PUCRS

ESCOLA POLITECNICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTAGCAO
MESTRADO EM CIENCIA DA COMPUTACAO

CARLOS GABRIEL DE ARAUJO GEWEHR

HARDWARE ACCELERATION E(():E

POST-QUANTUM
CRYPTOGRAPHY IN RESOU CONSTRAINED
EMBEDDED SYSTEMS WITH RISC-V ISES

Porto Alegre
2024

POS-GRADUACAO - STRICTO SENSU

*8.¢

it
i h
i

. XK

o] < - —— -].ﬂ
Epym©

Pontificia Universidade Catdlica
do Rio Grande do Sul

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY
COMPUTER SCIENCE GRADUATE PROGRAM

HARDWARE ACCELERATION
FOR POST-QUANTUM
CRYPTOGRAPHY IN
RESOURCE CONSTRAINED
EMBEDDED SYSTEMS WITH
RISC-V ISES

CARLOS GABRIEL DE ARAUJO
GEWEHR

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfilment of the requirements
for the degree of Master in Computer

Science.

Advisor: Prof. Dr. Fernando Gehm Moraes

Porto Alegre
2024

Ficha Catalografica

G396h Gewehr, Carlos Gabriel de Araujo

Hardware Acceleration for Post-Quantum Cryptography in Resource Constrained
Embedded Systems with RISC-V ISEs / Carlos Gabriel de Araujo Gewehr. —
2024.

96.

Dissertacao (Mestrado) — Programa de Pos-Graduacgao em Ciéncia da
Computagao, PUCRS.

Orientador: Prof. Dr. Fernando Gehm Moraes.

1. Post-quantum cryptography. 2. Crystals-Kyber. 3. Embedded Systems. 4.
Instruction Set Extensions. 5. RISC-V. I. Moraes, Fernando Gehm. II. Titulo.

Elaborada pelo Sistema de Geragao Automatica de Ficha Catalografica da PUCRS
com os dados fornecidos pelo(a) autor(a).
Bibliotecaria responsavel: Clarissa Jesinska Selbach CRB-10/2051

CARLOS GABRIEL DE ARAUJO GEWEHR

HARDWARE ACCELERATION FOR
POST-QUANTUM CRYPTOGRAPHY IN
RESOURCE CONSTRAINED EMBEDDED
SYSTEMS WITH RISC-V ISES

This Master Thesis has been submitted in
partial fulfilment of the requirements for the
degree of Master in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on February 29, 2024.

COMMITTEE MEMBERS:

Prof. Dr. Rafael lankowski Soares (PPGC/UFPel)
Prof. Dr. Avelino Francisco Zorzo (PPGCC/PUCRS)

Prof. Dr. Fernando Gehm Moraes (PPGCC/PUCRS - Advisor)

ACELERACAO EM HARDWARE DE CRIPTOGRAFIA POS-QUANTICA
EM SISTEMAS EMBARCADOS DE BAIXO DESEMPENHO COM
INSTRUGCOES ESPECIALIZADAS EM UM PROCESSADOR RISC-V

RESUMO

O iminente alvorecer da computacdao quantica apresenta ameagas a algoritmos
criptogréficos usados na atualidade para troca de chaves, como Diffie-Hellman, RSA e
construgdes baseadas em Curvas Elipticas (ECC), por meio do algoritmo de Shor. Como
resposta a estes desafios, o National Institute for Standard and Technology (NIST), érgao
responsavel pela padronizacdo de algoritmos criptograficos nos Estados Unidos, iniciou
uma competicao para algoritmos de troca de chaves que apresentam resisténcia a ataques
classicos e quanticos. Em julho de 2022, o algoritmo Crystals-Kyber foi anunciado como
vencedor dessa competi¢cdo, sendo padronizado sob 0 nome ML-KEM. Implementagdes de
tais algoritmos visando sistemas embarcados com poucos recursos computacionais sao
consideradas um problema em aberto, visto que ha poucos trabalhos na literatura que ex-
ploram solu¢des os mesmos. Esse trabalho visa explorar aceleragao em hardware por meio
de instrucdes especializadas (ISEs) em um processador RISC-V de baixa complexidade em
uma avaliacao considerando desempenho, consumo de energia e memdria, assim como
custos em area, almejando obter uma implementacéo eficiente de um sistema criptografico
resistente a eventuais ataques ocasionados pela computagédo quantica, aderindo a padrdes
e algoritmos modernos. Além da explorag@o do algoritmo Kyber, também s&o avaliados al-
goritmos para fungdes resumo (hash functions) e criptografia simétrica autenticada (AEAD),
sendo medidos os ganhos devido ao uso de ISEs para essas finalidades. Sucintamente, os
ganhos medidos para fun¢des resumo séo de 32%, 38% e 16% em desempenho, gastos de
energia e de memoria, respectivamente. Para AEAD, os ganhos sao de 58%, 61% e 35%
em desempenho, gastos de energia e de memoria, respectivamente. O custo em érea é de
10% da area do processador Ibex base ou 4K portas I6gicas equivalentes. A aceleracao
em hardware de primitivas simétricas (e.g. SHA-3) dentro do algoritmo Kyber implicam em
ganhos de desempenho e energia de 32% cada. Combinando aceleracao das primitivas si-
métricas e uma nova ISE proposta nesse trabalho chamada XKyber, ganhos adicionais de
46% and 44% em desempenho e gasto de energia sdo observados, além de uma reducao
no tamanho de cédigo de 15%. O custos em area devido a ISE XKyber € novamente de
10% da area do processador base.

Palavras-Chave: Criptografia P6s-Quantica, Crystals-Kyber, Sistemas Embarcados, Baixa
Poténcia, RISC-V, lbex.

HARDWARE ACCELERATION FOR POST-QUANTUM CRYPTOGRAPHY
IN RESOURCE CONSTRAINED EMBEDDED SYSTEMS WITH RISC-V
ISES

ABSTRACT

The imminent rise of practical quantum computing threatens well-established cryp-
tography algorithms for secret key exchange in use today, such as Diffie-Hellman, RSA and
Elliptic Curve based schemes (ECC), via Shor’s algorithm. To answer this challenge, the
National Institute for Standard and Technology (NIST) has launched a competition for Key
Encapsulation Mechanism (KEM) algorithms showing resistance to classical and quantum-
based attacks. In July 2022, NIST announced that the Crystals-Kyber algorithm was chosen
as the competition’s winner, being standardized as ML-KEM. No works in literature suffi-
ciently address the issue of efficient implementation of Kyber in resource-constrained em-
bedded systems. This work aims to explore hardware acceleration through Instruction Set
Extensions (ISEs) in a low-end 32-bit RISC-V core in a comprehensive evaluation compris-
ing performance, energy consumption, memory footprint and die area costs, enabling an
efficient implementation of a cryptosystem that can withstand attacks from the emergence
of quantum computers and is compliant to current cryptographic standards and algorithm
suites. In addition to Kyber, this work also explores several algorithms for authenticated
encryption (AEAD) and hash functions at the 128 and 256 bit security levels, evaluating
improvements due to the use of specialized instructions in each algorithm. In summary,
the use of ISEs in hash functions provides gains of 32%, 38% and 16% in performance,
energy consumption, and code size, respectively. Gains in authenticated encryption are of
58%, 61% and 35% in performance, energy consumption, and code size, respectively. Area
costs are of at most 10% of the baseline Ibex processor with no ISEs, corresponding to
4K equivalent gates. Hardware acceleration of symmetric primitives (e.g. SHA-3) in Kyber
show performance and energy gains of 32% each. Combining hardware acceleration via
a novel XKyber ISE and of Kyber symmetric primitives, further gains of 46% and 44% in
performance and energy consumption are observed, while also reducing code size by 15%.
XKyber area costs are again of 10% of the baseline Ibex processor with no ISEs.

Keywords: Post-quantum cryptography, Crystals-Kyber, Embedded Systems, Low Power,
RISC-V, Ibex.

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9

LIST OF FIGURES

Ibex processor [lowRISC, 2018].

Fine-grain loosely-coupled accelerators [Fritzmann et al., 2019].

Fine-grain tightly-coupled accelerators [Fritzmann et al., 2020].

Coarse-grain loosely-coupled accelerator [Banerjee et al., 2019]. ...

Coarse-grain tightly-coupled AES accelerator [Zgheib et al., 2021]. . .

Profiler sample output..
SHA-256 sigma functions [NIST, 2015a).
SHA-512 sigma functions [NIST, 2015a] it
SHA-3 sponge construction [NIST, 2015b]..
Keccak permutation internal state [NIST, 2015b].
Keccak 6 (Theta) step [NIST, 2015b].
Keccak p (Rho) step [NIST, 2015b].
Keccak p (Rho) step rotation amounts (mod 64) [NIST, 2015b].
Keccak 7 (Pi) step [NIST, 2015b].
Keccak x (Chi) step [NIST, 2015b].

Figure 3.10 — Ascon-Hash and Ascon-XOF sponge [Dobraunig et al., 2021].

Figure 3.11 — Ascon internal state [Dobraunig et al., 2021].

Figure 3.12 — Ascon round constants [Dobraunig et al., 2021]..................
Figure 3.13 — Ascon 5-bit SBOX S(x) [Dobraunig etal.,2021].
Figure 3.14 — Ascon SBOX applied to the state [Dobraunig et al., 2021].
Figure 3.15 — Ascon linear diffusion operation [Dobraunig et al., 2021].

Figure 3.16 — Ascon linear diffusion applied to the state [Dobraunig et al., 2021]. ..
Figure 3.17 — SHA-2 Unit [Gewehr and Moraes, 2023].
Figure 3.18 — Ibex ID/EX pipeline stage datapath with AES and SHA-2 functional

Figure 3.19 — Ascon Unit. e

Figure 3.20 — Memory footprint of hash algorithms.

Figure 3.21 — Energy consumption of hash algorithms.

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4

— Symmetric cryptography [Paar and Pelzl, 2009]..................
— AES encryption [Paar and Pelzl, 2009].........................
— AES parameters [Paar and Pelzl, 2009].
AES SubBytes() linear transform (SBOX) [NIST, 2001a].

20
20
21
22
24
27
28
29
30
31
31
31
32
32
33
34
34
35
35
35
35
38

42
44
45

Figure 4.5 — AES SubBytes() SBOX applied to the state [NIST, 2001a]. 50
Figure 4.6 — AES ShiftRows() [NIST, 2001a)]. 50
Figure 4.7 — AES MixColumns() [NIST, 2001a]., 51
Figure 4.8 — AES AddRoundKey() [NIST,2001a)., 51
Figure 4.9 — AES Key Schedule [NIST, 2001a)., 52
Figure 4.10 — CTR mode of operation [NIST, 2001b] 52
Figure 4.11 — CBC mode of operation [NIST, 2001b] 53
Figure 4.12 — The CCM mode of operation. 53
Figure 4.13 — Ascon duplex sponge [Dobraunig etal., 2021]. 54
Figure 4.14 — Ascon internal state [Dobraunig et al., 2021]. 54
Figure 4.15 — Ascon round constants [Dobraunig etal., 2021].. 55
Figure 4.16 — Ascon 5-bit SBOX S(x) [Dobraunig etal.,2021]. 55
Figure 4.17 — Ascon SBOX applied to the state [Dobraunig et al., 2021]. 55
Figure 4.18 — Ascon linear diffusion operation [Dobraunig et al., 2021]. 56
Figure 4.19 — Ascon linear diffusion applied to the state [Dobraunig et al., 2021]. .. 56
Figure 4.20 — AES Unit [Gewehr and Moraes, 2023]. it 60
Figure 4.21 — Ibex ID/EX pipeline stage datapath with AES and SHA-2 functional

0 61
Figure 4.22 — Ascon Unit. e 62
Figure 4.23 — Memory footprint of AEAD algorithms. 65
Figure 4.24 — Energy consumption of AEAD algorithms. 65
Figure 5.1 — Asymmetric cryptography [Paar and Pelzl, 2009]. 68
Figure 5.2 — Asymmetric cryptography usage for key establishment [Paar and

Pelzl, 2009]. e 68
Figure 5.3 — NTT example for n =8 [Di Matteo etal.,2023]................... 72
Figure 5.4 — Cooley-Tukey (CT) & Gentleman-Sande (GS) butterflies [Nannipieri

etal, 2021]. .. e 72
Figure 5.5 — MLWE accelerator from [Banerjee etal.,2019]. 74
Figure 5.6 — Vector co-processor from [Xinetal., 2020]...................... 75
Figure 5.7 — PQ-ALU from [Nannipierietal., 2021]. 75
Figure 5.8 — Scalar co-processor from Lee etal. [2022].. 76
Figure 5.9 — Base processor (VexRiscV) from [Alkim et al., 2020]. 77
Figure 5.10 — NTT extension added to VexRiscV in [Alkim et al., 2020]........... 78
Figure 5.11 — Ibex execution block with extensions. 80

Figure 5.12 — Performance of hardware acceleration of Kyber symmetric primitives. 84

Figure 5.13 — Performance of XKyber extension in Kyber internal operations. 84

Figure 5.14 — Performance of XKyber extension in Kyber-90s. 85
Figure 5.15 — Memory footprint of Kyber operations accelerated by XKyber. 86
Figure 5.16 — Energy consumption of Kyber variants. 86

Figure 5.17 — Energy consumption of XKyber extension in Kyber-90s. 87

LIST OF TABLES

Table 3.1 — SHA-3 parameters (XOF: Extendable Output Function). 29
Table 3.2 — Hash functions profiling for Zigbee packet max payload size input (86
YIS). 43
Table 3.3 — Hash functions profiling for IPv6 packet max payload size input (1224
YIS). . o e 43
Table 3.4 — Core operation profiling for each algorithm. 44

Table 3.5 — Area comparison of ISEs for hardware acceleration of hash functions. 45

Table 4.1 — Core operation profiling for AEAD algorithms. 62
Table 4.2 — AEAD profiling for Zigbee packet max payload size (A = 25 bytes, P =

BB bYIES). . o 63
Table 4.3 — AEAD profiling for IPv6 packet max payload size (A = 40 bytes, P =

1224 Dytes). . oot e 63
Table 4.4 — AEAD throughput considering core operations (smaller is better). 64
Table 4.5 — Area comparison of ISEs for hardware acceleration of AEAD. 66
Table 5.1 — Kyber round-3 parameters [Avanzietal.,,2022] 70
Table 5.2 — Symmetric primitives for each Kyber parametrization. 73
Table 5.3 — XKyberinstructions 79
Table 5.4 — Symmetric primitives for each Kyber parametrization. 83

Table 5.5 — Core operation profiling for each Kyber XOF and PRF choice (smaller
IS DEtter). . e 83

Table 5.6 — Area comparison of ISEs for Kyber hardware acceleration. 88

1.1
1.2
1.3
1.4

2.1
2.2
2.3

3.1
3.1.1
3.1.2
3.1.3
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.5

4.1
4.1.1
4.1.2

CONTENTS

INTRODUCTION e e 12
MOTIVATION . . e e e 13
OBJECTIVES . . . o 14
METHODOLOGYottt e e e e 15
DOCUMENT ORGANIZATION ... e 15
RISC-V AND HARDWARE ACCELERATION 17
RISC-V ARCHITECTURE AND IBEX e 17
HARDWARE ACCELERATION FUNDAMENTALS 19
EXPERIMENTAL SETUP AND METHODOLOGY, 23
HARDWARE ACCELERATION OF HASH FUNCTIONS USING ISES 26
INTRODUCTION TO HASH FUNCTIONS e 26
SHA- 2 27
SHA-B 29
ASCON-HASH AND ASCON-XOF e 33
RELATED WORKo e e 35
IMPLEMENTATION . .. e e 37
SHA-2 IMPLEMENTATION . .. e 37
SHA-3 IMPLEMENTATION e 39
ASCON IMPLEMENTATION . .. e 41
EXPERIMENTAL EVALUATION e 42
PERFORMANCE EVALUATION AND PROFILINGo 42
MEMORY FOOTPRINT EVALUATION e 44
ENERGY CONSUMPTION EVALUATIONo 44
DIE AREA COSTS EVALUATION e 45
CONCLUSION AND FINAL REMARKS e 46

HARDWARE ACCELERATION OF SYMMETRIC CRYPTOGRAPHY USING

ISES . . 47
INTRODUCTION TO SYMMETRIC CRYPTOGRAPHY 47
AES 49

4.2
4.3

4.3.1
4.3.2
4.4

4.4.1
4.4.2
4.4.3
4.4.4
4.5

5.1
5.1.1
5.2
5.3
54
5.4.1
5.4.2
54.3
54.4
5.5

RELATED WORK e 56

IMPLEMENTATION . .. e 58
AES IMPLEMENTATION e 59
ASCON IMPLEMENTATION . .. e 61
EXPERIMENTAL EVALUATIONo 62
PERFORMANCE EVALUATION AND PROFILINGt 62
MEMORY FOOTPRINT EVALUATION e 64
ENERGY CONSUMPTION EVALUATIONo 65
DIE AREA COSTS EVALUATION 66
CONCLUSION AND FINAL REMARKS e 66

HARDWARE ACCELERATION OF ASYMMETRIC CRYPTOGRAPHY USING

ISES . . . 67
INTRODUCTION TO ASYMMETRIC CRYPTOGRAPHY 67
CRYSTALS-KYBER (ML-KEM) 69
RELATED WORK e 73
IMPLEMENTATION . ..o e 78
EXPERIMENTAL EVALUATION 82
PERFORMANCE EVALUATION AND PROFILINGo 82
MEMORY FOOTPRINT EVALUATION e 85
ENERGY CONSUMPTION EVALUATIONo 86
DIE AREA COSTS EVALUATION 87
CONCLUSION AND FINAL REMARKS e 88

CONCLUSIONS AND FUTUREWORK 89

12

1. INTRODUCTION

The advancement of quantum computing has raised concerns about the long-term
security of current key exchange mechanisms, such as Diffie-Hellman and Elliptic Curve
Diffie-Hellman (ECDH), widely used in current cryptographic systems. These traditional
methods are vulnerable to quantum-based attacks, which could compromise the confiden-
tiality and integrity of sensitive information in the future. Consequently, deploying new key
exchange algorithms based on mathematical foundations that are naturally resistant to such
attacks is crucial, giving birth to a new field of research called Post-Quantum Cryptogra-
phy (PQC). Lattice-based problems such as Learning with Errors (LWE) and its variants,
particularly Module Learning with Errors (MLWE), emerged as potential solutions, showing
resistance to classical and quantum-based attacks. Several algorithms have been proposed
using the MLWE problem as the basis for its security guarantees.

To address this need, the National Institute of Standards and Technology (NIST)
initiated a competition to standardize new quantum-resistant key exchange algorithms. After
several submissions for Key Encapsulation Mechanisms (KEM), the winning algorithm was
announced in July 2022 to be the MLWE-based scheme Crystals-Kyber [Avanzi et al., 2022].
As a result of this competition, Kyber is expected to be soon standardized under the name
ML-KEM [NIST, 2023b].

As with most lattice-based schemes, Kyber introduces performance and memory
usage overheads. These overheads become even more pertinent in embedded systems and
Internet of Things (loT) devices, which feature low-complexity processors and limited on-
chip memory. It should be noted that such devices typically serve as the first point of data
collection from sensor interfaces, which are then forwarded to upstream complex nodes.
Upstream nodes possess greater computational power and are better equipped to secure
data effectively. However, the same cannot be said for downstream, less complex nodes.
The efficient provision of post-quantum secure communication in low-complexity network
endpoints is paramount for the further advancement of the loT.

Since the NIST PQC competition, recommended algorithm sets encompassing all
cryptographic services usually needed for practical security are being updated to include
guantum-safe algorithms. Of such algorithm sets, the most relevant is the Commercial Na-
tional Security Algorithm Suite (CNSA) 2.0, maintained by the National Security Agency
(NSA), listing publicly-known algorithms recommended for usage in US government sys-
tems [NSA, 2023]. Even though the 128-bit security level is widely regarded as enough
for practical security, CNSA 2.0 demands the use of algorithms at the 256-bit security level
for symmetric cryptography and hash functions. The challenges in providing post-quantum
security are further aggravated by the need to support 256-bit level primitives if CNSA 2.0
compliance is to be pursued.

13

Parallel to the post-quantum competition, NIST has also promoted the lightweight
cryptography (LWC) competition, aiming to standardize algorithms tailored to devices with
constrained resources. The LWC competition accepted the submission of algorithms pro-
viding symmetric encryption and optionally hashing capabilities. Such algorithms should
provide better performance and memory footprint than traditionally used algorithms at the
128-bit security level. In February 2023, the Ascon [Dobraunig et al., 2021] algorithm family
was selected as the winner of the LWC competition. The intersection between Lightweight
Cryptography and Post-Quantum Cryptography is still an open research problem.

Hardware acceleration can significantly enhance performance, memory, and en-
ergy efficiency in crucial operations of an algorithm. One way to achieve hardware acceler-
ation is by implementing specialized instructions in a general-purpose processor, a practice
known as Instruction Set Extensions (ISEs). Compared to memory-mapped accelerators,
extending a base instruction set with specialized instructions for a given algorithm provides
benefits relevant to low-power embedded systems, including: (/) resource sharing among
generic and specialized components, such as the register file and RAM interfaces; (ii) trivial
data transfer among generic and specialized components via the register file, avoiding costly
memory accesses; (iii) no added system complexity to e.g. the bus and interrupt controllers.

1.1 Motivation

The primary motivation for this study is the scarcity of research in the literature con-
cerning Kyber implementations and hardware acceleration via ISEs in low-resource embed-
ded systems. As discussed in detail in Chapter 5, most previous efforts in Kyber implemen-
tations focus on software-only implementations that do not explore hardware acceleration or
highly complex, performance-driven implementations that do not prioritize crucial metrics for
loT, such as energy consumption and memory footprint. Given the increasing deployment of
loT devices, addressing this issue is becoming more critical [Garcia-Morchén et al., 2019].
Despite the clear need for post-quantum security solutions tailored to the 10T context, there
is a significant gap in the literature regarding Kyber implementations in such systems.

Despite practical quantum computing not yet being feasible’, it is still necessary to
consider security against quantum adversaries in the present. Two hypothetical situations
illustrate this need: quantum-based attacks could become prevalent in devices with a long
expected lifespan while the device is still in operation. Additionally, in deployments with
high maintenance costs, the financial burden of replacing a classically secure solution with
a quantum-secure solution may be prohibitive. This highlights the practical requirement
for implementing quantum-secure solutions before actual quantum-based attacks become
possible.

'https://www.ibm.com/quantum/roadmap

14

1.2 Objectives

The strategic objective of this work is to offer an area- and energy-efficient ap-
proach for implementing post-quantum cryptography, considering both the 128-bit and 256-
bit security levels in low-resource embedded systems such as loT sensor nodes.

Specific goals include:

1. Provide an RTL implementation and simulation environment for a RISC-V processor
[RISC-V Foundation, 2019], namely the lbex processor [lowRISC, 2018], with spe-
cialized instructions for cryptography, encompassing the standardized Zkne, Zknh and
Zbkb extensions [RISC-V Foundation, 2022], for AES encryption, SHA-2 hashing and
general bit manipulation, respectively;

2. Make use of the specialized instructions previously implemented in an application-
ready C library, integrating into the TinyCrypt library [Intel, 2017] hardware-accelerated
implementations of the AES-128, AES-256, SHA-256, and SHA-512 algorithms;

3. Implement AES with the T-Table technique for higher performance at a memory foot-
print cost, keeping compatibility with the TinyCrypt AES API;

4. Integrate into the environment a RISC-V optimized SHA-3 implementation from [Saari-
nen, 2022], using the Zbkb extension;

5. Implement and integrate in software the non-standardized XAscon extension proposed
in [Cheng et al., 2022], accelerating the Ascon algorithm.

6. Integrate the hardware-accelerated symmetric primitives from the previous steps in the
reference Crystals-Kyber implementation from the NIST competition third round, con-
sidering (based on the symmetric primitives used) the standard Keccak-based version;
Kyber-90s, using AES and SHA-2, and a novel Ascon-based version.

7. Propose a novel XKyber extension for providing hardware acceleration specific to the
Crystals-Kyber algorithm, implement it in the Ibex processor, and integrate it in the
Kyber C implementation.

8. Evaluate quantitatively the effectiveness of the resulting pure-software and hardware
accelerated with relevant extensions implementations in several metrics of interest to
resource-constrained embedded systems, such as performance, code size, and mem-
ory footprint for the software components, as well as die area usage and energy con-
sumption for the hardware components.

15

1.3 Methodology

The work described in this dissertation was conducted as follows. Initially, the Ibex
processor, an existing open-source implementation of the RISC-V ISA, was extended with
specialized instructions that conform to the scalar cryptography extension of the RISC-V
architecture [RISC-V Foundation, 2022]. Those instructions accelerate the SHA-2, SHA-3,
and AES (encryption only) algorithms and are defined in the Zknh (SHA-2), Zbkb (SHA-
3) and Zkne (AES encryption) extensions. In addition to using standardized extensions, a
non-standardized extension [Cheng et al., 2022] for the Ascon algorithm was also imple-
mented and evaluated. The SHA-2, SHA-3, AES and Ascon primitives will first be evaluated
by themselves (i.e., not integrated into a higher-level component), in order to explore and
compare their use for hashing and encryption. The evaluation measured performance and
memory footprint, while energy consumption and die area usage of the accelerated solution
were measured and compared against the non-extended version of Ibex via post-synthesis
simulations. The methodology for obtaining concrete results is described in greater detail in
Section 2.3.

