
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

LUCAS ROGES DE ARAUJO

DYNAMIC PROVISIONING OF CONTAINER REGISTRIES
IN EDGE COMPUTING INFRASTRUCTURES

Porto Alegre

2024

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

DYNAMIC PROVISIONING OF
CONTAINER REGISTRIES IN

EDGE COMPUTING
INFRASTRUCTURES

LUCAS ROGES DE ARAUJO

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Tiago Coelho Ferreto

Porto Alegre
2024

LUCAS ROGES DE ARAUJO

DYNAMIC PROVISIONING OF CONTAINER
REGISTRIES IN EDGE COMPUTING

INFRASTRUCTURES

This Master Thesis has been submitted in

partial fulfillment of the requirements for

the degree of Master in Computer Science

of the Computer Science Graduate Program,

School of Technology of the Pontifical

Catholic University of Rio Grande do Sul

Sanctioned on March 26th, 2024.

COMMITTEE MEMBERS:

Prof. Dr. Márcio Bastos Castro (PPGCC/UFSC)

Prof. Dr. Dalvan Jair Griebler (PPGCC/PUCRS)

Prof. Dr. Tiago Coelho Ferreto (PPGCC/PUCRS - Advisor)

ACKNOWLEDGMENTS

This work was supported by the PDTI Program, funded by Dell Computadores do

Brasil Ltda (Law 8.248 / 91). The authors acknowledge the High-Performance Computing

Laboratory of the Pontifical Catholic University of Rio Grande do Sul (LAD-IDEIA/PUCRS) for

providing support and technological resources for this project.

PROVISIONAMENTO DINÂMICO DE REGISTROS DE CONTÊINER EM

INFRAESTRUTURAS DE COMPUTAÇÃO DE BORDA

RESUMO

A proliferação de dispositivos móveis e sensores tem provocado o desenvolvi-

mento de aplicações sensíveis à latência e com uso intensivo de recursos. Enquanto os

dispositivos e sensores gerando os dados podem ter capacidade limitada de processa-

mento e armazenamento, as infraestruturas de computação de nuvem oferecem a esca-

labilidade necessária para processar essas demandas. No entanto, a distância entre os

usuários finais e os centros de dados de nuvem introduzem uma sobrecarga de comunica-

ção. Nesse sentido, computação de borda surge para estender infraestruturas de nuvem

para localidades próximas do usuário final. A proximidade intrínseca do paradigma me-

lhora a latência e largura de banda para aplicações com demandas estritas. Além disso,

a associação com virtualização baseada em contêineres melhora a qualidade de serviço

e qualidade de experiência. O aspecto de leveza dessa tecnologia fornece um rápida

provisionamento da aplicação e baixa sobrecarga de recursos. No entanto, provisionar

aplicações baseadas em contêineres sofre com uma sobrecarga significativa enquanto

o conteúdo é baixado dos registros de contêiner. Ainda que diversos autores tenham

proposto o uso de registros distribuídos para enfrentar esse problema, suas técnicas fo-

cam exclusivamente no tempo de provisionamento, geralmente negligenciando métricas

chave para infraestruturas de computação de borda, como latência e uso de recursos.

Além disso, outros autores adotam técnicas complexas, como migração de registros, a

qual pode afetar a utilização de rede. Em resposta a este cenário, nós propomos o pro-

visionamento dinâmico de registros de contêiner com duas estratégias (LMDyn e MODyn)

que alocam registros de contêiner em servidores de borda baseados na análise da in-

fraestrutura e sem necessitar de migração de recursos. Nossa avaliação mostra reduções

significativas no uso de recursos utilizando LMDyn e um trade-off balanceado entre tempo

de provisionamento, latência e uso de recursos com MODyn.

Palavras-Chave: registro de contêiner, computação de borda, Docker.

DYNAMIC PROVISIONING OF CONTAINER REGISTRIES IN EDGE

COMPUTING INFRASTRUCTURES

ABSTRACT

The proliferation of mobile devices and sensors has provoked the development

of latency-sensitive and resource-intensive applications. Although devices and sensors

that generate data might have limited processing and storage capacity, cloud computing

infrastructures offer the necessary scalability to process these demands. However, the

distance between end users and cloud data centers introduces communication overhead.

In this sense, edge computing emerges to extend cloud infrastructures to locations near

the end user. The inherited proximity of the paradigm improves latency and bandwidth

for applications with strict demands. Additionally, the association with container-based

virtualization improves Quality of Service (QoS) and Quality of Experience (QoE). The

lightweight aspect of this technology provides faster application provisioning and lower

resource overhead. However, provisioning container-based applications suffers from a sig-

nificant overhead while downloading content from container registries. Although several

authors propose using distributed registries to tackle this problem, their techniques focus

exclusively on provisioning time, often neglecting key metrics for edge computing infras-

tructures, such as latency or resource usage. In addition, other authors adopt complex

techniques, such as registry migration, which can affect network utilization. In response

to this scenario, we propose dynamic provisioning of container registries with two strate-

gies (LMDyn and MODyn) that allocate container registries to edge servers based on in-

frastructure analysis without requiring resource migration. Our evaluation demonstrates

significant reductions in resource usage with LMDyn and a balanced trade-off between

provisioning time, latency, and resource usage with MODyn.

Keywords: container registry, edge computing, Docker.

LIST OF FIGURES

2.1 Three-tier model of computing (Satyanarayanan et al. [45]). 16

2.2 Architectural comparison between virtualization types. 20

2.3 Docker layered structure of images [16]. 21

2.4 Docker architecture [15]. 21

3.1 HDID architecture (Liang et al. [30]). 24

3.2 FID architecture (Kangjin et al. [26]). 25

3.3 CoMICon system and node architecture (Nathan et al. [37]). 26

3.4 Stream Deployment architecture proposed by Gazzetti et al. [19]. 27

3.5 EdgePier workflow (Becker et al. [8]) . 28

4.1 Example of infrastructure based on the system model. 33

5.1 EdgeSimPy architecture (Souza et al. [51]). 43

5.2 Pathway mobility model example in the hexagonal cell map with mesh net-

work. 45

5.3 AWS Deep Learning container images size distribution. 46

5.4 Datasets created for the variation with 100 nodes and 08 unique container

images. 48

5.5 Datasets created for the variation with 196 nodes and 64 unique container

images. 49

5.6 Quantity of provisioned registries per time step along the simulation time. 52

5.7 Mean normalized server utilization per time step along the simulation time. 53

5.8 Total number of reallocations per type. 55

5.9 Total disk utilization per time step along the simulation time. 57

5.10 Distribution of the time percentage that the provisioned registries spend

active. 58

5.11 Number of container image replicas along the simulation time (variation 2). 59

LIST OF TABLES

2.1 Taxonomy of application types (Satyanarayanan et al. [45]). 18

3.1 Comparative table between this work and related strategies. 32

4.1 Summary of notations used in this paper. 37

5.1 Edge server models’ specification obtained from Ismail et al. [25]. 44

5.2 Application demand specifications. 44

5.3 AWS Deep Learning layer-sharing information. 46

5.4 Dataset variations and parametrization. 47

5.5 Overall mean latency in time units (Equation 4.9). 50

5.6 Mean number of provisioned registries per time step (Equation 4.11). 51

5.7 Overall mean provisioning time in seconds (Equation 4.10). 54

5.8 Mean disk utilization per edge server and time step in MiB (Equation 4.12). 56

LIST OF ALGORITHMS

4.1 Distributed Pull Algorithm. 38

4.2 LMDyn Algorithm. 39

4.3 MODyn Algorithm. 41

CONTENTS

1 INTRODUCTION . 13

2 BACKGROUND . 16

2.1 EDGE COMPUTING . 16

2.2 CONTAINER-BASED VIRTUALIZATION . 19

3 RELATED WORK . 23

3.1 DISTRIBUTED REGISTRIES IN THE CLOUD COMPUTING PARADIGM 23

3.2 DISTRIBUTED REGISTRIES IN THE EDGE COMPUTING PARADIGM 26

3.3 FINAL REMARKS . 30

4 CONTRIBUTIONS . 33

4.1 SYSTEM MODEL . 33

4.2 ALGORITHMS . 37

4.2.1 DISTRIBUTED PULL ALGORITHM . 38

4.2.2 DYNAMIC REGISTRY PROVISIONING ALGORITHMS . 39

5 EVALUATION . 43

5.1 SIMULATOR . 43

5.2 EXPERIMENTS DESCRIPTION . 44

5.3 RESULTS . 49

5.3.1 LATENCY . 50

5.3.2 COMPUTING RESOURCES USAGE . 51

5.3.3 PROVISIONING TIME . 54

5.3.4 STORAGE RESOURCES USAGE . 56

5.3.5 ADDITIONAL METRICS . 57

6 CONCLUSION . 61

6.1 FUTURE WORK . 62

6.2 ACHIEVEMENTS . 62

REFERENCES . 64

13

1. INTRODUCTION

The deployment of 5G technology networks accelerated the growth of edge com-

puting due to the low latency and high bandwidth capabilities that these networks of-

fer [50]. Besides the 5G networks, the increasing number of Internet of Things (IoT) and

mobile devices also impact edge computing’s growth. Although the well-established cloud

computing paradigm can allocate computing resources and services for the IoT paradigm

over the Internet, it has a high service response time, making this interaction infeasi-

ble for supporting interactive real-time services [39]. The resource limitations of mobile

hardware lead to the use of cloud computing for its demands. However, high wide-area

network (WAN) latencies from mobile devices to centralized cloud data centers are a fun-

damental obstacle to adopt cloud computing in this matter [43], especially for real-time

applications.

In this sense, some authors envision the utilization of decentralized resources to

provide the necessary support for demands originating from devices with limited capacity

that cannot rely on centralized cloud data centers to meet these demands [10, 42, 43].

Although this decentralization had different goals in the early stages (e.g., mobile com-

puting [43] or IoT [10]), Satyanarayanan [42] recognizes the importance of decentralized

edge infrastructures for both use cases. The author highlights that the proximity inher-

ited by decentralization has a fundamental role in achieving lower end-to-end latency,

minimizing the cumulative bandwidth into the cloud, avoiding releasing sensitive data to

the cloud, and temporarily serving as a fallback service. However, decentralization of

resources poses new challenges.

While providing the necessary Quality of Service (QoS) and Quality of Experience

(QoE) to the end-users, edge computing infrastructures must deal with their location’s in-

herited challenges, such as resource limitation and user mobility. Such challenges occur

because the edge infrastructure is not as abundant in computing and storage resources

as cloud data centers, and because of the proximity to the end users. For positioning edge

infrastructures near the end users, the space in these locations imposes a significant con-

straint. Furthermore, the dynamic aspect introduced by user mobility helps to degrade

the quality of application service due to the varying conditions of the network, in addition

to being the main reason for disconnection from the edge server [1]. In the face of these

challenges, several works propose resource management strategies to cope with the as-

pects of edge infrastructures [46], but there are still obstacles to overcome. In addition to

these strategies, some existing technologies also help to address inherited challenges.

Among the supporting technologies, container-based virtualization is one of the

most notable. Although Satyanarayanan et al. [43] initially pictured virtual machines

(VMs) as the basis for edge infrastructure, several works highlight the compatibility be-

tween edge computing infrastructures and containers [20, 24, 36], especially for devices

14

up to medium resource capability (e.g., cloudlets) [33]. Currently, Docker [35] is the most

popular container platform, representing applications as container images. Although ad-

vanced users can manually build container images, the most common practice is obtain-

ing the container images from container registries, entities responsible for storing and

distributing the container images. However, while obtaining a container image from a

registry, the download process could represent a bottleneck for the end user, considering

that it takes about 76% of the container deployment process [23].

In this context, several works propose modifications to the container registry to

improve the download process. Although part of these works includes intrusive modifi-

cations to the daemon, another part focuses on distributing the demands of this entity.

This latter approach includes many strategies, such as P2P-based, container image place-

ment, container registry placement, and container registry migration. To the best of our

knowledge, all strategies improve the application provisioning time by accelerating the

container image download. However, only a few of these strategies handle other relevant

metrics for edge computing users: latency and resource usage. However, the only strat-

egy that targets all these other metrics (registry migration) employs a complex process to

distribute the container registries, which can affect other operations in the infrastructure.

Considering this scenario, we advocate that dynamically provisioning and de-

provisioning container registries in edge computing might be an alternative to deal with

the bottlenecks of provisioning container-based applications in edge computing infras-

tructures. More specifically, we aim to offer an adequate trade-off based on latency, pro-

visioning time, and resource usage. To this matter, we propose two algorithms, LMDyn

and MODyn, to periodically select a set of edge servers to allocate container registries

without requiring the migration of a massive set of container images between container

registries. LMDyn focuses on minimizing the number of container registries to improve

latency and resource usage compared to the P2P-based strategy. MODyn is an improved

version that considers the provisioning time as an important metric, and, for this matter,

it aims to reach a trade-off between the target metrics while providing registries to cope

with a target number of replicas for each container image in the infrastructure. While the

LMDyn algorithm reduces latency and resource usage compared to the P2P-based strat-

egy, the MODyn algorithm offers a competitive provisioning time with a relative reduction

in resource usage and similar latency to LMDyn and other non-P2P-based strategies.

We organize the remainder of this work as follows. Chapter 2 contains the back-

ground of this work, with details on Edge Computing (Section 2.1) and Container-based

Virtualization (Section 2.2). Chapter 3 presents the existing strategies for provisioning

container images with distributed container registries. Chapter 4 includes the contribu-

tions of this work, which are our system model (Section 4.1) and the proposed algorithms

(Section 4.2). Chapter 5 comprises the experimental results of our algorithms against

15

the baseline approaches extracted from the literature. Lastly, Chapter 6 concludes the

manuscript with a summary of our work and future work perspectives.

16

2. BACKGROUND

In this chapter, we will provide the necessary context and background informa-

tion for our research. First, in Section 2.1, we introduce the edge computing paradigm,

an extension of cloud computing to cope with emerging application requirements. We dis-

cuss the advantages and disadvantages of using edge infrastructures and highlight the

relevant features of this paradigm for our work. Then, in Section 2.2, we dive deep into

containers, a lightweight technology to virtualize computational resources. We compare

containers and virtual machines (VMs) slightly and focus on presenting the Docker work-

flow, which is the baseline of our proposal.

2.1 Edge Computing

Edge computing is an emerging paradigm that considers the existence of sub-

stantial computing and storage resources close to mobile devices or sensors [42]. The

appearance of this paradigm is directly related to some constraints observed when rely-

ing on cloud infrastructures to process data from the above-mentioned and other related

devices. The well-established cloud computing paradigm, known for enabling on-demand

access to shared resources [34], has a centralized aspect, allowing plenty of computing

and storage resources in specific locations. However, this centralization incurs long dis-

tances between end-user devices and cloud data centers, which hurts communication

between these entities and impacts the dependency of resource-constrained devices on

cloud infrastructures. However, end-user devices often have hardware limitations, mak-

ing dependence on other resources necessary [43]. In this sense, edge infrastructures

aim to extend cloud functionalities to the proximity of end-user devices, which comprises

a three-tier model of computing presented by Satyanarayanan et al. [45] (Figure 2.1).

Figure 2.1: Three-tier model of computing (Satyanarayanan et al. [45]).

17

With the consolidation and wide spread of mobile devices and sensors, part of it

associated with IoT’s emergence, the proximity between end-user devices and significant

computing and storage resources became more important than ever. Satyanarayanan et

al. [42] listed at least four distinct ways in which the proximity of edge infrastructures

helps, including (i) highly responsive cloud services, (ii) scalability via edge analytics, (iii)

privacy policy enforcement, and (iv) masking cloud outages. High responsiveness is a di-

rect consequence of proximity, as the communication between the end user does not rely

on WAN connections. Scalability via edge analytics is achieved by partially processing a

service on edge premises to decrease the data sent to the cloud. Privacy policy enforce-

ment regards the ability to send sensitive data for processing on trusted edge servers

instead of sending these data to unsafe cloud servers. Lastly, masking cloud outages

means that cloudlets can substitute cloud infrastructures during failures and service out-

ages. Although this last benefit is often specific to hostile environments (e.g., military

operations), the previous ones have broad applicability to the applications and services

currently deployed on remote servers in the cloud.

