majority of these works only consider

one programmable switch to receive all rules, leading to scalability issues, underutiliza-

tion of the network’s total available memory, and decreased switch performance due to

the overload of security functionalities in one device. Even in works that consider multiple

network devices for rule offloading, the chosen method is to offload the same rules to all

devices, causing the inefficient usage of the total available memory. This becomes partic-

ularly critical when considering that the limited memory size of programmable switches

must be shared with other tables, such as packet forwarding and routing tables, which are

constantly increasing [19], and other concurrent P4 programs. The combination of limited

available memory, the need to share it with other networking functionalities, and ineffi-

cient memory usage by the proposed solutions can result in incomplete offloading of the

NIDS ruleset, ultimately compromising the effectiveness of the solution.

Knowing the scalability constraints of NIDS, the memory restrictions of PDP, and

the limitations of the state-of-the-art approaches, this work proposes leveraging the network-

wide orchestration of programmable devices to enhance the NIDS performance. More

specifically, NIDS rules are compiled into P4 table entries and strategically offloaded to
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multiple PDP devices to pre-filter network traffic. These offloaded table entries ensure

that only suspicious packets are forwarded to the NIDS host for further analysis, therefore

reducing the overall volume of packets reaching the NIDS host.

Our solution, as in previous works, enhances the NIDS performance by overcom-

ing the pattern matching stage saturation problem through the reduction of unnecessary

packets reaching the NIDS host. However, unlike previous works and aiming to solve their

limitations, our new approach mitigates the risk of not offloading all compiled rules by

strategically distributing them to multiple devices while considering the devices’ memory

limitations and the network topology. The proposed solution consists of the following three

components:

1. A P4 NIDS rules compiler to condense NIDS signature rules from open-source NIDS

rulesets to a reduced set of P4 table entries without compromising the network traffic

coverage of the original ruleset. This component was detailed in Chapter 4.

2. A P4 data plane implementation was devised to receive the compiler table entries,

monitor suspicious flow, filter incoming traffic, and mirror suspicious packets for the

NIDS instance.

3. A network-wide table entries orchestrator employing two novel algorithms to strate-

gically offload the generated table entries to multiple devices while considering the

resources of each device and the network topology.

This chapter outlines the proposed solution, starting with Section 5.1, where the

architecture of the solution and the interaction among its components are presented. Af-

terward, in Section 5.2, it details the implementation of the P4 data plane, with its logic

and the data structures used. Finally, in Section 5.3, the network-wide orchestrator and

the table entries offloading algorithms are introduced. Combined, the orchestrator and al-

gorithms are designed for network-wide memory- and topology-aware offloading of table

entries to the PDP.

5.1 Architecture

The proposed architecture is illustrated in Figure 5.1. The control plane is re-

sponsible for converting the NIDS rules into entries in the P4 table through P4 NIDS Rules

Compiler. This compiler, an evolution of the P4-ONIDS [37] compiler, is detailed in Chap-

ter 4, where modifications and improvements made to it are also discussed. Following the

conversion of rules into table entries, the control plane strategically offloads them to the

data plane devices based on the network information. In the data plane, the forwarding
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devices forward packets to the end hosts and filter the network traffic for the NIDS, send-

ing only suspicious packets to it. Since our work focuses on NIDSs, suspicious packets are

not dropped; instead, they follow their original paths, and a copy is sent to the NIDS host.

Besides these two planes, there is also the NIDS engine, which analyzes the forwarded

suspicious traffic and determines if they are actually network attacks, and the end hosts

of the network.

Figure 5.1: Proposed architecture



52

5.2 P4 Data Plane

The P4 data plane provides switching capabilities to forward network packets to

their destination, as well as filtering functionalities for the NIDS engine. By monitoring

suspicious flows based on the table entries created by the compiler and forwarding only

suspicious packets to the NIDS host, the P4 data plane effectively reduces the volume

of packets sent to the NIDS, addressing the saturation problem of the pattern matching

stage. The P4 data plane of this work is built upon the one developed in P4-ONIDS [37],

with some modifications. It employs a similar MAT to forward suspicious traffic to the

NIDS and the same Count-Min data structure to track suspicious flows. However, certain

adjustments have been made to the original P4-ONIDS data plane with respect to these

two components.

5.2.1 Match Action Tables

Listing 5.1: P4 table that filters IPv4 traffic for the NIDS engine� �
1 table ipv4_nids {
2 actions = {
3 pass; clone_to_ids; NoAction;
4 }
5 key = {
6 meta.protocol: exact;
7 hdr.ip.v4.srcAddr: ternary;
8 meta.srcPort: range;
9 hdr.ip.v4.dst\_addr: ternary;

10 meta.dstPort: range;
11 meta.flags: exact;
12 }
13 size = 10240;
14 default_action = pass();
15 counters = ipv4_ids_table_hit_counter;
16 }� �

The MATs used by the data plane are exemplified in Listing 5.1. This listing

presents the IPv4 NIDS table that compares incoming IPv4 packets with the table entries

created by the P4 NIDS Rules Compiler to determine suspicious packets. Within this table

are defined the actions to execute, the packet fields to match and their matching type (i.e,

exact, ternary or range), the table size, the default action in the case of no match, and the

counters to keep track of the table entries matched. When a packet’s fields match a table

entry, the packet is considered suspicious and flagged for cloning. The cloned packet is

then sent to the NIDS host for further analysis, where the NIDS engine determines whether
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the packet constitutes an attack or not. If a packet does not match any entries, this table

does not take action on the packet.

As mentioned previously, this work expands on the P4-ONIDS data-plane MATs.

The main enhancement is the support for IPv6 packets, achieved through the creation of

an IPv6 packet parser and a new IPv6 NIDS table. This IPv6 table is similar to the table

shown in Listing 5.1, with the only differences being its name, "ipv6_nids", the table entries

counter name, and the replacement of the string "v4" for "v6" in the "hdr.ip.v4.srcAddr"

and "hdr.ip.v4.dst_addr" key fields.

5.2.2 Tracking Suspicious Flows with a Count-Min Sketch

A NIDS operates by analyzing packets and flows to determine if they categorize

suspicious behavior or even a network attack. The MAT introduced in Section 5.2.1 clones

packets and forwards them to the NIDS, but lacks any flow monitoring functionalities. To

keep track of the flows during their lifetime, a Count-Min sketch (see Section 2.4) is used.

This probabilistic data structure functions as a frequency table for flows. Hash functions

map a packet’s 5-tuple (source and destination IP, source and destination port, and the

protocol field) to positions or cells in the arrays, allowing the Count-Min sketch to track

the packet count of a flow. In addition to flow tracking, the P4-ONIDS Count-Min uses a

safeguard against saturation attacks such as DDoS attacks by sending only the first N

packets of a suspicious flow to the NIDS. The Count-Min P4 implementation utilized in this

work is virtually the same as the one by P4-ONIDS. It uses P4 registers to build the hash

arrays and P4’s native provided hash function to determine the positions in the arrays. The

Count-Min query procedure is also the same, but the update procedure has been changed

due to a different implementation of the Count-Min aging mechanism.