These primitives were integrated into different Kyber versions, taking advantage of
hardware acceleration from the newly added specialized instructions. Kyber versions differ
in their choice of symmetric primitives. The standard Keccak-based Kyber uses primitives
from the SHA-3 standard, and is accelerated using the Zbkb extension; Kyber-90s uses
primitives from the SHA-2 and AES standards, and is accelerated using the Zknh and Zkne
extensions; Kyber-Ascon uses Ascon, accelerated using the XAscon extension. Keccak-
based Kyber and Kyber-90s are proposed in the original NIST competition, while Kyber-
Ascon is a novel version from this work. All 3 versions are evaluated both with and without
hardware acceleration via ISEs, such that the evaluation can bring understanding concerning
both software-only and hardware-accelerated implementations.

In addition to hardware acceleration of the symmetric primitives, a novel exten-
sion called XKyber was also proposed. This extension provides specialized instructions
specific to the internal operations in the Kyber algorithm, such as polynomial coefficients
multiplication and compression, enabling further hardware acceleration beyond the sym-
metric primitives. Each internal operation accelerated by XKyber was analyzed, comparing
their software-only and hardware-accelerated implementations under the same criteria and
methodology previously described.

1.4 Document organization

This manuscript is organized as follows.

16

» Chapter 2 presents fundamental concepts concerning hardware acceleration and the
RISC-V architecture, as well as the Ibex processor used in this work and the experi-
mental setup around it;

» Chapter 3 presents work performed concerning the hardware acceleration of hash
functions in the SHA-3, SHA-2 and Ascon standards;

» Chapter 4 presents work performed concerning the hardware acceleration of symmet-
ric AEAD (Authenticated Encryption with Associated Data) cryptography with the AES
and Ascon algorithms;

» Chapter 5 presents work concerning asymmetric cryptography with the Crystals-Kyber
algorithm.

» Chapter 6 finishes this manuscript with conclusions derived from previous chapters
and highlights future work.

Chapters 3, 4, and 5 constitute the core of this Dissertation. Each chapter has been
structured to be self-contained, encompassing a review of the literature, a detailed account
of the research conducted, the development process, results, and conclusions specific to the
chapter’s subject. To adhere to the criterion of self-sufficiency for each chapter, instances
of content repetition are inevitable. These possible overlaps are explicitly mentioned in the
text.

17

2. RISC-V AND HARDWARE ACCELERATION

This chapter provides an introduction to fundamental concepts critical to the under-
standing of this work. Section 2.1 introduces the RISC-V instruction set, an open instruction
set architecture, and the Ibex processor. Section 2.2 provides an overview of implementing
hardware acceleration of post-quantum cryptography in contexts with limited computational
resources, such as processing power and memory, for example, in low-cost IoT devices.
Finally, Section 2.3 illustrates the experimental setup used in the evaluations.

2.1 RISC-V Architecture and Ibex

The RISC-V architecture [RISC-V Foundation, 2019] emerged in the context of em-
bedded systems as a viable alternative to the long-standing ARM processors, with multiple
companies such as SiFive', Codasip? and Andes Technology?® providing commercially suc-
cessful IP to a broad range of applications. As an open instruction set, no company owns
the RISC-V standard, and as such, no license fees are required to implement and commer-
cialize RISC-V IPs. Considering design choices made in previous RISC architectures such
as MIPS and SPARC, RISC-V defines a minimal set of instructions to be implemented, such
that the development of software-side tools such as compilers can be performed without
assumptions concerning the underlying micro-architecture that implements the instructions
defined in the RISC-V specification.

Note that the RISC-V standard makes an explicit effort as to not make any defi-
nitions that may favor a certain implementation flavor: RISC-V processors can range from
simple low-complexity microcontroller-oriented implementations to highly complex multi-core
superscalar performance-optimized processors. Despite great differences in possible micro-
architectures, they all must implement the same underlying base instruction set. In fact, the
range of possible applications of RISC-V is treated as a core point in the development of
the RISC-V specification in itself. It is important that RISC-V is not seen only as an "ARM
replacement”, but capable of enabling a wide range of solutions in different application do-
mains [Waterman, 2016].

Supporting the design philosophy for concern separation between instruction set
definition and micro-architecture implementation, the RISC-V specification defines several
optional extensions for functionality that exceeds the fundamental already defined instruc-
tion set. This allows for the parallel development of compilers and hardware, both starting
from a well-defined common ground. Additionally, this discourages ad-hoc vendor-specific

Thttps://www.sifive.com/risc-v-core-ip
2https://codasip.com/products/codasip-risc-v-processors/
3http://www.andestech.com/en/products-solutions/andescore-processors/

https://www.sifive.com/risc-v-core-ip
https://codasip.com/products/codasip-risc-v-processors/
http://www.andestech.com/en/products-solutions/andescore-processors/

18

implementations, such that compatibility between different software and hardware vendors
is maintained, while micro-architecture design space is not constrained to restrict implemen-
tations to specific characteristics. An example of such a standardized extension is the M
extension for native multiplication instructions. Software may be compiled for a target in
which the M extension has been implemented, for which MUL and MULH instructions can
be issued by the assembler, or for a target without the M extension, where multiplication
is performed via compiler-generated software routines. Note that this is transparent to the
software implementation.

Due to RISC-V being an open instruction set, several open-source implementations
have recently been made popular. One implementation is the lbex processor [lowRISC,
2018], presented in Figure 2.1. The version of lbex used in this work implements the
RV32IMC instruction set, meaning an integer (1) 32-bit base ISA with the M (multiplication)
and C (compressed instructions) extensions.

Register File
Decode and Execute| || Writeback
=3
7] U Controller
2 = >
o 0 @
=4 Or c | =
S ICache g s
5 x 3
g Prefetch CSRs > <
g_<‘ Buffer q..AD—‘ 2
=1 Execute g
§ Compressed Instruction '_‘LSU
Decoder l |
@'COWRISC " Optional feature aleShe

Figure 2.1 — Ibex processor [lowRISC, 2018].

The primary design objective of the lbex processor is low complexity, reflected in
its two-stage pipeline architecture. In the first stage, the processor fetches instructions from
the main memory, while the second stage handles instruction decoding and execution, com-
pleting most instructions in a single cycle. This simplified pipeline design enables a more
straightforward implementation, reducing power consumption and die area - highly desirable
characteristics in loT environments.

19

2.2 Hardware Acceleration Fundamentals

Algorithms may be subject to constraints on various metrics during execution. These
requirements could specify that the algorithm must execute within a set time limit, use a
predetermined amount of memory or stack space, or maintain energy consumption under a
certain threshold. Typically, algorithms are abstractly defined, and concrete implementations
are developed case-by-case to ensure context-specific constraints are met. For instance, in
scenarios where performance is a higher priority than code size, certain values that are dif-
ficult to compute at runtime may be precomputed and stored in memory in a look-up table.
Conversely, a code-density-focused implementation may compute these values in real time,
despite reduced performance compared to the first hypothetical implementation.

Note that an abstract algorithm is made concrete via its implementation through
a given programming language, by which any number of techniques can be used to fine-
tune the implementation towards a given design goal. Independently of the implementation
itself, the context in which the execution of the algorithm will take place is static: no matter
what data structures and optimized libraries are used in the implementation, the underlying
execution context will always be the same. System characteristics such as memory access
timings and processor instructions that the compiler can pick cannot be influenced by the
programmer that writes the code, which implies a boundary to software-only optimizations.

Hardware acceleration of an algorithm enables the manipulation of the execution
context characteristics for a given algorithm, providing greater flexibility to the implementing
entity to explore the design space further. This approach can overcome the software-only
optimization limitations and allow for a wider range of options available to a designer to alter
system characteristics, which in turn can lead to improved metrics of interest.

Hardware accelerators can be classified into two dimensions: coarse-grain or
fine-grain and tightly-coupled or loosely-coupled [Dally et al., 2020]. Coarse-grain ac-
celerators execute large portions of the algorithm within themselves, while fine-grain ac-
celerators execute only small parts (often the most critical) of the algorithm in question.
Tightly-coupled accelerators are very closely integrated into the processor, which executes
the non-hardware-accelerated parts of the algorithm in software, typically behaving as a
separate functional unit of the main processor. In contrast, loosely-coupled accelerators are
placed further away from the processor, typically behaving as a peripheral on a system bus.

An example of fine-grain loosely-coupled accelerators is presented in [Fritzmann
et al., 2019]. The authors propose 2 accelerators for hash and Number Theoretic Transform
(NTT) operations coupled to a main processor via an AHB bus. Such operations are com-
monly seen in PQC algorithms. The system architecture is shown in Figure 2.2. Note how
the Hash and NTT accelerators (in purple) are in parallel in the bus hierarchy with the UART
and GPIO peripherals. The accelerators take in their inputs directly from the main processor

20

via data memory bus writes, characterizing it as a loosely-coupled accelerator. Further-
more, due to the accelerators effectively accelerating only parts of a larger algorithm, this
work presents fine-grain acceleration.

RISC-V Core (RI5SCY

Instruction Interface | ln!nrhlm

AHB
Instruction Ya
Memory csR |
. GPR |

AHB Data Interconnect

T

Figure 2.2 — Fine-grain loosely-coupled accelerators [Fritzmann et al., 2019].

A further development of [Fritzmann et al., 2019] is presented in [Fritzmann et al.,
2020], where the authors integrate the aforementioned accelerators inside the general pro-
cessor. The resulting architecture is presented in Figure 2.3. In this work, the accelerators
take in their inputs from the main processors main register file (GPR block) or floating-point
register file (FPR block), characterizing it as tightly-coupled accelerators. Each accelerator
only accelerates specific portions of a larger algorithm. Accelerators cannot communicate
between themselves directly, only through the main processor’s register file, and as such,
they cannot be seen as one big accelerator. This fact makes this work to be an example of
fine-grain tightly-coupled accelerators.

Instruction Interface Data Interface
rdata addr addr wdata rdata
BitRev
Prefetch m LSU
ID EX wB
GPR
32x32 bit MULT
[pg.mac |
FPR
32x32 bit
PQR
ALU / PQALU

/
NTT and Modular Binomial
Arithmetic Unit Sampling Unit

Figure 2.3 — Fine-grain tightly-coupled accelerators [Fritzmann et al., 2020].

21

[Banerjee et al., 2019] show a proposal for a generic accelerator supporting sev-
eral lattice-based PQC algorithms. Their design can be visualized in Figure 2.4. Note how
the design contains several accelerators grouped within the top hierarchical level. Acceler-
ators can communicate directly between themselves and intermediary values can be stored
in internal RAMs, independently of the main memory and processor. Due to these facts,
the design can be seen as one comprehensive accelerator, instead of merely a set of dif-
ferent accelerators. A PQC algorithm can then have all its computationally-intensive tasks
computed entirely within the accelerator, while software running in the main processor per-
forms only trivial tasks. This proposal is characterized as a coarse-grain accelerator. Like
[Fritzmann et al., 2019], data inputs come through memory bus writes issued from the main
processor, making this a loosely-coupled accelerator.

o s, fm======s=eeeooeoa- -, N
I' z4+ + 24 L’: . Seed Keccak : 1KB
- 24 1 1| Registers f[1600] |1 Instr.
:) v |y 1 1 Mem
= < |y Core | :
1B Butterfly B |1, | Keccak 000 1| i
- O 24 + qud_’ o : : State v : 32
1 ALU T —— .
: o) 244 o] : SHAS_CI.Kl PRSPPI SR v
o o |, I P Instr.
N w NTT Wl Distribution Sampler Decode
! E Constants E I [samp eki [Uniform) [Binomial +
L ReM L J P Do] Coamn) 5|\
NTT_C'-'E£ [Memory-Mapped Read / Write Interface]
G -
;? i rtl I'tl |i|
[G): cLK Gate ITI Lfl ITI ITI
RST CLK ADDR WDATA RDATA INT

Figure 2.4 — Coarse-grain loosely-coupled accelerator [Banerjee et al., 2019].

Finally, a coarse-grain tightly-coupled accelerator can be seen in [Zgheib et al.,
2021], where the Authors implement an AES accelerator inside an Ibex RISC-V processor,
shown in Figure 2.5. This requires small modifications to the instruction decoding logic, to
which a new instruction that enables and configures the AES accelerator is added, as well
as the regqister file control, such that the register file can be interfaced either to the base lbex
processor or the AES accelerator. As the AES accelerator performs the entire algorithm in
itself, the accelerator is regarded as a coarse-grain accelerator. Due to its close integration
with the Ibex processor, it is a tightly-coupled accelerator.

It should be noted that an accelerator that is tightly coupled to a processor can
result in a more efficient overall implementation by allowing for further exploration of resource
sharing with existing elements of the base processor. The AES implementation described in
[Zgheib et al., 2021] exemplifies this, as operations with data to and from the main memory
are handled by the processor itself, resulting in significant resource sharing. However, there

22

reset_i — g reset i
S clock | 31> clocki
i mﬂde! Pl mode_i
i wr,addr! : o] wr_addr_i
i 5 'w'r'_e'rJ. o BHJ?ES P
—) _EN_
Instruction ' en_rnd_cpﬂ'—> en_rnd_cpt_i
> + »| Decoder round po| round_i
: 1 g
; 4
! 5 — ;d;ie;!—) rd_en_i
| R o
| | 2 datg i data o
' reg_raddr 5| ' .
' e i data_sel | ¢ 19
¥ Bl
' data_i 32 Y
E > reg_rdata !
I ? Register E data_o
i T File (—i—dam,alu
i ¢ ———data_csr
i data_lsu
—_—
[}
!

Figure 2.5 — Coarse-grain tightly-coupled AES accelerator [Zgheib et al., 2021].

is still a non-ideal aspect in moving data between the main processor register file and the
internal registers in the AES accelerator.

To enable further exploration of resource sharing in tightly-coupled hardware accel-
eration, two approaches are found in the literature: Instruction Set Extensions (ISEs) and
co-processors. Both approaches involve adding new specialized instructions to the base
processor, which allows for the performance and efficiency gains of hardware acceleration
while retaining the flexibility expected from a software implementation.

Co-processors can be understood as a collection of accelerators integrated be-
tween themselves, encapsulating related functionality in a self-contained module that is
interfaced to the base processor via the instruction decoding logic and register file ports,
similar to the AES accelerator example being explored. Typically, a co-processor will have
its own register file and arithmetic elements. Note that resource sharing is explored not be-
tween the co-processor and the base processor but between functional units within the same
co-processor, which have in common a register file and arithmetic elements. To move data
to and from the co-processor, specialized instructions to move data words between register
files must be implemented, which may present a non-trivial overhead to overall application
performance (but still much less costly than moving data to and from main memory). Ex-
amples of co-processor implementations in a PQC context can be found in [Xin et al., 2020]
and [Lee et al., 2022], explored in detail in Section 5.2.

ISA extensions also provide specialized instructions, but are implemented directly
in the base processor, removing the overhead of moving data between register files and the
need for a separate register file itself. Note that the register file accounts for the greatest
share of the die area of all elements in a processor, making ISA extensions the method
of choice for hardware acceleration in implementations where chip area is a concern. In

23

addition to exploring resource sharing with respect to the register file, further opportunities
for resource sharing are found in the arithmetic elements of the processor and associated
control logic, leading to even further area gains.

In conclusion, Instruction Set Extensions (ISEs) are of special interest to the loT
context, due to the minimal area overhead associated with providing hardware acceleration
through this technique. Due to this characteristic, it was chosen as the approach presented
in this work.

2.3 Experimental Setup and Methodology

All implementations in this work are validated with test vectors published by NIST or
generated by the reference implementation of not yet standardized algorithms (Ascon and
Kyber). Implementations are made to withstand remotely exploitable timing side-channel
attacks by showing a constant-time execution. This is additionally enforced by running sim-
ulations with the Ibex data independent timing CSR being set to 1. Protection against higher
effort attacks that require physical access to the device under attack such as power analysis
or fault injection attacks are outside of the scope of this work. It should be noted that power
analysis attacks could be mitigated by using the lbex dummy instruction insertion feature®.

The evaluation setup for all experiments performed in this work uses the lbex Sim-
ple System®, a minimal implementation of a system around the Ibex processor, including
the essential elements necessary for running software on Ibex. Besides the Ibex processor
itself, it contains a 2-port RAM, connected to the Ibex instruction and data memory inter-
faces; a programmable timer; and a control peripheral that can stop the simulation and write
ASCII output from the processor into a file in the host machine for the simulation session,
all via software running in the Ibex processor. Some modifications were performed to ease
integration into the overall evaluation environment.

The previous RTL compilation and simulation flow employed the open-source Fus-
eSoC and Verilator tools. These tools were replaced with a traditional flow using Make and
Cadence XCelium. This flow aggregates the software and hardware build processes, such
that executing arbitrary software in a given lbex variant (with any ISE explored in this work)
is made effortless, controlled by a set of Make targets and command-line supplied variables.
The software build process employs GCC version 12.2.0 with the -0s and -fstack-usage
flags, generating binaries optimized for size and outputting stack usage files for each com-
pilation unit, used in the automated stack analysis flow discussed at the end of this section.
For the non-standard XAscon and XKyber extensions, assembly using pre-built toolchains

“https://ibex-core.readthedocs.io/en/latest/03_reference/security.html#dummy-instruction-insertion
Shitps://github.com/lowRISC/ibex/tree/master/examples/simple_system

https://ibex-core.readthedocs.io/en/latest/03_reference/security.html#dummy-instruction-insertion
https://github.com/lowRISC/ibex/tree/master/examples/simple_system

24

is impossible because the toolchain does not have knowledge of the instructions in these
extensions. A custom binutils build supporting XAscon and XKyber opcodes is necessary.

The Ibex processor contains a set of performance counters® that can provide in-
sights into the run-time behavior of software being executed. In addition to the standard |bex
counters, 6 new counters were added, such that loads and stores at word, half-word, and
byte granularity can be differentiated. A profiler tool was implemented to accurately charac-
terize the software being executed, which can capture the state of the performance counters
during the simulation without software intervention. The profiler works at C function granu-
larity, computing the difference between counter values at function entry and exit for a given
list of functions of interest. In addition to performance counter outputs, the tool provides the
simulation time for each entry and exit event.

Function entry and exit events are determined by monitoring the Program Counter
(PC) register, which contains the address of the instruction being executed in the processor.
A function entry event is seen when the PC register takes in the starting address of one of
the C functions of interest. Each starting address is known via the ELF executable generated
by the build process using the GNU nm tool. This process is entirely automated in the build
environment; the user must only provide a list of function names, for which a file containing
the starting address for each function is generated and read by the profiler at the beginning
of the RTL simulation. Conversely, function exit is determined by checking the PC register
for the address immediately after the JAL instruction that leads to a function entry event.
Figure 2.6 shows sample output from the profiler tool.

[Profiler] Fetched end of symbol <pqcrystals_kyber1024 968s_ref keypair> addr <182ef4> at <3209821.00 ns> <8082>

Cycles: 1585938

NONE: ©

Instructions Retired: 1063497
LSU Busy: 206117

Fetch Wait: 80630

Loads: 133961

Stores: 72152

Jumps: 58789

Conditional Branches: 49713
Taken Conditional Branches: 49713
Compressed Instructions: 415681
Multiplier Busy: 126976

Divider Busy: 216

Memory store word: 21055

Memory store half word: 41986
Memory store byte: 9111

Memory load word: 58552

Memory load half word: 61434
Memory load byte: 13975

Figure 2.6 — Profiler sample output.

Memory footprint is evaluated considering code size, static data, and maximum
stack usage. Code size and static data are known through section sizes obtained via a
custom script that parses the sections header of disassembled object code generated by
the objdump tool, with -fhSD flags. Code is compiled with the -fdata-sections and -ffunction-

8https://ibex-core.readthedocs.io/en/latest/03_reference/performance_counters.html

https://ibex-core.readthedocs.io/en/latest/03_reference/performance_counters.html

25

sections GCC flags, creating individual sections for each function and data symbol instead
of lumping them together in a single .text or .data section. Maximum stack usage considers
the stack usage information output by GCC with the -fstack-usage flag for each function in
a compilation unit. Stack usage information for each function is used to compute the worst-
case path through the call graph, with stack usage as the cost metric. This is automated by
an existing script’, modified for use with RISC-V software.

Hardware-oriented metrics are evaluated using netlists generated by logic synthe-
sis with Cadence Genus version 2112. A high-density 8-track cell library in 28 nm technology
from STMicroelectronics is used. Synthesis considers a PVT (Process, Voltage, Tempera-
ture) corner of a slow process, 0.75 V at 125 C. Netlist simulations are performed using the
aforementioned simulation infrastructure. Using the simulation time output function of the
profiler, the average power of the Ibex core during a specific function call can be estimated
using the collected switching activity of the synthesized netlist, considering the time window
determined by the profiler tool. Multiplying the average power during this time window by the
window size yields the energy consumed by the core during the function call. Power analysis
with Cadence Joules considers a PVT corner of the nominal process, 0.9 V at 25 C.

To obtain a more comprehensive energy cost evaluation, memory accesses are
considered in addition to the processor core costs. The CACTI 7 [Balasubramonian et al.,
2017] tool is used to estimate the energy spent by memory reads and writes. The tool is
configured to provide estimates for a 16 KByte memory with a read-only port and a second
read/write port, considering low-power bitcells at the 28 nm technology node. The tool out-
puts energy cost values of 63.362 fJ/bit for reads and 41.436 fJ/bit for writes. The number
of bits read from and written to the memory is determined via the performance counters
output of the profiler tool. The relevant counters are the total amount of instructions, and the
number of compressed instructions fetched during the function call, as well as amounts of
loads and stores, differentiated by word, half-word, and byte granularity.

"https://github.com/ttsiodras/checkStackUsage/tree/master

https://github.com/ttsiodras/checkStackUsage/tree/master

26

3. HARDWARE ACCELERATION OF HASH FUNCTIONS USING
ISES

This chapter presents the hardware acceleration using ISEs for hash functions us-
ing the SHA-2, SHA-3, and Ascon algorithm families. Section 3.1 introduces hash functions
and the inner workings of the SHA-2, SHA-3, and Ascon-Hash/Ascon-XOF algorithms. Sec-
tion 3.2 reviews previous work in the literature. Section 3.3 details the implementation of
hardware acceleration using ISEs in the Ibex processor. Section 3.4 evaluates the imple-
mentations, following the methodology detailed in Section 2.3. Finally, Section 3.5 presents
conclusions and final remarks.

Part of this chapter was published in the following conference:

Improving the Efficiency of Cryptography Algorithms on Resource-Constrained Embedded Systems via
RISC-V Instruction Set Extensions

Carlos Gewehr, Fernando Gehm Moraes

In: SBCCI, 2023

3.1 Introduction to Hash Functions

A hash function is a mapping from an input of arbitrary size to a fixed-size output.
These functions provide an efficient means to verify a given piece of data. Comparing the
data directly to an expected value can be challenging, particularly as the size of the data
grows. Instead, the output of a hash function, which is of a fixed and smaller size than the
original data, can be compared to a pre-computed hash value. This eliminates the need for
many costly memory read operations in the data validation process, as the reference value
for comparison is much smaller than the data itself.

Mapping arbitrary-sized inputs to a fixed-sized output presents an obvious issue:if
there are many more possible inputs than possible outputs, then necessarily there must be
an output value mapped to more than one input value. Having two known inputs associated
with the same output value is known as a hash collision. This presents an issue in the data
validation scenario presented above: if a collision occurs, invalid data can be mistakenly
seen as valid if it produces the same hash as valid data. A malicious entity may exploit
this by intentionally hashing invalid data that produces the same hash output as valid data.
Therefore, the hash function must be carefully designed to make this as difficult as possible.

Note that hash collisions are inevitable, but are very unlikely to be found at random.
For a hash function with output length n, the likelihood of finding an input value for a specific
output at random is 2-"/2, Hash functions used in cryptography are designed such that a

27

collision for an input of choice cannot efficiently be obtained by a bad actor, which would
break the data validation scheme being discussed. If the hash function does not have a
predictable structure that can be used to map an output to an input, the only way to produce
a collision is to perform a costly brute-force attack guessing random input values, which is
impractical, and thus, the hash function can be regarded as fit for cryptographic applications.

Trusted hash functions that have been extensively researched are defined in SHA-
2 [NIST, 2015a] and SHA-3 [NIST, 2015b] standards. Thus far, no attacks significantly more
efficient than a brute-force search have been reported for the algorithms defined in these
standards, and neither have any collisions for these algorithms been found at random.

3.1.1 SHA-2

The SHA-2 standard [NIST, 2015a] defines two hash functions of special interest:
SHA-256 and SHA-512. Both functions are quite similar, at a user level mainly differ in their
output sizes. SHA-256 has an output of 256 bits, while SHA-512 has a 512-bit-sized output.

The SHA-256 algorithm accepts an input of any size and divides it into message
blocks of 512 bits each. If the input size is not a multiple of 512, padding is applied to the
last message block. Each message block is compressed by a function that reduces 512
input bits to 256 bits. The compression output of the current message block is added to
the compression output of the previous block at each compression operation. This running
value is also referred to as the SHA-256 state and serves as input to the next message block
compression function. After all message blocks have been compressed, the final SHA-256
state is taken as the hash function’s output.

The SHA-256 algorithm can be seen in pseudocode in Algorithm 3.1. Note that
all variables are 32-bit unsigned integers, and the addition operation is performed mod 232,
ignoring overflows. The sigma functions ¥y, ¥4, 09, oy, are defined in Figure 3.1, where
ROTRn and SHRn denote rotation right shift and logical right shift by n bits, respectively.

> %) = ROTR*x) ® ROTR"(x) © ROTR™(x)
> *%(x) = ROTR°x) @® ROTR'"(x) ®© ROTR™(x)
o®%(x) = ROTR'(x) @ ROTR"(x) @ SHR(x)
o®%(x) = ROTR"(x) ® ROTR"(x) @ SHR"(x)

Figure 3.1 — SHA-256 sigma functions [NIST, 2015a].