Along with proximity’s benefits, using edge computing poses new challenges for

managing and provisioning resources to the demands of edge computing infrastructures.

The location of these infrastructures (e.g., coupled to base stations) limits the availabil-

ity of resources at a single point. Carvalho et al. [12] emphasize that this limitation is

not exclusive to computing resources, but also to storage capacity, which suffers from

a higher degree of limitation, as highlighted in a comparative table between cloud and

edge paradigms. Considering that the inherited resource limitation of edge infrastructures

requires resource provisioning strategies, Shakarami et al. [46] conducted a systematic

review to identify and classify current approaches for managing this issue. The authors

present five different mechanisms (heuristic/metaheuristic-based, framework-based, model-

based, machine learning-based, and game theory-based) with multiple internal classifica-

tions each. These mechanisms cover different performance metrics (e.g., latency, cost,

and energy) and case studies (e.g., IoT, smart cities, healthcare), among other scopes.

However, the resource provisioning process still has open issues for future research in

addition to resource limitations.

Some authors highlight the challenge of maintaining an uncompromised QoS

and QoE among the open issues. Although the authors consider latency and QoS syn-

onyms [27], other metrics play a significant role in QoS and QoE. In this context, Shi et

al. [47] discuss multiple essential optimization metrics, such as bandwidth, cost, and en-

ergy, to choose optimal allocation strategies and avoid QoS and QoE issues. Regarding

prevention strategies, Vargese et al. [54] point out the need to avoid resource overload

by flexibly partitioning and scheduling tasks based on usage information to maintain ade-

quate levels of QoS and QoE. In addition to ensuring uncompromised QoS and QoE, manag-

ing user mobility is another challenge in edge computing. This challenge might be related

18

to QoS and QoE, since user mobility could affect the distance between users and their ap-

plications [12]. In addition, it makes the resource provisioning process more complex due

to the dynamic aspect it introduces in the environment, requiring application migration or

reallocation.

Independently of the advantages and challenges of using edge computing infras-

tructures, the paradigm has an extensive list of application use cases. Satyanarayanan

et al. [45] propose a taxonomy for edge computing applications based on the three-tier

computing model depicted in Figure 2.1. We present this taxonomy in Table 2.1, with "P"

indicating the primary execution site and "O" indicating the optional (i.e., non-critical) use

of that tier’s resources. In this taxonomy, device-only application developers can use the

current situation as an opportunity to refine these applications and rely on edge comput-

ing, which is currently not the case. With the optional use of edge computing, cloud-native

and device-native applications use the edge infrastructure to process additional features

of the application or to improve performance without a critical dependency on edge infras-

tructures. Lastly, edge-native applications make significant use of edge infrastructures

and, thus, are custom-designed to use at least one of edge computing’s features men-

tioned in the second paragraph of the current section. These applications are the most

relevant for the context of our work and include a variety of use cases, which we discuss

below.

Table 2.1: Taxonomy of application types (Satyanarayanan et al. [45]).

Tier-3 Tier-2 Tier-1
Device-only P
Edge-accelerated, cloud-native O P
Edge-enhanced, device-native P O
Edge-native P P

Edge-native applications include what would be considered the "killer-apps" for

consolidating edge computing: human cognitive augmentation/assistance. Many of these

applications require the use of a wearable device with multiple sensors (e.g., video, au-

dio, accelerometer, and gyroscope) to capture and stream data and use ML-based algo-

rithms to generate output for the wearable user [44]. Additionally, these applications

can scale to a smart-city-level of cognitive assistance [40], which uses sensors spread

throughout the city to collaborate with cyclists, people with disabilities, and emergency

responses. Furthermore, edge computing can offer support for other IoT applications [22]

(e.g., smart industry, smart agriculture [58], and e-health) and Internet of Vehicles (IoV)

applications [11]. The use of artificial intelligence (AI) and deep learning (DL) methods is

also common in edge applications, with many opportunities to improve this combination

of technologies [55, 57]. Generally, edge computing applications are related to IoT or AI,

and much of the time to both [48]. The association between these three domains (i.e.,

edge computing, IoT, and AI) creates a powerful combination that relies on IoT devices to

19

collect data and AI algorithms to process the data with low latency and enough resources

provided by edge infrastructures.

To enable the deployment of applications in edge computing environments, container-

based virtualization is an attractive technology [24]. The lightweight aspect of this virtu-

alization technique copes with the limited resources available and the strict requirements

of edge computing environments. Morabito et al. [36] evaluate containers and uniker-

nels (i.e., lightweight virtualization techniques) for IoT use cases using edge computing

infrastructures. In addition to concluding that both techniques offer relevant support for

the edge environment, the authors highlight the advent of Docker as the platform that

made containers very popular. In addition, Gillani and Lee [20] compared Docker contain-

ers with Linux VMs for service migration in edge computing. The authors show that the

containers perform better than Kernel-based Virtual Machines (KVM), reinforcing the ad-

vantage of relying on this technology in edge infrastructures. Together, these works show

the importance of container-based virtualization to improve the use of edge computing

resources.

2.2 Container-based Virtualization

The type of virtualization used by the operating system determines the func-

tionality of containers. They depend on the operating system kernel to create isolated

spaces with specific dependencies, environment variables, libraries, and other resources.

In comparison to virtual machines, containers are considered lighter because they can be

deployed over an existing operating system without requiring the boot of a new system

within each. Figure 2.2 depicts this architectural difference, considering both types of

hypervisors that virtual machines can use.

Historically, according to Bernstein [9], some previous developments inspired the

deployment of this technology. The oldest of these developments is the chroot1 command

from Unix, which changes the root directory of the current process to a new given direc-

tory. It was launched in 1979 and enabled the isolation of the file system from a given

process and its subprocesses. Later significant developments are jails [18], launched in

1998, and zones [49], launched in 2004. Jails extended the isolation ability from the chroot

command to other resources beyond the file system, such as the networking subsystem.

Zones enabled essential features in the operating system-level virtualization domain, such

as snapshot and ZFS clone. The latest container technologies (e.g., Linux Containers [31]

and Docker [35]) leverage two Linux process resource management solutions: names-

paces and cgroups. Namespaces2 wraps a global system resource (e.g., user, process ID,

1https://www.freebsd.org/cgi/man.cgi?query=chroot&sektion=2&format=html
2https://man7.org/linux/man-pages/man7/namespaces.7.html

https://www.freebsd.org/cgi/man.cgi?query=chroot&sektion=2&format=html
https://man7.org/linux/man-pages/man7/namespaces.7.html

20

Infrastructure

Hypervisor

Guest OS

Binaries/Libraries

Application

Virtual Machine

(a) Type 1 Hypervisor

Infrastructure

Host Operating System

Hypervisor

Guest OS

Binaries/Libraries

Application

Virtual Machine

(b) Type 2 Hypervisor

Infrastructure

Host Operating System

Container Engine

Binaries/Libraries

Application

Container

(c) Containers

Figure 2.2: Architectural comparison between virtualization types.

network, and mount) in an abstraction that resembles an isolated instance of the given

resource. Cgroups [28] allow limiting the access of a group of processes to the resources

available in the system (e.g., CPU, disk, memory, and network).

Nowadays, Docker is the most popular platform for deploying applications and

services through container-based virtualization. Merkel [35] states that Docker unifies ex-

isting technologies (e.g., namespaces, cgroups, and copy-on-write filesystem) to create

a tool greater than the sum of its parts. With a significant focus on the software devel-

opment process, Docker facilitates the maintenance and deployment of multiple environ-

ments (e.g., development, test, and production). In addition, it is very suitable for the

microservice architecture, which separates multiple services from an application. Docker

allows building and deploying each service from a microservice-based application with its

dependencies and without conflicting with other services. Besides, the usage of Docker

containers allows scaling these services independently according to the application’s cur-

rent demands with an insignificant impact on user performance.

Another advantage of Docker is the layered structure of the Docker images. After

creation, an image is a read-only template based on a Dockerfile 3, a text document with

proper syntax to indicate the steps to build an image. Figure 2.3 depicts this structure and

highlights that the Docker image consists of a set of commands executed and transformed

into Docker layers. This structure enables different images to share the same content as

long as the order of previous layers is the same. This layer-sharing feature is an oppor-

tunity to optimize container images and improve the use of storage resources, which is

3https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/

21

essential in environments with resource limitations. Once the image is available to use,

the last step is to turn it into a container, a process that adds a writable layer on top of

the image’s read-only layers. This writable layer stores all the modifications made while

the containerized application is executed. Docker containers can also take advantage of

multiple resources that Docker offers, such as custom networks to communicate between

containers and volumes to persist content outside of the container.

Figure 2.3: Docker layered structure of images [16].

To interact with the above-mentioned objects, Docker has multiple components

making up its architecture. Figure 2.4 shows an overview of the Docker architecture con-

sisting of some components (Docker client, Docker daemon, and Docker registry) commu-

nicating to manipulate images and containers.

Figure 2.4: Docker architecture [15].

22

In this architecture, the Docker client is the primary way users interact with

Docker. This component supports several commands that trigger specific actions at the

Docker daemon, the core component of Docker. This communication occurs via API, so the

user might rely directly on API requests to interact with the daemon following the docu-

mentation 4. However, the client wraps this API and facilitates the interaction with Docker.

Meanwhile, the Docker daemon receives these requests and acts upon them internally

or by communicating with other components (e.g., the registry). More specifically, the

daemon interacts with the Docker registry if the request is to download or run a locally un-

available container image. The registry is a repository that stores container images and

distributes them upon download requests. It also receives requests for upload to store im-

ages created locally. Users can take advantage of public registries (e.g., Docker Hub5) for

their demands, or they can deploy a private registry by using the official registry container

image6. The public registry offers easy access to container images, but private registries

provide more security and control over access to their content.

Figure 2.4 also includes Docker’s main workflows, which we describe below. Users

can obtain a container image through the build command, which allows the user to build

a new image locally based on a custom Dockerfile, and through the pull command, which

searches in a target container registry for the image to download it. While the first ap-

proach executes the commands to create the image and store it on the disk, the second

approach verifies which layers are unavailable in the local storage and downloads them in

gzip format to decompress them later. The run command adds a writable layer over the

read-only layers of the container image component and starts the containerized applica-

tion. If an image instantiated in this command is locally unavailable, the pull command is

indirectly triggered to search for the given container image in the registry. Lastly, the user

can use push to send a locally built image to a registry so that other users can download

it.

Analyzing the container deployment workflow, Harter et al. [23] identify a sig-

nificant overhead in the pull process download stage, which accounts for about 76% of

the command execution time. The authors enhance the importance of mechanisms to

decrease the time spent in this stage, which relies directly on the container registry. Al-

though they propose a new storage driver to tackle this overhead, other works propose

less intrusive modifications to the container image provisioning process to improve the

download stage. In the next chapter, we detail the approaches that consider distributing

the demands of the container registry to address this problem.

4https://docs.docker.com/engine/api/v1.44/
5https://hub.docker.com/
6https://hub.docker.com/_/registry

https://docs.docker.com/engine/api/v1.44/
https://hub.docker.com/
https://hub.docker.com/_/registry

23

3. RELATED WORK

This chapter presents solutions focused on enhancing the container image pro-

visioning operation through distributed container registries (i.e., multiple compute nodes

acting as container registries). With the popularization of container-based virtualization

and Docker, several works attempt to optimize the container image distribution time by

using a set of distributed container registries instead of using it as a single centralized

entity. Other works have used different approaches, such as registry design optimiza-

tions [5, 13, 23] and distributed file systems [2, 17, 59]. However, we do not detail these

approaches, as we understand that these works are more intrusive to the Docker daemon,

unlike the architectures and algorithms we present in the following sections.

We separate the works into two sections: Section 3.1 contains strategies aimed

at cloud computing environments, and Section 3.2 contains strategies aimed at edge com-

puting environments. We highlight the relevant aspects of the proposed architecture or

algorithm in each selected work. In Section 3.3, we conclude the chapter by summarizing

the related works in a comparative table and presenting the limitations that led to the

development of our proposal.

3.1 Distributed Registries in the Cloud Computing Paradigm

Cloud infrastructures were the first target of improvements to enhance the con-

tainer image provisioning process with distributed registries. Most solutions for these

environments employ peer-to-peer (P2P) protocols, such as BitTorrent (BT), to distribute

the registry’s demands. These solutions are particularly suitable for cloud data centers,

given their availability of dedicated resources for important tasks of the protocol, such as

the control of communication between seeds and peers by the BT tracker.

Liang et al. [30] propose HDID, a hybrid Docker image distribution system for

data centers tool that adaptively uses the BT protocol or the default container registry to

provision container images. Before designing the solution, the authors conducted a study

to understand the features of the top 29 most commonly used images in Docker Hub at

that time. In this study, the authors analyze aspects such as the image/layer size distri-

bution and layer sharing to conclude that BT is a natural fit to improve the downloading

speed of container images. In addition, the authors understand that the original registry

is still convenient, especially for provisioning small layers, due to the overhead of making

a torrent for these pieces of container images. Based on these insights, they present the

architecture shown in Figure 3.1.

24186 M. Liang et al.

Fig. 3. Overview of HDID

our own design with different sub-modules, which we will describe them in the
following text.

The HDID server consists of three modules: the Registry, the torrent maker,
and the BTR client (shorted for BitTorrent-Registry client). When storing
images to the HDID server, if the size of layer is smaller than the threshold,
the HDID server will save this layer to storage as the original Registry does.
Otherwise, the torrent maker module will make torrent file for the layer after
storing it. Then the BTR client will start based on the torrent file and the host
running HDID server become a seeder, so other hosts can download this layer
through a BitTorrent method as explained below.

The HDID client consists of the Docker daemon and the BTD client (short for
BitTorrent-Docker client). When the HDID client needs to download an image
from the HDID server, it makes a judgment about the size of layers of this image.
If the size of a layer is smaller than the threshold, the HDID client will download
this layer from the HDID server directly as the original Registry method. Oth-
erwise, it will first request the torrent file of the layer and download it in a same
manner as downloading layers smaller than the threshold from the HDID server.
Then the HDID client boots its BTD client based on the torrent file downloaded
and begin to share content as a leecher with other hosts. Furthermore, BTD
client will keep running as seeder after downloading the whole content of the
layer completely until the Docker has removed all images containing this layer.

The HDID server hardly turns into the performance bottleneck, even though
there are bursty requests from a large number of clients. First, the layers and the
torrent files downloaded from the server directly using the Registry method are
all small. Second, large layers will be downloaded using the BitTorrent method
and HDID clients can transfer data between themselves. As we have explained
above, some other HDID clients may have already downloaded certain layers
before, which further accelerate the content sharing rate between HDID clients.

Figure 3.1: HDID architecture (Liang et al. [30]).

The three main components of HDID’s architecture are the HDID server, the HDID

client, and the tracker. The HDID server is responsible for provisioning small layers through

the registry component, making torrents for large layers (sizes larger than 15MB), and

enabling the provisioning through BT. On the other hand, the HDID client has a Docker

daemon to receive content from the Docker registry and a BitTorrent-Docker client that

downloads and uploads torrents. Lastly, the tracker communicates with the BTR and BTD

clients to update them on the network’s peers and seeds.

Similarly to the previous work, Kangjin et al. [26] claim that the container reg-

istry is prone to become a bottleneck for large-scale container deployments. For this mat-

ter, the authors propose FID, a faster image distribution system for the Docker platform.

Based on the goal of reducing image distribution time in high concurrency scenarios, FID

introduces concerns about scalability and fault tolerance. To match these concerns, the

architecture of FID, shown in Figure 3.2, considers the deployment of multiple BT trackers

and P2P registry servers supported by a back-end storage.