To maintain the Count-Min size within reasonable bounds without compromising

its accuracy, it is crucial to reset the entries of idle flows from the Count-Min. However,

the resetting of idle entries from Count-Min is not one of its standard operations. There-

fore, P4-ONIDS adopted the timing-based aging method presented in [5] to handle idle

flows. In the original paper outlining this method, the cells of the bloom filters are marked

to indicate whether operations have been performed on them during a predefined time

window or phase. Bloom filters are probabilistic data structures similar to the Count-Min

sketches. At the start of a new phase, all flags are set to zero. By the end of a phase, non-

flagged cells are reset, effectively cleaning idle flow entries, while flagged cells remain

unchanged. Although the original paper employed this method for Bloom Filters, it can be

easily adapted to Count-Min sketches.

Although still inspired by this approach, the Count-Min aging implementation of

this work differs from the P4-ONIDS one due to the impracticality of the P4-ONIDS imple-



54

mentation. This impracticality arises from the fact that, in order to overcome the absence

of loops in P4, P4-ONIDS proposed to unfold the loop that resets all Count-Min cells. How-

ever, the original loop iterates over all cells of the data structure, meaning that the number

of lines of the unfolded loop will be at least the number of cells. For instance, suppose a

small Count-Min sketch with depth equal to four and width equal to 2048; the unfolded

loop would require at least 8192 lines of code. Due to this limitation, we changed the

approach for resetting Count-Min cells.

The new approach involves aging only the cells related to the current suspicious

packet in the switch that have not been updated in the previous phase. In this way, the

cells are only reset when operations are performed on them, rather than resetting all cells

every time a phase transition occurs, therefore, removing the necessity of unfolding the

loop. The first step of this approach is the transition of a phase, and this logic is displayed

in Listing 5.2. Similarly to P4-ONIDS, the phase transition in this work occurs every T

seconds, also known as the aging threshold. It occurs each time an IP packet enters the

network and before the cell aging process. After checking if the time has elapsed (line 6),

the phase tracker is incremented (lines 8-10), and the timestamp of the last increment of

the phase tracker is updated (line 12).

Listing 5.2: Updating the global phase tracker� �
1 apply {
2 if (hdr.ip.v4.isValid() || hdr.ip.v6.isValid()) {
3 bit<48> last_timestamp = 0;
4 last_phase_transition_time.read(last_time, 0);
5 bit<48> time_diff = standard_metadata.ingress_global_timestamp -

last_time;
6 if (time_diff > 1000000 * T) {
7 bit<16> global_window_id = 0;
8 global_window_tracker.read(global_window_id, 0);
9 global_window_id = global_window_id + 1;

10 global_window_tracker.write(0, global_window_id);
11
12 last_phase_transition_time.write(0, standard_metadata.

ingress_global_timestamp);
13 }
14 ...
15 }
16 }� �

With the phase transition defined, all that remains is to age the cells of the cur-

rent packet on the switch. Listing 5.3 details this logic. The update_count_min procedure

(line 1) occurs every time a packet matches a table entry and is deemed suspicious. First,

the positions of the hash array or cells are determined based on the chosen hash func-

tions (lines 2-7). Then, the main aging logic occurs (lines 10-21). It begins by reading the

frequency of each related Count-Min cell and its respective phase. With this information,

a cell is aged if the difference between its phase and the global phase is greater than or

equal to two, indicating that the cell has not been updated in the previous phase (cate-
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gorizing an idle flow). Each cell is aged separately since there is the possibility of hash

collisions leading to shared cells, and resetting a shared cell means that another flow’s

frequency could be underestimated, contradicting the Count-Min definition. Following this

process, the cells are incremented to account for the new packets while ensuring that they

do not exceed the N threshold. The last step is to update the phase tracker for these cells

to reflect the current global phase (lines 24-25).

Listing 5.3: Aging the Count-Min cells� �
1 action update_count_min(bit<16> protocol, bit<128> src_ip, bit<128> dst_ip, bit<

16> src_port, bit<16> dst_port) {
2 bit<32> hash1;
3 bit<32> hash2;
4 ...
5
6 hash(hash1, HashAlgorithm.crc16, 32w0, {src_ip, dst_ip, src_port, dst_port,

protocol}, COUNTMIN_WIDTH);
7 hash(hash2, HashAlgorithm.csum16, 32w0, {src_ip, dst_ip, src_port, dst_port,

protocol}, COUNTMIN_WIDTH);
8 ....
9

10 bit<16> gl_phase = 0;
11 global_phase_tracker.read(gl_phase, 0);
12 bit<10> count;
13 bit<16> aux_phase;
14
15 cm_array1.read(count, hash1);
16 phase_id_tracker1.read(aux_phase, hash1);
17 cm_array1.write(hash1, (gl_phase - aux_phase) >= 2? 1 :(count < N ? count +

1 : N+1));
18
19 cm_array2.read(count, hash2);
20 phase_id_tracker2.read(aux_phase, hash2);
21 cm_array2.write(hash2, (gl_phase - aux_phase) >= 2? 1 :(count < N ? count +

1 : N+1));
22 ...
23
24 phase_id_tracker1.write(hash1, gl_phase);
25 phase_id_tracker2.write(hash2, gl_phase);
26 ...
27 }� �

5.2.3 Data Plane Workflow

Figure 5.2 summarizes the logic presented in this section by illustrating the data

plane flow diagram for an incoming packet. When a packet enters the data plane, the

first step is to determine the egress port of the packet is based on the forwarding entries

provided by the control plane. Subsequently, the Count-Min aging mechanism updates
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the global phase tracker. Then, the data plane checks if the packet is suspicious by com-

paring it with the table entries of the NIDS table. If the packet does not match any entry,

indicating it is not suspicious, the packet is forwarded to the egress port determined at the

beginning. If the packet matches an entry, meaning that it is suspicious, the Count-Min

cells are checked to see if they need to be reset. If positive, the cells to age are zeroed.

Following the aging process, the data plane verifies if the reported frequency is lower than

the maximum packets to be sent per flow (the N threshold). If it is, the Count-Min cells are

incremented, the packet is cloned to the NIDS host, and the original packet is forwarded

to the determined egress port. If the reported frequency is greater than or equal to N, no

action is taken, besides forwarding the packet to its egress port.

Figure 5.2: Data plane workflow

5.3 Network-Wide Table Entries Orchestrator

With the rules converted to table entries, and the data plane programmed to re-

ceive them and filter traffic for the NIDS host, the last step is to strategically distribute

those table entries to multiple PDP devices by taking into account the memory of each

device and the network topology. The Network-Wide Table Entries Orchestrator is respon-
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sible for this task. Before presenting the algorithms used by the orchestrator to distribute

the table entries, it is essential to understand the assumptions for these algorithms. First,

malicious network traffic originates only from external devices, not internal ones, and

flows through a single forwarding node referred to as the source switch. Consequently,

the network is modeled after a directed acyclic graph (DAG), featuring a single source and

multiple sinks, where the network end-hosts are connected to only one forwarding device.

Furthermore, the table entries have severity levels, and their destination addresses can

take on three distinct values: "all", indicating all end hosts in the network; a subnetwork

(e.g., "172.16.30.0/24") encompassing multiple end-hosts; or a specific IP address (e.g.,

"192.168.30.40/32") targeting only one end host. Lastly, all the switches in the network

are P4 switches, and they have the same amount of available space for the compiled table

entries.

