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LOCALIZAÇÃO DE HARDWARE TROJANS BASEADA EM SONDAS
PARA MANYCORES BASEADOS EM NOC

RESUMO

À medida que a adoção e a complexidade de sistemas manycore aumentam, garantir a
proteção de dados tornou-se um requisito crítico de projeto. Além disso, o uso generali-
zado de núcleos de propriedade intelectual de terceiros (3PIPs) para atender às restrições
de tempo de lançamento no mercado e reduzir os custos de projeto aumenta o risco de
inserção de hardware malicioso por meio de Trojans de Hardware (HTs), aumentando as-
sim a vulnerabilidade das plataformas manycore. A rede intra-chip (NoC), devido ao seu
papel central na arquitetura, torna-se um alvo atraente para inserção de HTs, pois fornece
acesso a todos os outros componentes do sistema. Um HT infectando a NoC pode permitir
vários ataques, como negação de serviço (DoS) e degradação de desempenho. Quando
tais ataques são detectados, o sistema deve implementar contramedidas para interromper
o ataque e proteger as aplicações em execução. No entanto, desconhecer a localização do
HT reduz a eficácia das contramedidas. Embora a literatura ofereça técnicas para identi-
ficar a origem de ataques em NoCs, estas normalmente requerem recursos de segurança
adicionais integrados ao hardware da NoC, tornando-os inadequados para NoCs basea-
das em 3PIP não seguros. Esta dissertação tem por objetivo desenvolver um método não
invasivo para localizar links infectados por HTs, a fim de abordar a limitação de adicionar
hardware a módulos não seguros. Este trabalho apresenta uma estrutura de segurança em
três fases que executam as seguintes ações: (1) monitora a comunicação entre tarefas para
detectar ataques de HT; (2) emprega um algoritmo de localização para identificar os links
infectados dentro da NoC; e (3) aplica contramedidas para neutralizar ou mitigar os efeitos
do ataque. O algoritmo de localização de HT utiliza uma técnica chamada path probing, que
transmite pacotes de sondagem ao longo de caminhos específicos da NoC para avaliar a
integridade do link. O algoritmo envia sondagens seletivamente e analisa seus resultados,
refinando a busca a cada resultado até que o HT seja localizado com precisão. O método é
implementado em software, permitindo a localização de HTs sem modificar o hardware da
NoC. Para validar a abordagem proposta, conduzimos uma série de campanhas de ataque
nas quais HTs atacaram o manycore usando diferentes padrões de ativação. Os resultados
demonstram que a estrutura de segurança identificou com sucesso a localização dos HTs,
causando impacto mínimo no desempenho do sistema.

Palavras-Chave: Manycores baseados em NoC, segurança, Hardware Trojan (HT), locali-
zação de HTs.



A PROBING APPROACH FOR HARDWARE TROJAN LOCALIZATION IN
NOC-BASED MANYCORES

ABSTRACT

As the adoption and complexity of manycore systems increase, ensuring data protection has
become a critical design requirement. Additionally, the widespread use of third-party intel-
lectual property cores (3PIPs) to meet time-to-market constraints and reduce design costs,
raises the risk of malicious hardware insertion through Hardware Trojans (HTs), thereby in-
creasing the vulnerability of manycore platforms. The Network-on-Chip (NoC), due to its
central role in the architecture, becomes an attractive target for HT insertion, as it provides
access to all other system components. An HT infecting the NoC can enable various attacks,
such as denial-of-service (DoS) and performance degradation. When such attacks are de-
tected, the system must deploy countermeasures to halt the attack and protect running
applications. However, not knowing the HT’s location reduces the effectiveness of counter-
measures. Although the literature offers techniques for identifying the source of attacks in
NoCs, these typically require additional security features integrated into NoC hardware, ren-
dering them unsuitable for non-secure 3PIP-based NoCs. This dissertation aims to develop
a non-invasive method for localizing HT-infected links in the NoC to address the limitation
of adding hardware to non-secure modules. This work introduces a three-phase security
framework executing the following actions: (1) monitors inter-task communication to detect
HT attacks; (2) employs a localization algorithm to identify the infected links within the NoC;
and (3) applies countermeasures to neutralize or mitigate the effects of the attack. The HT
localization algorithm uses a technique called path probing, which transmits probe pack-
ets along specific NoC paths to evaluate the link integrity. The algorithm selectively sends
probes and analyzes their outcomes, refining the search with each result until the HT is ac-
curately localized. The method is implemented in software, allowing HT localization without
modifying the NoC hardware. To validate the proposed approach, we conducted a series
of attack campaigns in which HTs attacked the manycore using different activation patterns.
The results demonstrate that the security framework successfully identified the location of
the HTs while incurring minimal impact on system performance.

Keywords: NoC-based manycores, security, hardware Trojan (HT), HT localization.
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1. INTRODUCTION

Manycores are platforms designed to provide high performance through the use
of parallelism, meeting the current demand of embedded devices with power consumption
and communication constraints. A manycore contains PEs (Processing Elements) inter-
connected by complex communication infrastructures, such as hierarchical buses or NoCs
(Networks-on-Chip) [Popovici et al., 2010]. PEs may be processors, 3PIP (third-party intel-
lectual property) modules, memory blocks, or dedicated hardware accelerators. Examples
of architectures with a large number of processors interconnected by NoCs include the Mel-
lanox family TILE-Gx72 (72 cores) [Tecnhlogies, 2018], Intel Knights Landing [Sodani et al.,
2016], Oracle M8 (32 cores) [Oracle, 2017], Kalray array (256 cores) [Dinechin et al., 2014],
KiloCore chip (1,000 cores) [Bohnenstiehl et al., 2016], and Esperanto (1,100 RISC-V cores)
[Peckham, 2020].

An NoC consists of routers and links and is responsible for forwarding data and
control messages between PEs. Network Interfaces (NIs) connect PEs to the routers of the
NoC. Whenever a PE sends a message, the NI transforms it into a packet and delivers it to
the router. Then, the router sends the packet to a neighbor router through a link according to
a path defined by the routing algorithm. The routers constitute the underlying communica-
tion infrastructure of the system, where multiple interconnected routers define the network
topology [Hemani et al., 2000; Benini and Micheli, 2002].

As the adoption and complexity of manycores increase, the concern for data pro-
tection appears as a design requirement [Baron et al., 2013]. A manycore may be employed
in scenarios where availability is critical and downtimes must be minimized. These systems
may also handle sensitive information; thus, protecting this data from unauthorized access
is necessary. The following seven security principles [Ramachandran, 2002] are gener-
ally accepted as the foundation of a good security solution, the first three principles being
mandatory features:

• Confidentiality: the property of non-disclosure of information to unauthorized processes,
entities, or users;

• Availability: the protection of assets from DoS (Denial-of-Service) threats that might
impact the availability of any system resource;

• Integrity: the prevention of modification or destruction of an asset by an unauthorized
entity or user;

• Authentication: the process of establishing the validity of a claimed identity;

• Authorization: the process of determining whether a validated entity is allowed to ac-
cess a secured resource based on attributes, predicates, or context;
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• Auditing: the property of logging the system activities at levels sufficient for the recon-
struction of events;

• Nonrepudiation: the prevention of any participant denying his role in the interaction
once it is completed.

A consequence of the increasing number of features and functionalities inside a
single chip is the adoption of 3PIPs to meet time-to-market constraints and reduce design
costs. Such IPs come from different vendors, raising the risk of having a Hardware Trojan
(HT) insertion [Li et al., 2016]. Assuming HTs infect the NoC, these can perform several
attacks that threaten security principles [Ramachandran, 2002]. Such attacks may affect
confidentiality by redirecting messages to malicious agents, availability by dropping mes-
sages or blocking a communication path, and integrity by corrupting the content of a packet
traversing the NoC.

The literature presents several techniques, such as cryptography [Charles and
Mishra, 2020], authentication codes [Sharma et al., 2019], error correction codes [Gondal
et al., 2020], creation of a communication flow profile to detect anomalous behavior [Charles
et al., 2020], spatial isolation via Secure Zones (SZ) to protect communication and compu-
tation simultaneously [Fernandes et al., 2016]. Adopting these techniques makes it possible
to detect violations related to security or faults in the NoC.

A particular case of SZ is the Opaque Secure Zone (OSZ) [Caimi and Moraes,
2019], which is a defense mechanism executed at runtime that focuses on finding a region
on the system with free PEs to map an application with security constraints. The OSZ
activation occurs by setting a link control structure at the boundaries of the rectilinear region,
blocking all incoming and outgoing traffic trying to cross the OSZ. OSZ prevents attacks from
outside sources, such as Denial-of-Service (DoS), timing attacks, spoofing, and man-in-the-
middle [Caimi et al., 2018]. Even though the method is robust against external attacks, it
still presents vulnerabilities when HTs infect routers inside the OSZ or when the application
running in the OSZ needs to communicate with external peripherals.

The previous work [Comarú, 2022] addressed the vulnerabilities in IO communica-
tion by proposing the Secure Network Interface with Peripherals (SNIP) (Section 3.2), which
manages access to IO devices and ensures that communication between an application and
a peripheral is secure. During the MSc program, the SNIP was further modified to be fully
integrated into the manycore platform (Section 3.1). New functionalities were added to send
warnings when a security threat is detected.

As stated, an HT infecting the NoC makes the manycore vulnerable to several
attacks, such as packet misrouting, dropped packets, data tempering, and network flooding.
When such attacks are detected, the system must deploy a countermeasure to stop the
attack and protect the applications. However, very limited countermeasures can be taken
without knowing where the HT was implanted. The literature presents solutions to localize
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attacks in NoCs (Chapter 2), but methods adopted in the literature rely on adding hardware
to the untrusted router, making the security mechanism itself insecure.

1.1 Objectives

The strategic objective of this work is to create a noninvasive algorithm to localize
HT-infected links in an untrusted NoC by probing the network with test packets.

To reach the strategic objective, the following specific goals are set:

SG1 Integrate the SNIP into the platform
Complete the integration of the SNIP into the reference manycore platform.

SG2 Warning generation on the SNIP
Detect security anomalies within the SNIP and send warning messages to the Security
Manager on the MPE (Manager PE) so it can detect the occurrence of attacks.

SG3 HT insertion framework
Build a framework to automatically insert HTs in the NoC when compiling the platform,
making it possible to perform different simulations of HT attack scenarios.

SG4 Probing protocol for localizing static HTs in the NoC
The core of this work. This objective consists in the design and implementation of an
algorithm for localizing HTs by probing the NoC with test packets. This first version of
the algorithm focuses on static HTs (that have a fixed activation window and are easier
to localize). The rationale for choosing this type of HT is to simplify the attack detection
and focus the research on the probe method.

SG5 Extend probing protocol to detect intermittent HTs
Make modifications to the probing protocol to detect intermittent HTs (that have random
activation windows and are more challenging to localize).

SG6 Integration with the Security Manager
Integrate the probing protocol with the Security Manager on the MPE. The Security
Manager will acquire the information generated across the system, identify the HT
attacks, and trigger the HT localization process.

1.2 Original Contributions

This section enumerates the original contributions of this dissertation.
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• Warning feature of the SNIP (Section 3.2) – SG1 and SG2. This work expands the
SNIP security feature of the baseline platform. The SNIP was modified to integrate
a warning generation feature that notifies the security manager whenever a security
anomaly is detected at the SNIP. This allows the security manager to recognize differ-
ent types of attacks to IO communication and apply specialized countermeasures.

• HT Insertion Framework (Section 4.2) – SG3. An automated framework for the in-
sertion of HTs in the NoC. The proposed framework is agnostic to the NoC and can
thus be configured to work with other platforms. This framework sets the foundation for
conducting extensive HT-based attack campaigns on the NoC. Additionally, it enables
the exploration and development of new security mechanisms, thereby contributing to
the field of security in manycore systems.

• Fault-tolerance mechanisms for the NoC (Section 3.3) – SG3. Although the liter-
ature acknowledges the occurrence of attacks and faults, there is no solution to their
side effects on NoC. We identified four types of side effects induced by HTs that nega-
tively affect message exchange between PEs, and we proposed solutions to keep the
NoC operational during faults or HT attacks.

• Probe API (Section 6.1) – SG4 and SG5. Implements a protocol that sends probe
packets to test specific routes of the NoC. The probes can detect HT attacks that
disrupt the communication between cores by dropping or delaying packets. The probes
can be configured in different ways, allowing the Probe API to detect HTs with both
large and small activation windows while optimizing performance.

• HT Localization Algorithms (Section 6.2) – SG4 and SG5. Security mechanisms that
find the location of HTs inside an infected path. The localization algorithms use the
Probe API to perform systematic tests on the NoC and locate the position of HTs. We
propose different algorithms to locate both static and intermittent HTs. The advantage
of our approach is that the HT localization does not rely on adding security features to
the NoC router, but instead uses probe packets to test paths of the NoC.

• HT localization flow integrated in the security manager (Section 4.4) – SG6. We
propose integrating different security mechanisms into one unified HT localization flow
in the security manager. This security flow is responsible for: monitoring the communi-
cation, detecting HT attacks, finding the location of the HTs, and deploying the corre-
sponding countermeasure. Furthermore, it generates a health report about each link
in the NoC and provides critical information that the system manager can use to make
decisions regarding security and fault tolerance. The HT localization flow is designed
to be modular; each step of this process can be swapped for other implementations
according to necessity. The proposed flow is flexible and, thus, can be adapted for
adoption in other platforms.
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1.3 Publications During de MSc Period

During the development of this work, the author authored or co-authored four con-
ference papers and three journal articles.

Conference papers:

Lightweight Authentication for Secure IO Communication in NoC-based Many-cores
Rafael Follmann Faccenda, Gustavo Comarú, Luciano Lores Caimi, Fernando Gehm Moraes
In: ISCAS 2023
https://doi.org/10.1109/ISCAS46773.2023.10181962

Secure Network Interface for Protecting IO Communication in Many-cores
Gustavo Comarú, Rafael Follmann Faccenda, Luciano Lores Caimi, Fernando Gehm Moraes
In: SBCCI 2023
https://doi.org/10.1109/SBCCI60457.2023.10261655

Fortifying NoC-Based Manycores: Distributed Monitoring to Detect Security Threats
Rafael Follmann Faccenda, Gustavo Comarú, Ney Calazans, Luciano Lores Caimi, Fernando Gehm Moraes
In: ICECS 2024
https://doi.org/10.1109/ICECS61496.2024.10849315

Hardware Trojan Localization for Untrusted Network-on-chips
Gustavo Comarú, Rafael Follmann Faccenda, Luciano Lores Caimi, Fernando Gehm Moraes
In: LASCAS 2025

Journal articles:

SeMAP - A Method to Secure the Communication in NoC-based Many Cores
Rafael Follmann Faccenda, Gustavo Comarú, Luciano Lores Caimi, Fernando Gehm Moraes
IEEE Design & Test, vol. 40(5), pp 42-51, October 2023.
https://dx.doi.org/10.1109/MDAT.2023.3277813

A Comprehensive Framework for Systemic Security Management in NoC-Based Many-Cores
Rafael Follmann Faccenda, Gustavo Comarú, Luciano Lores Caimi, Fernando Gehm Moraes
IEEE Access, vol. 11, pp 131836-131847, November 2023
https://doi.org/10.1109/ACCESS.2023.3336565

Integration of Monitoring Mechanisms in Secure Network Interfaces for Peripherals to Protect IO Communi-
cation in NoC-based Many-cores
Gustavo Comarú, Rafael Follmann Faccenda, Luciano Lores Caimi, Fernando Gehm Moraes
Journal of Integrated Circuits and Systems (JICS), vol. 19, n. 3, December 2024.
https://doi.org/10.29292/jics.v19i3.907

https://doi.org/10.1109/ISCAS46773.2023.10181962
https://doi.org/10.1109/SBCCI60457.2023.10261655
https://doi.org/10.1109/ICECS61496.2024.10849315
https://dx.doi.org/10.1109/MDAT.2023.3277813
https://doi.org/10.1109/ACCESS.2023.3336565
https://doi.org/10.29292/jics.v19i3.907
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1.4 Document Organization

The remainder of this dissertation is organized as follows.

• Chapter 2 discusses related work to this dissertation. This chapter includes proposals
that localize attacks in NoC-based manycores or protect the system against HTs at
runtime. This chapter ends by evaluating the weaknesses and strengths of the dis-
cussed works.

• Chapter 3 presents the baseline manycore system used to develop this work. The
chapter is divided into four parts: a) an overview of the baseline platform and its
main components; b) an introduction to SNIP, which is a security feature added to
the platform to protect communication with peripherals; c) an explanation of faults/at-
tacks caused by HT effects in the NoC; and d) a discussion about the architectural
assumptions used in this work.

• Chapter 4 elaborates the problem that this dissertation aims to solve. It begins by
describing how the HT works, then explains its insertion into the platform, defines
the attacks considered throughout this work, and finally provides an overview of the
proposed solution.

• Chapter 5 presents the monitoring phase of the proposed security flow. This chapter
explains how communication is monitored and how the HT attacks are detected. This
chapter also presents the main data structures used throughout the HT localization
proposal.

• Chapter 6 is the core of this dissertation. It presents the localization phase of the pro-
posed security flow, which includes the Probe API used to test individual paths of the
NoC by sending probe packets, and the HT localization algorithms that systematically
search the NoC to find the location of HTs.

• Chapter 7 evaluates the security flow through a set of attack campaigns.

• Chapter 8 concludes this dissertation and discusses possible future work.
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2. RELATED WORK

This chapter discusses proposals that localize attacks in NoC-based manycores or
propose solutions to protect the system against HTs at runtime.

2.1 Hardware Trojan Detection and High-precision Localization in NoC-based MP-
SoC using Machine Learning

Wang and Halak [2023] considers that the NoC routers can be infected by HTs
performing tampering attacks, modifying the packet content before injecting it into the NoC
or during its transmission through the routers. Tampering the packets’ content could also
lead to information leakage and DoS. To tackle this issue, the authors propose a framework
for detecting the tampering attacks and localizing the HT-infected router.

The proposed framework uses a machine-learning (ML) model to find packet con-
tent anomalies, thus detecting tampering attacks. Once an attack is detected, every router
in the XY path taken by the anomalous packet is considered suspicious. Tables are used
to keep the “security credit” of each router; every time a tampering attack is detected, the
suspicious routers have their security credit decremented. Over time, a low-security credit
value determines which router is responsible for the attacks.

This process is divided into three steps: calibration, detection, and localization. The
ML model used to detect tampering is trained offline and considers features such as source
router, destination router, memory address, and packet type. The sensitivity of the ML model
is adjusted dynamically at runtime to detect anomalies more accurately.

Calibration phase: the first few hundred packets sent through the NoC are considered
normal and used to calibrate the sensitivity of the tampering detection. After this initial
calibration, the sensitivity will remain dynamically adjusted throughout the system’s
execution.

Detection phase: the ML model monitors packet parameters during this phase. They are
considered anomalous if they are out of the sensitivity window defined by the calibra-
tion. Anomalous packets trigger the localization phase, while regular packets are used
to calibrate the mechanism further.

