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REDUZINDO A COMPLEXIDADE DE PROJETO DE CIRCUITOS
ASSINCRONOS

RESUMO

O projeto de circuitos assíncronos auto-temporizados (ST) oferece robustez a va-
riações de atraso, mas enfrenta desafios que exigem soluções inovadoras. Esta Tese apri-
mora de forma abrangente o Pulsar, uma contribuição anterior do Autor, focada no projeto
de circuitos assíncronos com ferramentas comerciais de automação de projeto eletrônico.
Pulsar originalmente endereçava tão-somente o modelo pseudo-síncrono ST de lógica de
convenção nula usando espaçadores duplos espacialmente distribuídos (em inglês, pseudo-
synchronous distributed dual spacer null convention logic or PS-SDDS-NCL). A Tese propõe
dois novos modelos ST e estende Pulsar para dar suporte a estes.

O primeiro modelo denomina-se espaçador duplo de indicação fraca (em inglês,
weak-indicating dual spacer ou WInDS), um aprimoramento de indicação fraca para o mo-
delo PS-SDDS-NCL. O segundo é o modelo ST organização assíncrona com histerese
limitada (em inglês, asynchronous limited hysteresis organisation ou ALHO), que emprega
sobretudo portas lógicas convencionais não-histeréticas. Estes modelos são propostos e
integrados na estrutura Pulsar. Eles abordam alguns dos desafios na implementação de
circuitos ST, refletindo a motivação da Tese para superar obstáculos no projeto de circuitos
assíncronos e, ao mesmo tempo, lidar com excessivos área, potência e desempenho al-
gumas vezes produzidos por circuitos ST. Ao estender a ferramenta Pulsar, a Tese propõe
melhorias para apoiar ações de escolha, oferecendo maior flexibilidade ao projeto, e de-
monstra o uso de Pulsar para elaborar circuitos simples, bem como e uma implementação
funcional completa de uma versão da arquitetura RISC-V de processador programável com
os modelos introduzidos.

Contribuições adicionais são a proposta de uma classificação alternativa para cir-
cuitos assíncronos, partindo da necessidade de diferenciar circuitos Quasi-Delay-Insensitive
(QDI) de circuitos ST apartir dos seus pressupostos de temporização. A Tese também
formaliza os requisitos para construir circuitos ST funcionais, propondo princípios funda-
mentais para o projeto e implementação eficientes destes. As contribuições fornecem uma
abordagem estruturada para projetar circuitos assíncronos, com foco no modelo ST ALHO
e na extensão do Pulsar para lhe dar suporte. O trabalho traz uma base para a exploração,
pesquisa e desenvolvimento continuados no campo de projeto de circuitos assíncronos,
empregando a ferramenta Pulsar e oferecendo novas perspectivas para o processamento
deste paradigma.

Palavras-Chave: Circuitos Assíncronos, ST, QDI, Automação de projeto eletrônico.



CURBING THE DESIGN COMPLEXITY OF ASYNCHRONOUS CIRCUITS

ABSTRACT

The design of self-timed (ST) asynchronous circuits offers robustness to delay vari-
ations but faces challenges that require innovative solutions. This Thesis comprehensively
enhances Pulsar, a previous contribution of the Author, focused on designing asynchronous
circuits with the help of commercial electronic design automation tools. Pulsar originally
targeted the pseudo-synchronous spatially distributed dual spacer null convention logic (PS-
SDDS-NCL) ST template. The Thesis introduces two new asynchronous ST templates and
extends Pulsar to support these.

The first is the weakly-indicating dual spacer (WInDS), a weakly-indicating en-
hancement to PS-SDDS-NCL. The second is the asynchronous limited hysteresis organi-
sation (ALHO) ST template, which employs non-hysteretic gates. These are proposed and
integrated within the Pulsar framework. They address some challenges in ST circuit imple-
mentation, reflecting the Thesis motivation to overcome hurdles in designing asynchronous
circuits whilst tackling area, power and performance overheads. This Thesis also extends
Pulsar to support choice, offering more design flexibility. It demonstrates the use of Pulsar to
design simple circuits and a fully functional RISC-V processor architecture implementation
with the introduced templates.

Additional contributions include the formalisation of requirements to build functional
ST circuits, providing foundational principles for their effective design and implementation.
This formalisation enabled the construction of more relaxed ST circuits compared to the con-
servative quasi-delay-insensitive (QDI) paradigm. The need to differentiate QDI and more
relaxed ST circuits in terms of timing assumptions resulted in the proposal of a classification
system for asynchronous circuits.

These contributions collectively provide a new structured approach to asynchronous
circuit design, culminating in the non-hysteretic ALHO ST template and the extensions of
Pulsar. The work lays a foundation for the continued exploration, research, and develop-
ment in the field of asynchronous circuit design, building on the capabilities of Pulsar and
offering new insights into the design process of ST circuits.

Keywords: Asynchronous Circuits, ST, QDI, Electronic design automation.
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1. INTRODUCTION AND MOTIVATION

Advances in semiconductor fabrication technologies allow higher integration, en-
ergy savings and better performance but impose design challenges. Some of the challenges
faced in newer technologies are: (i) higher sensitivity to process variations; (ii) higher static
power; and (iii) longer wire delays. Process variations result from imperfections in the fab-
rication process and manifest themselves as changes in the circuit’s electrical properties.
Static power is the power dissipated by the circuit when idle that is when no switching activ-
ity is taking place. Higher static power can be attributed to higher leakage current due, e.g.
to thinner oxide layers between the transistor channel and the transistor gate. It is roughly
proportional to the number of transistors in the die, each contributing to the overall leak-
age power. Larger wire delays are attributable to smaller wire cross sections and relatively
longer wire lengths, which cause reduced wire current capacity, higher parasitic capacitance
and (relatively) increased coupling effects with neighbour wires. Wire delays in recent tech-
nologies make it unfeasible to route global signals in large circuits without using buffers to
“repeat” the signal during its propagation. This imposes challenges on synchronous circuits,
as they employ a global “clock” signal to provide a discrete-time reference for synchronisa-
tion.

The clock signal distribution must present a controlled, ideally null skew, i.e. it must
present sufficiently close (or at least predictable) delays from the clock source to all registers
controlled by that clock signal. Meeting this clock distribution criterion requires a clock dis-
tribution network composed by buffers and other signal distribution components. This clock
distribution network can have a high cost in area and power. The power consumption asso-
ciated with the clock distribution can comprise a significant percentage of the overall power
dissipated especially in complex circuits. It is not unusual for the clock distribution circuit to
take 40% or more of the total integrated circuit (IC) power consumption [DMM04]. Also, as
ideal clock distribution networks with no skew are challenging to achieve or even impossible
to obtain, it becomes necessary to compensate for the skew. Due to timing uncertainties
arising from process variation affecting the clock distribution delay predictability, it becomes
important to introduce margins in the clock period. This, of course, impacts the overall circuit
performance.

Modern designs mitigate these issues by dividing the circuit into clock domains and
using synchronisers to transfer signals between clock domain boundaries; this approach
only helps solve the problem locally. However, logic spread across a large area (e.g. in-
terconnects) still suffers from clock distribution problems. Furthermore, using multiple clock
domains can result in significant synchronisation overheads, as different clock domains have
their specific clock distribution network, possibly operating at different phases. Traversing
clock domains can become even more challenging when dealing with modern designs em-
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ploying multiple operation frequencies and voltages. A possible solution is the overall elimi-
nation of global or semi-global clock signals. Digital circuits without any global or semi-global
clock signals are known as asynchronous circuits.

1.1 Asynchronous Circuits as an Alternative

Synchronous designs assume that the value on the inputs of all its registers will
only be sampled at the rising (and/or falling) edge of the clock signal. This assumption
enables designers to define timing constraints for the maximum delay in logic paths, which
must always be lower than the clock period. This allows ignoring gate and wire delays, as
long as timing constraints are respected. In other words, combinational logic is allowed to
switch as it computes data during, say, the interval between two consecutive rising clock
edges. Still, it must be stable and correct before the clock edge. Having such a simple
model for circuit design is possible only because the clock is a periodic signal, i.e. its edges
only occur at specific and known points in time. Hence, in synchronous circuits, events will
only occur at specific moments; time can thus be treated as a discrete variable.

However, in asynchronous circuits, there is no such thing as a single clock to sig-
nal data validity on the inputs of all registers. In these, events can happen at any mo-
ment, and time must be regarded as a continuous variable. Thus, asynchronous designers
rely on local handshake protocols for communication and synchronisation and on different
design templates to build circuits, each with its own specific assumptions about gate and
wire delays [BOF10]. These templates can be classified into two main families: bundled-
data (BD) [Sut89] and Self-Timed (ST) [Mar90]. The design of a BD circuit is similar to a
synchronous one; the difference is that BD relies on carefully designed delay elements for
matching the timing of logic paths and controlling registers rather than having a clock signal.
Communication and synchronisation are accomplished through handshake protocols. ST,
on the other hand, uses special data encoding schemes and protocols that allow data to
carry their own validity information. This enables data receivers to compute the presence
or absence of complete data at its inputs/outputs and renders possible the local exchange
of information. Because of this characteristic, ST circuits can adapt more gracefully to wire
and gate delay variations. This is especially true for a subset of ST circuits, named quasi
delay-insensitive (QDI), whose structure enables their correct operation with fewer timing
assumptions, thus less sensibility to delay variability.

Common sources of delay variations are process, voltage and temperature (PVT)
variations and ageing, all faced in recent sub-micron technologies. For example, intra-die
process variations cause the same gate in different parts of the circuit to present different
switching delays, which can possibly lead to faulty circuit behaviour and/or lower production
yield. This problem affects interconnect circuits more acutely, as they span over a large sili-
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con area. ST circuits are thus excellent candidates to tolerate the conditions imposed by in-
trinsic intra-die process variations. Circuits that use ST interconnects between synchronous
components can take advantage of this aspect of ST circuits. Furthermore, the mixed-use
of asynchronous circuits as interconnect for synchronous components solves some of the
known synchronisation problems occurring in the frontier between clock domains.

1.2 Challenges to ST Adoption

The design of ST circuits often relies on specialised infrastructures, which can
frequently hinder the adoption of ST circuit design. This infrastructure often includes (i)
specific gate libraries, containing, e.g. C-Elements, NCL [FB96] gates or PCHB logic cells;
(ii) specific synthesis tools; and (iii) specific design capture languages. ST circuits nor-
mally require gates with hysteretic behaviour to facilitate or enable handshake synchronisa-
tion; a hysteretic gate holds the output stable until specific criteria are met. These special
gates are not usually available in conventional cell libraries designed for synchronous semi-
custom application-specific IC (ASIC) flows, nor are they readily usable by commercial EDA
tools. Specialised tools like Uncle [RST12] and Balsa [EB02] can be used to produce asyn-
chronous circuits with these gates. However, these specialised tools do not integrate well
with semi-custom ASIC flows; they also lack the power and flexibility provided by advanced
commercial EDA tools.

Beyond the hysteretic gates’ availability and compatibility with EDA tools, these
specialised gates can be a hurdle themselves. They require additional logic to implement
hysteresis; this makes them bulkier compared to non-hysteretic conventional gates. Their
widespread use to implement random logic in templates like NCL or DIMS [Sin81] produces
circuits with potentially huge area overheads; of course, this overhead potentially also im-
pacts static power. Hysteretic gates also tend to be slower to switch as they often present
a greater logic depth and higher capacitance. These drawbacks are aggravated on QDI
circuits which, to reduce timing assumptions to only some wire forks, are strong indicating,
meaning that every transition in every intermediary signal must be acknowledged by at least
another transition. Strong indicating circuits often require additional circuitry compared to
their weak indicating counterparts.

Another challenge in designing asynchronous circuits is satisfying non-functional
requirements such as performance, power and area targets. These are often conflicting
among themselves, and balancing them requires employing constraints to guide the synthe-
sis effort. The circuit’s throughput is often the primary performance metric; it dictates how
fast the circuit can accept new input and/or produce results. On asynchronous circuits, the
throughput is bounded by the circuit’s maximum cycle time. However, on complex concurrent
asynchronous systems, cycle time is not trivial to capture. Synchronous circuits typically rely



14

on register transfer level (RTL) models, where the maximum throughput is limited by a clock
period. This not only makes design capture simpler but also eases the task of optimising a
netlist, as every timing path has the same fixed maximum delay constraint, the clock period.
Synchronous RTL models drove decades of development on commercial EDA tools, which
provide solid means for designers to explore power, performance and area optimisation in
modern technologies. These means are nonetheless very specific, and efforts to aban-
don the synchronous paradigm in exchange for more powerful design techniques can easily
make commercial tools not applicable. Accordingly, the support for asynchronous design
lags; as technologies get less predictable and wire-dominated, there is a particular need
for new solutions that allow asynchronous circuit optimisation after technology mapping and
during physical design.

The lack of mature tools also affects the timing closure of ST circuit designs. Albeit
resilient to delay variation, ST circuits must observe some timing assumptions to operate
correctly. This is true even for QDI circuits, which must observe the isochronic fork assump-
tion [Mar90], i.e. the delay difference between end-points of a wire fork must be negligible
compared to gate delays; this requirement can become too restrictive in modern technolo-
gies, dominated by wire delay. The isochronic fork requirement is eased by the concept of
orphan paths [Fan05]; these are paths that are not acknowledged by an output transition un-
der certain conditions. If an orphan path is slower than the fastest propagation of a spacer,
malfunction may occur. Both orphans paths and the isochronic fork assumption are ways
of addressing the same issue, which is required to achieve timing closure in ST designs.
Due to the lack of proper tooling, the design timing closure process is often manually crafted
by specialised designers. Also, ST circuits are often implemented in an overly conservative
fashion to isolate such timing issues. The availability of more sophisticated timing checks
and design closure automated techniques can enable a less restricted synthesis process for
ST templates, thus allowing further optimisation, which is the main motivation for this Thesis.

1.3 Thesis Contributions

Some of the perceived hurdles to ST adoption have already been addressed in
previous works. For instance, SDDS-NCL [MBSC18] proposes a method to allow conven-
tional EDA tools to correctly employ hysteretic gates in the synthesis of ST circuits. Later,
in the context of his MSc dissertation [Sar19], the Author has extended SDDS-NCL and
proposed Pulsar, an automated synthesis flow capable of synthesising ST circuits using Ca-
dence Genus. Pulsar employs the Half-buffer Channel Network (HBCN) timing model, an
original contribution by the Author, and the pseudo-synchronous WCHB model [TBV12] to
leverage static timing analysis (STA) and timing-driven synthesis capabilities of commercial
EDA to design ST circuits with bounded cycle time, guaranteeing a performance floor. Pul-
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sar also offers a design capture method based on register transfer level (RTL) descriptions,
a paradigm familiar to most synchronous designers, here called RTL-like. Ultimately, at the
end of the Author’s MSc, Pulsar enabled the synthesis of performance-bound ST circuits
from RTL-like descriptions.

This Thesis builds on and furthers Pulsar to explore and advance the capabilities
of commercial EDA tools in the synthesis of ST circuits. The technique designed to enable
the use of STA provides greater control over the timing of ST circuits. This ultimately allowed
the exploration of more relaxed templates to overcome some of the issues arising from the
widespread use of hysteretic gates and strong indication. This process leads to the proposal
of two new templates:

• Weakly-Indicating Dual Spacer (WInDS)

• Asynchronous Limited Hysteresis Organisation (ALHO)

WInDS is an enhancement from SDDS-NCL, which replaces strongly-indicating combina-
tional logic with a weakly-indicating version. ALHO is a more radical departure from SDDS-
NCL in the sense that it eliminates the use of hysteretic gates in its implementation of com-
bination logic. These templates do require other timing assumptions besides the aforemen-
tioned isochronic fork assumption.

To correctly describe the new templates, this Thesis proposes a classification sys-
tem for asynchronous circuits that distinguish templates based on their timing assumption
and structure. This system proposes adopting the term ST as circuits that use DI encoding
and completion detection to work correctly and QDI as a strict subset of ST circuits whose
timing assumption is limited to wire forks. Within this context, this Thesis also proposes a
formal framework to describe and analyse logic gates and netlists comprising them. This
formal framework helps define the requirements for building functional ST circuits. When
analysing previous works through this new lens, the Author has found issues in the synthe-
sis technique for SDDS-NCL employed in Pulsar that result in circuits that violate the QDI
criteria but still meet those for ST.

Furthermore, this Thesis also improved Pulsar to enable the construction of com-
plex circuits. One of these improvements is the ability to implement circuits with choice.
Originally Pulsar was limited to synthesise deterministic pipelines, i.e. circuits where all data
must always pass through the same pipeline stages, always in the same order. “Choice” in
this context is the ability to dynamically change data progression in a pipeline. This enables
the efficient construction of dynamic pipelines, i.e. pipelines where data can be redirected
through different paths on demand. The implementation of choice in Pulsar enables it to
synthesise a RISC-V processor core. This RISC-V implementation serves as a challenging
benchmark to evaluate the templates proposed in the Thesis.

To summarise, the contributions of this Thesis are:
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1. The proposal of two new asynchronous design templates:

(a) WInDS

(b) ALHO

2. A classification system for asynchronous circuits.

3. The formalisation of the requirements to build functional ST circuits.

4. A critique of the SDDS-NCL template.

5. Enhancements on Pulsar to support choice.

6. The use of Pulsar to design a functional RISC-V processor in the three templates.

Contribution 1 is considered the main contribution of this Thesis.

1.4 Structure of the Thesis Text

This Thesis’ division into Chapters attempts to group related topics; the original
contributions are not necessarily presented in the order they were introduced in this Chapter.
The Thesis does not include a dedicated chapter about the related state of the art. Instead,
comparisons to relevant related works appear within the context of the discussed topics.

Chapter 2 introduces some formal definitions required to understand the Thesis.
Chapter 3 elaborates on the design of asynchronous circuits; this Chapter covers Contribu-
tions 2 to 4. Chapter 4 covers the HBCN timing model and some of its potential applications.
Chapter 5 is the central Chapter of the Thesis; it provides a comprehensive portrayal of
the current state of Pulsar and approaches the new templates. Contributions 1 and 5 are
covered in this Chapter. Finally, Chapter 6 presents a set of experiments and evaluates the
proposed templates; this final Chapter covers Contribution 6.
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2. DEFINITIONS

This Chapter provides formal definitions that are used in this work. Section 2.1
formally defines Boolean expressions and functions, providing a formal framework to define
gates and their properties in Section 2.2. In the end, Section 2.3 provides a formal definition
of graphs and Petri nets employed in the dynamic analysis of asynchronous circuits.

2.1 Boolean Expression and Functions

This section provides a precise definition of Boolean expressions and some related
applicable definitions; these are thoroughly used in this thesis. The definitions here aim at
being comprehensive but not exhaustive. A Boolean expression draws variable names from
an arbitrary set V .

Definition 1 (Boolean Expression). EV is the set of Boolean expressions over the set of
variables V , defined recursively:

EV = {e + f : e ∈ EV , f ∈ FV} ∪ FV (2.1)

FV = {f · t : f ∈ FV , t ∈ TV} ∪ TV (2.2)

TV = {!t : t ∈ TV} ∪ {(e) : e ∈ EV} ∪ {0, 1} ∪ V (2.3)

Where {·, +, (, ), !, 0, 1} is the set of reserved symbols, FV is the constructor set for factors,
TV is the constructor set for terms, and V is an arbitrary variable set.

The use of multiple sets of constructor forces operator precedence and associativ-
ity. It is helpful to interpret each constructor set separately:

• 2.1 defines the left-associative OR (+) operator constructor; in its absence, it accepts
any of the constructors defined in FV .

• 2.2 defines the left-associative AND (·) operator constructor; in its absence, it accepts
any of the constructors defined in TV .

• 2.3 defines the highest precedence operator and leaf constructors; it defines the con-
stant true (1), false (0), and variable leaf constructors, the negation (!) and the paren-
thesis operator constructors. The parenthesis subverts the operator precedence.

An example of a Boolean expression over the variable set V = {A, B, C, D} is A + B · (C+!D).