The only input for the orchestrator is the network information, as depicted in

Figure 5.1. The network information includes the network nodes (networking devices and

end hosts) and their links, the end hosts’ IP addresses and the available space for table

entries in each switch. Taking advantage of this information, the orchestrator offloads the

table entries to the data plane using the traditional approach, referred to as Simple, or the

two novel proposed algorithms, named First-fit and Best-fit. These methods are described

in the following:

• Simple: This approach, employed by the majority of the state-of-the-art works (ex-

cept [31]) and considered as our baseline, offloads all table entries to a single switch

randomly or ordered by their severity. In this work, the switch that receives all rules

is the source switch. The drawbacks of this method are extensively discussed in

Chapter 3.

• First-Fit: Modeled after the First-Fit algorithm for the bin-packing problem, this al-

gorithm initially attempts to offload all table entries to the source switch. If unsuc-

cessful, it starts distributing entries to downstream switches, beginning with those

closest (in hops) to the source switch. The process continues until all table entries

have been offloaded or there are no more switches available for offloading. Section

5.3.2 details this algorithm.

• Best-Fit: Inspired by the best-fit approach of the bin-packing problem, this algo-

rithm aims to place each entry in its best position. If it cannot offload an entry to

its best position, the algorithm searches for other switches where it can place the

table entry without altering the desired result of offloading to the best position. If

there is sufficient space to offload the missing entry to other device(s), it proceeds

with the offloading process; otherwise, it continues searching until all switches are

exhausted. This algorithm is described in Section 5.3.3
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The approach presented by [31] is not evaluated in this work, since the results

would be very similar to the Simple approach, but with a higher amount of offloaded table

entries. This similarity arises because the set of table entries offloaded to the data plane

would be the same, albeit replicated across all network devices. However, this replica-

tion would not offer improvements since the input traffic comes through only the source

switch, and all suspicious packets would already be matched in it before reaching the

other devices.

The remainder of this chapter is organized into three sections. First, in Section

5.3.1, the initial procedure performed by both algorithms proposed in this work is de-

tailed. This procedure divides the table entries into subsets according to their destination

address. Then, the First-Fit algorithm is detailed in Section 5.3.2. Finally, Section 5.3.3

outlines the Best-Fit approach step by step.

5.3.1 Grouping the Table Entries into Subsets

The two network-wide offloading algorithms introduced in this work employ the

same grouping of table entries into subsets based on the destination address of the en-

tries. This logic occurs before offloading the table entries to the PDP devices and is de-

tailed in Algorithm 5.1. There are three types of subsets, the "generic" subset, subsets

identified after a specific switch ID (e.g., "S1" and "S2"), and subsets identified by more

than one switch ID. The "generic" subset encompasses table entries destined for all end

hosts in the network (lines 4-5). For subsets named after a specific switch’s ID, the per-

tinent table entries are those where the associated end hosts are connected to only one

switch, which names the subset (lines 6-8 and lines 11-12). In subsets containing more

than one switch ID, the related table entries are those where the associated end hosts

are connected to more than one switch (lines 9-21). To name this multi-switch subset, the

first step is to define the group of switches connected to the end hosts, called the related

switches (line 10). Subsequently, the Lowest Common Ancestor(LCA) switch among the

related switches is defined (line 14). The source switch can also be a related switch. With

the LCA switch defined, the name of the subset is created by adding the LCA switch ID,

followed by the "+" and the list of related switches separated by the "-" sign (lines 15-18).

The order of the related switches is determined by the topological order of the network

starting at the LCA switch.

To better understand how Algorithm 5.1 works, Figure 5.3 illustrates an example

scenario. The figure presents a network topology with four switches and five end hosts,

illustrating network links and highlighting the source switch in red. It further provides an

example scenario by specifying the number of table entries to offload for each destination

and the available space in each switch for these table entries. In this example, the 15
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1: function create_subsets (network_info, table_entries)
2: subsets← {}
3: for each table entry t in table_entries do
4: if t .dst_addr is "all" then
5: subset ["generic"] .append (t)
6: else if t .dst_addr .CIDR is "/32" then
7: sw_id← get_switch (network_info, t .dst_addr )
8: subset [sw_id] .append (t)
9: else if t .dst_addr .CIDR is not "/32" then

10: related_switches← get_related_switches (network_info, t .dst_addr )
11: if len(related_switches) = 1 then
12: subset [related_switches[0]] .append (t)
13: else
14: LCA_switch← LCA (network_info, related_switches)
15: subset_name← LCA_switch + “ + ”
16: for each switch s in related_switches do
17: subset_name← +“− ” + s
18: end for
19: subset [subset_name] .append (t)
20: end if
21: end if
22: end for
23: return subsets

Algorithm 5.1: Group the table entries into subsets based on their destination address

table entries intended for all end hosts form the "generic" subset. The 10 entries for

the "192.168.100.0/24" subnetwork constitute the "S1+S3-S4" subset, named after the

S1 LCA switch and the S3 and S4 related switches. The 15 table entries destined to the

"172.16.10.0/24" subnetwork are grouped into the "S2" subset, while the 10 table entries

for the "10.0.10.100/32" end-host are assigned to the "S3" subset.

5.3.2 First-Fit Algorithm

The main idea of the First-Fit algorithm is to offload all table entries to the source

switch, and if this is not possible, to the closest switches to the source switch in terms

of hop count. Described in Algorithm 5.2, the algorithm operates as follows. Once the

subsets are created (line 2), it orders the switches for offloading using the topological sort

(line 4). The algorithm then iterates over the ordered switch list, aiming to offload all table

entries associated with each switch that have not been offloaded to other switches (lines

5-12). Subsets related to a switch are those that contain table entries destined for the

end hosts connected to that switch (line 6). Each time a switch initiates the offloading
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Figure 5.3: Example scenario

process, it examines the previously offloaded table entries to identify the entries it still

needs to receive (line 6). In addition to determining the subsets to be offloaded for a

switch, the algorithm also orders them (line 6). The prioritization for the subsets of a switch

is as follows: the "generic" subset takes precedence, then the multi-switch subsets where

the switch is a related switch, followed by the specific subset named after the switch,

and lastly, subsets destined for "descendant" nodes. If all the table entries designated

to a switch are already offloaded, the algorithm follows to the next switch (lines 7-9);

otherwise, the entries are offloaded (line 10), and the information about the offloaded

subsets is updated (line 11). After iterating over all switches, the algorithm finishes, having

either offloaded all table entries or not.
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1: function first_fit (network_info, table_entries)
2: subsets← create_subsets (network_info, table_entries)
3: offloaded_subsets_runtime_info← {}
4: ordered_switches← topological_sort_switches (network_info)
5: for each switch sw in ordered_switches do
6: entries_to_offload← get_subsets_for_switch (sw , subsets, offloaded_subsets_runtime_info)

7: if len (entries_to_offload) = 0 then
8: continue
9: end if

10: missing_entries← offload (sw , entries_to_offload)
11: update_runtime_subsets_info (offloaded_subsets_runtime_info, missing_entries)
12: end for

Algorithm 5.2: First-Fit algorithm

Taking into account the example scenario in Figure 5.3 and the subsets created

using Algorithm 5.1 (see Section 5.3.1), the First-Fit algorithm offloads as follows. First, it

offloads the 15 table entries of the "generic" subset and five entries from the "S1+S3-S4"

subset ("192.168.100.0/24" subnetwork) to S1. Moving to S2, as not all entries were of-

floaded, the algorithm offloads the 15 entries of the "S2" subset since it prioritizes subsets

related to the S2 switch over "descendant" node subsets, i.e., the "S1+S3-S4" subset. For

the remaining space of S2, it offloads five entries of the "S1+S3-S4" subset to S2. Pro-

ceeding to S3, the algorithm offloads the remaining 10 table entries of "S1+S3-S4" and

the 10 table entries of the "S3" subset. Finally, S4 receives the remaining 5 table entries

of the "S1+S3-S4" subset.