Localization phase: The system updates the security credit tables whenever a tampered
packet is detected. There are two different tables: one for source routers and another
for path routers. When the tampered packet is found, the tables are update by: decre-
menting 5 credits from the source router (in the first table) and 3 credits from the other
routers in the packet’s path (in the second table). Every other router in the system



19

recuperates 1 credit, as they are not involved in this attack. Two criteria are used to
stop the localization: (a) there must be at least 5 routers with negative credits in each
table, and (b) the worst routers must be the same in both tables. If these conditions
are met, the router with the smallest credit is considered infected by an HT.

Figure 2.1 illustrates the different steps of the localization framework. Calibration
and detection are shown in Figure 2.1 (a). The black line represents the output prediction of
the ML. The blue and yellow lines correspond to the lower and upper thresholds for detecting
anomalies. Figure 2.1 (b) shows the localization phase in a 7x7 system. The HT infects the
router (5,7). The heat map shows the credit value of each router in the system. The routes
taken by malicious packets are indicated with arrows. The picture shows both credit tables:
source and routing path. This scenario meets the two-stop conditions and successfully
localizes the HT in the (5,7) router.

Figure 2.1 – Calibration, detection, and localization steps of the framework, considering a
7x7 system with one HT in the router (5,7). (Source: Wang and Halak [2023].)

A weakness of this method is that it relies solely on the anomalous packets to
perform the localization. Since the framework uses the intersection between suspicious
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paths to determine the infected router, an attack that does not affect many different paths
could remain unlocalized. As future work, the authors suggest proactively sending/receiving
packets to search for hidden HTs.

2.2 EETD - An Energy Efficient Design for Runtime Hardware Trojan Detection in
Untrusted Network-on-Chip

Hussain et al. [2018] divide HT detection in two categories: End-to-End (E2E) and
Hop-to-Hop (H2H). E2E detection monitors only the communication endpoints, which are
relatively less costly but cannot directly localize the HT. On the other side, H2H detection
deploys security mechanisms in every communication router, being able to immediately lo-
calize the HT upon detection. The main problem with H2H detection is that it amounts to
a greater area and power overhead. While the HT is not activated, a significant amount of
energy is wasted due to unnecessary monitoring.

The authors propose an HT localization solution that leverages E2E and H2H de-
tection features. It consists of an energy-efficient HT detection (EETD) design that uses
selective activation/deactivation of detection units to reduce power overhead.

The EETD framework uses two types of detection units. The first type is the E2E
Detection Units (EDUs), which are attached to the cores and are always active. They
authenticate the incoming packets and detect when an HT becomes active. The second
type of detection unit is the Localization Units (LUs). They are deployed in the NoC links
and can be dynamically attached/detached from the system. To implement the framework,
any state-of-the-art attack detection unit can be used as an EDU. Similarly, to locate the
HT-infected router some H2H detection units can be used as LUs.

When an EDU detects the occurrence of an HT attack, it activates a worm-based
algorithm that selectively enables LUs to localize the HT. The "worm" follows the direction
of the tampered packets until it stops in the location of the HT-infected router. Figure 2.2
illustrates this process. The worm-based localization algorithm is composed of four steps:

Column movement: the algorithm starts by activating all LUs on the column. Each LU
can capture the tampered packets from all directions. If the attacks are detected in the
vertical links, the worm will move vertically along the column. Figure 2.2 (c-d).

Row activation: during this step, the worm detects the row infected by the HT and enables
their correspondent LUs. This can be done either by receiving a tampered packet from
a horizontal link, or if the worm is stuck at a location for too long and exceeds the
threshold time. Figure 2.2 (e).
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Row movement: a row search is performed, similar to the way a column search was
performed in step 1. For each new detection, the worm moves forward in the direction
of the HT. Figure 2.2 (f-g).

Localization: finally, if the worm stops at a location for too much time and exceeds the
threshold, the worm location is regarded as the HT location. Figure 2.2 (h).

The worm-based algorithm for localizing an HT. The source router (S) sends a message to target (D), but
an HT in the path (T) diverts the packet to another router (F). The EETD framework starts the worm-based
algorithm to search for the HT.

Figure 2.2 – HT localization method proposed by Hussain et al. [2018].

The authors propose an HT localization mechanism that mitigates the costs of H2H
detection. Enabling the LUs only when performing the localization algorithm results in saving
power. A drawback is that since the detection and localization of the HT are performed at dif-
ferent moments, the HT can switch off before the localization algorithm is finished executing,
thus remaining unlocalized.

2.3 Sniffer - A Machine Learning Approach for DoS Attack Localization in NoC-
based SoCs

Sinha et al. [2021] aim to recover the NoC from DoS-flooding attacks by localizing
Malicious IPs (MIPs). According to the authors, the statically configured thresholds typically
used in the literature to detect anomalies are unreliable for real and dynamic systems. They
propose an ML-based system called Sniffer, which automatically configures thresholds to
detect malicious behavior and accurately localize MIPs.
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In this framework, each router contains its own ML model, which is trained of-
fline using NoC features such as: buffer witting time, inter-flit interval, virtual channel occu-
pancy. These models are used to distinguish between normal and malicious flows in the
NoC routers.

The localization algorithm employed by the Sniffer framework can be divided into
the following steps:

Attack detection: each IP block is responsible for monitoring the incoming communication
and detecting the occurrence of flooding attacks. Once the IP detects an attack, it
initiates the Sniffer localization process by raising a flag to the router.

Congestion inspection: the Sniffer uses an ML model embedded within the router to
inspect the congestion status of the incoming ports, determining whether they are
under attack or not. If the ML model flags the status as an attack, the router creates a
probing packet and sends it to the neighbor router toward the suspicious port. When
the next router receives the probing packet, it will repeat the inspection step in its ports.
As this process continues, the probing packet will be propagated toward the MIP.

MIP localization: the probing packet traverses through the NoC in the opposite direction
of the attack path, eventually arriving at the malicious IP. When this happens, the con-
gestion inspection will find that the local port is the source of the malicious flow, and
the MIP will be localized.

To better detect anomalous flows, the ML model uses a collective decision-making
strategy: neighbor routers help to decide whether an attack is happening or not. Each router
uses its ML model to detect the anomalous behavior, and then an AND/OR operation is per-
formed between the outputs of the neighbor models. Whether an AND or OR operation is
performed is decided offline, and help prevent false-positives and false-negatives, respec-
tively.

When sending the probing packet, each router appends its own Node_ID in the
packet payload. This serves the purpose of detecting loops in the path followed by the probe
packet. Such loops would occur when an attack is coordinated by multiple IPs. If the probe
packet returns to its origin, the Node_IDs are retrieved from the payload, and every router in
the path is marked as suspicious.

2.4 Detection and Prevention Protocol for Black Hole Attack in Network-on-Chip

Daoud and Rafla [2019] consider that HTs can infect the NoC, and that its routers
cannot be trusted. When a router sends a packet, it does not know if it will correctly reach its
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destination or if the next router will simply drop the packet. The proposed solution consists
in carrying an ack signal from the current router to the penultimate router in the path.

Figure 2.3 considers the communication between a source router (S) and a target
(D) router, passing through four routers (R1 to R4). Data transmission is represented in
solid black lines, ack signals are shown as dashed lines. The router R1 does not know if the
packet successfully reached R3 or if R2 dropped it. The proposed solution is to carry an ack
signal from R3 to R1. The ack signal enables R1 to know if the communication has failed
and can request to resend the packet.

Communication between a source router (S) and target router (D), passing through four routers (R1 to R4).
Solid black lines correspond to data transmission, while dashed lines are ack signals.

Figure 2.3 – HT localization method proposed by Daoud and Rafla [2019].

The security mechanism implemented in this work achieved an overhead of 10.83%,
27.78%, and 21.31%, in area, power, and performance, respectively.

This invasive security mechanism must be implemented within the untrusted router,
thus also being vulnerable to attacks. The authors mention that the ack signal can forged by
a malicious router (e.g., the R2 router in Figure 2.3). According to the authors, an authen-
tication method is still needed to assert if the ack signal was forged or not. They propose
doing so either by using a PNRG to generate keys inside each router, or by implement-
ing an authentication protocol in the PEs firmware. Both options appear to have area and
performance overheads, respectively.

2.5 Towards Protected MPSoC Communication for Information Protection Against
a Malicious NoC

Sepúlveda et al. [2017] considers that the NoC can be tampered before its integra-
tion into the system. The network interfaces, conversely, are considered secure; their role in
the network integration requires them to be built in-house. The adopted threat model is that
an HT could perform the following attacks: copying, corrupting, and rerouting packets.

To tackle this issue, the proposed solution is to instrumentalize the Network Inter-
face between the PE and the NoC to protect the communication. To ensure confidentiality,
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an AES-CTR module is used to derive dynamic keys, and packet encryption is performed
by XORing packets with this key. Each new packet uses a different key. MACs are created
using the SipHash algorithm to assert the packet’s integrity.

This work relates to ours by considering that the NoC is susceptible to be infected
with HTs and by proposing security mechanisms to tackle this vulnerability. But the mech-
anism proposed here aims to protect the packet from snooping, corruption and leakage
through the usage of data obfuscation and message authentication, leaving DoS scenarios
out of scope. Our work aims to develop a localization functionality to find out which NoC
router and/or link is infected, thus enabling high-level decision-making to prevent or mitigate
the attack, restoring secure system communication.

2.6 Real-Time Detection and Localization of Distributed DoS Attacks in NoC-
Based SoCs

Charles et al. [2020] proposes a framework for real-time detection and localization
of DoS attacks based on flooding caused by malicious IPs. Even though the authors do not
consider the attacks coming from HTs, the localization method based on NoC presented in
the paper is relevant to our work.

The flooding attack is detected via packet arrival curves (PAC) and destination la-
tency curves (DLC). At design time, communication patterns are gathered from static anal-
ysis of the network traffic, generating the PACs and DLCs for each IP. Then, at runtime, IPs
monitor the traffic, and when a PAC violation is detected, the IP starts the diagnosis.

First, the destination IP (D) verifies the DLCs to identify abnormal latencies and
elects the source of these packets as a Malicious 3PIP (M3PIP) candidate, referred to as
S. Then, D sends a diagnostic message to S through the routers of the congested path.
Each router that receives the diagnostic message analyzes the flows of its ports and sets
a flag if the ports are congested. If the next hop of the diagnostic message is congested,
the message is forwarded to the next router. Otherwise, the current router is marked as a
potential attacker.

The authors prove that if the congested path contains no loops, their approach
can localize at least one attacker. As a result, authors show that all attack scenarios were
localized with a router area overhead of less than 6%.
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2.7 DoS Attack Detection and Path Collision Localization in NoC-Based MPSoC
Architectures

Chaves et al. [2019] also proposes a DoS-flooding attacker localization by path
collision. The authors present two approaches: the Collision Point Router Detection (CPRD),
that evolves to the Collision Point Direction Detection (CPDD). CPRD consists on equipping
the data NoC routers with DoS monitors attached to every router buffer. These monitors
receive the packets as well as information regarding output requests and grants. In addition
to that, the data packet tail flit now carries the address of the router where the packet waited
the most, and the amount of clocks it waited (Figure 2.4(a) Tail flit bits 28 - 11). The DoS
manager is responsible for evaluating and updating these values in the packet.

Figure 2.4 – DoS detection using Collision Point Direction Detection (CPDD). (Source:
Chaves et al. [2019].)

Upon receiving the packet, if the end-to-end latency is above the acceptable range,
the values are retrieved from the packet and analyzed with previous DoS reports, identifying
the PE responsible for the attack.

CPDD extends the CPRD by adding more values to the tail flit of the packet: the
inputs competing to enter the sensitive path and the output for which they compete (Fig-
ure 2.4(a) Tail flit bits 10 - 1). With this mechanism, the firmware is able to narrow down the
suspects and localize the malicious PE causing the flooding.

The authors conducted simulations using various attack configurations, varying the
packet length, packet injection rate, attack sources, and sensitive path. The results indi-
cate that longer attack packets have a more significant impact. Furthermore, their proposed
methods identified the direction of incoming attack flows in nearly all cases. The area over-
head of the DoS monitor was 17.7% and 23.2% for CPRD and CPDD, respectively.
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2.8 Final Remarks

The papers discussed in this chapter relate to ours by proposing a mechanism for
either: localizing an HT inside the NoC [Wang and Halak, 2023; Hussain et al., 2018; Sinha
et al., 2021; Daoud and Rafla, 2019]; localizing an attack coming from an IP connected to
the NoC [Charles et al., 2020; Chaves et al., 2019]; or protecting the applications from an
insecure NoC [Sepúlveda et al., 2017; Bhamidipati and Vemuri, 2024; Hossain et al., 2024].
Table 2.1 categorizes these related works considering the adopted threat model and their
proposed solution to protect the system.

Table 2.1 – Classification of works related to HT localization in NoC-based manycores.
(Source: the Author.)

# Work Attacker location Attack type Security mechanism Detection Localization Mechanism location

1 Wang and Halak [2023]
NoC router

Network interface
Packet tempering

Tempering detection (ML)

Credit table
E2E Reactive (Not disclosed)

2 Hussain et al. [2018] NoC router

Information leakage

Flooding (DoS)

Performance degradation

Packet tempering

Selective activation of H2H units

Worm-based algoritm

E2E

H2H
Reactive

Network interface

NoC links

3 Sinha et al. [2021] IP block
Flooding (DoS)

Performance degradation

Flooding detection (ML)

Probe packets
H2H Reactive NoC router

4 Daoud and Rafla [2019] NoC router Packet dropping (DoS) Ack signal H2H – NoC router

5 Sepúlveda et al. [2017]
NoC router

NoC links

Information leakage

Packet tempering

Packet encryption

Authentication codes
– – Network interface

6 Charles et al. [2020] IP block Flooding (DoS) Diagnosis message H2H Reactive NoC router

7 Chaves et al. [2019] Application software Flooding (DoS) Path collision E2E Reactive NoC router

8 This work NoC links

Information leakage

Flooding (DoS)

Packet dropping (DoS)

Performance degradation

Probe packets

Trust score table

E2E

H2H

Reactive

Preventive
OS (software)

Attacker location: specifies where the malicious component is deployed – e.g., embedded
within the routers or links of the NoC or in the software of a malicious application
running in a core. Some works [Sinha et al., 2021; Charles et al., 2020; Chaves et al.,
2019] do not consider the attacker to be specifically an HT, but their proposed solutions
are still applicable for localizing HT attacks.

Attack type: defines which attacks can be performed, such as DoS-flooding, information
leakage, or packet tampering.

Security mechanism: overviews the features implemented to protect the system.

Detection: relates to the type of monitoring used to detect the occurrence of an attack: it
can be either Hop-to-Hop (H2H) with monitors deployed in every router, or End-to-End
(E2E) with monitors at the communication endpoints. Hussain et al. [2018] uses both
types of detection, enabling the more precise H2H modules only after the attack is
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detected by the E2E monitors. Our proposed approach employs an E2E protocol to
monitor traffic and an H2H algorithm to localize the HT.

Localization: specifies when the localization mechanism is deployed. Reactive localization
is triggered by the detection of an attack and aims to find the attacker; preventive
localization performs exploratory searches for HTs before they interfere with system
behavior. Daoud and Rafla [2019] does not propose a localization algorithm; since it
uses H2H detection, the malicious router is immediately identified when performing an
attack. Sepúlveda et al. [2017] aims to protect the packet’s integrity and confidentiality
passively, thus, it does not address detection and localization.

Mechanism location defines where the security features are implemented in the system
(e.g., integrated into the NoC routers or in the network interface).

Our work stands out from the others in two main ways. Related work adopts reac-
tive methods of localization, in which the system searches for attackers only after detecting
their interference in the system’s behavior. This restricts the localization scope to the NoC
region currently being used by the applications, therefore allowing HTs in the unused regions
to remain active and cause problems later on. Our proposal aims for a preventive localization
method in which the system proactively searches for HTs throughout the NoC, leveraging
unused communication resources to detect HTs before they interfere with system behavior.

The other difference in our work is that we propose a non-invasive localization
mechanism. Most of the works in the literature propose adding security mechanisms to the
NoC routers or links, which comes with some disadvantages. Sinha et al. [2021]; Daoud
and Rafla [2019]; Charles et al. [2020]; Chaves et al. [2019] add security hardware to the
NoC router. This can be a good solution for protecting the system against malicious cores,
but unsuitable when the threat model is extended to include HTs infecting the NoC itself:
by implementing the security hardware inside the untrusted router, the security mechanism
cannot be fully trusted. Hussain et al. [2018] proposes to deploy detection units in every NoC
link, which results in costly area overhead. Alternatively, our work aims for an HT localization
mechanism that does not add security features to the NoC but instead uses probe packets
sent by the OS to determine if the NoC has infected routers.
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3. BACKGROUND KNOWLEDGE

This Chapter presents the baseline manycore system used in this work, which
is a version of the Hermes MultiProcessor System (HeMPS) [Woszezenki, 2007; Carara
et al., 2009] with the addition of security and fault-tolerance enhancements [Caimi, 2019;
Fochi, 2019; Faccenda, 2024]. The baseline platform and this work were developed at the
Hardware Design Support Group research team [GAPH, 2023].

This chapter is divided into four parts. Section 3.1 overviews the baseline platform
and its main components. Section 3.2 presents the SNIP: a security feature added to the
HeMPS platform to protect communication with peripherals. Section 3.3 examines the con-
sequences of HTs in the NoC and outlines solutions to mitigate them. Finally, Section 3.4
discusses the architectural assumptions used in this work.

This chapter contains contributions that were published. The SNIP security feature
covered in Section 3.2 was published in:

Secure Network Interface for Protecting IO Communication in Many-cores
Gustavo Comarú, Rafael Follmann Faccenda, Luciano Lores Caimi, Fernando Gehm Moraes
In: SBCCI, 2023

Integration of Monitoring Mechanisms in Secure Network Interfaces for Peripherals to Protect IO Communi-
cation in NoC-based Many-cores
Gustavo Comarú, Rafael Follmann Faccenda, Luciano Lores Caimi, Fernando Gehm Moraes
In: Journal of Integrated Circuits and Systems (JICS), 2024

The handling of effects induced by HT attacks in the NoC, covered in Section 3.3,
was published in:

Hardware Trojan Localization for Untrusted Network-on-chips
Gustavo Comarú, Rafael Follmann Faccenda, Luciano Lores Caimi, Fernando Gehm Moraes
In: LASCAS, 2025

3.1 Architecture of the Baseline Platform

The main HeMPS platform features are:

• NoC-based system: the HERMES NoC [Moraes et al., 2004] allows multiple commu-
nications between PEs while ensuring scalability. The NoC adopts 2D-mesh topology,
one physical channel, flit width equal to 32 bits, input buffer, credit-based flow control,
round-robin arbitration, and XY-routing algorithm.
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• Homogeneous system: all PEs have the same hardware architecture with a router, pri-
vate memory, an MIPS-like processor, and a DMNI (Direct Memory Network Interface)
module.