The server and BT tracker components have similar functionalities to their corre-

spondent component of HDID, whereas clients in FID architecture have an agent to han-

dle the image downloading through BT. The agent emerges to avoid modifying Docker’s

source code and has two working modes: load mode and proxy mode. In load mode, the

user sends requests to an API instead of executing the Docker pull command. Each re-

quest triggers the agent to obtain the image manifest and then the blob identifier of the

missing layers, which enables the agent to get the corresponding torrent files. In proxy

mode, the agent takes advantage of Docker’s configurable proxy and acts only when it

identifies a blob request from the data gathered in the requests. The latter mode turns

out to be more lightweight since it acts only in part of the whole process.

25

Usually, Manifest is a small text file. Therefore, only the
way of how the blob is downloaded should be optimized. If we
want to use P2P image distribution, we can change the step (3)
to P2P downloading. Considering the usage scenario (3) we
mentioned in Section �, the internal network topology is more
stable compared to the Internet. In the Internet, peers may join
in or quit from a P2P network in anytime [24]. And the object
in our distribution is static files. So we can use BitTorrent for
image P2P distribution. For downloading blobs with BitTorrent,
every blob needs a torrent file corresponding to it. And Docker
Registry should be the torrent maker and initial seeder. The time
to make a torrent file is the blob uploading finished. Blob data
and torrent files are stored on the backend storage. So the
Docker Registry needs to provide a torrent fetching interface
and every BitTorrent client can fetch a torrent file via this
interface.

Another way to get a Docker image is docker load. It loads
an image from a compressed tar archive or STDIN. The
contents of the tar archive are blobs and layers configurations.
If we want to import an image by docker load, a tar archive of
this image is needed. Registry provides interfaces for getting
Manifest and Blob via HTTP. We can get materials that the tar
archive required by calling Registry’s interfaces. The way that
integrating BitTorrent in the above process is by using
BitTorrent in Blob downloading (Step 3).

V. IMPLEMENTATION
 In order to achieve the goals listed in Section �. We
carefully designed the system architecture. Figure 3 shows the
architecture of FID. Several instances of P2P Registry are
deployed in the system. For keeping the data consistency
between P2P Registries, a shared distributed storage is adopted.
FID Agent is a new component that is responsible for
downloading Docker images. BT trackers keep peers’
information. Every peer can find each other via trackers. The
details of every component are described below.

A. P2P Docker Registry
Based on Docker Registry [7] We developed P2P Docker

Registry that supports P2P image downloading. There are three
main changes in Registry.

1) Integrated a BitTorrent client in Registry

We added a BitTorrent client in Registry runtime. It is the
core modification for P2P Registry. But the BT client in P2P
Registry has a feature, which is different from other FID
Agent’s, that BT client in P2P Registry only sends data to other
peers without receiving data. Because P2P Registry already has
the data of the Blobs.

2) Generate torrent file at the end of Blob uploading

Before Docker Engine pushes an image to Docker Registry,
Docker Engine exports every layer of the image in a
compressed file called Blob. Then uploads Blobs via uploading
interface provided by Registry. The best time to generate torrent
file is at the end of the Blob uploading. So we modified the Blob
uploading interface and added a torrent generation function at
its end. After torrent file is generated, the torrent file will be
stored on the backend storage.

3) Added an interface for getting torrent files

In this interface, other clients can get torrent files of layers
via http requests. Clients need to provide the Blob ID of a layer
in the http request. The response of torrent getting interface is
the content of the torrent file. But P2P Registry needs to be the
initial seeding peer in the BitTorrent distribution. Otherwise no
one can get the data from P2P network even though they hold
the torrent file.

Fig. 3. Architecture of FID. Boxes with dotted line represent Docker Hosts.
The black line indicates the data flow of Docker images, and the blue line mean
the communication between BitTorrent peers and trackers.

To be the initial seeding peer, P2P Registry should get the
Blob from the backend storage and store the Blob in BT client’s
work directory. Then BitTorrent client gets the corresponding
of this blob and downloads file specified in the torrent file.
Because the file already exists in BT client work directory, BT
client only needs to announce to trackers that it has all pieces of
this resource. Then other peers can find P2P Docker Registry
by getting peers interface provided by trackers.

B. FID Agent
In order to avoid modifying the already existing source code

of Docker Engine, we developed a component called FID Agent
to handle BT downloading. FID Agent has two different
working modes. The first one is called load mode. In this mode,
FID Agent downloads Blobs and packages them by the
organizational structure of Docker image’s tar archive. Then the
agent calls Docker’s load interface to load this tar archive [23].
DID and Docket have similar implements. Another mode is
called proxy mode. In this mode, the FID Agent is running like
a lightweight HTTP proxy for the Docker Engine. FID Agent
intercepts Docker’s Blobs downloading requests, then
downloads Blobs via BitTorrent and returns the data of Blobs
to Docker Engine. In FID Agent, random peer selection policy
is adopted to avoid that the P2P Registry is more inclined to be
chosen as peer, which could reduce P2P Registry’s network
overload.

The differences between load mode and proxy mode are
elaborated below.

1) Load mode

While studying the interfaces of Docker Engine, we found
that there is no interface that can import a layer of an image

193194194

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on September 23,2022 at 17:57:50 UTC from IEEE Xplore. Restrictions apply.

Figure 3.2: FID architecture (Kangjin et al. [26]).

Industry players have also proposed solutions to improve container image provi-

sioning through P2P-based techniques. Kraken [53], proposed by Uber, and Dragonfly [4],

from Alibaba, are open-source projects to accelerate image distribution using a P2P-based

approach. A significant advantage of these solutions is that they are constantly receiving

contributions and updates, as seen in their GitHub repositories1,2. Initially, Kraken em-

ployed a BT driver, but currently, the tool uses a custom implementation of a P2P driver to

enhance the control over performance optimizations. Regarding Dragonfly, although it of-

fers advantages over the original BT protocol, such as dynamic block size, Kraken claims

to be more scalable since Dragonfly might have its throughput limited by one or a few

nodes that coordinate the data transfer process.

Alongside P2P-based solutions, Nathan et al. [37] propose CoMICon, a coopera-

tive management system for Docker container images. Although not directly based on any

P2P protocol, CoMICon aims to create a pool of local Docker hosts that can share the con-

tainer images among themselves. CoMICon enables lower container image provisioning

time by allowing nodes to pull an image from multiple nodes and partially store, transfer,

and delete container images. In addition, it addresses high availability requirements by

placing multiple copies of the container images across the set of hosts configured with

CoMICon. Figure 3.3 shows the architecture of the solution.

The CoMICon system components act upon the receipt of three different inputs.

Information about a new node is the first input type, which the Node Registration handles

by adding the information (e.g., IP address, a list of stored layers) to a database. Data of

1https://github.com/uber/kraken
2https://github.com/dragonflyoss/Dragonfly2

https://github.com/uber/kraken
https://github.com/dragonflyoss/Dragonfly2

26

Provisioning
Manager

Registry
Master

Image
Distribution

Manager

Pre-
Processor

& Goal
Selector

Docker
Master

Image & Node
Metadata
Manager

Resource
Monitoring

Master

Health
Monitor

Node
Registration

Input

CoMICon
Registry

tar

ry
Registry

Slave

Docker Engine

aufs

Docker
Daemon

Docker
Client

g
Docker
Slave

cker cker
dpull

Registry daemon

Resource monitoring slave

Node

Fig. 4. CoMICon system.

(i) where to place the images (and their layers) across a
set of registries with fixed registry sizes to ensure HA and
fast provisioning? (ii) in the case of registry failures, which
registries to select for recovering lost image layers so that
recovery time can be reduced as much as possible? (iii)
on which node (destination) a container is provisioned? and
(iv) from which registries (sources) the image layers are
fetched? We now discuss how these issues are addressed using
CoMICon.

V. DESCRIPTION OF CoMICon

The components of co-operative image management system
(CoMICon) are shown in Figure 4. The input to CoMiCon is
one of the following:
1) Participating nodes. Any new node can be added to the co-

operative registry by providing the IP address along with
the login credentials and the resource capacity as input.

2) Images. These images correspond to microservices and are
to be distributed across nodes.

3) Applications to provision. The set of container (microser-
vices) images and the respective resource requirements are
provided as input for provisioning.

On receiving an input from the user, the Pre-Processor and
Goal Selector scans the input format and identifies the type of
the given request. Specifically, the first input type is forwarded
to the Node Registration. The last two types of inputs are
handled by: (i) Image Distribution Manager (IDM) and
(ii) Provisioning Manager (ProM). They are described in
Sections V-A and V-B respectively.

The Node Registration adds information about the new
node in a database called Image and Node Metadata Man-
ager. The database stores information about each registry and
Docker engine such as available storage capacity and list of
stored layers. Further, it stores information about each placed
image such as name of the image, size of the image, number
of layers associated with each image, sha256 hash of each
layer, size of each layer, and the location of each layer on
the co-operative registry. The goal of IDM is to generate
a mapping of individual image layer to registry. Once the
mappings are decided by the manager, the output is sent to
the Registry Master for realizing the mapping. The Registry
Master communicates with the Registry Slave at each node

to store the layers (i.e., partial image), copy layers between
registries (in the case of re-distribution), and delete layers (in
case the layer is not needed). Further, the Registry Master
contacts the Image and Node Metadata Manager to update the
database accordingly. The goal of the ProM is to minimize the
startup time of a distributed container based application. For a
set of images, ProM decides a set of destination nodes and tries
to provision containers from the locally available image layers
on the destination nodes as much as possible. In case some
layers are missing, a set of source nodes are identified where
the missing layers are present. For each destination node, a
mapping of missing layer to source node is then passed to
Docker Master to perform the distributed pull of missing
layers. Specifically, Docker Master communicates with the
Docker Slave of individual destination nodes to provide the
input for docker dpull, i.e., a list of missing layer to
registry IP address mapping and initiates distributed pull.
Once the dpull completes the download successfully, Docker
Master contacts Image and Node Metadata manager to update
the database (i.e., layer to node mapping).

The Resource Monitoring Master interacts with the Re-
source Monitoring Slave of each node to collect the node’s
resource utilization. The Resource Monitoring Slave uses
nmon tool [42] to collect this data and then periodically
transfers it to the Resource Monitoring Master. The resource
utilization profile of each node is processed at the master to
provide information about available resources to the Provision-
ing Manager. The Health Monitor, on the other hand, checks
if any registry has failed and initiates the image distribution
manager to recover layers (stored at the failed node) in case
of a failure. Specifically, this component periodically pings
all the registries. A registry is failed if there is no response
from it for more than a pre-defined duration. The list of layers
stored in the failed node is retrieved from Image and Node
Metadata Manager and given as input to the Image Distribution
Manager.

A. Image Distribution Manager (IDM)

The input to IDM is a list of images (along with its layers)
that need to be distributed, and the output is a list of layer to
registry mapping. This mapping is used to store the layers on a
co-operative registry. IDM uses a set of heuristics to determine
the images for which redundant copies (typically 3 or more)
can be created across a set of nodes. Initially, all the layers
of input images are sorted in increasing or decreasing order
of the layer size. From the sorted list, the top-most layer is
retrieved and is mapped on a set of nodes. The mapping is
done by sorting the nodes in increasing or decreasing order
of the available size of the corresponding image registries.
Note that, based on the ordering of layers and nodes, four
heuristic variants can be created. We evaluate them extensively
in Section VI. An image is not HA feasible, if the desired level
of redundancy can not be achieved for any layer that belongs
to that image. When a layer can not be mapped onto a set
of nodes with a desired level of redundancy, all images that
need this layer become infeasible for HA. For HA infeasible

120

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 30,2022 at 03:05:14 UTC from IEEE Xplore. Restrictions apply.

Figure 3.3: CoMICon system and node architecture (Nathan et al. [37]).

new container images is the second input type, and the Image Distribution Manager han-

dles this input by mapping the layers to the nodes based on a custom heuristic algorithm.

Lastly, applications for provisioning in the infrastructure are the third input type, and the

Provision Manager handles them by trying to maximize the cache usage and accomplish

application resource requirements when allocating these applications.

Regarding the node architecture, we highlight that the main difference between

CoMICon and the P2P-based solutions is that the registry and the Docker engine have sep-

arate storages, so the registry cannot distribute all the images available in its node. Thus,

a node only distributes images initially assigned to the node’s registry storage. Among

open research problems, the authors highlight the need to adapt the system to environ-

ments with varying network conditions, such as edge infrastructures.

3.2 Distributed Registries in the Edge Computing Paradigm

Edge computing infrastructures are commonly known for adopting container-

based virtualization. Consequently, the image distribution process in these environments

has also been the target of optimizations. However, the above-mentioned solutions focus

on cloud data centers because they depend on resource-intensive dedicated services and

stable network conditions. Thus, in the following paragraphs, we present different solu-

tions to optimize the image distribution process through distributed registries, considering

the constraints of edge computing infrastructures.

Gazzetti et al. [19] target the problem of getting redundant data (i.e., the same

container images/layers) from a cloud-based container registry for multiple edge nodes

within the same locality. The authors consider that nodes in the same locality have con-

nections with lower latency and bandwidth costs compared to edge-cloud communica-

27

tion. In this sense, the authors propose the Stream Deployment (SD) approach based on

P2P provisioning. This solution allows nodes in the same locality to share container im-

ages/layers instead of downloading redundant content from the cloud. Figure 3.4 depicts

the SD architecture.

308 M. Gazzetti et al.

realized through a stock MQTT broker), a PUB/SUB broker capable of decou-
pling sender and receiver through asynchronous messaging. Last, each edge node
carries an implementation of a Stream Manager (SM), an agent that implements
the real-time container image streaming protocol on top of the formed peer-to-
peer distribution graph. Also, the SM interacts with the Docker daemon on each
node to import received image layers to the local image store that each Docker
Edge instance maintains.

Fig. 3. Architecture of our Streamed Deployment implementation.

Figure 4 provides a more comprehensive representation of the interactions
performed during the deployment. There are three actors involved in the depicted
workflow: the formerly described Gateway Manager of the locality, the Stream
Managers of each Edge node being provisioned (only one instance of the SM is
shown for brevity), and the client initiating the deployment. Typically, the client
would be situated in a remote location relative to Edge localities, e.g., within
an Edge orchestration entity running in the Cloud as part of an integrated IoT
platform solution. In this case, the client contacts the edge Gateway to request
the deployment of a new container image including ancillary information of the
image that needs to be deployed (image identifier and composing layers). The
SM on the Gateway responds with an ID that uniquely identifies the deployment
procedure and the list of layers to be pulled. If a subset of the requested layers is
already present within the locality, the SM requests to pull only the differences
between the received list of deployment layers and the ones that are already
stored in the locality. After this handshaking phase succeeds, the GM estab-
lishes the peer-to-peer distribution topology within the locality describing the

Figure 3.4: Stream Deployment architecture proposed by Gazzetti et al. [19].

In this architecture, the gateway node is responsible for pulling images from the

cloud platform and distributing them to the remaining nodes, given their requests. Inside

the gateway, there is also a manager responsible for keeping information about the cur-

rent state of the nodes, so the stream manager only sends content to working nodes. The

nodes within the locality receive the images through the stream manager, which commu-

nicates with the Docker daemon to make the images available to the end user. Meanwhile,

there is a message broker for coordination between the nodes and the gateway.

Becker et al. [8] propose EdgePier, another P2P-based approach for provisioning

container images. The authors claim that existing solutions generally use BT-based tech-

nologies to enable P2P image distribution. However, these technologies are unsuitable

for edge computing environments due to the overhead of dedicated components (e.g.,

BT tracker) and the limited resources available in edge infrastructures. Therefore, the

authors build an architecture based on the fully decentralized InterPlanetary File System

(IPFS), which uses a distributed hash table to find the peers’ addresses and hosted ob-

jects. This decentralized approach has the relevant advantage of not requiring dedicated

components for P2P image provisioning. In addition, EdgePier aims to have a non-intrusive

28

deployment without adapting the container runtime. Figure 3.5 shows the workflow to pull

an image using EdgePier.