Overall, there were 15 duplicate table entries offloaded, all from the "S1+S3-S4"

subset. This duplication occurred because the "S1+S3-S4" subset could not be offloaded

at S1 alone, necessitating the replication of table entries to ensure the protection of end-

hosts in both paths. The Firs-Fit algorithm successfully offloaded the table entries required

by all end hosts of the example scenario, a capability that the Simple method could not

offer, as it would have only offloaded 20 table entries out of the total of 55 entries.

5.3.3 Best-Fit Algorithm

The core of the Best-Fit algorithm is to offload the table entries directly to their

best positions. Algorithm 5.3 details the Best-Fit logic, with its operation described next.

Once the subsets are created (line 2), the algorithm orders them based on their type

(line 3). First in line are the subsets named after specific switch IDs (e.g., "S1" and "S2"),

arranged according to the topological sort of the switches. Next in the sequence are the
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multi-switch subsets, ordered according to their related switches, again using the network

topological sort. The "generic" subset takes the last position in this ordering.

With the subsets ordered, the algorithm proceeds with the offloading phase (lines

4-15). For subsets associated with specific switch IDs, it begins by offloading them to

the switch that names the subset, their best switch (lines 7-14). If the algorithm fails to

offload all entries to the best switch, it extends the offload to the switches in the path(s)

between the best switch and the source switch starting with the switches closest to the

best switch (lines 7-14). This ensures that packets destined for a switch still pass through

all the entries related to that switch. Moving on to the multi-switch subsets, the offloading

starts at their LCA switch (the multi-switch subsets best switch) as offloading to the LCA

switch eliminates duplicate entries (lines 7-14). If not all table entries are offloaded to

the LCA switch, the algorithm continues down the paths to the related switches (lines 5-

10), offloading duplicate table entries when required (lines 7-14). Finally, the "generic"

subset is offloaded, initially to the source switch (lines 7-14). In cases where offloading

to the source switch is not feasible, the distribution of the "generic" subset extends to its

descendant nodes, continuing until all table entries are successfully offloaded or there is

no more available space (lines 7-14).

1: function best_fit (network_info, table_entries)
2: subsets← create_subsets (network_info, table_entries)
3: ordered_subsets← order_subsets (network_info, subsets)
4: for each subset sub in subsets do
5: related_switches← get_subset_path (network_info, sub)
6: entries_to_offload← sub
7: for each switch sw in related_switches do
8: missing_entries← offload (sw , entries_to_offload)
9: if len(missing_entries) = 0 then

10: break
11: end if
12: update_switch_info (network_info)
13: entries_to_offload← missing_entries
14: end for
15: end for

Algorithm 5.3: Best-Fit algorithm

Based on the example scenario depicted in Figure 5.3 and the subsets created

using Algorithm 5.1 in Section 5.3.1, the Best-Fit algorithm performs the following offload.

Initially, it offloads all 15 table entries of the "S2" subset to S2. Subsequently, it offloads

the 10 table entries from the "S3" subset to S3. Moving to the multi-switch subsets, it of-

floads the 15 table entries from the "S1+S3-S4" subset and five from the "generic" subset

to S1. Finally, it offloads the remaining table entries of the "generic" subset: five table

entries to S2, 10 table entries to S3, and five table entries to S4.
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Overall, 10 duplicate table entries were offloaded, all from the "generic" subset.

Although the Best-Fit algorithm successfully offloaded all table entries, five entries from

the "generic" subset were not offloaded along the path to the S2 end host from the source

switch. This omission leaves S2’s end host susceptible to network attacks against which

those table entries could have protected. By prioritizing subsets specific to individual

switches, the Best-Fit approach may result in some multi-switch or "generic" table en-

tries not being offloaded, contrasting with the First-Fit algorithm, which might not offload

entries from subsets identified by individual switches.
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6. EVALUATION

In this chapter, the offloading algorithms for network-wide table entries intro-

duced in Section 5.3 are evaluated. Initially, the experimental setup, including the com-

puting resources and input workload, is presented. Subsequently, this chapter details

the evaluation of the data plane parameters to determine the optimal configuration for

the data plane algorithms. Finally, the table entry offloading algorithms are evaluated in

different scenarios.

6.1 Experimental Setup

The P4 NIDS Rules Compiler and the Network-Wide Table Entries Orchestrator are

implemented in Python 3.10, while the P4 Data Plane is written in P4-16 for the Behavioral

Model version 2 (BMv2) software switch. The P4 environment is created through the P4

tutorials1 virtual machine, which includes all the necessary tools to emulate a network

with Mininet2 and run P4 programs. For this VM we allocated 22 cores, 146GB of memory,

and 32GB of disk space. This VM was hosted inside another machine, an Ubuntu 22.04.3

VM with 26 cores, 200GB of memory, and 300GB of disk space. The NIDS software engine

used in this evaluation to receive and analyze the packets forwarded from the data plane

is Snort 3. The input ruleset for the compiler and the Snort 3 instance is the Snort 3

Registered ruleset, chosen for its extensive coverage of attack types. The deployment

configuration for the Snort 3 engine in this evaluation is the one discussed in Chapter 4

and illustrated in Listing 4.3.

For the experiment’s workload, we selected the CICIDS2017 dataset3 [36]. This

dataset contains benign and malicious network traffic stored in PCAP (Packet Capture)

files to resemble real-world data. It consists of five PCAPs, each corresponding to a day

of the week and featuring realistic traffic. Monday simulates a normal day and contains

only benign traffic, while Tuesday, Wednesday, Thursday, and Friday contain a mixture

of benign and malicious traffic. The attacks implemented include Brute Force FTP, Brute

Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet, and DDoS. Table 6.1 shows

the number of packets per PCAP and the alerts generated by Snort 3 when using these

PCAPs as input with the three rulesets of Table 4.1. Despite Monday containing only benign

traffic, it generated a significant number of alerts, especially for the Snort 3 Community

and Snort 3 Registered rulesets. This occurs because these rulesets contain many rules

indicating suspicious traffic, which may not necessarily signify attacks, generating alerts

1https://github.com/p4lang/tutorials
2http://mininet.org/
3https://www.unb.ca/cic/datasets/ids-2017.html
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even for benign traffic. Throughout the remainder of this chapter, this table serves as the

baseline data which all subsequent experiments are compared.