• Distributed memory: each PE has a true dual-port scratchpad memory for instructions
and data, while message-passing performs the communication between PEs.

• Applications are modeled as a Communication Task Graph (CTG). The CTG is a model
to represent functional parallelism, where an application is composed of independent
parts and thus is divided into tasks [Rauber and Rünger, 2013]. A graph node repre-
sents each task in a CTG, and the graph edges represent the communication between
these tasks.

3.1.1 Hardware Model

Figure 3.1 overviews the extended HeMPS manycore, supporting fault tolerance
and security mechanisms. In Figure 3.1(b), two mesh NoCs interconnect PEs: data and
control NoC. The data NoC is a standard wormhole packet switching NoC without virtual
channels. It has two particular architectural features. The first one is the adoption of two
physical channels, acting as two disjoint NoCs. To minimize the area overhead, the flit size
is 16 bits (half of the word size), and the network interface (DMNI) is responsible for serial-
izing/deserializing the flits. The reason to adopt two physical NoC is to enable fully adaptive
routing. The second feature is simultaneous support for XY (default routing algorithm) and
source routing (SR). Source routing adopts the turn-based routing model, with the packet
header carrying the turns that must be taken in the path. The SR is required when, e.g., it is
necessary to avoid a path with a faulty or infected router.

The data NoC is a wormhole-switched network that uses a credit-based protocol
to send flits between the routers. This protocol uses four signals: tx, data, credit, and EOP.
The tx signal informs the receiver router that the sender is ready to transmit a flit, which is
held in the data bus. The receiver router uses the credit signal to inform the sender if there
is enough space in the buffer to accept the flit. If both the tx and credit signals are raised,
the value of data is accepted by the receiver router. The last flit of the packet is marked by
raising the EOP (i.e. end-of-packet) signal. When the first flit of a packet is received, the
router executes the routing algorithm and decides in which direction to send the packet. The
router remains switched until it sends the EOP flit.

The control NoC [Wachter et al., 2017] (also known as BrNoC) is a lightweight
NoC, with all packets having one flit. When transmitting in broadcast (default transmission
mode), packets reach all PEs of the system. Thus, this NoC can find a path from a source
to a target PE if it exists, even in the presence of a fault or an HT in the data NoC. This
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Link Controls, also known as Wrappers (W), are added to the control signals of NoCs links, allowing to
enable/disable ports individually.

Figure 3.1 – NoC-based manycore architecture (Source: [Caimi, 2019]).

NoC may also use the unicast transmission to create a path between a source and a target
PE, using a backtracking procedure. For security reasons, only the OS accesses the control
NoC, avoiding its use by malicious applications.

Both NoCs contain Link Controls, or wrappers, in the control flow signals. When
activated, the wrapper enables the discard of all incoming and outgoing packets of a given
port. The data NoC observes and respects the status of the wrappers. A data message
arriving in an activated wrapper is always discarded, and the control NoC replies to the
source of the message a new broadcast reporting that the message needs retransmission.
Wrappers can be used to create secure zones [Caimi, 2019], that are isolated regions of the
manycore used to execute applications with security constraints.

The control NoC has two operation modes: global and restrict. The global mode
enables the control messages to pass through the wrappers, even if they are enabled. This
mode enables the PEs inside a secure zone to exchange messages with manager PEs. The
restrict mode observes the status of the wrappers, i.e., if a control message hits an acti-
vated wrapper, the message is discarded, which is fundamental for searching paths without
traversing secure zones.

The platform is modeled at the RTL level, part in SystemC (memory, processor,
DMNI) and part in VHDL (data NoC and control NoC routers).
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3.1.2 Software Model

Scalability at the hardware level comes from PEs executing several tasks in paral-
lel, using the NoC to transmit multiple flows concurrently. However, large systems require
high-level management for controlling the deployment of new applications, monitoring re-
sources usage, manage task mapping and migration, and can execute self-adaptive actions
according to systems constraints. The management of HeMPS occurs in the Manager PE
(MPE), which has a different kernel from the other PEs.
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(b) Regular PE kernel manage users’ tasks.

Figure 3.2 – Overview of the kernels (Source: [Ruaro et al., 2019; Caimi, 2019]).

At the Manager PE level, the local memory is reserved to the kernel, without exe-
cuting user’s tasks. The Manager PE executes heuristics as task mapping, task migration,
monitoring, authentication and key management (Figure 3.2 (a)).

At the regular PE level, a multi-task kernel acts as an Operating System. The plat-
form adopts a paged memory scheme to simplify the kernel design. Examples of actions
executed by the kernel include task scheduling, inter-task communication (message pass-
ing), interrupt handling (Figure 3.2 (b)).

Both manager kernels are written in C language. Only a small part of the code is
written in assembly language, responsible for executing context saving and handling hard-
ware and software interruptions.

Applications are written in C language. They are modeled as task graphs A =<
T , P, D, S >, where T = {t1, t2, ..., tm} is the set of application tasks corresponding to the
graph vertices; P = {p1, p2, ..., pn} is the set of peripherals corresponding to the graph ver-
tices. The D set represents the application descriptor which contains the communicating
pairs {(ti , tj), (ti , pr ), (tj , ps), ..., (tm, pn)} with (ti , tj , ..., tm) ∈ T, (p1, p2, ..., pn) ∈ P. A pair (ti , tj)
denotes the communication from task ti to task tj (ti → tj), and a pair (ti , pr ) denotes the
communication from task ti to peripheral pr (ti → pr ). The S value indicates if the applica-
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tions execute in normal mode (value 0) or secure mode (value 1). Figure 3.3 presents an
application following this model.

task
A

task
B taskC

taskE periph
1

taskD

Send(&msg, taskB)
Send(&msg, taskD)

Receive(&msg, taskA)
Send(&msg, taskC)

Receive(&msg, taskB)
Send(&msg, taskE)

Receive(&msg, taskA)
Send(&msg, taskE)

Receive(&msg, taskC)

IO_Send(&msg, periph1)
Receive(&msg, taskD)

taskA:
   taskB
   taskD
taskB:
   taskC
taskC:
   taskE
taskD:
   taskE
taskE:
   periph1

secure: yes

App.
Descriptor

Figure 3.3 – Application task graph example (Source: [Caimi, 2019]).

Tasks communicate using message-passing (MPI-like) primitives. The API pro-
vides two primitives: a non-blocking Send() and blocking Receive(). The main advantage of
this approach is that a message is only injected into the NoC if the receiver requests data,
reducing network congestion. To implement a non-blocking Send(), a dedicated memory
space in the kernel, named pipe [Carara et al., 2009], stores each message written by tasks.
Within this work, the pipe is a kernel memory area reserved for message exchanging, where
messages are stored in an ordered fashion and consumed according to it. Each pipe slot
contains information about the target/source processor, task identification and the order in
which it is produced.

At the lower level, the kernel communicates with the data NoC with data_request
and data_delivery packets. The pipe and a message buffer enable packet retransmission to
inter-task communication and inter-manager communication, respectively.

3.2 Secure Network Interface for Peripherals (SNIP)

The enhancement of the HeMPS system focused on establishing a secure environ-
ment for executing critical applications, requiring the development of multiple security fea-
tures. One of these enhancements is the Secure Network Interface for Peripherals (SNIP),
which protects communication with IO devices, integrating security mechanisms to safe-
guard communication with internal components in manycores. The SNIP was partly devel-
oped during the period of this MSc, and although it is not related to the premise of hardware
HT localization, it is one of the contributions of this dissertation.

Figure 3.4 presents the IO communication model adopted in the platform. This
picture highlights five important elements of the IO communication, which are described
below.
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Figure 3.4 – IO communication model adopted in the HeMPS baseline platform (Adapted
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• Opaque Secure Zone (OSZ [Caimi and Moraes, 2019]) – an isolated region of the
manycore that executes an application with security requirements, blocking the traffic
from other applications. The spatial isolation prevents attacks from other flows or tasks.

• Access Point (AP [Faccenda et al., 2023b]) – opening in an OSZ border that controls
the entry and exit of packets. Is the only point the application can use to communicate
with the exterior of the OSZ.

• Path p – the path between the AP and the SNIP. The path is defined by source routing
(SR).

• Secure Network Interface for Peripherals (SNIP) - to secure the communication
between the IO device and the application with security requirements. The SNIP will
be further discussed in this section.

• System Manager PE (MPE) - PE reserved to execute management operations, such
as application allocation and mapping, PEs and SNIPs configuration.

The packet exchange between IO devices and applications is based on the host-
device model, where the PE acts as the host and the SNIPs function as the devices. Thus,
communication is always initiated by the host (PE), and the device (SNIP) must send a
response packet to confirm the operation.

To receive data from an IO device, the task sends an IO_READ packet, and waits
for an IO_DELIVERY packet with the requested data. To send data to the IO device, the task
transmits an IO_WRITE packet and waits for an IO_ACK to confirm the operation’s success.

The SNIP protects the system from spoofing, DoS and misrouting attacks by imple-
menting three main security mechanisms: (i) authentication; (ii) packet discard; (iii) warning
generation.
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Figure 3.5 – SNIP architecture and interfaces (Adapted from [Comarú et al., 2023]).

The SNIP employs an IO Authentication protocol, presented on [Faccenda et al.,
2023a], to enforce authentication and authorization principles. The protocol begins with the
MPE sending a command to the SNIP (IO_CONFIG), specifying the applications authorized
to interact with the IO device. Additionally, the SNIP must verify packet authenticity, send
packets with the correct authentication fields, and perform key derivation. An important
feature of this protocol is that the SNIP only communicates with authorized applications
using a fixed source-routing path set by the MPE. As a result, the IO device is prevented
from sending messages to unauthorized applications or using forged paths.

The Packet Discard mechanism is a countermeasure that focuses on quickly re-
jecting and eliminating packets that fail authentication, removing them from the NoC, and
reinforcing the principle of availability.

Both aforementioned countermeasures are applied immediately upon detecting
malicious actions to neutralize threats without delay. However, due to this automatic re-
sponse, the MPE remains unaware of suspicious behavior on the SNIPs. Therefore, the third
key countermeasure of the SNIP is Warning Generation, which notifies the MPE whenever
a security anomaly is detected at the SNIP.

The SNIP has seven main modules, as illustrated in Figure 3.5: (i-ii) Packet Handler
and Packet Builder, enable simultaneous communication to and from the NoC; (iii) Applica-
tion Table (ApT), stores sensitive data to enable communication with the applications; (iv -v )
FIFO buffers hold data sent to or received from the IO device until consumption; (vi) Key
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Generator produces and updates authentication keys; (vii) Warning Manager detects sus-
picious behavior and sends packets to the MPE. Each of these components is discussed
below, except the buffers.

Packet Handler: The SNIP acts as a slave to the system since it waits for incoming packets
to define its action. The Packet Handler is responsible for receiving packets from the
NoC and carrying out the appropriate response. It executes all the decision-making,
acting as a manager to the other components. Upon receiving a packet, the Packet
Handler analyzes its service code, which refers to the function of the packet. Ta-
ble 3.1 displays the services the SNIP supports. The SNIP discards any received
packet whose appID is not in the Application Table.

Table 3.1 – Services supported by the SNIP (Source: Comarú et al. [2023]).
Service code Packet Source Function

IO_INIT Manager PE
Packet received at system startup with the
initialization key – k0

IO_CONFIG Manager PE
Configure a line of the Application Table with
{appID, path, k1, k2, status}

IO_RENEW Manager PE
Renew the appID keys {k1, k2} receiving
parameters {n, p}

UNBLOCK_ WARNINGS Manager PE Enable the SNIP to send warning packets

IO_CLEAR Manager PE
Clear and deallocate the Application Table row
indexed by appID

IO_WRITE Application
Write data into an IO device
Application waits an IO_ACK from SNIP

IO_READ Application
Request data from an IO device
Application waits an IO_DELIVER packet

Application Table: The SNIP uses the Application Table (ApT) to allow authorized ap-
plications to access the IO device connected to the SNIP. Each line of the ApT has
the following fields: appID: application identifier; path: path between the SNIP and
the application AP; k1 and k2: authentication keys, used to certify the authenticity of
packets; status: it may assume free, pending, and used values. Note that the ApT au-
thenticates applications and not tasks. This “application granularity” reduces the ApT

size and thus silicon area compared to a table with “task granularity”. The ApT has two
interfaces, enabling the SNIP to send and receive packets simultaneously. The primary
interface (read-write) is connected to the Packet Handler, and the secondary interface
(read-only) is connected to the Packet Builder.

Key Generator: The Key Generator is responsible for creating and updating the keys
used in the Authentication Protocol. It generates two keys, {k1, k2}, using a Linear-
Feedback Shift Register (LFSR), which acts as a pseudo-random key generator. The
key size is a design time parameter, in our case we use 16-bit keys. While LFSRs
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are not the most robust method for generating pseudo-random numbers, they offer
a distributed and area-efficient solution for generating authentication keys. For the
IO_CONFIG service, the LFSR uses appID as the seed, producing k1 after n rounds
and k2 after an additional p rounds. For the IO_RENEW service, new keys are gener-
ated using k2 as the seed, following the same procedure. The generated {k1, k2} keys
are stored in the ApT row indexed by appID, with n and p being randomly generated for
each IO_CONFIG and IO_RENEW service.

Packet Builder: The Packet Builder assembles and sends packets to the applications.
These packets can be either IO_DELIVERY messages with the data requested from
the IO device, or IO_ACK to acknowledge data from the application. Once the Packet
Handler receives a valid packet from an application, it uses the Answer Request (Fig-
ure 3.5) interface to notify the Packet Builder to send an answer. The parameters
specifying the packet to be sent are appID, messageType, and requestSize. Upon re-
ceiving a request, the Packet Builder registers the parameters, raises a busy signal,
and generates the packet. The information required to build the packet header, such as
the authentication keys and the source-routing path, is retrieved from the ApT through
the secondary interface. If the outgoing packet is an IO_DELIVERY, data sent by the
IO device is retrieved from the Input Buffer and sent in the packet payload. Since only
one request can be handled at a time, if another request needs to be issued while the
Packet Builder is busy, the Packet Handler stays blocked until the completion of the
current request.

Warning Manager: The Warning Manager module detects suspicious behavior and gen-
erates warning packets to send to the MPE. The SNIP components alert the Warning
Manager through specific warning signals when irregularities occur. The Warning Man-
ager collects relevant data via the Warning Parameters interface and issues a Warning
Request to the Packet Builder, which assembles and sends the warning packet into the
NoC. The SNIP issues four types of warnings: (i) Failed authentication, triggered when
an incoming packet fails authentication; (ii) Write on a full table, indicating that the
SNIP received an IO_CONFIG request, but the table has no available space; (iii) Row
overwrite, reporting that a slot in the SNIP table for an authenticated application was
replaced; and (iv) Abnormal peripheral, signaling that the peripheral is not adhering to
the correct communication protocol.

The proposed SNIP design addresses the security challenges in manycores, specif-
ically protecting the communication with IO devices. The SNIP integrates security mecha-
nisms that safeguard communication between internal components in manycores and bridges
a research gap regarding the communication between manycores and peripherals.
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3.3 Effects Induced by HTs in the NoC

While working with HT-infected NoCs, we observed that simple faults in the packet
transmission could cause significant issues to the overall system, such as completely block-
ing the NoC. For instance, if the value of a control signal is modified (e.g., by an HT), it may
cause flits to become permanently stuck in the router, leading to congestion and potentially
blocking the manycore. Although the literature acknowledges the occurrence of attacks and
faults, there is no solution for their side effects on the NoC. Thus, to continue our work, we
first had to tackle the problem of preparing the system to handle “faulty packets” generated
by attacks originating from HTs.

Faulty packets are created when an anomaly interferes with the packet transmis-
sion protocol, altering the structure of the packet or its transmission flow. We identified four
different types of faulty packets that negatively affect the system, as presented in Table 3.2
and described below:

Packet stuck in router: a Credit Block HT acts on the control flow signals of the NoC links.
This HT type forces the credit_in to ‘0’ even if the receiver buffer has space to accept
new flits. As a result, the router cannot use this port to receive incoming flits, and
packets arriving through this infected link have to wait until the HT becomes disabled
to finally be transmitted. Non-transmitted packets occupy the NoC buffers, causing
congestion in the NoC.

Packet without tail: a packet traversing the NoC without the EOP (end-of-packet) signal-
ing. This may occur if: (1) an HT drops the tail of the packet; (2) the packet is blocked
during its transmission by an HT (by a Credit Block HT ); (3) an incorrect packet is in-
jected into the network. As a result, all links between the HT and the packet’s target
are switched (i.e., connecting an input port to an output port), preventing other flows
from using the path defined by the data flow. We call this effect as residual switching.
Furthermore, at the target PE receiving the packet, the NI will continue to wait for an
EOP-marked flit and cannot receive other packets, blocking the PE.

Packet without header: the first flits of a packet contain the information to execute the
routing algorithm. When a faulty packet loses its header, the routing algorithm is exe-
cuted using the wrong flits and routed incorrectly. The packet may either travel to the
border of the manycore and be dropped or reach an unpredictable PE and be handled
by an NI as if it were a regular packet.

Packet without header and tail: a packet traversing the network without a correct header
and without an EOP flit. This may happen, for instance, if an intermittent Black Hole HT
drops the beginning and the end of the packet, but leaves the middle part untouched.
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This causes the packet to be incorrectly routed throughout the network, leaving behind
residual switching. This is especially harmful since the path taken by the packet is
unknown, and the affected routers cannot be identified.

Table 3.2 – Effects of faulty packets on the system and the proposed solutions (Source:
Comarú et al. [2025]).

Faulty-packet issue Cause Effected location Effect
Proposed
solution

Packet stuck in
router

–Credit Block HT –NoC router
–Residual switching and
congestion

–Router Reset

Packet without tail

–Black Hole HT
–Credit Block HT
–Packet Injector HT
–Router Reset

–NoC router
–Network
interface

–Residual switching and
congestion
–Target NI waits for
non-existing packet tail

–Router Reset
–Reception
Timeout

Packet without
header

–Black Hole HT
–Credit Block HT +
Reception Timeout
–Packet Injector HT
–Flooding HT
–Router Reset

–Network
interface

–Packet is routed to incorrect
target

–BOP Signal

Packet without
header and tail

–Intermittent Black
Hole HT
–Intermittent Credit
Block HT +
Reception Timeout
–Packet Injector HT
–Flooding HT
–Router Reset

– NoC router

–Packet is routed to incorrect
target
–Packet leaves behind
residual switching

–BOP Signal

Figure 3.6 exemplifies how an HT attack can cause faulty packets. The Figure
shows the Source sending a packet to the Target using the highlighted path (the figure uses
source routing). The Credit Block HT (red X) is activated during the packet transmission,
effectively breaking the packet into two parts and causing the following issues:

• Packet stuck in router : the tail of the packet cannot be transmitted and occupies the
buffers of the network, causing congestion (red routers).

• Packet without tail : the beginning of the packet is successfully transmitted to Target,
but the absence of the EOP leaves behind a set of switched routers (yellow routers),
and other packets cannot use the same path. The Target NI does not receive an EOP
and gets stuck waiting for the second half of the packet.