SHA-512 follows the same structure as SHA-256, with a few minor differences: in-
ternal variables are of 64 bits in size, message blocks are 1024 bits wide, and the inner-most
loop runs in 80 iterations instead of 64. Consequently, the compression function compresses

28

Algorithm 3.1 SHA-256 Hash Function

Hashy + 6A09E667 ¢
Hashy < BB67AE85+¢
HaShg — 306EF37216
Hashs; < A54FF53A;s
Hash4 — 510E527F16
Hashs < 9B05688C;¢
HaSh6 < 1F83D9AB16
Hash7 + 5BE0CD1 946
for each MessageBlock do

for ifrom 0 to 15 do

W, < MessageBlock;
end for
for j from 16 to 63 do

Wi < o1(Wi_2) + Wi_7 + 0o(Wi_15) + Wi_1s

end for

{A_1,B_1,C_1,D_1,E_1,F_1,G_1, H_1} + HaSh{o,7}

for i from 0 to 63 do

Thj < Hiot + Z4(Ej—1) + CN(Ej—1, Fi—1, Gi—1) + Ki + W,
Tai < Xo(Ai—1) + Maj(Ai_+1, Bi—1, Ci_1)

A Tyj+ Ty
B,' — A,'_1
Ci+ Bi_4

D,' — C,'_1

E,' — D,',1 + T1/
Fi < Ei_q

Gi + Fi_4

H,' — G,'_1

end for

Hashyo 7y < {Ass, Bess, Ce3, Des, Ess, Fes, Ges, Hes} + Hashyo 7y

end for
return Hash

1024 bits to 512 bits, resulting in a 512-bit sized output. SHA-512 sigma functions also differ
from SHA-256. The SHA-512 sigma functions are shown in Figure 3.2.

> (x) = ROTR™(v)

0
> (x) = ROTR"(x)
ol (x) = ROTR'(x)
of'%(x) = ROTR"(x)

S
S
S
S

ROTR*(x)
ROTR "8(x)
ROTR3(x)

ROTR % (x)

S

S

S
S

ROTR*(x)
ROTR*\(x)
SHR "(x)
SHR °(x)

Figure 3.2 — SHA-512 sigma functions [NIST, 2015a]

Due to being a NIST standard, seeing vast real-world deployments in addition to its
integration into Kyber in its Kyber-90s version, the SHA-2 family of hash functions has been

selected for evaluation in this work.

29

3.1.2 SHA-3

The SHA-3 standard defines several hash algorithms with varying output sizes,
all based on the Keccak-p[1600] permutation and the so-called sponge construction. The
width (w) of the Keccak permutation is determined by the sum of two parameters, rate (r)
and capacity (c¢), such that w = r + ¢. The values of (r) and (c) are determined for each
algorithm defined in SHA-3. The usage of these parameters for each algorithm in SHA-3
can be visualized in Table 3.1".

Table 3.1 — SHA-3 parameters (XOF: Extendable Output Function).

Hash function / XOF r ¢ | Output Length (bits) | Security Level (bits)
SHA3-224 1152 | 448 224 112
SHA3-256 1088 | 512 256 128
SHA3-384 832 | 768 384 192
SHA3-512 576 | 1024 512 256

SHAKE-128 1344 | 256 - 128
SHAKE-256 1088 | 512 - 256

The Keccak-p[1600] permutation, (as defined in [NIST, 2015b], refered to as the
Keccak permutation in the remainder of this manuscript) operates on a 1600 bits wide state
in 24 iterations. The usage of the permutation macro f in the sponge construction can be
seen in Figure 3.3, where the input bit string is denoted by N, the output bit string denoted
by Z (truncated at d bits), and the underlying permutation denoted by f. At each call to the
permutation macro, r bits from the input bit string are XOR-ed with the aligned output from
the previous call to the permutation, until all bits from the N input are fed into the sponge.

N Z
pad i »(Trunc,)
] Y ' M Y | ')
b4 Y) 4 b 4 :
’ 0 o & o & S » >
! ! f f : f f
| I
c< |0 > > > > s >y —
- _/ _/ < U U U

absorbing : squeezing

Figure 3.3 — SHA-3 sponge construction [NIST, 2015b].

'https://keccak.team/keccak _specs_summary.html

https://keccak.team/keccak_specs_summary.html

30

Once the input has been entirely processed, the next calls to the permutation func-
tion are used to obtain the output. Note that multiple calls to the permutation in the squeeze
phase are possible. This is used to implement Extendable Output Functions (XOFs), which
can be interpreted as hash functions with arbitrarily sized output (but finite security levels).

Internally, the Keccak permutation works on the 1600 bit state as a 5x5x25 cube,
shown in Figure 3.4. In the Keccak state cube representation, bits grouped in the x di-
mension are rows, in the y dimension are columns and in the z dimension are lanes. Bits
grouped in the xy dimensions are slices, in the yz dimensions as sheets and in the xz di-
mensions are planes. The entire permutation consists of 5 steps, performed in the following
order: 0 (Theta), p (Rho), = (Pi), x (Chi) and . (lota).

=
W O - o

3401 2

w_/

X

Figure 3.4 — Keccak permutation internal state [NIST, 2015b].

In the 0 step, each column’s parity is computed (represented by ¥ in Figure 3.5),
producing 25 intermediary column parity values. These values are used to update each
bit in the state, such that bit in the state after the 6 operation is the result of the 3-way
XOR between its previous value and 2 column parities. The two specific columns whose
parities will influence the value of a bit in state after the 6 operation are determined by
its x and z coordinates, considering the columns given by (x’,z') = (x — 1 mod 5, z) and
(x",Z2") = (x+1 mod 5,z — 1 mod 25). Note that all bits in the same column will be XOR-ed
with the parities of the same two columns.

In the p step each lane is rotated by a static amount, as shown in Figure 3.6. The
p rotation amounts (mod 64, the lane size) are shown in Figure 3.7.

The 7 step shuffles bits in a slice. The manner in which bits are shuffled in shown
in Figure 3.8.

31

7
4
4) /
/¢ 99 Y
// ',/ /|P' r}'//’r
1 1A V]
g9/ 7% fig
e 995
v s e [/ [,
% % /IV A
Yy Wy J iy
b ¢ fid. ' (o
Vd
& >
T

Figure 3.6 — Keccak p (Rho) step [NIST, 2015b].

x=3 x=4|x=0|x=1|x=2
2 153 | 231 3 10 | 171
1 55 | 276 | 36 | 300 6
0| 28 91 0 1 190
4
3

120 78 | 210 | 66 | 253
21 | 136 | 105 | 45 15

= == ==
Il

Figure 3.7 — Keccak p (Rho) step rotation amounts (mod 64) [NIST, 2015b].

The x step combines 2 lanes in the same row via bitwise AND and XOR operations.
The result is placed in a lane different than the 2 input lanes, such that lanes are shuffled at
the same time new values for each lane are computed, as shown in Figure 3.9.

32

@ > ® N
e o A
O NANOMMARGCIORZ
< L ‘ \‘r
« o (o A
ke A h¢
« T e« = |\
e) IRON
e Rl
o | ¥ ® ¥

Figure 3.8 — Keccak 7 (Pi) step [NIST, 2015b].

& & E &

Figure 3.9 — Keccak y (Chi) step [NIST, 2015b].

Finally, the ¢ (lota) step updates the center lane with a round constant. Each round
constant is determined via 7 steps of an 8 bit Linear Feedback Shift Register (LFSR), shown
in Algorithm 3.2. The output bit in each step of the shift register is collected into an inter-
mediary 7 bit word. This 7 bit word is expanded to a 64 bit word (lane size) by placing the
Jj'th bit of the 7 bit word into the 2/ — 1 bit of the 64 bit word. The remaining bits of the 64 bit
words are filled with zeros. The 64 bit word is then XOR-ed into the center lane of the state.

Due to being a NIST standard, seeing increasing deployments in real-world appli-

cations such as its integration into Kyber in its standard Keccak-based version, the SHA-3
family of hash functions and XOFs have been selected for evaluation in this work.

33

Algorithm 3.2 Keccak ¢ (lota) shift register NIST [2015b]
Require: R is the state of the LFSR

R+ O||R

R[0] + R[0] & RI[8]

R[4] «+ R[4] © R[8]

R[5] «+ R[5] ® R[8]

R[6] + R[6] ® R[8]

return R[1 : 8]

3.1.3 Ascon-Hash and Ascon-XOF

Like SHA-3, Ascon-Hash and Ascon-XOF also work based on the sponge construc-
tion, using a different permutation. The permutation is the same the Ascon for AEAD, as pre-
sented in Section 4.1.2. The differences between Ascon for AEAD and Ascon-Hash/Ascon-
XOF are in the workings of the sponge construction. While Ascon-Hash and Ascon-XOF
work in the traditional manner like SHA-3, with data input occurring at the absorb phase and
data output at the squeeze phase, AEAD Ascon has simultaneous input and output when
absorbing plaintext. The AEAD Ascon sponge is covered in greater detail in Section 4.1.2.

Figure 3.10 presents the Ascon (hash) sponge. In normal sponge operation, at
each stage of the Ascon sponge a permutation (p? or p°) of the internal state is performed.
For Ascon-Hash and Ascon-XOF p? and p? are the same 12 round permutation, with both
algorithm differing only in the 1V values and output size, which is fixed at 256 bits for Ascon-
Hash or arbitrarily long for Ascon-XOF. This work considers the Ascon variant with the
sponge rate (M; and H; widths) of 64 bits.

: Ml MS—l Ms : Hl Hw/r‘|
— : F) #r — r : — . — . —
:=\U= *@" =$: > T > J_> I
prl PP p° | pf pP pb
<, . cC C 4, c, . C e
Ivjjoc . :
Initialization Absorb Message Squeeze Hash

Figure 3.10 — Ascon-Hash and Ascon-XOF sponge [Dobraunig et al., 2021].

Internally, the Ascon permutation has a state of 320 bits, split into five 64-bit vari-
ables xo, ..., X4, shown in Figure 3.11. The permutation comprises 3 operations performed
in the following order: the addition of a round constant into the x, state variable; the SBOX
operation; and the linear diffusion operation.

34

Figure 3.11 — Ascon internal state [Dobraunig et al., 2021].

The round constant addition operation is trivial, with the constant Cr being deter-
mined based on the current round number r. The round constant of the current round can
be determined by the subtraction of the previous round constant by 15. The initial CO value
varies between the p? and p? permutations. The Cr value for each round of each permuta-
tion is shown in Figure 3.12. The Cr constant is zero-extended to the left and XOR-ed into
the x, state variable.

6

pi2 pS p Constant ¢, p2 pop Constant ¢,
0 00000000000000£0 6 2 0 0000000000000096
1 00000000000000e1 7 3 1 0000000000000087
2 00000000000000d2 8 4 2 0000000000000078
3 00000000000000c3 9 5 3 0000000000000069
4 0 00000000000000b4 10 6 4 000000000000005a
5 1 00000000000000a5 11 7 5 000000000000004b

Figure 3.12 — Ascon round constants [Dobraunig et al., 2021].

The SBOX operation consists of a series of bitwise XOR and AND operations per-
formed between each word in the state. The SBOX operation is depicted in Figure 3.13 and
its interaction with the Ascon state in Figure 3.14. Note that each bit in a state variable in the
SBOX operation depends only on itself and the same relative indexed bit in the remaining
state variables. In this manner, the SBOX operation can be computed for any number of bits
at a time, usually the machine word size.

Finally, the linear diffusion operates individually on each word of the state. Similarly
to the SHA-2 sigma functions presented in Section 3.1.1, each word is determined based on
the bitwise XOR of rotations of itself. Each Ascon sigma function is presented in Figure 3.15
and its interaction with the Ascon state in Figure 3.16.

Due to its novelty and upcoming standardization process as a result of the NIST
LWC competition, showing good performance at a low memory footprint when compared
with previous NIST standards, the Ascon family of algorithms has been chosen for evaluation
in this work.

35

X
Y
» (1
%
&
Y
» (1
%
\/
B

5
Y
MNe
N7
\»{V
Y
N
P
Y
\/ \/
5 X

X
\ /
P
— |
dd dd A Aa
i
&» -
\ \
NN
B
>
\ Y
XX

Figure 3.14 — Ascon SBOX applied to the state [Dobraunig et al., 2021].

Xo < Xo(X0) = X0 @ (X0 >> 19) & (Xxo >> 28)
X1 Z1(X~|) =X1 P (X1 >> 61) D (X >> 39)
Xo < Xo(X2) = Xo D (X2 >> 1) © (X2 >> 6)
X3+ X3(X3) = X3 ® (X3 >> 10) ® (x3 >> 17)
Xg — 24(X4) = X4 D (Xg >> 7) D (X4 >> 41)

Figure 3.15 — Ascon linear diffusion operation [Dobraunig et al., 2021].

Figure 3.16 — Ascon linear diffusion applied to the state [Dobraunig et al., 2021].

3.2 Related Work

Software evaluations concerning the entire RISC-V cryptography ISE are reported
in [Nisanci et al., 2022; Marshall et al., 2021]. In [Nisanci et al., 2022], SHA-256 and SHA-
512 clock cycle count gains of 43% and 40%, as well as a reduction in program memory
usage by 33% and 32% are reported, respectively. Despite reporting performance in terms
of clock cycles instead of instructions retired, the authors of [Nisanci et al., 2022] do not

36

sufficiently describe their hardware platform, simply stating their processor core to be "a
32-bit 5-stage pipelined RISC-V processor that only supports base integer instructions".
Crucial facts concerning the complexity of the RISC-V core used in their evaluation such as
operand forwarding, branch prediction, and multiplier and shifter topology are omitted. This
makes it difficult to compare results, seeing as the complexity of their RISC-V core cannot
be correlated to the Ibex core we use. Similar results are reported in the earlier [Marshall
et al., 2021] work, evaluated in the context of the SCARV [University of Bristol, 2018] core.

[Bertoni et al., 2012] presents several optimization techniques for the implemen-
tation of the Keccak permutation. [Stoffelen, 2019] evaluates the SHA-3 optimization tech-
niques presented in [Bertoni et al., 2012] in an assembly implementation focused on perfor-
mance rather than on code size. 13774 clock cycles are reported for the Keccak permutation,
benchmarked in a SiFive E31 core.

[Campos et al., 2020] provide another similar evaluation of the Keccak permuta-
tion, porting the implementation for [Stoffelen, 2019] to C. An improvement of 3% due only
to using C instead of assembly is reported, considering the same E31 core. Additionally,
the authors evaluate the Keccak permutation considering the bit manipulation (B) extension
performed on the Spike simulator. Results of 12402 and 14633 clock cycles are reported,
with and without the bit manipulation extension, respectively.

[Saarinen, 2022] provides an implementation of the hash functions and XOFs on
the SHA-3 standard. This implementation is more appropriate to the resource-constrained
context being explored, as it does not make use of loop-unrolling such as in previous imple-
mentations in [Stoffelen, 2019; Campos et al., 2020], while still being well optimized in light
of the techniques presented in [Bertoni et al., 2012]. It can also be easily configured as to
use the Zbkb extension.

[Campos et al., 2020] also consider Ascon in their evaluation, considering an in-
lined ASM implementation of the Ascon permutation, and one permutation using the bit-
interleaving technique, described in details in Section 3.1.2, both using loop unrolling.

[Cheng et al., 2022] propose ISEs for several LWC algorithms, among them Ascon.
In the case of Ascon, they propose a new custom extension called XAscon and evaluate
it considering software-only and Zbkb-accelerated implementations. The evaluation for the
XAscon extensions makes use of both XAscon and Zbkb. The XAscon + Zbkb implemen-
tation shows 2.28x and 1.18x performance gains compared to software-only and Zbkb-only
implementations, respectively. Authors perform their work in the context of the Rocket core
[Chips Alliance, 2023], with 5 pipeline stages and floating point instructions, more complex
than expected for an IoT context. Hardware-specific metrics are evaluated in FPGAs but
not ASIC implementations. The XAscon + Zbkb and Zbkb-only extended Rocket RV32GC
processors come at an area cost of 1.282x and 1.140x, respectively, measured in FPGA
LUTs used (Xilinx Kintex-7 xc7k160tfbg676).

37

From the works reviewed in this section, it is clear that ISEs in the context of low-
complexity embedded systems are an under-explored field of study. Most works concern
themselves with high-complexity processors, where area costs due to cryptography ISEs
are of little relevance to the overall area cost of the processor; or conduct their evaluations
using FPGA or open-source EDA tools, not showing accurate values representative of factual
ASIC implementations, using commercial EDA tools. Additionally, this work considers a
comprehensive evaluation of memory overheads and runtime behaviour in terms of clock
cycles, instructions executed and memory accesses for its software aspects.

3.3 Implementation

This section presents the efforts made towards the efficient software-only and hard-
ware accelerated implementation of SHA-2, SHA-3 and Ascon-Hash in the Ibex processor.

3.3.1 SHA-2 Implementation

Hardware acceleration of the SHA-256 and SHA-512 hash functions is provided
through 10 instructions defined in the Zknh extension, allowing for efficiently computing the
4 sigma functions in each algorithm. For SHA-256, 4 instructions are defined: sha256sum0,
sha256sum1, sha256sig0 and sha256sigl. These instructions directly implement the ¥2%,
Y25 52% and ¢2% functions defined in the SHA-2 standard [NIST, 2015a], restated below.

$2%(x) = ROTRa(x) @ ROTRi3(x) & ROTRea(X)

2%(x) = ROTRs(X) @ ROTRy1(x) ® ROTRos(X)
52%(x) = ROTR;(X) ® ROTRy5(x) & SHRs(x)
0'1256(X) = ROTRW(X) D ROTR19(X) D SHRm(X)

Similar functions are defined for SHA-512:
2812(X) = ROTRgg(X) Iy, ROTR34(X) e, ROTRgg(X)

T512(x) = ROTRy4(X) & ROTRg(x) & ROTRu1 (X)
05'2(x) = ROTR; (x) & ROTRs(x) & SHR(x)

o52(x) = ROTRy(X) ® ROTRs;(x) ® SHRs(X))

38

The availability of Zknh instructions allows for an implementation that is not only
faster, but more compact and energy-efficient. Implementing these 4 functions in plain RvV32I
is very costly due to the usage of rotation shifts, for which no RV32lI instruction can directly
compute. Computing a rotation shift by n bits in RV32lI instructions requires a logical shift by
n bits in the forward direction; a logical shift by 32 — n bits in the reverse direction; and OR-
ing both these intermediary shifts together. This requires the use of additional temporary
registers, which may lead to the compiler storing intermediary values in the stack due to the
lack of registers available to the register allocator.

Since SHA-512 variables are defined to be 64 bits in size, such functions cannot be
directly implemented as a single instruction yielding a 32-bit result, as is the case for SHA-
256. Note that the temporary registers issue is aggravated due to the increased variable
size. Six instructions are defined to accelerate SHA-512 sigma functions: sha512sigOh,
shab512sig01, shab12siglh, shab12sigll, sha512sumOr and sha512sumlir. With Zknh in-
structions the functions o3'? and ¢3'? are computed with 2 different instructions, for the high
and low parts of the result separately, while £3'2 and ¥3'2 are computed via 2 executions of
the same instruction, but once with inverted operands, implying a rotation by 32 bits.

Zknh instructions are implemented in their functional unit, shown in Figure 3.17.
The SHA-2 unit is entirely combinational, with all Zknh instructions executing in a single cy-
cle. The sigma functions discussed in Section 3.1.1 lend themselves to an efficient hardware
implementation, seeing as shifts and rotations by static amounts have zero cost. The SHA-2
unit can be seen simply as a sea of XOR gates, computing each sigma function, and a MUX,
choosing the high/low part of a sigma function of interest.

|)
—)-

EN

RD
RS1

OP

\ SHA-2 Unit j

Figure 3.17 — SHA-2 Unit [Gewehr and Moraes, 2023].

The SHA-2 (and AES) functional unit integration in the lbex processor’s ID/EX
pipeline stage can be seen in Figure 3.18. New elements added to the processor are colored
in blue, existing elements modified to accommodate the new functional units are colored in
green, while unmodified elements are colored in yellow.

39

1 Data Memory Interface i
ID/EX stage Ny Wil N\
I v

Instruction
Decoder . . .
Load & Store Arithmetic & Logic
Unit Unit

518

Jaxajdiinig
v puetadQ

|
]
vV V¥
Jaxajdin
g puesado
—\
<
<€
<
<
—\
<
<€
[}
=
T
N
<
<€
v

)7

Jaxidnyinp
yoeqaiim

AES
Unit

Register
File

IF Stage Interface

/

Figure 3.18 — Ibex ID/EX pipeline stage datapath with AES and SHA-2 functional units.

t
(-
_)

Figure 3.18 also illustrates the benefits of implementing hardware acceleration as
ISEs over loosely-coupled accelerators in embedded contexts. Note that only small changes
in the instruction decoding and writeback logic are required to integrate functional units into
the lbex processor, while resource sharing with existing processor elements is extensively
explored, namely in the register file and load/store unit.

3.3.2 SHA-3 Implementation

SHA-3 relies on operations between different lanes. This presents challenges in
implementing SHA-3 in targets with 32-bit words such as Ibex. Each lane in Keccak is
defined to have 64 bits, implying in the need to have 2 32-bit registers storing a single lane.
This makes computing the lane rotation operations from the p (Rho) step difficult. The bit-
interleaving technique can be used to aid the computation of 64-bit rotations. Instead of
splitting a 64-bit variable between high and low registers (as defined in the RISC-V ABI),
a regqister stores the even-indexed bits of the variable, while another stores its odd-indexed
bits. A rotation by 2a bits in a 64-bit variable becomes two a bit rotations, one in each 32-
bit register. Note that this is transparent to bitwise operations between two lanes, as the
relative position between bits in two lanes remain the same, regardless if lanes are in ABI or
bit-interleaved representation.

Moreover, recall that the Keccak state is 1600 bits long, requiring 50 32-bit reg-
isters to store it within the register file. Consequently, to compute the Keccak permutation
in Ibex, multiple passes of the state stored in memory must be performed at each round.
The implementation from [Saarinen, 2022] performs 3 passes over the state per round: In
the first pass the parities of each column are computed, which is used to determine the two
parity bit that will be XOR-ed into each column. For each column, the XOR between the two

40

column parities is computed (called the #-effect in [Bertoni et al., 2012]). In the second pass
the 0 (Theta), p (Rho) and = (Pi) operations are computed by applying the ¢-effects to a lane
(Theta), rotating the lane by the appropriate amount (Rho) and storing the result in the state
array in memory in its appropriate position (Pi). The final third pass computes the x (Chi)
operation plane-wise, considering all lanes in each row.

Hardware acceleration within Keccak is provided via instructions from the Zbkb ex-
tension. The lane rotation operation, namely within p (Rho) can be accelerated by zip, unzip
and pack instructions, described in Algorithms 3.3 to 3.5, for the efficient translation between
the ABI and bit-interleaved representation, as described in Algorithms 3.6 and 3.7. Zbkb also
provides the rori instruction, directly implementing a rotation, otherwise implemented with
two shifts and one or RV32l instructions. Another source of hardware acceleration is in
the bitwise logical operations in the x (Chi) step. For each lane in the state a NOT oper-
ation followed by an AND and an XOR must be performed. In plain RV32l assembly, this
is implemented requiring 3 separate instructions (XORI, AND and XOR). The Zbkb extension
provides the ANDN instruction, which negates the first operand before performing a bitwise
AND between two operands, allowing to merge 2 operations in the y (Chi) step into one.

Algorithm 3.3 Zip instruction
Require: RS1 and RD are registers in the register file
for i from 0 to 15 do
RD[2 x i1 + RS1[/]
RD[2 x i+ 1] < RS1[i + 16]
end for
return RD

Algorithm 3.4 Unzip instruction
Require: RS1 and RD are registers in the register file
for i from 0 to 15 do
RD[i] + RS1[2 * i]
RD[i +16] < RS1[2 i+ 1]
end for
return RD

Algorithm 3.5 Pack instruction

Require: RS1, RS2 and RD are registers in the register file
RD[15 : 0] + RS1[15: 0]
RD[31 : 16] + RS2[15 : 0]
return RD

The Zbkb extension is implemented inside the regular ALU of the Ibex processor.
No internal structure can be clearly established as to enable visualization of its internals.
This allows for better integration via resource-sharing with existing integer arithmetic ele-
ments within the ALU. All Zbkb operations are executed in a single clock cycle, with the
exception of the ror and rori rotation instructions, which execute in 2 cycles.

41

Algorithm 3.6 To bit-interleaved representation
Require: RI, Rh store the low and high parts of a 64-bit variable, Rt is a temporary register
Ensure: Ro, Re store the odd and even bits of a 64-bit variable in bit-interleaved form

Rt «+ Unzip(RI)

Ro < Unzip(Rh)

Re < Pack(Rt, Ro)

Rt +— Rt > 16

Ro + Ro> 16

Ro + Pack(Rt, Ro)

return Ro, Re

Algorithm 3.7 From bit-interleaved representation
Require: Ro, Re store the odd and even bits of a 64-bit variable in bit-interleaved form, Rt
is a temporary register
Ensure: RI, Rh store the low and high parts of a 64-bit variable
Rt «+ Pack(Re, Ro)
Re «+ Re > 16
Ro + Ro > 16
Rh + Pack(Re, Ro)
Rl + Zip(Rt)
Ro < Zip(Ro)
return R/, Rh

3.3.3 Ascon Implementation

Ascon is designed to naturally allow for efficient software implementations. The
bit-interleaving technique previously shown in Section 3.3.2 in the context of the Keccak
permutation can also be applied in Ascon for speeding up rotation in the linear diffusion
operation of the Ascon permutation. A published paper stemming from this work [Gewehr
et al., 2024] demonstrates that the XAscon ISE outperforms the Zbkb extension at a similar
area overhead, discouraging the use of bit-interleaving when implementing Ascon.