Table 6.1: CICIDS2017 dataset and Snort rulesets

PCAP Amount of packets
Quantity of alerts

Snort 3
Community

Snort 2
Emerging Threats

Snort 3
Registered

Monday 11709971 40384 7144 65903

Tuesday 11551954 51563 24652 83940

Wednesday 13788878 214634 20801 415093

Thursday 9322025 38204 40180 74275

Friday 9997874 37720 97914 67570

6.2 Data Plane Parameters Experiments

Before evaluating the proposed network-wide offloading algorithms, it is crucial

to determine the optimal parameters for the data structures and algorithms of the P4 data

plane described in Section 5.2. This evaluation centers on three parameters: the phase

transition threshold for the Count-Min aging method (T), the number of packets to clone

from a suspicious flow to the NIDS engine (N), and the width of the hash arrays of the

Count-Min sketch (W). To determine the best configuration, this section explores various

combinations of these three parameters and compares the results. Section 6.3 focuses on

the T and W parameters, while Section 6.4 analyzes the N and W parameters.

In these experiments, two metrics are employed to establish the best configura-

tion: the number of alerts generated by the NIDS engine compared to the baseline alerts

and the number of cloned packets sent to the NIDS host compared to the baseline. The first

metric is associated with the capacity of the NIDS engine to detect attacks when the net-

work traffic is pre-filtered by the PDP. A similar match to the baseline alerts is mandatory.

The second relates to the pattern matching saturation problem caused by the excessive

number of packets this stage must process. Lower values are preferred, but only if the

number of alerts does not decrease. The baseline data mentioned in these metrics are

detailed in Table 6.1.

The topology used to evaluate the data plane parameters is shown in Figure 6.1.

It includes a source host, the P4 switch with the data plane outlined in Section 5.2, the

Snort 3 NIDS engine, and an end host. The source host sends all network traffic to the end

host. The network traffic input consists of the five PCAPs from the CICIDS2017 dataset,

transmitted at a rate of 1000 packets per second (pps) through the tcpreplay4 tool. This

4https://tcpreplay.appneta.com/
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rate was selected due to the performance limitations of the P4 BMv2 switch. In this topol-

ogy, the original packets traverse the switch towards the end host, while suspicious pack-

ets are cloned and forwarded to the NIDS engine. The NIDS engine processes these pack-

ets to identify suspicious behavior, generating an alert if positive. This setup represents

a worst-case scenario and provides an upper bound for the parameters since the switch

must process all the network traffic.

Figure 6.1: Topology used for evaluating the data plane parameters

6.3 Analyzing the T and W Parameters

We begin the experiments by investigating the phase transition threshold (T) and

the Count-Min width parameter (W). Initially, we set the phase transition threshold to 10

seconds, then 25 seconds, and finally 50 seconds. Regarding the Count-Min width, we

test with 256, 512, 1024, 4096 and 16384 with each of the T values. It is important

to note that the width is associated with the length of the hash arrays, not the number

of hash arrays, which remained fixed at 4 throughout the experiments. The four hash

functions used were: crc16, csum16, crc16_custom and crc32. Future research should

explore the variations of the number of hash arrays and the hash functions to assess

its impact on performance. The N parameter is fixed at 10 packets for this initial set of

experiments. Figure 6.2 displays the graphs for the number of alerts and cloned packets

per PCAP compared to the baseline with T=10 while varying the W parameter. Figure 6.3

presents the same metrics for T=25, while Figure 6.4 shows it for T=50.

When analyzing these graphs, it is visible that larger W values lead to an increase

in both the number of alerts and packets sent to the NIDS host, regardless of the T param-

eter. This is attributed to larger Count-Min widths causing fewer hash collisions. However,

improvements due to increasing the Count-Min width are observed only up to W=4096,

as experiments with W=16384 show similar results. Regarding the results for each PCAP,
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the "Wednesday" PCAP had only a small fraction of the alerts compared to the baseline

data for all T and W values. The "Tuesday" and "Thursday" PCAPs showed poor results

with small Count-Min widths, but as it increased, the number of alerts increased, reaching

over 60% correspondence with the baseline alerts. The PCAPs for "Friday" and "Monday"

initially had poor alert results, but as the width increased, the alerts reached a 90% match

with the baseline data. For all PCAPs and experiments, the number of packets sent to the

NIDS host accounted for less than 25% of the baseline data. Lastly, comparing the results

among the different T values reveals that the smaller thresholds generated more alerts.

This is attributed to the more frequent aging of the Count-Min entries and, consequently,

the increase in packets cloned to the NIDS. However, when using larger W values, the

impact of the T threshold is not as pronounced.

(a) Alerts (b) Packets cloned

Figure 6.2: Percentage of alerts and packets cloned for N=10 and T=10

(a) Alerts (b) Packets cloned

Figure 6.3: Percentage of alerts and packets cloned for N=10 and T=25
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(a) Alerts (b) Packets cloned

Figure 6.4: Percentage of alerts and packets cloned for N=10 and T=50

6.4 Analyzing N and W Parameters

After experimenting with T and W parameters, the number of packets required to

send a suspicious flow to the NIDS engine (threshold N) was evaluated. To do this, T was

fixed at 10 seconds, since this value produced the highest number of alerts generated for

all PCAPs, and the W parameter varied between 1024, 4096 and 16384, since these values

resulted in the best outcomes with T=10. The N parameter was tested with 10, 25, 50,

100, 200, 400 and 800 packets for each one of the W values. Figure 6.5 shows the number

of alerts and cloned packets per PCAP compared to the baseline data with W=1024 while

varying the N parameter. Figure 6.6 presents the same metrics for W=4096, while Figure

6.7 shows it for W=16384.

(a) Alerts (b) Packets cloned

Figure 6.5: Percentage of alerts and packets cloned for T=10 and W=1024
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(a) Alerts (b) Packets cloned

Figure 6.6: Percentage of alerts and packets cloned for T=10 and W=4096

(a) Alerts (b) Packets cloned

Figure 6.7: Percentage of alerts and packets cloned for T=10 and W=16384

As observed in these graphs, the number of alerts compared to baseline data

remained practically the same for experiments and PCAPs. Only in the results for W=1024

(Figure 6.7b), it is possible to see a growth in alerts when increasing N from 10 to 25

packets. Despite the alerts remaining the same, the number of packets sent to the NIDS

host increased as the N parameter grew for all PCAPs and W sizes. This demonstrates that

despite the fact that more packets reached the NIDS host, the additional packets were not

suspicious or, at least, did not trigger further alerts. Based on these results, we selected

the following configuration for the network-wide offloading algorithms evaluation: T=10

for the phase transition threshold of the Count-Min aging method, as it demonstrated the

best results for all W sizes; W=16384 for Count-Min hash arrays width, as it yielded the

highest number of alerts among all tested T values; and N=200 for the number of packets

to send from a suspicious flow to the NIDS engine, as an average value, considering that

all N values tested showed good results.
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With the data plane parameters defined, the memory footprint of the P4 data

plane can be calculated. The Count-Min sketch and its aging method use registers to store

information. A register is a vector containing multiple positions or entries of a certain

type of data. The Count-Min sketch entries store 10-bit values, whereas the aging method

arrays’ entries used to track the phase of each Count-Min position store 16-bit values.

These sizes can be adjusted to better fit the desired behavior, but for our experiments,

they are sufficient. Regarding the memory footprint of the P4 data plane, we have the

following: the Count-Min sketch uses four hash arrays each with 16384 entries of 10 bits,

resulting in 82KB of memory, while the aging method uses 16-bit entries for the same

number of entries, resulting in 131KB of memory. Combined, the total memory usage for

the P4 data plane to track suspicious flows is 213KB, which is quite small.