Table 3.2 presents the solution proposed to protect the platform from faulty packets.
We implemented three mechanisms, described below:

Reception Timeout: to avoid the problem in which the NI gets stuck receiving a packet
that will never arrive, we implemented a timeout counter in the reception port of the NI.
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A Credit Block HT (red X ) interferes with the packet transmission protocol causing faulty packet issues in
the platform. The path between Source and Target is highlighted, and the picture presents the input buffers
for each link in the path. Gray routers have already transmitted the packet and cleared the switching; they
are now in their default state, waiting to transmit a new packet. Red routers contain the tail of the packet:
the Credit Block HT prevents them from forwarding the last flits of the packet, causing congestion. Yellow
routers have already delivered the packet to Target, but the absence of the EOP signal causes them to
remain switched.

Figure 3.6 – Example of faulty packets caused by a Credit Block HT (Source: the Author).

When a packet flit is received, the counter is set to zero. But the counter increments
every clock cycle if the NoC router stops sending new flits (i.e., the credit signal goes
to ’0’). If the counter reaches a predefined threshold, a timeout occurs. The FSMs re-
sponsible for receiving the packet are reset, aborting the reception of the faulty packet
and releasing the NI to receive other packets. In the wormhole switching, once flits
start arriving at the NI, they arrive continuously. Thus, this threshold is low, set to 30
clock cycles.

Router Reset: this mechanism resets a specific router port, clearing the residual switching
and flushing the flits in the buffer. When a faulty packet is detected (e.g., by the Re-
ception Timeout), the MPE uses the control NoC to send a RESET_ROUTER_PORT
packet to every router in the faulty packet path. The payload of this packet speci-
fies which port of the data-NoC router should be reset. When the control-NoC router
receives this packet, it sends a control signal to the data-NoC router, resetting the
specified buffer and clearing the port.

BOP Signal: prevents packets without header to navigate through the NoC. A new BOP
(i.e., beginning-of-packet) signal was created to mark the start of new packets, akin to
the EOP signal. The packet is dropped if a router or NI receives a new packet that does
not begin with a BOP flit. SoCIN is an example of NoC using BOP signal [Zefferino,
2003].
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3.4 Architectural Assumptions for Data NoC

This section formalizes the architectural assumptions adopted for the data NoC.
For our proposal to be applicable, the data NoC must implement the following requirements:

Packet signaling: the target NoC must have signals indicating the beginning and the end
of the packets, i.e., beginning-of-packet (BOP) and end-of-packet (EOP) signals. Both
signals are necessary due to the HT effects described in Section 3.3. For example, a
packet sent through the NoC can be cropped by an HT during transmission, the BOP
and EOP signals, allow to recognize and drop cut-in-half packets without impairing the
network.

Router reset: the target NoC must have a functionality that allows resetting the routers’
buffers. Due to HT effects discussed in Section 3.3, a packet can become indefinitely
stuck in the NoC, occupying routers’ buffers and propagating congestion. The buffer
reset feature allows the flits stuck in each router to be flushed, freeing the network to
send other packets.

Source routing: the target NoC must support source routing (SR). This routing algorithm
allows sending packets using specific paths to circumvent suspicious routers. The SR
feature is also necessary because our proposal for localizing HTs is based on sending
probe packets to test routes of the NoC. This method is further detailed in Section 6.1.

At the beginning of the text, we mentioned that “this work aims to build a non-
invasive solution for HT localization”. That means a method that localizes HTs without adding
hardware to the data NoC. Note that the necessary features listed in this section are not se-
curity mechanisms but minimum requirements for our proposal to be applicable. The packet
signaling and router reset are necessary for the data NoC to remain minimally functional
during faults and HT attacks, while the source routing is a commonly implemented routing
algorithm.

Works presented in the literature often embed core security features inside the
NoC router, such as communication monitors, key generation, and even machine learning
models. On the other hand, our work builds on these three requirements presented above
to propose a noninvasive localization solution for the data NoC model.
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4. THREAT MODEL AND SECURITY FLOW

This chapter details the threat model used throughout this dissertation and the
security flow. This chapter is divided into four sections. Section 4.1 introduces the HT model
we used in this work, explaining different attacks and activation mechanisms. Section 4.2
presents the HT Insertion Framework that was developed to allow seamless integration of
HTs into RTL simulations. Section 4.3 defines the actual threat model adopted for this work.
And, finally, Section 4.4 gives an overview of the security flow we propose to tackle the threat
model .

Part of this chapter, comprising Section 4.1 and Section 4.2, was published in the
following conference paper:

Hardware Trojan Localization for Untrusted Network-on-chips
Gustavo Comarú, Rafael Follmann Faccenda, Luciano Lores Caimi, Fernando Gehm Moraes
In: LASCAS, 2025

4.1 HT Model

This section presents the developed HT models and their corresponding activation
methods. These HTs are justified based on the prior study of HT types, with a detailed
taxonomy provided in Appendix A.

We model HTs as discrete hardware blocks that can be inserted into each NoC
link, placed between the transmission port of a sender router and the reception port of
a receiver router (Figure 4.1). Most related works assume that HTs are integrated within
routers, an assumption that poses significant challenges due to the requirement for detailed
knowledge of the router’s internal logic. In contrast, our work adopts a distinct and non-
invasive approach by inserting HTs into the NoC links. This method eliminates the need to
modify the router hardware to accommodate HTs.

  Hardware
  Trojan

Router A
(Output Port)

tx

data_out

eop_out

cred_in

rx

data_in

eop_in

cred_out

Router B
(Input Port)

HTs are inserted in NoC links and can access all link signals.

Figure 4.1 – Adopted model for HTs (Source: the Author).
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Designing the HT as an external entity to the router facilitates its construction as an
individual module. This approach targets minimal area and power overhead, making the HT
more efficient and less intrusive in the system’s overall architecture.

The HT module can access any control signal available in the NoC link, as illus-
trated in Figure 4.1. These signals may interfere with the credit-based flow control protocol
of the Hermes NoC (Section 3.1.1).

Each HT comprises the attack payload and an activation mechanism (trigger) [Tehra-
nipoor et al., 2023]. The attack payload implements the attack itself; it modifies the link
signals to perform an attack. The activation mechanism decides when the payload is ac-
tivated. These parts are implemented separately and can be combined to create different
HTs. We implemented four attack payloads and three activation mechanisms.

The following attack payload were implemented:

Black Hole HT: the HT drops any packet that tries to traverse the infected link, acting
as a sink for packets. It is implemented by forcing the control signal tx to ‘0’. The
sender router will send the packet as normal, i.e., with its tx=1, but from the receiver’s
perspective, no flits are being transmitted, thus effectively dropping the packet.

Credit Block HT: simulates congestion in the NoC. It forces the control signal credit_in to
‘0’. When the sender router tries to forward a packet to the receiver, it understands
there is no space left in the receiver to accept the packet, so the sender will hold
the packet flits in its buffer, causing congestion and violations of QoS and real-time
constraints. Once the HT is disabled, the packet is forwarded and continues its trans-
mission.

Packet Injector HT: sends forged packets through the NoC. The HT can inject a forged
packet in the NoC by assuming complete control over the link. This HT uses a counter
to iterate over the packet’s format: with each value, the HT injects the correspondent
flit into the receiver’s port. Then, the injected packet proceeds to be routed as a regular
packet, possibly arriving at a PE and being handled by the OS. This implementation
uses hard-coded values for the packet fields. Also, it is important to note that a packet
injection attack can only be successfully performed if the attacker knows the packet
format used by the NoC.

Flooding HT: injects a flow of flits into the NoC, causing congestion. It is implemented
by forcing the tx signal to ‘1’. At each clock cycle, the receiver router assumes the
transmission of a new flit from the sender. The received invalid flits are forwarded,
flooding the NoC.

It is important to mention that, although all these attacks were implemented, our
HT localization proposal will only consider Black Hole and Credit Block attacks. The Packet
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Injector and Flooding HTs are out of scope of this work. Section 4.3 will provide more details
about the threat model adopted for this work.

The following list presents the activation mechanisms we implemented to be com-
bined with the attack payloads.

Always-on activation: it is the simplest activation method – the HT is always activated.
This naive implementation makes finding the HT location easier than other activation
techniques.

Time-triggered (static) activation: defines a time window for the HT activation. The HT
has an internal counter that increments with each clock cycle. When the counter
reaches a predetermined start time, the attack begins. The counter continues to in-
crement until it reaches a stop time to be deactivated, stopping the attack.

Time-triggered (intermittent) activation: activates and deactivates the HT in random time
intervals. This kind of HT attacks the system in an unpredictable way, which makes it
harder to locate. The intermittent HT is implemented using an FSM (Figure 4.2) and
an LFSR. Although the LFSR does not generate true random numbers, it is an area-
efficient way to generate a random-like sequence of numbers sufficient for making the
HT hard to detect. Each time the HT needs a new random number, it shifts the LFSR
n times. The resulting value is then masked to ensure that the activation/deactivation
times are within a predetermined range. Both n and the range of random numbers are
fixed and defined at design time.

4.2 HT Insertion Framework

The first step in developing a defense mechanism is to define a flexible environment
to execute attacks. We implemented a framework that enables the placement of HTs on
different NoC links. The goal of this framework is to allow the simulation of several HT
attacks and then propose, test, and evaluate localization mechanisms.

The router is placed within a wrapper with HT circuits into the NoC links, as depicted
in Figure 4.3. Within this wrapper, the signals from each outgoing link pass through an HT
block before proceeding to the subsequent router. The primary concept here is that the HT
blocks are initially inactive, essentially acting as placeholders. They are designed for future
injection of active HTs, allowing easy implementation without modifying the router.

The Router Wrapper is described in VHDL, and each outgoing link instantiates an
HT block entity. There are different architectures for the HT block entity, such as Blank HT,
Black Hole HT, and Flooding HT. By default, the HT blocks are instantiated as Blank HTs,
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GEN 
INACTIVE 

TIME
INACTIVE

GEN 
ACTIVE 

TIME
ACTIVE

shift_counter < n cycle_counter > 0

shift_counter < ncycle_counter > 0

cycle_counter == 0

cycle_counter == 0

shift_counter == n

shift_counter == n

The HT is activated and deactivated at unpredictable time intervals. The states where the HT is active
are shown in red, whereas those where the HT is inactive are in gray. During the Gen Active/Inactive
Time states the LFSR register is shifted n times (n is defined at design-time) and generates a pseudo
random-number. During the Active/Inactive states, the value on the register is decremented each clock
cycle until it reaches zero. The process is cyclic, and the attack occurs at different intervals and durations.

Figure 4.2 – FSM that implements the intermittent activation mechanisms for HTs (Source:
the Author).
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The Figure shows a router with four physical ports. Ports E and N contain Blank HTs, which are harmless.
Ports W and S instantiate HTs for Black Hole and Flooding attacks, respectively.

Figure 4.3 – Insertion of HTs in the NoC links (Source: the Author).

which are wires connecting the input signals to the outputs, without any malicious hardware
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in the link. Figure 4.3 shows the example of a wrapped router with four physical ports and
each output link with an HT block (2 of which are blank and 2 implementing different attacks).

To place HTs into the system, it is necessary to define which HT block each NoC
link has to instantiate. This information comes from a list provided in the test case descriptor,
a YAML file specifying the platform parameters for a given simulation. This file contains
information such as system dimensions, memory size, location of instantiated peripherals,
and so forth. It now also specifies which links contain HTs and of which type.

Comprehensively listing each HT in the system offers several advantages. It en-
ables precise experimentation by allowing the selection of specific links and HT implementa-
tions tailored for each scenario. This approach also retains the flexibility for broader simula-
tions: for example, a script could generate a list of HTs distributed randomly throughout the
system. A key benefit in both cases is the deterministic and repeatable nature of the experi-
ments. Once the HT list is established, it can be used for multiple simulations. Moreover, this
list can be manually fine-tuned, enhancing the precision and control over the experimental
setup.

Figure 4.4 shows an example of how the HTs are listed in the YAML descriptor.
Under the HT grouping, each line corresponds to a different router. The first two values
provided are the XY coordinates of the router, and the third value is the configuration string
for inserting HTs into its links.

hw:
 page_size_KB: 128
 tasks_per_PE: 1

 ht: # e0 e1 w0 w1 n0 n1 s0 s1 l0 l1
  - router: [1,1,"bbxxxxffxx"]
  - router: [2,4,"xxxxffxxxx"]
  - router: [3,2,"bxbxbxbxbx"]
apps:
 - name: mpeg

testcase.yaml

•••

•••

Each entry has the XY coordinates of the router and its associated configuration string for the HTs.

Figure 4.4 – Example of HT listing in the YAML descriptor (Source: the Author).

Each position in the string corresponds to a router link, and its character defines
which implementation of the HT Block is instantiated in that link. The NoC has two physical
channels, so there are 10 links per router: east, west, north, south, and local for both physical
planes. The order of the links represented in the string are E0, E1, W0, W1, N0, N1, S0, S1,
L0, and L1. The characters ’b’ and ’f’ denote the Black Hole and Flooding HT, respectively,
while ’x’ denotes a Blank HT. Every router left out of the listing instantiates only Blank HTs.
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Figure 4.4 provides three examples of configurations. The first router (1x1) is con-
figured in the same way as in Figure 4.3, with Black Hole Trojans in the east links and
Flooding Trojans in the south. The second router (2x4) is infected with Flooding Trojans in
the north links. The last router (3x2) has its primary physical plane entirely covered by Black
Hole Trojans.

To build the system for simulation, a Python script reads the YAML test case de-
scriptor and generates the hardware files according to the specification. It builds an array
with the HT configuration string for each router during this process. The script initializes
the array with only Blank HTs for every router and then iterates over the list provided in the
YAML file, updating the entered values. The signals from this array are propagated from the
top file to the router wrappers, where the string characters are used to select the HT block
architecture of each link.

This section presented one of the contributions of this dissertation, corresponding
to the HT Insertion Framework. The modifications integrated into the system resulted in an
automated framework for inserting HTs in the NoC. The proposed framework is agnostic to
the NoC and can thus be configured to work with other platforms. Coupled with the modular
design of our HT model, which enables the seamless integration of new HT implementa-
tions, this framework sets the foundation for conducting extensive attack campaigns on the
NoC. Additionally, it enables the exploration and development of new security mechanisms,
thereby contributing to the field of security in manycore systems.

4.3 Threat Model

This section details the threats we considered for this dissertation. We separate
the components of our platform into two categories: trusted and vulnerable. The trusted
components are considered to always work correctly, whereas the vulnerable components
may be compromised by the attacker and can behave maliciously. The premise of this work
is that all manycore components are trusted, with only the data NoC being vulnerable to HT
attacks.

The data NoC is an attractive target for attackers aiming to insert HTs. Given its
centralized role within the manycore, the NoC interconnects critical components, such as
PEs and IO devices. Consequently, its extensive interactions result in a critical attack sur-
face, making it highly susceptible to exploitation by malicious actors. Furthermore, as the
NoC is often incorporated into the system as a 3PIP, we cannot fully access its implementa-
tion. Thus, we cannot completely trust that it does not contain malicious functions embedded
in its circuitry.

We consider the control NoC a trusted component. The control NoC is a simple
network that works by broadcasting 1-flit packets, which transmit control information. The
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control NoC is also meant to be implemented in-house and not acquired as an IP from a
third party.

In this work, we consider attacks from Black Hole or Credit Block HTs. These HTs
can be triggered by any of the activation mechanisms aforementioned: Always-on, Static
or Intermittent . These HTs follow the model explained in Section 4.1 and are positioned in
the NoC links. For the scope of this work, we are also considering the NoC having a single
plane.

Packet Injector and Flooding HTs are out of the scope of this Dissertation.

4.4 Security Flow

We propose the security flow presented in Figure 4.5 to tackle the threat model.
This flow contains three phases: Monitoring, Localization, and Countermeasure. This flow
aims to protect the manycore by finding and neutralizing the HTs infecting the data NoC.

COUNTERMEASURELOCALIZATIONMONITORING

The security flow comprises three phases: monitoring, localization, and countermeasure. The Monitoring
phase contains a protocol to monitor the exchange of packets through the NoC and detects the occurrence
of HT attacks. The Localization phase implements an algorithm to send probe packets through the NoC
selectively and is responsible for finding the location of the HTs. The Countermeasure phase acts on the
system to neutralize or mitigate the effects of the HT on the platform.

Figure 4.5 – Security flow proposed to protect the manycore from HTs (Source: the Author).

Monitoring: the first phase of the security flow starts by monitoring the communication
between tasks running on the system. This monitoring aims to detect anomalous be-
havior affecting the packet transmitted through the NoC, thus hinting the possibility of
an HT attack. The data gathered from the monitor is then evaluated to decide whether
or not an HT attack is happening. This step consists of an end-to-end HT detector ca-
pable of identifying HT attacks without knowing where they occur. Chapter 5 describes
the Monitoring phase.

Localization: once the Monitoring phase detects the occurrence of an HT attack, the
Localization is deployed to search for its location in the NoC. The HT localization is
performed using a technique called path probing that tests the health of the NoC by
sending probing packets through specific paths. This process relies on an algorithm
to select which paths must be tested to find the HT, and in a distributed mechanism to
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trigger a packet transmission between two arbitrary PEs. Chapter 6 details the Local-
ization process.

Countermeasure: after the Localization discovers the actual location of the HT, the Coun-
termeasure phase applies a security response to neutralize or mitigate the HT effect,
thus resuming the correct behavior of the manycore. The execution of a countermea-
sure is an important part of handling attacks, but the implementation of countermea-
sures is not included in the scope of this work. The goal of this dissertation is devel-
oping a mechanism for finding the location of HTs within the NoC before deploying a
countermeasure, thus the countermeasure phase is presented to give context to the
security flow.

Figure 4.6 shows the microarchitecture used to implement the security flow. The
phases presented in Figure 4.5 were broken into blocks that can be implemented separately
and then connected. Each block can have multiple implementations that follow different
strategies and can be swapped at design time.

Communication 
Monitor

Attack
Detector

HT Localization 
Algorithm

Probe API

NoC Health Table

CountermeasureTrigger

Infected
PathSuspicious

Path HT Location

Probe
Request

Probe
Result

R/W R/W

Each block is colored according to Figure 4.5 to represent the phase it belongs to. The Communication
Monitor and the Attack Detector blocks implement the Monitoring phase. The Localization phase is
composed by the HT Localization Algorithm and Probe Mechanism. The NoC Health Table is used
across the security flow and tracks the suspicion level of each link. The Countermeasure step implements
the functionality to neutralize the localized HT.

Figure 4.6 – The microarchitecture of the security flow (Source: the Author).