In this way, hardware acceleration is implemented through the XAscon ISE, orig-
inally proposed in [Cheng et al., 2022]. The XAscon ISE provides 10 new instructions, 5
computing the high part of each 64-bit internal state variable xo, ..., X4, and 5 computing the
low part of each 64-bit internal state variable. Thus, each sigma function can be computed
in only 2 instructions instead of 16 RV32l instructions in a software-only implementation.

XAscon instructions are also implemented in their own functional unit, shown in
Figure 3.19. The Ascon unit is entirely combinational, with all XAscon instructions executing
in a single cycle. The Ascon sigma functions lend themselves to an efficient hardware imple-
mentation, seeing as rotations by static amounts have zero logic cost. The Ascon unit does
not have a well-defined internal structure like the AES unit and can be seen simply as a sea
of XOR gates, computing each sigma function, and a MUX, choosing the high/low part of a

42

sigma function of interest. AND gates are again used to gate inputs, minimizing switching
activity when the Ascon unit is not being used. The Ascon unit is integrated into the lbex
ID/EX pipeline state in the same manner as the AES unit.

()
—-

EN

RD
‘
RS1

OP ” 4

\ Ascon Unit)

Figure 3.19 — Ascon Unit.

3.4 Experimental Evaluation

In this section a comparative evaluation of the SHA-256, SHA-512 (from the SHA-2
standard [NIST, 2015a]), SHA3-256, SHA3-512 (from the SHA-3 standard [NIST, 2015b])
and Ascon-Hash (from the LWC competition winning submission [Dobraunig et al., 2021]) is
presented. The evaluation considers the hashing of the maximum payload size of Zigbee
(86 bytes) and IPv6 (1224 bytes) packets, with and without hardware acceleration from the
Zknh extension, for the SHA-2 algorithms; the Zbkb extension for the SHA-3 algorithms; and
XAscon for the Ascon-Hash algorithm. The evaluation comprises a performance and runtime
behavior comparison, energy consumption, memory footprint, and die area cost analyses.

3.4.1 Performance Evaluation and Profiling

Tables 3.2 and 3.3 show the performance counters for each algorithm being eval-
uated, with white columns showing results for the baseline software implementation and
blue columns showing results for the hardware accelerated implementations. The best-
performing algorithm is SHA-256, considering both software-only and hardware-accelerated
implementations. The most significant performance gain is in Ascon-Hash, seeing a 49%
reduction in clock cycles.

43

Table 3.2 — Hash functions profiling for Zigbee packet max payload size input (86 bytes).

Counters

Zigbee packet max payload size (86 bytes)

SHA-256

Clock Cycles

Instructions

LSU Busy

Fetch Wait

Loads

Stores

Jumps

Branches

Taken Branches

Compressed Inst.

Multiplier Busy

Divider Busy

Load Word

Load Half Word

Load Byte

Store Word

Store Half Word

Store Byte

SHA-512

1,470

RSB 5746 |NIOS2N

o0 |
o |
|1
| 214 NS
| 726 NS
1]

3
8
3
2
7

28
85
08
1

14
26
1

SHA3-256
o0 |
o |

3,755

2

2609 | 2e6r |
o

41 | 1,057 |
23
85
24 | 524 |
06

0

SHA3-512

o

o

N
2

2

5275 | 82 |
o

Ascon-Hash

o%
2
67
91

2

1

12|
o |
| o [ON
| 6|
I
o |

Table 3.3 — Hash functions profiling for IPv6 packet max payload size input (1224 bytes).

Counters

IPv6 packet max payload size (1224 bytes)

SHA-256

Cycles 148,049
Instructions 124,048
LSU Busy 13,648
Fetch Wait 5,282
Loads 9,317
Stores 4,331
Jumps 1,299
Branches 3,772
Taken Branches 3,690
Compressed Inst. | 41,073
Multiplier Busy 0
Divider Busy 0
Load Word 6,812
Load Half Word 1
Load Byte 2,504
Store Word 3,052
Store Half Word 1
Store Byte 1,278

SHA-512

64,105 | fas0e |
1

12,446

SHA3-256

37,491

o
o o

SHA3-512

2,514

B

o0 |
o0 |
o |
| 2514 |

Ascon-Hash

32

3,072

o o
B

Table 3.4 shows relevant information concerning the core operation of each al-
gorithm being evaluated, namely the SHA-256 and SHA-512 compression functions, the
Keccak permutation and the Ascon permutation with 12 rounds. The data throughput (con-
cerning only the core operation) for each algorithm in cycles per byte is also shown, not
considering the cost of moving the operand data to/from memory.

44

Table 3.4 — Core operation profiling for each algorithm.

Core Operation Metric SHA-256 SHA-512 SHA3-256 SHA3-512 Ascon-Hash
Clock Cycles 6,251 30,197
Instructions Retired 5,621 | 22,715 |
Gycles per byte 7671 419405

3.4.2 Memory Footprint Evaluation

The total memory footprint of the algorithms being evaluated is shown in Fig-
ure 3.20. Memory usage due to static data, namely the round constants for the SHA-2 and
SHA-3 algorithms, are shown in yellow. Code size is shown in green, while the maximum
stack usage is shown in blue. The baseline software implementations are shown with bars
hatched with circles, while hardware accelerated implementations using instructions from
the Zknh, Zbkb, and XAscon extensions are shown in bars hatched with diagonal stripes.

Total memory footprint

[Static Data Size (bytes)
3000 A ¢ [Code Size (bytes)

I Max Stack Usage (bytes)

2000 4

1000 A

SHA-256 SHA-512 SHA3-256 SHA3-512 Ascon-Hash

Figure 3.20 — Memory footprint of hash algorithms.

The memory footprint of all algorithms is dominated by code size, with the smallest
memory footprint being of the Ascon-Hash algorithm. The use of ISEs only influences mem-
ory usage due to code size, not stack usage of static data. The static data (round constants)
make a small but significant impact on the total memory footprint, namely in the SHA-512
algorithm and its 80 64-bit round constants. The Ascon round constants are determined at
runtime and do not need to be pre-computed as with the other algorithms.

3.4.3 Energy Consumption Evaluation

The energy consumption of each algorithm for the Zigbee and IPv6 scenarios be-
ing explored are shown in Figure 3.21. Energy spent due to data and instructions memory
operations are shown, respectively, in yellow and green. Energy spent due to data process-
ing inside the Ibex processor is shown in blue. The baseline software implementations are
shown with bars hatched with circles, while hardware accelerated implementations using
Zknh, Zbkb and XAscon instructions are shown in bars hatched with diagonal stripes.

45

Zigbee max payload (86 bytes) hash IPv6 max payload (1224 bytes) hash
[Data IO Energy (n)) 4000 [Data IO Energy (n))
400 4 [Instruction 10 Energy (n)) [Instruction 10 Energy (n))
I Core Energy (n)) 35001 mmm Core Energy (n))

0_
SHA-256 SHA-512 SHA3-256 SHA3-512 Ascon-Hash SHA-256 SHA-512 SHA3-256 SHA3-512 Ascon-Hash

Figure 3.21 — Energy consumption of hash algorithms.

Total energy consumption is dominated by core energy due to internal processing
of data, rather than moving data to/from memory. Core energy is proportional to the amount
of instructions executed, with the lowest consuming algorithm being SHA-256, which is also
the best performing algorithm. As with performance, the algorithm that most benefits from
hardware acceleration with ISEs is Ascon-Hash from an energy consumption standpoint.

3.4.4 Die Area Costs Evaluation

Table 3.5 shows synthesis results for the Ibex core and each ISE being explored.
Seeing as XAscon can be used to accelerate both hashing with Ascon-Hash and AEAD
with Ascon-128, it is compared to an Ibex core with Zkne and Zknh extensions, such that
a fair comparison is made comprising hardware acceleration for both AEAD and hashing.
Zbkb instructions (namely rotations and negated operand bitwise instructions) can be used
to speed up generic code as well. The Zkne and Zknh combination shows a 11% increase in
cell area while Xascon shows a 9% increase. Zbkb shows a smaller 1% cell area increase,
but shows the greatest increase in cell instance count at 13%.

Synthesis results Ibex baseline | Ibex + Zknh + Zkne | Ibex + Zbkb | Ibex + XAscon
Cell Area (um?) 11,238 12,447 11,307 12,210
Net Area (um?) 6,992 7,278 5,142 8,181
Total Area (um?) 18,230 19,726 16,449 20,391
Cell Count (# instances) 10,289 11,687 11,769 11,010
Equivalent NAND2 gates 34,433 38,132 34,642 37,408
Slack @ 500 MHz 0 0 0 0

Table 3.5 — Area comparison of ISEs for hardware acceleration of hash functions.

46

3.5 Conclusion and Final Remarks

Considering the analyses presented in Section 3.4, no algorithm presents itself
as the unanimous better choice for an AEAD algorithm in resource constrained embedded
systems. SHA-256 shows better performance and energy consumption both in software only
and hardware accelerated implementations, but has higher memory usage that Ascon-Hash.
Using ISEs, Ascon-Hash uses 512 bytes less memory than SHA-256 (32% difference) while
performing at 2469 clock cycles worse (19% difference). Additionally, Ascon-Hash can also
share code for the 12 round permutation with Ascon-128, making it the better choice for
memory constrained systems.

At the 256 bit security level, SHA-512 severely outperforms SHA3-512, both with
and without ISEs, at higher memory usage. The proportional performance difference (66%
and 69%, with and without ISESs) is greater than memory footprint difference (23% and 17%,
with and without ISEs). SHA3-512 should be favored over SHA-512 in memory constrained
applications, especially in those in which both 128 and 256 must be provided, seeing as both
SHA3-256 and SHA3-512 can be implemented with the exact same code, only differing in
runtime parameters passed as arguments, implying in a null memory footprint overhead for
providing both security levels.

In summary, hardware acceleration of hash functions via ISEs bring average im-
provements of 32% in performance, 38% in energy consumption (Zigbee packet max pay-
load size case study) and 16% in code size, at an average area cost of 7%, considering
acceleration for both hashing and AEAD for the Zkne and Zknh or XAscon cases or hash
functions and generic code for the Zbkb case.

47

4. HARDWARE ACCELERATION OF SYMMETRIC
CRYPTOGRAPHY USING ISES

This chapter presents efforts made towards hardware acceleration using ISEs of
symmetric cryptography, using the AES and Ascon algorithms. Section 4.1 provides an
introduction to symmetric cryptography and the inner workings of the AES and Ascon al-
gorithms. Section 4.2 reviews previous relevant works in the literature. Section 4.3 details
the implementation of hardware acceleration using ISEs in the lbex processor. Section 4.4
shows the evaluation of the previously presented implementation, following the methodology
detailed in Section 2.3. Finally, Section 4.5 presents conclusions and final remarks.

Part of this chapter was published in the following conferences:

Improving the Efficiency of Cryptography Algorithms on Resource-Constrained Embedded Systems via
RISC-V Instruction Set Extensions

Carlos Gewehr, Fernando Gehm Moraes

In: SBCCI, 2023

Hardware Acceleration of Authenticated Encryption with Associated Data via RISC-V Instruction Set Exten-
sions in Low Power Embedded Systems

Carlos Gewehr, Nicolas Moura, Lucas Luza, Eduardo Bernardon, Ney Calazans, Rafael Garibotti, Fernando Gehm
Moraes

In: LASCAS, 2024

4.1 Introduction to Symmetric Cryptography

Ensuring the confidentiality of data transmitted by embedded systems is a ma-
jor concern for secure communication. This means that the information sent and received
should be protected from being exposed to entities that are not authorized to access it. To
achieve this, two parties who wish to communicate securely can use a common secret to
transform the data in a way that only those who know the secret can decrypt it, while to
others, the data appears as random noise and is unreadable.

This process requires two functions: an encryption function, to be called by the
sender; and a decryption function, to be called by the receiver. The encryption function
requires two inputs, the data one wishes to transmit following the confidentiality principle,
commonly referred to as the plaintext, and the secret shared between the two parties, called
the key. The output of this function is called the ciphertext. Once the ciphertext has been
computed, it can be securely sent to the receiving party.

48

At the receiver side, the plaintext is obtained from the ciphertext via the decryption
function, which takes in the ciphertext itself and the shared key. In this scheme, the security
guarantees come from the fact that the encryption function is constructed in a manner that
no operation can be performed on the ciphertext, yielding the plaintext without knowledge
of the key in a way that is significantly more efficient than randomly guessing key values
(brute-force attack). Consequently, the ciphertext can be safely exposed (namely through an
insecure channel) to potentially malicious third parties without fear of publishing confidential
information, provided that the key is known only by the legitimate transmitter and receiver.
This process is illustrated in Figure 4.1, where the plaintext, ciphertext and key are denoted
by the variables x, y and k, respectively.

insecure channel
(e.g., Internet)

Alice x encryption
(good) e()

k k

4{) secure channel)7

Figure 4.1 — Symmetric cryptography [Paar and Pelzl, 2009].

decryption x Bob
d0 (good)

A

While confidentiality is a crucial aspect of secure communication, it alone does not
ensure the integrity of the ciphertext when transmitted over an insecure channel. This means
that, despite the encryption, there is no inherent guarantee that the transmitted data will re-
main unmodified during its transmission through potentially vulnerable networks. A cipher-
text may be unintentionally modified due to transmission errors or deliberately tampered with
by a malicious actor. As a result, an additional property desired in secure communication is
integrity. The integrity property ensures that the receiver can determine if the ciphertext has
been tampered with and disregard it if it does not match what the transmitter sent. To know
whether the ciphertext obtained from a sender has been modified, redundancy is added to
the ciphertext. This redundancy is called a Message Authentication Code (MAC) or Tag.

Authenticated Encryption with Associated Data (AEAD) ensures confidentiality and
authenticity of sensitive data. AEAD algorithms seek to provide confidentiality and authen-
tication for a given plaintext P and authentication (but not confidentiality) of associated data
A. A use case for AEAD is network packets, where headers (A) are visible to a router, but
payloads are private. In addition to A and P, the AEAD process E (Equation (4.1)) expects
a key K and a unique nonce N. These additional values are used to set the initial state of
the algorithm, with, for Ascon, a static initialization vector /V; and for AES in CCM mode, the
message length, determining CTR,. The outputs of the AEAD process are the ciphertext C
and an authentication tag T.

49

E(K,N,A P)=(C,T) (4.1)

4.1.1 AES

In the communication framework presented in Figure 4.1, the security assumptions
rely on the premise the encryption and decryption functions are designed such that there is
no computationally efficient means to obtain plaintext from a given ciphertext without knowl-
edge of the key. The Advanced Encryption Standard (AES) [NIST, 2001a] defines a widely
used algorithm for the encryption and decryption functions. The standardized algorithm has
been initially published in 1998 [Daemen and Rijmen, 1998], and since then, no attacks
significantly more efficient than a brute-force attack are known [Zodpe and Shaikh, 2021].

Figure 4.2 presents AES at a high level. AES is a block cipher, which accepts
fixed-sized inputs and produces outputs of the same size. The block size (Nb 32-bit words
in Figure 4.3) for AES is fixed at 128 bits. The security level of AES is defined for different
levels of resistance to a brute-force attack, represented in terms of bits. For example, AES
with 128 bits of security requires 228 decryption operations with as many keys to obtain a
plaintext that produces a given ciphertext. The key size (Nk 32-bit words) for AES is directly
determined by the number of bits of security required for a specific instance of AES. Specif-
ically, AES-128, AES-192, and AES-256 are defined to provide varying levels of security.
These variants differ in the number of rounds Nr the core permutation of AES is performed
over the plaintext: 10, 12, and 14 rounds are executed for AES-128, AES-192, and AES-256,
respectively, as shown in Figure 4.3.

X
% 128
128/192/256

AES ~———k

f 128

y
Figure 4.2 — AES encryption [Paar and Pelzl, 2009].

Internally, an AES round uses 4 operations in the following order: SubBytes, ShiftRows,
MixColumns and AddRoundKey. The internal state is arranged as a 4x4 matrix of bytes.

The SubBytes step performs a linear transform on the GF(28) inverse of each byte
of the state, shown in Figure 4.4 and Figure 4.5. This operation applied on each byte is also
known as a Substitution Box (SBOX).

50

Key Length | Block Size | Number of
(Nk words) | (Nb words) Rounds
(Nr)
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

Figure 4.3 — AES parameters [Paar and Pelzl, 2009].

byl [1 000 1 1 1 1]b] [2
b| |1 10001 1 1(b| |1
byl [t 1 1 0 0 0 1 1|fb] |O
b;:11110001b3+0
b,/ |1 1 1 1 1 0 0 0|b| (O
b.| |01 1 1 1 1 0 0fb]| |1
b| [0 0 1 1 1 1 1 0fbs| |1
b, [0 001 1 1 1 1]b| [0O]

Figure 4.4 — AES SubBytes() linear transform (SBOX) [NIST, 2001a].

S-Box : :
So0,0 | So,1 | So,2 &3,/ ~ S0.0 | So1 | So2 | So
S10 s I Si,3 Sio v P2 | Si3
r,c Sr,C
S20| S21 | S22 | S23 S20 | S21 | S22 | S23
530|531 | S32| 533 S30 | S31 | S32 | S33

Figure 4.5 — AES SubBytes() SBOX applied to the state [NIST, 2001a].

The ShiftRows step shuffles the internal state, left-rotating the /’'th row by / bytes to
the left. This is shown in Figure 4.6.

S S’

12 | Si3 l@l S11 | Su2 | Sz | Swo
52,0 | S2.1 | S22 | S23 @l S22 | S23 | S20 | S2a
o | L | Sia | a0 | Saa | s

Figure 4.6 — AES ShiftRows() [NIST, 2001a].

51

The MixColumns step is performed column-wise, multiplying each column in the
state with a constant matrix. This is shown in Figure 4.7.

-) — ar -

s, 02 03 01 01][s,.

01 02 03 O01f(fs,.
= ’ for0<c < Nb
S,.c 01 01 02 03]|]s,,

;0| 103 01 01 02f[s,,

Sl,c

Figure 4.7 — AES MixColumns() [NIST, 2001a].
Finally, AddRoundKey XORs words from the key schedule W into the state, shown in
Figure 4.8. The key schedule is prepared before the round loop execution begins, as shown
in Figure 4.9. Note that the key schedule can be computed only once for any number of AES
block cipher operations with the same key (but any input plaintext).

I =round * Nb
SO,C SO,C
So0,0 2 | So3 I R 50,0 - b2 |S03
. Sl,c (@ I+c \\ : Sl,C ' :
1,0 7513 w W ST 2| S13
s 1 +2 1+3 - S' -
S20 2¢ 45823 S50 2¢ bo| Sy
S3,0 S3c |2 S33 S30 || Szc p2|S33

Figure 4.8 — AES AddRoundKey() [NIST, 2001a].

The use of a block cipher like AES with a secret key does not inherently guarantee
confidentiality. Specifically, encrypting identical blocks of plaintext with the same key results
in identical blocks of ciphertext, compromising confidentiality. This reveals information to
an attacker; if two ciphertext blocks are identical, their corresponding plaintext blocks are
also identical. This issue highlights the need for modes of operation in block ciphers, which
prevent attackers from inferring plaintext information by analyzing ciphertext patterns.

In [NIST, 2001b], various standardized modes of operation are presented, including
the Counter (CTR) and Cipher Block Chaining (CBC) modes. These modes are of particular
interest due to their simplicity and ease of implementation. In the CTR mode, the underlying
block cipher, such as AES, is utilized not to directly compute the ciphertext from the plaintext
and key, but rather to generate an intermediate value based on a previously agreed running
counter and the key. The resulting intermediate value is XOR-ed with the plaintext to yield
the ciphertext. In the CBC mode the input to each block cipher operation is the bitwise XOR
between the current plaintext block and the previous ciphertext block, while the ciphertext is
taken directly from the block cipher operation. A visualization of the CTR and CBC modes
of operation can be seen in Figure 4.10 and in Figure 4.11, respectively.

52

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin
word temp

i=0

while (i < Nk)
w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i=in1

end while

i= Nk

while (i < Nb * (Nr+1)]
temp = w[i-1]
if (i mod Nk = @)
temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
else if (Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)
end if
w[i] = w[i-Nk] xor temp
i=i+1
end while
end

Note that Nk=4, 6, and 8 do not all have to be implemented;
they are all included in the conditional statement above for
conciseness. Specific implementation requirements for the
Cipher Key are presented in Sec. 6.1.

Figure 4.9 — AES Key Schedule [NIST, 2001a].

COUNTER 1 COUNTER 2 COUNTER n

INPUT BLOCK 1 INPUT BLOCK 2 INPUT BLOCK n

CIPH, CIPH, | - - = - - CIPH,

QUTPUT BLOCK n

OUTPUT BLOCK 1

OUTPUT BLOCK 2

ENCRYPT

PLAINTEXT n

PLAINTEXT 1

PLAINTEXT 2

CIPHERTEXT 1 CIPHERTEXT 2 CIPHERTEXT n

COUNTER 1

INPUT BLOCK 1

COUNTER 2

INPUT BLOCK 2

COUNTER n

INPUT BLOCK n

CIPH,

OUTPUT BLOCK 1

CIPHERTEXT 1 CIPHERTEXT 2
A4
PLAINTEXT 1 PLAINTEXT 2

Figure 4.10 — CTR mode of operation [NIST, 2001b]

CIPH, | - - - - -

OUTPUT BLOCK 2

CIPH,

OUTPUT BLOCK n

CIPHERTEXT n
PLAINTEXT n

DECRYPT

4
P

The CCM mode of operation [NIST, 2007b] employs both CTR mode for encryption
and CBC mode for generating authentication tags. The ciphertext is computed by encrypting
the plaintext using the CTR mode, and the authentication tag is computed by encrypting
the associated data and plaintext using the CBC mode. This process can be visualized
in Figure 4.12. The CCM mode of operation is interesting since it uses the underlying block
cipher for both encryption and authentication, unlike other AEAD modes of operation such
as GCM [NIST, 2007a], which employ other means for generating authentication tags.

DESCYPT

("~ [mmaLizaTioN | PLAINTEXT1 | | PLAINTEXT 2 |
VECTOR
3 &
e 3 Y
> INPUT BLOCK 1 INPUT BLOCK 2
o
o CIPH, CIPH,
=
w OUTPUT BLOCK 1| OUTPUT BLOCK 2
_ | CIPHERTEXT 1] | CIPHERTEXT 2|
4 | cIPHERTEXT 1

| CIPHERTEXT 2|

INPUT BLOCK 1

INPUT BLOCK 2

CIPH1,

CIPH1,

OUTPUT BLOCK 1

OUTPUT BLOCK 2

v

v
INITIALIZATION ? i
- ’:JI;R—?:NTEXTl | [PLAINTEXT2 |

53

PLAINTEXT n

X

[g

A
INPUT BLOCK n

CIPH,

OUTPUT BLOCK n

CIPHERTEXT n

CIPHERTEXT n

INPUT BLOCK n

CIPH?,

OUTPUT BLOCK n

o

PLAINTEXT n

Figure 4.11 — CBC mode of operation [NIST, 2001b]

Hardware acceleration of the underlying block cipher (e.g. AES) improves encryp-
tion/decryption and authentication efficiency. Note that one AES operation is performed per
associated data block, while two AES operations are performed per plaintext block.

CTRg—>» +1 —»CTR;—>» +1 ~»CTR;—>» +1 ~»CTR,

| | | |

AES-128y AES-128y AES-128y AES-128y
| v v v
XOR —»Cy XOR —»C»> XOR —»C,
A A 0
Ay An Py P, Pn
\ v \ v v v
‘ XOR r = » XOR XOR XOR r = » XOR XOR —» T
1 1
\/ - 2 \/ 2 ' \/
1 1
1 1
AES-128y¢ ~ + |AES-128¢ AES-128y AES-128¢ - = |AES-128g

Figure 4.12 — The CCM mode of operation.

AES-128 in CCM mode is the most used algorithm for AEAD in resource-constrained
embedded systems, being supported in a wide range of internet protocols, notably TLS [Rescorla,
2018] and DTLS [Rescorla et al., 2022]. For its wide and existing applicability, it was chosen
as one of the algorithms for the evaluation performed in this work.

54

41.2 Ascon

Unlike AES used in an operation mode such as CCM, Ascon [Dobraunig et al.,
2021] AEAD is based on a newer construction, called “sponge in duplex mode”, depicted
in Figure 4.13. In contrast with the SHA-3 sponge demonstrated in Section 3.1.2, the du-
plex sponge is capable of simultaneous input and output of data, where the SHA-3 sponge
must only receive data during the absorb phase, while only outputting data in the squeeze
phase. For the reader’s convenience, the exposition on the inner workings of Ascon from
Section 3.1.3 is restated below.

At each stage of the Ascon sponge, a permutation of the internal state is performed
(p? and p?, which differ only in the number of rounds, respectively 12 and 6). This work
considers the Ascon-128 variant, with the sponge rate (A;, P; and C; width) of 64 bits. Note
that in Ascon, one permutation per data block absorbed is performed for both associated
data and plaintext, unlike the CCM mode of operation, which computes two block cipher
operations for each plaintext block.

E Ay As - E P.C4 Pey Ceq t Ce E T
: *r *r : ¢ r ¢ A ¢ e
I=®= .»@.» I=® —> =® . : »> 128
a : b b : b b : a
P STy € P ¢ P SN € P o C P C M P
AT - g > - " o
t o — 1
IVI[K[|N - 0%[|K: 0*||1: K|[0* K
Initialization Associated Data Plaintext Finalization

Figure 4.13 — Ascon duplex sponge [Dobraunig et al., 2021].

Internally, the Ascon permutation has a state of 320 bits, split into five 64-bit vari-
ables Xy, ..., X4, shown in Figure 4.14. The permutation comprises 3 operations performed in
the following order: round constant addition; the SBOX; and linear diffusion.

Figure 4.14 — Ascon internal state [Dobraunig et al., 2021].