6.5 Evaluating the Network-Wide Offloading Algorithms

With the data plane parameters selected, the next set of experiments evaluates

the algorithms outlined in Section 5.3, which the network-wide orchestrator employs to

offload the compiled table entries. The three algorithms discussed are as follows: Sim-

ple, First-Fit, and Best-Fit. They are assessed in two network topologies, linear and tree,

with varying memory availability in the switches. The memory availability scenarios are

described in Table 6.2, and are based on the number of table entries generated by the

compiler for the Snort 3 Registered ruleset. The amount of space for the table entries is

the same in all the switches in the network. Three main metrics guide this evaluation:

the number of alerts generated by the NIDS engine compared to the baseline alerts, the

number of cloned packets sent to the NIDS host compared to the baseline, and the num-

ber of table entries offloaded to the data plane. In the two topologies considered in this

evaluation, there is only one source host (simulating the external network) responsible for

sending all packets from the CICIDS2017 dataset at a rate of 1000 pps via the tcpreplay

tool.

Table 6.2: Memory availability scenarios

Memory availability
scenario

Table entries available
per switch

100% 1465

75% 1099

50% 733

25% 367

For the Simple algorithm, which is our baseline algorithm and is used in most

state-of-the-art work, the results are independent of the topology, since it only offloads
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to the source switch (and one of the presuppositions is the existence of only one source

switch), where the outside traffic enters the network. The results of the Simple algorithm

are detailed in Section 6.5.1. For the First-Fit and Best-Fit algorithms, their evaluations

on different topologies and the corresponding results are detailed in Section 6.5.2 for the

linear topology and Section 6.5.3 for the tree topology. The host IP addresses in the topolo-

gies are based on the attackers’ and victims’ IPs from the CICIDS2017 dataset. Forwarding

rules are installed on the switches to correctly direct traffic to the end hosts (victims) from

the source switch.

6.5.1 Simple Algorithm Results

Figure 6.8 presents the generated alerts and the cloned packets in the NIDS en-

gine for the Simple algorithm when prioritizing the offloading of the table entries with

higher severity. The results are, at first, unexpected because the alerts remained stable

in all scenarios, although only 25% of all table entries were offloaded. A closer analysis re-

veals that only a few table entries match most of the traffic considered suspicious (i.e., the

traffic cloned to the NIDS engine), and these entries are always offloaded in the scenarios

outlined in Table 6.2. These entries are always offloaded due to their high severity, mak-

ing them a priority in the offloading process. In addition to a few table entries that match

most of the suspicious traffic, the alerts generated by Snort predominantly originate from

a small set of rules.

(a) Alerts (b) Packets cloned

Figure 6.8: Percentage of alerts and packets cloned for the Simple algorithm with table
entries ordered by severity

To exemplify this condition, consider the high-severity table entry presented in

Listing 6.1, designed to match TCP SYN packets coming from "any" location and reaching

the end hosts in subnet "192.168.10.0/24" at "any" port.
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Listing 6.1: Table entry matching most of the Friday PCAP traffic� �
alert 0x6 0.0.0.0&&&0.0.0.0 0->65535 192.168.10.0&&&255.255.255.0 0->65535

00000010� �

Listing 6.1 entry matched 3,921,168 packets for the Friday PCAP, approximately

40% of the total packets for this PCAP. This entry of high severity was always offloaded,

contributing to the stable number of cloned packets in the NIDS observed in Figure 6.8b.

Although no other table entry matched as many packets, a few other high-severity entries

matched several hundred thousand packets. Together, these entries constituted practi-

cally all traffic forwarded to the NIDS engine, despite being a small group. This monopo-

lizing behavior is also seen in the alerts generated by the Snort 3 engine. For the Friday

PCAP, the Snort rule with Signature ID (SID) 254, generated 36,325 alerts, almost half of

all alerts from the baseline data.

(a) Alerts (b) Packets cloned

Figure 6.9: Percentage of alerts and packets cloned for the Simple algorithm with randomly
ordered table entries

Due to the concentration of alerts and packets to clone in a few high-severity

rules and table entries across all PCAPs, a new approach was necessary to demonstrate

the importance of memory and topology-aware algorithms that strategically offload table

entries to multiple PDP devices. To this end, the table entries are offloaded without consid-

ering their severity, and the offloading order is random. The results of this new approach

are shown in Figure 6.9, and in them, the decrease in performance is evident when there

is limited space available to offload the table entries. In the scenario with 75% memory

availability, the number of packets sent to the NIDS sharply declined, while the number

of alerts remained constant. This implies that certain table entries that matched several

packets, but not suspicious ones, were not offloaded to the PDP. When the available space

was further reduced to 50% of the size of the table entries, the number of alerts dropped

abruptly, indicating that the table entries that corresponded to a significant volume of
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suspicious traffic were not removed. For the remainder of this evaluation and to maintain

consistency, the table entries to be offloaded are the randomly ordered table entries used

in this new approach.

6.5.2 Linear Topology Experiments

The linear topology used in the experiments is illustrated in Figure 6.10. It con-

sists of one source switch (S1) (with a red border) where the network traffic enters the

network, and four forwarding switches (S2, S3, S4 and S5) connected to the end hosts.

The source switch is also connected to one host (a firewall).

Figure 6.10: Linear topology diagram

Before offloading the table entries to the data plane for the First-Fit and Best-Fit

algorithms, there is the initial step of dividing the entries into subsets based on their

destination address. Considering the linear topology of Figure 6.10 and the table en-

tries compiled from the Snort 3 Registered ruleset, the subsets are the following: the

"generic" subset containing 77 table entries with the destination set to all hosts in the net-

work; the "S2+S2-S3-S4-S5" multi-switch subset comprising 347 entries that contain the

"192.32.10.0/24" network as the destination (to understand the name of this subset go to

Section 5.3); the "S1" subset consisting of 347 entries with the "172.16.0.0/16" network

as the destination; and the "S2" subset with 694 entries utilizing the "205.174.165.68" or

"205.174.165.66" IP as the destination address.

With the subsets defined, the table entries are offloaded. Figure 6.11 illustrates

the number of unique and duplicate table entries offloaded to the PDP by each algorithm,

while Table 6.3 specifies the switches to which the entries were offloaded. The number of
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table entries offloaded by the Simple algorithm is directly linked to the available memory

of the source switch (S1). In contrast, the other two algorithms, First-Fit and Best-Fit,

are not limited by this constraint, since they consider multiple networking devices. This

advantage is evident in Figure 6.11, as the only scenario in which they were unable to

offload all the table entries is the 25% memory availability scenario. Even in this case,

they managed to offload at least half of all table entries.