Communication Monitor (Section 5.1): is the mechanism responsible for monitoring the
communication between PEs. The Communication Monitor analyzes the packets ex-
changed using the data NoC and verifies if the communication works properly. When
the monitor detects an anomalous behavior, it warns the Attack Monitor, informing the
Suspicious Path. The Communication Monitor may also perform preventive tests on
the network, sending probe packets to evaluate if specific paths are working correctly.
This allows the security flow to detect HTs proactively before they interfere with the
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applications. Preventive monitoring aims to perform tests in areas of the NoC without
traffic, thus ensuring that a given network region is secure without affecting the perfor-
mance of applications already executing in the platform. Due to time limitations, the
implementation of the preventive monitoring feature is left out of the scope of this work.
Section 8.1 provides directions on how this feature can be best implemented within the
proposed Communication Monitor.

NoC Health Table (Section 5.2): keeps track of the suspicion level of each NoC link. The
Monitoring and Localization phase information is used to evaluate how likely an HT will
infect each link. It resembles a heat map in which links near an HT are hotter than links
in an HT-free network region. This information helps the other modules of the security
flow to make accurate decisions about the existence and location of HT attacks.

Attack Detector (Section 5.3): takes all Suspicious Paths reported by the Communication
Monitor and analyzes them. This block aims to differentiate between the anomalies
caused by HT attacks and the false positives caused by fluctuations in the NoC behav-
ior (e.g., a congestion in a NoC link during a short period). Once the Attack Detector
has received enough reports to decide that a given Suspicious Path is indeed infected
with an HT, it marks the path as an Infected Path and activates the HT Localization
Algorithm.

Probe API (Section 6.1): is responsible for actually testing (i.e. probing) paths of the data
NoC. The Probe API receives a request with a source PE, a target PE, and the path
to be tested. The API implements a protocol that sends probe packets between the
source and target PEs using the specified path. The API returns a positive result if the
packets were received successfully and a negative response otherwise.

HT Localization Algorithm (Section 6.2): investigates the Infected Path in search of the
HT location. The HT Localization Algorithm considers the suspicion level of each NoC
link and then chooses specific routes to probe (i.e., test). It collects the results of each
probe, refining the search until it finds the HT location. This algorithm is responsi-
ble for the decision-making of the HT localization process but relies on a lower-level
mechanism to probe the chosen NoC routes (i.e., the Probe API).

Countermeasure: This component is activated once the HT Localization Algorithm identi-
fies the HT’s location. Its objective is to neutralize or mitigate the effects of the HT. This
can be achieved through various strategies, such as isolating the HT from the rest of
the manycore system, rerouting data packets to avoid the infected link, or remapping
the application to a region unaffected by the HT. As previously mentioned, implement-
ing countermeasures is not in the scope of this work. Instead, we focus on the other
blocks of the security flow that aim to find the location of HTs.
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The security flow presented in Figure 4.6 is implemented completely in software
and is contained within the operating system of the PEs.

The Communication Monitor and the Probe API blocks act directly on the communi-
cation between different PEs and, thus, are implemented in the OS version that is executed
in all the slave PEs. On the other hand, the Attack Detector, the NoC Health Table and the
HT Localization Algorithm blocks are implemented in the OS version that executes only in
the master PE.

This section provided an overview of the security flow proposed in this work. Sub-
sequent chapters describe each security flow phase in detail and explain each module we
designed to implement the flow in the manycore.
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5. MONITORING PHASE

HT Localization 
Algorithm

Probe API

Countermeasure

NoC Health Table

Attack
Detector

Communication 
Monitor

This chapter describes the monitoring phase of the security flow outlined in Sec-
tion 4.4 and introduces the NoC Health Table, which is used throughout the security flow.
Section 5.1 presents the Session Manager protocol that will act as the Communication
Monitor block. Section 5.2 details the NoC Health Table, a core data structure within the
localization approach. Section 5.3 introduces the Attack Detector block responsible for
initiating the subsequent phase (i.e. Localization phase) of the security flow.

5.1 Communication Monitor

The Session Manager protocol [Faccenda et al., 2021] corresponds to the Commu-
nication Monitor block. The Session Manager mechanism is designed to monitor, detect,
and recover the system against attacks or faults that disrupt the packet delivery via the data
NoC (e.g., by a Black Hole HT). The Session Manager implements a session-based protocol
that monitors the communication between tasks. Packets that are dropped or delayed result
in a session timeout, triggering a recovery countermeasure that searches for an alternative
route for the packets.

The objective of the Session Manager is to supervise the sending and receiving of
packets in the data NoC. Every time the PE sends a data message, it also sends a control
message via the control NoC at the same time to the same target. This control message
carries the communicating pair unique identifier, which enables the packet receiver to verify
its authenticity and confirm the data message arrival. The Session Manager verifies that
the communication is working correctly if both messages are received successfully. If the
target PE detects any violation of this session protocol, it activates a recovery mechanism
that requests the source PE to resend the data packet, avoiding the original path. As the
data NoC supports source routing, the control NoC creates a new path, circumventing the
affected region.
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The target PE starts the recovery process after detecting an attack or fault through
a packet timeout. Here, the control NoC also plays a major role in finding a new path through
its built-in path-finding algorithm. As there is no information related to the HT or fault precise
location, the method searches for a new path that avoids the routers of the broken path
(previous path, which did not deliver the packet correctly). The hop number of the new path
can be non-minimal, as presented by the example in Figure 5.1. In addition to the recovery
process, the Session Manager also sends a warning message to the Manager PE using the
control NoC. This warning allows the Manager PE to make system-level decisions and apply
more robust countermeasures.

Figure 5.1 illustrates the process performed by the Session Manager to recover a
path broken by an HT. In Figure 5.1 (a) the two tasks of App1 are communicating successfully
through the data NoC. In Figure 5.1 (b) an HT is activated, disabling a router and breaking
the path between the tasks; at this point, only the control messages sent through the control
NoC can reach their destination. After a data packet timeout, task T2 notifies T1 through the
control NoC of the failure to receive their packet (Figure 5.1 (c)). Lastly, in Figure 5.1 (d), T1
activates the path-finding algorithm to look for an alternative path to T2; once the new path
is found, the packet is retransmitted through the data NoC and reaches its destination.

(b) (c) (d)

APP1
T1

APP1
T2

(a)

APP1
T1

APP1
T2

APP1
T1

APP1
T2

APP1
T1

APP1
T2

Task T1 communicates with task T2 sending packets through the data NoC. The path used to send this
packets contains an HT-infected router that drops packets. Dashed arrows represent the packets transmit-
ted in broadcast using the control NoC. Straight arrows are the packets transmitted through the data NoC.
(a) shows a successful packet transmission.
(b) the data transmission interrupted in the data NoC due to a fault or HT.
(c) contains the request for packet retransmission using the control NoC.
(d) the successful retransmission using source routing.

Figure 5.1 – Session Manger protocol (Adapted from Faccenda et al. [2021]).

After detecting an attack or fault, the Session Manager applies a countermeasure
to recover the communication between the tasks. This countermeasure is applied locally
by the Source PE and aims to offer a quick solution, establishing an alternative path and
allowing the tasks to continue executing. Although this approach mitigates the threat of
HT attacks, the HT remains active in the NoC and is able to perform additional attacks.
To execute more robust countermeasures that neutralize the HT, we need to discover the
location of the HT in the NoC (Chapter 6).
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5.2 NoC Health Table

The purpose of the NoC Health Table is to consolidate, into a single centralized
structure, all data generated in a distributed manner by the Session Manager and the Probe
API. It offers a comprehensive view of the NoC state, indicating which links are operating
correctly, which may be compromised, and which are effectively compromised by HTs or
faults. Conceptually, it acts as a heat map: “cold” regions indicate normal operation, whereas
“hot” regions signify areas exhibiting symptoms of HT-related activity.

The NoC Health Table consists of a 3D-matrix, in which each position represents a
different NoC link. The width and length of the matrix are the same as the width and length
of the NoC, and the matrix has one layer for each output port of the NoC router. For example,
Figure 5.2(a) shows a 5x5 NoC. Each router connects to its neighbors using 4 output ports:
east, west, north, and south. This NoC configuration results in a 5x5x4 NoC Health Table.
Each position of the NoC Health Table contains a health report about its correspondent link.
This report comprises three health metrics: (i) health status, (ii) suspicion score, (iii) probe
counters.

a) Platform Overview b) NoC Health Table (Suspicion Scores)

0 0 0 0

2 3 3 0

0 0 0 0

1 0 0 0

0 0 0 0

EAST

0 0 0 0 0

1 1 0 0 0

0 1 0 0 0

0 0 0 0 0

NORTH

0 0 0 0

0 0 0 0

0 0 1 1

0 0 0 0
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WEST

1 0 1 0 0
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(a) Presents a test scenario, with two applications executing in a 5x5 manycore. The application A is
depicted in blue and contains five tasks (A1–A5). Application B is green and has three tasks (B1–B3). The
arrows represent the paths used to send packets through the NoC. The platform is infected with 2 HTs that
drop packets, represented as red blocks.
(b) illustrates the Health Table for this scenario. The table is updated when packets are dropped. The
3D-matrix was sliced in 4 layers, each corresponding to a different router port. The values in the table are
the Suspicious Score of each element, corresponding to the number of suspicious paths intersecting a
link.

Figure 5.2 – Example of the NoC Health Table populated according to HT attacks (Source:
the Author).
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Health Status: indicates the current status of a link. This variable can assume 3 values:
HEALTHY, SUSPICIOUS, or INFECTED. The HEALTHY status means that this link is
behaving normally. The SUSPICIOUS status means this link has shown symptoms of
being infected with an HT. And the INFECTED status marks that this link was confirmed
to be infected with an HT.

Suspicion Score: it is a quantitative value of the probability of the link being infected. The
higher this score is, the higher the probability that an HT is located within this link. The
Suspicion Score is managed by the Attack Detector, covered in Section 5.3.

Probe Counters: keep track of the probes sent across each link. There are two probe
counters per NoC link: the Total Probes counter indicates how many probes traversed
this link; and the Failed Probes counter indicates how many of these probes have
failed. Together, these counters give the probing success rate of the link.

Figure 5.2 provides an example scenario of the NoC Health Table. Figure 5.2(a)
presents the mapping of 2 applications executing in the manycore. There are 2 Black Hole
HTs infecting the NoC. The blue application has one consumer task (A1) and four producer
tasks (A2, A3, A3, and A4). The three paths originating from A2, A3, and A4 are all affected
by an HT in the 1x3-East link. The path between A5 and A1 is free from HTs and works
correctly. The second application (in green) has one consumer task (B1) that receives mes-
sages from 2 producers (B2 and B3). Both paths from B2 and B3 are infected by an HT in
the link 2x2-South.

Figure 5.2(b) presents the state of the NoC Health Table. The picture presents the
Suspicious Scores of each link corresponding to the number of suspicious paths (paths that
cross HTs) with an intersection in that link. For instance, consider the suspicious paths that
originate from tasks A2 and A3: these paths arrive at the router 0x3 and take an east turn,
traversing the link 0x3-East. If we look at the position 0x3 of the “EAST” matrix, we see that
the link 0x3 contains a Suspicion Score equal to 2. This corresponds to the intersection of
the paths from A2 and A3. The same behavior can be observed for the other links. Note
that only paths affected by HTs impact the NoC Health Table. For example, the path from
A5 to A1 had no impact on the “NORTH” matrix. The picture also shows that each slice of
the NoC Health Table contains one empty row/column. This happens because routers in the
border of the NoC have an open port that cannot be connected to any link (e.g., a router in
the right-most column of the NoC does not have an east link).

When the system is initialized, the NoC Health Table is set to its initial state: all
links are set to the HEALTHY status, with its Suspicion Scores and Probe Counters equal
to zero. If the system starts to be attacked by an HT, the NoC Health Table begins to be
progressively populated.

The HT Localization Algorithm (Chapter 6) uses the data provided by the NoC
Health Table to search for HTs. Furthermore, the MPE can use this data to make decisions
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and perform other system functions. For instance, the MPE can use the NoC Health Table
during the application mapping process to avoid placing a task on a suspicious area of the
NoC, or during route configuration, to circumvent suspicious links and transmit through a
safe route across the NoC.

5.3 Attack Detector

This section presents the Suspicion Manager module (SusM ), which acts as the
Attack Detector of the security flow. The SusM processes the “missing packet warnings”
generated by the Session Manager, attributes a suspicion score for each NoC link and reg-
isters it in the NoC Health Table. An HT attack is detected when a link’s suspicion score
becomes high enough to exceed a given threshold. If the SusM detects an HT attack, the
next step of the security flow is to search for the HT location.

The SusM is necessary because when an HT attack occurs, the MPE can receive
several “missing packet warnings” from different sources. Furthermore, the Session Protocol
may issue warnings concerning QoS violations unrelated to HT attacks. For instance, if the
packets are delayed due to congestion, or if the kernel of the target PE is busy handling an
interruption instead of receiving the packet from the NoC. If we triggered the HT Localization
algorithm every time the Session Manager issued a “missing packet warning”, the MPE
would become overloaded. The SusM acts as a filter that only allows the localization process
to start once we have confidence in the existence of an HT.

The SusM relies on two key data structures:

• NoC Health Table: it is the main data structure of the security flow and is detailed in
Section 5.2. The SusM uses the NoC Health Table to register the suspicion score of
each link in the NoC. This information becomes available for every other module in the
security flow.

• Suspicious Path Table: it is an SusM internal table. The Suspicious Path Table stores
the information of every path that an HT may infect. A path becomes suspicious when
the Session Manager sends a “missing packet warning” informing that a packet has
been dropped/delayed in that path. This table stores three fields for each suspicious
path: Source PE address, Target PE address, and the sequence of turns that consti-
tutes the path between the Source and Target PEs.

The SusM activation occurs when the MPE receives a “missing packet warning”.
The MISSING_PACKET warning message contains the address of the Source and Target
PEs of the affected path but does not contain the path used to route the packet. So, the first
action executed by the SusM when it receives a MISSING_PACKET warning is to execute a
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protocol to obtain the affected path from the Source PE. Figure 5.3 illustrates this protocol.
The MPE sends a PROBE_REQUEST_PATH to the Source PE, requesting the path it used
to communicate with the Target PE. The Source PE retrieves the path from its routing table
and sends it to the MPE using a REPORT_SUSPICIOUS_PATH packet. All messages of
this protocol are sent using the control NoC. This ensures that the messages arrive at their
destinations despite the existence of HTs in the data NoC.

MSG_DELIVERY

MSG_DELIVERY_CONTROL

MPE Path Source PE

MISSING_PACKET

PROBE_REQUEST_PATH

REPORT_SUSPICIOUS_PATH

report_missing_packet

request_broken_path

register_suspicious_path

handle_broken_path_request

WRITEPIPE

send_message_delivery_control

send_message_delivery

Path Target PE

timeoutMonitor

MDC_HANDLER

update_suspicion_scores

The sequence diagram displays the name of each function executed during the process. Functions related
to the Session Manager are shown in gray. Functions related to the SusM are shown in blue. The black
and orange arrows represent packets sent through the data and control NoCs. This picture shows the
Source PE sending a message to the Target PE using the Session Manager protocol. An HT attack
(shown as a red "x") drops the packet. The Session Manager detects the missing packet and sends a
MISSING_PACKET warning to the MPE. The MPE executes the path request protocol to acquire the path
to route the missing packet (messages PROBE_REQUEST_PATH and REPORT_SUSPICIOUS_PATH).
Finally, the SusM registers the new suspicious path in the Suspicious Path Table and updates the suspicion
score of the links in the path.

Figure 5.3 – Sequence diagram for registering a new suspicious path in the SusM (Source:
the Author).

Since the control NoC only transmits single-flit packets, we have limited space to
encode the path within a control-NoC packet. The payload size of the control-NoC defines
the maximum path size supported by the SusM. Our version of the manycore supports paths
with a maximum of 12 hops. Each hop is encoded using a 2-bit symbol representing East,
West, North, and South values. Each path position is read sequentially, starting from the
first hop. The path ends when two adjacent hops contain opposite turns (e.g., a south
turn followed by a north turn). This compact representation allows paths to be transmitted
through the control NoC.

After receiving the REPORT_SUSPICIOUS_PATH message, the SusM has all the
information required to configure a new suspicious path (Source PE address, Target PE
address, and the path turns). Before adding the new path to the Suspicious Path Table, the
MPE first verifies that the table does not contain the same path. This is done because when
a packet is dropped, the Source PE might try to resend the packet using the same infected
path, causing the packet to be dropped again and resulting in multiple MISSING_PACKET
warnings informing the same path.



57

Registering repeated paths in the table would pollute the table, making the same
path appear more suspicious than it is. To avoid this, the SusM always verifies if the path is
repeated before registering it. The MPE iterates the table, comparing the Source PE, Target
PE, and path turns. If all fields match, the MISSING_PACKET warning is ignored, and the
repeated suspicious path is not registered.

Every time the SusM registers a new suspicious path, it also accesses the NoC
Health Table and increments the suspicion score of each path link. The suspicion score of
each link begins at zero and grows depending on how many suspicious paths are crossing
the link, indicating how probable it is for this link to contain an HT. The SusM also verifies
the resulting score of each link. If the new suspicion score exceeds a threshold value, the
SusM considers it an HT attack and triggers the HT Localization Algorithm. The threshold
value for the suspicion score was arbitrarily set to 3 in the experiments.

Besides registering suspicious paths and detecting attacks, the SusM must also
clear information no longer needed after localizing an HT. When a suspicious path is reg-
istered, it means that the path is probably infected with an HT whose location is unknown.
After the HT Localization Algorithm successfully finds the location of the HT-infected link
within the path, it is no longer necessary to consider the entire path suspicious. The other
links used in the path can be considered healthy. The SusM implements a clearing routine
responsible for cleaning the suspicion links related to the detected HT.

The clearing routine is triggered after the HT Localization Algorithm finds a new
HT. It works by iterating the Suspicious Path Table and searching for paths that contain the
localized HT. If any link in the path matches the location of the HT, then the path is cleared.
Clearing a path has two consequences: (a) the cleared path is deleted from the Suspicion
Path Table, and (b) the suspicion score of each link in the cleared path is reset to zero in
the NoC Health Table. The clearing routine assumes that each suspicious path is infected
with only 1 HT. Suppose there happens to be more HTs infecting the same suspicious path.
In that case, the SusM will continue to receive missing packet warnings from the Session
Manager, and the process will be repeated to localize the second HT.

Consider the scenario presented in Figure 5.2(a). The two applications running on
the manycore (app A and app B) are affected by HT attacks with five affected paths. The
paths originating at A2, A3, and A4 are affected by HT1, while the paths from B2 and B3
are affected by HT2. Figure 5.2(b) shows the suspicion scores registered in the NoC Health
Table for this scenario. These numbers show how many suspicious paths are crossing each
NoC link. The Suspicious Path Table contains all five affected paths, originated from A2, A3,
A4, B2, and B3.

Let’s consider that the last suspicious path to be registered was from A3 to A1.
When the SusM registered this path, the suspicious score of the links 1x3-East and 2x3-
East were incremented to 3, reaching the threshold value and triggering the HT Localization
Algorithm on this path. The HT Localization Algorithm employs methods explained in Sec-



58

tion 6.2. Once the HT is localized, the SusM executes the clearing routine to clear the
suspicion of the non-infected links.