Container Registry

K8s Node

K8s NodeK8s Node

K8s Node

K8s Node

K8s Node

K8s NodeK8s Node

K8s Node

K8s Node

Function 1

Function 2

Function 3

Model 1

Model 2

Model 3

Model 2

Model 3

Site A Site B

Function 1

Function 3

Train
Model

Package
Model

Deploy
Model

Write
Function

Package
Function

Deploy
Function

MLOps Pipeline FaaS Pipeline

Fig. 1: An edge computing environment consisting of two edge sites and a container registry located in the cloud. Site A is
used for a machine learning use case, whereas the nodes in Site B are utilized by a Function-as-a-Service framework. MLOps
and FaaS pipelines located in the cloud create container images which are subsequently deployed to the respective sites.

B. Image Pulling Workflow

EdgePier

2.1) Load
from
IPFS

IPFS Agent
IPFS Storage

Text
3) Replicate Image
to other EdgePier

Nodes

Registry
HTTP API

Docker Image
Manifest

* Blob1: sha256:29bc...

* Blob2: sha256:34ba...

* Blob3: sha256:93db...

IPFS File

* Block1: bafkreib...

* Block2: baf3dyb...

* Block3: bafe3ds...

Docker/
Kubelet
Daemon

IPFS

IPFS
File

IPFS
File

IPFS
File

IPFS
File

1) Get Image
Manifest

and Layer blobs

2) Load
image
data

Image

Fig. 2: Image pulling workflow with the EdgePier registry.

The image pulling process works like depicted in Figure 2:
In case a Pod is scheduled on a Kubernetes node of an edge
site, the local kubelet daemon attempts to pull the respective
image from the EdgePier registry that is deployed on the same
node. At first, EdgePier tries to load the Image Manifest from
the local IPFS storage, which contains links to all layers of the
actual image. After the the kubelet daemon receives the image
manifest, it requests all listed layer blobs, again from the local

EdgePier registry. If the image manifests and layer blobs are
already available (cached) in the local IPFS storage, they are
directly provided to the kubelet daemon via the HTTP API. In
case of a cold start, meaning the respective image data is not
available in the local storage because the image was not yet
deployed in the site, EdgePier locates the respective image
data in the IPFS network and downloads it from each peer
currently providing the files.

As shown in Figure 2, each layer of a docker image refers
to a file in the IPFS network which in turn is splitted into
blocks that are distributed across peers in the IPFS network.
Similar to the BitTorrent protocol, the download traffic is
distributed over all IPFS peers that store some of the blocks in
their local storage. Consequently, the image download speed
increases with the amount of peers caching the image data.
At the same time, the Edge-Cloud uplink to a traditional
image registry is relieved since other edge devices or sites –
located in closer proximity – are leveraged for the download
traffic. Furthermore, the single-point-failure is eliminated since
images are available as long as at least one IPFS peer still
stores the respective data and can be downloaded even in case
of a network outage on the uplink layer.

C. Deployment

In order to fulfill the non-intrusive deployment requirement,
EdgePier was designed to enable a straightforward usage in
orchestration platforms: The registry can be installed as a
single docker container and integrates without any adjustments
to the underlying container runtime. EdgePier needs to be
configured as a private registry in i.e. Kubernetes so that
kubelet daemon refers to the local instance on the node.

Since the registry relies on IPFS as a storage backend, image
data can be located, downloaded and shared using the decen-
tralized libp2p protocol. Consequently, no central metadata or

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on August 03,2022 at 14:27:39 UTC from IEEE Xplore. Restrictions apply.

Figure 3.5: EdgePier workflow (Becker et al. [8])

On the schedule of an application, the daemon attempts to pull the image from

the local registry. EdgePier checks if the layers are locally available to get them from the

IPFS local storage. If not available, it locates the data in the IPFS network and downloads

them from the selected peers. By default, Docker splits the images into layers, allowing

different images to share the same layer. Similarly, IPFS divides the layers into smaller

pieces called blocks. This process makes it easy to distribute the demand for download

across multiple peers. Furthermore, similar to the work of Gazzetti et al. [19], the authors

consider nearby nodes to have a common purpose. In this sense, EdgePier replicates an

image stored on other network nodes at the same edge site.

Darrous et al. [14] propose two container image placement algorithms to reduce

image provisioning time. Although an image placement algorithm does not directly modify

the container registry, it makes multiple nodes serve as a registry. The authors propose

the k-Center-Based Placement (KCBP) and KCBP-Without-Conflict (KCBP-WC) algorithms,

which are responsible for placing sets of container images and layers across a set of fully

connected nodes. These algorithms aim to reduce the maximum retrieval time of images

and layers to any edge server of the infrastructure.

29

To design the first algorithm, the authors formalize the problem of minimizing the

retrieval time for all layers on all nodes as the MaxLayerRetrievalTime problem. Then, they

compare this problem, if using a single layer, to the k-Center problem, which aims to place

facilities on a set of nodes to minimize the distance from any node to the closest facility.

Finally, they use a solver for k-Center in KCBP to generate valid layer placements in the

infrastructure. Subsequently, to design the second algorithm, they formalize the problem

for retrieving complete container images as the MaxImageRetrievalTime problem. To this

problem, the authors defend that two layers of the same image should not be placed at the

same node to avoid sharing bandwidth. However, it is hard to accomplish this constraint

considering the capacity of the nodes and the need to avoid these conflicts. To solve

this condition, the authors propose that in KCBP-WC, which also uses the solver for the

k-Center problem, a percentage of the largest layers of an image cannot be placed at the

same node. Thus, the algorithm avoids sharing bandwidth when provisioning large layers,

minimizing the effects of this event.

Knob et al. [29] advocate that the use of strategically placed container registries

in an edge computing infrastructure can improve the application deployment process. To

address this, the authors propose an algorithm to split the infrastructure into communities

and select an edge server to host a container registry in each community. In this work,

the authors assume that the registries are only in the edge infrastructure (i.e., the image

provisioning does not rely on cloud-based registries). In this sense, each server with a

community-based registry has a copy of all the necessary container images in the storage

for provisioning applications on the edge infrastructure. This replication occurs because

each registry needs to cover a whole region (i.e., a community of nodes), so an edge

server should not rely on a registry from another community. This fact highlights the

importance of picking an adequate number of communities to avoid overhead in specific

regions, besides avoiding maintaining registries that spend most of the time inactive,

given the storage cost.

The strategy for placing the container registries starts with the fluid communities

(FluidC) algorithm for partitioning the graph into the input number of communities. This

algorithm initially selects the communities randomly and runs iteratively until no better

communities are found, based on the available bandwidth in each community, or until it

reaches the termination condition. Then, for each community, the eigenvector centrality

algorithm is applied. This algorithm gives information about the centrality and connectiv-

ity of the nodes with respect to the other community nodes. With this information, the

algorithm selects which node in each community will host the container registry.

More recently, Temp et al. [52] propose a registry migration strategy to avoid

Service Level Agreement (SLA) violations. Although P2P-based strategies for edge com-

puting environments have a certain degree of mobility awareness, the authors claim that

the algorithm is the first to dynamically migrate container registries according to user mo-

30

bility. Accordingly, a relevant aspect of the strategy is to use user mobility to provision

new registries preemptively. Another relevant aspect is that it assumes fully replicated

registries, as Knob et al. [29] did. This practice enhances the ability to spread the pro-

visioning demands across the infrastructure but might represent a limitation in terms of

resource usage, especially regarding disk demands.

As the strategy relies upon SLAs, each application has a delay SLA (i.e., the max-

imum acceptable delay between the user and the app’s server) and a provisioning time

SLA (i.e., the maximum acceptable time for provisioning the application’s container image

from the registry to a target server). The algorithm uses thresholds to make anticipated

decisions and avoid SLA violations. These thresholds are user-defined and represent a

percentage of the delay SLA and provisioning time SLA. First, the algorithm iterates over

the applications to migrate only those with the delay to the end user above the delay SLA

threshold to a server closer to the end user and with the capacity to host the application,

if there is any. Then, the algorithm deprovisions all container registries distant from users.

Finally, it iterates over the servers with resource capacity to host a container registry until

the registries are provisioned close enough to a set of users or until no server can host a

registry.

3.3 Final Remarks

In the previous sections, we presented several works with different approaches to

improve the container image provisioning operation with a set of distributed container reg-

istries. Generally, these approaches aim to improve the provisioning time of the container

images from the registry to the demanding server. Speeding up this process allows allocat-

ing applications sooner and ensures some service-level objectives (SLOs) to keep the QoS

and QoE in a given system. However, some aspects of edge computing infrastructures

(e.g., user mobility and resource limitation) can make this process more difficult, besides

demanding more than simply ensuring better provisioning time. Along with provisioning

time, latency becomes a key target metric based on its relevance in edge computing sce-

narios. In addition, computing and storage resources must be well-allocated to avoid the

waste of resources and impact on user latency due to the lack of nearby resources.

The most common approach is to use P2P registries to exploit cached images

on nodes that are not initially a registry. Some of the highlighted approaches focus on

data centers [4, 26, 30, 53] with abundant resources and stable networks to integrate

with the requirements of BT-based solutions. Meanwhile, there are a few strategies [8, 19]

that propose alternatives to BT-based approaches to comply with the constraints of edge

infrastructures. However, the main problem with P2P registries is that they consider every

single node of the network a registry, as long as the nodes have container images in

31

their storage. Registry functionality demands computing resources, which could be more

valuable for applications with stringent latency demands. Thus, using P2P registries might

harm resource usage and the application’s user latency.

Next, we have the container image placement approaches [14, 37]. These strate-

gies distribute container images across multiple servers and create an infrastructure with

distributed registries. Although the image placement is based on algorithms to optimize

the image distribution, they are placed statically on the infrastructure. Therefore, as users

move through the edge infrastructure, initial placement may be outdated and provision-

ing time can be affected. In addition, both strategies for image placement do not seem to

have a mechanism to control or limit the number of servers that act as container registries,

which can elevate resource usage and negatively affect the application’s user latency.

Lastly, we discuss the remaining approaches aimed at container registries in

edge computing infrastructures: registry placement [29] and migration [52]. The registry

placement strategy has a notable dependency on the ideal number of registries, which

is not pre-defined. Experiments with this strategy have shown that a relevant number of

registries (around one-fourth of the edge servers) is required to improve the provisioning

time. Although this elevated number of registries does not seem to affect the applica-

tion’s user latency, it certainly impacts the storage demands the edge infrastructure must

have because container images are completely replicated in each registry. The registry

migration strategy follows the dynamic aspect of P2P-based approaches. However, this

approach makes decisions based on user mobility, which is not the case with P2P ap-

proaches. This strategy also aims to achieve latency SLAs while keeping a number of

registries provisioned based on the current demands. Even though it is very aware of the

target metrics we specified, migrating the server storage to another, even partially, can

significantly impact the image provisioning process and the communication flows between

the users and their applications due to network overhead.

To conclude this chapter, we summarize the related works in Table 3.1. Given the

lack of compliance of most existing strategies with all the target metrics and the complex-

ity of frequently migrating registries in edge infrastructure from Temp et al.’s strategy [52],

we propose to dynamically provision and deprovision P2P registries in edge computing in-

frastructures, taking advantage of the already cached images in the servers. Our goal

with this technique is to maintain an adequate number of container registries to minimize

image provisioning time and avoid resource wastage, benefiting applications that need to

improve their latency by reallocating to other servers.

32

Table 3.1: Comparative table between this work and related strategies.

Target metrics
Work Paradigm Approach Prov. time App. latency Resource usage

[30] Cloud P2P Registry ✓ × ×
[26] Cloud P2P Registry ✓ × ×
[53] Cloud P2P Registry ✓ × ×
[4] Cloud P2P Registry ✓ × ×
[37] Cloud Image placement ✓ × ×
[19] Edge P2P Registry ✓ × ×
[8] Edge P2P Registry ✓ × ×
[14] Edge Image placement ✓ × ×
[29] Edge Registry placement ✓ ✓ ×
[52] Edge Registry migration ✓ ✓ ✓
This Work Edge Dynamic registry provisioning ✓ ✓ ✓

33

4. CONTRIBUTIONS

In this chapter, we discuss the contributions of our work. Section 4.1 details

the system model, which includes the notation to represent the elements that make up

the infrastructure, the equations used to facilitate the explanation of the algorithms, the

constraints that we have considered, and the equations to measure our target metrics.

Then, Section 4.2 includes a custom algorithm to select the registry to download container

layers in a distributed manner, based on the proposal by Nathan et al. [37], along with

the two algorithms we designed for dynamic provisioning and deprovisioning container

registries in edge computing infrastructures: LMDyn and MODyn.

4.1 System Model

The map of the edge computing infrastructure represented in this work comprises

multiple adjacent hexagonal cells that represent the coverage area managed by a single

base station, as depicted by Aral et al. [6] and considered a typical representation of

mobile cellular networks [21]. Figure 4.1 outlines this infrastructure and its main elements,

which we detail in the following paragraphs.

Application

User

Base station

Edge server

Container registry Network link

Figure 4.1: Example of infrastructure based on the system model.

34

In the infrastructure, each base station in the set of base stations B has fixed

wireless latency for the entire coverage area, and there is no overlap between the base

stations. Furthermore, a set N of network links interconnect these base stations and al-

low communication between distant entities. Each network link Nf = {bf , lf} has a band-

width bf and a latency lf . Coupled with some base stations in B, we have edge servers to

provide computing and storage capabilities. The set of edge servers E has each server

represented as Ei = {ci , ri , di , ḋi ,t}, in which the first three elements represent a different

capacity of the edge server: ci is the CPU capacity, ri is the RAM capacity, and di is the

disk capacity.

While container registries and applications consume CPU and RAM, the container

images and their pieces (i.e., container layers) consume the disk of the edge servers.

Although each application reflects a specific container image, the disk demand of an ap-

plication depends on which layers the target server to host this application already has.

Thus, we represent the disk demand ḋi ,t as an attribute of the edge server that varies over

time. Meanwhile, CPU and RAM demands of applications and container registries are fixed

and represented directly in these entities. In addition to the attributes mentioned above,

xi ,k represents the edge server placement matrix, which works as detailed in Equation 4.1

for every time step t ∈ T .

xi ,k =

1 if edge server Ei is coupled to base station Bk

0 otherwise.
(4.1)

One of the entities hosted by edge servers is the container registry. Container

registries store container images and layers for distributing these elements to other servers.

The set of container registries R has each element represented as Rl = {ċl , ṙl}. For each

registry, Rl , ċl represents the CPU demand and ṙl represents the RAM demand. Previ-

ous work ignored these demands for container registries, but they are significant in edge

computing scenarios because of the limited resources in these infrastructures. Further-

more, yi ,l ,t represents the container registry placement matrix, which works as detailed in

Equation 4.2.

yi ,l ,t =

1 if edge server Ei hosts registry Rl at time step t

0 otherwise.
(4.2)

Along with container registries, applications also take advantage of the comput-

ing resources provided by edge servers. The set of applications A contains multiple enti-

ties modeled as Aj = {ĉj , r̂j , zj , uj , pj ,t , δ(Aj , t), hj ,t}. Similarly to the container registry, each

application has CPU and RAM demands represented by ĉj and r̂j , respectively. Each ap-

plication reflects a container image zj from the set of container images I, which contains

elements represented as Io = {qo}, in which qo is the set of container layers from L con-

35

tained in this image. The matrix zi ,j ,t represents the placement of the application and

works according to Equation 4.3.

zi ,j ,t =

1 if edge server Ei hosts application Aj at time step t

0 otherwise.
(4.3)

Furthermore, each application has a single user uj , which has a wireless latency

wj to communicate with the nearest base station. Each application Aj also has a commu-

nication path list pj ,t that might change over time. For a given time step t ∈ T , this list

contains the set of network links that connect the base station uj ’ to the base station Bk ,

so that Ei hosts Aj (i.e., zi ,j ,t = 1) and Ei is associated with Bk (that is, xi ,k = 1). Equa-

tion 4.4 represents the latency between uj and the application Aj for a given time step. It

consists of summing the wireless latency wj ,t with the latency’s sum of all network links in

pj ,t . Lastly, each application has a history of provisioning times (hj ,t), which lists the time

intervals it took to complete each of the finished reallocations of Aj ’.