Figure 6.11: Table entries offloaded to the data plane by each algorithm with the linear
topology

Table 6.3: Table entries per switch for the First-Fit and Best-Fit algorithms in the linear
topology

Memory availability

scenario

First-Fit Best-Fit

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

100% 1465 0 0 0 0 771 694 0 0 0

75% 1099 366 0 0 0 771 694 0 0 0

50% 733 732 0 0 0 733 732 0 0 0

25% 367 367 0 0 0 367 367 367 57 0

Figure 6.12 illustrates the alerts generated and the cloned packets sent to the

NIDS engine for the First-Fit algorithm. The number of alerts remains constant for all

PCAPs, even in the 25% scenario, where only half of all table entries are offloaded. This

stability is attributed to the grouping into subsets of the table entries and the prioritization

of the "generic" and "S2+S2-S3-S4-S5" subsets, as they contain the table entries respon-

sible for cloning most of the packets to the NIDS engine. An interesting observation arises
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in the 25% scenario of Figure 6.12b: the number of packets sent to the NIDS increased,

but the alerts did not. This occurs because, in the 25% scenario, the First-Fit algorithm

offloads all "generic" table entries and some "S1" entries to S1, and all "S2+S2-S3-S4-S5"

(i.e., the table entries with "192.32.10.0/24" as destination) and some "S2" entries to S2.

With this distribution, some packets first match the "generic" table entries and, later, the

"S2+S2-S3-S4-S5" table entries, causing the same packet to be cloned twice to the NIDS

host. This does not happen when the "generic" and "S2+S2-S3-S4-S5" table entries are

offloaded to the same switch (50%, 75% and 100% scenarios), since P4 tables permit just

one match. To avoid overcounting alerts in this situation, packets sent twice to the NIDS

engine that generate the same alert are not counted.

(a) Alerts (b) Packets cloned

Figure 6.12: Percentage of alerts and packets cloned for the First-Fit algorithm with the
linear topology

(a) Alerts (b) Packets cloned

Figure 6.13: Percentage of alerts and packets cloned for the Best-Fit algorithm with the
linear topology
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Figure 6.13 shows the results for the Best-Fit algorithm. Unlike the First-Fit results,

both the number of alerts and cloned packets decreased in the 25% scenario, although

the Best-Fit algorithm offloaded more table entries in this scenario (see Figure 6.11). This

occurs because the Best-Fit algorithm prioritizes the subsets destined for a specific switch,

namely the "S1" and "S2" subsets, which do not contain the most relevant entries for the

input PCAPs. Due to this prioritization, the Best-Fit algorithm offloads the "S2+S2-S3-S4-

S5" and "generic" subsets only at S3 and S4, respectively, leaving the hosts in S1, S2,

and S3 exposed to malicious packets and the NIDS oblivious to them. Another observation

is a slight increase in packets forwarded to the NIDS host in the 50% scenario for the

Wednesday PCAP. The reason for this is similar to the First-Fit increase in the 25% scenario:

the table entries in different switches match the same packets, being sent twice to the

NIDS.

6.5.3 Tree Topology Experiments

The tree topology used in this evaluation is shown in Figure 6.14. It includes one

source switch (S1) (with a red border) in which the network traffic enters the network,

three switches (S3, S4, S5) connected to end hosts, and one switch without hosts (S2).

The source switch is also connected to one host (a firewall).

The subsets of table entries created for the First-Fit and Best-Fit algorithms, based

on the tree topology illustrated in Figure 6.14 and the table entries compiled from the

Snort 3 Registered ruleset, are as follows: the "generic" subset containing 77 table entries

with the destination set to all hosts in the network; the "S1+S3-S4-S5" multi-switch subset

comprising 347 entries that contain the "192.32.10.0/24" network as the destination (to

understand the name of this subset go to Section 5.3); the "S1" subset consisting of 347

entries with the "172.16.0.0/16" network as the destination; and the "S3" subset with 694

entries utilizing the "205.174.165.68" or "205.174.165.66" IP as the destination address.

After the subsets are defined, the table entries are offloaded. Figure 6.15 displays

the number of unique and duplicate table entries offloaded to the data plane by each

algorithm, and Table 6.4 details the switches to which the entries were offloaded. The

number of table entries offloaded by the Simple algorithm is the same as in the linear

topology. For the First-Fit and Best-Fit algorithms, they offloaded all entries and protected

all hosts down to the 50% scenario. For the 25% scenario, not all entries were offloaded,

and a considerable number of offloaded table entries are duplicates. The presence of

duplicate table entries in the tree topology for both proposed algorithms is attributed to

the existence of two paths: one going from S1 (the source switch) to S2 and the other

going to S3.
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Figure 6.14: Tree topology diagram

Table 6.4: Table entries per switch for the First-Fit and Best-Fit algorithms in the tree topol-
ogy

Memory availability

scenario

First-Fit Best-Fit

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

100% 1465 0 0 0 0 771 0 694 0 0

75% 1099 0 366 0 0 771 0 694 0 0

50% 733 38 732 0 0 733 38 732 0 0

25% 367 367 367 0 0 367 367 367 57 57

The percentage of generated alerts and cloned packets sent to the NIDS engine

for the First-Fit algorithm with tree topology is shown in Figure 6.16. The results of the

First-Fit algorithm in tree topology are similar to those in linear topology. The alerts remain

stable throughout the four memory availability scenarios, whereas the number of cloned

packets increases with the 25% scenario due to table entries in different switches sending

the same packets. Regarding the duplicate table entries for the 50% scenario, the 38

duplicate table entries are from the "S1+S3-S4-S5" subset offloaded both to S2 and S3.
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Figure 6.15: Table entries offloaded to the data plane by each algorithm with the tree
topology

This duplication occurs because these switches are on separate paths, where both have

end hosts that need the table entries of this subset that were not offloaded to S1. In

the 25% scenario, the same problem occurs, but in this case, all 347 table entries of the

"S1+S3-S4-S5" subset must be offloaded to S2 and S3. Once again, the First-Fit algorithm

demonstrated stable and good results, given its prioritization of the "generic" and "S1+S3-

S4-S5" subsets, which contain the table entries that clone most packets to the NIDS for

the input dataset.

(a) Alerts (b) Packets cloned

Figure 6.16: Percentage of alerts and packets cloned for the First-Fit algorithm with the
tree topology
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Figure 6.17 presents the results for the Best-Fit algorithm. The number of alerts

remained stable in all scenarios, with a slight decrease in the scenario of 25% memory

availability. Instability in the volume of packets forwarded to the NIDS occurred only in

the 25% scenario. In this scenario, some PCAPs had a slight increase in the number of

cloned packets, while others had a minor decrease. The increase was caused by entries in

different switches matching the same packet, while the decrease was due to not all table

entries being offloaded. The improved performance of the Best-Fit algorithm in the tree

topology compared to the linear topology is attributed to the complete offloading of the

"generic" and "S1+S3-S4-S5" subsets (the subset with the "192.168.10.0/24" network as

the destination) for more end hosts. Regarding duplicate entries, the duplicates in the 50%

scenario are for the "generic" subset entries in S2 and S3 that could not be offloaded to

S1. Whereas for the 25% scenario, the duplicate 57 entries are from the "generic" subset

and they were offloaded to S4 and S5 since the "generic" subset could not be offloaded to

S1 and S2, and both S4 and S5 contain end hosts encompassed by the "generic" subset.