Figure 5.4(a) presents the scenario shown in Figure 5.2 after executing the Local-
ization algorithm, which found the location of the HT in the link 1x3-East (HT1). The router
containing this infected link is marked with a red "x". The paths traversing the infected link
(paths beginning at A2, A3, and A4) were rerouted using the communication recovery coun-
termeasure from the Session Manager. The second HT in the link 2x2-South (HT2) remains
unlocalized.

a) Platform Overview b) NoC Health Table (Suspicion Scores)

HT1

0 1 2 3

1

2

3

4

HT2

B2

B1

4

MPE

0

A4

B3

0 0 0 0

0 X 0 0

0 0 0 0

0 0 0 0

0 0 0 0

EAST

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

NORTH

0 0 0 0

0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0

WEST

0 0 1 0 0

0 0 1 0 0

0 0 2 0 0

0 0 2 0 0

SOUTH

A2

A1

A3

A5

Figure 5.4 – Example of the clearing routine of the SusM (Source: the Author).

Figure 5.4(b) shows the state of the NoC Health Table after the localization of HT1
and the subsequent execution of the clearing routine. The clearing routine has cleared all
suspicious paths that intersected with HT1. The suspicion scores of each link of the cleared
paths were reset. The 1x3-East link that was confirmed to be infected with an HT was
marked as INFECTED in the NoC Health Table (red "x" in the "EAST" matrix). At the end of
this scenario, the Suspicious Path Table and the NoC Health Table contain only information
related to the two paths affected by HT2: B2 and B3.
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6. LOCALIZATION PHASE
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This chapter presents the localization phase of the security flow described in Sec-
tion 4.4. It begins with Section 6.1, which introduces the Probe API and explains one of its
core features: Probe Batches. The Probe API enables the MPE to test individual paths of
the NoC by sending probe packets. In Section 6.2, two HT Localization Algorithms are
proposed. Both use the Probe API to search the NoC systematically and identify the location
of HTs.

The Probe API and the HT Localization Algorithms introduced in this chapter consti-
tute the main contributions of this dissertation. Part of this chapter, specifically those related
to the Probe API (Section 6.1) and the binary search localization algorithm (Section 6.2.1),
was published in the following conference paper:

Hardware Trojan Localization for Untrusted Network-on-chips
Gustavo Comarú, Rafael Follmann Faccenda, Luciano Lores Caimi, Fernando Gehm Moraes
In: LASCAS, 2025

6.1 Probe API

In our proposal, the task of localizing HTs is attributed to the Manager PE (MPE).
The MPE receives security warnings from other components and investigates the suspicious
segments of the network to find the location of HTs. It is also responsible for proactively
monitoring and registering the health of the NoC routers. To fulfill these tasks, the MPE
sends probe packets to test whether a specific network segment is working as expected or
not. To simplify this process, we implemented the Path Probing API, which abstracts the
probing mechanism for the MPE. The Path Probing API has two functions: Send Probe
Request and Handle Probe Result.

Send Probe Request: when the MPE decides to initiate a new probe, it calls the send_probe_
request function, specifying the source and target PEs, as well as the specific path to
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be taken by the probe packet. At this point, a unique identifier, Probe_ID, is created,
and all the information related to the probe is stored in a local table at the MPE.

Handle Probe Result: when the probing is finished, the MPE receives a PROBE_RESULT

packet and the function handle_probe_result is called. This function receives the value
of Probe_ID and the result specifying if the probe was a success or a failure.

The unique identifier Probe_ID allows the MPE to perform several probes simulta-
neously. When the results come back, the Handle Probe Result function retrieves the probe
parameters from the table and processes the result accordingly. From the perspective of the
HT localization algorithm, the MPE only needs to execute two functions.

Figure 6.1 presents the Probing Protocol, which works underneath the Path Probing
API. The Probing Protocol is implemented almost entirely by sending packets via the control
NoC; only one packet is sent using the data NoC, which is the probe packet used to test the
NoC.

MPE

PROBE_PATH

PROBE_MESSAGE

PROBE_CONTROL

PROBE_RESULT

Probe Source PE Probe Target PE

PROBE_REQUESTsend_probe_request

handle_probe_result

handle_probe_request

handle_probe_path

receive_probe_control

send_probe_result

send_probe

monitor_probe_timeout

Black and orange arrows represent packets sent via the data NoC and control NoC, respectively. The
functions executed by each PE at every step are represented in blue. The Probe Source PE sends a
PROBE_MESSAGE packet to test a specific path of the data NoC. In this example the probe is affected by an
HT attack (represented by a red x) which drops the packet. As a consequence, a probe timeout occurs
and the probe returns a negative result to the MPE.

Figure 6.1 – Sequence diagram representing the Probing Protocol that implements the
Probe API (Adapted from Comarú et al. [2025]).

The MPE initiates the protocol by sending a PROBE_REQUEST packet to the Probe
Source PE. This packet contains the parameters for a new probe: Probe Source Address,
Probe Target Address, and Probe_ID. Due to the packet size imposed by the control NoC,
the last parameter is sent in a separate packet named PROBE_PATH. The maximum number
of flits in the control NoC payload determines the maximum path size. In the current imple-
mentation, the path has a limit of 12 hops, each represented by a two-bit number (E, W, N,
S). The last hop of the path is indicated when the next hop contains the opposite direction
(e.g., an E hop followed by a W).
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The Probe Source PE waits for the reception of both packets from the MPE. Once
it has all the parameters, it builds and sends the probe packet. This process is similar to
the Session Manager protocol (Section 5.1), as it sends two packets to the Probe Target
PE. The first packet, PROBE_CONTROL is sent via the control NoC and is guaranteed to arrive
due to the broadcast nature of this network. The function of the PROBE_CONTROL packet is
to inform the Probe Target PE that it should expect the arrival of an incoming probe packet.
The second packet, PROBE_MESSAGE, is the probe packet itself. The PROBE_MESSAGE is sent
through the data NoC using the Source Routing algorithm and follows the path specified by
the MPE. This packet may or may not arrive at the Probe Target PE, as the path taken by the
packet in the data NoC is susceptible to HT attacks. In the scenario presented in Figure 6.1,
the probe is dropped by an HT and does not arrive at its destination.

The packets may arrive at the Probe Target PE in any order; however, the PROBE_

CONTROL packet typically arrives first, as the control NoC is faster than the data NoC. Upon
receiving the first packet, the Probe Target PE monitors the delay until the second packet
arrives. If the data NoC functions correctly, both packets should be received within a short
interval, and the probe is deemed successful. Conversely, if the PROBE_MESSAGE packet does
not arrive (as illustrated in Figure 6.1) or is significantly delayed, a timeout occurs, and the
probe is considered a failure. A PROBE_RESULT packet is sent to the MPE, containing the
probe result. This packet includes the Probe_ID and an indicator of either SUCCESS or
FAILURE for the executed probe.

The Probing Protocol, abstracted by the Path Probing API, allows the MPE to exe-
cute higher-level algorithms to investigate paths and find HTs in the data NoC. An example
of such an algorithm is the proposed Binary Search Localization, presented in Section 6.2.1.

6.1.1 Probe Batches

The Probing Protocol can reliably detect active HTs until the probing procedure
concludes. However, in some cases, a single probe may be insufficient to detect an HT.
The Intermittent HT (Section 4.1) exemplifies a type of Trojan that is difficult to detect with a
single probe, as it attempts to evade detection by randomizing its activation and deactivation
periods. Frequently, attempts to localize an Intermittent HT fail because it is inactive during
the probing process, thereby remaining undetected. To address this challenge, we devel-
oped a probing method that monitors the NoC over an extended period, thereby increasing
the likelihood of detecting such Trojans. The Probe Batch functionality initiates a session
between the Probe Source PE and the Probe Target PE, enabling the execution of multiple
probes within a specified time window.

The Probing Protocol sends a single probe (Figure 6.1) by default. Now we expand
the Probe API to include three new parameters that can be used to configure a Probe Batch
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session: (i) batch size is the total number of probes to be sent between the Source PE
and Target PE; (ii) probe delay is the time (in microseconds) that the Source PE will wait
between sending another probe to the Target PE; and (iii) probe length size (in words) of
the probe packet that is sent through the data NoC. The MPE chooses these parameters
each time it configures a new batch.
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The MPE configures a probe batch between the Probe Source PE and the Probe Target PE. This batch
operates by sending a sequence of periodic probes along the same path between the source and target
PEs, enabling extended monitoring over a longer time window than a single probe would allow. The
MPE can adjust batch parameters to control both the duration and density of the probing process. The
sequence diagram illustrates the functions executed by each PE: functions shown in blue correspond to
general operations of the Probing Protocol, while those in red are specific to the Probe Batches session.
Orange arrows denote packets transmitted via the control NoC, and black arrows represent probe packets
transmitted through the data NoC. In this example, the batch consists of three probes. The Target PE
successfully receives the first and third probes, whereas the second probe is affected by an attack, resulting
in a probe timeout.

Figure 6.2 – Sequence diagram for the Probe Batches feature of the Probing Protocol.
(Source: the Author.)

Figure 6.2 presents an example of the Probe Batch session. The MPE starts the
process by calling the send_probe_request function of the Probe API and passes the batch
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size, probe delay, and probe length parameters. The example provided in Figure 6.2 uses a
batch size equals to three probes. The basis of the protocol used to configure the batch is
the same as explained before in Figure 6.1. First, the MPE uses the control NoC to send the
PROBE_REQUEST and PROBE_PATH messages to transmit the probe parameters to the Probe
Source PE. When the Probe Source PE receives both messages, it evaluates the batch size
parameter: if the size equals 1 or 0 it sends a single probe; but if the size is larger than
1, the Probe Source PE calls the create_new_outgoing_batch function to configure the new
Probe Batch session. The parameters configuring the probes (e.g., probe target, path, probe
delay) are written on a new line in the Outgoing Batches Table.

Once a new batch is configured into the Outgoing Batches Table, it is responsible
for sending a sequence of probes respecting the probe delay parameter. To perform this
action, each batch registered in the table contains a field called next_probe_time, which
specifies the time (in clock cycles) that the next probe must be sent. The OS monitors
this table by programming the interrupt handler to call the monitor_outgoing_batches func-
tion periodically. When the system clock counter matches the next_probe_time, the Probe
Source PE executes the probe by sending the PROBE_MESSAGE and PROBE_CONTROL packets
to the Probe Target PE and calls the increment_next_probe_time function to update the
time configuration to send the next probe. This process is repeated until the Probe Source
PE sends a number of probes equal to the batch size parameter. When all the probes are
sent, the Probe Source PE finalizes the batch by clearing the line allocated in the Outgoing
Batches Table.

Each PROBE_MESSAGE and PROBE_CONTROL packet is sent with its unique ProbeID, its
batch size parameter, and also with its respective position inside the probe batch. When the
Probe Target PE receives a probe from a new batch, it configures a new line in the Incoming
Batches Table. This table keeps track of how many probes the batch has received and how
many are still pending. Furthermore, every time the Target PE receives a probe belonging to
a batch that is configured in the table, it registers whether the probe was a success or a fail.
After receiving all the probes from the batch and evaluating their results, the Probe Target
PE deallocates the line from the Incoming Batches Table and sends a PROBE_RESULT packet
back to the MPE containing the number of successes and fails. Finally, the MPE receives
the PROBE_RESULT packet and triggers the execution of the handle_probe_result function
of the Probe API, which processes the results generated by the probe batch.

This process enables the MPE to monitor the network over a time window that ex-
ceeds the duration of a single probe. By adjusting the batch size, probe delay, and probe
length parameters, it is possible to control both the duration and the density of the prob-
ing activity. When configuring a new probe batch, it is important to consider the trade-off
between monitoring intensity and the associated system overhead. Batches that execute
many probes with minimal delay between them result in high probe density, increasing the
likelihood of detecting HTs, but at the cost of greater resource consumption by the PEs and
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the NoCs. Conversely, smaller batches or those with greater spacing between probes im-
pose less overhead but reduce the probability of HT detection. Given the wide variety of
HTs, intense and resource-intensive probing may be justified when targeting HTs that re-
main active for only brief periods. The Probe API, with the Probe Batches feature, provides
the MPE a flexible tool that can be configured to minimize overhead when detecting easily
observable HTs, or to perform intensive monitoring when attempting to identify more stealthy
and transient threats.

6.2 Search Algorithms

The Probe API provides the MPE with a mechanism to test individual paths within
the NoC and to assess whether HTs compromise these paths. This section proposes two
algorithms that use the Probe API to localize HTs within the NoC. These algorithms take
as input an Infected Path, i.e., a path suspected of containing HTs, and operate on this
path by issuing Probe API calls to determine the specific location of the HTs. The following
subsections describe this process. Section 6.2.1 introduces the first localization algorithm,
BSA, which is based on a binary tree search strategy. Section 6.2.2 presents an alternative
method, the OSA algorithm, which prioritizes probing the most suspicious links first. Fi-
nally, Section 6.2.3 describes a unified approach that combines BSA and OSA to enhance
localization effectiveness.

6.2.1 Binary Search Algorithm (BSA)

The Binary Search Algorithm (BSA) breaks the infected path into two segments and
tests each individually with different probes. Segments that work correctly are considered to
be HT-free. Segments that do not work are divided again, repeating the process. The HT is
considered localized when the infected path reaches the length of only one hop. The HT is
in this probed link since the path cannot be further divided.

The process employed by this method to localize an HT resembles searching a
binary tree structure, hence its name. Figure 6.3 illustrates how an infected path can be
divided to search for HT-infected links. When a path is divided, it produces two new paths
with half of the original size: the left-side path and the right-side path. These paths corre-
spond to the left branch of the tree (source to middle) and the right branch (middle to target),
respectively. In the same way that each node of a binary tree can be considered a binary
tree by itself, the Binary Search Localization considers each probe a different search. This
allows the Binary Search Algorithm to take maximum advantage of the support for paral-
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lel probes: when the path is broken, the MPE sends probes to the left side and right side
simultaneously, and when a PROBE_RESULT packet arrives, it is handled independently.
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The left-side part of the figure shows the infected path between Path Source PE (SRC) and Path Target
PE (TGT). Routers containing infected links are shown in red, HT-free routers in green, and routers outside
the path are in light gray. Infected links (red arrows) drop any packet that tries to traverse the link. The
right-side part of the figure presents a tree containing the probes performed to localize the HT. The probes
in black fail and are divided in half. The green probes are successful and are not divided. The two probes
in red fail but cannot be divided, so they identify the HTs localized in 0x1-South and 0x0-East.

Figure 6.3 – Example of path division to localize HTs on an infected path (Adapted from
Comarú et al. [2025]).

Considering that each probe can be treated as a separate search makes the im-
plementation of the algorithm straightforward. The MPE keeps a table called the Binary
Search Table which stores the information for each probe used in the search: the Probe_ID
and the Source Routing path. When an infected path is broken into two halves, the MPE
allocates two more lines in the table (for the left-side and the right-side segments), and when
the result for a probe comes back, the MPE retrieves the parameters from the table and then
releases the “parent” line.

Figure 6.4 presents the Binary Search Localization for the same scenario as in
Figure 6.3. The diagram begins with two PEs communicating through the data NoC: the
Path Source PE sends a message to the Path Target PE, but this packet is dropped due to
interference of an HT (represented as a red "x") and does not reach the target. The target
Session Manager detects a timeout violation and reports the missing packet to the MPE,
which initiates the Binary Search Localization. The MPE first step is to learn which path the
dropped packet took (i.e., acquire the infected path). The MPE sends a PROBE_REQUEST_PATH

packet to the Path Source PE, asking which path was used when sending the dropped
packet. Each time the Session Manager detects a failed communication, the source saves
the path in a table and thus can answer the MPE by sending a PROBE_PATH packet with the
infected path.

After these steps, the MPE can start the localization by performing the first path
division: the infected path retrieved from the Path Source PE is broken into two halves, and
one probe is sent through each half. The left-side path starts in the Path Source PE (0x2)
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Black and orange arrows represent packets sent via the data NoC and control NoC respectively. The
functions executed at each step are denoted in light blue blocks. The green and red boxes are executed
in parallel. The uppermost structures represented in gray instead of blue are not part of the Binary Search
Localization.

Figure 6.4 – Sequence diagram illustrating the Binary Search Localization algorithm (Source:
the Author).

and ends in the Path Middle PE (1x0), performing the turns S, S, and E (Figure 6.3). The
right-side path starts in the Path Middle PE (1x0) and ends in the Path Target PE (3x0)
performing the turns N, E, S, and S. These probes are sent in parallel. Figure 6.4 uses
two boxes to represent the different probes being executed simultaneously: the right-side
probe is shown first as a green box, and then the left-side probe is shown as a red box.
The right-side probe is successful and returns a positive result to the MPE. The MPE closes
this branch without dividing the path any further, the routers used in the right-side path are
no longer considered infected. On the other hand, the left-side probe is dropped by an
HT attack, returning a negative result to the MPE. The MPE divides the path once again,
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sending two more probes. This process continues until the path can no longer be divided
and the HT is localized.

The BSA algorithm is designed to minimize its impact on system resources. It
avoids probing the same segments of the infected path multiple times, focusing instead
on localizing HTs that remain active for relatively long durations. Although it typically sends
only one probe per tested segment—i.e., each time a new branch is explored—it can also be
configured to use Probe Batches (Section 6.1.1). However, because BSA explores multiple
branches in parallel, intensive use of Probe Batches may lead to excessive load on the
control NoC, which operates using broadcast communication. We developed an alternative
localization algorithm, presented in the following section, to support the detection of HTs that
are active for shorter periods and use the Probe Batch functionality more effectively.

6.2.2 Ordered Search Algorithm (OSA)

The second localization algorithm is the Ordered Search Algorithm (OSA). The
OSA conducts a selective search by probing one link at a time. This targeted approach en-
ables the use of the Probe Batches feature without overloading the control NoC with broad-
cast messages. To enhance efficiency, the OSA initiates the search at the most suspicious
link along the infected path and progressively examines less suspicious links. This strategy
minimizes unnecessary probing, thereby conserving system resources and accelerating the
localization of HTs.

When the OSA begins execution, it initializes an array structure containing infor-
mation about each suspicious link along the infected path. Each element of this structure
includes the following data: (a) the source address of the link, which refers to the address of
the router transmitting data through the link; (b) the router port associated with the link (i.e.,
east, west, south, or north); and (c) the suspicion score assigned to the link. The suspicion
score is retrieved from the NoC Health Table (Section 5.2) at the time the OSA algorithm is
initiated. This score reflects the number of suspicious paths (those that have reported hard-
ware HT attacks) that traverse the given link. A higher suspicion score indicates a greater
likelihood that the HT is located within that specific NoC link.