δ(Aj , t) = wj ,t +
∑

Nf∈pj ,t

lf (4.4)

We also consider some constraints that the scenario must meet to maintain the

evaluation valid. The first constraint, depicted in Equation 4.5, ensures that each applica-

tion is placed only once on a single edge server during all time steps of the set T . Then,

equation 4.8 ensures that the CPU, RAM, and disk capacities do not exceed during all time

steps of the set T .

|E |∑
i=1

zi ,j ,t = 1 ∀j ∈ {1, ..., |A|}, ∀t ∈ {1, ..., |T |} (4.5)

cpu_demand(i , t) =
|R|∑
l=1

ċl · yi ,l ,t +
|A|∑
j=1

ĉj · zi ,j ,t (4.6)

ram_demand(i , t) =
|R|∑
l=1

ṙl · yi ,l ,t +
|A|∑
j=1

r̂j · zi ,j ,t (4.7)

[ci ≤ cpu_demand(i , t)] + [ri ≤ ram_demand(i , t)] +
[
di ≤ ḋi ,t

]
= 0,

∀i ∈ {1, ..., |E |}, ∀t ∈ {1, ..., |T |}
(4.8)

Considering this scenario and the constraints, our goal with this work is to under-

stand if dynamically provisioning and deprovisioning container registries in edge comput-

ing infrastructures only using the cached container images for distributing can optimize

the latency and provisioning time of applications, besides the resource usage (i.e., CPU,

36

RAM, and disk usage) of edge servers, during an interval of time, or at least offer an ade-

quate trade-off to be considered a relevant choice in some scenarios. For this matter, we

model four equations to measure these different optimization goals independently. Equa-

tion 4.9 considers the mean latency between users and A’s applications during a set of

time steps T . The mean latency value refers to the latency of one application Aj ∈ A in a

single time step t ∈ T . Meanwhile, Equation 4.10 considers the mean provisioning times

of A’s applications during a set of time steps T . The mean provisioning time value refers

to the time it takes to make a single provisioning of an application Aj considering its entire

history of provisioning times hj ,|T |.

∑|A|
j=1

∑|T |
t=1 δ(Aj , t)

|A| ∗ |T |
(4.9)

∑|A|
j=1

∑|hj ,|T ||
n=1 hj ,|T |[n]

|A| ∗
∑|A|

j=1 |hj ,|T ||
(4.10)

The following two equations are related to resource usage objectives. First, we

have Equation 4.11 considering the mean number of provisioned registries per time step

during a set of time steps T . This equation measures the use of computing resources (i.e.,

CPU and RAM) because applications consume a fixed amount of CPU and RAM. Meanwhile,

the dynamic consumption of these resources depends only on the number of provisioned

container registries over time (i.e., more provisioned registries equals a greater consump-

tion of computing resources). Then, we have Equation 4.12 considering the mean disk

demand per edge server and time step during a set of time steps T . This equation mea-

sures the use of storage resources (i.e., disk) by edge servers, which is more elevated in

strategies requiring multiple fully replicated registries than in strategies that only rely on

cache-based container images.

∑|T |
t=1 |Rt |
|T |

(4.11)

∑|T |
t=1

∑|E |
i=1 ḋi ,t

|E | ∗ |T |
(4.12)

Table 4.1 summarizes the notation of the elements and their attributes presented

in this section. This notation is especially useful to describe the pseudo-code of our algo-

rithms in the next section.

37

Table 4.1: Summary of notations used in this paper.

Symbol Description
B Set of base stations
N Set of network links
E Set of edge servers
Rt Set of container registries at time step t
A Set of applications
U Set of users
I Set of container images
L Set of container layers
T Set of time steps
bf Nf ’s bandwidth
lf Nf ’s latency
ci Ei ’s CPU capacity
ri Ei ’s RAM capacity
di Ei ’s disk capacity
ḋi ,t Ei ’s disk demand at time step t
xi ,k Edge server placement matrix
ċl Rl ’s CPU demand
ṙl Rl ’s RAM demand
yi ,l ,t Container registry placement matrix
ĉj Aj ’s CPU demand
r̂j Aj ’s RAM demand
zj Aj ’s container image
qo Io’s container layers
zi ,j ,t Application placement matrix
uj Aj ’s user
wj ,t uj ’s wireless latency at time step t
pj ,t Aj ’s communication path
δ(Aj , t) Aj ’s latency at time step t
hj ,t Aj ’s history of provisioning times
σ(ϵ1, ϵ2, t) Latency between elements ϵ1 and ϵ2 at time step t

4.2 Algorithms

This section showcases the algorithms that we have developed as our contribu-

tions. In Section 4.2.1, we present an algorithm that enables pulling different layers of the

same container image from multiple registries, based on the work of Nathan et al. [37]

and considered an adequate practice in P2P-based registries. In Section 4.2.2, we present

the two algorithms we design for dynamically provisioning and deprovisioning container

registries in edge computing infrastructures. The interval between each algorithm’s exe-

cution can be custom for both strategies, which take advantage of the container images

and layers already cached in the servers’ storage. Thus, they only allocate new registries

and remove existing ones without requiring any migration of resources.

38

4.2.1 Distributed Pull Algorithm

In Section 3.2, we describe CoMICon [37], a cooperative management system for

Docker container images. In their work, they highlight that the existing P2P approaches

are unaware of the layered aspect of Docker container images and, thus, do not take ad-

vantage of this (i.e., they enforce the download of an entire image from a single source

registry). Consequently, the authors propose to modify the Docker daemon to introduce

a distributed pull of images in which the layers of a single image can come from differ-

ent hosts. Since then, P2P strategies for provisioning container images have evolved and

already support this prominent operation, which decreases the provisioning time by avoid-

ing overloading a single container registry. Therefore, we built a simple algorithm to select

the target registry to pull a container layer following the distributed pull proposition. Algo-

rithm 4.1 depicts the implemented strategy. The goal is to collect container layers within

a single container image from different container registries.

Algorithm 4.1: Distributed Pull Algorithm.

Input 1: target_layer – target layer to be downloaded
Input 2: target_server – target server for the download of target_layer
Input 3: ts – current time step

1: R′ = container registries that contain target_layer in its server’s storage at the time step ts
2: for Rl ∈ R′ do
3: Rl [downloads] = number of layers being downloaded from Rl at the time step ts
4: Rl [latency] = σ(Rl , target_server , ts)
5: end for
6: registry = min(R′, (downloads, latency))
7: Start downloading target_layer from registry

As input to the algorithm, we have target_layer , target_server , and ts. These

inputs indicate that target_server wants to download target_layer to allocate a given ap-

plication considering the state of the infrastructure at the time step ts. The first step of

the algorithm is to filter which container registries have target_layer available for down-

load (line 1). The algorithm then iterates over these filtered registries to obtain two met-

rics regarding each registry (lines 2–5). The first metric is the current number of layers’

downloads, while the second is the latency between the registry and target_server . The

algorithm’s idea is to perform a round-robin scheduling operation to select the registry

based on the current number of active downloads. The latency is a tiebreaker for the first

parameter for determining the priority of nearby registries. Based on these two metrics,

the registry is selected, prioritizing the registry with the lowest number of active layer

downloads and the closest registry if there is a tie with the first metric (line 6). Finally,

the download of target_layer from the selected registry to target_server is started (line

7). Using this algorithm instead of relying exclusively on the closest registry improved the

provisioning time of the target strategies (i.e., P2P-based strategies) for this distributed

pull algorithm.

39

4.2.2 Dynamic Registry Provisioning Algorithms

LMDyn: Layer-Matching-based Dynamic Registry Provisioning

During preliminary experiments to compare existing registry provisioning strate-

gies, we identified that the P2P strategy for provisioning container registries keeps allo-

cating new edge servers to host container registries (as show in Figure 5.6) under the

premise that a server having at least a single container layer stored and with CPU and

RAM resources will join the P2P network. This practice leads to the growing consumption

of resources in these registries and a conflict between the registries and the applications

for these resources. Consequently, the unavailability of resources might prevent real-

locating an application that can be closer to its end-user. With this in mind, we design

LMDyn, an algorithm for dynamically choosing which edge servers should host P2P-based

registries until the following algorithm is executed, based on the layer-matching percent-

age between the servers’ storage and nearby applications. Algorithm 4.2 presents the

proposed heuristic to tackle this problem. The algorithm’s primary goal is to reduce the

overall mean latency by provisioning a controlled number of P2P-based registries instead

of allocating every possible edge server, which is the P2P strategy.

Algorithm 4.2: LMDyn Algorithm.

Input 1: Rc – base registry (initial registry with all container images)
Input 2: ts – current time step

1: E ′ = edge servers with capacity to host a registry at time step ts
2: for Ei ∈ E ′ do
3: for Aj ∈ A do
4: if σ(uj , Ei , ts) ⩽ σ(uj , Rc , ts) then
5: lm = percentage of Aj ’s service layers that are in Ei ’s disk at time step ts
6: if lm > 0 then
7: Ei [lm] + = lm
8: Ei [pr] + = 1
9: end if
10: end if
11: end for
12: end for

13: prmean = int(
∑|E′|

i=1 Ei [pr]
|E ′|)

14: E ′′ = edge servers in E ′ with possible recipients above prmean

15: lmmean =
∑|E′′|

i=1 Ei [lm]
|E ′′|

16: E ′′′ = edge servers in E ′′ with layer matching above lmmean
17: for Ei ∈ E ′ do
18: if Ei ∈ E ′′′ &&

∑|R|
l=1 yi ,l ,ts == 0 then

19: Provision a registry on Ei
20: end if
21: if Ei ̸∈ E ′′′ &&

∑|R|
l=1 yi ,l ,ts == 1 then

22: Deprovision the registry allocated on Ei
23: end if
24: end for

40

For any P2P-based approach, we always consider that there exists a central reg-

istry located in the edge infrastructure to ensure that at least one server has all the nec-

essary container images and layers to distribute them to the other servers. The central

registry Rc and the current time step ts are the inputs of this algorithm. The first step is

to filter which servers can host container registries (line 1), which includes servers that

already have a registry at the time step ts and servers that do not have a registry at

the time step ts but have CPU and RAM resources to host a registry. Then, the algorithm

iterates over these filtered servers and, for each server, calculates two scores (lines 2–

12): layer matching and possible recipients. The algorithm iterates over all applications

hosted in the infrastructure to calculate these scores, and, for each application, checks if

the application user is closer to the current edge server than to the central registry (lines

3–4). If it is, the layer matching between the server and the application’s container im-

age is calculated and added to the layer matching score (lines 4–7). Additionally, if any

layer matches, the score of possible recipients is incremented by one (line 8). Then, there

are two subsequent cuts in the list of candidate servers, one after another, to minimize

the number of selected servers. First, the algorithm discards edge servers with a score

of possible recipients below the mean value (lines 13–14), and then servers with a layer-

matching score below the mean value of this score are ignored (lines 15–16). Finally, the

algorithm iterates over all candidate servers to provision and deprovision the necessary

container registries (lines 17–24).

MODyn: Multi-Objective Dynamic Registry Provisioning

After analyzing the performance of the LMDyn algorithm, we observed a signif-

icant improvement in the application’s latency and the usage of the infrastructure’s re-

sources. However, the time required to provision the missing layers of an application to a

target server to complete a reallocation based on user mobility was not satisfactory. This

behavior occurs because fewer container registries are available, which means fewer op-

tions to download a container image. This can lead to network bottlenecks and increase

the time it takes to download missing layers and complete an application’s reallocation.

Although these metrics can conflict with each other (e.g., more provisioned registries de-

crease the provisioning time but occupy more resources and then increase the latency), a

lower provisioning time can contribute to reducing the latency (e.g., provisioning an appli-

cation faster speeds up the reallocations and updates the latency to a lower value faster

than with fewer registries available).

Thus, based on this problem, we propose a second strategy for dynamically pro-

visioning and deprovisioning container registries with multiple objectives: MODyn. This

algorithm also aims to decrease the overall mean latency of applications by minimizing

the resource usage in the infrastructure. The purpose of this system is also to maintain an

adequate provisioning time. In this regard, we introduce the goal of replicating the con-

41

tainer images and keep provisioning registries until there are available resources or until

we reach the desired number of replicas, given a few constraints. In addition, we prioritize

provisioning registries on edge servers with higher amounts of free resources and fewer

possible future demands. The strategy is depicted in Algorithm 4.3 and is explained below.

Algorithm 4.3: MODyn Algorithm.

Input 1: replicas – number of replicas per image
Input 2: ts – current time step

1: E ′ = edge servers with capacity to host a registry at time step ts
2: for Ei ∈ E ′ do
3: Ei [free_cpu] = ci − (

∑|R|
l=1 ċl · yi ,l ,ts +

∑|A|
j=1 ĉj · zi ,j ,ts)

4: Ei [free_ram] = ri − (
∑|R|

l=1 ṙl · yi ,l ,ts +
∑|A|

j=1 r̂j · zi ,j ,ts)
5: Ei [free] = geo_mean(Ei [free_cpu], Ei [free_ram])
6: for Aj ∈ A do
7: if δ(Aj , ts) > σ(uj , Ei , ts) then
8: nd = Aj ’s normalized amount of CPU and RAM demand
9: Ei [pd] + = nd
10: end if
11: end for
12: end for
13: E ′′ = edge servers in E ′ sorted by (Ei [pd] − Ei [free]) (asc.)
14: while replication target not reached and |E ′′| > 0 do
15: Ei = E ′′.pop(0)
16: n_acc = number of images in Ei ’s storage that accomplished the replication target replicas
17: n_unacc = number of images in Ei ’s storage that have not accomplished the replication target replicas

18: if n_unacc >= n_acc then

19: if
∑|R|

l=1 yi ,l ,ts == 0 then
20: Provision a registry on Ei
21: end if
22: Updates replication data
23: Continue
24: end if
25: if

∑|R|
l=1 yi ,l ,ts == 1 then

26: Deprovision Ei ’s registry
27: end if
28: end while
29: Deprovision registries from the remaining servers in E ′′

In this algorithm, we consider the number of replicas each container image avail-

able in the infrastructure should have. It is not a constraint for the conclusion of a single

algorithm’s execution, but it is desirable to have the replication target achieved for all

the container images. Following this approach, we have the replicas input to determine

the minimum number of replicas for each image and the ts input to denote the current

time step. The algorithm starts by filtering the edge servers that can host a container

registry at the time step ts (line 1). Then, it iterates over all selected servers and calcu-

lates the first score of the edge server, which is the amount of free normalized computing

resources (i.e., CPU and RAM) through a geometric mean (lines 3–5). The other score is

named possible demand and represents the normalized amount of computing resources

from all applications that could be reallocated to the server because it offers better latency

42

(lines 6–11). Before selecting edge servers, we sort the filtered servers with fewer possible

demands and more free resources (line 13). Then, while we do not reach the replication

target set by replicas and still have edge servers to evaluate, we check if each server must

be a registry (lines 14–28). This process includes analyzing whether most of the container

images on the edge server reached the input replication target. If most images do not

reach the target, the algorithm checks if there is a registry on the server, and if there is

not, it allocates a registry there before updating the replication data (18–24). Otherwise,

that server is not qualified to host a container registry, and if there is a registry there, we

deprovision the existing registry (lines 25–27). If the algorithm achieves the replication

target before iterating over all servers in E ′′, we ensure to remove the possible remaining

registries after the loop (line 29).

In the next chapter, we evaluate all of these strategies, taking into account these

two strategies and some baseline approaches from the literature.

43

5. EVALUATION

This chapter evaluates our strategies and baseline approaches to allocating con-

tainer registries in edge computing infrastructures. Section 5.1 details the simulator used

to perform our experiments. In Section 5.2, we describe the dataset and the parameteri-

zation of the evaluation process. Lastly, in Section 5.3, we present and discuss the results

in various target metrics.

5.1 Simulator

To evaluate our work, we used EdgeSimPy [51], a verified Python-based simulator

to model and evaluate resource management policies in edge computing environments.

The increasing relevance of edge computing motivated the development of multiple sim-

ulators to address particular aspects of edge computing scenarios, such as user mobility.