From the definition of a Boolean expression, it is helpful defining a function to count
references to a variable in an expression.
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Definition 2 (Reference Count Function). The function v A e : V × EV 7→ N counts refer-
ences of v in e. It is recursively defined as:

v A (e) = v A e (2.4)

v A!e = v A e (2.5)

v A e + e′ = v A e + v A e′ (2.6)

v A e · e′ = v A e + v A e′ (2.7)

v A 0 = 0 (2.8)

v A 1 = 0 (2.9)

v A v ′ =

1, if v ′ ∈ V , v = v ′

0, otherwise
(2.10)

As an example, consider the expression x = A · B+!A · B, it references the variable
A two times and B one time; therefore A A x = 2 and B A x = 1

Definition 1 describes the structure of Boolean expressions, which alone are not
sufficient. Their semantics arise when the Boolean expressions are evaluated with respect
to the variable values.

Definition 3 (State Function). The state function s for Boolean variables V is defined as:

s : V 7→ {0, 1} (2.11)

Definition 4 (Evaluation Function). The evaluation function evals(e) : s × EV 7→ {0, 1}
exists if and only if:

∀v ∈ V : v A e ≥ 1 =⇒ s(v ) ∈ {0, 1} (2.12)
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and it is defined recursively as:

evals(v ∈ V ) = s(v ) (2.13)

evals((e)) = evals(e) (2.14)

evals(1) = 1 (2.15)

evals(0) = 0 (2.16)

evals(!e) =

1, if evals(e) = 0

0, if evals(e) = 1
(2.17)

evals(a · b) =

1, if evals(a) = evals(b) = 1

0, otherwise
(2.18)

evals(a + b) =

1, if evals(a) = 1 or evals(b) = 1

0, otherwise
(2.19)

The Boolean expression provides a formal method to express Boolean functions
with named variables. This is useful when working with switching networks. Nonetheless,
every Boolean expression is equivalent to a Boolean function.

Definition 5 (Boolean Function). An n-input Boolean function f (x) is a function from a
combination of binary values to a binary value:

f : {0, 1}n → {0, 1} (2.20)

Definition 6 (Boolean Expression and Function Equivalency). A Boolean expression e ∈ EV

is equivalent to a Boolean function f (x1 ... xn), if:

∀xi ,∃s(vi) = xi , evals(e) = f (x1 ... xn) (2.21)

This fact is exploited in the next section to formally define some properties for both
Boolean expressions and functions.

2.1.1 Properties of Boolean expressions and functions

This section defines a comprehensible, but not exhaustive, set of properties of
Boolean expressions and functions. These properties are used extensively in this thesis.

First, it is helpful to define distributive normal form (DNF) expressions as a more
restrictive set of Boolean expressions. They comprise Boolean expressions without paren-
thesis or constants where only variables can be negated.
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Definition 7 (Disjunctive Normal Form). DV is the set of disjunctive normal form (DNF)
expressions on variables V , defined recursively:

DV = {d + c : d ∈ DV , c ∈ CV} ∪ CV (2.22)

CV = {c · n : c ∈ CV , n ∈ NV} ∪ NV (2.23)

NV = {!v : v ∈ V} ∪ V (2.24)

Where CV is the set of clauses and NV is the set of strict terms without constants or paren-
thesis. A Boolean expression e ∈ EV is said to be in DNF if and only if e ∈ DV ; e is said to
be a clause if e ∈ CV .

As an example, the Boolean expression A + B · (C+!D) is not in DNF, but the equiv-
alent expression A + B · C + B·!D is in DNF.

An expression in DNF can be decomposed into a set of clauses using the clause
decomposition operator.

Definition 8 (Clause Decomposition). Let e ∈ DV be a Boolean expression in DNF, for which
the decomposition operator ð(e) is recursively defined:

ð(c) = {c}, if c ∈ CV (2.25)

ð(cs + c) = {c} ∪ ð(cs) (2.26)

As an example of decomposition, regard ð(A + B · C + B·!D) = {A, B · C, B·!D}.

An important concept when constructing glitch-less asynchronous circuits is unate-
ness, formally defined as:

Definition 9 (Boolean Function Unateness). A Boolean function f (x1, x2, ..., xn) is said to be
positive unate in xi (1 ≤ i ≤ n), if:

∀xj , i ̸= j , f (x1, ... , xi−1, 1, xi+1, ... , xn) ≥ f (x1, ... , xi−1, 0, xi+1, ... , xn) (2.27)

Similarly, f is called negative unate in xi if:

∀xj , i ̸= j , f (x1, ... , xi−1, 0, ... , xn) ≥ f (x1, ... , xi−1, 1, xi+1, ..., xn) (2.28)

If a function is neither positive unate nor negative unate in xi , it is said to be binate in xi .
Moreover, if a function is positive or negative unate in all its variables, it is called a unate
function. An unate function that is positive (negative) unate in all its variables is called a
positive (negative) unate function.

Unateness is similarly defined for Boolean expressions:
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Definition 10 (Boolean Expression Unateness). A Boolean expression e ∈ EV is positive
unate in x ∈ V, if:

∀(s, s′) : s(x) = 1, s′(x) = 0 =⇒ evals(e) ≥ evals′(e) (2.29)

Similarly, e is negative unate in x, if:

∀(s, s′) : s(x) = 0, s′(x) = 1 =⇒ evals(e) ≥ evals′(e) (2.30)

If an expression is neither positive unate nor negative unate in x, it is said to be binate in x.
Furthermore, if an expression is positive or negative unate in all its variables, it is called an
unate expression. An unate expression that is positive (negative) unate in all its variables is
called a positive (negative) unate expression. If an expression is binate in all its variables,
it is called a binate expression.

An example of a positive unate expression is A · B, of a negative unate expression
is !A+!B, and of a binate expression is A·!B+!A · B (aka, A xor B).

Also, it is good to formalise the concept of complements for both Boolean functions
and expressions.

Definition 11 (Boolean Function Complement). Let f and g be Boolean functions. f com-
plements g if:

∀x : f (x) ̸= g(x) (2.31)

Definition 12 (Boolean Expression Complement). Let e and e′ be Boolean expressions. e
complements e′ if:

∀s : evals(e) ̸= evals(e′) (2.32)

Finally, relevant to the definition of logical gates in this thesis is the definitions of
orthogonality:

Definition 13 (Orthogonal Boolean Function). Two Boolean functions f and g are orthogo-
nal if:

∀x : f (x) = g(x) =⇒ f (x) = g(x) ̸= 1 (2.33)

By extension, a set of Boolean functions F is orthogonal if:

∀f , g ∈ F : f ̸= g =⇒ f and g are orthogonal (2.34)
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The two orthogonal Boolean functions can never be true for the same input. Or-
thogonality is similarly defined for Boolean expressions:

Definition 14 (Orthogonal Boolean Expression). Two Boolean expressions e and e′ are
orthogonal if:

∀s : evals(e) = evals(e′) =⇒ evals(e) = evals(e′) ̸= 1 (2.35)

By extension, a set of Boolean expressions ŒV is orthogonal if:

∀e, e′ ∈ ŒV : e ̸= e′ =⇒ e and e′ are orthogonal (2.36)

For the same state, the two orthogonal expressions should never evaluate both to
true, e.g. A · B and !A·!B are orthogonal, but A · B and A + B are not.

2.2 Gates, Netlists and Production Rules

This Section provides the formal definitions of gates and netlists used in this thesis.
They are loosely based on the analytical framework introduced by Martin [Mar90] and ex-
tended by Keller et al. [KKM09]. However, they define a framework capable of analysing the
correct operation of asynchronous circuits at a transistor level, whilst this thesis is concerned
only with the correct operation of asynchronous circuits at a discreet logical gate level. These
gates are assumed to be adequately verified and sound, with any internal fork not affecting
the overall correctness of the circuit. This layered “divide-and-conquer” approach enables
scaling the analysis to more extensive circuits.

Firstly, the basic definition for constructing the analytical framework in this section
is the production rule:

Definition 15 (Production Rule). A production rule (PR) is a triple:

(g, v , d) : DV × V × {↑, ↓} (2.37)

Where g ∈ DV is a guard expression in DNF, v ∈ V is the target variable, and d is the
direction of change. A production rule is typically denoted g ↣ vd.

A PR describes a sufficient condition to pull a circuit node up or down. Each vari-
able v ∈ V represents a node in the circuit. A state function captures the state of the circuit
at any given moment. When the guard expression g evaluates to 1, the variable v is set to
be pulled up or down according to the direction d, possibly changing a future state function.
The basic intuition for the PR g ↣ v ↑ is that the condition g is sufficient to enable the pull-up
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network driving the circuit node v . It is possible to describe a netlist comprising wires and
logic gates using PRs.

Definition 16 (Netlist). A netlist is a quadruple

N = ⟨Vp, Vg, Vw ,P⟩ (2.38)

Where Vp ⊂ V is the set of port variables, Vg ⊂ V is the set of gate output variables,
Vw ⊂ V is the set of wire termination variables, and P is a finite set of production rules.

Definition 17 (Wire). A wire is a PR pair:

⟨x ↣ y ↑, !x ↣ y ↓⟩ ⊂ P (2.39)

Which satisfies the predicates:

x ∈ Vg ∪ Vp (2.40)

y ∈ Vw ∪ Vp (2.41)

Where x is the wire origin variable, and y is the wire termination variable.

Definition 18 (Logic Gate). A logic gate is a PR pair:

⟨g↑ ↣ y ↑, g↓ ↣ y ↓⟩ ⊂ P (2.42)

Which satisfies the predicates:

g↑ and g↓ are orthogonal (2.43)

g↑, g↓ ∈ EVw (2.44)

y ∈ Vg (2.45)

Where y is the gate output, g↑ is the gate activation expression, and g↓ is the gate deac-
tivation expression. Collectively, the activation and deactivation expressions are called the
guard expressions.

The intuition for Definition 18 is that one PR models the pull-up network, and the
other models the pull-down network of a logic gate. Similarly, Definition 17 models wires as
“non-inverted” buffers. Also, notice that the logic gate definition limits the guard expressions
to be orthogonal. Since it is assumed that logic gates are sound by design, short-circuiting
conditions are assumed not to occur, or at least not to affect the output value. The orthogo-
nality of the guard expressions guarantees that short-circuiting never occurs, thus simplifying
the model.
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The definitions presented in this Section are structured to disallow gate-to-gate
connections. Predicate 2.41 dictates that wires can only drive wire termination or port vari-
ables. Similarly, Predicate 2.45 dictates that a gate can only drive gate output variables.
Predicates 2.40 and 2.44 complement the aforementioned predicates; the former dictates
that wires can only be driven by gates’ outputs or ports, and the latter dictates that gates’
inputs can only be connected to wires. However, limiting gate-to-gate connections is not
sufficient to avoid implicit forking. for that, any wire can only be referenced by a single gate.
This is important later when using this construction to analyse timing issues. Furthermore,
no circuit node should be driven by more than one single gate or wire. Here, additional
predicates are defined to enforce the netlist correctness.

Definition 19 (Netlist Corectness). A netlist N = ⟨Vg, Vw ,P⟩ is correct, if:

∀v ∈ Vg ∃! {g ↣ yd , g′ ↣ y ′d ′} ⊂ P : y = y ′ = v , d ̸= d ′ (2.46)

∀v ∈ Vw ∃! {g ↣ yd , g′ ↣ y ′d ′} ⊂ P : y = y ′ = v , d ̸= d ′ (2.47)

∀v ∈ Vw ∃! {g ↣ y ↑, g′ ↣ y ↓} ⊂ P : (v A g) + (v A g′) ≥ 1 (2.48)

Predicate 2.46 and 2.47 state that each wire termination and gate output variables
should be driven by a single PR pair with opposing directions, a gate or a wire respectively.
Whereas, Predicate 2.48 states that every wire termination variable should only be refer-
enced by the guards in single production rule pair, i.e. referenced by a single gate. Notice
that these restrictions also limit the netlist to be fully connected.

C
nack'

yt
xt'

C yf
xf'

yackyack'nack

nack''

yt'

yf'

yf''

yt''

xt

xf

xackxack'

Figure 2.1: WCHB register with explicit forks. The variable names are marked on the corre-
sponding circuit nodes.

As an example, consider the WCHB register depicted in Figure 2.1. This is a netlist
with explicit wire forks. Every gate output and every wire termination is marked with a vari-
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able name. The forks are explicit, as each wire termination has its own variable name. The
variable sets for this netlist are:

Vp = {xt , xack ′, xf , yack , yt ′, yf ′} (2.49)

Vg = {nack , yt , xack , yf} (2.50)

Vw = {nack ′, xt ′, xf ′, nack ′′, yack ′, yt ′, yt ′′, yf ′′, yf ′} (2.51)

Its wires are defined by PR pairs:

⟨xt ↣ xt ′ ↑, !xt ↣ xt ′ ↓⟩ (2.52)

⟨xf ↣ xf ′ ↑, !xf ↣ xf ′ ↓⟩ (2.53)

⟨xack ↣ xack ′ ↑, !xack ↣ xack ′ ↓⟩ (2.54)

⟨yt ↣ yt ′ ↑, !yt ↣ yt ′ ↓⟩ (2.55)

⟨yt ↣ yt ′′ ↑, !yt ↣ yt ′′ ↓⟩ (2.56)

⟨yf ↣ yf ′ ↑, !yf ↣ yf ′ ↓⟩ (2.57)

⟨yf ↣ yf ′′ ↑, !yf ↣ yf ′′ ↓⟩ (2.58)

⟨yack ↣ yack ′ ↑, !yack ↣ yack ′ ↓⟩ (2.59)

⟨nack ↣ nack ′ ↑, !nack ↣ nack ′ ↓⟩ (2.60)

⟨nack ↣ nack ′′ ↑, !nack ↣ nack ′′ ↓⟩ (2.61)

And its gates are defined by the PR pairs:

⟨yt ′′ + yf ′′ ↣ xack ↑, !yt ′′·!yf ′′ ↣ xack ↓⟩ (2.62)

⟨!yack ↣ nack ↑, yack ↣ nack ↓⟩ (2.63)

⟨nack ′ · xt ′ ↣ yt ↑, !nack ′·!xt ′ ↣ yt ↓⟩ (2.64)

⟨nack ′′ · xf ′ ↣ yf ↑, !nack ′′·!xf ′ ↣ yf ↓⟩ (2.65)

2.2.1 Logic Gates Properties

To further analyse a logic gate, consider the OR-gate driving xack defined by
PR Pair 2.62. When s(yt ′′) = s(yf ′′) = 0, the activation expression for xack evaluates to
1, setting to pull xack down; but for every other input state, the deactivation expression for
xack evaluates to 1, setting to pull xack up. This occurs because the guard expressions for
the OR-gate complement each other.

It is possible to have logic gates that, for some states, neither guard expression
evaluates to 1. These are called hysteretic gates; they are logic gates whose guard expres-
sions don’t complement each other.
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Definition 20 (Gate Hysteresis). A gate ⟨g↑ ↣ y ↑, g↓ ↣ y ↓⟩ is said to be hysteretic if

∃s : evals(g↑) = evals(g↓) = 0 (2.66)

Otherwise, it is said to be conventional.

For simplicity, if no change is set to occur on the output variable of a gate, it holds
its value indefinitely. This behaviour, in fact, is often implemented using an internal feedback
mechanism in the logic gate. The full behaviour of any gate can be expressed by a single
characteristic function that references a delayed output value:

Definition 21. Let ⟨g↑ ↣ q ↑, g↓ ↣ q ↓⟩ be a gate with output q, qi is its current value and
qi−1 is its previous value. The gate characteristic function is defined by the expression:

qi = g↑ + qi−1·!(g↓) (2.67)

As an example, consider the C-element defined by PR Pair 2.64. When s(nack ′) =
s(xt ′) = 1, the activation expressions for yt evaluates to 1, setting to pull yt up; similarly, when
s(nack ′) = s(xt ′) = 0, the deactivation expression for yt evaluates to 1, setting to pull yt down.
However, when s(nack ′) ̸= s(xt ′), neither guard expression evaluates to 1, then no change
on yt is set to occur. Compare that to the OR-gate example where the two guard expressions
complement each other; when one of the guards evaluates to 0, the other evaluates to 1.
The OR-gate is an example of a conventional gate, whereas the C-Element is an example
of a hysteretic gate

Logic gates can be further classified by their unateness, i.e. how the direction of
change in an input variable affects the direction of change in the output variable.

Definition 22 (Gate Unateness). A logic gate ⟨g↑ ↣ y ↑, g↓ ↣ y ↓⟩ is said to be positive
unate if:

g↑ is positive unate and g↓ is negative unate (2.68)

Similarly, a logic gate is said to be negative unate if:

g↑ is negative unate and g↓ is positive unate (2.69)

If a logic gate is neither positive nor negative unate, it is said to be non-unate.

The OR-gate and C-Element are examples of positive unate gates, and as an ex-
ample of a negative unate gate, consider the inverter defined by PR Pair 2.63. Compare
the guard expressions in the inverter with the other gates. Notice that when s(yack ) = 0,
the activation expression for nack evaluates to 1, setting to pull nack up; conversely, when
s(yack ) = 1, the deactivation expression for nack evaluates to 1, setting to pull nack down.
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This behaviour, where the output is set to rise when the inputs are at a logic low, is the
opposite of what happens with the OR-gate or the C-element; this characterises the inverter
as a negative unate gate and the C-element as a positive unate gate.

2.3 Graphs and Petri Nets

The definitions related to timing modelling used in this work rely on or derive from
the fundamental concept of graphs, or more specifically on directed graphs. Accordingly, a
precise definition of this concept is provided here, based on classical definitions such as the
one provided by Cormen et al. [CLRS09].

Definition 23 (Directed Graph). A directed graph (or digraph) G is a pair G = (V , E),
where V is a finite set and E is a binary relation on V . The set V is called the vertex set of
G, and its elements are called vertices (singular: vertex). The set E is called the edge set
of G, and its elements are called edges.

Given a vertex v ∈ V of a graph G = (V , E), the subset of V with the form {w |w ∈
V ∧ (w , v ) ∈ E} is called the preset of vertex v. Accordingly, given a vertex v ∈ V of a graph
G = (V , E), the subset of V with the form {w |w ∈ V ∧ (v , w) ∈ E} is called the postset of
vertex v.

Unless otherwise noted, in this work all references to graphs refer to directed
graphs and the word directed is omitted. Note that the previous definition includes describ-
ing the predecessor and successor vertex sets in graphs, a concept very important for more
elaborate structures used herein. Graphs are generic structures that can be specialised to
address more specific modelling needs. One such specialisation relevant here is that of
bipartite graphs.

Definition 24 (Bipartite Graph). A bipartite graph is a directed graph G = (V , E) where the
set V is in the union of two sets, V = W ∪X and where E is formed by edges having exactly
one element from W and one element from X, i.e. E ⊆ {(a, b)|((a ∈ W ) ∧ (b ∈ X )) ∨ ((a ∈
X ) ∧ (b ∈ W ))}.

2.3.1 Petri Nets

Often, the modelling of asynchronous circuits relies on Petri nets, whose static
structure can be captured by graphs. The next definitions formalise the general concept of
Petri nets and particularise it to more specific forms useful in asynchronous circuit modelling.
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Note that a Petri net has a static structure, an initial marking and a marking evo-
lution behaviour, the two later ones encompassing the dynamics of the net. The definition
covers all parts of the concept and is based on [Mur89].

Definition 25 (Petri Net (PN)). A Petri net is a 5-tuple PN = (P, T , F , W , M0) where: P =
{p1, p2, ... , pm} is a finite set of places, T = {t1, t2, ... , tn} is a finite set of transitions, F ⊆
(P×T )∪(T ×P) is a set of arcs, collectively called the Petri net flow relation, W : F −→ N∗

is the weight function, and M0 : P → N is the initial marking, with P ∩ T = ∅ and P ∪ T ̸= ∅.
The Petri net structure is the 4-tuple N = (P, T , F , W ) with no consideration of marking. A
Petri net with a given initial marking can be alternatively denoted by (N, M0).