(a) Alerts (b) Packets cloned

Figure 6.17: Percentage of alerts and packets cloned for the Best-Fit algorithm with the
tree topology

6.6 Discussion

This chapter detailed the evaluation of the network-wide table entries offloading

algorithms presented in Section 5.3. To start, an assessment of the parameters of the

data plane was conducted to determine the optimal configuration. The evaluation showed

that the W parameter had a more significant impact compared to the other parameters,

while the N variable did not prove as influential as anticipated. More importantly, it be-

came apparent that the number of alerts compared to the baseline data stagnated for all

input PCAPs, never achieving an exact match. The Wednesday PCAP, in particular, had an
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extremely low correlation with the baseline alerts. For future work, it is crucial to replicate

the evaluation with a higher packet rate, as the main attacks of CICIDS2017 are DoS and

certain Snort rules only generate alerts with a specific packet rate. The chosen packet

rate of 1000pps, defined due to BMv2 limitations, hardly configures a DoS behavior. Fur-

thermore, it is imperative to revisit the P4 data plane to identify potential shortcomings

that contribute to this limitation. Addressing these aspects will contribute to a more com-

prehensive understanding and enhancement of the proposed solution.

In the experimental analysis of the algorithms, it becomes evident that the choice

of table entries to offload and the characteristics of the input traffic significantly influ-

ence the results. As described in Section 6.5.1, a small number of table entries were

responsible for forwarding most of the traffic to the NIDS engine, and a small set of Snort

rules generated the majority of alerts. Regarding the final results, the network-wide al-

gorithms demonstrated superior performance compared to the Simple algorithm, as they

consistently offloaded a larger number of table entries to the PDP. In particular, the First-

Fit algorithm exhibited better overall performance, despite offloading fewer table entries

compared to the Best-Fit algorithm. This can be attributed to the First-Fit algorithm’s priori-

tization of the "generic" subset and the subset of table entries with the "192.168.10.0/24"

network as the destination. These subsets contained the table entries that matched a

substantial portion of the packets, leading to more packets being forwarded to the NIDS

engine and, consequently, generating more alerts.
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7. CONCLUSION

This work explored the possibility of leveraging the network-wide orchestration

of PDP devices to pre-filter the network traffic for the NIDS host with the goal of enhanc-

ing its performance. Although NIDSs play a crucial role in protecting networks against at-

tacks, the ever-increasing volume of network traffic poses a substantial challenge to them,

particularly in high-throughput networks. The bottleneck typically occurs in the pattern

matching stage, where incoming packets are meticulously compared against thousands

of signature rules indicative of malicious or suspicious traffic patterns. State-of-the-art

approaches propose leveraging the PDP paradigm to offload these signature rules directly

to the forwarding devices, effectively prefiltering the network traffic for the NIDS and for-

warding only suspicious packets to it. However, existing proposals present some limi-

tations. Most of them do not address the memory limitations of PDP devices correctly.

More importantly, they overlook the potential orchestration among multiple networking

devices, opting instead to offload all rules to a single device or replicating the rules in all

devices. These limitations shown by the proposals can impact their effectiveness, as these

solutions rely on the assumption that all signature rules are successfully offloaded to the

PDP. Failure to offload these signature rules could compromise the solution’s efficacy, as

suspicious packets might not reach the NIDS engine, allowing attacks to go unnoticed.

To overcome these shortcomings while still addressing the NIDS saturation prob-

lem in a similar manner to state-of-the-art works, we leveraged the network-wide orches-

tration of programmable devices to prefilter network traffic for the NIDS. We started by

improving the P4 NIDS rules compiler of P4-ONIDS [37] by broadening the types of rules

it accepts. We also improved its compilation time and reduced its memory usage, as de-

tailed in Chapter 4. Then, in Chapter 5, we presented the P4 data plane responsible for

prefiltering network packets and forwarding suspicious packets to the NIDS engine based

on the compiler’s table entries. Lastly, we designed a network-wide table entries orches-

trator to strategically distribute the compiled entries to multiple PDP devices while con-

sidering the device’s memory and network topology. This orchestrator can offload these

entries through three approaches: Simple, similar to those used in state-of-the-art works,

where all entries are offloaded to the device(s) of the network entry point (named source

switch in this work); First-Fit, where the table entries are initially offloaded to the source

switch, and if not possible, then to downstream devices in the network until all entries are

offloaded or the available space is exhausted; and Best-Fit, which attempts to offload a

table entry to its best position, and if not possible to other devices in the path(s) from the

source switch to the best device.

For our experiments, detailed in Chapter 6, we started by selecting the optimal

parameters for the P4 data plane algorithms through experimentation. Once defined,

we proceeded to evaluate the network-wide orchestrator algorithms. The evaluation en-
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compassed two classical network topologies, linear and tree, across four distinct memory

availability scenarios. The results underscored the superior adaptability of algorithms

that consider multiple devices. The two network-wide algorithms successfully offloaded

all table entries in three of the four scenarios and at least half of the entries in the 25%

memory availability scenario. In particular, the First-Fit approach exhibited slightly bet-

ter results than the Best-Fit approach, given its prioritization of table entries destined for

all end hosts of the network and those relevant to the CICIDS2017 victims network. In

conclusion, the proposed network-wide table entries offloading algorithms demonstrated

their advantage over the traditional model by effectively offloading more table entries in

resource-constrained scenarios, thus ensuring the effectiveness of the proposed prefilter-

ing mechanism in a broader range of situations.

7.1 Limitations and Future Work

Research developed in this work highlighted the advantages of algorithms that

employ network-wide orchestration of PDP devices compared to traditional models that

focus on a single device. However, our work exhibits some shortcomings, especially the

poor correlation between the number of alerts generated in the experiments compared to

the baseline data. Therefore, in this Section, we detail the main limitations of our research,

discuss the probable causes, and propose future work to address them.

The experiments were conducted within a Mininet emulated environment using

tools with limited performance. While this environment served as a valuable initial testing

ground, its inherent constrains limit the accurate representation of real-world networks,

thereby restricting our solution’s applicability. As a consequence, future work should eval-

uate this research in a real PDP testbed equipped with multiple P4 switches and a real

NIDS engine host. Besides the restricted testing environment, the substantial difference

in the number of alerts generated in all experiments compared to the baseline data is

another significant limitation of this work. The potential causes for this shortcoming are

described below.

1. The primary reason for this disparity is that certain rules in the NIDS engine (Snort 3)

are designed to detect DoS and DDoS attacks, and they only trigger when the packet

rate surpasses specific thresholds. However, in our experiments, the packet rate

is constrained to 1000 pps (due to BMv2 limitations), hardly characterizing a DoS

or DDoS attack. This limitation becomes evident when examining the low number

of alerts for the Wednesday PCAP, which predominantly features DoS attacks. To

address this issue, it is essential to replicate the experiments in a real P4 testbed

with the real packet rate of the input dataset.
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2. Another contributing factor to the observed discrepancy is that not all packets that

generated alerts in the baseline data are cloned into the NIDS in our experiments.

This could be caused by offloaded table entries not properly cloning these packets

or potential limitations in the proposed P4 data plane. However, concerning the

later assumption, the experiments showed that increasing the number of packets to

clone per flow did not improve the number of alerts, indicating that the cause of this

limitation probably lies in the first assumption. Future work must review the set of

table entries offloaded and the P4 data plane to address this restriction.

In addition to addressing the detailed limitations outlined above, future research

must evaluate the network-wide orchestrator with more complex network topologies to

enhance the robustness of the proposed algorithms. These new topologies should include

networks with multiple sources of unknown or malicious network traffic and networks that

contain a mix of traditional networking devices and PDP devices. Lastly, the ability to of-

fload table entries and remove unused table entries from the data plane during runtime

could further address the memory limitations of the PDP and improve the NIDS perfor-

mance.
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