However, EdgeSimPy’s creators analyzed the existing simulators for edge computing en-

vironments and concluded that they all lacked a few essential features that are relevant

to this context. In this sense, EdgeSimPy has three exclusive built-in features compared to

existing simulators: maintenance operations, container lifecycle management, and con-

tainer registry management. While the first is outside the scope of our work, the other two

are essential for our evaluation and, thus, justify the selection of EdgeSimPy to conduct

experiments with strategies for allocating container registries. Figure 5.1 depicts the en-

tire EdgeSimPy architecture, which includes container-related entities and other relevant

entities described in our system model (Section 4.1).

Figure 5.1: EdgeSimPy architecture (Souza et al. [51]).

44

5.2 Experiments Description

To evaluate our work, we consider two variable parameters that lead to multi-

ple variations of the dataset and the opportunity to explore different scenarios. The first

variable parameter we consider is the infrastructure size, which aims to evaluate the algo-

rithms’ performance under different infrastructure proportions. Thus, we build a dataset

variation with 24 edge servers spread across 100 nodes interconnected by 261 network

links and another variation with 48 edge servers spread across 196 nodes interconnected

by 533 links. In both variations, there is a homogeneous mesh network topology [6], and

each network link has a latency of 10 time units and a bandwidth of 1 Gbps. Each node

represents a base station with a wireless latency of 10 time units within the coverage area.

Edge servers are spread across nodes using the K-Means algorithm [32], and they have

real CPU and RAM specifications obtained from Ismail et al. [25] along with a default disk

size large enough to store all necessary container layers at once, as specified in Table 5.1.

Table 5.1: Edge server models’ specification obtained from Ismail et al. [25].

Model CPUs RAM Disk
Model 1 32 cores 32768 MiB 128 GiB
Model 2 48 cores 65536 MiB 128 GiB
Model 3 36 cores 65536 MiB 128 GiB

Generally, our goal is to keep the normalized occupation of the resources near

60%, according to Equation 5.1. Thus, the variation with 100 nodes has 128 users and

applications, and the variation with 196 nodes has 256 users and applications.

∑|A|
j=1 geo_mean(kj , mj)∑|E |
i=1 geo_mean(ci , ri)

(5.1)

Regarding the applications, their CPU and RAM demands are uniformly divided in

the values depicted in Table 5.2, which covers a range of applications with lower demands

to applications with higher demands for both computing aspects.

Table 5.2: Application demand specifications.

CPU Demand RAM Demand
2 cores 2 GB
4 cores 4 GB
8 cores 8 GB

The users move on the map following the pathway mobility model [7]. This model

contains regular and random components, which coincides with the fact that mobile users

do not move completely random, nor completely deterministic ([56], as cited in [3]). The

45

algorithm to represent this model places users randomly across the base stations and

repeats the following steps until the simulation ends: it selects a destination node to

move for and chooses the shortest path (in our work, this path relies on the network links

between the base stations) to go to the target node. Figure 5.2 shows an example of

mobility in which the model randomly places the user in the hexagonal cell six and then

randomly selects the hexagonal cell two as the next target. After selecting the target, the

algorithm calculates the shortest path considering the connection through the network

links. The solid path represents the shortest path to leave hexagonal cell six and arrive at

hexagonal cell two by crossing hexagonal cell four. Meanwhile, the dashed paths represent

a random path between these cells, which the pathway mobility model completely ignores.

1 2

3 4 5

6 7

Figure 5.2: Pathway mobility model example in the hexagonal cell map with mesh network.

In addition, users stay in each hexagonal cell for an interval that depends on the

speed at which each user moves. In this context, we consider two typical types of mobile

users to reflect a realistic environment [38]: 6/7 of mobile users are pedestrians with a

uniform speed distribution between 0.5 m/s and 1.5 m/s, and the remaining mobile users

are drivers with a uniform speed distribution between 2.7 m/s and 11.1 m/s (considering

each hexagonal cell with 500 meters of diameter to determine the time it takes to pass

through a cell).

The domain of applications that we consider in this work is ML-based applica-

tions. Thus, we extracted 64 container images from the AWS Deep Learning container

repository 1, which contains a set of container images aimed at training and serving AI

models with different frameworks (e.g., TensorFlow and PyTorch). Most images have a

version to run with CPU and a version to execute with GPU. However, due to a constraint

1https://github.com/aws/deep-learning-containers/

https://github.com/aws/deep-learning-containers/

46

related to the edge servers considered, we only consider the CPU-aimed images in the

scope of this work. Figure 5.3 and Table 5.3 contain relevant information regarding the 64

CPU-aimed container images. Figure 5.3 depicts the image size distribution of the images,

which in their majority have less than 1 GiB and some others have between 1 GiB and 3

GiB, with a single image having near 6 GiB. Meanwhile, Table 5.3 shows the layer sharing

information of the 64 chosen container images, which shows that most of the content in

these 64 container images is exclusive to a single image. This aspect makes it difficult to

reach partial cache hits when reallocating an application.

1000 2000 3000 4000 5000 6000
Size (MiB)

0

5

10

15

20

25

Nu
m

be
r o

f c
on

ta
in

er
 im

ag
es

Figure 5.3: AWS Deep Learning container images size distribution.

Table 5.3: AWS Deep Learning layer-sharing information.

Number of images sharing Total size (MiB) Percentage of total size (%)

1 76728.261 96.523
2 2480.980 3.121
3 57.158 0.072
4 82.974 0.104
5 28.581 0.036
7 57.151 0.072
8 28.581 0.036
12 28.579 0.036

Total 79492.265 100.000

The second variable parameter we introduce is related to the applications and the

container images that these applications comprise. More specifically, there is a variation

in which 1/8 of the applications and users use the same container image and another in

which 1/32 of the applications and users use the same container image. The first variation

has fewer unique container images because more applications and users use the same

image. The opposite happens to the second variation. With this parameterization, we aim

47

to understand the impact of the cache usage on the algorithms’ performance, since we

expect the scenario with fewer container images to take more advantage of this feature.

Table 5.4 summarized the two values of the variable parameter and the four variations

they create.

Table 5.4: Dataset variations and parametrization.

Variation Infrastructure size Unique container images
1 100 nodes and 128 users 8 container images
2 100 nodes and 128 users 32 container images
3 196 nodes and 256 users 16 container images
4 196 nodes and 256 users 64 container images

For each variation depicted in Table 5.4, we compare three baseline approaches

for registry provisioning with the two algorithms presented in Section 4.2. Baseline ap-

proaches are the central registry, the community registry, and the P2P registry. The first

approach only has a single container registry on the edge infrastructure, which is placed

using the closeness-centrality algorithm to select the edge server to host the container

registry. The second approach follows the strategy depicted by Knob et al. [29], in which

there are multiple edge servers with fully-replicated container registries. To explore dif-

ferent configurations of this strategy and point out some trade-offs, we consider a version

in which community registries cover one-eight (12.5%) of servers and another in which

community registries cover one-fourth (25%) of edge servers. The third approach consid-

ers the existence of a central registry to ensure that at least one edge server has all the

necessary container images to provision the applications in the infrastructure. In addition,

this third approach considers that any edge server with at least one container image in

the storage and computing resources to allocate a registry will have a registry. In addition

to that, these P2P-based registries only provide container images already in the server

storage, and more registries can be dynamically allocated during the simulation.

Taking into account these three approaches, we create four datasets for each

variation shown in Table 5.4. These four datasets comprise a dataset with a central reg-

istry, two with community-based registries (one with one-eight of the servers allocating

registries and the other with one-fourth), and a dataset with a central registry and P2P-

based registries in qualified servers. This latter dataset is the base dataset to execute

our two algorithms. Figures 5.4 and 5.5 represent the four different datasets created for

variations 1 and 4 of Table 5.4, respectively. To allocate container registries on the edge

servers, we rely on the existence of the official registry container image 2 in the edge

server storage to deploy the registry there. As our system model specifies, the container

registry has CPU and RAM demands to work well. In this case, we rely on the CPU and RAM

specifications based on the minimal requirements of the Docker Trusted Registry, which

are 2 two cores and 8 GiB of RAM [41].

2https://hub.docker.com/_/registry

https://hub.docker.com/_/registry

48

Central Community (12%)

Community (25%) P2P

Only base station (BS)
BS + edge server (ES)

BS + ES + P2P registry
BS + ES + fully replicated registry

Figure 5.4: Datasets created for the variation with 100 nodes and 08 unique container
images.

With these datasets and their variations, we execute simulations using EdgeS-

imPy with 3600 time steps each. This simulated time is equivalent to one hour of actual

time. Although central and community strategies are static, the regular P2P approach

checks if it is possible to provision a new registry at each time step. In addition, dynamic

registry provisioning approaches update the registry allocation at each 60 time step. Af-

ter the simulation, we processed the data generated by these simulations and compiled

them into a set of metrics that we present in the next section. The source code to build

the datasets, run the experiments and generate the set of metrics used in this work is

available on GitHub 3 to ensure the reproducibility of our work. For each parameter vari-

ation, we evaluate the central registry, community registry, P2P registry, and dynamic

registry provisioning strategies. The community registry strategy has the Comm* version

with one-eight of the existing edge servers allocating registries and another (Comm+)

with one-fourth of the edge servers allocating registries. The dynamic registry provision-

ing strategy comprises two algorithms described in Section 4.2: LMDyn and MODyn. In

3https://www.github.com/lucasroges/dynamic-registry-provisioning

https://www.github.com/lucasroges/dynamic-registry-provisioning

49

Central Community (12%)

Community (25%) P2P

Only base station (BS)
BS + edge server (ES)

BS + ES + P2P registry
BS + ES + fully replicated registry

Figure 5.5: Datasets created for the variation with 196 nodes and 64 unique container
images.

addition, we include four input versions for the replication input of the MODyn algorithm,

specifying between 1 and 4 replicas as the target of the algorithm.

5.3 Results

In this section, we show the comparative results between the evaluated strate-

gies. We start the evaluation by analyzing the mean latency results (Subsection 5.3.1)

to understand each strategy’s impact in this relevant metric for applications and users

relying on edge computing infrastructures. Then, we look at the resource usage metrics

(Subsection 5.3.2), focusing on CPU and RAM. This set of metrics includes the number of

provisioned registries over time, the mean number of registries per time step, and the

normalized server utilization. Subsequently, we analyze the applications’ mean provision-

ing time (Subsection 5.3.3), which is the most common target metric in related work. To

understand some patterns in the provisioning time, we also look into the reallocations per

type (e.g., reallocation only using cache). Later, we aim at resource usage in terms of disk

50

utilization (Subsection 5.3.4). In this regard, we show the mean disk utilization per edge

server and time step, in addition to the total disk utilization of the infrastructure over time.

Although we have seen an impact of the elevated use of computing resources in other

metrics, such as latency, disk utilization only indicates that some strategies may not be

adequate for edge computing in some scenarios due to excessive disk allocation. Lastly,

we analyze two metrics to understand some of the improvements offered by dynamic reg-

istry provisioning compared to P2P-based registries (Subsection 5.3.5): the percentage

of time the registry is active (i.e., distributing container images) and the replication of

container images.

5.3.1 Latency

Most of the related work discussed in Chapter 3 focuses on the provisioning time

metric (i.e., the time it takes for the registry to distribute one or multiple images to some

servers). Although we understand the importance of this metric and that it is the most

profited by the use of distributed registries, we also recognize that both latency and re-

source usage are critical in edge computing infrastructures. Thus, we begin discussing the

overall mean latency, in time units, obtained by the target strategies during our evalua-

tion. Table 5.5 shows the results of the overall mean latency obtained using Equation 4.9.

Table 5.5: Overall mean latency in time units (Equation 4.9).

Nodes 100 196

Unique images 08 32 16 64

Central 19.99 20.06 19.74 20.05
Comm* 20.19 20.11 19.91 19.88
Comm+ 20.36 20.33 19.95 20.02
P2P 20.72 20.69 20.76 20.80
LMDyn 20.04 20.10 19.87 19.93
MODyn (1) 19.99 19.99 19.75 19.81
MODyn (2) 19.99 20.03 19.71 19.79
MODyn (3) 19.99 20.07 19.70 19.76
MODyn (4) 19.99 20.09 19.71 19.80

Generally, the latency values are similar, even between different variations of

the dataset (different columns). The most significant difference occurs between the P2P

algorithm for registry provisioning and the remaining approaches. This difference between

the P2P algorithm and the remaining algorithms reaches around 5% in the variations with

196 nodes, which can affect the QoE required from latency-sensitive applications that rely

on edge computing environments. A good explanation relies on the usage of resources

from the provisioned P2P registries over time.

51

5.3.2 Computing Resources Usage

As we have detailed previously, these entities require CPU and RAM, with a sig-

nificant amount of RAM required for each registry. Thus, there might be a dispute about

computing resources between registries and applications. Following the P2P approach, a

registry is allocated indefinitely to an edge server once it has at least one container im-

age in its storage, wants to join the P2P network, and has computing resources to host a

registry. That means that overloaded servers with container registries might be unable to

provide resources for allocating an application that could have its latency to its end-user

benefited from such a reallocation. Figure 5.6 depicts this critical behavior occurring in all

simulated variations: the number of P2P registries tends to grow over time and reach the

total number of servers at some point in the simulated time.

Regarding the other strategies, the central and community registry strategies

have a fixed number of registries over time, while the dynamic registry provisioning has

a variable number of provisioned registries. The number of provisioned registries by the

LMDyn approach is more limited and variates between the two community use cases.

Meanwhile, the number of provisioned registries by the MODyn approach versions follows

a decreasing movement over time. This behavior occurs because user mobility spreads

the container images across the edge servers. Then, fewer servers are required to achieve

the replication target. In addition, lower replication targets (e.g., 1 and 2 container image

replicas) demand fewer edge servers to allocate container registries than higher replica-

tion targets (e.g., 3 and 4 container image replicas). Table 5.6 summarizes these obser-

vations.

Table 5.6: Mean number of provisioned registries per time step (Equation 4.11).

Nodes 100 196

Unique images 08 32 16 64

Central 1.00 1.00 1.00 1.00
Comm* 3.00 3.00 6.00 6.00
Comm+ 6.00 6.00 12.00 12.00
P2P 22.94 22.94 44.41 44.43
LMDyn 3.35 3.69 7.06 7.62
MODyn (1) 2.74 5.02 4.59 9.59
MODyn (2) 4.67 8.84 7.44 16.36
MODyn (3) 6.04 12.12 10.11 21.02
MODyn (4) 7.52 14.59 12.76 25.07

Figure 5.6 and Table 5.6 also highlight a difference between variations with fewer

unique images (08 and 16 unique images) and variations with more unique images (32

and 64 unique images). The MODyn approach provisions fewer container registries with

52

0

10

20

30

40

50
nodes=100;unique_images=08 nodes=100;unique_images=32

0 1200 2400 3600
0

10

20

30

40

50
nodes=196;unique_images=16

0 1200 2400 3600

nodes=196;unique_images=64

Nu
m

be
r o

f p
ro

vi
sio

ne
d

re
gi

st
rie

s

Time step

Central
Comm*

Comm+
P2P

LMDyn
MODyn (1)

MODyn (2)
MODyn (3)

MODyn (4)

Figure 5.6: Quantity of provisioned registries per time step along the simulation time.

fewer unique images because it is easier to achieve the replication target with fewer im-

ages. As we can observe in the two subfigures on the left side of Figure 5.6, the number

of registries provisioned by the MODyn approach can be slightly higher than the Comm+

version at the beginning of the simulation, but then it gets equal or lower. This pattern

also appears in the mean number of provisioned registries in Table 5.6, in which only the

use case with four replicas has more provisioned registries than the Comm+ version. On

the other hand, with more unique images in the infrastructure, the MODyn approach re-

quires more time to start decreasing the number of provisioned registries, and it still has

more provisioned registries than the Comm+ version when a higher number of replicas

is required (3 or 4 container image replicas). To finish the evaluation regarding resource

usage, we present the normalized resource usage of the edge servers over time. Equa-

53

tion 5.2 shows the normalized resource usage calculation for a given time step t , which

considers the computing resources (CPU and RAM).

geo_mean(
|E |∑
i=1

cpu_demand(i , t)
ci

,
|E |∑
i=1

ram_demand(i , t)
ri

) (5.2)

58%

60%

62%

64%

66%

68%

nodes=100;unique_images=08 nodes=100;unique_images=32

0 1200 2400 3600

58%

60%

62%

64%

66%

68%

nodes=196;unique_images=16

0 1200 2400 3600

nodes=196;unique_images=64

No
rm

al
ize

d
se

rv
er

 u
til

iza
tio

n

Time step

Central
Comm*

Comm+
P2P

LMDyn
MODyn (1)

MODyn (2)
MODyn (3)

MODyn (4)

Figure 5.7: Mean normalized server utilization per time step along the simulation time.