The behaviour of a Petri net relies on a set of rules that dictate how a marking or
state evolves into another state, according to the following set of firing rules:

1. A transition t is said to be enabled if each input place p of t is marked with at least
w(p, t) tokens, where w(p, t) is the weight of the arc from p to t;

2. An enabled transition may or may not fire, depending on whether or not the event
actually takes place;

3. A firing of an enabled transition t removes w(p, t) tokens from each input place p of t,
and adds w(t , p) tokens to each output place p of t, where w(t , p) is the weight of the
arc from t to p.

A transition without any input place is called a source transition, and one without
any output place is called a sink transition. Note that a source transition is unconditionally
enabled and that the firing of a sink transition consumes tokens but does not produce any.

A pair of a place p and a transition t is called a self-loop if p is both an input and
output place of t. A Petri net is said to be pure if it has no self-loops. A Petri net is said to
be ordinary if all of its arc weights are 1.

It should be clear from the PN definition and from Definition 24 that the structure
N of a PN can be represented by a bipartite graph where the vertex set V of the graph is
the union of the set of places and of the set of transitions of the Petri net, i.e. V = P ∪ T .
Because of this, it is common and practical to informally state that PNs are bipartite graphs,
ignoring the underlying marking and behaviour concepts. A big advantage of treating a PN
as a graph is inheriting to PNs all graph concepts, e.g. vertex degrees, vertices (places or
transitions) presets and postsets, etc. Where precision is not compromised, this document
adopts this little abuse.



29

2.3.2 Petri Net Properties

An extensive set of behavioural properties derives from the definition of a PN; Tech-
niques to analyse PN instances for such properties abound in the literature. This Section
explores PN properties specifically relevant to this work. The interested reader can refer
to [Mur89] or to PN books such as [Rei13] for a more complete discussion of PN properties.

According to Murata [Mur89], there are two types of PN properties: those that
depend on the initial marking M0, called behavioural properties, and those independent
of M0, called structural properties. This works addresses only some of the behavioural
properties.

The first important property is reachability. This is a fundamental property to study
the dynamic properties of any system described by PNs. Reachability relies on the PN´s
firing rules and on the initial marking M0 of a PN. A marking Mn is said to be reachable
from marking M0 if there exists a sequence of firings that transforms M0 into Mn. A firing
or occurrence sequence is denoted by σ = M0t1M1t1M2 ... tnMn, or simply σ = t1t1t2 ... tn. In
this case, Mn is reachable from M0 by σ and we write M0[σ > Mn. The set of all possible
markings reachable from M0 in a PN (N, M0) is denoted by R(N, M0), or simply R(M0). The
set of all possible firing sequences from M0 in a PN (N, M0) is denoted by L(N, M0), or simply
L(M0). The reachability problem for PNs is the problem of finding, for a given marking
Mn, if Mn ∈ R(M0) in a PN (N, M0). Sometimes it is interesting to define the submarking
reachability problem, where instead of a PN marking Mn attentions is restricted to M ′

n, a
marking is limited to just some subset of places of P.

A second property worth defining here is boundedness, related to the maximum
amount of tokens a place of some PN holds. A PN (N, M0) is said to be k -bounded or simply
bounded if the number of tokens in each place does not exceed a finite number k for any
marking reachable from M0, i.e. M(p) ≤ k for every place p and every marking M ∈ R(Mo).
A PN (N, M0) is said to be safe if it is 1-bounded. In (asynchronous) hardware design, places
of a PN are often used to represent buffers and registers for storing intermediate data. By
verifying that the net is bounded or safe, it is guaranteed that there will be no overflows in
buffers or registers, no matter what firing sequence is taken.

The last property needed to define in this work is liveness, associated with con-
cepts in system design like the absence of deadlocks. A PN (N, M0) is said to be live (or
equivalently M0 is said to be a live marking for N) if no matter what marking has been reached
from M0, it is possible to ultimately fire any transition of the PN by progressing through some
firing sequence. This means that a live PN guarantees deadlock-free operation, no matter
what firing sequence is chosen.
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2.3.3 Marked Graphs

Marked graphs constitute a limited class of PNs that allows modelling concurrency
but not choice (to avoid, e.g. non-determinism). This enables capturing the behaviour of
handshaking circuits. A timed marked graph can capture not only the inter-dependency and
concurrency in asynchronous circuits but also the timing of certain events occurring within
the circuit.

As a type of Petri net, marked graphs are bipartite graphs. Informally, a marked
graph is a Petri net where each place has exactly one transition in its preset and exactly one
transition in its postset. Also, a marked graph is guaranteed to be a safe Petri net, meaning
that places can hold at most one token at any moment in time. These characteristics enable
deriving a simple definition for a marked graph.

Definition 26 (Marked Graph). A marked graph is a 3-tuple MG = (T , P, M0), where T is
the set of transitions, P ⊂ {(u, v ) : u, v ∈ T} is the set of edges connecting transitions, and
M0 ⊂ P is the subset of edges initially marked (the initial marking). The marking Mi ⊆ P
corresponds to the subset of places holding tokens at some given instant i ∈ N. Of course,
i = 0 corresponds to the initial state of MG, where the initial marking M0 in in place. Mi

represents the state of MG at instant i.

Compared to a regular PN, MGs suppress the representation of places but marks
still occupy their position between transitions. In a marked graph, token movements (i.e.
state changes) obey a deterministic causality relation formally defined in this work called
token flow.

Definition 27 (Token Flow). Let Mi be the marking of a marked graph MG at instant i ∈ N.
Let •t = {(u, v ) ∈ P|v = t} be the preset of transition t and let t• = {(u, v ) ∈ P|u = t} be the
postset of transition t.

Then, it is true that ∃t ∈ T : •t ⊆ Mi =⇒ ∃n ∈ N∗ : t• ⊆ Mi+n ∧ •t ⊈ Mi+n. This
means that if all elements in the preset of a transition (•t) are marked, there is a moment in
the future (i + n) where all elements in the postset of that transition (t•) will be marked and
its preset •t will be unmarked.

Transitions control the flow of tokens in a network through the firing process. As
defined for any PN (MGs obviously included), when a transition fires, it removes tokens from
all places in its preset and deposits tokens to all places in its postset. Said otherwise, when a
transition fires, it simultaneously marks its postset and unmarks its preset. An MG transition
can only fire after all edges in its preset are marked. Further limitations can be imposed as
to when a transition is allowed to fire (including time counting and other conditions).
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A valuable extension of the MG concept is adding labels to account for time in either
places and/or transitions, giving rise to the timed marked graphs or TMGs. The former is
relevant to this work and is accordingly precisely defined.

Definition 28 (Place-Delayed Marked Graph). Given a marked graph MG, it is possible to
define a place-delayed marked graph as a 3-tuple PDMG = (T , P, M0), where T and M0

are defined as in the corresponding MG and P ⊂ {(u, v , d)|u, v ∈ T , d ∈ R+}. The edges, as
in an MG, connect transition u to transition v, with a label d, representing the delay assigned
to each edge.

A token flowing into a PDMG edge (u, v , d) experiences a delay d before enabling
the firing of a transition. That is, once receiving a token, an edge (u, v , d) must remain
marked at least for the duration d before the token is removed. As in any PN, a transition can
only fire in a PDMG after all its predecessor edges are holding tokens. When a transition fires
it removes the tokens from its predecessor edges and deposits tokens in all of its succeeding
edges.
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3. ASYNCHRONOUS CIRCUIT DESIGN

Digital design currently enables composing billions of logic gates into working cir-
cuits with a large set of functionalities to process information quickly and accurately. To
handle the huge amount of gates and wires that finally implement a powerful circuit requires
effective disciplines to manage the design process complexity. These disciplines involve
devising efficient methods for combining very simple devices (e.g. logic gates) into basic
modules, methods for abstracting these, methods for interfacing modules and methods to
reuse components with a given complexity, to cite only a few of the techniques involved. It is
useful to introduce the concept of a digital circuit design template to organise how a digital
circuit is planned. The concept is an evolution of the Asynchronous Circuit Template defini-
tion, first proposed by Moreira in [Mor16]. It enables reasoning about how a digital circuit can
be systematically implemented, organising the design process with a set of encompassing
design abstractions that can be naturally mapped to any set of specific design techniques
used for digital circuit design. The definition of the concept appears below and is illustrated
by the diagram of Figure 3.1.

Definition 29 (Digital Circuit Design Template (DCDT)). A digital circuit design template
(DCDT) is a metamodel composed of two entities: a design style and a channel. The de-
sign style comprises two sub-entities, a set of cells and an architecture. The channel, in
turn, is also a composition of two sub-entities, a communication link and a protocol. Cells
in the set of cells are the basic blocks always available to build circuits, while the architec-
ture is a set of rules for combining cells into valid circuit configurations. A communication
link involves simple or structured patterns to interconnect cells in the architecture. A pro-
tocol establishes how information must flow in communication links and must be defined in
accordance with the set of cells and the template architecture.

An example of a set of cells in a specific digital circuit template is the logic gates of
a standard cell library in a semi-custom digital design approach. A communication link may
be as simple as a wire connecting a pair of gates or a much more elaborate interconnection
structure.

To enable readers to appreciate the usefulness of the DCDT metamodel, it is fit-
ted below to the very well-known synchronous register-transfer level (RTL) digital design
template. Next, this baseline modelling of a familiar template is compared to some asyn-
chronous design templates, which enables a better grasp of the similarities and differences
between synchronous and asynchronous digital design processes.

The basic way to model a known template using the DCDT metamodel consists
simply of mapping the template characteristics to the metamodel four entities, which for the
synchronous RTL template gives:
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Figure 3.1: A diagram illustrating the digital circuit design template (DCDT) concept.

1. The set of cells for synchronous RTL design can be mapped to the set of logic gates
finally used to design a circuit. Even if the circuit behaviour and structure are often
captured using hardware description languages (HDL) such as Verilog or VHDL, there
is always an underlying library which, to support synchronous RTL design, is most of-
ten composed of combinational gates and sequential elementary components such as
flip-flops. Of course, other design implementation options such as Field-Programmable
Gate Arrays (FPGAs) may add to these a set of technology-dependent cells such as
LUTs, carry-chains, etc.

2. The architecture for synchronous RTL design implies three sets of rules: (i) rules to
interconnect gates, forming functional combinational logic (CL) modules, able to trans-
form data; (ii) rules to interconnect functional modules inputs and outputs to registers
(or primary inputs/outputs); (iii) rules to connect registers to functional modules (or
primary inputs/outputs).

3. The communication link for synchronous RTL relies on the assumption that: (i) wires
encode information, being somehow ordered to represent digital numbers; (ii) besides,
a special wire (or more generally a clock value distribution structure usually called clock
tree) controls the flow of data everywhere in the circuit.

4. Finally, the protocol for synchronous RTL design is the widespread synchronous pro-
tocol, stating that when the clock ticks (i.e. transitions in one of two possible directions,
from 0 to 1 or from 1 to 0, respectively defining either clock rising edge or falling edge
sensitive synchronous templates), every register in the circuit potentially gets new data
(exceptions can of course apply in specific designs).

The above modelling exercise shows that the DCDT metamodel modularity enables
describing multiple templates, some very close to the popular synchronous RTL template or
others very different. For example, if instead of acting on only one clock edge (as most
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synchronous designs do), a circuit is defined to act on both clock edges, a new template
arises (say synchronous, double edge sensitive) that requires at least a different set of cells
and certainly a distinct set of architectural rules. Other templates from the literature can also
be seen as possible to model with DCDT, e.g. synchronous two-phase design, latch-based
(instead of flip-flop-based) design, or clock-skew tolerant design [Har01]. Exercising such
metamodel mappings is left as an exercise to readers.

It is important to assess how to deal with the DCDT metamodel for describing asyn-
chronous design templates. In fact, the variety of such templates is quite large, and none of
them matches the popularity of the synchronous RTL template. The question arises regard-
ing what can/must change in DCDT entities when these are used to model asynchronous
design templates. The answer goes from almost no change to basically everything, de-
pending on the template. The closer to synchronous an asynchronous design template is,
the easier it is for synchronous designers to understand it, and the easier it is to use syn-
chronous electronic design automation (EDA) tools in the process of designing such circuits,
both of which are clear advantages. The other side of the coin reveals that the farther an
asynchronous design template is from synchronous design, the better is the potential to
achieve (i) power efficiency, (ii) robustness to variations, single event effects (SEEs) and
technology migration, (iii) graceful circuit ageing and reduced electromagnetic interference
and resistance to side-channel attacks (SCA).

It is worth exemplifying how each DCDT entity/sub-entity varies in asynchronous
design templates. Summarising:

1. The set of cells for asynchronous design templates is often distinct from simple Boolean
gates and simple flip-flops, frequently employing additional or simply different gates,
such as C-elements and/or NCL gates [Fan05], multi-rail pseudo-dynamic gates [BDL11],
etc.

2. The architecture for asynchronous design templates is often very different since a new
set of rules applies to generate data transformations and synchronise operations. Fun-
damentally, the device interconnection rules are substituted to enable the implementa-
tion of local handshake operations (see the channel sub-entities description below).

3. The communication link for asynchronous design templates is usually defined based
on two possible information encoding schemes, one identical to the one used in syn-
chronous data representation and another based on encoding information with some
form of delay-insensitivity property, more expensive but more robust than the former
scheme.

4. The protocol for asynchronous design templates is again widely different from those in
synchronous protocols, given the absence of global or semi-global control signals and
depending on the encoding scheme choice.
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3.1 Principles of Asynchronous Design

Most synchronous circuits rely on the assumption that the value on the inputs of
all its registers will only be sampled at the rising (or/and falling) edge of the clock signal.
Refer to Figure 3.2(a) to notice that in a classic linear pipeline, this enables to the definition
of timing constraints for the maximum delay in combinational logic paths, which must be
typically smaller than the clock period. Using synchronous design techniques allows ignoring
gate and wire delays, as long as clock timing constraints are respected. In other words,
combinational logic is allowed to switch as it computes data during, say, the interval between
two consecutive rising clock edges, but the logic outputs must be stable and correct at each
such edge. Having this simple model for circuit design is possible only because the clock is
a global and periodic signal, i.e. its edges only occur at specific and known points in time
and occur simultaneously (this is an assumption) at every point where required. Hence,
in synchronous circuits, events will only take place at specific moments; time can thus be
treated as a discrete variable.

4 Chapter 1. Introduction
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Figure 1.1: (a) A synchronous circuit, (b) a synchronous circuit with clock
drivers and clock gating, (c) an equivalent asynchronous circuit, and (d) an ab-
stract data-flow view of the asynchronous circuit. (The figure shows a pipeline,
but it is intended to represent any circuit topology).
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Figure 3.2: Simplified linear pipeline circuit structure using (a) synchronous and (b) asyn-
chronous designs. Blocks CLi represent combinational logic, R represent registers, and
CTRL indicates control logic. Adapted from [Spa20].

A look at the alternative, Figure 3.2(b) shows that in asynchronous circuits, there
is no such thing as a single clock to signal data validity on the inputs of all registers simul-
taneously. Here, events can happen at any moment, and time must often be regarded as a
continuous variable. Asynchronous designers rely on local handshake protocols for commu-
nication and synchronisation and on different design templates to build circuits, each with its
own specific assumptions about gate and wire delays [BOF10].
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Asynchronous design templates can be broadly classified into two main families:
bundled-data (BD) [Sut89] and self-timed [Mar90]. Using the DCDT metamodel, the main
distinction leading to this classification relies upon the DCDT Channel entity, where com-
munication links and protocols differ widely across BD and self-timed templates. Refer to
Figure 3.3 to note that the design of a BD circuit is similar to a synchronous one; the differ-
ence is that BD relies on carefully matching the delay of data path combinational logic blocks
and controlling registers to the delays in the control block that generates a local clock, rather
than employ a single, global clock signal.
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Figure 3.3: Example of a typical BD asynchronous pipeline fragment, with delay elements
explicitly represented as D1 and D2 on request (Req) and acknowledge (Ack ) paths on the
control part of the circuit; blocks Ctrli represent the local stage controllers. Blocks Regi are
data path registers and the Logic cloud represents combinational data processing between
pipeline temporal barriers (the registers).

Communication and synchronisation in BD circuits are accomplished through some
handshake protocol, the more common choices being 4-phase, return to zero (RTZ) proto-
cols [BOF10]. Again using the DCDT concepts, the channel protocol characteristics provide
a way to classify asynchronous design templates. Data representation in BD circuits follows
the same Boolean encoding used in synchronous circuits1. This means that according to
DCDT BD and synchronous design share a same channel communication link type. Also,
unlike what happens in synchronous circuits, controllers are local and usually comprise just
a few logic gates. An illustrative extreme example is the very efficient MOUSETRAP pipeline
stage controller, which includes only an XNOR logic gate and a 1-bit latch [SN07]. This
simplicity helps, since controllers are replicated at each and every stage of a circuit.

A major hurdle in BD circuit design is how to guarantee that the control and data
paths are always precisely delay-matched, since the data and control flows typically run

1This is not the case for self-timed circuits, as Section 3.2 details.
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parallel to each other. This is the reason why in Figure 3.3 delay elements (DEs) are
explicitly shown in the request and acknowledge paths. Much research exists to further
the design of DEs to achieve working BD circuits. As an illustration of such research
efforts, Heck [Hec18] developed a PhD Thesis where the focus was obtaining a single
programmable delay element to support the design of asynchronous BD circuits resilient
to timing errors. This was, in fact, the culmination of joint research between a research
group at the University of Southern California in the USA and the authors’ research group,
which had previously generated research results on several aspects of DE design for BD
circuits [SMT+17,THG+16,SMT+15,HHS+15]. Specifically addressed research in these pub-
lications are analysis and optimisation of programmable DEs, performance analyses on how
fine-grained and coarse-grained delay adjustments work in practice, and control of the ef-
fect of voltage variations over the delay-matching characteristic of DEs. Relating to DCDT,
DEs are thus part of the design style set of cells to use and affect the architectural rules of
asynchronous BD templates.

The required delay-matching design effort is one of the main issues in designing
robust circuits using the BD family of templates. BD circuit implementations can be as small
as an equivalent synchronous implementation, or even smaller, as described for example
by Teifel in [Tei06]. However, BD techniques share some of the disadvantages that plague
synchronous design techniques, including a potential reduction in circuit robustness to vari-
ations, mostly due to the decoupling of control and data parts of the circuit.

3.2 Asynchronous Self-Timed Design

A fundamental difference between BD and ST design is that the latter relies on data
encoding schemes that allow data to carry their own validity information, which enables re-
ceivers to compute the presence or absence of data at inputs/outputs, and renders possible
the local exchange of information in a mostly delay insensitive way, more easily matching
control and data information processing. Due to this characteristic, ST circuits can adapt
more gracefully to wire and gate delay variations, and are thus a good choice to achieve
circuit robustness. On the negative side, ST circuits further robustness often at the expense
of larger area and/or power.

ST designs rely on the use of delay-insensitive (DI) codes to represent data [Ver88].
Binary DI codes use only part of the Boolean encoding spectrum possible over n bits. An
n-bit binary code potentially allows representing 2n distinct codewords. A DI code pledges
the use of only a subset of these to achieve the delay insensitivity property. Verhoeff [Ver88]
explores the basic details of the theory behind DI codes. Practical n-bit binary DI codes
consist of a set of codewords to represent data, and a distinct n-bit value to represent the
absence of data. The latter is called a spacer or null. Since valid codewords and the spacer
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Figure 3.4: A state transition diagram with the basic protocol for transmitting data in a DI
channel. S stands for the spacer.

never include all 2n different n-bit combinations, some of these are invalid and code efficiency
is an issue. Verhoeff [Ver88] treats this defining the rate R of a code. Given a code with M
valid codewords and a length of n bits, its rate is R = (log2M)/n. Of course, 0 ≤ R ≤ 1 always
holds. Verhoeff proves that n-bit Sperner codes, where every codeword has a structure
(n div 2)-out-of-n, are DI codes, and that such codes provide the highest possible efficiency.
For example, if code length is n = 20 bits, all codewords with 10 bits at 1 and 10 bits at
0 are valid Sperner codewords, and there are a total of 184, 756 distinct codewords in this
code. Even if this is much less than the 1, 048, 576 20-bit combinations of the non-DI, 20-bit
Boolean code, this Sperner code is much more efficient than the often-used 20-bit dual-rail
code, which has only 1, 024 valid codewords. As n → ∞ the rate of Sperner codes tends
to 1, but practical n-bit Sperner codes, and thus any DI code, have R << 1, while a non-DI
code such as the n-bit Boolean code has R = 1 for any n.