The next step of the algorithm is to order the array from the highest suspicion
score to the lowest suspicion score. When multiple links have the same score, the ordering
prioritizes those closer to the target PE. When the links are sorted, the OSA iterates over
the array, performing a separate probe batch for each NoC link. The paths that are probed
by these batches consist of a single hop (H2H): they start at the source address specified
for each position of the array and take one turn in the direction of the router’s port , and take
one turn in the direction of the router’s port , stopping on the next router.
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Only one probe batch is executed at a time. Once the OSA programs the batch
designated to probe the most suspicious link, it waits for the batch to complete before incre-
menting the iterator and proceeding to the next suspicious link. Upon completing a batch, the
OSA evaluates the results returned by the Probe API. If all probes are successful, it indicates
that no HT attack was detected on that link during the batch’s time window; in this case, the
algorithm evaluates the next link in the array. Conversely, if the batch result contains at least
one probe failure, an HT attack has been observed, and the corresponding link is marked as
infected. The OSA terminates when all entries in the array have been evaluated or when an
HT is successfully localized.

Since the OSA executes only one probe batch at a time, it can configure each
batch to perform intensive probing without overloading the control NoC with Probing Protocol
control packets. These batches, executed sequentially by the OSA, send a series of probes
with minimal delay between them. This probing strategy enables the algorithm to detect HTs
that remain active for short periods, such as intermittent HTs (Section 4.1).

If the OSA completes execution without localizing any HTs, two interpretations are
possible. First, the detection may have been a false positive, indicating that the infected path
contains no HT-infected link. Alternatively, the HT may have a very narrow activation window,
and the probe batches configured by the OSA could not capture its activity. To address
the latter possibility, the OSA can be re-executed with more stringent probe configurations,
sending probes at shorter intervals and over an extended time window.

The remainder of this section presents an example illustrating the execution of the
OSA algorithm. Consider the scenario depicted in Figure 6.5, where four source tasks (S1,
S2, S3, and S4) attempt to communicate with a common target task (TGT). Initially, S1
and S2 send packets to TGT via the blue and orange paths, respectively. These packets
are dropped by a HT located on the 1x2-East link. The attack is detected by the Session
Manager (Section 5.1), and the NoC Health Table updates the suspicion scores of the links
traversed by these paths. Subsequently, S3 sends a third packet along the purple path,
which is also dropped. The NoC Health Table is updated again; this time, the suspicion
scores of the 1x2-East and 2x2-East links exceed the threshold defined by the Suspicious
Paths Table (Section 5.3), thereby triggering the localization algorithm to initiate the search
for the HT along the purple path.

In this example, assume that the OSA is selected as the localization algorithm
responsible for identifying the HT. The first step the OSA performs is to load each of the four
hops in the purple path into an array. It then consults the NoC Health Table and reorders
the array from the most to the least suspicious link. The links 1x2-East and 2x2-East have
the highest suspicion score (3) and are therefore placed at the beginning of the array. The
remaining two links, 1x0-North and 1x1-North, each have a score of one and are placed at
the end. Ties are resolved by giving priority to links that are closer to the target task (TGT).
As a result, the final order used by the OSA is: 2x2-East; 1x2-East; 1x1-North; 1x0-North.
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(a) scenario in which several source tasks (S1, S2, S3 and S4) communicate with one target (TGT). An HT
drops packets sent by the tasks S1, S2, and S3 and never reach TGT. Packets sent by S4 take a different
path and arrive successfully at TGT.
(b) NoC Health Table before executing the OSA algorithm. Values correspond to the suspicion score of
each NoC link.
(c) illustrates the infected path searched by the OSA. The OSA uses the metrics provided by the NoC
Health Table to order the links of the infected path and search them individually. The arrows in this diagram
correspond to each link of the infected path. The metrics used by OSA are represented just below each
link, as well as the final order that the OSA uses to search the links.

Figure 6.5 – Example for the Ordered Search Algorithm (Source: the Author).

Interestingly, in this case, the OSA produces a link order that is the exact reverse of the
original purple path. However, this outcome is specific to the current example and does not
represent the algorithm’s typical behavior.

The OSA then configures the first probe batch on the 2x2-East link. This initial
batch sends probes that originate at PE 2x2, follow a path with only an eastward turn, and
arrive at PE 3x2. Since the 2x2-East link is not infected, the result of this probe batch indi-
cates that all probes were successful. The OSA then increments the iterator and probes the
1x2-East link using the same process applied to the first link. This new batch is configured
with source PE 1x2, a path consisting solely of an eastward turn, and target PE 2x2. The
batch executes by sending multiple probes through the 1x2-East link. Eventually, the HT
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placed on this link activates and drops one or more probes. Upon receiving the result indi-
cating failed probes, the OSA aborts its execution, thereby localizing the HT to the 1x2-East
link. Finally, the NoC Health Table marks the 1x2-East link as infected. All other links in the
blue, orange, and purple paths are considered HT-free, and their suspicion scores are reset
to zero, following the process described in Section 5.3.

6.2.3 Integration of the Localization Algorithms

The previous two sections presented distinct algorithms for localizing HTs in the
data NoC. The BSA algorithm (Section 6.2.1) is lightweight, exerting minimal impact on the
performance of both the PEs and the NoC. However, its localization capability is limited, with
a low likelihood of detecting HTs with short activation periods, such as the intermittent HT
described in Section 4.1. In contrast, the OSA algorithm (Section 6.2.2) conducts a more
intensive search on selected links and can localize even more “evasive” HTs. This improved
detection capability comes at the cost of higher execution resource usage on the PEs and
increased communication bandwidth consumption in the NoC.

We combine the two localization algorithms to leverage the strengths of both ap-
proaches. Initially, the BSA algorithm is employed to perform a low-impact localization, min-
imizing disruption to the system. If the BSA completes its execution without localizing any
HT, it is assumed that the HT has deactivated, and the OSA algorithm is deployed. The
OSA conducts a more intensive search using the Probe Batches feature of the Probe API
(Section 6.1.1). This search continues until either the HT is successfully localized or all links
of the suspicious path have been searched. The combined localization strategy effectively
detects HTs with long and short activation periods while avoiding unnecessary consumption
of system resources.
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7. SECURITY FLOW RESULTS

This chapter presents the validation and evaluation of the HT localization methods
proposed in this dissertation. The security flow described in Section 4.4 was implemented
using the modules outlined in Chapter 5 and Chapter 6. These methods were developed
in C and integrated into the MPE and Slave PEs kernels. Following this implementation,
attack campaigns were conducted on the manycore. These campaigns consisted of multiple
RTL-level simulations in which tasks communicated over an HT-infected NoC. Each simu-
lation used different combinations of applications and HTs. The HT Insertion Framework,
presented in Section 4.2, enabled actual HTs in the simulations.

Two distinct attack campaigns were performed and are analyzed in the subsequent
sections. The first campaign (Section 7.1) employed the BSA algorithm to localize stati-
cally time-triggered HTs. The second campaign (Section 7.2) combined the OSA and BSA
algorithms to localize intermittent HTs.

7.1 Attack Campaign with the Binary Search Algorithm

The first attack campaign serves as an initial proof of concept to validate the use
of probes for HT localization. This campaign used a simplified version of the security flow,
excluding the SusM, the NoC Health Table, the Probe Batches, and the OSA algorithm.

This campaign considers only static HTs, those with predefined activation windows
that remain active for the duration of the simulation. As a result, all HTs are expected to
be successfully localized, since, once activated and blocking a given path, the probes must
detect their presence.

The following list enumerates the steps of the simplified security flow.

1. Communication Monitoring – The Session Manager establishes a session to monitor
the communication between a Source PE and a Target PE (Section 5.1).

2. Warning Message – When a packet is dropped or delayed, the Session Manager
sends a missing packet warning to the MPE. The Session Manager also executes
the recovery countermeasure to reestablish the communication using source routing
(Section 5.1).

3. Path Acquisition – The MPE executes a simple protocol to obtain the suspicious path
that the Source PE used to communicate with the Target PE (Section 5.3).

4. Localization Deploy – The MPE deploys the BSA algorithm to search for the HT in
the suspicious path (Section 6.2.1).
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5. Localization – The BSA algorithm uses the Probe API to systematically probe the
suspicious path in search of the HT location (Section 6.2.1).

The first attack campaign contains five scenarios. Each scenario is executed twice:
once using the Black Hole HT, and another using the Credit Block HT. The list below de-
scribes the scenarios.

Scen1 Basic HT attack — A synthetic producer-consumer application executes on the many-
core. The producer task sends messages to the consumer task along an XY path
infected with an HT. The HT activates at 300 µs.

Scen2 MPEG — This application consists of a pipeline of five tasks mapped with a 1-hop
distance between each pair of tasks. One HT blocks the path between the first and
second tasks. The HT activates at 2 ms.

Scen3 Same HT affecting multiple paths — The DTW application executes on the many-
core (Figure 7.1(b)). In this application, the Bank task distributes the workload across
four slave tasks (P1, P2, P3, and P4). These slave tasks process the data from the
Bank task and send their results to the Recovery (Rec) task. All four slaves use the
same communication path to reach the Recovery task, which contains a single HT.
The HT activates at 2 ms (during communication), simultaneously affecting all four
communication paths.

Scen4 Attack on the recovered path — A producer-consumer application executes on the
manycore, with the producer task sending messages to the consumer along a straight-
line path. The NoC is infected with two HTs (HT1 and HT2). This scenario has three
phases: (i) both HTs are initially deactivated, allowing the communication between
tasks; (ii) HT1 activates at 600 µs, disrupting communication between the producer
and consumer tasks. The Session Manager recovery mechanism is triggered, iden-
tifying an alternative path between the tasks, and communication resumes over this
new path; (iii) HT2 activates at 2 ms, affecting the alternative path and again inter-
rupting communication. Simultaneously, HT1 deactivates. The recovery mechanism is
executed again, restoring communication via the original path.

Scen5 Multiple HTs over one path – Similar to Scen1 (Figure 7.1(a)). One producer-
consumer application executes in the manycore and communicates using an XY path
that is infected by 3 HTs. All the 3 HTs become active at 300 µs (before the first
message is sent).

Figure 7.1 illustrates two scenarios used to validate the simplified security flow. Fig-
ure 7.1(a) presents Scen5, in which a producer-consumer application exchanges messages
through a path infected with three HTs. During the application’s execution, all HTs are acti-
vated simultaneously, triggering the BSA localization algorithm. By the end of the simulation,
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Labels show which task is executed in each PE. The paths compromised by HTs are colored: green routers
are not infected; red routers contain HTs, and drop packets trying to cross the infected link (shown as a
red arrow). (a) Producer-consumer application trying to communicate through a path with multiple HTs.
(b) DTW application with four workers (P1-P4) sending messages to the Recognizer task (Rec) using the
same path.

Figure 7.1 – Examples of testcases used to validate the BSA HT Localization Algorithm
(Adapted from Comarú et al. [2025]).

the algorithm successfully identifies the coordinates of all HTs. Figure 7.1(b) depicts Scen3,
which involves the DTW application. In this scenario, the tasks P1, P2, P3, and P4 all com-
municate with Rec via a shared path infected by an HT. Upon activation of the HT, each
affected communication pair sends a missing packet warning to the MPE, independently
triggering a localization request. The MPE queues the incoming requests and processes
them sequentially. After the first search concludes and the HT is localized, the MPE handles
the next request. Since the same HT causes all disruptions, each BSA execution identifies
the same set of HT coordinates in this scenario.

The first attack campaign executed 10 simulations with static HTs performing Black
Hole and Credit Block attacks. In every scenario simulated we observed that:

i. the Session Manager detected the missing packet and recovered the communication
through source routing;

ii. the BSA algorithm, together with the Probe API, localized the correct coordinates for
every HT attack;

iii. the fault-tolerance mechanisms discussed in Section 3.3 successfully keep the NoC
functional despite HT attacks inducing side-effects (such as packets stuck in the routers).

This initial attack campaign validates the core premise of this dissertation by demon-
strating that HTs can be localized by probing the NoC with test packets.



74

At this stage, we have addressed only a simplified version of the security flow, ex-
plicitly designed to localize static HTs. This represents an incremental step toward fulfilling
the objective of this dissertation. Subsequently, we repeated the simulations using intermit-
tent HTs and observed that the simplified approach frequently failed to localize them. This
limitation arises because intermittent HTs may not remain active long enough for the BSA
algorithm to complete its execution.

7.2 Attack Campaign with the Complete Security Flow

This section presents the second attack campaign executed in the manycore, which
considers the complete implementation of the security flow described in Section 4.4. This
second attack campaign assesses our proposal’s capability to localize intermittent HTs. We
consider a more complete scenario that contains three applications executing in the many-
core, with two intermittent HT attacks. This section also evaluates how different configura-
tions of Probe Batches affect the HT localization process.

The second attack campaign uses the complete security flow, implemented with the
modules presented in Chapter 5 and Chapter 6. The list below provides a short overview of
the steps performed by the security flow.

1. Communication Monitoring – The Session Manager establishes a session to monitor
the communication between a Source PE and a Target PE (Section 5.1).

2. Warning Message – When a packet is dropped or delayed, the Session Manager
sends a “missing packet warning” to the MPE. The Session Manager also executes
the recovery countermeasure to reestablish the communication using a different path
(Section 5.1).

3. Path Acquisition – The SusM executes a protocol to acquire the suspicious path used
by the missing packet, registering it in the Suspicious Path Table (Section 5.3).

4. Score Update – The SusM updates the NoC Health Table by incrementing the suspi-
cion score of each link contained in the suspicious path (Section 5.3).

5. Attack Detection – The SusM progressively updates the suspicion scores of the NoC
Health Table whenever a new path is registered. When a suspicious score exceeds
the threshold, the SusM triggers the localization phase (Section 5.3).

6. BSA Execution – The BSA performs an initial search, using the Probe API to localize
HTs in the suspicious path (Section 6.2.1). The localization phase is concluded if the
BSA succeeds in localizing an HT. However, if no HT could be localized, the BSA
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considers that the HT has been deactivated and triggers the OSA algorithm to execute
another search (Section 6.2.3).

7. OSA Execution – The OSA conducts a more comprehensive search using the Probe
Batches feature of the Probe API. This secondary search aims to localize intermittent
HTs and those with shorter activation windows (Section 6.2.2).

8. Conclusion – The OSA finishes its execution, either localizing the HT or not.

The second attack campaign employs a single scenario, Scen6, simulated under
varying parameters. This scenario comprises three applications: MPEG (a pipeline consist-
ing of five tasks), DTW (a master-slave model with six tasks), and Dijkstra (a master-slave
model with seven tasks). These 18 tasks execute concurrently on a 5×5 manycore archi-
tecture and communicate via a NoC infected with two intermittent HTs, which activate and
deactivate at random intervals within a predefined range.

Figure 7.2(a) presents the tasks mapped in the manycore, with the three appli-
cations displayed in different colors. Figure 7.2(b-d) consider each application individually,
showing the paths that cross an HT-infected link. HT attacks can affect these paths depend-
ing on whether the HT activates when the path is being used. Note that Figure 7.2 only
considers the original paths used by the applications and abstracts the alternative paths
found by the Session Manager to recover the communication after an HT attack. Alternative
paths may also cross HT-infected links and thus be affected by attacks.

Figure 7.3 presents the suspicious score of the NoC Health Table in Scen6, both
before executing the localization algorithms (Figure 7.3(a)) and after executing the localiza-
tion algorithms (Figure 7.3(b)). These values were taken from one of the simulations per-
formed in this attack campaign. Figure 7.3(a) shows that some suspicion scores exceeded
the threshold values at ports 0x3-South and 1x3-West, with a value of 4. That happens
because the HT localization started executing from the threshold value (3); however, during
its execution, the suspicion score increased due to another path affected by the HT.

In Figure 7.3(b), the table reflects the state after multiple HT localization attempts,
during which both HTs were successfully identified (marked with an “X”). Even after both HTs
are localized, some ports display non-zero values. This occurs because the current version
of the security flow does not include a countermeasure to isolate an HT following its detec-
tion; as a result, the HT remains active and can influence other paths. Consequently, once
the suspicion score reaches three again, the system initiates another localization attempt.
To simulate the presence of a countermeasure, localization attempts targeting already iden-
tified HTs are discarded. Although the search is not executed in such cases, the suspicion
scores are still recorded in the NoC Health Table.
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a) Application mapping on the platform b) MPEG application affected routes

c) DTW application affected routes d) Dijkstra application affected routes
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The scenario contains three applications: MPEG (purple), DTW (orange), and Dijkstra (blue). Those
applications execute in a 5x5 manycore and communicate using an NoC infected with two intermittent
HTs.
(a) shows the application mapping in the manycore, the name of each task is labeled over their respective
PE. The 2 HTs are shown in red: HT1 infects the 0x3-South link; HT2 infects the 4x1-North link.
(b-d) represent the paths that may be affected by the intermittent HT attacks. These pictures are separated
by application for the sake of clarity. The HTs are also omitted and represented by a red mark over the
infected links.

Figure 7.2 – Scenario Scen6 used in the attack campaign with the complete security flow
and intermittent HT attacks (Source: the Author).

(a) NHT before executing the HT localization. (b) NHT after executing the HT localization.

SOUTH: NORTH: WEST: EAST: SOUTH: NORTH: WEST: EAST:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 . . . . . . . . . . 4 3 2 1 . . . . . X . . . . . . . . . . . . . . . . . . .
3 . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . X . . . . . . . . . .
1 . . . . . . . . 3 . . . . . 1 2 2 3 . . . . . . . . . . 3 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 2 .

Figure 7.3 – Example of NoC Health Table (NHT) presenting the suspicion scores before
and after the HT localization in Scen6 (Source: the Author).
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The second attack campaign consists of multiple simulations of the Scen6 sce-
nario. Each simulation employs a distinct Probe Batch configuration. The parameters used
for the Probe Batches are listed below, and the results of the 12 simulations are presented
subsequently.

• Batch Size: 5, 10, and 30 probes.

• Probe Delay : 10, 50, 100, and 250 µs.

• Probe Length: 30 words (60 flits) – fixed size.

These simulations utilize the Black Hole intermittent HT, configured with activation
windows ranging from 0 µs to 81.91 µs, and inactivation windows ranging from 204.80 µs
to 655.35 µs. The SusM detects HT attacks using a suspicion score threshold of 3, the
default value. The timeout thresholds for the Session Manager and the Probe API are set to
655.34 µs and 150 µs, respectively.