Generally, the number of provisioned registries impacts the server utilization the

most. Both graphs for each variation follow the same pattern (Figures 5.6 and 5.7). The

most significant difference in server utilization is the slight changes that occur because of

the reallocations. During an application’s reallocation, it occupies CPU and RAM resources

in two edge servers, the current one and the target server of the reallocation. The current

server continues to allocate the application to avoid downtime to the end user, and the

54

target server needs to reserve the resources to ensure a successful reallocation when it

receives the application container image.

5.3.3 Provisioning Time

Looking at the relation between latency and provisioning time, lowering the pro-

visioning time might help decrease the overall mean latency because the applications are

reallocated faster, and thus their latency to the end users decreases faster. However, the

use of container registry resources plays a significant role in this scenario, turning these

two metrics into conflicting metrics. Although allocating more registries decreases the

provisioning time, it might affect the latency of the applications. Table 5.7 depicts the

overall mean provisioning time in seconds. This metric denotes the mean time it takes to

download a container image from a registry to a target server to reallocate an application.

Table 5.7: Overall mean provisioning time in seconds (Equation 4.10).

Nodes 100 196

Unique images 08 32 16 64

Central 1.18 3.31 3.18 16.80
Comm* 1.07 2.78 2.19 5.39
Comm+ 0.95 2.50 1.91 4.54
P2P 0.88 2.26 1.63 4.14
LMDyn 0.92 2.73 1.94 5.46
MODyn (1) 0.97 2.75 2.11 5.56
MODyn (2) 0.91 2.42 1.96 4.87
MODyn (3) 0.85 2.30 1.72 4.56
MODyn (4) 0.86 2.31 1.69 4.45

The main pattern observed with respect to provisioning time is that it decreases

as the number of provisioned registries increases. In this sense, the P2P strategy offers

the lowest provisioning times by allocating more registries over time. Following the P2P

strategy, the MODyn approach with 3 or 4 replicas and the Comm+ version present the

best results. The remaining strategies, including LMDyn and MODyn with 1 or 2 replicas,

allocate a limited number of container registries, which limits their ability to decrease the

provisioning time of container images. Similarly to the pattern observed with the number

of provisioned registries, the provisioning time also differs between the variations with

fewer unique images (08 and 16 unique images) and the variations with more unique

images (32 and 64 unique images). This behavior is related to the cache hits and misses

observed when reallocating applications. To this end, we present Figure 5.8, which depicts

the different types of reallocation that occur during the simulation, including (i) only using

the cache, (ii) partially using the cache, and (iii) not using the cache. The first type includes

55

reallocations to edge servers with all layers of the container image in their storage (cache

hit), and the second type contains reallocations to edge servers with some layers of the

container image in their storage (partial cache hit). The third type includes reallocations

that require downloading all the container layers to the target server (cache miss). The

second type can happen due to layer sharing between different images and when two

applications with the same image are reallocated to the same server.

0
200
400
600
800

1000
1200
1400
1600

nodes=100;unique_images=08 nodes=100;unique_images=32

Cen
tra

l

Com
m*

Com
m+ P2

P
LM

Dyn

MODyn
 (1

)

MODyn
 (2

)

MODyn
 (3

)

MODyn
 (4

)
0

200
400
600
800

1000
1200
1400
1600

nodes=196;unique_images=16

Cen
tra

l

Com
m*

Com
m+ P2

P
LM

Dyn

MODyn
 (1

)

MODyn
 (2

)

MODyn
 (3

)

MODyn
 (4

)

nodes=196;unique_images=64

Nu
m

be
r o

f r
ea

llo
ca

tio
ns

Algorithm

Only using cache Partially using cache Not using cache

Figure 5.8: Total number of reallocations per type.

Considering these different reallocation types, Table 5.7 depicts a lower provi-

sioning time in the variations with fewer unique container images. A compelling expla-

nation for this behavior is the elevated number of reallocations only using cache in these

variations, as depicted in the two subfigures on the left side of Figure 5.8. Meanwhile, in

56

the other variations, this number is lower, and the application’s reallocation requires more

network usage, leading to a longer provisioning time.

5.3.4 Storage Resources Usage

So far, the main focus has been to compare the P2P strategy with the dynamic

approaches proposed in our work. In addition, as we have seen, the community strategy

also has good results in terms of latency and provisioning time, besides having controlled

resource usage considering computing resources (CPU and RAM) because the number of

registries is constant and limited. However, allocating fully replicated registries instead of

relying on the existing cache of the edge servers makes the community approach demand

a lot of storage space. This behavior can become a constraint for adopting the commu-

nity registry approach, especially in edge computing infrastructures, as highlighted by

Carvalho et al. [12]. To understand the impact of this behavior in our experiments, we

present the mean disk utilization per edge server and time step in Table 5.8 and the total

disk utilization of the infrastructure along the simulation time steps in Figure 5.9.

Table 5.8: Mean disk utilization per edge server and time step in MiB (Equation 4.12).

Nodes 100 196

Unique images 08 32 16 64

Central 7072.55 12330.50 11625.24 19738.34
Comm* 7206.98 13978.16 12599.16 25591.02
Comm+ 7469.51 16816.42 13837.69 33091.04
P2P 7119.09 12401.09 11203.21 18796.29
LMDyn 7101.45 12317.10 11582.04 19607.08
MODyn (1) 7089.41 12283.91 11672.04 19648.21
MODyn (2) 7081.26 12343.06 11695.82 19695.32
MODyn (3) 7090.27 12389.74 11657.26 19663.90
MODyn (4) 7089.23 12318.27 11730.25 19650.14

Disk utilization also follows the pattern with a relevant difference between vari-

ations with fewer unique images (08 and 16 unique images) and variations with more

unique images (32 and 64 unique images). In this case, the pattern is directly related to

the fact that fewer unique container images demand less storage space on servers with

fully replicated registries. Meanwhile, with more unique container images, the storage

space required is larger, increasing disk utilization, especially in the community registry

approach. The mean disk utilization per edge server and time step reaches 68% more

than the other strategies in the Comm+ version. Disk utilization is lower in the Comm*

version, but still higher than in the other approaches. Furthermore, the uniform increase in

overall disk utilization over time, shown in Figure 5.9 on variations with 32 and 64 unique

57

244.1 GB

488.3 GB

732.4 GB

976.6 GB

1.2 TB

1.4 TB

1.7 TB

1.9 TB
nodes=100;unique_images=08 nodes=100;unique_images=32

0 1200 2400 3600

244.1 GB

488.3 GB

732.4 GB

976.6 GB

1.2 TB

1.4 TB

1.7 TB

1.9 TB
nodes=196;unique_images=16

0 1200 2400 3600

nodes=196;unique_images=64

To
ta

l d
isk

 u
til

iza
tio

n

Time step

Central
Comm*

Comm+
P2P

LMDyn
MODyn (1)

MODyn (2)
MODyn (3)

MODyn (4)

Figure 5.9: Total disk utilization per time step along the simulation time.

container images, indicates that the community strategy is not scalable in this regard.

Our dataset contains only a maximum disk occupation of 79 GiB, as depicted in Table 5.3.

However, in a scenario with more unique container images and larger container images

(e.g., AWS Deep Learning container images for GPUs), this elevated disk utilization might

be a significant constraint to use this strategy on edge computing infrastructures.

5.3.5 Additional Metrics

In addition to the main metrics targeted by this work (i.e., latency, provisioning

time, and resource usage), we also analyze some secondary metrics to assess the effec-

tiveness of dynamic registry provisioning approaches. In this sense, we start analyzing

58

the time the registries spend active (i.e., provisioning container images to other edge

servers). We summarize the results with respect to this metric in Figure 5.10.

0%

20%

40%

60%

80%

nodes=100;unique_images=08 nodes=100;unique_images=32

Cen
tra

l

Com
m*

Com
m+ P2

P
LM

Dyn

MODyn
 (1

)

MODyn
 (2

)

MODyn
 (3

)

MODyn
 (4

)

Cen
tra

l

Com
m*

Com
m+ P2

P
LM

Dyn

MODyn
 (1

)

MODyn
 (2

)

MODyn
 (3

)

MODyn
 (4

)

Cen
tra

l

Com
m*

Com
m+ P2

P
LM

Dyn

MODyn
 (1

)

MODyn
 (2

)

MODyn
 (3

)

MODyn
 (4

)

Cen
tra

l

Com
m*

Com
m+ P2

P
LM

Dyn

MODyn
 (1

)

MODyn
 (2

)

MODyn
 (3

)

MODyn
 (4

)
0%

20%

40%

60%

80%

nodes=196;unique_images=16

Cen
tra

l

Com
m*

Com
m+ P2

P
LM

Dyn

MODyn
 (1

)

MODyn
 (2

)

MODyn
 (3

)

MODyn
 (4

)

Cen
tra

l

Com
m*

Com
m+ P2

P
LM

Dyn

MODyn
 (1

)

MODyn
 (2

)

MODyn
 (3

)

MODyn
 (4

)

Cen
tra

l

Com
m*

Com
m+ P2

P
LM

Dyn

MODyn
 (1

)

MODyn
 (2

)

MODyn
 (3

)

MODyn
 (4

)

Cen
tra

l

Com
m*

Com
m+ P2

P
LM

Dyn

MODyn
 (1

)

MODyn
 (2

)

MODyn
 (3

)

MODyn
 (4

)

nodes=196;unique_images=64

Pe
rc

en
ta

ge
 o

f t
im

e
ac

tiv
e

Algorithm

Figure 5.10: Distribution of the time percentage that the provisioned registries spend ac-
tive.

One of the observed patterns is the duality of active time between the central

registry and the P2P registries. The central registry strategy only has a single entity

that reaches 90% of the simulated time active in the variation with the highest work-

load (196 nodes and 64 unique container images). On the other hand, we have seen that

the P2P registry strategy allocates an excessive number of registries, which distribute the

demands and present a low mean of time active, with a few outliers in the variations with

more unique container images (32 and 64). In between, the community registry strategy

achieves an adequate percentage of active time, especially in the Comm* version, due to

the lower number of provisioned registries.

59

The dynamic registry provisioning strategy is also between the central and P2P

strategies. It has a controlled number of provisioned registries, but is generally higher

than the community strategy. By limiting the number of provisioning registries, these ver-

sions achieve a higher percentage of active time. Aside from the mean percentage of

time active, calculated considering all provisioned registries, some outliers (circles above

the boxes) indicate that some registries spend more time active than the other strate-

gies. However, since we do not take any decision based on predicting user mobility or

something similar, it still happens to provision registries that have no activity or near-zero

activity.

The next metric that we analyze is related to container image replication. We

compare P2P and dynamic registry strategies because we only consider cache-based reg-

istries to calculate the replication value. Thus, we do not consider the container image

hosted in the central registry provisioned in the dataset used by these strategies. The

analysis of this metric aims to understand the behavior of the distribution of container im-

age replicas during the simulation. Figure 5.11 summarizes this information for the vari-

ation with 100 nodes and 32 unique container images, which behaves similarly to other

variations.

0%

20%

40%

60%

80%

100%

P2P LMDyn MODyn (1)

0 1200 2400 3600

0%

20%

40%

60%

80%

100%

MODyn (2)

0 1200 2400 3600

MODyn (3)

0 1200 2400 3600

MODyn (4)

0

5

10

15

20

Nu
m

be
r o

f c
on

ta
in

er
 im

ag
e

re
pl

ica
s

Pe
rc

en
ta

ge
 o

f i
m

ag
es

 w
ith

 n
um

be
r o

f r
ep

lic
as

Time step

Figure 5.11: Number of container image replicas along the simulation time (variation 2).

Although both dynamic registry provisioning strategies have a similar color map,

indicating similar behavior, the P2P strategy is significantly different. The P2P strategy’s

behavior is to have an increasing number of container image replicas available for pro-

visioning on P2P registries (i.e., cache-based registries). This happens because the num-

ber of provisioned registries only grows as the simulation time passes, and the container

images keep getting distributed to these different edge servers based on user mobility.

60

Having more than 80% container images with ten or more replicas for distribution in the

infrastructure shows the waste of resources that is part of this strategy.

On the other hand, due to the controlled number of P2P registries provisioned

during the simulation by the dynamic registry provisioning variations, the number of con-

tainer image replicas is sufficient to provide the necessary fault tolerance and avoid bottle-

necks during container image provisioning. Although the LMDyn approach does not have

an image replication parameter, the number of provisioned registries limits the number

of replicas in the infrastructure. In the MODyn approach, there are slight changes from

one input to another because the input is directly related to the replication of container

images. In these different inputs, most container images have at least the minimum num-

ber of specified replicas. However, we cannot ensure that all container images have the

specified number of replicas because the algorithm skips edge servers to which most im-

ages reach the target. On the other hand, we cannot ensure that all container images

do not overcome the specified number of replicas. However, the number of replicas is

significantly lower even in the input with four replicas.

The results presented in this section corroborate many of the hypotheses about

existing strategies and the possibility of dynamically provisioning and deprovisioning con-

tainer registries in edge computing infrastructures. In the next chapter, we conclude this

work by making some final observations about the advantages and disadvantages of the

evaluated strategies by considering the different scenario variations that we targeted in

our experiments. Additionally, we analyze the remaining research opportunities related to

edge computing environments, especially with regard to the registry provisioning process.

61

6. CONCLUSION

The increasing number of mobile devices and sensors is leading to the decen-

tralization of computing resources. The consolidated cloud computing paradigm struggles

to cope with the latency and bandwidth requirements of emerging applications based on

these devices, mainly due to the WAN distance that separates the data centers from the

devices. In this sense, the edge computing paradigm emerges as an alternative to allocate

these latency and bandwidth demands, with substantial computing and storage resources

distributed across urban areas. This aspect allows the edge infrastructure to ensure the

necessary QoS and QoE in terms of latency and bandwidth for its users, including mobile

users. However, edge infrastructures can use container-based virtualization to meet these

demands and limited resource availability.

Containers offer a lightweight virtualization aspect compared to VMs, which are

known to virtualize resources in cloud infrastructures. To provision container-based ap-

plications, providers and users rely on the container registry to download the necessary

content. However, this entity could become a bottleneck [23], especially in edge com-

puting infrastructures. In this regard, previous studies focused on distributing container

registries on multiple servers. These efforts, aimed at cloud and edge infrastructures,

improved the process of downloading container images for provisioning container-based

applications. However, until now, the sole focus of most of these works was only the pro-

visioning time. Although Temp et al. [52] propose a strategy that also couples with other

relevant metrics to our study (latency and resource usage), the authors employ a strategy

of migrating container registries, which is not scalable to greater storage demands.

To this end, we propose two algorithms for dynamically provisioning container

registries in edge computing infrastructures. These infrastructures are responsible for

the allocation of latency-sensitive applications and are known to have limited resource

availability. Thus, the first algorithm (LMDyn) is a preliminary proposal within our work

and is focused only on edge computing requirements: latency and resource usage. After

recognizing the importance of considering the provisioning time, as previous studies on

distributed container registries did, we propose the second algorithm (MODyn). MODyn is

the most recent proposed strategy, and it tries to allocate container registries by consid-

ering a trade-off between the target metrics. A significant advantage of both strategies

is that they rely on the container images already stored in edge servers’ storage without

requiring any migration of container images.