To understand how DI codes achieve delay insensitivity, Figure 3.4 shows the basic
communication protocol of a channel as a state transition diagram for transmitting data on
a 1-bit DI channel. Clearly, three values are necessary and the minimum code length to
represent 0, 1 and the spacer is 2. Assume transmission always starts in the spacer (S)
state. A transition from the spacer to 1 (or to 0) characterises the transmission of a valid 1
(resp. 0) and a transition from 1 (resp. 0) to S characterises data removal. DI communication
protocols thus assume there is a spacer between any pair of consecutive data values. This
in fact depicts just a specific family of communication protocols, often associated with DI
codes, that can be called return to spacer (RTS) protocols. Since the spacer is frequently
a value with all bits in 0, a more commonly used term is return to zero (RTZ) protocols,
although other spacer values are sometimes used.

Asynchronous circuit pipelines can be implemented using one of two approaches:
(i) half-buffer, where data and spacers alternate occupying successive pipeline stages; (ii)
full-buffer, where all stages can contain valid data at every moment. Although at first counter-
intuitive, as half-buffer schemes seem wasteful, these are more frequently used. They are
simpler to build and in general, execute faster than full-buffer schemes. Also, the former
ease robust circuit design.

In circuit design, often used examples of DI codes are the k -of-n codes, where n
is the number of wires used to represent data (or its absence) and k is the number of wires
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that must be at a given logic value in any codeword (usually using the 1 bit value for these
wires and the 0 bit value for the others). Albeit different codes are available in the contempo-
rary literature (see e.g. [Ver88]), according to Martin and Nyström [MN06] the most practical
class of DI codes is the 1-of-n (or one-hot), and more specifically the 1-of-2 code. The latter
is the basis to form codes to represent any n-bit information using two wires to denote each
of the n bits, producing the family of the so-called dual-rail codes. Furthermore, Martin and
Nyström argue that DI codes can be coupled to either 2-phase or 4-phase handshake proto-
cols, but 2-phase protocols often lead to more complex circuits. Thus, 4-phase is frequently
chosen by self-timed circuit designers. In fact, the majority of self-timed designs available
in the state-of-the-art, from networks-on-chip [BCV+05, PMMC10], to general purpose pro-
cessors [MNW03], and network switches [DLD+14], primarily rely on 4-phase protocols and
dual-rail or 1-of-4-based codes2. The 1-of-4 code is equivalent to two 1-of-2 codes consid-
ered together, but these codes are different. In fact, switching a 1-of-4 codeword (say 0100,
corresponding to decimal 2) to a 0000 spacer implies switching just 1 bit, while the same
value encoded in dual-rail, 1001 (equivalent to 10 in binary or decimal 2), requires two bits to
switch to reach the same spacer. Thus 1-of-4 codes present roughly a 50% switching power
advantage over dual-rail encoding.

Figure 3.5(a) shows the operation of a 4-phase, dual-rail, RTZ DI channel d, car-
rying a single bit datum in two wires, d.t and d.f, and one signal d.ack to control data flow.
Note that valid data are encoded using exactly one wire at 1, d.t=1 for a logic 1 and d.f=1
for a logic 0. The value with both wires at 1 does not correspond to any valid datum and
is never used. Figure 3.5(b) shows a waveform for transmitting two data values. Note the
control flow allowed by the d.ack wire combined with the data in wires d.t and d.f.

d.t d.f
null 0 0

false 0 1
true 1 0

(a) Data encoding.

phase sack dreq dack sreq sack dreq dack sreq sack

d.ack

d.t

d.f

null true null false null

(b) A waveform for transmitting two values.

Figure 3.5: A DI, dual-rail, RTZ channel, and its operation.

Communication starts with a spacer, all wires at 0. Note that the ack wire also
starts at 0, which signals the receiving side is ready to receive. Next, the sender puts a valid
0 in the channel, raising the logic value of d.f, which is acknowledged by the receiver raising
the ack wire. After the sender receives ack, it produces a spacer-to-end communication,
bringing all data signals in the channel back to 0. The receiver then lowers its ack signal,

2Note that 1-of-2 (resp. dual-rail) and 1-of-4 codes have the same rate, R = 1/2 = 0.5, while a 1-of-8 code
has a rate of just R = 3/8 = 0.375 and is accordingly never used.
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after which another communication can take place. Since all signals need to go to 0 before
a data transmission starts, the RTZ denomination applies.

Another protocol for dual-rail ST design is the return-to-one (RTO) protocol, de-
scribed in [MGC12a]. RTO is similar to RTZ, but its data values are inverted compared to
the latter, and the spacer representation is also distinct. As Figure 3.6(a) shows, a spacer is
a value with all wires at 1 and valid data is represented by a single wire at 0, d.t=0 for a logic
1 and d.f=0 for a logic 0. Figure 3.6(b) depicts an example RTO data transmission, which
starts with all wires at 1 in the data channel.

d.t d.f
null 1 1

false 1 0
true 0 1

(a) Data encoding.

phase sack dreq dack sreq sack dreq dack sreq sack

d.ack

d.t

d.f

null true null false null

(b) A waveform for transmitting two values.

Figure 3.6: A DI, dual-rail, RTO channel, and its operation.

As soon as the sender puts valid data in the channel, the receiver may acknowledge
it by lowering ack. Next, all data wires must return to 1 to denote a spacer, ending trans-
mission. When the spacer is detected by the receiver, it raises the ack signal and operation
resumes. The idea behind the RTO protocol allows a better design space exploration for
asynchronous circuits, enabling optimisations in power [MGC12b] and robustness [MPC14].
Furthermore, as demonstrated in [MTMC14], RTZ and RTO can be mixed in a same dual-
rail design and the conversion of values between them requires only an inverter per wire.
According to Martin and Nyström [MN06], such conversion is DI and does not compromise
the robust functionality of a self-timed circuit. This thesis refers to signals operating under
the RTZ (RTO) protocol as RTZ (RTO) signals.

The correct operation of ST circuits depends on adherence to the indication prin-
ciple, which dictates that the output of a circuit must acknowledge the state of its inputs,
meaning a circuit generates output only when all input data are valid. Indication requires
that circuits present some form of hysteresis. Hysteresis is the property of a gate to hold
its output stable until a transition condition is met.3 The C-element, depicted in Figure 3.7,
is a fundamental hysteretic gate used in constructing many asynchronous circuits. It gener-
ates an output only when all inputs are identical, which ensures it individually respects the
indication principle.

3The term hysteresis is analogous to its use in Schmitt-trigger circuits, but instead of expressing the transi-
tion condition as a voltage level at an input, it expresses transitions as specific combinations of logical values
at the gate inputs.
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Figure 3.7: A 2-input C-element.

3.2.1 Gate and Wire Orphans

The indication principle is highly related to the concept of orphans. Orphans are
circuit nodes where at least one transition is not directly acknowledged. Martin [Mar90]
proved that only circuits comprising solely c-elements and inverters do not present orphans;
such circuits are not Turing-complete and thus present limited usefulness. These circuits,
however, would be completely insensitive to gate and wire delay.

There are two types of orphans: gate orphans and wire orphans. The first oc-
curs when a transition on a gate output is not acknowledged. The latter occurs when some
branch of a wire fork is acknowledged, but others are not. An analysis of Figure 3.8 allows
an exemplification of these orphans. (a) is a dual-rail NAND with wire orphans only and
(b) is a dual-rail XOR presenting gate orphans. During the computation phase in (a), when
a.f and b.f rise, the first C-element raises its output, consequently causing the OR gate
to activate its output (y.t). In this path, each transition acknowledges the previous in se-
quence, ultimately causing the output to acknowledge the state of the inputs. However, the
rising of the inputs also causes the other branch of their respective wire forks to rise. The
second and third C-elements do not propagate these transitions, thus not acknowledging
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them. Conversely, in (b), when a.f and b.t rise, the first, second and fourth OR-gate rise
their outputs. Activating the first and fourth OR-gate causes the first C-element to raise its
output (y.t), thus acknowledging the transitions on the primary inputs, the first and fourth
OR-gates. However, the transition on the second C-element output is not acknowledged.

y.f
a.t

b.t

C

C

C

y.t

C

a.f

b.f

(a) Dual-rail NAND gate presenting only wire
orphans.

a.t

b.t

a.f

y.tC

y.fC

b.f

(b) Dual-rail XOR gate presenting gate or-
phans.

Figure 3.8: Two circuits presenting orphans. The bold lines indicate acknowledged active
paths, and the dashed lines indicate unacknowledged orphan paths.

Martin also proved in [Mar90] that it is possible to construct useful Turing-complete
circuits with wire orphans. However, they require a timing assumption on branches of a
wire fork with orphans. The delay of the two branches must be similar enough so that
when acknowledging a transition on one branch, it is safe to assume that a transition is also
occurring on the other branch. This is called the isochronic fork assumption, and an ST
circuit that requires only this assumption to work correctly is called a quasi-delay-insensitive
(QDI) circuit.

Keller et al. [KKM09] relaxed the isochronic fork assumption to allow a delay dif-
ference between the two branches as long as the orphan is resolved before it can cause
hazards. Consider the circuit in Figure 3.8(a); when the spacer comes, it is acknowledged
by a sequence of falling transitions on the path activated during the computation phase, and
the orphans are assumed to also fall before the propagation of new data. However, if the wire
orphans fail to fall before a.t or b.t rise, the circuit may produce an invalid result. This tim-
ing assumption can be extended to include gate delays, thus allowing the correct operation
of ST circuits with gate orphans. Consider the gate orphan in Figure 3.8(b); if the orphaned
OR-gate de-asserts its output before the arrival of new data, no ill effect from the orphan
will occur. This means that orphan gates can be tolerated in ST designs as long as the
orphaned path is resolved before the acknowledged path causes its inputs to change. This
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timing assumption, however, is theoretically less robust to delay variation since it includes
assumptions about gate delays instead of just wires.

3.3 Classification of Asynchronous Circuits

A seasoned reader might have encountered the term QDI being used extensively,
where this thesis opts for ST instead. It is helpful to draw attention to the distinction between
the two terms and the overall classification of asynchronous circuits.

Sparsø [Spa20] classifies asynchronous circuits into three classes: self-timed (ST),
speed-independent (SI) and quasi-delay-insensitive (QDI). He distinguishes them based on
the timing assumptions that circuits of each class require to operate correctly. SI circuits
allow gates to have arbitrary delays but require ideal wires with zero delays; this is an unre-
alistic assumption. An SI circuit can still operate correctly if all wire forks are isochronic, i.e.
if the wire delay is equal on all forks for all wires. If all forks in a wire are isochronic, the wire
delay can be bundled into the gate delay, and the SI requirement is met. QDI circuits relax
the SI isochronic fork assumption by requiring only specific wire forks sensitive to orphans
to be isochronic. Sparsø also defines an ideal class of circuits that he calls delay-insensitive
(DI) circuits, where no timing assumption is required. Lastly, Sparsø uses ST as a catch-all
category for all circuits not fitting the previous classes; this includes bundled-data circuits.

This thesis’ author finds Sparsø’s classification to be of limited usefulness. First,
in modern technologies where wire delays are not negligible, SI circuits are unfeasible. It
also provides little distinction from the QDI class, making it hard to justify its existence. Also,
the ST class is too broad to be useful; it provides little information about the nature of the
circuit besides not having a clock and not being QDI. This thesis proposes a refinement of
Sparsø’s classifications. Figure 3.9 depicts the proposed classes and their relations. This
classification system covers synchronous and asynchronous designs or combinations of
both.

In this thesis, ST circuits are all those that rely on the indication principle to ensure
proper operation. That is, the computation completion is self-evident from the state of the
wires. ST circuits often employ some form of DI coding and completion detection circuitry,
but not always, especially on controllers. QDI circuits are a subset of ST circuits that only
need to observe the isochronic fork assumption, as defined by Martin [Mar90]. The proposed
classification excludes SI circuits but includes DI circuits as a subset of QDI circuits with no
timing assumptions. Also, BD circuits are classified as a separate class from ST circuits, as
they do not rely on the indication principle to detect computation completion. BD circuits rely
on a tuned delay line matching the worst-case delay of the circuit to ensure correct operation.
As such, the state of the wires carrying the computation result is insufficient to determine its
completion.
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Figure 3.9: Classification of circuits.

It is noteworthy that parts of the same circuit can fit different classes. For instance,
a GALS circuit can encompass register-based synchronous designs and bundled-data asyn-
chronous circuits. Also, the bundled data circuit can employ QDI or even DI controllers. In
fact, the asynchronous controller employed in Micropipelines [Sut89] is an example of a DI
circuit.

Of course, the simply stated isochronic fork constraint can be hard to ensure, es-
pecially in large circuits. Furthermore, the strictness of limiting the timing assumptions to
wire delays often comes with an area and performance impact. Also, in some cases, the ro-
bustness requirements are not so strict. Other self-timed design styles [BG03,Bre05,BE09]
exist with more relaxed limitations on timing assumptions to offer better trade-offs among
robustness, performance, area and power.

3.4 Self-Timed Sequential Circuits

Registers are storage elements that enable the sequencing of operations in digital
circuits. They are paramount to performing complex computations by holding circuit states,
providing ways to increase performance, allowing to break computations into small chunks
and have each chunks processed sequentially. Of course, this enables to use of pipelines
and other, more advanced, forms of parallelism.

In synchronous circuits, a clock guides the progression of computation, dictating
when registers capture new data. As Section 3.2 discusses, computation progress in asyn-
chronous circuits depends on the handshake protocol, where registers act as active hand-
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shake coordinators. They consume input data and act as producers to their output. This
requires registers to handle the handshake process simultaneously in two channels.

ST registers employed in circuits using 4-phase protocols transition between data
and spacer. These registers can be either full- or half-buffers. A full-buffer register is capable
of completing a full handshake cycle on both sides independently. Whereas a half-buffer
register is capable of completing half a handshake cycle on both sides at each computation
step. A half-buffer register must only accept a transition from the left-hand side after the
consumer on the right-hand side has acknowledged the previous transition. It must uphold
the indication principle; thus it can only transition its right-hand side after a transition occurs
on its left-hand side. Also, the register can only acknowledge the transition on the left-hand
side after capturing its state.

Figure 3.10 depicts a Weak Condition Half Buffer (WCHB), one possible RTZ half-
buffer register implementation. In this Figure, the left-hand side is labelled in, and the right-
hand side is labelled out. At the core of the WCHB lays two C-elements (see Section 3.2).
The C-element captures the transition arriving from the left-hand side and propagates it to
the right-hand side. The reset signal sets the initial state of the register to all outputs low. At
this stage, it is ready to capture data from the left-hand environment. The capturing process
is controlled by the right-hand side acknowledgement signal (out.ack). When the right-hand
side acknowledges the data transmission by raising its ack signal, it enables the C-element
to capture the propagation of the spacer on the left-hand side. Similarly, when the right-
hand side lowers its ack signal to acknowledge the reception of a spacer, it enables the
propagation of new data. After a transition propagates, the OR gate generates the proper
acknowledgement signal, signalling that it is safe for the producer on the left-hand side to
transition. This OR gate is called a completion detector (CD), and its implementation is
dependent on the DI coding and protocol adopted; on a dual-rail RTZ it is implemented
using a 2-input OR gate.

out.t

out.f

out.ack

in.ack

in.t

in.f

reset

C

C

(a) Schematic.

in phase sack dreq dack sreq sack dreq dack sreq sack

in.ack

in.t

in.f

null true null false null

out phase sack dreq dack sreq sack dreq dack sreq sack

out.ack

out.t

out.f

null true null false null

(b) Waveform.

Figure 3.10: WCHB, a dual-rail RTZ half-buffer register.
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Also, notice in Figure 3.10(b) how the delayed generation of the right-hand acknowl-
edgement affects transition propagation in the register. After the rising transition of in.t
propagates to out.t, the right-hand environment is slow to acknowledge the data reception.
This delays the propagation and acknowledgement of the spacer in the left-hand channel.
After data acknowledgement is received, the spacer propagates, and the next handshake
cycle occurs as expected. The behaviour depicted here shows how the handshake protocol
and ST registers can cope with delay variability in computations. Also, notice how a delay
in the dreq phase on the right-hand channel results in a delay in the sreq phase in the left-
hand channel, which are half a handshake cycle apart, highlighting the half-buffer nature of
this register implementation. Full-buffer registers that allow one complete cycle separation
between the two environments can be constructed from a sequence of two half-buffer reg-
isters. An example of a template employing full-buffer registers is the pre-charge full-buffer
(PCFB) [OB02].

3.5 Self-Timed Combinational Logic

The ST circuits reliance on DI codes and handshake protocols requires special
logic blocks to perform computation on DI-coded data. As Sparsø [Spa20] explains, logic
blocks placed between handshake entities4 must be transparent to the handshake process.
Unlike a register, they cannot act as an active participant coordinating handshakes. Further-
more, ST circuits rely on the indication principle to guarantee computation completeness.
The level of adherence to this principle varies within the ST circuit class: logic blocks for QDI
circuits are required to respect the indication principle for every individual intermediary dual-
rail encoded signal. To respect the indication principle, a combinational logic block should
only produce a codeword at its output when all of its inputs are codewords. Also, when em-
ploying a 4-phase protocol, the logic block must only produce a spacer when all its inputs
are spacers. Also, it is implied in the previous statements that to adhere to the indication
principle, a logic block must preserve its output stable until all of its inputs are presented with
valid data or spacers. These requirements mean that to uphold the indication principle, a
logic block must present unateness and hysteresis. Both described in Section 2.1.1.

To understand these requirements, consider a naive approach to design a 2-input
dual-rail RTZ AND gate. First, when considering the encoding of the true and false values, a
designer might be tempted only to consider the combination of codewords and overlook all
other bit combinations as “don’t care”. When applying logic minimisation, one might arrive
thus at the circuit depicted in Figure 3.11. This circuit produces correct results for all dual-rail
codeword combinations but does not respect the indication principle. When any of its inputs

4Handshake entities are entities capable of coordinating handshakes, e.g. ST registers or the external
environment that interact with the circuit.



47

are presented with a false-value codeword, the output immediately produces a false-value
codeword at the output. Moreover, during the reset phase, after producing a true-valued
codeword, the output will switch to null when any of the two inputs offer a null value. This
behaviour at both the evaluation and reset phases violates the indication principle, as the
output does not reflect the state of the inputs. Consequently, it also violates the handshake
protocol transparency, as the output of the logic block can advance to the next phase before
all of its inputs do. A dual-rail gate that violates the indication principle is called weakly
indicating.

y.t
a.t

b.t

b.f

a.f
y.f

(a) Schematic.

N T F
N N N F
T N T F
F F F F

(b) Truth table. N is null, T is true, and F
is false.

Figure 3.11: Naive weakly indicating dual-rail RTZ 2-input AND.

Solving this issue requires gates respecting the properties of unateness and hys-
teresis. A gate with these properties is the C-element introduced in Section 3.2. Using
C-elements, it is possible to construct arbitrarily complex self-timed logic gates respecting
the indication principle. Delay Insensitive Minterm Synthesis (DIMS) [Sin81] is an approach
to designing QDI logic blocks from C-elements and OR gates. Figure 3.12 depicts a func-
tionally correct dual-rail RTZ 2-input DIMS AND gate. Each distinct input rail combination is
merged by a C-element5. C-elements outputs are combined using OR gates, where needed,
to produce the output rails. Assuming the isochronic fork assumption is respected, the re-
sulting dual-rail logic gate respects the indication principle. During the evaluation phase, the
gate can only produce a valid output when all of its inputs are valid. It also respects the
indication principle during the reset phase, as it will only produce a null when both inputs are
null. A dual-rail logic gate that respects the indication principle is called strongly-indicating.