The round constant addition operation is trivial, with the constant Cr being deter-
mined based on the current round number r. Cr can be determined by the subtraction of
the previous round constant by 15. The initial CO value varies between the p? and p® per-
mutations. The Cr value for each round and permutation is shown in Figure 4.15. The Cr
constant is zero-extended to the left and XOR-ed into the x, state variable.

55

p'2 p® pb Constant ¢, p2 p® pt Constant ¢,
0 00000000000000£0 6 2 0 0000000000000096
1 00000000000000e1 7 3 1 0000000000000087
2 00000000000000d2 8 4 2 0000000000000078
3 00000000000000c3 9 5 3 0000000000000069
4 0 00000000000000b4 10 6 4 000000000000005a
5 1 00000000000000a5 11 7 5 000000000000004b

Figure 4.15 — Ascon round constants [Dobraunig et al., 2021].

The SBOX operation consists of a series of bitwise XOR and AND operations per-
formed between each word in the state. The SBOX operation is depicted in Figure 4.16 and
its interaction with the Ascon state in Figure 4.17. Note that each bit in a state variable in the
SBOX operation depends only on itself and the same relative indexed bit in the remaining
state variables. In this manner, the SBOX operation can be computed for any number of bits
at a time, usually the machine word size.

Xo =<“> v > =<“> » X0
1~ v
Xl 7 % '@ =<> =X1
v | 1=
X2 =<> l >€v}> '@ =?= XZ
\i
X3 7 =D =<> l =X3
y |10
X4 =<> 7 '@ o X4
1-bre T

Figure 4.17 — Ascon SBOX applied to the state [Dobraunig et al., 2021].

Finally, the linear diffusion operates individually on each word of the state. Similarly
to the SHA-2 sigma functions presented in Section 3.1.1, each word is determined based on
the bitwise XOR of rotations of itself. Each Ascon sigma function is presented in Figure 4.18
and its interaction with the Ascon state in Figure 4.19.

56

Xo + Lo(Xg) = Xo ® (Xg >> 19) ® (xg >> 28)
X1 Z1(X1) = X1 ® (X >> 61) ® (xy >> 39)
Xo — Xo(X2) = X2 B (X2 >> 1) B (X2 >> 6)
X3+ X3(X3) = X3 B (X3 >> 10) & (x3 >> 17)
Xg < L4(Xg) = X4 D (Xg >> 7) D (X4 >> 41)

Figure 4.18 — Ascon linear diffusion operation [Dobraunig et al., 2021].

Figure 4.19 — Ascon linear diffusion applied to the state [Dobraunig et al., 2021].

Due to its novelty and upcoming standardization as a result of the NIST LWC com-
petition, showing good performance at a low memory footprint when compared with previous
NIST standards, the Ascon family of algorithms has been chosen for evaluation in this work.

4.2 Related Work

Previous efforts in open-source RISC-V cores have not sufficiently addressed the
need for low-overhead security in resource-constrained embedded systems. The PULP
project [ETH Zurich, 2016] provides several RISC-V cores and loosely coupled dedicated
cryptography cores, easily integrated via an automated system generation tool. This does
not provide an optimal solution for low-energy cryptography workloads due to the long logical
distance between the main processor and hardware accelerators. Software productivity is
also a negative factor, seeing as custom drivers must be developed for each accelerator.

The OpenTitan project [lowRISC, 2017] uses a similar approach with loosely-coupled
accelerators, but uses a higher-complexity version of the Ibex core with Zb* bit-manipulation
extensions for its main processor. It does not intend to provide a platform for use in IoT ap-
plications, but in the same manner, as PULP [ETH Zurich, 2016], the use of loosely-coupled
accelerators does not satisfy the constraints of the low-complexity context being explored.

The SCARYV project [University of Bristol, 2018] implements a 5-stage RISC-V core
with cryptography ISEs and a software library using such ISEs to achieve hardware accel-
eration. The SCARYV core is of significantly higher complexity than the simple 2-stage Ibex
core used in this work. It does not allow for a fair comparison, nor is it an adequate processor
choice for the 10T context being explored. Additionally, the software library is custom-made,
again leading to challenges in software productivity in integrating it into other projects.

57

[Zgheib et al., 2021] propose a tightly-coupled AES accelerator integrated into an
Ibex core. The Authors report a 40% increase in FPGA slice usage when integrating the
AES accelerator into the lbex processor, improving performance by 46 times compared to
a software implementation from OpenSSL. The authors also report their solution consumes
44.9 times less energy than OpenSSL AES. Note that this AES implementation is not ideal
considering an embedded context. Seeing as the SubBytes operation is done in an online
manner instead of via a lookup table, avoiding cache timing side-channel attacks. In a low-
complexity embedded context, such attacks are not applicable as there is no cache to leak
timing information. A table-based SubBytes such as the one used in the present work is
clearly both faster and more compact, but no quantitative evidence is presented in this work
to support this claim.

[Marshall et al., 2020] present a comparative analysis of several RISC-V ISE pro-
posals, where [Saarinen, 2020] work is demonstrated to be the superior extension to the
32-bit base ISA. The ISE proposed by [Saarinen, 2020] was later standardized and ratified
as the Zkne and Zknd extensions in the RISC-V scalar cryptography as the ISE for AES
encryption and decryption, respectively. Synthesis results are provided in terms of NAND2
equivalent gates. In the context of a SCARV [University of Bristol, 2018] core, the [Saarinen,
2020] ISE shows a 3% area increase, accelerating both encryption and decryption. [Saari-
nen, 2020] reports a 5% increase in LUT usage in an FPGA-based evaluation considering
a lower complexity single-cycle RISC-V core. No power or energy results are provided in
[Marshall et al., 2020; Saarinen, 2020].

In the software side of the evaluation in [Marshall et al., 2020], [Saarinen, 2020]
shows 3.5x and 1.65x performance gains for AES-128 encryption and encryption key ex-
pansion, respectively. The software comparisons consider a higher-performance T-Table
with 4 KB LUT implementation, trading-off memory usage for performance.

Further software evaluations concerning the entire RISC-V cryptography ISE (not
only Zkne as discussed so far) are reported in [Nisanci et al., 2022; Marshall et al., 2021].
[Nisanci et al., 2022] presents an analysis of program and static data memory usage for
accelerated and non-accelerated implementations of cryptography algorithms, prioritizing
execution speed in their implementations. The Authors show a reduction of 83% in program
memory usage in AES-128, but do not seem to consider a reduction in static data memory
usage in their accelerated implementation, nor stack usage in their evaluation.

Despite reporting performance in terms of clock cycles instead of instructions re-
tired, the authors of [Nisanci et al., 2022] do not sufficiently describe their hardware platform,
simply stating their processor core to be "a 32-bit 5-stage pipelined RISC-V processor that
only supports base integer instructions". Crucial facts concerning the complexity of the
RISC-V core used in their evaluation such as operand forwarding, branch prediction, and
multiplier and shifter topology are omitted. This makes it difficult to compare results, seeing
as the complexity of their RISC-V core cannot be correlated to the Ibex core.

58

[Campos et al., 2020] perform a comparative analysis of several algorithms imple-
mented in C or RISC-V assembly, showing that equivalent C implementations (with the same
optimization techniques) generally match or slightly outperform assembly implementations.
For AES, the authors evaluate a performance-optimized T-Table implementation, with a 4KB
LUT and loop unrolling. This implementation are unapplicable to the loT context due to se-
vere static data size and code size costs. In this work we consider AES implementations
from the TinyCrypt [Intel, 2017] library, with a 256 Bytes SBOX LUT, and a custom T-Table
implementation with a 1 KB LUT, neither using loop unrolling.

[Campos et al., 2020; Cheng et al., 2022] have been previously discussed in the
context of Ascon in Section 3.2, restated here for the reader’s convenience.

[Campos et al., 2020] also consider Ascon in their evaluation, considering an inlined
ASM implementation of the Ascon permutation, and one permutation using bit-interleaving,
described in details in Section 3.1.2. All implementations use loop unrolling.

[Cheng et al., 2022] propose ISEs for several LWC algorithms, among them Ascon.
In the case of Ascon, they propose a new custom extension called XAscon and evaluate
it considering software-only and Zbkb-accelerated implementations. The evaluation for the
XAscon extensions makes use of both XAscon and Zbkb. The XAscon + Zbkb implemen-
tation shows 2.28x and 1.18x performance gains compared to software-only and Zbkb-only
implementations, respectively. Authors perform their work in the context of the Rocket core
[Chips Alliance, 2023], with 5 pipeline stages and floating point instructions, more complex
than expected for an IoT context. Hardware-specific metrics are evaluated in FPGAs but
not ASIC implementations. The XAscon + Zbkb and Zbkb-only extended Rocket RV32GC
processors come at an area cost of 1.282x and 1.140x, respectively, measured in FPGA
LUTs used (Xilinx Kintex-7 xc7k160tfbg676).

In the same manner as in Section 3.2, it is clear that ISEs in the context of low-
complexity embedded systems are an under-explored field of study. Most works concern
themselves with high-complexity processors, where area costs due to cryptography ISEs
are of little relevance to the overall area cost of the processor; or conduct their evaluations
using FPGA or open-source EDA tools, not showing accurate values representative of factual
ASIC implementations, using commercial EDA tools. Additionally, this work considers a
comprehensive evaluation of memory overheads and runtime behaviour in terms of clock
cycles, instructions executed and memory accesses for its software aspects.

4.3 Implementation

This section presents the efforts made towards the efficient software-only and hard-
ware accelerated implementation of AES and Ascon for AEAD in the Ibex processor.

59

4.3.1 AES Implementation

Recall the SBOX in the AES SubBytes step. A common AES optimization technique
is to pre-compute each SBOX value and store them in a Look-Up Table (LUT). The SBOX
LUT comprises 256 bytes, and is equivalent in size to 64 RV32l instructions. Assuming that
online computing SubBytes requires more than 64 RV32l instructions, this can be seen as
an opportunity for optimization for both performance and code size.

Seeing as the ShiftRows and MixColumns operations perform shifts and multiplica-
tions by constants, this reasoning can be taken one step further by pre-computing not the
result of SubBytes, but of MixColumns. In contrast to an S-Table implementation, which uses
pre-computed values only for SubBytes, this approach is commonly known as a T-Table im-
plementation, named following Ty, T4, T», T3 as defined below, where d;;, a;; and S denote
the output of MixColumns, the round’s initial state and the SBOX LUT at row / and column j,
respectively:

do,j 2 3 1 1 S[ao]
adi 1 2 3 1 Slay ;i
d;j =11 1 2 3 S{Z;j_;} = Tolao] © Ti[a1j-1] ® To[azj—2] ® Ts[as;-3]
d3,j 3112 S[ag,,-_s]

S[x]-2 S[x]-3 S[x] S[x]

| s RECE RECE: | s

To[x] = Six] Ti[x] = Six] To[x] = Six] - 2 Ts[x] = Sx] - 3

S[x] - 3 Six] Six] S[x] - 2

Note that each T-Table is a 1-to-4 byte mapping, instead of the previous 1-to-1 byte
mapping using S-Tables. This increases memory usage from 256 to 4K bytes, but simplifies
an entire AES round to 16 LUT lookups and 16 bitwise XOR operations. The performance
to code size trade-off can be balanced by pre-computing only 1 T-Table and computing the
remaining table entries online via rotations, at 1 KB memory cost instead of 4KB if storing
the 4 T-Tables. This is the approach used in this evaluation.

60

Hardware acceleration of AES is implemented through two new instructions de-
fined in the Zkne extension: aes32esmi and aes32esi. The aes32esmi instruction can be
interpreted as computing T-Table entries online in hardware, then XOR-ing the current entry
with previous T-Table entries for the same output column. This provides the performance
benefits of a T-Table AES implementation without the need for storing LUTs in memory,
leading to gains in performance and code size, as well as energy efficiency gains via the
reduction in overall instructions executed and memory accesses. Finally, aes32esi performs
only a single SBOX lookup and XOR, used in computing round keys and the last encryption
round, with no MixColumns.

The Zkne instructions are implemented in the AES Unit module, shown in Fig-
ure 4.20. The AES unit is entirely combinational, executing either the aes32esmi and aes32esi
instructions in a single clock cycle. Both instructions are of an extended R type, which ex-
pects as inputs 2 registers to be read from the register file, plus a 2-bit immediate Byte Select
(BS). AND gates are used to gate inputs, minimizing switching activity in the AES unit when
it is not being used.

4)

BS 2
)
Multiply by
RS2 [3,1,1,2]
Byte 8 8 Left A\
EN Select SBOX Rotate ' 2}
)
L
oP Zero
Extend
RS1

_ esume

Figure 4.20 — AES Unit [Gewehr and Moraes, 2023]

Note how sub-modules in the AES Unit relate to AES fundamental operations:
SubBytes is performed one byte at a time in the SBOX sub-module, on the byte determined
by BS in the value read from RS2; ShiftRows is computed by selecting the appropriate
byte from RS2, which contains a column of the current AES state, via the BS immediate;
MixColumns is computed similarly to the T-Table method shown previously, where the result
of SubBytes is multiplied by [3, 1, 1, 2] and rotated by BS bytes, computing Tgs accounting
for RISC-V little-endianess; AddRoundKey is computed by XOR-ing the result of MixColumns
to the relevant word of the round key given in RS71. RS1 should be equal to RD, such that
RD accumulates the 4 T-Table entries and round key i.e. a column of the next round state.

The integration of the AES (and SHA-2) functional unit in the Ibex processor’s ID/EX
pipeline stage can be seen in Figure 4.21. New elements added to the processor are colored
in blue, existing elements modified to accommodate the new functional units are colored in
green, while unmodified elements are colored in yellow.

61

1 Data Memory Interface i
ID/EX stage Ny Wil N\
I v

Instruction
Decoder . . .
Load & Store Arithmetic & Logic
Unit Unit

)7

Jaxidnyinp

518

Jaxajdiinig
v puetadQ

|
]
vV V¥
Jaxajdin
g puesado
<
<€
<
<
<
<€
»a
<€
v

PELLETT

AES SHA-2
Unit Unit

Register
File

IF Stage Interface

/

Figure 4.21 — Ibex ID/EX pipeline stage datapath with AES and SHA-2 functional units.

t
(-
_)

Figure 4.21 also illustrates the benefits of implementing hardware acceleration as
ISEs over loosely coupled accelerators in embedded contexts. Note that only minor changes
in the instruction decoding and writeback logic are required to integrate functional units into
the lbex processor, while resource sharing with existing processor elements is extensively
explored, namely in the register file and load/store unit.

4.3.2 Ascon Implementation

Compared with AES, Ascon is designed to naturally allow efficient software imple-
mentations without LUTs. No elaborate techniques, such as AES T-Tables, are needed. For
the reader’s convenience, details regarding Ascon implementation from Section 3.3.3 are
restated here.

Hardware acceleration is implemented through the XAscon ISE, originally pro-
posed in [Cheng et al., 2022]. The XAscon ISE provides 10 new instructions, 5 computing
the high part of each 64-bit internal state variable xq, ..., X4, and 5 computing the low part of
each 64-bit internal state variable. In this manner, each sigma function can be computed in
only 2 instructions, instead of 16 RV32lI instructions in a software-only implementation.

XAscon instructions are also implemented in their own functional unit, shown in
Figure 4.22. The Ascon unit is entirely combinational, with all XAscon instructions execut-
ing in a single cycle. The Ascon sigma functions lend themselves to an efficient hardware
implementation, seeing as rotations by static amounts have zero logic cost. The Ascon unit
does not have a well-defined internal structure like the AES unit, and can be seen simply
as a sea of XOR gates, computing each sigma function, and a MUX, choosing the high/low
part of a sigma function of interest. AND gates are again used to gate inputs, minimizing
switching activity when the Ascon unit is not being used. The Ascon unit is integrated into
the lbex ID/EX pipeline state like the AES unit.

62

RS2 E
EN
RD
RS1
oP
\ Ascon Unit j
Figure 4.22 — Ascon Unit.
4.4 Experimental Evaluation

In this section a comparative evaluation of the AES-128 and AES-256 in CCM mode
and Ascon-128 is presented. The evaluation considers the encryption with associated data
with maximum payload size of Zigbee (A = 25 bytes, P = 86 bytes) and IPv6 (A =40, P = 1224
bytes) packets, with and without hardware acceleration from the Zkne extension, for AES-
128 and AES-256; and XAscon for Ascon-128. The evaluation comprises a performance
and runtime behaviour comparison as well as energy consumption, memory footprint and
die area cost analyses.

4.41 Performance Evaluation and Profiling

Table 4.1 shows relevant information concerning the core operation of each algo-
rithm being evaluated, namely the AES-128 and AES-256 block ciphers, the Ascon permu-
tation with 6 and 12 rounds. White columns show results for the baseline software and blue
columns show results for the hardware-accelerated implementations.

Table 4.1 — Core operation profiling for AEAD algorithms.
Core Operation Metric AES-128 AES-256 Ascon (6 rounds) Ascon (12 rounds)
Clock Cycles 1,490
Instructions Retired 1,234
Cycles per byte 93.125

Tables 4.2 and 4.3 show the performance counters for each algorithm. The best-
performing algorithm is Ascon-128, considering both software-only and hardware-accelerated
implementations. The most significant performance gains are in the AES algorithms, with a
63% performance gain.

63

Table 4.2 — AEAD profiling for Zigbee packet max payload size (A = 25 bytes, P = 86 bytes).
Zigbee packet max payload size (A = 25 bytes, P = 86 bytes)
AES-128 AES-256 Ascon-128

Counters

Cycles
Instructions
LSU Busy
Fetch Wait
Loads

Stores

Jumps
Branches
Taken Branches
Compressed Inst.
Multiplier Busy
Divider Busy
Load Word
Load Half Word
Load Byte
Store Word
Store Half Word
Store Byte

Table 4.3 — AEAD profiling for IPv6 packet max payload size (A = 40 bytes, P = 1224 bytes).

Counters IPv6 packet max payload size (A = 40 bytes, P = 1224 bytes)
AES-128 AES-256 Ascon-128
Cycles 298,741
Inst.ructlons 232,045
Retired
LSU Busy 43,156
Fetch Wait 13,685
Loads 39,024
Stores 4,132
Jumps 1616
Conditional 8,237 1 514
Branches
Taken
Conditional 6,215 6,848 1,000
B B
Instructions
Multiplier Busy 0 0|
Divider Busy 0 0| 0|
Load Word 31,402
Load Half Word 1 0|
Load Byte 7,621 0 |
Store Word 1,527
Store Half Word 80 . 80 | 0|

Store Byte 2,525 2,526

64

Table 4.4 shows throughput for associated data and plaintext for each AEAD al-
gorithm. AES-128 in CCM mode throughputs for Associated Data are much greater than
Ascon’s, while Plaintext throughputs favor Ascon in the software only case and AES-128 in
CCM mode in the hardware accelerated case. Note that AES-128 in CCM mode with hard-
ware acceleration having better core operation throughputs does not translate to a better
overall performance as shown in Tables 4.2 and 4.3. The TinyCrypt implementation of CCM
mode targets portability as one of its main concern, and as such the data |O is based on
arrays of bytes. The Ascon implementation uses 32 bit wide loads and stores up until array
sizes are less than 4 bytes. This can be visualized in Tables 4.2 and 4.3 in the Load Byte
and Load Word rows. This difference in the way data is manipulated accounts for AES-128
in CCM mode having performance than Ascon in the hardware accelerated case despite
having better core operation throughputs.

Table 4.4 — AEAD throughput considering core operations (smaller is better).

Metric AES-128 CCM AES-256 CCM Ascon
AD Cycles per byte 93.125 | 1285 101.75
Instructions per byte 77.125 | 107.625 96.125
P Cycles per byte 186.25 | 257 | 101.75
Instructions per byte 154.25 215.25

442 Memory Footprint Evaluation

The total memory footprint of the algorithms being evaluated are shown in Fig-
ure 4.23. Memory usage due to static data, namely the AES T-Table, is shown in yellow.
Code size is shown in green, while the maximum stack usage is shown in blue. The base-
line software implementations are shown with bars hatched with circles, while hardware
accelerated implementations using instructions from the Zkne and XAscon extensions are
shown in bars hatched with diagonal stripes.

The memory footprint of all algorithms is dominated by code size, with the smallest
memory footprint being of the Ascon-128 between software-only implementations and AES-
128 for the hardware-accelerated implementations. Unlike as previously seen with hash
functions, in which ISEs only influence memory usage due to code size, the Zkne extension
also eliminates the need for storing a pre-computed AES T-Table in memory. The static data
(1 KB AES T-Table) makes a significant impact on the total memory footprint. The Ascon
round constants are determined at runtime and do not need to be pre-computed as with the
other algorithms. For extremely memory-constrained applications, the 12 round and 6 round
permutations could be merged into a single function (implementation shown in Figure 4.23
implements the two permutation in separate functions), reducing code size by approximately
340 bytes, bringing its hardware accelerated total memory footprint to roughly the same as
hardware accelerated AES-128 in CCM mode.

65

Total memory footprint

[Static Data Size (bytes)
[Code Size (bytes)
[Max Stack Usage (bytes)

3500 A

3000 A

2500 ~

2000 A

1500 A

1000 -

500 A

AES-128 CCM AES-256 CCM Ascon-128

Figure 4.23 — Memory footprint of AEAD algorithms.

443 Energy Consumption Evaluation

The energy consumption of each algorithm for the Zigbee and IPv6 scenarios be-
ing explored are shown in Figure 4.24. Energy spent due to data and instructions memory
operations are shown, respectively, in yellow and green. Energy spent due to data process-
ing inside the Ibex processor is shown in blue. The baseline software implementations are
shown with bars hatched with circles, while hardware accelerated implementations using
instructions from the Zkne and XAscon extensions are shown in bars hatched with diagonal
stripes.

Zigbee packet (A = 25 bytes, P = 86 bytes) IPv6 packet (A = 40 bytes, P = 1224 bytes)
3000 -

[Data 10 Energy (n))
EE Instruction 10 Energy (nJ)
B Core Energy (n))

[Data 10 Energy (n))
[Instruction 10 Energy (nJ)
B Core Energy (n))

300 A

2504 2500

2001 2000 A

150 4 1500 -

1004 1000

501 500 -

04
AES-128 CCM AES-256 CCM Ascon-128 AES-128 CCM AES-256 CCM Ascon-128

Figure 4.24 — Energy consumption of AEAD algorithms.

66

Total energy consumption dominated by core energy, due to internal processing of
data, rather than moving data to/from memory. Core energy is proportional to the amount
of instructions executed, with the lowest consuming algorithm being SHA-256, which is also
the best performing algorithm. As with memory usage, AES-128 and AES-256 benefit more
from hardware acceleration than Ascon-128 from an energy consumption standpoint.

444 Die Area Costs Evaluation

Table 4.5 shows synthesis results for the Ibex core and each ISE being explored.
The Zkne and Zknh combination showing a 11% increase and Xascon showing a 9% in-
crease.

Synthesis results Ibex baseline | lbex + Zknh + Zkne | Ibex + XAscon
Cell Area (umP) 11,238 12,447 12,210
Net Area (1m?) 6,992 7,278 8,181
Total Area (um?) 18,230 19,726 20,391
Cell Count (# instances) 10,289 11,687 11,010
Equivalent NAND2 gates 34,433 38,132 37,408
Slack @ 500 MHz 0 0 0

Table 4.5 — Area comparison of ISEs for hardware acceleration of AEAD.

4.5 Conclusion and Final Remarks

Considering the analyses presented in Section 4.4, at the 128 bit security level
Ascon-128 can be seen as a better choice for an AEAD algorithm in resource constrained
embedded systems. Ascon-128 shows better performance both in software only and hard-
ware accelerated implementations, showing similar energy consumption and ISE area costs
as AES-128 in CCM mode. Memory footprint severely favors Ascon-128 for software only im-
plementations, while for hardware accelerated implementations they are roughly the same.

If upgrading a system to the 256 bit security level, the use of AES-256 is required.
Using hardware accelerated AES-256 in CCM mode brings significant improvements in per-
formance, memory footprint and energy consumption when compare to a software imple-
mentation of AES-128 in CCM mode, at an area cost to the order of 10% of the baseline
Ibex area (with no ISEs) or 4 kGE.

In summary, hardware acceleration of AEAD via ISEs bring average improvements
of 58% in performance, 61% in energy consumption (Zigbee packet case study) and 35%
in total memory footprint, at an average area cost of 10%, considering acceleration for both
hashing and AEAD.

67

5. HARDWARE ACCELERATION OF ASYMMETRIC
CRYPTOGRAPHY USING ISES

This chapter presents efforts made toward hardware acceleration using ISEs for
asymmetric cryptography, using the Crystals-Kyber algorithm. Section 5.1 introduces asym-
metric cryptography and the inner workings of Kyber. Section 5.2 reviews previous relevant
works in the literature. Section 5.3 details the implementation of hardware acceleration us-
ing ISEs in the lbex processor. Section 5.4 shows the evaluation of the implementations
following the methodology detailed in Section 2.3. Finally, Section 5.5 presents conclusions
and final remarks.

5.1 Introduction to Asymmetric Cryptography

Symmetric cryptography was described in Section 4.1 as a manner in which two
parties can communicate while keeping the contents of the messages sent between each
other secret (the confidentiality principle). Using symmetric cryptography, Alice can send
Bob an encrypted message using a shared secret key. Bob can use the same key to decrypt
the message sent by Alice. Note that the same key is used to both encrypt and decrypt.

For the scenario described above, in asymmetric cryptography, different keys for
encryption and decryption would be used. As in symmetric cryptography, a well-designed
asymmetric algorithm, the only way to determine plaintext from ciphertext is with knowledge
of the decryption key. Note that to maintain the confidentiality principle in this scheme, only
the decryption key must be kept secret, while the encryption key can be broadcast publicly.