As depicted in Chapter 5, both algorithms have adequate performance compared

to baseline approaches, especially in some specific use cases. Although the LMDyn algo-

rithm struggles with the provisioning time because of the limited number of provisioned

registries, it maintains a similar latency to other strategies and considerably reduces the

resource usage in terms of CPU and RAM to the P2P strategy and in terms of disk to the

62

community strategy. The MODyn algorithm has similar results, with better performance

with respect to the provisioning time. Although it does not reach the performance of the

P2P strategy with respect to these metrics, it also reduces the usage of CPU and RAM

resources. Compared to the community strategy, it significantly reduces disk utilization,

especially in scenarios with more unique container images, and keeps a better provision-

ing time with a higher replication target. In addition, disk utilization in the community

strategy indicates that this strategy is more suitable for use cases with a limited variety

of container images and layers.

6.1 Future Work

Taking into account the results of this work, we believe that a strategy that an-

alyzes the mobility patterns of the user to predict his next movements can significantly

improve the effective provisioning of container registries. Such a strategy could reduce

the number of provisioned registries and improve the time each of the provisioned reg-

istries spends active, leading to better resource usage and a minor latency impact. Within

the MODyn algorithm, we also understand that there are opportunities to improve the

strategy using the same logic of provisioning container registries until it reaches a repli-

cation target. For instance, we could download relevant container images to a server that

is considered an adequate candidate to allocate a registry but requires a few additional

container images to improve its capacity for provisioning container images. In the same

vein, we could also remove irrelevant container images from good server candidates to

avoid excessive image replication or to improve disk utilization. In addition, we understand

that conducting experiments in other scenarios (e.g., scenarios that require cache/disk re-

placement strategies because of storage limitations) is crucial to understanding additional

bottlenecks in the evaluated strategies.

6.2 Achievements

During our research period, we submitted a contribution containing the LMDyn al-

gorithm to the XXIV Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD

2023), which is in the conference proceedings.

In addition to the contributions mentioned above, we participated in another

study on resource management in federated edge computing infrastructures.

• Thea - a QoS, Privacy, and Power-aware Algorithm for Placing Applications

on Federated Edges

Paulo Souza, Carlos Kayser, Lucas Roges, Tiago Ferreto

63

Euromicro International Conference on Parallel, Distributed and Network-Based Pro-

cessing (PDP), 2023

64

REFERENCES

[1] Ahmed, A.; Ahmed, E. “A survey on mobile edge computing”. In: 10th International

Conference on Intelligent Systems and Control (ISCO), 2016, pp. 1–8.

[2] Ahmed, A.; Pierre, G. “Docker image sharing in distributed fog infrastructures”.

In: IEEE International Conference on Cloud Computing Technology and Science

(CloudCom), 2019, pp. 135–142.

[3] Al-Ayyoub, M.; Husari, G.; Mardini, W. “Improving vertical handoffs using mobility

prediction”, International Journal of Advanced Computer Science and Applications,

vol. 7–3, 2016.

[4] Alibaba Cloud. “P2p-based intelligent image acceleration system

of dragonfly”. Source: https://www.alibabacloud.com/blog/

p2p-based-intelligent-image-acceleration-system-of-dragonfly_599645, Jan 2024.

[5] Anwar, A.; Mohamed, M.; Tarasov, V.; Littley, M.; Rupprecht, L.; Cheng, Y.; Zhao, N.;

Skourtis, D.; Warke, A. S.; Ludwig, H.; et al.. “Improving docker registry design based

on production workload analysis”. In: 16th USENIX Conference on File and Storage

Technologies (FAST 18), 2018, pp. 265–278.

[6] Aral, A.; De Maio, V.; Brandic, I. “Ares: Reliable and sustainable edge provisioning

for wireless sensor networks”, IEEE Transactions on Sustainable Computing, vol. 7–4,

1 2021, pp. 761–773.

[7] Bai, F.; Helmy, A. “A survey of mobility models”, Wireless Adhoc Networks. University

of Southern California, USA, vol. 206, 2004, pp. 147.

[8] Becker, S.; Schmidt, F.; Kao, O. “Edgepier: P2p-based container image distribution in

edge computing environments”. In: IEEE International Performance, Computing, and

Communications Conference (IPCCC), 2021, pp. 1–8.

[9] Bernstein, D. “Containers and cloud: From lxc to docker to kubernetes”, IEEE cloud

computing, vol. 1–3, 9 2014, pp. 81–84.

[10] Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. “Fog computing and its role in the internet

of things”. In: Proceedings of the first edition of the MCC workshop on Mobile cloud

computing, 2012, pp. 13–16.

[11] Bréhon-Grataloup, L.; Kacimi, R.; Beylot, A.-L. “Mobile edge computing for v2x

architectures and applications: A survey”, Computer Networks, vol. 206, 4 2022,

pp. 108797.

https://www.alibabacloud.com/blog/p2p-based-intelligent-image-acceleration-system-of-dragonfly_599645
https://www.alibabacloud.com/blog/p2p-based-intelligent-image-acceleration-system-of-dragonfly_599645

65

[12] Carvalho, G.; Cabral, B.; Pereira, V.; Bernardino, J. “Edge computing: current trends,

research challenges and future directions”, Computing, vol. 103, 1 2021, pp. 993–

1023.

[13] Chen, J. L.; Liaqat, D.; Gabel, M.; de Lara, E. “Starlight: Fast container provisioning

on the edge and over the wan”. In: 19th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 22), 2022, pp. 35–50.

[14] Darrous, J.; Lambert, T.; Ibrahim, S. “On the importance of container image

placement for service provisioning in the edge”. In: 28th International Conference

on Computer Communication and Networks (ICCCN), 2019, pp. 1–9.

[15] Docker. “Docker overview”. Source: https://docs.docker.com/get-started/overview/,

Jan 2024.

[16] Docker. “Layers”. Source: https://docs.docker.com/build/guide/layers/, Jan 2024.

[17] Du, L.; Wo, T.; Yang, R.; Hu, C. “Cider: A rapid docker container deployment system

through sharing network storage”. In: IEEE 19th International Conference on High

Performance Computing and Communications; IEEE 15th International Conference

on Smart City; IEEE 3rd International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), 2017, pp. 332–339.

[18] FreeBSD. “Chapter 16. jails”. Source: https://docs.freebsd.org/en/books/handbook/

jails/, Dec 2022.

[19] Gazzetti, M.; Reale, A.; Katrinis, K.; Corradi, A. “Scalable linux container provisioning

in fog and edge computing platforms”. In: European Conference on Parallel

Processing, 2017, pp. 304–315.

[20] Gillani, K.; Lee, J.-H. “Comparison of linux virtual machines and containers for a

service migration in 5g multi-access edge computing”, ICT Express, vol. 6–1, 3 2020,

pp. 1–2.

[21] Govindasamy, S.; Bergel, I. “Uplink performance of multi-antenna cellular networks

with co-operative base stations and user-centric clustering”, IEEE Transactions on

Wireless Communications, vol. 17–4, 2 2018, pp. 2703–2717.

[22] Hamdan, S.; Ayyash, M.; Almajali, S. “Edge-computing architectures for internet of

things applications: A survey”, Sensors, vol. 20–22, 11 2020, pp. 6441.

[23] Harter, T.; Salmon, B.; Liu, R.; Arpaci-Dusseau, A. C.; Arpaci-Dusseau, R. H. “Slacker:

Fast distribution with lazy docker containers”. In: 14th USENIX Conference on File

and Storage Technologies (FAST 16), 2016, pp. 181–195.

https://docs.docker.com/get-started/overview/
https://docs.docker.com/build/guide/layers/
https://docs.freebsd.org/en/books/handbook/jails/
https://docs.freebsd.org/en/books/handbook/jails/

66

[24] Ismail, B. I.; Goortani, E. M.; Ab Karim, M. B.; Tat, W. M.; Setapa, S.; Luke, J. Y.; Hoe,

O. H. “Evaluation of docker as edge computing platform”. In: IEEE conference on

open systems (ICOS), 2015, pp. 130–135.

[25] Ismail, L.; Materwala, H. “Escove: energy-sla-aware edge–cloud computation

offloading in vehicular networks”, Sensors, vol. 21–15, 8 2021, pp. 5233.

[26] Kangjin, W.; Yong, Y.; Ying, L.; Hanmei, L.; Lin, M. “Fid: A faster image distribution

system for docker platform”. In: IEEE 2nd International Workshops on Foundations

and Applications of Self* Systems (FAS* W), 2017, pp. 191–198.

[27] Kaur, G.; Batth, R. S. “Edge computing: Classification, applications, and challenges”.

In: 2nd International Conference on Intelligent Engineering and Management (ICIEM),

2021, pp. 254–259.

[28] kernel, L. “Control groups — the linux kernel documentation”. Source: https://docs.

kernel.org/admin-guide/cgroup-v1/cgroups.html, Dec 2022.

[29] Knob, L. A. D.; Faticanti, F.; Ferreto, T.; Siracusa, D. “Community-based placement

of registries to speed up application deployment on edge computing”. In: IEEE

International Conference on Cloud Engineering (IC2E), 2021, pp. 147–153.

[30] Liang, M.; Shen, S.; Li, D.; Mi, H.; Liu, F. “Hdid: An efficient hybrid docker image

distribution system for datacenters”. In: National Software Application Conference,

2016, pp. 179–194.

[31] Ltd., C. “Linux containers”. Source: https://linuxcontainers.org/, Dec 2022.

[32] MacQueen, J. “Classification and analysis of multivariate observations”. In:

Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and

Probability, 1967, pp. 281–297.

[33] Mansouri, Y.; Babar, M. A. “A review of edge computing: Features and resource

virtualization”, Journal of Parallel and Distributed Computing, vol. 150, 4 2021, pp.

155–183.

[34] Mell, P.; Grance, T. “The nist definition of cloud computing”. Source: https://www.nist.

gov/publications/nist-definition-cloud-computing, Dec 2022.

[35] Merkel, D.; et al.. “Docker: lightweight linux containers for consistent development

and deployment”, Linux j, vol. 239–2, 3 2014, pp. 2.

[36] Morabito, R.; Cozzolino, V.; Ding, A. Y.; Beijar, N.; Ott, J. “Consolidate iot edge

computing with lightweight virtualization”, IEEE network, vol. 32–1, 1 2018, pp. 102–

111.

https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html
https://linuxcontainers.org/
https://www.nist.gov/publications/nist-definition-cloud-computing
https://www.nist.gov/publications/nist-definition-cloud-computing

67

[37] Nathan, S.; Ghosh, R.; Mukherjee, T.; Narayanan, K. “Comicon: A co-operative

management system for docker container images”. In: IEEE International Conference

on Cloud Engineering (IC2E), 2017, pp. 116–126.

[38] Ouyang, T.; Zhou, Z.; Chen, X. “Follow me at the edge: Mobility-aware dynamic

service placement for mobile edge computing”, IEEE Journal on Selected Areas in

Communications, vol. 36–10, 9 2018, pp. 2333–2345.

[39] Quy, N. M.; Ngoc, L. A.; Ban, N. T.; Hau, N. V.; Quy, V. K. “Edge computing for real-

time internet of things applications: Future internet revolution”, Wireless Personal

Communications, vol. 132–2, 7 2023, pp. 1423–1452.

[40] Rausch, T.; Hummer, W.; Stippel, C.; Vasiljevic, S.; Elvezio, C.; Dustdar, S.; Krösl,

K. “Towards a platform for smart city-scale cognitive assistance applications”. In:

IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops

(VRW), 2021, pp. 330–335.

[41] Roges, L.; Ferreto, T. “Dynamic provisioning of container registries in edge computing

infrastructures”. In: Anais do XXIV Simpósio em Sistemas Computacionais de Alto

Desempenho, 2023, pp. 85–96.

[42] Satyanarayanan, M. “The emergence of edge computing”, Computer, vol. 50–1,

1 2017, pp. 30–39.

[43] Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. “The case for vm-based

cloudlets in mobile computing”, IEEE pervasive Computing, vol. 8–4, 10 2009, pp.

14–23.

[44] Satyanarayanan, M.; Davies, N. “Augmenting cognition through edge computing”,

Computer, vol. 52–7, 7 2019, pp. 37–46.

[45] Satyanarayanan, M.; Klas, G.; Silva, M.; Mangiante, S. “The seminal role of edge-

native applications”. In: IEEE International Conference on Edge Computing (EDGE),

2019, pp. 33–40.

[46] Shakarami, A.; Shakarami, H.; Ghobaei-Arani, M.; Nikougoftar, E.; Faraji-Mehmandar,

M. “Resource provisioning in edge/fog computing: A comprehensive and systematic

review”, Journal of Systems Architecture, vol. 122, 1 2022, pp. 102362.

[47] Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. “Edge computing: Vision and challenges”,

IEEE internet of things journal, vol. 3–5, 6 2016, pp. 637–646.

[48] Singh, A.; Satapathy, S. C.; Roy, A.; Gutub, A. “Ai-based mobile edge computing

for iot: Applications, challenges, and future scope”, Arabian Journal for Science and

Engineering, vol. 47, 1 2022, pp. 1–31.

68

[49] Solaris. “Introdução ao solaris zones - guia de administração do sistema:

gerenciamento de recursos do oracle solaris containers e oracle solaris zones”.

Source: https://docs.oracle.com/cd/E38904_01/html/820-2978/zones.intro-1.html,

Dec 2022.

[50] Sonmez, H. “State of the edge report 2023”, Technical Report, The Linux Foundation,

2023, 73p.

[51] Souza, P. S.; Ferreto, T.; Calheiros, R. N. “Edgesimpy: Python-based modeling and

simulation of edge computing resource management policies”, Future Generation

Computer Systems, vol. 148, 11 2023, pp. 446–459.

[52] Temp, D. C.; de Souza, P. S. S.; Lorenzon, A. F.; Luizelli, M. C.; Rossi, F. D.

“Mobility-aware registry migration for containerized applications on edge computing

infrastructures”, Journal of Network and Computer Applications, vol. 217, 8 2023, pp.

103676.

[53] Uber. “Introducing kraken, an open source peer-to-peer docker registry”. Source:

https://www.uber.com/blog/introducing-kraken/, Jan 2024.

[54] Varghese, B.; Wang, N.; Barbhuiya, S.; Kilpatrick, P.; Nikolopoulos, D. S. “Challenges

and opportunities in edge computing”. In: IEEE international conference on smart

cloud (SmartCloud), 2016, pp. 20–26.

[55] Wang, F.; Zhang, M.; Wang, X.; Ma, X.; Liu, J. “Deep learning for edge computing

applications: A state-of-the-art survey”, IEEE Access, vol. 8, 3 2020, pp. 58322–

58336.

[56] Wysocki, T. A.; Dadej, A.; Wysocki, B. J. “Advanced wired and wireless networks”.

Springer Science & Business Media, 2004, vol. 26, 270p.

[57] Zhang, M.; Zhang, F.; Lane, N. D.; Shu, Y.; Zeng, X.; Fang, B.; Yan,

S.; Xu, H. “Deep Learning in the Era of Edge Computing: Challenges

and Opportunities”. John Wiley Sons, Ltd, 2020, chap. 3, pp. 67–78,

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119551713.ch3.

[58] Zhang, X.; Cao, Z.; Dong, W. “Overview of edge computing in the agricultural internet

of things: Key technologies, applications, challenges”, Ieee Access, vol. 8, 7 2020, pp.

141748–141761.

[59] Zheng, C.; Rupprecht, L.; Tarasov, V.; Thain, D.; Mohamed, M.; Skourtis, D.; Warke,

A. S.; Hildebrand, D. “Wharf: Sharing docker images in a distributed file system”. In:

Proceedings of the ACM Symposium on Cloud Computing, 2018, pp. 174–185.

https://docs.oracle.com/cd/E38904_01/html/820-2978/zones.intro-1.html
https://www.uber.com/blog/introducing-kraken/

	Introduction
	Background
	Edge Computing
	Container-based Virtualization

	Related Work
	Distributed Registries in the Cloud Computing Paradigm
	Distributed Registries in the Edge Computing Paradigm
	Final Remarks

	Contributions
	System Model
	Algorithms
	Distributed Pull Algorithm
	Dynamic Registry Provisioning Algorithms

	Evaluation
	Simulator
	Experiments Description
	Results
	Latency
	Computing Resources Usage
	Provisioning Time
	Storage Resources Usage
	Additional Metrics

	Conclusion
	Future Work
	Achievements

	References