DIMS can be used to design libraries of strong-indicating self-timed logic gates.
Such dual-rail gates can be combined to compose arbitrarily complex logic blocks. The
resulting logic block respects the indication principle and is thus also called strong-indicating.

5Codeword combinations in dual-rail are just T-T, T-F, F-T and F-F.
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(a) Schematic.
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(b) Symbol

N T F
N N - -
T - T F
F - F F

(c) Truth table. N is null, T is true, F is
false, and - means “hold output value”.

Figure 3.12: Dual-rail, 2-input DIMS AND gate.

3.6 NCL: A More Efficient Hysteretic Gate

DIMS gates clearly incur high area overheads. An n-input dual-rail gate presents 2n

codeword combinations, each requiring a 2-input C-Elements. Each C-Element comprises
at least 12 transistors on a fully static CMOS implementation. Also, increasing the number
of codeword combinations increases the number of sensitive isochronic forks. In light of
these limitations, Fant et al. propose Null Convention Logic (NCL) [FB96, Fan05], a design
technique that reduces the area required to implement self-timed logic gates. It employs
hysteretic gates, called NCL gates, to synthesise logic respecting the indication principle.

NCL gates are often called threshold gates, but this is imprecise because they do
not precisely implement threshold logic functions (TLFs) as defined, e.g. in [Hur69]. Instead,
these gates implement modifications of such TLFs coupled to specific mechanisms to ensure
the completeness of input criterion [FB96]. The modified TLF is defined here; for inputs not
covered in the TLF , the hysteretic gate holds its previous output.

Definition 30 (Threshold Logic Function). An n-variable threshold logic function (TLF) τ
is an n-variable unate partial function defined by a activation threshold value T↑ ∈ N∗, a
deactivation threshold value Tdownarrow, and weights wi ∈ N∗ assigned to each of its
variables xi such that:

τ =


1,

n−1∑
i=0

wixi ≥ T↑

0,
n−1∑
i=0

wixi ≤ T↓

(3.1)
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Hurst [Hur69] defines threshold gates with the threshold and weights being real
numbers. This work restricts attention to non-zero, natural thresholds and weights. TLFs
can be either negative or positive unate in a given input – but not binate. However, to ensure
the completeness of input criterion, NCL gates must be positive unate in all their inputs, as
they target RTZ templates, where data validity is given by wires at 1.

NCL gates are threshold gates with a constant deactivation threshold of 0; hence-
forth, “threshold” is used as synonymous with activation threshold when discussing NCL
gates. Figure 3.13 depicts some possible NCL gates. Notices that gates with threshold 1
are equivalent to OR gates, and gates with a threshold equal to the number of inputs are
equivalent to C-Elements.

multiply connected inputs. There are no negatively weighted inputs. Threshold 1
operators (1 of N) do not require explicit state holding behavior. One DATA
input will transition the output to DATA, and it will remain DATA until all the
inputs are NULL. The behavior of the 1 of N operators is identical to the behavior
of the Boolean OR function. The behavior of operators where M ¼ N is identical to
the C-element [35]. Notice that there is no equivalent to the Boolean AND operator
and that there is no inverter. The operators in the gray field are unique to 2NCL.

Each operator and any combination of operators expresses the universal NULL
function. The operators express a completeness criterion in relation to their
thresholds. Their expression of the completeness criterion in relation to variables
will be discussed below. While the logic lends itself to technologies that are inher-
ently thresholding, the operators can be conveniently implemented in terms of
CMOS switching circuits [50].

There is not as strong an intersection of 2NCL with classic threshold logic syn-
thesis [27,36,42], as might be expected, because neither state-holding behavior nor
completeness relationships were considered in the classic studies.

2.3.3 2NCL in Relation to Boolean Logic

While 2NCL is a complete and coherent logic in its own right and direct synthesis will
be discussed in Chapter 4, it is instructive here to consider the relationships of 2NCL
to the familiar Boolean logic. Figure 2.11 shows the 2NCL equivalents to the Boolean
functions. Each Boolean function equivalent has two 2 value variable inputs and one 2
value variable output. Since the 2 value output variable comprises two signal paths
there must at least two NCL operators to generate the two output signals.

11 1

2 2

3

1

2

3

4

2

3

4

5

C-element equivalents

Boolean OR equivalents

3 3

Weighted inputs are
represented with
multiple connections

1
weight 2

input

1
weight 3

input

There are no negative weights

Figure 2.10 2NCL family of logic operators.
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Figure 3.13: NCL threshold gates. Adapted from [Fan05].

Although this thesis presents the concept of TLFs, it prefers the production rules
(PR) presented in Section 2.2 to describe threshold gates. PRs are more expressive and
versatile, allowing to capture the behaviour of a greater gamut of hysteretic gates. This thesis
also employs the PR representation due to its similarity to boolean functions employed by
traditional EDA synthesis. As an example of a threshold gate, consider the 2-input C-element
depicted in Figure 3.7. As depicted in Figure 3.13, the C-Element is also an NCL gate. Its
activation threshold is 2, and its deactivation threshold is 0; the corresponding PR pair is:

⟨A · B ↣ Q ↑, !A·!B ↣ Q⟩ (3.2)
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Its characteristic function is Qi = A ·B + Qi−1 · (A + B) A careful reader can check the charac-
teristic function against the truth table in Figure 3.7(b).

Production rules are suitable to define not only the behaviour of hysteretic gates
but also the behaviour of rails in dual-rail logic gates and combinational blocks. From this,
it is possible to select hysteretic gates that implement that rail function. To exemplify this
process, take the strongly indicating dual-rail RTZ AND gate depicted in Figure 3.12. The
production rules for the activation of these rails are:

at · bt ↣ yt ↑ (3.3)

af · bf + at · bf + af · bt ↣ yf ↑ (3.4)

Notice that for simplicity, the forks in these PRs are implicit. The corresponding production
rules for the rails deactivation are, by protocol, equal to input rails low:

!at ·!bt ↣ yt ↓ (3.5)

!af ·!bf ·!at ·!bt ↣ yf ↓ (3.6)

Mapping these assertion functions to threshold gates yields the NCL implementation de-
picted in Figure 3.14. The PR pair driving the rail yt is the PR pair for the C-element; whereas
the PR pair for yf corresponds to the threshold-3 4-input NCL gate with two weight-2 inputs
depicted in Figure 3.15. Using this gate instead of 3 C-Elements and OR-gate from the
DIMS expansion reduced the transistor count required to implement this AND gate from 56
to 36.

Notice that variable inversion does not involve signal path inversion. It is just a
relabeling of the signal paths of the 2 value variable. Any single variable function for
any size variable is just a mapping of each input value to an output value, and in the
multipath representation this can be expressed by simply relabeling or rerouting the
paths according to the mapping.

2.3.4 Subvariable Expressivity

With 2NCL the mapping to a Boolean expression is no longer operator for operator. A
Boolean logic function is expressed as a combination of multiple 2NCL logic oper-
ators.While Boolean functions are dealing with inputs and outputs that are whole vari-
ables, 2NCL operators area dealing with inputs and outputs that are individual values
of variables. An operation on variables is built out of operations on values individu-
ally. For instance, the 2 of 2 operator in the OR expression of Figure 2.11 has, as input,
the 0 value path from each input variable but does not consider the 1 value path from
either variable. In this sense 2NCL might be called a subvariable logic.

2.3.5 Completeness at the Variable Level

Logically determined completeness relationships are defined in terms of variables.
The input and output boundaries of the 2NCL expressions of Figure 2.11 are vari-
ables. These expressions do not transition their output variables from NULL to
DATA until the input variables are completely DATA (one DATA value per vari-
able) and then do not transition their output variables to NULL until the input
variables are completely NULL. The variable boundaries of each expression are
logically determined completeness boundaries that express the completeness cri-
terion for the expression as a whole. These 2NCL expressions can be directly
substituted for Boolean functions in a Boolean combinational expression producing
a logically determined 2NCL combinational expression.

2.3.6 The 2NCL Orphan Path

Internal to each 2NCL expression, the continuity of the variable is not maintained as
each value path individually branches to many places. For each data wavefront
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Figure 2.11 2NCL expression mappings for Boolean functions.

22 A SUFFICIENTLY EXPRESSIVE LOGIC

Figure 3.14: NCL AND2 dual-rail RTZ gate. The grey bands indicate where the dual-rail pair
is bound to respect the indication principle. Adapted from [Fan05].

The automated synthesis of NCL requires specialised tools to perform technology
mapping and optimisation. Uncle [RST12] is one such tool; it employs a two-step synthesis.
First, a commercial EDA tool synthesises an RTL description to a single rail netlist. Then a
custom tool translates it to a dual-rail netlist using predefined dual-rail gate implementations
and generates the backward propagation network. This custom tool also optimises the dual-
rail netlist using specialised NCL optimisation techniques.
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Figure 3.15: Threshold-3 4-input NCL gate with two weight-2 inputs employed in the AND2
gate presented in Figure 3.14.

3.7 SDDS-NCL: Spatially Distributed Dual Spacer NCL

Since NCL gates’ deactivation threshold is always 0, different NCL gates are distin-
guishable solely from their activation. One might consider using conventional EDA tools to
automate the mapping of NCL gates from their activation expressions only. However, con-
ventional EDA tools are not capable of correctly synthesising circuits comprising NCL gates.
Such tools are unaware of the full hysteretic behaviour of these gates, and they also require
negative unate gates to implement combinational logic. These restrictions pose challenges
to the adoption of conventional EDA tools for the synthesis of ST circuits using NCL gates.
If standard EDA tools were capable of synthesising combinational logic from positive unate
gates alone, using the RTZ protocol, NCL gates could be selected solely from their activa-
tion expressions; the deactivation behaviour could be safely ignored as it only affects the
reset phase of the circuit in the RTZ protocol. However, when inversions occur, the protocol
changes from RTZ to RTO, and the computation occurs in the gate’s deactivation. An EDA
tool oblivious to the hysteretic behaviour of NCL gates assumes all gates are conventional;
they assume that the deactivation expression of a gate is always equal to the complement of
its activation expression described in the liberty file. When accounting for the inversion re-
quirement and the obliviousness to the complete behaviour of hysteretic gates, the resulting
circuit is most likely implemented incorrectly.

Spatially Distributed Dual Spacer Null Convention Logic (SDDS-NCL) [MNM+14,
MTMC14,MBSC18] is a technique that eliminates these restrictions and enables the use of
conventional EDA tools to synthesise and optimise self-timed circuits. SDDS-NCL employs
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two types of hysteretic gates (NCL and NCLP)6 and two distinct protocols (RTZ and RTO) to
accommodate inversions. NCLP gates [MGC12a, MOPC13] are hysteretic gates where the
activation threshold equals the sum of all its input weights (i.e. all of its inputs at 1), and the
computation is expressed in its deactivation threshold. For comparison, the computation in
NCL gates is expressed in its activation threshold, and their deactivation threshold is always
0 (i.e. all of its inputs at 0). NCL gates’ deactivation makes them suitable to operate during
the reset phase of the RTZ protocol, whereas NCLP gates’ activation threshold makes them
suitable to operate on the reset of the RTO protocol.

A virtual function characterises the behaviour of NCL and NCLP gates’ computa-
tion. This virtual function is used by the standard EDA tool to select the gate during synthe-
sis. For positive unate NCL gates, the virtual function equals its activation expression; and
for positive unate NCLP gates, it equals the complement of its deactivation expression. For
negative unate NCL and NCLP gates, this relationship is inverted; the virtual function for the
negative unate NCL gate is expressed in the negation of its deactivation function, and the
virtual function of a negative unate NCLP gate is expressed in its activation function. Every
NCL gate has an NCLP counterpart with the same virtual function, and vice-versa. As an
example, consider the NCL gate depicted in Figure 3.15, its PR pair is:

⟨A · B + A · C + A · D + B · C + B · D ↣ Q ↑, !A·!B·!C·!D ↣ Q ↓⟩ (3.7)

Its NCLP counterpart’s PR pair is:

⟨A · B · C · D ↣ Q ↑, !A·!B+!A·!C·!D+!B·!C·!D ↣ Q ↓⟩ (3.8)

Their virtual function is:

Q = A · B + A · C + A · D + B · C + B · D (3.9)

It is an exercise left to the reader to verify that the virtual function matches the inverse of the
deactivation expression of the NCLP gate.

The synthesis occurs in two steps; first, the EDA tool selects NCL gates based on
their virtual functions. The EDA tool, unaware of the hysteretic behaviour or the protocol,
produces a potentially incorrect circuit. A graph colouring algorithm transverses the circuit
breath-first to identify protocol changes due to inversions. This algorithm then swaps be-
tween NCL and NCLP gates of the same virtual function where applicable. The intermediary
synthesis result and the finally corrected circuit are depicted in Figure 3.16.

SDDS-NCL has been demonstrated in multiple experiments to be reliable in the
construction of asynchronous circuits:

6In [MBSC18], the authors also mention INCL and INCLP gates as proper classes. However, these are
equivalent to an NCL and NCLP gate followed by an inverter. For simplicity, this work considers the former part
of classes NCL and NCLP, respectively.
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(b) Correctly mapped SDDS-NCL netlist after correction step.

Figure 3.16: Example of SDDS-NCL synthesis. Blue gates are NCL, and red gates are
NCLP. Adapted from [MBSC18].

• In [MBSC18], it presents advantages in power and performance for combinational cir-
cuits compared with results from Uncle [RST12].

• In [SWMC19], with the introduction of Pulsar, SDDS-NCL continues to show advan-
tages over Uncle for sequential circuits.

• In [SWM+20,WSA+22], it shows to be resilient to extreme voltage scaling.

These peer-reviewed results show that SDDS-NCL presents a good level of robustness.

3.8 A critique of SDDS-NCL

SDDS-NCL is a template capable of generating QDI circuits; neither the interleav-
ing of NCL and NCLP gates nor the inclusion of negative unate gates affects the timing
assumptions set by pure NCL circuits. Additionally, it has been demonstrated that one of
its main properties is to enable the use of traditional synchronous automatic synthesis tools
to design asynchronous digital circuits. However, in practice, using such methods for asyn-
chronous circuit synthesis is not without drawbacks. The synthesis method described initially
in [Mor16,MBSC18] and later extended for sequential circuits in [SWMC19,Sar19] does not
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guarantee that the resulting circuit meets the QDI criteria. The use of conventional EDA
tools for technology mapping and optimisation can result in a circuit with gate orphans, thus
requiring timing assumptions other than just the isochronic fork assumption. This occurs
because the EDA tool is unaware of the logic requirements, and it is free to perform as many
optimisations as it sees fit as long as the logic cones implement the same Boolean function.
The resulting circuit, although not necessarily meeting the criteria to be considered QDI, is
still considered an ST circuit.

To illustrate the just discussed issue, consider the three Kogge Stone generator
blocks depicted in Figure 3.17. They are all valid SDDS-NCL circuits, and from the perspec-
tive of the logical cones terminating in Go.0 and Go.1, they all implement the same virtual
functions. However, in (a), the only potential orphans are the wire forks in n1, n3, Pi.t and
Gp.t; whilst (b) duplicates gate G1 into G1_0 and G1_1, transforming the potential wire orphan
at the fork of n1 into a gate orphan. In (c), this situation is further worsened by the EDA tool
decomposing gate G1_1 into three logic gates implementing the same virtual function.
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(a) QDI implementation,
adapted from [Mor16].
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Figure 3.17: Three possible SDDS-NCL Kogge Stone generator blocks.

As discussed in Section 3.2.1, to guarantee the correct operation of the circuit with
gate orphans, the timing assumption must cover not only the wire forks as demanded by
the isochronic fork assumption but also the orphaned gates. Since only one of the outputs
(Go.t or Go.f) is activated at any time, during the reset phase of the handshake protocol,
only n1_1 or n1_0 will have its transition to spacer acknowledged by the deactivation of either
output. The other wire will be assumed to have transitioned to spacer before the propagation
of the next valid data; this assumption dictates that the difference in delay between the
paths passing through G1_1 and through G1_0 must be smaller than the time required for
new data to arrive at either gate. This timing assumption can be generalised to any circuit
comprising gate orphans; the difference in propagation time between the slowest and the
fastest propagation paths leading to a dual-rail output must be smaller than the fastest delay
in the acknowledgement network matching the propagation paths.



55

When reanalysing the circuits used to generate experimental results in previously
published articles featuring SDDS-NCL and Pulsar, it was found that the occurrence of gate
orphans in SDDS-NCL is not uncommon. The presence of gate orphans, combined with
the lack of a mechanism to enforce the observance of the proposed timing assumption,
explains the faults leading to missing data points in, e.g. [SMC20a,NSMC23]. Yet, the timing
assumption is still met in most cases and, as experimental results have shown, still grants a
good level of robustness against delay variations.
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4. TIMING AND PERFORMANCE

Asynchronous circuits’ timing and throughput analysis are often not as straightfor-
ward as they are on synchronous circuits. The latter rely on the clock as an external stable
timing reference to control the propagation of data; their throughput is an integer multiple
of the clock period, which is limited by the slowest propagation time. In synchronous cir-
cuits, static timing analysis (STA) is used to find the slowest propagation time and guide
timing-driven synthesis and optimisations.

Conversely, asynchronous circuits rely on sequences of handshakes between con-
current entities to control data propagation; these handshakes occur in cyclic propagation
paths, called cycles. The throughput of a handshake-oriented asynchronous circuit depends
on the propagation time of its slowest cycle. However, the slowest cycle is not necessarily
evident due to complex interactions and can even span multiple handshakes. Furthermore,
the absence of a clock signal and the cyclic nature of the propagation paths in asynchronous
circuits hinders the use of STA tools to perform timing analysis.

This Chapter focuses on the performance analysis of handshaking circuits, espe-
cially ST circuits. Section 4.1 presents a technique that breaks cycles of asynchronous
circuits into multiple linear propagation paths and allows the use of conventional STA tools
to analyse the delays of these propagation paths. Section 4.2 formally defines the Half-buffer
channel network, a model to capture the behaviour of 4-phase handshake circuits.

4.1 Pseudo Synchronous WCHB

Conventional EDA tools rely on the clock signal to perform static timing analysis
(STA) on a circuit. In synchronous circuits, the STA computes propagation delays between
registers, inputs and outputs in acyclic paths. The clock signal provides a stable and pre-
dictable transition to begin timing analysis from. The propagation delay computation begins
with a clock event triggering registers and primary inputs to switch and terminates at a reg-
ister’s input or a primary output. In the absence of a clock signal, such reference is lost.
Furthermore, the WCHB pipeline presents combinational loops as depicted in Figure 4.1.
These loops force standard EDA tools to insert loop breakers at unpredictable locations in
the circuit. Thonnart et al. propose the Pseudo Synchronous WCHB [TBV12] technique
to tackle these issues. The author of this thesis extended Pseudo-Synchronous WCHB
in [SWMC19] to enhance the support of delay-annotated simulation. This extension intro-
duces a pseudo-clock signal used during synthesis to provide a stable timing reference for
STA, but which is never realised in the final circuit. It also provides predictable loop breakers
to act as start and end points in the timing analysis.
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Figure 4.1: WCHB pipeline with dashed arrows highlighting the segments of one of the
combinational loops as broken by the Pseudo-Synchronous WCHB technique. The reset
signal is omitted for simplicity.

The C-element employed in the WCHB pipeline is naturally analogue to edge-
triggered flip-flops employed in conventional asynchronous circuits as state-holding com-
ponents. Pseudo-synchronous WCHB models this C-element as clocked sequential gates.
Figure 4.2 depicts the original arcs and the two clocked sequential models proposed in
[SWMC19]. The original C-element contains 3 propagation arcs to the output: two from its
conventional inputs and one from the reset pin. Both the pseudo-flop and -latch models in-
troduce a pseudo-clock pin G that is not physically present in the gate layout. The inclusion
of the pseudo-clock pin G differs from [TBV12], where they use the reset pin as the pseudo-
clock. The adoption of this additional pin enables preserving the characterised arcs related
to the reset pin in both models.
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(a) Original.
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(b) Pseudo-Flop.
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(c) Pseudo-Latch.