This process can be visualized in Figure 5.1. If Alice wants to send Bob a secret
message, she must first obtain from Bob his encryption key k.. As there is no need to
keep it secret, the encryption key is also called the public key. Once Alice has k., she can
encrypt the plaintext x with k., Which yields the ciphertext y. y can be decrypted by Bob
using the decryption key k.. Since k- is not sent to Alice or exposed to any third parties (to
maintain confidentiality), the decryption key is also called the private key. Note that ky,, and
kor are generated as a pair. Bob can only decrypt ciphertexts using ko if the plaintext was
encrypted using the related kpyp.

One of the main advantages of asymmetric schemes is that no previous secure
channel is needed. In contrast with symmetric cryptography, the shared secret key must be
either known in advance or sent between both communicating parties through a separate
secure channel. Using asymmetric cryptography, no secure channel is needed, and all
encrypted communication can take place in a non-secure channel without compromising
the secrecy of messages sent.

68

Alice Bob
Kkpu
e (kpub:kpr) =k

Y= ek, (%)

x = dy,, (¥)

Figure 5.1 — Asymmetric cryptography [Paar and Pelzl, 2009].

In computational performance terms, traditional asymmetric algorithms such as
RSA and Elliptic Curve-based schemes are much less performant than symmetric schemes
while having much bigger key sizes, incurring costs in both processing time and memory
usage. A common usage of asymmetric cryptography is in conjunction with symmetric cryp-
tography, where an asymmetric algorithm is used not to send and receive general data
messages, but to send a random and secret shared key, which both parties will use to
communicate securely using a symmetric cryptography algorithm such as AES. This usage
example is illustrated in Figure 5.2. Note that this scheme is vulnerable to Man-in-the-Middle
attacks if the identities of Alice and Bob are not previously authenticated, which falls out of
the scope of this work.

Alice Bob
kpub
kpub7 kpr
choose random k
Y = ek, (k)
¥
k — dkpr (y)
encrypt message Xx:
Z= AESk (x)
<
x=AES;'(2)

Figure 5.2 — Asymmetric cryptography usage for key establishment [Paar and Pelzl, 2009].

An asymmetric algorithm used to send a shared key for symmetric encryption is
called a Key Encapsulation Mechanism (KEM). Traditional KEM methods, such as RSA and
Elliptic Curves, have been deemed insecure with the advent of Shor’s algorithm [Shor, 1999].
This algorithm presents a polynomial-time solution, on a quantum computer, to the underly-
ing mathematical problems on which the security of these constructions is predicated. Thus,
novel approaches must be developed to establish secure keys that can withstand both clas-
sical and quantum-based attacks.

69

511 Crystals-Kyber (ML-KEM)

Among the various mathematical problems suitable for constructing quantum-secure
cryptographic schemes, those involving lattice structures are of particular interest. A n-
dimensional lattice can be understood as a discrete subset of a n-dimensional vector space.
Like vector spaces, lattices are defined by n linearly independent n-dimensional vectors.
Such a set of n-dimensional vectors are called a basis of the lattice. In cryptography appli-
cations, it is common to consider only integer lattices, in which the basis and all members
of the lattices have integer coefficients. Furthermore, coefficients ¢; are usually restricted
to a 0 < ¢; < g subset of the integers, where g is determined by the specific application.
Operations involving coefficients are always performed modulo g for each coefficient.

Formally, let v € Zg to be a n-dimensional vector whose coefficients ¢; € (0,1, ..., g—
1) and A € Zg*" a matrix of nvectors € Zg. Throughout this text, matrices will be represented
by uppercase bold letters while vectors will be represented by lowercase bold letters.

One of the lattice problems of interest to cryptography is the Closest Vector Prob-
lem (CVP): given a basis for a lattice and a point in the vector space of the same dimensions,
the goal is to find the point in the lattice that is closest to the given point in the vector space.
Despite showing resistance to classical and quantum-based attacks, CVP has no imme-
diate applications in cryptography, but is crucial to the understanding of higher complexity
problems that are used in practical applications, such as Learning With Errors (LWE).

The LWE problem closely resembles asymmetric cryptography, seeing as it is in-
tegral to the problem definition that some pieces of data are public while others are private:
knowing a public basis matrix A € Zg*" and a vector t € Zg, the goal is to find a secret
S € Zg such that As + e = t, where e is sampled from a random Gaussian error distribution.
Note that the LWE problem can be interpreted as forcing a CVP in a lattice of choice: As
gives a point in the lattice defined by A. When As is added to the random error distribution
e, this offsets the point in the lattice by a small amount, such that, via the CVP, it is hard to
obtain the point As knowing only t and A'.

Note that the LWE problem operates on the algebraic structure of integers. From
the implementation point of view, this is somewhat undesirable, considering a multiplication
between two vectors (dot product) does not yield another vector, but an integer. For a n-
dimensional vector, each element in the output vector requires n multiplication operations.
Consequently, an O(n?) time complexity is associated with LWE-based schemes. This issue
can be solved if instead of using vectors of integers, polynomials are used instead, where the
result of a multiplication between two polynomials yields another polynomial, not an integer.

'This is called the "search" variant of the LWE problem. Another variant, called the "distinguish" variant
is defined, where the t vector should be distinguished from a random distribution, outputting a "yes" or "no"
answer, which is desirable for formal security proofs. For the sake of simplicity of the exposition, only the
"search" variant will be considered.

70

The Module Learning With Errors (MLWE) problem is a variant of the standard LWE
problem in which polynomials are used instead of integer vectors. In MLWE the A matrix is
composed of k x k members of the Z,[X]/(X" + 1) polynomial ring i.e. the polynomials of
degree less than n with coefficients ¢; € (0,1, ...,g — 1), while the t and s vectors are com-
posed of k members of Z4[X]/(X" — 1). Note that this implies in an increase in memory
usage when compared to standard LWE for k > 1. However, the gains in time complex-
ity, directly translate to faster execution in practice and are found to offset the increase in
memory required.

Crystals-Kyber [Avanzi et al., 2022] is a Key Encapsulation Mechanism (KEM), a
method for establishing secret keys for symmetric cryptography. Based on the MLWE prob-
lem, it shows resistance against classical and quantum attacks. Kyber has a fixed plaintext
size of 256 bits, allowing for securely establishing a key for block ciphers as strong as AES-
256, which is the highest NIST security level for the AES block cipher. Kyber has 3 defined
security levels, allowing for a faster and more compact implementation if the highest security
level is not required for a specific scenario, i.e. using AES-128 (with Kyber-512) or AES-192
(with Kyber-768).

Table 5.1 shows parameters for each Kyber security strength. The n, kK and q
parameters set the polynomial ring of the form Zy[X]/(X" + 1) for the MLWE problem as
Za329[X]/(X?°® + 1) and the size for matrices and vectors of polynomials in the same ring.
m, ne, d, and d, specify the error distribution sampling and ciphertext compression factor,
balancing security, ciphertext size and decryption failure probability, denoted by 6.

Table 5.1 — Kyber round-3 parameters [Avanzi et al., 2022]

Kyber version | n | k q | m|n|(dy,d)) 4]
Kyber-512 | 256 |2 (3329 | 3 | 2 | (10,4) | 273
Kyber-768 | 256 | 3 (3329 | 2 | 2 | (10,4) | 2764

Kyber-1024 | 256 |4 | 3329 | 2 | 2 | (11,5) | 27174

Like any KEM as presented in Section 5.1, Kyber can be separated into 3 steps:
KeyGen, Enc and Dec, respectively the public and private key generation, encryption of plain-
text and decryption of ciphertext. Key generation can be understood directly from the MLWE
problem statement, with the vector t and matrix A used as the public key and the vector s
used as the private key?. The coefficients of each polynomial in the A matrix are sampled
at random from Z,, with equal probability for each possible coefficient. Coefficients in s and
e are sampled from a Centered Binomial Distribution (CBD), parameterized by the »n; pa-
rameter from Table 5.1. CBD,, returns a random element in the —, ..., 0, ..., range from 27
pseudo-random bits, as shown in Algorithm 5.1.

2The notation in this section refers to polynomial vectors and matrices sized by the k parameter as bold
letters while single-dimensional (insensitive to k) polynomials are denoted by non-bold letters

71

Algorithm 5.1 CBD, sampling

Require: B is an array of 2n pseudo-random bits

Ensure: Returns a pseudo-random elementc Z,in {0, 1,,n,q—n—1, ..., q— 1}
a< > 'B > Sum 7 lower bits of B
b« Y21 p > Sum n upper bits of B

n
return a— bmod g

In the Enc step, a new value r is sampled from CBD,,,, analogous to s in the KeyGen
step. ris used to compute two values u = A’r +e; and v = t'r + e, + m’ are generated from
the public key (A and t) and scaled plaintext (r7), where e; and e, are sampled from CBD,,.
Each bit in the plaintext is scaled as to be a coefficient in Z,: If a plaintext bit is 1, it is scaled
up to q/2, else, it remains as 0 € Z,.

The ciphertext (u, v) is compressed according to the (d,, d,) parameters in Ta-
ble 5.1, reducing ciphertext size and introducing additional error due to lossy compression.
The compression algorithm is shown in Algorithm 5.2, where a coefficient of a polynomial, a
12 bit integer, is compressed to a d bit integer, or more formally, a mapping from Zg t0 Zya.

Algorithm 5.2 Compressy Kyber coefficient compression
Require: A is a polynomial coefficient in Zq
Ensure: Returns an element € Z,4
return = [(29/q) - A| mod 2¢ > [a| represents rounding a to the nearest integer

u and v are used in the Dec step to obtain m” = v — s"u. At this point in the
decryption step, m” contains the scaled plaintext m’ plus several small errors terms and the
error due to compression, when all summed up are less than q/2. The actual plaintext m
is recovered from m” by performing a reverse scaling process, where a coefficient € Z is
mapped to 1 if it is greater than q/2, and mapped to 0 if it is less than g/2.

Note that a significant portion of the intermediary operations in Kyber are polyno-
mial multiplications. It is worth noting that the time complexity of the trivial algorithm for
multiplying two n-degree polynomials is O(n?). However, by using the Number Theoretic
Transform (NTT), it is possible to reduce the time complexity of polynomial multiplication
to O(n log,). Therefore, using NTT to accelerate multiplications is a strong argument for
implementing MLWE-based schemes over LWE-based schemes.

Polynomial multiplication (c = ab |a,b,c € Zy[X]/(X" + 1)) via the NTT works by
performing a forward transform on the two polynomials of interest (a = NTT(a), b = NTT (b)),
pairwise multiplying the coefficients of the two transformed polynomials (¢; = a,b; mod g),
then taking the inverse transform (INTT) of the pairwise multiplication (¢ = INTT(€)). Con-
cisely,c =ab = INTT(NTT(a) - NTT (b)), where "-" denotes pairwise multiplication mod q.

A simplified version of the NTT with n = 8 can be visualized in Figure 5.3. Note
that there are log, layers, in each n operations are performed, giving the previously men-
tioned O(n log,) time complexity. The operation in question for the forward transform is

72

called the Cooley-Tukey (CT) butterfly, which takes in two coefficients and a pre-computed
constant called the "twiddle factor", determined from the index in each layer of the two in-
put operands. The inverse transform follows the same structure, but performing the inverse
base operation, called the Gentleman-Sande (GS) butterfly. The CT and GS butterflies are
depicted in Figure 5.4.

RY)

X7

X3

Xy

X3

Xg

Figure 5.3 — NTT example for n = 8 [Di Matteo et al., 2023].

Cooley-Tukey Gentleman-Sande
pli] pli] pli] pli]
plil plil plil plil

Twiddle factor Twiddle factor

Figure 5.4 — Cooley-Tukey (CT) & Gentleman-Sande (GS) butterflies [Nannipieri et al., 2021].

The reader may notice a similarity of the process depicted in Figure 5.3 to a stan-
dard Fast Fourier Transform (FFT). This is not a coincidence. The NTT can be understood
simply as an FFT that considers arithmetic in a Z, ring instead of the complex numbers, as in
the usual FFT. For a deeper conceptual exposition on the NTT, as well as a comprehensive
review of implementation techniques, the reader should refer to Satriawan et al. [2023].

This constitutes the base Kyber algorithm, in the Kyber specification called Ky-
ber.CPAPKE, constructed as to resist a Chosen Plaintext Attack (CPA). From this, a Chosen
Ciphertext Adaptive Attack (CCA2) -secure scheme called Kyber. CCAKEM is constructed

73

via the Fujisaki-Okamoto (FO) transform [Avanzi et al., 2022]. This provides a second
parametrization of Kyber, in which the hashes for the FO transform and pseudo-random
functions for random sampling are chosen as either the hash functions and XOFs from
the SHA-3 standard or hashes from the SHA-2 standard and AES-256 in CTR mode as
a PRNG, respectively. The version of Kyber in which the SHA-3 standard is used is referred
to as "standard Kyber" or "Keccak-based Kyber", while "Kyber-90s" uses SHA-2 and AES.
A third parametrization of Kyber called "Kyber-Ascon" is proposed in this work, using the
Ascon family of algorithms for the same functionalities. Seeing as Ascon only provides prim-
itives at the 128 bit security level, Kyber-Ascon is evaluated only for Kyber-512. The specific
primitives used in each symmetric parametrization of Kyber are shown in Table 5.2:

Table 5.2 — Symmetric primitives for each Kyber parametrization.

Kyber Parameterization / Primitive XOF H G PRF KDF
Kyber-Keccak SHAKE128 SHA3-256 | SHA3-512 SHAKE256 | SHAKE256
Kyber-90s AES-256 CTR | SHA-256 SHA-512 | AES-256 CTR | SHA-256
Kyber-Ascon Ascon-XOF | Ascon-XOF | Ascon-XOF | Ascon-XOF | Ascon-XOF

5.2 Related Work

[Abdulrahman et al., 2022] presents the state-of-the-art Kyber implementation in
the context of microcontroller processors, namely the ARM Cortex-M4. Several techniques
from previous works are employed in this implementation as to provide the best known per-
formance for a microcontroller-class processor. One of the most notable features of this
implementation is the use of the CT butterfly for computing the INTT, instead of using the
GS butterfly as commonly done in other works. Other optimizations such as the fast Barrett
reduction, taking 6 clock cycles to be computed, are of less interest, seeing as in this work
modular reductions will be implemented natively in hardware.

[Greconici, 2020] presents an implementation optimized explicitly for the RISC-V
architecture. The paper evaluates the implementation empirically on the VexRiscV imple-
mentation, considering only the base RV32IM instruction set, without hardware acceleration
using scalar cryptography extensions or any other ISA extensions being explored. The study
optimizes the NTT for the first and second round submissions for the NIST competition, em-
ploying a layer merging strategy minimizing memory operations for intermediary values while
computing the NTT and INTT. After optimizing the NTT, the paper reports that up to 70% of
the clock cycles in the entire algorithm are spent in computing the Keccak permutation, sug-
gesting that improving only the NTT is insufficient.

[Huang et al., 2022] presents the use of the recently proposed Plantard reduction
[Plantard, 2021] in the context of lattice-based cryptography. Targeting the Cortex-M4 pro-
cessor, a modified version of the Plantard reduction allowing for signed output is proposed

74

and implemented. Performance improvements of 25.02% and 18.56% are reported for the
Kyber NTT and INTT, respectively. This work makes extensive use of SIMD instructions in
the Cortex-M4, not available in low-complexity processors such as Ibex. Furthermore, Plan-
tard arithmetic required that the pre-computed twiddle factors in the NTT to be stored as
32-bit integers instead of the usual 16-bit precomputed values in the reference Kyber im-
plementation. In a further development of the work presented above, [Huang et al., 2023]
presents the use of Plantard reductions in Kyber now in the low-complexity context of Cortex-
M3 and RISC-V SiFive E31 processors, presenting both speed- and stack- optimized imple-
mentations. Unfortunately, at the time this document was written, their implementation was
not made publicly available such as to be compared with the implementation from this work.

[Albrecht et al., 2018] explore the use of loosely coupled SHA-2 and AES accelera-
tors in a smart-card SoC (SLE 78) to minimize some of the cycles spent in Keccak permuta-
tions, using the Kyber-90s version of Kyber. Conversely, [Park et al., 2022] explores the use
of loosely coupled RSA/ECC accelerators to speed up polynomial arithmetic. This is done
through the Kronecker substitution technique, used to compute polynomial multiplications as
regular integer multiplications, which can be accelerated on existing RSA/ECC hardware.

[Banerjee et al., 2019] presents a generic accelerator for MLWE algorithms, imple-
menting operations such as modular multiplication for a range of prime moduli and various
random samplers from a SHA-3 PRNG. Their proposal can be visualized in Figure 5.5. This
accelerator provides integration between several intermediary operations, yielding great per-
formance improvements, at large area usage. Due to its significant costs in die area (106K
Equivalent Gates), it is not an appropriate solution for the embedded context in question.

e s, (m======seeeooeooa- -, N

I' z4+ +24 L’: . Seed Keccak : 1KB
- 24 1 1| Registers f[1600] |1 Instr.
1 @ U | 1 I Mem
1| < |y Core | :
1 T) Butterfly O |} || Keccak 1 -
" 8 |l + EX S 11| state 1) s
1 = ALU < |1 Smmmmmmmmm e ——— -
I = =" | I sHA3 cLK ; v_ v
: o 244 o | —_—

o o | i pistribution S) Instr.
H w NTT w |l istribution Sampler Decode
! E cogit:nnts E | [same_cuci (Uniform) [Binomial c +t |

ontro
e = [P Commmn] e)
NTT_C'-'EE [Memory-Mapped Read / Write Interface]
G -
;? i rtl I'tl |i|
[G): cLK Gate ITI Lfl ITI ITI
RST CLK ADDR WDATA RDATA INT

Figure 5.5 — MLWE accelerator from [Banerjee et al., 2019].

[Xin et al., 2020] propose a RISC-V vector co-processor for lattice-based post-
quantum cryptography. Figure 5.6 presents the co-processor architecture. The co-processor
implements the usual operations needed in lattice-based algorithms, such as random sam-

75

pling, which is integrated into a Keccak-1600 core, parallel butterflies for the NTT/INTT, as
well as arithmetic operations with integrated modular reductions. This being a vector im-
plementation, parallelism is explored extensively, not only in arithmetic operation execution
itself but in buffering relevant inputs, such as the output of the Keccak PRNG in a FIFO and
twiddle factors for the NTT in a local RAM. This implementation offers a significant perfor-
mance increase when compared to a scalar software implementation, but is very expensive
in terms of area, making it not suitable for the low-resource context being explored.

/ - 5 512 ™
Y 51, \
A 12 Const RAM vz }Z Vector Arithmetic Units % \
—” 512,
Data. in Controland |
] ‘"‘l"” 512 > status R gisters|) i Pre- 3 iVeCtorizedi Post- i E/?'a!l_l
RISC-V | “resp LD/sT u?zs | Permutation | | Butterfly | | Permutation ||;>*
Core I Data_out 512 I #| network | | _Units | | network [%%
| busy P Twiddle Factors | ;,
Vector 2 12 RAM NTT Core
Coprocessor
_— Mem.req
1l 512, vi - i Data3
™ | e 2, | Vector Regfile [vZ>7 | Vectorized Samplers —5—
emres b
IIT]
512,“/ Data2_2
Seed 512 Datad
B e | Decoder © 7@?{ Keccak Core }7“ | | ‘ ‘ | | i
S| e ‘
‘Qﬂ e Prefetch FIFO /
g /

Figure 5.6 — Vector co-processor from [Xin et al., 2020].

[Nannipieri et al., 2021] shows a superscalar 6-stage 64-bit (CVA6) RISC-V pro-
cessor extended with custom instructions for the Kyber and Dilhitium algorithms. These
instructions are implemented based on a separate functional block, named PQ-ALU, illus-
trated in Figure 5.7. The PQ-ALU implements the usual modular arithmetic operations, as
well as a one-cycle CT butterfly. This approach is not usable in a low-resource context due
to a lack of resource sharing, both within the PQ-ALU, and among existing integer arithmetic
elements in the base processor. We can observe 5 16-bit multipliers in a combinational
path within the PQ-ALU, which, surprisingly, the authors report not to be the critical path of
the extended CVAG processor. This approach is reasonable considering the context of the
high-complexity CVA6 64-bit superscalar processor, but not for the low-complexity Ibex core.

LSB |
RS1 [Barret L,
16 Reduce e
a
o«
LSB —
RS2 1§s (:) 16 'j_} *.Q i6 N "
fgmul
Twiddle . jJ» - input_avlf—G—J» C_>_71?>
> Factors 1 : 7> LSB
input_aq?—»W@__}Ll%» Ve 32 ;-
input_b 1= >/32 ®;5£> Q75
QIny —> /16 5
16

Figure 5.7 — PQ-ALU from [Nannipieri et al., 2021].

76

[Lee et al., 2022] presents a co-processor based approach, with the usual opera-
tions needed for Kyber and other MLWE-based algorithms, such as Keccak, sampling, and
polynomial multiplication, as well as the standardized RISC-V scalar cryptography exten-
sions, accelerating AES and SHA-2 as well. Figure 5.8 presents the proposed architecture.
No quantitative results are presented, but we can conclude that this approach is not optimal,
considering that the arithmetic modules are completely separate from the processor integer
ALU, and intermediary results are committed to a separate register file in the co-processor.
Again, resource sharing is not explored to the extent necessary for loT applications.

RISC-V CPU Core
Instruction Decode Stage

-

-
RISC-V 32-bit Instruction

[Func7| |Func3] | opcode |
(IS a YSIHY.

IF

Coprocessor
Controller

\ | S— — y,

PQC Coprocessor

4 [™

- '

Coprocessor Interface

Register File

Offloading Commit Result [+
Controller Controller Controller

¥

Instruction Decoder

L
____________ .‘E____________.,,\
PQC Execution Unit

Keccak J[Sampling J

-~

-

NTT][Arithmetic]

Bit-manipulation

Scalar Cryptography Unit
AES] [SHA2]

e e
e e

Coprocessor Register File
|

Figure 5.8 — Scalar co-processor from Lee et al. [2022].

77

[Karabulut and Aysu, 2020] presents a different approach to optimizing the NTT.
Instead of implementing new instructions as in previous works, the authors propose several
modifications to the base processor control signals, such that memory dependence pre-
diction and out-of-order execution are accomplished when purely software butterflies are
detected during code execution. Again, this proposal is made in the context of a complex
processor and does not apply to Ibex.

In [Alkim et al., 2020], hardware-software co-design is carefully considered in the
context of a 32-bit 5-stage RISC-V processor. New instructions for optimizing the NTT com-
putation are implemented such that twiddle factors can be generated locally instead of being
fetched from a pre-computed table stored in memory, as usually done in software imple-
mentations, reducing code size and the amount of memory accesses, which leads to en-
ergy consumption gains. However, resource sharing is not explored. In the base processor
(VexRiscv) used in this proposal, regular integer multiplication computations are distributed
between pipeline stages of the processor, and the same structure is followed for modular
multiplication and reductions, shown in Figure 5.9 and Figure 5.10. Furthermore, the Authors
implement the modular multiplication and reduction completely independently of the integer
multiplication units in the base processor, such that the processor can be instanced without
the integer multiplier while the optimizations proposed by the Authors still apply. Again, this
is not an optimal use of resource sharing between regular integer arithmetic elements and
modular arithmetic elements.

| § e

>

SrcPlugin [[
SRCI!
!
Mul Mul
(stage 2) (stage 3)

fetch decode exec memory writeback

>

>

!

Figure 5.9 — Base processor (VexRiscV) from [Alkim et al., 2020].

[Miteloudi et al., 2023] presents a custom extension for polynomial arithmetic, sup-
porting the Kyber and Dilithium algorithms. The supported operations are modular addition,
subtraction, and multiplication, as well as CT and GS butterflies, implemented in a separate
ALU, decoupled from the regular integer arithmetic elements in the RI5CY core. All opera-
tions do not incur pipeline stalls. This implementation considers the hardware acceleration of
only modular arithmetic, and not other important elements in Kyber, as demonstrated in Sec-
tion 5.3. For the single-cycle butterfly computations, it also considers a register file with two
write ports, which is highly unusual and not expected to be supported in most low-complexity
RISC-V implementations.

78

INSTR[13:12]
2% /4]

‘ q
SRC1[k—1:0] l l,
>k+1 q
: 0
| ‘Mfl ‘< :
[k:0]
L R0 &
SRC2[k —1:0]
exec . memory writeback

Figure 5.10 — NTT extension added to VexRiscV in [Alkim et al., 2020].

Summarizing, we can see that none of the works reviewed sufficiently address the
issue of Post-Quantum Cryptography and the Kyber algorithm in resource-constrained envi-
ronments considering Instruction Set Extensions (ISEs). The solutions proposed are either
of naturally high complexity or mostly embedded in complex processors. An implementa-
tion that explores extensive resource sharing with existing integer arithmetic elements in
a naturally low-complexity processor is still missing in the literature, providing a significant
performance increase while decreasing energy consumption at reasonable die area costs.

5.3 Implementation

When proposing new RISC-V extensions, several principles should be followed as
to design new scalar instructions that follow the overall design philosophy of the RISC-V
architecture. Such principles have been previously stated concisely in [Marshall et al., 2020]
in the context of the original proposals for an AES RISC-V extension, which later resulted in
the standardization of the Zkne extension. These principles are re-stated below:

» The ISE must align with the wider RISC-V design principles. This means it should
favour simple building-block operations, and use instruction encodings with at most 2
source registers and 1 destination register. This avoids the cost of a general-purpose
register file with more than 2 read ports or 1 write port.

» The ISE must use the RISC-V general-purpose scalar register file to store operands
and results, rather than any vector register file.

» The ISE must not introduce special-purpose architectural state, nor rely on special-
purpose micro-architectural state (e.g., caches or scratch-pad memory).