Figure 7.4 presents a table summarizing the results of the attack campaign related
to the detection of the intermittent HTs, HT1 and HT2, in the Scen6 scenario. The following
observations can be made:

i. HT2 triggers more localization attempts then HT1. This happens because HT2 affects
nine different communication flows, whereas HT1 affects only four. As a consequence,
there are simulations in which HT2 is localized by subsequent searches, while HT1
remains unlocalized after only one search (batch size = 5).

ii. Small batch sizes exhibit reduced effectiveness in localizing intermittent HTs. This is
evident in the first row of the table, where the smaller batch (batch size = 5) failed to
localize HT1. Due to their shorter execution periods, smaller batches may complete
before the HT can reactivate.

iii. As the number of probe packets increases (i.e., as the batch size grows), HT localiza-
tion becomes more efficient, requiring fewer searches to identify the HTs. For example,
with a batch size of 30, a single search is sufficient to detect both HTs.

iv. The BSA algorithm could not detect the intermittent HTs, requiring the execution of the
OSA algorithm. It is noteworthy that the execution time of BSA remains nearly constant
(approximately 130 µs), except in two cases where a BSA probe was dropped by the
HT, resulting in a probe timeout. In these instances, the HT became inactive shortly
thereafter, preventing the BSA from identifying its location. The need for the OSA
algorithm does not diminish the role of BSA within the proposed approach. Given its
shorter execution time, the BSA algorithm can serve as an initial attempt to localize
static HTs before executing the more resource-intensive OSA.
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Probe Delay
10 us

Probe Delay
50 us

Probe Delay
100 us

Probe Delay
250 us

Batch Size
5

1. HT2 (3x3 → 0x2) 1. HT2 (3x1 → 4x3) 1. HT2 (3x1 → 4x3) 1. HT2 (2x0 → 4x2)

BSA Exec Time 123 us BSA Exec Time 123 us BSA Exec Time 123 us BSA Exec Time 360 us
OSA Exec Time 738 us OSA Exec Time 481 us OSA Exec Time 738 us OSA Exec Time 527 us

2. HT2 (3x1 → 4x3) 2. HT1 (3x3 → 0x2) 2. HT2 (4x0 → 4x2) 2. HT1 (4x3 → 0x1)
BSA Exec Time 131 us BSA Exec Time 130 us BSA Exec Time 131 us BSA Exec Time 124 us
OSA Exec Time 553 us OSA Exec Time 1229 us OSA Exec Time 553 us OSA Exec Time 2097 us

3. HT2 (4x0 → 4x2) 3. HT2 (1x1 → 4x3) 3. HT1 (3x3 → 0x2)
BSA Exec Time 132 us BSA Exec Time 132 us BSA Exec Time 133 us
OSA Exec Time 1365 us OSA Exec Time 1363 us OSA Exec Time 1353 us

4. HT2 (1x1 → 4x3) 4. HT2 (0x0 → 4x2)

BSA Exec Time 135 us BSA Exec Time 137 us
OSA Exec Time 461 us OSA Exec Time 442 us

5. HT1 (3x3 → 0x2) 5. HT1 (3x3 → 0x2)
BSA Exec Time 129 us BSA Exec Time 129 us
OSA Exec Time 1056 us OSA Exec Time 1045 us

HT1 WAS NOT LOCALIZED HT1 WAS NOT LOCALIZED HT1 WAS NOT LOCALIZED HT1 WAS NOT LOCALIZED
HT2 WAS LOCALIZED HT2 WAS LOCALIZED HT2 WAS LOCALIZED HT2 WAS LOCALIZED

Apps Exec Time 32.16 ms Apps Exec Time 32.26 ms Apps Exec Time 32.17 ms Apps Exec Time 32.57 ms

Batch Size
10

1. HT2 (2x0 → 4x2) 1. HT2 (2x0 → 4x2) 1. HT2 (1x0 → 4x2) 1. HT2 (4x0 → 4x2)

BSA Exec Time 360 us BSA Exec Time 124 us BSA Exec Time 129 us BSA Exec Time 120 us
OSA Exec Time 552 us OSA Exec Time 2283 us OSA Exec Time 2354 us OSA Exec Time 669 us

2. HT1 (3x3 → 0x2) 2. HT1 (4x3 → 0x1) 2. HT1 (2x3 → 0x1) 2. HT1 (4x3 → 0x1)

BSA Exec Time 390 us BSA Exec Time 170 us BSA Exec Time 128 us BSA Exec Time 158 us
OSA Exec Time 472 us OSA Exec Time 3387 us OSA Exec Time 1895 us OSA Exec Time 1305 us

3. HT2 (1x0 → 4x2) 3. HT2 (0x1 → 4x3)

BSA Exec Time 133 us BSA Exec Time 137 us
OSA Exec Time 640 us OSA Exec Time 533 us

4. HT1 (3x3 → 0x2) 4. HT1 (3x3 → 0x2)

BSA Exec Time 133 us BSA Exec Time 133 us
OSA Exec Time 599 us OSA Exec Time 488 us

HT1 WAS LOCALIZED HT1 WAS LOCALIZED HT1 WAS LOCALIZED HT1 WAS LOCALIZED
HT2 WAS LOCALIZED HT2 WAS LOCALIZED HT2 WAS LOCALIZED HT2 WAS LOCALIZED

Apps Exec Time 32.46 ms Apps Exec Time 33.02 ms Apps Exec Time 33.04 ms Apps Exec Time 32.58 ms

Batch Size
30

1. HT2 (4x0 → 4x2) 1. HT2 (2x0 → 4x2) 1. HT2 (2x0 → 4x2) 1. HT2 (3x1 → 4x3)

BSA Exec Time 120 us BSA Exec Time 124 us BSA Exec Time 123 us BSA Exec Time 123 us
OSA Exec Time 596 us OSA Exec Time 970 us OSA Exec Time 603 us OSA Exec Time 896 us

2. HT1 (4x3 → 0x1) 2. HT1 (4x3 → 0x1) 2. HT1 (3x3 → 0x2) 2. HT1 (3x3 → 0x2)

BSA Exec Time 145 us BSA Exec Time 154 us BSA Exec Time 133 us BSA Exec Time 135 us
OSA Exec Time 1391 us OSA Exec Time 1642 us OSA Exec Time 709 us OSA Exec Time 1056 us

HT1 WAS LOCALIZED HT1 WAS LOCALIZED HT1 WAS LOCALIZED HT1 WAS LOCALIZED
HT2 WAS LOCALIZED HT2 WAS LOCALIZED HT2 WAS LOCALIZED HT2 WAS LOCALIZED

Apps Exec Time 33.57 ms Apps Exec Time 33.67 ms Apps Exec Time 33.09 ms Apps Exec Time 33.11 ms

Table with the results of the 12 simulations that use different Probe Batch parameters. The left-most column
shows the Batch Size values. The top-most row shows the Probe Delay values. The colored blocks are
associated with a Batch Size and a Probe Delay, representing one simulation from the attack campaign.
Each simulation block shows the following information:
1) Every HT localization attempt that was executed in the simulation. Localization attempts that localized
the HT are marked in green, whereas attempts that failed to localize the HT are marked in red. Together
with every localization attempt, we also show the suspicious path being searched, the HT responsible for
the search, and the execution time of both localization algorithms.
2) An indicator showing whether or not each HT was localized during the simulation.
3) The total execution time for the applications. This time starts when the applications are accepted into
the manycore and ends when the last application finishes executing.

Figure 7.4 – Results of the second attack campaign, which uses the complete security flow
to localize intermittent HTs (Source: the Author).
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v. The execution time of the applications is minimally affected by the search method,
varying between 32.16 ms and 33.67 ms (4.7 %).

vi. The execution time of the OSA algorithm can be relatively high, with some cases ex-
ceeding 1 ms (e.g., 1.624 ms for a probe delay of 50 µs and a batch size of 30). As
mentioned above, this time does not impact the execution of the applications because
the link affected by the HT is no longer in use due to the rerouting countermeasure of
the Session Manager.

The execution times of the HT localization algorithms presented in Figure 7.4 are in-
fluenced by several factors: (i) longer communication paths require more time to be searched;
(i) if an HT is successfully localized, the search is aborted early, resulting in reduced execu-
tion time; (iii) the processing elements (PEs) may be interrupted to execute other functions
during localization, leading to longer execution times; (iv ) the configuration of the Probe
Batches affects the duration of the OSA, larger batch sizes result in longer execution times.

The results presented in Figure 7.4 indicate that the detection of intermittent HTs
depends on both the timing characteristics of the HTs and the Probe Batch configurations, as
these factors influence the probability of collisions between probe packets and HT activation
periods.

Figure 7.5 presents three graphs illustrating the collisions between probe packets
and HT activation periods. These graphs correspond to the simulations shown in the second
column of Figure 7.4 (Probe Delay = 50 µs). Each simulation involved a successful OSA
search that localized HT2 on the 4×1-North link, using different Batch Size values (5, 10,
and 30 probes). The graphs in Figure 7.5 depict the Probe Batches employed in these
successful OSA searches. Each graph plots the duration of individual probes (upper portion)
alongside the corresponding HT activation windows (lower portion). A collision occurs when
an HT is active during a probe’s transmission, causing the HT to drop the packet and prevent
its arrival at the target. Missed probes, resulting from such collisions, are represented as
enlarged bars.

The analysis highlights a trade-off between the number of probe packets and the
probability of detecting HTs during their activation intervals. Specifically, smaller batch sizes
reduce the chance of collision with active HTs, potentially allowing threats to remain unde-
tected, as demonstrated by the first row in Figure 7.4 (batch size = 5), where HT1 could not
be localized using only five probes. Conversely, increasing the number of probes enhances
detection probability but also demands more system resources, restricting the availability of
links for other applications during testing periods. The results indicate that, for the HT con-
figured for these particular activation times and intervals, a compromise is achieved with a
Probe Delay of 10 µs and a Batch Size of 10 probes, which successfully detected both HTs
during the first execution of the OSA algorithm.
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This figure contains three graphs that illustrate the collision between probes and HT activation periods for
different simulations. The graphs show a batch executed in the 4x1-North link, attempting to localize HT2.
The upper part of each graph represents the probes sent through the link. Probes with a larger width
correspond to probes that were dropped by an HT, resulting in the detection of the HT. The lower part of
each graph contains green rectangles that correspond to the intervals where the HT is active — time in
ms.
(a) Batch Size: 5; Probe Delay: 50 µs. HT was detected in the fifth probe.
(b) Batch Size: 10; Probe Delay: 50 µs. HT was detected in the seventh probe.
(c) Batch Size: 40; Probe Delay: 50 µs. Four probes failed, resulting in multiple detections of the same HT.

Figure 7.5 – Collisions between probes and HT activation periods (Source: the Author).



81

8. CONCLUSION AND FUTURE WORK

HTs infecting the NoC expose manycore systems to threats such as packet mis-
routing, packet dropping, data tampering, and network flooding, requiring effective counter-
measures to protect the applications. However, deploying these countermeasures effectively
depends on identifying the HT’s location. Existing localization methods typically rely on em-
bedding additional security hardware into the NoC, making them inappropriate when the
NoC itself is deemed untrusted. This dissertation sought to develop a non-invasive method
that does not need to integrate extra security hardware in the NoC.

This work proposed a three-phase security framework: (1) the Monitoring Phase
establishes sessions to observe inter-task communication and detect the presence of HT
attacks; (2) the Localization Phase executes an HT localization algorithm that searches
for the HT by transmitting probe packets along specific NoC routes; and (3) the Counter-
measure Phase applies a mechanism to neutralize or mitigate the impact of the HT on the
system.

For the Localization Phase, we proposed a technique called path probing, which
operates by transmitting probe packets along specific NoC paths to evaluate the integrity
of the links. The HT localization algorithm selectively sends probes through the NoC and
analyzes their results. Based on the result of each probe, the search is progressively refined
until the HT is localized. This method is implemented in software, enabling HT localization
without embedding security hardware into the NoC routers.

The implementation of the security framework resulted in additional contributions:

• HT Insertion Framework: an automated tool for injecting HTs into the NoC links,
establishing the foundation for conducting HT-based attack campaigns on the NoC;

• Fault-Tolerance Mechanisms for NoC Protection: integration of mechanisms to
safeguard the NoC against disruptions caused by either hardware faults or HT attacks.

• Secure Network Interface for Peripherals (SNIP) Extension: full integration of the
SNIP into the manycore, adding new functionalities to issue warnings upon detecting
security threats.

The results demonstrated the effectiveness of the probing method. The first at-
tack campaign confirmed the BSA algorithm’s efficacy in identifying permanently active HTs.
Subsequently, we showed that the OSA technique can detect intermittent HTs, with minimal
impact on applications’ execution time (less than 5%). It was also observed that detecting
intermittent HTs is not straightforward, as it depends on the collision between HT activa-
tion periods and the transmission of probe packets. We evaluated different configurations
for the probe packets, and for the experiment considered, specific parameter values (batch
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size = 10 and probe delay = 10) enabled successful HT localization. However, these values
are not universally applicable, as HTs may exhibit varying activation patterns. Therefore,
the detection process implemented in software is advantageous because it allows dynamic
adjustment of parameters when detection fails along suspected paths.

The implementation of the proposed security mechanisms is publicly available at
https://github.com/gaph-pucrs/hemps_OSZ. Furthermore, this work has resulted in the pub-
lication of journal and conference papers listed in Section 1.3.

8.1 Future Work

Based on the work developed in this dissertation, we outline suggestions for future
research below.

• Countermeasure Mechanisms — Due to the time dedicated to developing the HT
localization flow, the implementation of HT countermeasures was left as future work.
Our approach detects the coordinates of the HT and the suspicion scores are recorded
in the NoC Health Table. Such data can support the implementation of the following
countermeasures: (i) mapping applications to regions of the NoC that are free of HTs;
(ii) rerouting packets through paths that avoid infected links; and (iii) isolating infected
NoC links using Link Control units (Section 3.1.1).

• Preventive Monitoring — The security flow proposed in this dissertation includes a
preventive monitoring strategy for the NoC. However, the implementation of this proac-
tive monitor remains as future work. We suggest extending the Communication Moni-
tor module to: (i) identify underutilized NoC paths for observation; (ii) periodically send
probe packets through these paths; and (iii) report any failed probes to the Attack
Monitor module. The security flow is compatible with this enhancement.

• Fault-Tolerant NoC — During the development of this work, we observed that both
attacks and faults in the NoC may produce severe side effects, potentially render-
ing the NoC inoperable. Although the literature acknowledges the possibility of NoC
faults, current approaches do not address their secondary effects. This dissertation
proposes three mitigation mechanisms, though fault tolerance was not its primary fo-
cus. Therefore, the design of a fault-tolerant NoC remains a promising direction for
future research.

• New Localization Algorithms — The modular architecture of the proposed security
flow allows for enhancements through the development of new module implementa-
tions. In particular, we encourage the design of alternative HT localization algorithms.
Potential directions include: (i) an algorithm tailored for NoCs with multiple physical

https://github.com/gaph-pucrs/hemps_OSZ
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planes, and (ii) an algorithm that dynamically adjusts Probe Batch parameters to tar-
get HTs with narrow activation windows.

• Probe Batches with Randomized Delays — The current Probe Batch mechanism
establishes periodic probe transmission between two PEs based on a fixed delay. This
mechanism could be extended to support randomized delays, generated according
to different statistical distributions, to improve the detection of HTs exhibiting erratic
activation behavior.

• Extending the Security Flow to Other Attacks — This dissertation focused on local-
izing HTs that prevent packets from reaching their destinations, specifically targeting
Black Hole and Credit Block attacks. Future work could broaden the threat model to
include a wider range of HT behaviors. New probing strategies may be developed to
detect HTs that perform attacks such as flooding, misrouting, spoofing, or data tam-
pering.
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APPENDIX A – HARDWARE TROJAN TAXONOMY

The main reason enabling the insertion of HTs in a design is the distributed produc-
tion chain adopted in the microelectronics industry, which allows designers to build a system
with IPs from different design companies (third-party IPs – 3PIPs). Such a situation raises
the question: “Is this foreign IP trustworthy?”. The answer to this question is not simple since
most IPs do not reveal their content or design process to protect intellectual property.

Figure A.1 shows the HT taxonomy proposed by Shakya et al. [2017]. The au-
thors present six main characteristics to classify the different types of HT: Insertion phase;
activation mechanism; abstraction level; effect; location; and physical characteristics.

Hardware Trojans
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Figure A.1 – HT taxonomy presented by Shakya et al. [2017].

A.1 Insertion Phase

Inserting an HT can involve altering the design specification, such as manipulating
tamperature to compromise design dependability. Tampering can occur during both the
design and fabrication stages. This malicious activity can take the form of adding extra
gates to a design’s netlist or modifying its masks. HT insertion during the testing phase
involves manipulating tests to conceal the presence of an inserted Trojan after fabrication.

Moreover, even in the presence of trustworthy individual chips, unprotected inter-
connections between them are susceptible to Trojan interference. An unshielded wire con-
nection may introduce unintended electromagnetic signals, providing adversaries opportu-
nities to exploit information leakage or inject faults.
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A.2 Activation Mechanism

HTs may always function, or they get conditionally activated. Always-on Trojans
start as soon as their hosting designs are powered-on while conditional Trojans seek specific
triggers either internally or externally to launch. The internal triggers can be timing-based
(an HT is activated after a certain time), or physical-condition-based (an HT is activated
by certain internal events e.g. specific temperature or bus value). The externally triggered
Trojans track user inputs or component outputs, and the Trojans get activated if activation
conditions are met.

A.3 Abstraction level

The control of advisory influence on HT implementation is determined by the level
of abstraction. At the system level, a design is articulated in terms of modules and their
interconnections, with adversaries restricted to the modules’ interfaces and interactions.

Moving to the development environment level, HTs can be inserted into modules
by exploiting CAD register transfer tools and scripting languages. Each module is intricately
described in terms of signals, registers, and Boolean functions at the register-transfer level,
granting adversaries full access to functionality and implementation, allowing easy modifica-
tions.

Descending to the gate level, a design is depicted as a list of gates and their inter-
connections. At this level, adversaries can implement HTs with detailed control over gates
and their interconnections. In the layout level, Trojans’ impact on design power consump-
tion or delay characteristics can be managed. Trojans can be actualized by altering the
parameters of the original circuit’s transistors.

Finally, at the physical level, all circuit components, along with their dimensions
and locations, are determined. HTs can be inserted into the white/dead space of the design
layout with minimal impact on design characteristics.

A.4 Effect

HTs exhibit distinct characteristics depending on their effects. For instance, they
can alter a design’s functionality by modifying elements like the data path of a processor.
Additionally, HTs have the potential to diminish design performance or compromise relia-
bility by manipulating various design parameters. In specific instances, a HT might lead to
the unauthorized disclosure of a cryptographic processor’s secret key or induce a denial of
service for a requested service at a specific time.
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A.5 Location

Any part of a design is potentially subjected to HT insertion. A Trojan may be
dispersed across multiple components or concentrated within a single part. Its influence on a
processor could involve tampering to gain control over its controller or data path units. In the
case of a HT within memory, it has the capacity to alter stored values or impede read/write
accesses to the memory. When present on a Printed Circuit Board (PCB) housing multiple
chips, an I/O-inserted Trojan on the interfaces of these chips can disrupt communication.
Furthermore, a HT can extend its impact to the design power supply, modifying current and
voltage characteristics. Introducing interruptions to the clock grid, a HT can alter design
delay characteristics. This includes freezing part of the clock tree and disabling specific
functional modules.

A.6 Physical characteristics

The physical characteristics of HTs encompass diverse hardware manifestations.
HTs can manifest as either functional or parametric types. Functional Trojans are brought
about by the addition or deletion of transistors/gates, while parametric Trojans result from
modifications to design parameters such as wire thickness. The size of a HT is determined
by the quantity of transistors/gates added or removed. The distribution of HTs types sig-
nifies the spacing, either loose or tight, at which Trojan cells are positioned in the physical
layout. Trojan structure pertains to potential alterations in the original physical design to
accommodate the placement of HT cells.
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