Figure 4.2: Arcs of the three C-element characterisation models. Red lines are the original
propagation arcs, blue lines are the setup constraint arcs, and green lines are the propaga-
tion arcs from the pseudo-clock G. Adapted from [SWMC19].
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The pseudo-flop model breaks the propagation arcs between the C-element’s in-
puts and output into two arcs related to the pseudo-clock G: a propagation arc and a setup
constraint arc. The new propagation arc from G to the output is solely dependent on the
output capacitance, and the setup arc is solely dependent on the input slew. Experimental
results show an error of less than 1% between the sum of the pseudo setup and propagation
arcs and the initially characterised arcs. This indicates independence between the influence
of input slew and output capacitance in the propagation delay, as expected from a circuit
with 2 logic levels like a C-Element. Furthermore, this decoupling also means that the input
slew hardly affects the output slew on C-Elements, weakening the justification for an STA
tool dedicated to asynchronous circuits presented in [HLPM20].

The pseudo-flop model is used during synthesis, optimisation and sign-off to enable
the STA tool to the linear propagation path delays. However, it removes the original propaga-
tion arc between the input and the output. This removal hinders the use of the pseudo-flop
for delay-annotation. The pseudo-latch model presents the same pins and introduces the
same propagation and setup arcs related to G as the pseudo-flop model, thus allowing it
to replace the pseudo-flop model seamlessly by just replacing the liberty file. The pseudo-
latch model takes advantage of the transparency mode present in latches to preserve the
originally characterised arcs. When a transparent latch propagates changes from the inputs
to the output, modelled as propagation arcs. These propagation arcs are annotated in the
SDF file used in delay annotated simulations; these properties make the pseudo-latch model
suitable for delay annotation and post-synthesis simulations.

It is worth noting that although the technique is presented here only for resettable
C-Elements, it can be applied to any gate, hysteretic or not.

4.2 The Half-Buffer Channel Network

As discussed before, an asynchronous circuit’s performance depends on its worst
cycle time. However, this is not evident from the individual propagation path delays due to
complex interactions between cycles. Finding the cycle times in a circuit efficiently requires
models that capture its dynamic behaviour without having to resort to simulation.

Beerel’s Full-Buffer Channel Network (FBCN) [BOF10], depicted in Figure 4.3, is
one such model. It is a Petri net that captures the propagation and acknowledgement of
data in a handshake circuit. It models each handshake channel with two places, one corre-
sponding to the data propagation path and the other to the acknowledgement propagation
path.

As the name states, the FBCN models full-buffer handshaking circuits, i.e. circuits
that allow two data tokens to coexist in successive pipeline states; this matches the be-
haviour of 2-phase handshake circuits. However, since it models full-buffer circuits, the
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hold at most one token and thus that the leaf cells are full buffers [11]. An
extension to model half buffers [11] more accurately is an area of research and
development.

Notice that in any marking (see Figure 5.1), if the forward place is marked then
it represents a state in which there exists a token in the channel. Otherwise, the

backward place is marked. This configuration guarantees that only one data or
control token can reside in the channel and that the marked graph is safe.

5.2.2 Cycle time and throughput

The cycle time of an asynchronous pipeline is captured by the cycle time of its
FBCN model (see the previous subsection). The throughput of the circuit is the

reciprocal of this value. Very often additional buffers, also known as slack, must
be added to the model to balance the pipelines and thereby improve the cycle time.

We model the addition of slack between leaf cells by creating new transitions,
places, and arcs that represent buffer leaf cells and their corresponding channels.

As an example, consider a homogeneous non-linear pipeline fork–join channel

structure in which there are three buffers (represented by vertical bars) in one path
and one buffer in the other path. The FBCN model of this structure is illustrated

in Figure 5.5. Notice also that the forking transition t0, which represents the leaf-cell

8

2

(a) (b)

2

8

Figure 5.4. Full-buffer channel nets.
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Figure 5.5. Full-buffer channel-net model of a homogeneous unbalanced fork–join pipeline.

895.2 Modeling pipelines using channel nets

Figure 4.3: Example of Full-Buffer Channel Network (FBCN), adapted from [BOF10]. The
square places model the acknowledgement propagation paths, the round places represent
the data propagation paths, and the transitions models handshaking entities such as reg-
isters. The numbers associated with the places are the path delays, and the black dots in
places are the initial markings.

FBCN fails to capture the behaviour of 4-phase handshaking circuits. A 4-phase handshake
protocol interleaves the propagation of data with the propagation of spacers. This means
that handshaking circuits implementing a 4-phase protocol are half-buffers, i.e. circuits that
require data tokens to be interleaved with spacers in successive pipeline states.

To correctly model handshaking circuits implementing a 4-phase protocol, the au-
thor of this thesis proposes the Half-Buffer Channel Network (HBCN) model. It employs four
places per handshake channel, each corresponding to a phase of a 4-phase handshake
protocol. The formal definition of the HBCN presented here is adapted from the author’s
MSc thesis original definition [Sar19].

Definition 31 (Half-Buffer Channel Network). A Half-Buffer Channel Network (HBCN) is a
4-tuple N = ⟨T , Γ, C, i0⟩, where T is a set of transitions, Γ ⊆ T × T is a set of transition
pairs, C is a set of channels defined as C ⊆ {⟨u, v⟩ : u, v ∈ Γ, u ̸= v}, and i0 : C 7→
{acknull , reqdata, ackdata, reqnull} is a function defining each channel’s initial state. In any valid
HBCN the following predicates always hold:

∀t , t ′ : ⟨t , t ′⟩ ∈ Γ =⇒ ⟨t ′, t⟩ /∈ Γ (4.1)

∀x ̸= t ′ : ⟨t , t ′⟩ ∈ Γ =⇒ ⟨t , x⟩ /∈ Γ (4.2)

∀x ̸= t : ⟨t , t ′⟩ ∈ Γ =⇒ ⟨x , t ′⟩ /∈ Γ (4.3)

It is useful to interpret this definition, explaining its predicates. Predicate 4.1 states
that any two transitions t and t ′ are in at most one transition pair in Γ, while the Predicates 4.2
and 4.3 state that every transition t is paired to a single other transition t ′.
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Every HBCN N = ⟨T , Γ, C, i0⟩ has a equivalent marked graph defined as the 3-tuple
G = ⟨T , P, M0⟩ where T is a set of transitions of the HBCN, P ⊆ T × T is a set of places,
and M0 ⊂ P is a set of initially marked places. For simplicity, the equivalent marked graph
of an HBCN is referred to as HBCN. The relationship between N and G is expressed by six
predicates:

⟨⟨a, a′⟩, ⟨b, b′⟩⟩ ∈ C =⇒ {⟨a, b⟩, ⟨b, a′⟩, ⟨a′, b′⟩, ⟨b′, a⟩} ⊆ P (4.4)

⟨⟨a, a′⟩, ⟨b, b′⟩⟩ ∈ C =⇒ |{⟨a, b⟩, ⟨b, a′⟩, ⟨a′, b′⟩, ⟨b′, a⟩} ∩ M0| = 1 (4.5)

i0(⟨⟨a, a′⟩, ⟨b, b′⟩⟩) = acknull =⇒ ⟨b′, a⟩ ∈ M0 (4.6)

i0(⟨⟨a, a′⟩, ⟨b, b′⟩⟩) = reqdata =⇒ ⟨a, b⟩ ∈ M0 (4.7)

i0(⟨⟨a, a′⟩, ⟨b, b′⟩⟩) = ackdata =⇒ ⟨b, a′⟩ ∈ M0 (4.8)

i0(⟨⟨a, a′⟩, ⟨b, b′⟩⟩) = reqnull =⇒ ⟨a′, b′⟩ ∈ M0 (4.9)

Predicate 4.4 states that each channel is expanded to four places, two forward
propagation places (for data and spacer) and two cross-connected backward propagation
places; Predicate 4.5 states that for each channel, one and only one place is initially marked;
whilst Predicates 4.6 to 4.9 define which places are initially marked according to the corre-
sponding channel respective initial state.

Note that {acknull , reqdata, ackdata, reqnull} is the set of states any channel is at any
moment. In this sense, a channel comprises four places, and precisely one carries a to-
ken, making its current state explicit. This is obviously related to the phases of a 4-phase
communication protocol.

Definition 31 enables deriving some useful functions:

m0(u, v ) =

1, if ⟨u, v⟩ ∈ M0

0, if ⟨u, v⟩ /∈ M0

(4.10)

pair (t) =

y ′, if ⟨t , y ′⟩ ∈ Γ

y , if ⟨y , t⟩ ∈ Γ
(4.11)

The function m0 returns 1 if the place (u, v ) contains a token at the initial time; otherwise,
it returns 0. Function pair returns the transition paired to the argument. This function takes
advantage of Predicates 4.1 to 4.3 from Definition 31, which guarantees there is just a single
transition pair satisfying the guard condition (t in the function statement).

Figure 4.4 illustrates the above concepts, showing the HBCN for a simple 3-stage
half buffer pipeline. Each register or handshake port is modelled by a transition-pair1 (γ ∈ Γ)
capturing the propagation of tokens and spacers in the circuit, e.g. the pair (r0, r0′). Hand-

1The elements of Gamma are the stacked blue-red transition pairs.
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shake channels are each modelled by four places2, each representing a handshake phase,
e.g. places {(r0, r1), (r1, r0′), (r0′, r1′), (r1′, r0)} model the channel between the transition
pairs (r0, r0′) and (r1, r1′). The initial state of the HBCN defines its initial marking set, where
places {(r0′, in), (r1′, r0), (out ′, r1)} hold the initial tokens, indicating that the corresponding
channels are in the acknull state. It is worth noting that the first transition t in a transition
pair (t , t ′) represents the propagation of valid data tokens in the circuit, whilst the second
transition t ′ represents the propagation of a spacer.

r1 

r1'

r0 

r0'

in 

in'

out 

out'
Figure 4.4: Example HBCN, extracted from [SWMC19].

4.3 Timing Analysis

The use of HBCN as a timing model arises when assigning timing information to its
equivalent marked graph. It is helpful to define timed marked graphs precisely.

Definition 32 (Timed Marked Graph). A timed marked graph, defined as a quintuple Gt =
⟨T , P, M0, d , a⟩, is a marked graph G = ⟨T , P, M0⟩, where d : P 7→ {x : x ∈ R, x > 0} is
a function defining the delay of each place, and a : P 7→ {x : x ∈ R, x ≥ 0} is a function
defining the arrival time of each transition. In a timed marked graph, the following predicate
always holds.

∀⟨u, v⟩ ∈ P : ⟨u, v⟩ /∈ M0 =⇒ a(v ) ≥ a(u) + d(⟨u, v⟩) (4.12)

The predicate in Definition 32 states that for every place not initially marked, the
transition succeeding the place must fire no earlier than the moment when the transition
preceding it fires plus the place delay. The arrival time is the first time a transition fires with
regard to a start time reference (noted as time 0). Notice that the firing times of a transition
are cyclical; it is possible for a place to fire multiple times, including before the start time

2In practice, delays are associated to these places, but Definition 31 does not include delays. Definition 32
complements HBCNs to include delay modeling.
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0. The initial marking indicates the state of the marked graph at the start time reference 0.
Also, notice that it is possible for a transition to fire at time 0 if all its preceding places are
initially marked.

The timed marked graph of an HBCN provides a framework to enable the timing
analysis of circuits employing the pseudo-synchronous model. The place delays capture the
worst delays of propagation paths; these are annotated with the delays extracted from STA.
Assuming that the circuit employs the RTZ protocol, for every transition pair (t , t ′) ∈ Γ corre-
sponding to a register, the transition corresponding to data propagation (t) is related to a rise
transition in the output of one of the pseudo-synchronous C-elements in the register. Simi-
larly, the transition corresponding to the spacer propagation (t ′) is related to a fall transition
in the output of one of the C-elements. For each channel (⟨a, a′⟩, ⟨b, b′⟩) ∈ C, between the
handshaking register or port a and b, the place delays are adjusted from STA accordingly:

• Delay d(⟨a, b⟩) is the worst propagation time passing through a rise on any output of a
and a rise on any input of b.

• Delay d(⟨b, a′⟩) is the worst propagation time passing through a rise on any output of
b and a fall on any input of a.

• Delay d(⟨a′, b′⟩) is the worst propagation time passing through a fall on any output of a
and a fall on any input of b.

• Delay d(⟨b′, a⟩) is the worst propagation time passing through a fall on any output of b
and a rise on any input of a.

When using the pseudo-synchronous technique, the start point of any propagation path
passing through registers is the pseudo-clock. This means that when annotating the HBCN
with delays, the capacitance-dependent propagation delay of the start point register is in-
cluded in the path propagation delay, as is the slew-dependent setup constraint of the end-
point register.

The delay annotation on a timed marked graph is not sufficient to fully describe
the timing characteristics of the circuit. For any given set of place delays, there are multiple
possible timed marked graphs, each with its own set of arrival times. For the purpose of com-
puting the worst cycle time, the relevant timed marked graph is the one where the transitions
fire as early as possible, limited only by the place delays. Maggot’s algorithm [Mag84] can
compute this exact timed marked graph and consequently the worst cycle time. It employs
linear programming to find a minimal cycle time value θ that satisfies the constraints:

∀(⟨u, v⟩ ∈ P) : a(v ) ≥ a(u) + d(⟨u, v⟩) − θ · m0((u, v )) (4.13)

The rationale of this algorithm is similar to predicates in Definition 32, the arrival time for
the transition succeeding a place a(v ) must be greater than the arrival time for the transition
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preceding it a(u0) plus the place delay d(⟨u, v⟩); unless the place is initially marked, then it
is assumed that the transition preceding the place has fired one cycle time θ before. This
exploits the fact that the firing interval of transitions is cyclical, and the arrival time only
captures the first firing after the arbitrary initial time 0, but nothing hinders the transition to
have fired before the initial time 0.

The worst cycle time limits the performance of the entire circuit. However, it is not
the only significant performance metric when performing timing analysis. During operation,
the slowest cycle dominates faster cycles, making tokens wait longer in a place than their
place delays require; this slowest cycle is called the most critical cycle. The time a token
waste in a place is called the slack time, i.e. the time a place holds a token after its delay
has elapsed waiting for the transition to fire. Computing the slack time enables finding the
most critical cycle limiting the performance of a circuit. The function s : P 7→ {x ∈ R : x ≥ 0}
defines the slack time of places on the timed marked graph:

s(⟨u, v⟩) = a(v ) − d(⟨u, v⟩) − a(u) (4.14)

A critical cycle is a path with the least slack travelled by a token. For each initial marking, a
shortest path algorithm like a Dijkstra is able to compute the path with the least slack time
between the transition succeeding the marked place and the transition proceeding it. Using
this method, the most critical cycle in a circuit is the critical cycle with the least slack, and
the least critical cycle is the critical cycle with the most slack. This information can produce
timing reports that aid a designer in focusing their architectural optimisation efforts.

4.4 Cycle Time Constraining

Using the timed marked graph, it is also possible to compute the maximum delay
propagation paths can have to respect a worst cycle time constraint. To find a timed marked
graph that adequately constrains a circuit’s cycle time, Sartori et al. [SWMC19] proposed
using a variation of Maggot’s algorithm [Mag84] to discover a (single) pseudo-clock delay.
In [SMC20a], the authors extended this technique to relax paths that present slack time. The
proposed techniques employ linear programming to find a maximum delay λ that satisfies
the cycle time θ subject to:

∀(p ∈ P) : d(p) ≥ λ (4.15)

∀((u, v ) ∈ P), d((u, v )) = d((pair (u), pair (v ))) (4.16)

∀((u, v ) ∈ P) : a(v ) = a(u) + d((u, v )) − θ.m0((u, v )) (4.17)
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Constraint 4.15 states that every place in the timed marked graph is at least as slow as
the maximum delay λ. Constraint 4.16 ensures that places capturing the same propagation
path are constrained to the same delay. Constraint 4.17 states that for every place, the
arrival time of the transition succeeding the place is equal to the arrival time of the preceding
transition plus the place delay, except when the place is initially marked. In this last case, it
assumes that the preceding transition has fired one cycle time of θ before. The technique
proposed in [SWMC19] uses the maximum delay λ as a pseudo-clock during synthesis
to constrain all propagation paths. The intuition here is that if every propagation path in
the critical cycle3 is at most as slow as λ, the maximum cycle time is bounded to θ. But
according to Constraint 4.15, some delays may be greater than the pseudo-clock period λ

if they present free-slack [BOF10]. In these cases, a timing exception is applied to these
paths using techniques such as the set_max_delay SDC [BC09] command. Also, albeit not
covered here for simplicity, [SMC20a] presents a limited number of cases where place delays
can be safely set to a value lower than the pseudo-clock period for optimisation.

4.4.1 Proportional Cycle Time Constraints

The approach used in Pulsar [SWMC19,SMC20a] assigns the same constraint λ to
every propagation path regardless of their complexity. Nonetheless, individual propagation
paths broken by the pseudo-synchronous model naturally produce paths with distinct depths
and complexities, e.g. the forward and backward propagation paths of a WCHB pipeline
stage with different functional units may present varying logic depths. Albeit this approach
constrains the worst cycle, it does so at a non-optimal cost, as it potentially over-constrains
some paths whilst leaving others slacked.

A better approach would be to consider the complexity of each propagation path in
the circuit during constraining. This paper introduces a new HBCN-based technique that can
constrain each path proportionally to its logical depth. Constraining the propagation paths
requires a fair estimation of their cost. For this reason, this work introduces an HBCN exten-
sion that can model the cost of propagation paths, as captured in the following definition.

Definition 33 (Weighted HBCN). A weighted HBCN, is completely defined by the 6-tuple
given by Nw = ⟨T , Γ, C, i0, wf , wb⟩, is an HBCN N = ⟨T , Γ, C, i0⟩, where wf : C 7→ R. It is
a function defining each channel forward propagation cost, and wb : C 7→ R is a function
defining each channel’s backward propagation cost.

Every weighted HBCN Nw = (T , Γ, C, i0, wf , wb) has a characteristic weighted marked
graph defined by the 4-tuple Gw = (T , P, M0, w) that is a characteristic graph G = ⟨T , P, M0⟩,
where w : P 7→ R is a function defining the cost of places. The relationship between Nw and

3A critical cycle is the cycle with the largest delay.
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Gw implies all predicates defined for the relation between N and G, and also the following
four additional predicates.

(⟨a, b⟩, ⟨c, d⟩) ∈ C =⇒ w(⟨a, c⟩) = wf (⟨a, b⟩, ⟨c, d⟩) (4.18)

(⟨a, b⟩, ⟨c, d⟩) ∈ C =⇒ w(⟨b, d⟩) = wf (⟨a, b⟩, ⟨c, d⟩) (4.19)

(⟨a, b⟩, ⟨c, d⟩) ∈ C =⇒ w(⟨c, b⟩) = wb(⟨a, b⟩, ⟨c, d⟩) (4.20)

(⟨a, b⟩, ⟨c, d⟩) ∈ C =⇒ w(⟨d , a⟩) = wb(⟨a, b⟩, ⟨c, d⟩) (4.21)

Interpreting the Definition, Predicates 4.18 and 4.19 state that the cost of a place
taking part in a forward propagation path is the same as the forward propagation cost of its
constituent channel. Predicates 4.20 and 4.21 state that the cost of a place taking part in a
backward propagation path is the same as the backward propagation cost of its constituent
channel.

The virtual delays introduced in [SMC20a] can be used as costs in the weighted
HBCN. The cost of the forward propagation path can then be extracted from Pulsar’s pre-
synthesis virtual delay. For the backward propagation cost, the virtual delays can be esti-
mated from the fanout on the forward path, i.e. the number of channels driven by the register
or port. The backward propagation path virtual delay estimation assumes that 2-input C-
elements implement the completion detection tree. It is also assumed that an OR gate
performs the completion detection, and the register is implemented using a C-Element. The
maximum depth of a binary tree with n leaves is ⌈log2 n⌉. Also, according to the virtual delay
definition in [SMC20a]: a C-element has 10 ps of virtual-delay, and an OR gate has 5 ps
of virtual delay. Therefore, the virtual delay of any backward propagation path arriving at a
register or port can be defined by 15+10⌈log2 n⌉, where n is the number of channels starting
at the register or port.