79

» The ISE must enable data-oblivious execution (in [Marshall et al., 2020], of AES), pre-
venting timing attacks based on execution latency (e.g., stemming from accesses to a
pre-computed S-box).

» The ISE must be efficient, in terms of improvement in execution latency per area re-
quired: this balances the value in both metrics vs. an exclusive preference for one
or the other. Efficiency wrt. auxiliary metrics, e.g., memory footprint or instruction
encoding points, is an advantage but not a requirement.

In this work the XKyber extension is proposed, containing 6 new instructions de-
signed to optimize Kyber implementations in low cost RISC-V 32 bit processors, following the
general principles outlined above. Four of these instructions rely on the fact that Kyber poly-
nomial coefficients are 12 bit integers, stored in memory as arrays of 16 bit variables, mean-
ing that 2 coefficients can fit in the native 32 bit word size. Processing can be performed in
parallel for 2 coefficients at a time using regular integer arithmetic elements in the base pro-
cessor, without the need for costly vector co-processors or extensive additional logic. Single
Instruction Multiple Data (SIMD) processing also reduces the amount of memory accesses,
seeing as 2 coefficients are loaded/stored from/to memory in a single word-wide access.

The 6 new instructions are presented in Table 5.3. Their implementation and inte-
gration into Ibex (along with all other extensions discussed in this work, shown with dotted
lines) is illustrated in Figure 5.11. Existing elements are shown in green, added elements
shown in blue and control signals shown in orange.

Table 5.3 — XKyber instructions

Instruction Functionality
kybercbd2 RD, RS1 RD[11:0] + CBD,(RS1[3:0]); RD[27:16] +— CBD,(RS1[7:4]); (Algorithm 5.1)
kybercbd3 RD, RS1 RD[11:0] <~ CBDs(RS1[5:0]); RD[27:16] <~ CBD3;(RS1[11:6]); (Algorithm 5.1)

kyberadd RD, RS1, RS2 RD[11:0] + RS1[11:0] + RS2[11:0] mod q; RD[27:16] +— RS1[27:16] + RS2[27:16] mod q;
kybersub RD, RS1, RS2 RD[11:0] + RS1[11:0] + RS2[11:0] mod q; RD[27:16] + RS1[27:16] + RS2[27:16] mod q;
kybermul RD, RS1, RS2 RD + RS1[11:0] x RS2[11:0] mod q;

kybercompress RD, RS1, RS2 RD <+ Compressgsz(RS1[11:0]); (Algorithm 5.2)

The kybercbd2 and kybercbd3 instructions implement CBD sampling as previously
shown in Algorithm 5.1, sampling 2 coefficients € Z, at a time, differing by the CBD,, n
value. The coefficients are placed in the upper and lower 16 bits of the target register,
facilitating storing both coefficients in memory with a single word-wide store instruction. For
the CBDj case, 2 full adders are needed to compute the A and B variables in Algorithm 5.1,
as well as a 3-bit adder and 3 inverters to compute the A — B difference for each of the 2
CBD; computations. For the CBD, case, 2 half adders are enough to compute the A and B
variables. Once A — B is computed, a value in {—n, ..., n} is obtained, which must be brought
tothe {0,...,n,g—n—1,...,g— 1} range, effectively computing mod g in Algorithm 5.1. This is
performed by conditionally adding g if the computed difference is less than 0. The conditional
addition logic is shared with the kyberadd, kybersub and kybermul instructions.

80

Ibex Execution Block

op.a [ALU \
ext_adder_op_a j—'D_, 32 bit op_a Bit-wise op_a .
! Negated operands | Shifter o
addel' and] : bit-wise operations |
op bl >~ Y || o | e
: D—) com parator % : PackiZiplUnzip | L—b) Rotations
ext_adder_op_b L W | (el
i i Chi
/ Mult. Div. Unit
{ CBD
>
Sampler

mult_op_a } 5039 > 12 bit r
e constant {ng a ji) adder wricback
multiplier —

| |Compress|
Shift 1 L
mult_op_a 12 bit J»

16 bit ! adder
mult_op_b A A 32 bit Q j[>_|—>
It I to temp,
3329 (Kyber Q) mu Ip er MAC > [/l

0x B760 ad d er
(Barrett m]
fractional part)
from tempg

te m po to ext_adder_op_a te m p 1 to ext_adder_op_b E)h(gj?
Register Register '

Load/Store
Unit

>
m
(7]
>
]
0
o
=

Figure 5.11 — lbex execution block with extensions.

kyberadd and kybersub compute 2 coefficient additions or subtractions in Z, in
parallel. In this manner two coefficients can be fetched and stored back in memory in single
word-wide instructions in addition to being processed simultaneously. The additions/subtrac-
tions themselves are performed in the existing 32 bit adder in the ALU, with trivial masking
for stopping carry propagation from the coefficient in the lower bits to the coefficient in the
higher bits. Like with kybercbd2 and kybercbd3, mod q is performed via conditional addition
or subtraction, subtracting q if if the intermediary resultis > q in the kyberadd case or adding
q if the intermediary result is < 0 in the kybersub case.

81

kybermul performs a single (non-SIMD) multiplication in Z,. Note than the modular
reduction cannot be performed as a simple conditional subtraction as previously done with
kyberadd due to the fact that the intermediary multiplication is in the {0, ..., (g — 1)?} range,
where a conditional subtraction by g could only bring it to the {0, ..., (g — 1)?> — g} range. For
efficiently computing the modular reduction of the intermediary product, the Barrett reduc-
tion [Barrett, 2020] is used. The generic algorithm for the Barrett reduction is presented in
Algorithm 5.3. In this work the k variable is set as 24.

Algorithm 5.3 Modular multiplication in Z, with Barrett reduction [Barrett, 2020]
Require: a,b € Zg, k~2-[log.q],m=[2%/q] = 5039
Ensure: z c Z4
tempy < a- b
tempy < (tempy - m) > k
temp, « (temp; - q)
ret < ((tempy — temp1) > q) ? (tempy — tempy) — q : (tempy — tempy)
return ret

The modular multiplication with Barrett reduction is implemented in 4 clock cycles,
making extensive use of resource sharing with existing elements in the Ibex processor’s
3-cycle multiplier and 2 internal registers temp, and temp; for intermediary results. The
computations performed at each clock cycle follow the structure presented in Algorithm 5.3,
with one line of Algorithm 5.3 being computed per clock cycle.

First, the 12 bit by 12 bit multiplication in line 1 is computed in the 16 bit multiplier,
with its result being stored in temp,, exactly like the first cycle of 32 bit by 32 bit multiplications
from the M extension. In the second cycle, the product of temp, and the m constant is
computed via a constant multiplier. The multiplier implementation stems from the fact that
the 5039 constant can be factored as sums and subtractions as powers of two in the form
5039 =212 4+ 210 _ 26 _ 24 _ 20 Seeing as multiplications by power of two can implemented
as trivial left-shifts, a multiplication by 5039 can then be written as x-5039 = (x < 12) +(x <
10) — (x < 6) — (x < 4) — x. In this work, the (x < 12) + (x < 10) share is computed in the
existing Ibex ALU, requiring a single additional 32-multiplexer such that one of the operands
is (x < 2), while the other operand is simply x. This result, left-shifted by 10, is added to
(x < 6) — (x <« 4) — x as computed in 3 new adders instantiated in the multiplier. In this
manner, the additional resources required for the 5039 constant multiplier are only 3 adders
and a multiplexer. At the end of the second cycle, temp; is written the result of the constant
5039 multiplication shifted by k = 24.

In the third cycle of kybermul the multiplication of femp; and the g constant is per-
formed. This multiplication is computed in the 16 bit generic multiplier, requiring the addition
of additional multiplexers to its existing mux logic, but not a second dedicated constant mul-
tiplier. Note that the g constant mux is a logical mux, not a physical mux, since it needs to
multiplex a constant value. This result is written to the temp; register, overwriting the previ-

82

ous value which is not needed anymore. The fourth and final cycle of kybermul computes
the subtraction of temp; from temp, and fits its range into {0,...,q — 1}. tempy, — temp;
is computed in the ALU, while the range adjustment is computed using the same logic as
previously described for kyberadd.

Finally, kybercompress performs the (lossy) compression of a 12 bit coefficient into
a d bit value. Like kybermul, it is also a non-SIMD instruction. First, note that the Barrett
reduction constant m = [2%/q|, as shown in Algorithm 5.3, is similar to the 29 /q multiplication
in Algorithm 5.2. Also note that compression requires rounding to the nearest integer, while
m is truncated. In order to reuse the m = 5039 constant multiplier for computing coefficient
compression, the 29/q multiplication is computed using both the constant multiplier and the
generic 16 bit multiplier. In this manner, seeing as the 29/q multiplication can be rewritten
as 2K/q > (k — d), the constant 5039 multiplier computes multiplication for the integer part
while the generic multiplier computes multiplication by the fractional part, storing the results
in tempy and temp;, respectively.

In the second and final clock cycle of kybercompress, both integer and fractional
shares of the 29/g multiplication are added, and shifted by 24 — d — 1. The LSB of this
intermediary shift value determines if +1 will be added to the final result, computing the
nearest integer rounding. The +1 addition to the combined integer and fractional shares
shifted by 24 — d is computed in the range adjusting adder, using only the carry in bit with
the g constant masked by AND gates. Finally, the adjust adder result is masked by d bits,
effectively computing mod 29, yielding the final compression result.

5.4 Experimental Evaluation

In this section, a comparative evaluation of the Kyber-512, Kyber-768, and Kyber-
1024 security strengths is presented, considering the parametrization of symmetric prim-
itives Kyber-Keccak, Kyber-90s, and the novel Kyber-Ascon for each of the KeyGen, Enc,
Dec steps. The evaluation is performed both with and without hardware acceleration for the
symmetric primitives as previously discussed in Sections 3.4 and 4.4 and Kyber-specific op-
erations via the XKyber extension. The evaluation comprises a performance comparison as
well as energy consumption, memory footprint and die area cost analyses.

541 Performance Evaluation and Profiling

Kyber performance relies on symmetric primitives for its internal sampling and
hashing operations. The choice of Kyber symmetric primitives for each parametrization is
shown in Table 5.2, restated below for the reader’s convenience. Table 5.5 shows a through-

83

put comparison between symmetric primitives choices for the XOF and PRF functions, used
internally in Kyber for generating the A matrix and error terms, respectively. AES-256 in CTR
mode shows the best throughput out of all primitives compared in Table 5.5, considering
both software-only and hardware-accelerated implementations. Ascon-XOF shows better
throughput than SHAKE256, but worse throughput than SHAKE128. The choice of the G
and H hash functions and KDF key derivation function are also impactful. The same core
operation throughput analysis for these functions, previously presented in Section 3.4.1, also
applies, favoring SHA-256 and SHA-512 over SHA3-256 and SHA3-512, which again favors
Kyber-90s over Kyber-Keccak. Ascon-XOF has the same characteristics as Ascon-Hash,
which shows worse throughput than both SHA-256 and SHA-512, but better than SHA3-256
and SHA3-512.

Table 5.4 — Symmetric primitives for each Kyber parametrization.

Kyber Parameterization / Primitive XOF H G PRF KDF
Kyber-Keccak SHAKE128 | SHA3-256 | SHA3-512 SHAKE256 | SHAKE256
Kyber-90s AES-256 CTR | SHA-256 SHA-512 | AES-256 CTR | SHA-256
Kyber-Ascon Ascon-XOF | Ascon-XOF | Ascon-XOF | Ascon-XOF | Ascon-XOF

Table 5.5 — Core operation profiling for each Kyber XOF and PRF choice (smaller is better).

Core Operation Metric AES-256 CTR SHAKE128 SHAKE256 Ascon-XOF
Clock Cycles 1,490 30,197 30,197 1,558

Instructions Retired 1,234 22,715 22,715 ‘ 1,501
Cycles per byte 128.500 179.744 222.037 194.750
Instructions per byte 107.625 135.208 167.022 187.625

Figure 5.12 shows the performance of each of the KeyGen, Enc, Dec steps in Kyber-
512, Kyber-768 and Kyber-1024, considering the symmetric primitive choices of Kyber-
Keccak, Kyber-90s and the novel Kyber-Ascon. The observed performances follow the anal-
ysis the core operation throughputs shown in Table 5.5, with Kyber-90s being the fastest
Kyber symmetric parametrization. Notably, software only Kyber-90s is faster than hardware
accelerated Kyber-Keccak and Kyber-Ascon for all 3 Kyber steps. Kyber-Keccak and Kyber-
Ascon show very similar performance, with a slight advantage to Kyber-Ascon comparing
software only implementations (< 1% difference) and a greater advantage to Kyber-Ascon
comparing hardware accelerated implementations (17% difference). Kyber-Ascon shows
the most significative performance benefits from hardware acceleration from ISEs (28% dif-
ference).

Figure 5.13 (note the scale difference for each plot) shows the performance of op-
erations within Kyber that are accelerated by the XKyber extension in polynomial arithmetic,
CBD and coefficient compression operations. Significant gains are are shown in each of the
operations, with the most significant clock cycle gains being in polynomial pointwise multipli-
cation, (67% gain), CBD3 (72% gain) and polynomial coefficient compression (Algorithm 5.2)
Compress, (78% gain).

84

14206 KeyGen 1e6 Enc 1e6 Dec
’ [Clock Cycles b 1.75 d [Clock Cycles B | 1 3 Clock Cycles
1.2 B Instructions Retired 1.50 B Instructions Retired 1 p B Instructions Retired
1.09
":“ 1.25
i 081 1.00
g 0.6
27 0.75
<
0.4 1 0.50
0.2 0.25
0.0 - 0.00 -
Kyber-Keccak Kyber-90s Kyber-Ascon Kyber-Keccak Kyber-90s Kyber-Ascon Kyber-Keccak Kyber-90s Kyber-Ascon
le6 le6 le6
3 Clock Cycles [Clock Cycles [Clock Cycles
201 B Instructions Retired | 2.5 B Instructions Retired B Instructions Retired
----- 2.0
@
E 1
5 15
21
<

1.0

0.51 0.5

0.0

Kyber-90s Kyber-90s
le6 le6 le6
[Clock Cycles 4 [Clock Cycles 44
B Instructions Retired B Instructions Retired

Kyber-90s

Clock Cycles
B Instructions Retired

Kyber-Keccak Kyber-90s Kyber-Keccak Kyber-90s Kyber-Keccak Kyber-90s

Figure 5.12 — Performance of hardware acceleration of Kyber symmetric primitives.

[Clock Cycles
I Instructions Retired
80000 - od

60000

40000

20000 1

Poly Add Poly Sub Poly Mult NTT INTT CBD2 CBD3 Compress4 Compress5 Compress10 Compressll

Figure 5.13 — Performance of XKyber extension in Kyber internal operations.

Figure 5.14 shows (note the scale difference for each plot) the performance of the 3
Kyber steps using the XKyber extension. A baseline software implementation of Kyber-90s is
compared to an implementation with only the symmetric primitives accelerated via the Zkne
and Zknh extensions and an implementation with both symmetric acceleration and Kyber-
specific acceleration. The impact of accelerating Kyber operations via XKyber is roughly
the same as accelerating the symmetric primitives via Zkne and Zknh. From Figure 5.12,
Kyber-90s is the best case for hardware acceleration of symmetric primitives. If the Kyber
variant in question were Kyber-Keccak or Kyber-Ascon, hardware acceleration via XKyber
would outperform hardware acceleration of symmetric primitives via Zbkb or XAscon.

85

KeyGen 1e6 Enc 1e6 Dec

[Clock Cycles 1.29
[Instructions Retired

[Clock Cycles
I Instructions Retired

[Clock Cycles
[Instructions Retired

800000 A
1.0 A

600000 A 0.8 q

0.6 1

Kyber512

400000 A
0.4
200000 4
0.21

0.0~

Baseline SW + Zkne + Zknh + XKyber Baseline SW + Zkne + Zknh + XKyber Baseline SW + Zkne + Zknh + XKyber

le6 le6 le6

[Clock Cycles
I Instructions Retired

[Clock Cycles
I Instructions Retired

[Clock Cycles
I Instructions Retired

1.501

1.251

1.001

o 0.754

yber768

p4
0.50 A

0.25 A

0.00 -

Baseline SW + Zkne + Zknh + XKyber Baseline SW + Zkne + Zknh + XKyber Baseline SW + Zkne + Zknh + XKyber
le6 le6 1le6

2.5 [Clock Cycles 3 Clock Cycles
I Instructions Retired I Instructions Retired

[Clock Cycles
I Instructions Retired

Kyber1024
=
w

g
o
L

o
wn

e
=)

0.0 - -
Baseline SW + Zkne + Zknh + XKyber Baseline SW + Zkne + Zknh + XKyber

Baseline SW + Zkne + Zknh + XKyber

Figure 5.14 — Performance of XKyber extension in Kyber-90s.

5.4.2 Memory Footprint Evaluation

Kyber memory usage is not significantly influenced by the choice of symmetric
primitives or the hardware acceleration via ISEs of those primitives. However, the internal
Kyber operations have reduced code size as shown in Figure 5.15. The baseline software
implementations are shown with bars hatched with circles, while hardware accelerated im-
plementations using instructions from the XKyber extension are shown in bars hatched with
diagonal stripes. In addition to reducing the code size of the operations themselves, auxiliary
functions such as Barrett and Montgomery reductions and conditional subtractions are not
needed anymore, seeing as operands with XKyber instructions are always € Z. A software-
only implementation of Kyber-512 with the Kyber-Keccak symmetric parametrization shows
a total code size of 5090 bytes (not including symmetric primitives), while an implementation
with XKyber instructions shows a code size of 4314 bytes, a 15% improvement.

86

[Code Size (bytes)

2501

2001

1501

100+

50 -

Poly Add Poly Sub Poly Mult NTT INTT CBD2 CBD3 Compress4 Compress5 Compress10 Compressll

Figure 5.15 — Memory footprint of Kyber operations accelerated by XKyber.

5.4.3 Energy Consumption Evaluation

The energy consumption of each Kyber step in each Kyber symmetric parametriza-
tion is shown in Figure 5.16. Energy spent due to data and instructions memory operations
are shown, respectively, in yellow and green. Energy spent due to data processing inside
the Ibex processor is shown in blue. The baseline software-only implementations are shown
with bars hatched with circles, while implementations with hardware-accelerated symmetric
primitives are shown in bars hatched with diagonal stripes. Note the scale difference for
each plot.

KeyGen Enc Dec
3 Data 10 Energy (n)) 14000 [Data 10 Energy (n)) 14000 [Data 10 Energy (n)
10000 B Instruction 10 Energy (n)) 12000 B Instruction 10 Energy (n)) 12000 I Instruction 10 Energy (n))

B Core Energy (n)) BN Core Energy (n)) B Core Energy (n))

8000 10000 10000
8
E 6000 8000 8000
S 6000 6000

4000
4000 4000

2000

2000 2000

Kyber-Keccak Kyber-90s

Kyber-Ascon Kyber-Keccak Kyber-90s

Kyber-Ascon Kyber-Keccak Kyber-90s Kyber-Ascon

16000 =3 Data I0 Energy (n)) 20000 20000

B Instruction 10 Energy (n)) | 17500

3 Data IO Energy (n))
B Instruction 10 Energy (n)) 17500

[Data 10 Energy (n))
B Instruction 10 Energy (n))
B Core Energy (n))

14000

B Core Energy (nj) B Core Energy (n))

12000 15000 15000
8 10000 12500 12500
E 8000 10000 10000
2

6000 7500 7500

4000 5000 5000

2000 2500 2500

Kyber-Keccak Kyber-90s Kyber-Keccak Kyber-90s Kyber-Keccak Kyber-90s

25000 30000

[Data IO Energy (n)) 30000
EEE Instruction 10 Energy (n))

3 Data IO Energy (n))
B Instruction 10 Energy (nj)

[Data 0 Energy (n))
B Instruction 10 Energy (n))

25000 25000

20000 B Core Energy (n)) @ Core Energy (n)) B Core Energy (n))
M 20000 20000
S 15000
=
@ 15000 15000
s
2 10000

10000 10000

5000

5000 5000

Kyber-Keccak Kyber-90s Kyber-Keccak Kyber-90s Kyber-Keccak Kyber-90s

Figure 5.16 — Energy consumption of Kyber variants.

87

The core energy dominates the total energy consumption due to the internal pro-
cessing of data rather than moving data to/from memory. Despite both having roughly the
same performance, Kyber-Ascon shows higher energy consumption than Kyber-Keccak.
This is explained by the fact that Kyber-Ascon executes more instructions during the same
amount of clock cycles, increasing average power, and therefore, total energy. Following the
performance trend shown in Figure 5.12, software-only Kyber-90s shows slightly better en-
ergy consumption than hardware-accelerated Kyber-Keccak, which further improves when
considering hardware acceleration.

Figure 5.17 shows the energy consumption of each Kyber step and security strength,
considering a baseline software-only implementation of Kyber-90s, an implementation with
hardware accelerated symmetric primitives only, and an implementation with hardware-
accelerated symmetric primitives and Kyber internal operations via XKyber. The total energy
consumption follows the trend for performance, with energy consumption gains obtained
from the Zkne and Zknh extensions being equivalent to gains obtained from the XKyber
extension. Note the scale difference for each plot.

KeyGen Enc Dec
10000

7000

=1 Data 0 Energy (n))
B Instruction 10 Energy (n)) 8000
B Core Energy (n))

[Data 10 Energy (n))
B Instruction 10 Energy (nj)
B Core Energy (n))

[Data I0 Energy (n))
B Instruction 10 Energy (n))
B Core Energy (n))

6000
8000
5000
6000

4000 6000

4000

Kyber512
g
8

4000

2000
2000 2000
1000

Baseline SW + Zkne + Zknh + XKyber

Baseline SW + Zkne + Zknh + XKyber

Baseline SW + Zkne + Zknh + XKyber

1
[Data I0 Energy (n)) 6000

B Instruction 10 Energy (n)) 14000
B Core Energy (n))

[Data IO Energy (n))
B Instruction 10 Energy (n))
B Core Energy (n))

[Data 10 Energy (n)) 14000
Bl Instruction 10 Energy (n))

B Core Energy (n)) 12000

12000
10000
10000

8000 8000

Kyber768
o
8
38

6000 6000

4000 4000

2000 2000

Baseline SW

Baseline SW

+ Zkne + Zknh + XKyber + Zkne + Zknh + XKyber Baseline SW + Zkne + Zknh + XKyber

[Data IO Energy (n})
B Instruction 10 Energy (n)) 20000
BB Core Energy (n))

[Data 10 Energy (n))
[Instruction 10 Energy (n))
B Core Energy (n))

3 Data 0 Energy (n))
B Instruction 10 Energy (n))
B Core Energy (n))

17500
20000

15000
& 12500 15000 15000
T 10000
g 10000

2
10000
2 7500

5000 5000 5000

2500

0

Baseline SW + Zkne + Zknh + XKyber

Baseline SW + Zkne + Zknh + XKyber

Baseline SW + Zkne + Zknh + XKyber

Figure 5.17 — Energy consumption of XKyber extension in Kyber-90s.

544 Die Area Costs Evaluation

Table 5.6 shows synthesis results for the Ibex core and each ISE being explored.
The Zkne and Zknh combination showing a 11% increase and Xascon showing a 9% in-
crease. Zbkb shows a smaller 1% cell area increase, but shows the greatest increase in cell
count at 13%. XKyber shows a similar increase of 4 KGE as the Zkne and Zknh case.

88

Synthesis results Ibex baseline | Ibex + Zknh + Zkne | Ibex + Zbkb | Ibex + XAscon | lbex + Zknh + Zkne + XKyber
Cell Area (um?) 11,238 12,447 11,307 12,210 13,734

Net Area (um?) 6,992 7,278 5,142 8,181 7,568

Total Area () 18,230 19,726 16,449 20,391 21,302

Cell Count (# instances) 10,289 11,687 11,769 11,010 13,131

Equivalent NAND2 gates 34,433 38,132 34,642 37,408 42,076

Slack @ 500 MHz 0 0 0 0 0

Table 5.6 — Area comparison of ISEs for Kyber hardware acceleration.

5.5 Conclusion and Final Remarks

Considering the analyses presented in Section 5.4, the choice of Kyber symmet-
ric primitives significantly impacts the performance and energy consumption of Kyber in
resource-constrained embedded systems. Compared to the standard Kyber-Keccak, Kyber-
90s offers 28% better performance while consuming 27% less energy in a software-only
implementation of Kyber-512. Kyber-Ascon shows similar performance to Kyber-Keccak,
but may be an attractive option for severely memory-constrained systems at the 128-bit
security level, considering the memory footprint of primitives as previously discussed in Sec-
tions 3.4.2 and 4.4.2.

Hardware acceleration of Kyber symmetric primitives also shows significant gains.
In Kyber-512, 32% gains for both performance and energy consumption for the Kyber-90s
parametrization are observed. Additionally, adding the XKyber extension for accelerating
internal Kyber operations can enhance performance and energy consumption even further,
providing gains of 46% and 44%, respectively, considering Kyber-512 with hardware accel-
eration via Zkne and Zknh. As an extra benefit, XKyber reduces Kyber code size by 15%.
Hardware acceleration comes at an area cost of 10% of a baseline Ibex core, both for sym-
metric primitives and XKyber.

89

6. CONCLUSIONS AND FUTURE WORK

With the increasing deployment of low-complexity embedded systems such as loT
sensor nodes, battery-powered and energy-harvesting devices, secure communication is a
core requirement. Such devices often do not have the necessary resources for locally com-
puting data processing demands, delegating intensive work to the cloud or network edge.
Due to this emerging computing paradigm, a significant amount of data must be securely
transmitted to and from several network endpoints. This is not an easy task to accomplish,
seeing as the cryptographic algorithms that enable the confidentiality and integrity of the data
being transmitted are associated with non-trivial overheads in application performance and
memory usage, which are critical concerns in the context of resource-constrained devices.

In this work, the use of Instruction Set Extensions (ISEs) is demonstrated to lead
to significant improvements in implementations of hash functions, authenticated encryption,
and post-quantum key encapsulation in RISC-V-based resource-constrained embedded sys-
tems. In summary, the use of ISEs in hash functions provides gains of 32%, 38% and 16%
in performance, energy consumption, and code size, respectively. Gains in authenticated
encryption are of 58%, 61% and 35% in performance, energy consumption, and code size,
respectively. Area costs are of at most 10% of the baseline Ibex processor with no ISEs,
corresponding to 4K equivalent gates.

Post-quantum key encapsulation with Kyber is also evaluated with respect to its
security strength levels and parametrizations concerning symmetric primitives and the hard-
ware acceleration of those symmetric primitives via ISEs. The Kyber-90s parametrization
is found to be considerably superior to the standard Keccak-based version, with a software-
only implementation outperforming hardware-accelerated Keccak-based Kyber. Further hard-
ware acceleration is investigated in the internal Kyber operations in a novel XKyber ISE.
Hardware acceleration of the symmetric primitives in Kyber-90s show performance and en-
ergy gains of 32%. Combining hardware acceleration via XKyber and of the symmetric
primitives in Kyber-90s, further gains of 46% and 44% in performance and energy consump-
tion are observed, while also reducing code size by 15%. XKyber area costs are again of
10% of the baseline Ibex processor with no ISEs.

For future work, one possibility is to investigate the use of TurboSHAKE [Bertoni
et al., 2023], a variant of the SHAKE XOFs using the Keccak permutation with 12 rounds
instead of the usual 24 rounds, in Kyber. Furthermore, symmetric primitives in Kyber out-
side of those standardized by NIST can also be investigated. The Grostl [Gauravaram et al.,
2009] and Haraka [Kdlbl et al., 2016] hash algorithms can benefit from AES hardware ac-
celeration, which can further improve Kyber speeds beyond those measured for Kyber-90s
while having a smaller memory footprint due to the exclusion of the costly SHA-256 and
SHA-512 round constants.

90

Additionally, digital signatures also need to be investigated. One option is to use
KEM-based authentication [Wiggers et al., 2023] for applications in which messages can be
sent back and forth instead of traditional digital signatures. This approach enables reuse
of hardware accelerated Kyber, but requires multi-round-trip communication, which is not
suitable for all applications, such as authenticating binaries stored in non-volatile memory,
for which a traditional digital signature must be used.

The NIST PQC competition also comprises digital signatures, for which 3 algo-
rithms have been chosen for standardization: Dilithium [NIST, 2023a], Falcon [Fouque et al.,
2018] and SPHINCS [NIST, 2023c]. Dilithium is closely related to Kyber, where the same
techniques for Kyber optimizations as described in this work could still be applied in Dilithium,
but would likely lead to smaller gains than in the Kyber case. The SIMD elements in the XKy-
ber extension stem from the fact that Kyber polynomial coefficients are 12 bit wide, where 2
coefficients can fit in a single word of a 32 bit RISC-V processor. Dilithium polynomial coef-
ficients are 23 bit wide, where only a single coefficient can fit in a word. Furthermore, larger
bit widths for intermediary results in the Barrett reduction would need to be accommodated
into the data path and Ibex temporary registers, which would lead to a worse performing ISE
at a higher area cost.

Falcon has the smaller public key and signature size, which at a first glance might
be make it the most attractive option for digital signatures in a resource-constrained embed-
ded context. However, it requires the use of constant time floating-point operations, which
is hard to implement in software-emulated floating point operations, discouraging its use
in the context in question, seeing as hardware floating point operations are unlikely to be
available. Finally, SPHINCS shows the biggest signature size. For the aforementioned bi-
nary authentication from non-volatile memory example, this would not be significant, seeing
as non-volatile memory space is not a constraint. Being a hash-based scheme, its per-
formance is heavily reliant on the underlying hash functions performance. In this case, its
integration with hardware accelerated Haraka and use alongside KEM-based authentication
seems promising.

91

REFERENCES

Abdulrahman, A., Hwang, V., Kannwischer, M. J., and Sprenkels, A. (2022). Faster Kyber
and Dilithium on the Cortex-M4. Cryptology ePrint Archive, Paper 2022/112. https://eprint.
iacr.org/2022/112, February 2024.

Albrecht, M. R., Hanser, C., Hoeller, A., Péppelmann, T., Virdia, F., and Wallner, A. (2018).
Implementing RLWE-based Schemes Using an RSA Co-Processor. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2019(1):169-208. https://doi.org/
10.13154/tches.v2019.i1.169-208.

Alkim, E., Evkan, H., Lahr, N., Niederhagen, R., and Petri, R. (2020). ISA Extensions for
Finite Field Arithmetic - Accelerating Kyber and NewHope on RISC-V. Cryptology ePrint
Archive, Paper 2020/049. https://eprint.iacr.org/2020/049, February 2024.

Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M.,
Schwabe, P., Seiler, G., and Stehl, D. (2022). CRYSTALS-Kyber — Submission to round 3
of the NIST post-quantum project. https://pg-crystals.org/kyber/resources.shtml, February
2024.

Balasubramonian, R., Kahng, A. B., Muralimanohar, N., Shafiee, A., and Srinivas, V. (2017).
CACTI 7: New Tools for Interconnect Exploration in Innovative Off-Chip Memories. ACM
Transactions on Architecture and Code Optimization (TACO), 14(2):1-25. https://doi.org/
10.1145/3085572.

Banerjee, U., Ukyab, T. S., and Chandrakasan, A. P. (2019). Sapphire: A Configurable
Crypto-Processor for Post-Quantum Lattice-based Protocols. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, 2019(4):17—61. https://doi.org/10.13154/
tches.v2019.i4.17-61.

Barrett, P. (2020). Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor. In Advances in Cryptology (CRYPTO),
pages 311-323. https://doi.org/10.1007/3-540-47721-7_24.

Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G. V., Keer, R. V., and Viguier, B.
(2023). TurboSHAKE. Cryptology ePrint Archive, Paper 2023/342. https://eprint.iacr.org/
2023/342, February 2024.

Bertoni, G., Daemen, J., Peeters, M., van Assche, G., and van Keer, R. (2012). Keccak
Implementation Overview, version 3.2. Technical report, Keccak Team. 59p., https://
keccak.team/files/Keccak-implementation-3.2.pdf.

Campos, F, Jellema, L., Lemmen, M., Miller, L., Sprenkels, A., and Viguier, B. (2020).
Assembly or Optimized C for Lightweight Cryptography on RISC-V. In Cryptology

https://eprint.iacr.org/2022/112
https://eprint.iacr.org/2022/112
https://doi.org/10.13154/tches.v2019.i1.169-208
https://doi.org/10.13154/tches.v2019.i1.169-208
https://eprint.iacr.org/2020/049
https://pq-crystals.org/kyber/resources.shtml
https://doi.org/10.1145/3085572
https://doi.org/10.1145/3085572
https://doi.org/10.13154/tches.v2019.i4.17-61
https://doi.org/10.13154/tches.v2019.i4.17-61
https://doi.org/10.1007/3-540-47721-7_24
https://eprint.iacr.org/2023/342
https://eprint.iacr.org/2023/342
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf

92

and Network Security Conference (CANS), pages 526-545. https://doi.org/10.1007/
978-3-030-65411-5_26.

Cheng, H., GroB3schadl, J., Marshall, B., Page, D., and Pham, T. (2022). RISC-V Instruction
Set Extensions for Lightweight Symmetric Cryptography. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2023(1):193—-237. https://doi.org/10.46586/
tches.v2023.i1.193-237.

Chips Alliance (2023). Rocket Core. https://github.com/chipsalliance/rocket, February 2024.

Daemen, J. and Rijmen, V. (1998). AES Proposal: Rijndael. 45p., https://web.archive.org/
web/20070203204845/https://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf, Febru-
ary 2024.

Dally, W. J., Turakhia, Y., and Han, S. (2020). Domain-specific Hardware Accelerators.
Communications of the ACM, 63(7):48-57. https://doi.org/10.1145/3361682.

Di Matteo, S., Gerfo, M. L., and Saponara, S. (2023). VLSI Design and FPGA Implemen-
tation of an NTT Hardware Accelerator for Homomorphic SEAL-Embedded Library. IEEE
Access, 11:72498-72508. http://dx.doi.org/10.1109/ACCESS.2023.3295245.

Dobraunig, C., Eichlseder, M., Mendel, F., and Schlaffer, M. (2021). Ascon v1.2: Lightweight
Authenticated Encryption and Hashing. Journal of Cryptology, 34(3):33:1-33:42. https:
//doi.org/10.1007/s00145-021-09398-9.

ETH Zurich (2016). PULP platform. https://github.com/pulp-platform/pulpino, February
2024.

Fouque, P.-A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T., Ricosset, T.,
Seiler, G., Whyte, W., Zhang, Z., et al. (2018). Falcon: Fast-Fourier lattice-based compact
signatures over NTRU. https://falcon-sign.info/, February 2024.

Fritzmann, C., Sharif, U., Mueller-Gritschneder, D., Reinbrecht, C. R. W., Schlichtmann, U.,
and Sepulveda, M. J. (2019). Towards Reliable and Secure Post-Quantum Co-Processors
based on RISC-V. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1148-1153. https://doi.org/10.23919/DATE.2019.8715173.

Fritzmann, T., Sigl, G., and Sepulveda, M. J. (2020). RISQ-V: Tightly Coupled RISC-V
Accelerators for Post-Quantum Cryptography. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2020(4):239—-280. https://doi.org/10.13154/tches.v2020.
i4.239-280.

Garcia-Morchén, O., Kumar, S. S., and Sethi, M. (2019). Internet of Things (IoT) Security:
State of the Art and Challenges. RFC, 8576:1-50. https://doi.org/10.17487/RFC8576.

https://doi.org/10.1007/978-3-030-65411-5_26
https://doi.org/10.1007/978-3-030-65411-5_26
https://doi.org/10.46586/tches.v2023.i1.193-237
https://doi.org/10.46586/tches.v2023.i1.193-237
https://github.com/chipsalliance/rocket
https://web.archive.org/web/20070203204845/https://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf
https://web.archive.org/web/20070203204845/https://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf
https://doi.org/10.1145/3361682
http://dx.doi.org/10.1109/ACCESS.2023.3295245
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://github.com/pulp-platform/pulpino
https://falcon-sign.info/
https://doi.org/10.23919/DATE.2019.8715173
https://doi.org/10.13154/tches.v2020.i4.239-280
https://doi.org/10.13154/tches.v2020.i4.239-280
https://doi.org/10.17487/RFC8576

93

Gauravaram, P., Knudsen, L. R., Matusiewicz, K., Mendel, F., Rechberger, C., Schlaffer, M.,
and Thomsen, S. S. (2009). Grostl-a SHA-3 candidate. 42p., https://perso.uclouvain.be/
fstandae/source_codes/hash_atmel/specs/groestl.pdf, February 2024.

Gewehr, C. and Moraes, F. (2023). Improving the Efficiency of Cryptography Algorithms
on Resource-Constrained Embedded Systems via RISC-V Instruction Set Extensions. In
Symposium on Integrated Circuits and Systems Design (SBCCI), pages 1-6. https://doi.
org/10.1109/sbcci60457.2023.10261964.

Gewehr, C., Moura, N., Luza, L., Bernardon, E., Calazans, N., Garibotti, R., and Moraes,
F. G. (2024). Hardware Acceleration of Authenticated Encryption with Associated Data via
RISC-V Instruction SetExtensions in Low Power Embedded Systems. In Latin American
Symposium on Circuits and Systems (LASCAS), pages 1-5.

Greconici, D. (2020). KYBER on RISC-V. Master’s thesis, Radboud University. 69p., https:
//www.ru.nl/publish/pages/769526/denisa_greconici.pdf.

Huang, J., Zhang, J., Zhao, H., Liu, Z., Cheung, R. C. C., Kog, u. K., and Chen, D.
(2022). Improved Plantard Arithmetic for Lattice-based Cryptography. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2022(4):614—636. http:
//dx.doi.org/10.46586/tches.v2022.i4.614-636.

Huang, J., Zhao, H., Zhang, J., Dai, W., Zhou, L., Cheung, R. C. C., Koc, C. K., and Chen,
D. (2023). Yet another Improvement of Plantard Arithmetic for Faster Kyber on Low-end
32-bit IoT Devices. CoRR, abs/2309.00440:1—-15. https://arxiv.org/abs/2309.00440.

Intel (2017). TinyCrypt Cryptographic Library. https://github.com/intel/tinycrypt, February
2024.

Karabulut, E. and Aysu, A. (2020). RANTT: A RISC-V Architecture Extension for the Num-
ber Theoretic Transform. In International Conference on Field-Programmable Logic and
Applications (FPL), pages 26—32. https://doi.org/10.1109/fpl50879.2020.00016.

Kélbl, S., Lauridsen, M. M., Mendel, F., and Rechberger, C. (2016). Haraka v2 - Efficient
Short-Input Hashing for Post-Quantum Applications. Cryptology ePrint Archive, Paper
2016/098. https://eprint.iacr.org/2016/098, February 2024.

Lee, J., Kim, W., Kim, S., and Kim, J.-H. (2022). Post-Quantum Cryptography Coproces-
sor for RISC-V CPU Core. In International Conference on Electronics, Information, and
Communication (ICEIC), pages 1-2. https://doi.org/10.1109/iceic54506.2022.9748834.

lowRISC (2017). OpenTitan project. https://github.com/lowRISC/opentitan, February 2024.

lowRISC (2018). Ibex RISC-V Core. https://github.com/lowRISC/ibex, February 2024.

https://perso.uclouvain.be/fstandae/source_codes/hash_atmel/specs/groestl.pdf
https://perso.uclouvain.be/fstandae/source_codes/hash_atmel/specs/groestl.pdf
https://doi.org/10.1109/sbcci60457.2023.10261964
https://doi.org/10.1109/sbcci60457.2023.10261964
https://www.ru.nl/publish/pages/769526/denisa_greconici.pdf
https://www.ru.nl/publish/pages/769526/denisa_greconici.pdf
http://dx.doi.org/10.46586/tches.v2022.i4.614-636
http://dx.doi.org/10.46586/tches.v2022.i4.614-636
https://arxiv.org/abs/2309.00440
https://github.com/intel/tinycrypt
https://doi.org/10.1109/fpl50879.2020.00016
https://eprint.iacr.org/2016/098
https://doi.org/10.1109/iceic54506.2022.9748834
https://github.com/lowRISC/opentitan
https://github.com/lowRISC/ibex

94

Marshall, B., Newell, G. R., Page, D., Saarinen, M.-J. O., and Wolf, C. (2020). The de-
sign of scalar AES Instruction Set Extensions for RISC-V. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2021(1):109-136. https://doi.org/10.46586/
tches.v2021.i1.109-136.

Marshall, B., Page, D., and Pham, T. (2021). Implementing the Draft RISC-V Scalar Cryptog-
raphy Extensions. In Hardware and Architectural Support for Security and Privacy, pages
1-8. https://doi.org/10.1145/3458903.3458904.

Miteloudi, K., Bos, J., Bronchain, O., Fay, B., and Renes, J. (2023). PQ.V.ALU.E: Post-
Quantum RISC-V Custom ALU Extensions on Dilithium and Kyber. Cryptology ePrint
Archive, Paper 2023/1505. https://eprint.iacr.org/2023/1505, February 2024.

Nannipieri, P., Matteo, S. D., Zulberti, L., Albicocchi, F., Saponara, S., and Fanucci, L. (2021).
A RISC-V Post Quantum Cryptography Instruction Set Extension for Number Theoretic
Transform to Speed-Up CRYSTALS Algorithms. IEEE Access, 9:150798—-150808. https:
//doi.org/10.1109/access.2021.3126208.

Nisanci, G., Flikkema, P. G., and Yal¢in, T. (2022). Symmetric Cryptography on RISC-
V: Performance Evaluation of Standardized Algorithms. MDPI Cryptography, 6(3):41:1—
41:29. https://doi.org/10.3390/cryptography6030041.

NIST (2001a). Advanced Encryption Standard (AES). Technical report, National Institute
of Standards and Technology. 38p., https:/nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
197-upd1.pdf.

NIST (2001b). Recommendation for Block Cipher Modes of Operation. Technical report, Na-
tional Institute of Standards and Technology. 66p., https://doi.org/10.6028/nist.sp.800-38a.

NIST (2007a). Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC. Technical report, National Institute of Standards and Technology. 39p.,
https://nvipubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf.

NIST (2007b). Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality. Technical report, National Institute of Standards and
Technology. 27p., http://dx.doi.org/10.6028/NIST.SP.800-38C.

NIST (2015a). Secure Hash Standard (SHS). Technical report, National Institute of Stan-
dards and Technology. 36p., https://doi.org/10.6028/nist.fips.180-4.

NIST (2015b). SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-
tions. Technical report, National Institute of Standards and Technology. 37p., https:
//doi.org/10.6028/nist.fips.202.

https://doi.org/10.46586/tches.v2021.i1.109-136
https://doi.org/10.46586/tches.v2021.i1.109-136
https://doi.org/10.1145/3458903.3458904
https://eprint.iacr.org/2023/1505
https://doi.org/10.1109/access.2021.3126208
https://doi.org/10.1109/access.2021.3126208
https://doi.org/10.3390/cryptography6030041
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://doi.org/10.6028/nist.sp.800-38a
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://dx.doi.org/10.6028/NIST.SP.800-38C
https://doi.org/10.6028/nist.fips.180-4
https://doi.org/10.6028/nist.fips.202
https://doi.org/10.6028/nist.fips.202

95

NIST (2023a). Module-Lattice-Based Digital Signature Standard. Technical report, National
Institute of Standards and Technology. 44p., http://dx.doi.org/10.6028/NIST.FIPS.204.ipd.

NIST (2023b). Module-Lattice-Based Key-Encapsulation Mechanism Standard. Technical
report, National Institute of Standards and Technology. 39p., http://dx.doi.org/10.6028/
NIST.FIPS.203.ipd.

NIST (2023c). Stateless Hash-Based Digital Signature Standard. Technical report, National
Institute of Standards and Technology. 47p., http://dx.doi.org/10.6028/NIST.FIPS.205.ipd.

NSA (2023). Commercial National Security Algorithm Suite 2.0. National Security
Agency. 10p., https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_
2.0_ALGORITHMS_.PDF, February 2024.

Paar, C. and Pelzl, J. (2009). Understanding cryptography - A Textbook for Stu-
dents and Practitioners. Springer. 372p., https:/link.springer.com/book/10.1007/
978-3-642-04101-3.

Park, J.-Y., Moon, Y.-H., Lee, W., Kim, S.-H., and Sakurai, K. (2022). A Survey of Polynomial
Multiplication With RSA-ECC Coprocessors and Implementations of NIST PQC Round3
KEM Algorithms in Exynos2100. /EEE Access, 10:2546—2563. https://doi.org/10.1109/
ACCESS.2021.3138807.

Plantard, T. (2021). Efficient Word Size Modular Arithmetic. IEEE Transactions on Emerging
Topics in Computing, 9(3):1506—1518. http://dx.doi.org/10.1109/TETC.2021.3073475.

Rescorla, E. (2018). The Transport Layer Security (TLS) Protocol Version 1.3. RFC, 8446:1—
160. https://www.rfc-editor.org/info/rfc8446.

Rescorla, E., Tschofenig, H., and Modadugu, N. (2022). The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3. RFC, 9147:1-61. https://www.rfc-editor.org/info/
rfc9147.

RISC-V Foundation (2019). The RISC-V Instruction Set Manual, Volume I: User-Level ISA,
Document Version 20191213. https://riscv.org/technical/specifications, February 2024.

RISC-V Foundation (2022). RISC-V Cryptography Extensions Volume I: Scalar & En-
tropy Source Instructions, Document Version v1.0.1. https://github.com/riscv/riscv-crypto/
releases/tag/v1.0.1-scalar, February 2024.

Saarinen, M.-J. O. (2020). A Lightweight ISA Extension for AES and SM4. CoRR,
abs/2002.07041:1-4. https://arxiv.org/abs/2002.07041.

Saarinen, M.-J. O. (2022). rvkrypto-fips. https:/github.com/rvkrypto/rvkrypto-fips, February
2024.

http://dx.doi.org/10.6028/NIST.FIPS.204.ipd
http://dx.doi.org/10.6028/NIST.FIPS.203.ipd
http://dx.doi.org/10.6028/NIST.FIPS.203.ipd
http://dx.doi.org/10.6028/NIST.FIPS.205.ipd
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://link.springer.com/book/10.1007/978-3-642-04101-3
https://link.springer.com/book/10.1007/978-3-642-04101-3
https://doi.org/10.1109/ACCESS.2021.3138807
https://doi.org/10.1109/ACCESS.2021.3138807
http://dx.doi.org/10.1109/TETC.2021.3073475
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9147
https://riscv.org/technical/specifications
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar
https://arxiv.org/abs/2002.07041
https://github.com/rvkrypto/rvkrypto-fips

96

Satriawan, A., Syafalni, I., Mareta, R., Anshori, I., Shalannanda, W., and Barra, A. (2023).
Conceptual Review on Number Theoretic Transform and Comprehensive Review on Its
Implementations. IEEE Access, 11:70288-70316. http://dx.doi.org/10.1109/ACCESS.
2023.3294446.

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Review, 41(2):303—-332. https://doi.org/10.1137/
S0036144598347011.

Stoffelen, K. (2019). Efficient Cryptography on the RISC-V Architecture. In Progress in
Cryptology (LATINCRYPT), page 323—-340. https://doi.org/10.1007/978-3-030-30530-7_
16.

University of Bristol (2018). SCARV: a side-channel hardened RISC-V platform. https:/
github.com/scarv/scarv, February 2024.

Waterman, A. (2016). Design of the RISC-V Instruction Set Architecture. Technical report,
EECS Department, University of California, Berkeley. 117p., http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2016/EECS-2016-1.html.

Wiggers, T., Celi, S., Schwabe, P, Stebila, D., and Sullivan, N. (2023). KEM-based
Authentication for TLS 1.3. Technical report, Internet Engineering Task Force. 25p.,
https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/02/.

Xin, G., Han, J., Yin, T., Zhou, Y., Yang, J., Cheng, X., and Zeng, X. (2020). VPQC: A
Domain-Specific Vector Processor for Post-Quantum Cryptography Based on RISC-V Ar-
chitecture. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(8):2672—
2684. https://doi.org/10.1109/tcsi.2020.2983185.

Zgheib, A., Potin, O., Rigaud, J.-B., and Dutertre, J.-M. (2021). Extending a RISC-V Core
with an AES Hardware Accelerator to Meet loT Constraints. In International Conference
on SMACD and Conference on PRIME, pages 1—4. https://ieeexplore.ieee.org/document/
9547962.

Zodpe, H. and Shaikh, A. (2021). A Survey on Various Cryptanalytic Attacks on the AES
Algorithm. International Journal of Next-Generation Computing, 12(2):115-123. https:
/lijngc.perpetualinnovation.net/index.php/ijngc/article/view/202.

http://dx.doi.org/10.1109/ACCESS.2023.3294446
http://dx.doi.org/10.1109/ACCESS.2023.3294446
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1007/978-3-030-30530-7_16
https://doi.org/10.1007/978-3-030-30530-7_16
https://github.com/scarv/scarv
https://github.com/scarv/scarv
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/02/
https://doi.org/10.1109/tcsi.2020.2983185
https://ieeexplore.ieee.org/document/9547962
https://ieeexplore.ieee.org/document/9547962
https://ijngc.perpetualinnovation.net/index.php/ijngc/article/view/202
https://ijngc.perpetualinnovation.net/index.php/ijngc/article/view/202

o

*8.
o "E’%
Wt 4

marista PUCRS

Pontificia Universidade Catolica do Rio Grande do Sul
Pro-Reitoria de Pesquisa e Pos-Graduagéo
Av. Ipiranga, 6681 - Prédio 1 - Térreo
Porto Alegre — RS - Brasil
Fone: (51) 3320-3513

E-mail: propesq@pucrs.br
Site: www.pucrs.br

	Introduction
	Motivation
	Objectives
	Methodology
	Document organization

	RISC-V and Hardware Acceleration
	RISC-V Architecture and Ibex
	Hardware Acceleration Fundamentals
	Experimental Setup and Methodology

	Hardware Acceleration of Hash Functions Using ISEs
	Introduction to Hash Functions
	SHA-2
	SHA-3
	Ascon-Hash and Ascon-XOF

	Related Work
	Implementation
	SHA-2 Implementation
	SHA-3 Implementation
	Ascon Implementation

	Experimental Evaluation
	Performance Evaluation and Profiling
	Memory Footprint Evaluation
	Energy Consumption Evaluation
	Die Area Costs Evaluation

	Conclusion and Final Remarks

	Hardware Acceleration of Symmetric Cryptography Using ISEs
	Introduction to Symmetric Cryptography
	AES
	Ascon

	Related Work
	Implementation
	AES Implementation
	Ascon Implementation

	Experimental Evaluation
	Performance Evaluation and Profiling
	Memory Footprint Evaluation
	Energy Consumption Evaluation
	Die Area Costs Evaluation

	Conclusion and Final Remarks

	Hardware Acceleration of Asymmetric Cryptography Using ISEs
	Introduction to Asymmetric Cryptography
	Crystals-Kyber (ML-KEM)

	Related Work
	Implementation
	Experimental Evaluation
	Performance Evaluation and Profiling
	Memory Footprint Evaluation
	Energy Consumption Evaluation
	Die Area Costs Evaluation

	Conclusion and Final Remarks

	Conclusions and Future Work