To derive the timed marked graph constraining the weighted HBCN, the author
proposed a linear programming (LP) formulation derived from Magott’s Algorithm [Mag84].
Here, a balloon factor τ correlates the place delays and their costs. An LP solver is used to
find the maximum τ that satisfies the chosen cycle time θ, subject to the constraints:

∀⟨u, v⟩ ∈ P : d((u, v )) = d(⟨pair (u), pair (v )⟩) (4.22)

∀⟨u, v⟩ ∈ P : a(v ) = a(u) + d(⟨u, v⟩) − θ.m0(u, v ) (4.23)

∀p ∈ P : d(p) ≥ τ .w(p) (4.24)

Constraint 4.22 ensures that places capturing the same propagation path are constrained
to the same delay. Constraint 4.23 states that for all places, the arrival time of the transition
succeeding the place is equal to the arrival time of the of preceding transition plus the place
delay, except when the place is initially marked. In this last case, it is assumed that the
preceding place has fired one cycle time θ before. Constraint 4.24 sets the minimal place
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delay proportional to its weight. The intuition behind this formulation is that the sum of the
place delays taking part in a cycle is equal to θ. The balloon τ inflates the place delays
proportionally to their costs. The place delay grows to accommodate the ballooned place
cost τ .w(p).

The solution of this formulation is used to create timing constraints during the syn-
thesis. To constrain the circuit to the cycle time θ, the paths captured by place delays are
constrained using the set_maximum_delay SDC command.
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5. PULSAR AND ITS TEMPLATES

To automate the synthesis of ST circuits, the Author has proposed Pulsar [SWMC19,
Sar19, SMC20a]. Figure 5.1 gives an overview of the Pulsar system. It comprises a set of
scripts and related tools to leverage the use of conventional EDA to synthesise asynchronous
circuits; an open public version of Pulsar is available at [SMC20c]. Like the Uncle [RST12]
tool, Pulsar performs two synthesis steps: (i) the front end produces an intermediary sin-
gle rail netlist from an RTL-like description; (ii) the back end performs dual-rail expansion
and technology mapping. Unlike Uncle, Pulsar employs commercial EDA tools extensively
throughout the entire synthesis process. This comprehensive use of commercial EDA tools
allows Pulsar to employ timing-driven synthesis to trade off performance, power and area
goals. However, since the performance of handshaking circuits is not straightforward, Pulsar
proposes the use of the half-buffer channel network (HBCN) timing model (Refer to Defini-
tion 31 in Chapter 4) to derive timing constraints for individual propagation paths, based on
a chosen a cycle time constraint.

RTL description

Components
Library

Single Rail
Synthesis

Single Rail Netlist Dual Rail
Expander

Circuit Graph HBCN Constrainer
Design

Constraints
Template Specific

Synthesis Flow

Dual-Rail
Expansions of
components

Output for
Physical

Synthesis

Virtual Netlist

Figure 5.1: Overview of Pulsar: green boxes are part of the front end, red boxes are part of
the back end, light-yellow boxes are the main intermediate files, blue is the user input and
orange is the output.

Pulsar’s front end uses Genus to synthesise the RTL-Like description to an inter-
mediate single-rail netlist comprising components and wires. Components are virtual gates
with well-defined behaviour and interface; they are the combinational and sequential ST logic
gates available to build the circuit. These components are presented to Genus in a liberty
file with dummy delays. However, they are not implemented in the front end but in the back
end as SystemVerilog modules. The front end uses a custom tool to process this single-rail
netlist to produce a virtual netlist. This tool replaces all wires on the netlist with instances of
a SystemVerilog interface1 that models handshake channels between components; the im-
plementation of this interface is also delegated to the back end. The resulting virtual netlist
comprises components connected by handshake channels. The front end also produces a

1An interface is a SystemVerilog construct that enables bundling together wires that are logically related,
e.g. the wires of a system bus in a SoC.
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high-level graph describing the handshaking relations between primary inputs, outputs and
sequential components; a custom tool processes this graph to generate the circuit’s HBCN.

The implementation of the handshake channel SystemVerilog interface is depen-
dent on the employed handshake communication protocol; it comprises the data and control
wires required to perform channel handshakes. This SystemVerilog interface contains two
modports2 to connect consumer and producer component modules. The SystemVerilog
modules implementing components contain the necessary logic to interact with the hand-
shaking channels and to implement its behaviour. The construction of ST circuits requires
that the protocol, sequential and combinational components work in tandem. There are
multiple ways of implementing any of these parts, and the working combination of them is
called an asynchronous design template or template for short. Pulsar’s back end supports
synthesising ST circuits using different templates by changing the components and dual-
rail channel interface implementations. A custom tool derives propagation time constraints
from the HBCN to constrain the circuit cycle time. Pulsar uses Genus to perform timing-
constrained synthesis of the virtual netlist together with the components and handshake
channel implementations to produce the final ST circuit netlist. The gates employed in this
final netlist and the exact synthesis process depend on both the template and the target
technology choices. The template choice impacts most circuit characteristics, such as area,
power and robustness.

This Chapter first introduces Pulsar’s RTL-like design capture process in Sec-
tion 5.1. Next, Section 5.2 discusses how Pulsar produces virtual netlists, as well as the
proposal of a set of components that enable the seamless construction of ST circuits. Fi-
nally, the last three sections of the Chapter explore the ST templates currently available to
use with Pulsar. These are presented in chronological order of their proposition.

5.1 Design Capture

Pulsar’s RTL-like descriptions assume the use of a positive-edge clock and an
active-low asynchronous global reset signal. As a convention imposed by Pulsar, the positive-
edge clock is always named clk and the active-low global reset is always named reset. The
clock of the RTL-like description is not synthesised in the final circuit; it is merely used to
guide the EDA tool synthesis process. This RTL-like description assumes the designer will
employ constructions usually seen in flop-based RTL designs e.g. D-type, edge-triggered
flip-flops. However, the descriptions have different behaviour in the final asynchronous cir-
cuit. A D-type Flip-Flop in a synchronous design latches data on clock edge events. Here,
since the clock is non-existent, the description implies an instantiation of components that

2In SystemVerilog, a modport defines how modules interact with an interface, e.g. it defines signal directions
for modules with different roles in a bus.
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perform handshakes with neighbouring components. This distinction means that the be-
haviour of the synthesised circuit does not match the behaviour of a corresponding syn-
chronous circuit synthesised from the same description, nor does it matches the behaviour
of some conventional RTL simulation. There are three types of D-type flip-flops that are
translated to components from a Pulsar RTL-like description: (i) flip-flops without reset trans-
late to half-buffer components; (ii) flip-flops with asynchronous preset or reset translate to
full-buffer components (form more on half-buffers and full-buffers, refer to Section 3.2); and
(iii) special control-flow components which are explicitly instantiated in the source code3.
The actual implementation of these components is template specific.

A circuit implementing a 4-stage 32-bit accumulator is used here to demonstrate
the code-interpretative distinctions. This circuit’s intended behaviour is to sum the values
inserted in its input in, producing results at the output out after each insertion. The Pulsar
RTL-like input description of the accumulator is depicted in Listing 5.1. Lines 13-15 infer full-
buffer components; these are responsible for placing initial tokens in the circuit accumulator.
Lines 7-11 infer half-buffer components: Line 8 infers the input buffer; Line 9 infers a buffered
adder; and Line 10 infers the output buffer. This description is subject to retiming; although
the adder here is placed before a half-buffer, it is spread around the buffer during synthesis.

Listing 5.1: RTL-like, Pulsar Verilog input description of the 4-stage accumulator.
1 module acc #(WIDTH=32)
2 ( input logic c lk , reset ,
3 input logic [WIDTH−1:0 ] in ,
4 output logic [WIDTH−1:0 ] out ) ;
5 logic [WIDTH−1:0 ] in_reg , sum, acc ;
6
7 always @( posedge c l k ) begin
8 in_reg <= i n ;
9 sum <= acc + in_reg ;

10 out <= sum;
11 end
12
13 always @( posedge c l k or negedge rese t )
14 i f ( ! rese t ) acc <= ’ 0 ;
15 else acc <= sum;
16 endmodule

This RTL-like description corresponds to distinct behaviours on synchronous and
asynchronous implementations. The registers on a synchronous circuit capture data on
every relevant clock edge, despite of its presence or correctness. Meanwhile, registers in
asynchronous circuits perform a handshake with their neighbouring stages to coordinate
data capture; therefore, it only captures data when these are ready. The asynchronous
behaviour is depicted in Figure 5.2. Here, it is possible to verify that values produced at

3The control-flow components are characterised as D-type flip-flops, but marked as “don’t-use” in the li-
brary. Therefore, the EDA tool sees them as timing end- and start-points, but it is not able to instantiate such
components to implement inferred flip-flops.
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out are the sum of the previous values inserted at in. It is also possible to observe the
propagation of data in the circuit. Spacers separate data values; they propagate in a wave-
like way.

reset

in 1 2 3 4 5 6

in_reg 1 2 3 4 5 6

acc 0 1 3 6 10 15

sum 1 3 6 10 15

out 1 3 6 10 15

Figure 5.2: Waveform depicting the asynchronous behaviour of the RTL-like description in
Listing 5.1. Greyed-out areas represent spacers.

The data propagation behaviour is better captured by token flow diagrams [Spa20].
In such diagrams, tokens carry abstract data. Tokens and spacers propagate from latch to
latch through channels. A token (or spacer) is a bubble if all latches succeeding it contain
an identical token (or spacer); otherwise, it is part of the wavefront. Tokens and spacers
wavefronts are only allowed to propagate over bubbles; otherwise, information is potentially
lost, leading to circuit failure.

Channels can be merged or split. Combinational logic blocks merge channels;
these combine tokens or spacers at their inputs. However, a token cannot combine with a
spacer, nor a spacer with a token. Thus, a token (or spacer) can only propagate through
a combinational logic block when all inputs of the logic block hold tokens (resp. spacers).
Channels split when they feed into multiple latches; tokens (or spacers) are duplicated on
channel splits.

The token flow diagram for the 4-stage accumulator is depicted in Figure 5.3, em-
ploying the notation available, e.g. in [Spa20]. Here it is possible to observe how the inferred
registers on the RTL-like input description are expanded. The resetable D-type flops expand
to a full-buffer component; a sequence of three latches implements this. The middle latch in
a full-buffer component is initialised with a token carrying the reset value. The non-resetable
D-type flip-flops expand to half-buffer components, each being implemented by a single
latch. Unless stated otherwise, every latch defaults to initialising with a spacer. Spacers are
responsible for resetting combinational blocks to a ready state accepting new computations.
It is paramount to initialise latches neighbouring logic blocks with spacers during the initial
reset phase; this adequately prepares combinational logic blocks for computation. This is
also the reason a data token is placed between two spacers during the full-buffer component
initialisation.

The synchronous behaviour of this description is depicted in Figure 5.4. Here, two
possible faulty behaviours are depicted: (a) when the reset duration is shorter than the time
it takes to propagate data across all non-resettable flops; (b) when the reset duration is
long enough to propagate the initial computational value through all non-resettable flops. At
reset time, acc is set to 1; on Figure 5.4(a), sum is left at an unknown state, whereas on
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+S
in_regin
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(a) At reset time: a token T containing the
initial value is placed at the middle latch of the
full-buffer component; the remaining latches
are initialised with spacers S.
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(b) After the reset is released: the token in
the full buffer component propagates; a token
arrives on the external input channel in.
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(c) The token placed at the input propagates
to the input register, but the token at the full
buffer stays in place because it cannot propa-
gate to the next latch until all latches preced-
ing the adder hold tokens.
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(d) After a token becomes available in
in_reg, the adder merges it with the token at
acc and they propagate to the next latch. The
environment produces a new spacer, and the
spacer inside the full buffer propagates.
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(e) The token at sum splits in two and is propa-
gated to the output buffer and back to the first
stage of the full buffer, whilst the spacer at the
input propagates to the input buffer, and the
spacer in the full buffer propagates to its last
latch.
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(f) The token containing the first result is con-
sumed by the environment whilst it indepen-
dently inserts a new token. Spacers are
merged by the adder and propagate to the
next latch; this prepares the adder for the next
computation. Also, the token containing the
last result propagates through the full buffer.
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(g) The spacer splits and propagates to the
next latches. The input buffer consumes the
token from the environment.

Full Buffer Component
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sum
S

+T
in_regin

out
S
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(h) Tokens are merged by the adder and prop-
agate to the next latch whilst the environment
produces a new spacer on the input and con-
sumes the spacer at the output. This process
continues indefinitely from step (e) onward.

Figure 5.3: Simplified token-flow diagram for the 4-stage 32-bit accumulator. Parallel chan-
nels and latches are collapsed. T and S are respectively tokens and spacers; encircled
values are wavefronts and plain values are bubbles. A token can only propagate over a
spacer bubble and a spacer can only propagate over a token bubble.
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Figure 5.4(b), the reset time is long enough to propagate the result of the first addition to
sum. Both yield incorrect values; the former accumulates 1 with only the even values of the
input sequence; the latter alternates between accumulating the even and the odd values.
This faulty behaviour is due to the presence of a register in a closed loop; on synchronous
circuits, this causes a 1-cycle delay.

clk

reset

in 1 2 3 4 5 6 7 8 9

in_reg 1 2 3 4 5 6 7 8

acc 0 1 3 7 13

sum 1 3 7 13

out 1 3 7 13

(a) Faulty behaviour when reset is enabled
(=’0’) for a single clock cycle.

clk

reset

in 1 2 3 4 5 6 7 8

in_reg 1 2 3 4 5 6 7

acc 0 1 2 3 5 7 10

sum 1 2 3 5 7 10 13

out 1 2 3 5 7 10

(b) Faulty behaviour when reset is enabled
(=’0’) for multiple clock cycles.

Figure 5.4: Waveform showing the synchronous behaviour of the RTL description in List-
ing 5.1. Here greyed-out areas are unknown values.

Besides the differences depicted in the previous example, another source of in-
compatibilities with standard RTL is how choice operations are captured in Pulsar’s RTL-like
descriptions. To demonstrate how such components are used in RTL-like descriptions, it
is useful to take a look at the design of a 32-bit loadable up-counter. This circuit explicitly
instantiates a probe component to detect when a value is present at its load input channel. If
no load value is present, the circuit proceeds with incrementing the counter value, otherwise
it discards the current counter value and loads the one received. The token-flow diagram for
this circuit is depicted in Figure 5.5.

Full Buffer Component

T S

S +1

S
out

S
accnew_val

S
sum

SS

T

load

se
le

ct
or

not

hold

discard

probe

Figure 5.5: Simplified token-flow diagram for the loadable 32-bit up-counter.

Here, it is possible to observe that the discard component takes part in the accu-
mulator loop. While a token does not arrive at the load channel, the probe produces false
valued tokens interposed with spacers. These false value tokens inhibit the hold component
from handshaking on its input and output data channels. If a token arrives at the load chan-
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nel after the probe has issued a false valued token, it is held until the probe can acknowledge
its presence.

Listing 5.2 presents the design of the counter. The token steering components
instantiated in Lines 15-18 are in a fan-in steering arrangement; they multiplex the new_val

channel from either load_reg or sum.

Listing 5.2: RTL-like description of a loadable 32-bit up-counter.
1 module counter #(WIDTH=32)
2 ( input wire c lk , reset ,
3 input logic [WIDTH−1:0 ] load ,
4 output logic [WIDTH−1:0 ] out ) ;
5 logic [WIDTH−1:0 ] acc , sum, load_reg ;
6 wire [WIDTH−1:0 ] new_val ;
7 wire s e l e c t o r ;
8
9 always @( posedge c l k or negedge rese t )

10 i f ( ! rese t ) acc <= ’ 0 ;
11 else acc <= new_val ;
12
13 probe s ( . a ( | load ) , . q ( s e l e c t o r ) , . * ) ;
14
15 for ( genvar i = 0 ; i < WIDTH ; i ++) begin
16 hold load_h ( . a ( load_reg [ i ] ) , . en ( s e l e c t o r ) , . q ( new_val [ i ] ) , . * ) ;
17 d iscard sum_d ( . a (sum[ i ] ) , . en ( ! s e l e c t o r ) , . q ( new_val [ i ] ) , . * ) ;
18 end
19
20 always @( posedge c l k ) begin
21 load_reg <= load ;
22 sum <= acc + 1;
23 out <= acc ;
24 end
25
26 endmodule

The next Section details the mentioned and other special components used by
Pulsar synthesis process.

5.2 Virtual Netlist and Components

Synthesising ST circuits from RTL-like descriptions using Pulsar involves two syn-
thesis steps. The first is performed on the front end to generate an intermediate template-
independent SystemVerilog representation called a virtual netlist. This virtual netlist is later
processed using a template-dependent back end to synthesise a functional ST dual-rail
netlist on a target technology node. This process of transforming the virtual netlist into an
ST implementation employing dual-rail encoding is called dual-rail expansion. In Pulsar, it
exploits features of the SystemVerilog language, such as interfaces, to model channels and
produce the template-specific circuitry that implements and manipulates them.
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The first step in the construction of a virtual netlist is the synthesis of a single-
rail netlist. This netlist is constructed using components presented as gates to Genus in a
liberty file. Each component presents a standardised interface and behaviour but no physical
layout implementation. Instead, their implementation is template-dependent and left to the
back end. A custom program bundled within Pulsar, named DRExpander, transforms the
single-rail netlist into a SystemVerilog virtual netlist. In this transformation, the component
names are preserved, but all wires are replaced with instances of the drwire interface. Each
input and output of the single-rail netlist is replaced by three wires, two data-rail and one
acknowledgement wire. The environment is expected to interact with the end circuit using
the RTZ dual-rail protocol. Since the protocol implemented by drwire is template-specific,
two modules, drinput and droutput, are placed between the internal drwire and the virtual-
netlist ports. Just like components and the drwire interface, the drinput and droutput

modules’ implementation is template specific. The standardised interface allows replacing
circuits implemented from the same virtual netlist to different templates implementations
without changing the environment. It also allows reusing the same test environments to
compare implementations of circuits using different templates derived from the same virtual
netlist.

Table 5.1 depicts the components available on Pulsar’s front end to construct the
virtual netlist. There are two types of components, combinational and sequential ; the latter
comprise components capable of initiation handshake, and the former make the class of
components transparent to the handshake process. Most components are inferred from
RTL constructions, but those employed to support choice must be explicitly instantiated.
Sections 5.2.3 and 5.2.4 adapted from [SNC23] cover these special components used for
decision-making and token steering in detail.

Table 5.1: Pulsar components.

Type Instantiation Name Presented as Inputs Output

Combinational

Inferred

inv Inverter gate a

y
nand 2-input NAND gate

a, bnor 2-input NOR gate
xor 2-input XOR gate
mux 2-input multiplexer

Sequential

dff Flip-flop d, clk

q

dffr Resettable flip-flop d, clk, reset
dffs Settable flip-flop d, clk, set

Explicit

discard

Blackbox
d, sel, clk, resethold

arbiter a, b, clk, reset
probe a, clk, reset
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5.2.1 A Case Study

To illustrate the generation of a virtual netlist, this section explores the synthesis
of a 2-bit 2-stage adder, an example simple enough for the reader to follow through all the
steps. The starting point for synthesis is the SystemVerilog RTL-like description depicted in
Listing 5.3. The description must contain a clock port named clk. This clock is used to infer
rise-sensitive flops that translate to sequential components. An active-low reset port named
reset is used to infer full-buffer components.

Listing 5.3: Input RTL example.
1 module adder ( a , b , out , c l k ) ;
2 input wire [ 1 : 0 ] a , b ;
3 output reg [ 1 : 0 ] out ;
4 input wire c l k ;
5
6 always @( posedge c l k )
7 out <= a + b ;
8 endmodule / / adder

The RTL-like code is synthesised using Genus with a nought period clock constraint
and retiming. The output of the single-rail synthesis is the netlist depicted in Listing 5.4.
It instantiates the components by name. Note the number of dff instances; there should
be enough to have only a two-bit register. However, Genus retiming engine considered
advantageous to break one of the flops in two to balance logic between the pipeline stages
(see the code lines starting with dff retime_).

Listing 5.4: Single-rail netlist example, reordered for clarity.
1 module adder ( a , b , out , c l k ) ;
2 input [ 1 : 0 ] a , b ;
3 input c l k ;
4 output [ 1 : 0 ] out ;
5 wire [ 1 : 0 ] a , b ;
6 wire c l k ;
7 wire [ 1 : 0 ] out ;
8 wire n_0 , n_1 , n_2 , n_3 , n_4 , n_5 ;
9

10 xor2 g176__4296 ( . a ( a [ 0 ] ) , . b ( b [ 0 ] ) , . y ( n_3 ) ) ;
11 nand2 g178__1474 ( . a ( a [ 0 ] ) , . b ( b [ 0 ] ) , . y ( n_1 ) ) ;
12 d f f out_reg_0_ ( . ck ( c l k ) , . d ( n_3 ) , . q ( out [ 0 ] ) ) ;
13 d f f ret ime_s1_2_reg ( . ck ( c l k ) , . d ( n_1 ) , . q ( n_4 ) ) ;
14 inv g179 ( . a ( a [ 1 ] ) , . y ( n_0 ) ) ;
15 xor2 g177__3772 ( . a ( n_0 ) , . b ( b [ 1 ] ) , . y ( n_2 ) ) ;
16 d f f ret ime_s1_1_reg ( . ck ( c l k ) , . d ( n_2 ) , . q ( n_5 ) ) ;
17 xor2 g172__8780 ( . a ( n_4 ) , . b ( n_5 ) , . y ( out [ 1 ] ) ) ;
18 endmodule
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From the single-rail netlist, the DRExpander program constructs a virtual netlist.
DRExpander parses the Verilog netlist and replaces every wire in the netlist by instances of
the drwire interface. Buses of wires, such as a, b, and out are broken in multiple drwire

instances.

DRExpander is also responsible for recreating the module ports. Each port of
the single-rail netlist is expanded to three ports suffixed by _t, _f and _ack, which are re-
spectively the true, false and acknowledgement wires of the channel. The DRExpander
instantiate drinput and droutputs SystemVerilog modules to connect these ports to the in-
ternal drwire instances. This provides a consistent interface for the asynchronous module
to connect with the external world.

If the single-rail netlist does not include a reset port, the DRExpander creates one
and connects it to all sequential components in the virtual netlist. This is important to reset
half-buffer registers. Remember that half-buffer registers are modelled as D-flip-fops with no
reset. On the single-rail netlist, the dff instances do not contain a reset pin. However, their
expanded module may require a reset to function correctly.

Finally, the virtual netlist contains a clock port clk that connects to all its sequential
components. This pseudo-clock signal is left available to guide the synthesis in the back
end flow. This signal, however, is not necessarily implemented in the final circuit; it is only
present to guide EDA tools to perform the synthesis correctly.

Listing 5.5: Virtual netlist example, edited for clarity.

1 module adder
2 ( a_t , a_f , a_ack ,
3 b_t , b_f , b_ack ,
4 out_t , out_f , out_ack ,
5 c lk , rese t ) ;
6 input [ 1 : 0 ] a_t , a_f ;
7 output [ 1 : 0 ] a_ack ;
8 input [ 1 : 0 ] b_t , b_f ;
9 output [ 1 : 0 ] b_ack ;

10 output [ 1 : 0 ] out_t , ou t_ f ;
11 input [ 1 : 0 ] out_ack ;
12 input c lk , rese t ;
13
14 / / Ins tances of d rw i re f o r i n t e r n a l channels
15 drw i re n_0 ( ) ;
16 drw i re n_1 ( ) ;
17 drw i re n_2 ( ) ;
18 drw i re n_3 ( ) ;
19 drw i re n_4 ( ) ;
20 drw i re n_5 ( ) ;
21 drw i re a_0 ( ) ;
22 drw i re a_1 ( ) ;
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23 drw i re b_0 ( ) ;
24 drw i re b_1 ( ) ;
25 drw i re out_0 ( ) ;
26 drw i re out_1 ( ) ;
27
28 / / Connections between ex te rna l po r t s and drw i re channels
29 d r i n p u t ia_0 ( . t ( a_t [ 0 ] ) , . f ( a_f [ 0 ] ) , . ack ( a_ack [ 0 ] ) , . drw ( a_0 ) ) ;
30 d r i n p u t ia_1 ( . t ( a_t [ 1 ] ) , . f ( a_f [ 1 ] ) , . ack ( a_ack [ 1 ] ) , . drw ( a_1 ) ) ;
31 d r i n p u t ib_0 ( . t ( b_t [ 0 ] ) , . f ( b_f [ 0 ] ) , . ack ( b_ack [ 0 ] ) , . drw ( b_0 ) ) ;
32 d r i n p u t ib_1 ( . t ( b_t [ 1 ] ) , . f ( b_f [ 1 ] ) , . ack ( b_ack [ 1 ] ) , . drw ( b_1 ) ) ;
33 drou tpu t iou t_0 ( . t ( ou t_ t [ 0 ] ) , . f ( ou t_ f [ 0 ] ) , . ack ( out_ack [ 0 ] ) , . drw ( out_0 ) ) ;
34 drou tpu t iou t_1 ( . t ( ou t_ t [ 1 ] ) , . f ( ou t_ f [ 1 ] ) , . ack ( out_ack [ 1 ] ) , . drw ( out_1 ) ) ;
35
36 / / Component Instances
37 xor2 g176__4296 ( . a ( a_0 ) , . b ( b_0 ) , . y ( n_3 ) ) ;
38 nand2 g178__1474 ( . a ( a_0 ) , . b ( b_0 ) , . y ( n_1 ) ) ;
39 d f f out_reg_0_ ( . rese t ( rese t ) , . ck ( c l k ) , . d ( n_3 ) , . q ( out_0 ) ) ;
40 d f f ret ime_s1_2_reg ( . rese t ( rese t ) , . ck ( c l k ) , . d ( n_1 ) , . q ( n_4 ) ) ;
41 inv g179 ( . a ( a_1 ) , . y ( n_0 ) ) ;
42 xor2 g177__3772 ( . a ( n_0 ) , . b ( b_1 ) , . y ( n_2 ) ) ;
43 d f f ret ime_s1_1_reg ( . rese t ( rese t ) , . ck ( c l k ) , . d ( n_2 ) , . q ( n_5 ) ) ;
44 xor2 g172__8780 ( . a ( n_4 ) , . b ( n_5 ) , . y ( out_1 ) ) ;
45 endmodule / / adder

5.2.2 Sequential Components

The sequential components implement registers in asynchronous pipelines imple-
mented using Pulsar. They are modelled as flip-flops on the single-rail synthesis, allowing
standard synthesis tools to instantiate them from canonical RTL constructions. The sequen-
tial components expand to template-dependent implementations in the back end synthesis.
Sequential elements bind to drwire channels actively, performing handshakes on their input
and output channels. There are three sequential components in the Library: (i) the dff half-
buffer dual-rail RTZ register; (ii) the dffr resettable full-buffer component; and (iii) the dffs

settable full-buffer component. These are detailed next.

As an example, Figure 5.6(a) depicts an implementation of a half-buffer dual-rail
RTZ register. The half-buffer register is the simplest sequential component and is the base
for constructing pipelines. It connects to an input channel d and to an output channel q. The
half-buffer consists of two resettable C-Elements, here named using the NCL-style threshold
gate denomination RNCL2OF2; one OR gate (NCL1OF2); and an inverter. When the output
channel acknowledges the reception of a null (valid) token, the resettable C-Elements can
latch an incoming valid (null) token. This register operates on RTZ channels, valid token
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codewords are one-hot4 and null token codewords are presented by all bits in 0. Therefore,
an OR gate acknowledges when either a valid or null token has been latched in the input
channel. A null token is acknowledged by lowering the ack wire of the input channel, and a
valid token is acknowledged by raising the same signal. The inverter on the output ack wire
enables the alternation between the reset and evaluation phases.

During initialisation, it is important to place the circuit in a known state. This is due
to the fact that all components in the circuit consist of gates with hysteresis, which start at
unknown initial states. An ST circuit with an unknown state may operate improperly, as it
may start with an invalid encoding. Both RTZ and RTO protocols require that combinational
components outputs are null prior to entering the evaluation phase. Thus, it is important to
initialise all combinational components in the circuit by propagating a null codeword every-
where.

For the above reason, half-buffer registers employ resettable C-Elements that ini-
tialise their output channels to null codewords. Null codewords propagate through combina-
tional components in a cascade, placing the forward propagation logic in a well-known state.
Similarly, the backward propagation logic on the input channel must also be initialised. When
the register initiates the output rails low, the OR gate sets the acknowledgement signal of
the input channel low. This signals that the channel is ready to receive new data, a piece of
information which cascades in the backward propagation of the inbound channel, initialising
it. This is evident when the HBCN model depicted in Figure 5.6(b) is analysed. Here, the
inbound channel is represented by four places preceding the register and the outbound by
four places succeeding the register. The initial marking represents the initial state of the
channel; it signals that both channels are ready to accept new data tokens.
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(b) The half-buffer HBCN model.

Figure 5.6: The dff half-buffer dual-rail register.

4Notice that a channel here captures a single bit, thus one-hot refers to either the true or false rails being
enabled.
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Sometimes it is necessary to initialise a circuit with data. For example, a counter
must initialise to a known data value. This implies initialising some channels with valid
tokens. This can be achieved using the full-buffer components depicted in Figure 5.7. The
resettable full-buffer component, depicted in Figure 5.7(b), places a valid false data token in
the circuit. Similarly, the settable full-buffer component places a valid, true data token in the
circuit. A full-buffer component can simultaneously hold a data token and a null token. This
separates its interfacing channels by a full handshake cycle.

The full-buffer component comprises three half-buffer registers in sequence. These
are required to place a data token in the pipeline while correctly initialising the inbound and
outbound channels. Propagating data tokens in a circuit at an unknown state would yield
invalid results. Therefore, the first and the last are regular half-buffer registers that reset to
null. These two registers are responsible for initialising the inbound and outbound channels.
Due to the provided isolation, the middle register can safely reset to a data token without
compromising circuit initialisation. This is implemented by instantiating a settable C-Element
(SNCL2OF2) for either the true or the false rail, depending on the required start value.

The behaviour of full-buffer components is further evidenced by an analysis of its
HBCN model, depicted in Figure 5.7(c). Here, the inbound and outbound channels are
initialised to a state where both are ready to accept new tokens, similar to the initial state
of the half-buffer register. However, two channels internal to the component are initialised
respectively to a data and a null token. These internal channels contain no logic; thus, they
need not be initialised with a null token.

The settable and resettable C-elements employed in full-buffer components are
pseudo-flop instances. As discussed in Section 4.1, a pseudo-flop breaks the cycles of
WCHB pipelines to enable STA to analyse the forward and backward propagation paths.
This is important during the sequential synthesis part of the SDDS-NCL flow. However, a
commercial EDA tool does not safely infer these gates from implicit register construction.
Therefore, pseudo-flops are instantiated in the SystemVerilog module implementing the se-
quential component expansion. The implementation of sequential component expansions is
in fact a technology-dependent step.

Just as in the case of combinational components, sequential ones are also instan-
tiated by name during the single-rail synthesis. They are modelled as D-type flip-flops in
the component library Liberty file. The settable and resettable full-buffer components are
modelled as flops with preset and reset, respectively. The half-buffer register is modelled
as a D-type flip-flop with neither reset nor preset control signals. This approach contrasts
with Uncle [RST12], where half-buffer registers are modelled as latches. According to the
author’s experience, Genus does not support retiming latch circuits. Therefore, modelling
sequential components as flops enables performing retiming during single-rail synthesis.
This balances the number of components employed in each pipeline stage and opens new
opportunities for optimisation in early synthesis steps.
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Figure 5.7: The full-buffer components.
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5.2.3 The Decision-Making Components

Decision components produce tokens with different values, depending on the pres-
ence of tokens on their inputs. Probe is the simplest decision-making component; it detects
the presence of a token in a channel, being useful when a circuit is expected to perform a
default action whilst no new data is provided. When a token is present at its input channel,
a probe consumes it and produces a true-valued token at its output. Conversely, when no
token is present at the input channel, probe produces a false-valued token at its output chan-
nel. An arbiter, in its turn, only produces a token if at least one of its two input channels
has a token; this is useful when a circuit must wait for data coming from multiple sources,
e.g. in a bus arbiter circuit. If a token is present on input channel a of an arbiter, it produces
a true-valued token; whereas if a token is present on input channel b, the arbiter produces
a false-valued token. The token arriving first is consumed by the arbiter. If two tokens
arrive simultaneously, or close enough such that it is indistinguishable which arrived first,
the arbiter selects one of them at random. The implementation of both probe and arbiter

components is logic template-dependent. These components display a behaviour sensitive
to race conditions, usually solved by mutual exclusion components, also called mutexes.

The dual-rail RTZ version of the two decision components uses a complex gate,
the handshaking mutex (HM) sub-component detailed by the CMOS transistor network in
Figure 5.8. The HM design proposition is one of the main original contributions of this
work. It combines the functionality of a traditional mutex and resettable C-elements used
in asynchronous ST circuits’ temporal barriers. At reset, outputs (QA and QB) are both set
low, placing the HM in a known state. Each output (QA and QB) of the HM is controlled by
a corresponding asymmetric input pair (A+/A- and B+/B-), and by a common input (NACK).
QA only rises when A+ and NACK are high, and QB is low. Similarly QB only rises when
B+ and NACK are high, and QA is low. However, if both QA and QB rise simultaneously,
only one of the outputs will rise after some (unbounded) arbitration time; this deliberation is
ideally random. Furthermore, the condition for QA (QB) to fall is that both NACK and A- (B-)
are low, regardless of the status of the other inputs and outputs.

Figure 5.9 depicts the complete implementation of the probe and arbiter decision
components; they employ OR-gates as completion detectors (CDs), and an HM as arbitra-
tion and latching logic. Both arbiter and probe operate in arbitration cycles comprising an
evaluation step and a reset step. The evaluation step occurs when a consumer element
connected to the output channel signals its availability to receive a token. At this point, the
decision component can generate a true or a false token to indicate the state of its input
channels. The HM raises one of its outputs based on the state of the CD connected at its
input. When NACK falls, this indicates that the consumer has absorbed the token and is
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Figure 5.8: The handshaking mutex (HM) - a resettable state-holding mutual exclusion gate.
It comprises two cross-coupled resetable asymmetric C-elements, a metastability filter and
two output buffers. Output QA (QB) rises when inputs NACK and A+ (B+) are high; con-
versely, QA (QB) falls when both NACK and A- (B-) are low. Just one output can be high at
any time, but both can be simultaneously low. If NACK rises when both outputs are low and
inputs A+ and B+ are both high, the internal nodes NQA and NQB can enter a metastable
state. The metastability filter ensures outputs QA and QB are low until the metastability re-
solves.

ready to accept a spacer, which puts the decision component in the reset step. The precise
behaviour of the evaluation and reset steps are different in arbiter and probe components.

The arbiter has two (dual-rail) input channels, each with its own CD. Their outputs
feed each a pair of asymmetric inputs on the HM. This arrangement guarantees that the
arbiter is strongly indicating; tokens and spacers produced at the output always match
tokens and spacers consumed at the selected input. At the evaluation phase, the arbiter

only outputs a token when a token is present in at least one of its inputs. During the reset
phase, the arbiter waits for a spacer in the selected input, after which it outputs a spacer.
Notice that this behaviour affects only the selected input being acknowledged. A token
(if any) at the other input must wait until its input is selected; this ensures a consistent
behaviour, as no token can be lost, nor can the same token compete for arbitration twice.

In contrast to the arbiter, a probe has a single (dual-rail) input channel and its be-
haviour on the computation and reset step changes on the presence of tokens and spacers
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Figure 5.9: The SDDS-NCL template decision-making components implementation. Asym-
metric inputs on the HM allow implementing both decision components. The NACK signal
indicates whether the consumer connected to the output waits for a token or for a spacer.
OR-gates act as CDs to recognise the presence of tokens in the dual-rail input channel. HM
guarantees that only a single rail of the output raises on the evaluation step of the arbitration
cycle. It is worth noting that probe relies on HM to guarantee its correct behaviour in the rare
occasion where both NACK and the output of the input channel CD change simultaneously.

in its input channel. The CD output indicates the presence/absence of a token; it connects
to the A+/A- input pair of the HM. The inversion of the CD output indicates the presence of a
spacer; the negated CD output is connected only to the B+ input of the HM, and the B- input
is tied to earth. When a token is detected at the input during the computation step, probe
behaves similarly to an arbiter; the token is acknowledged, and the output only returns to
a spacer after the input returns to a spacer. When a spacer is detected at the input during
the computation step, probe completes the arbitration cycle, regardless of changes in the
input; it produces a false-value token at the output and resets back to a spacer as soon as
NACK falls, indicating the consumer stage absorbed the token. This allows a token to arrive
at any time during the arbitration cycle, but its presence is only recognised when the probe

begins its computation step. If a token arrives too close to the beginning of a computation,
the probe may not detect the token at that arbitration cycle; but it is guaranteed to produce
a valid response and to recognise the token at its input.

5.2.4 The Token Steering Components

Both discard and hold act like temporal barriers that selectively perform hand-
shakes on their data channels; a control channel governs this behaviour. When they receive
true-valued tokens on their control channels, both components act as a conventional tem-
poral barrier, latching and propagating data. Conversely, when the control channel receives
a false-valued token, the token received in the data channel is inhibited from propagating.
However, the inhibition behaviour of these control flow components is not the same. A hold

component inhibits token propagation by withholding handshake with the input data chan-
nel; this effectively blocks the token at the input data channel. The discard component, on
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the other hand, inhibits token propagation by acting as a token sink; it performs a hand-
shake with its input data channel but does not propagate the token to its output channel. It
is worth mentioning that the discard component only performs a handshake on its control
channel synchronised with its data channel. In contrast, the hold component can perform a
handshake on the control channel alone. Likewise, the condhi and condlo components are
conditional token sources. They consume a token from their control channel; if a false valued
token is received, the token production at the output channel is inhibited. When a true-valued
token is received on the control channel, a condhi component produces a true-valued token
and a condlo component produces a false-valued token.

The dual-rail RTZ implementations of hold and discard are depicted in Figure 5.10;
they are similar to half-buffer components5, but employ 3-input resettable C-elements to
gate the propagation of tokens. They only propagate data arriving from the input channel
if the true-rail of the control channel (en) is activated. The difference between hold and
discard lies in the generation of the ack signal for the input and control channels. On both
components, the control channel is always acknowledged, regardless of which rail of the
control channel is activated. However, hold only acknowledges the data channel (a) when
the token propagates; whereas discard acknowledges the data channel when either the
token propagates or when the false-rail of the control channel is activated.
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Figure 5.10: Token steering components - Part 1

The dual-rail RTZ implementations of condhi and condlo appear in Figure 5.11.
Each component comprises a C-element, an OR-gate, and a constant assignment to nil.
The C-element is connected to the true-rail of the control channel and the negation of ac-
knowledgement from the output channel. It generates the true or false output rail regarding

5A half-buffer component is the simplest temporal barrier implemented in Pulsar; on the SDDS-NCL asyn-
chronous template it is implemented as a pair of 2-input resettable C-elements. On initialisation, the half-buffer
component is started with a spacer token.
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the respective component, whilst the other output rail is tied to logic nil. An OR-gate gener-
ates the acknowledgement signal for the control channel; it is connected to the output of the
aforementioned C-element and to the false rail of the control channel.
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Figure 5.11: Token steering components - Part 2.

Token steering enables the dynamic operation of asynchronous pipelines in the
sense that the path followed by tokens can vary. This is possible through either fan-out or
fan-in steering. Fan-out steering is used to select the destination of a token, i.e. demulti-
plexing channels. Fan-in steering is used to select the source of tokens for a channel, i.e.
multiplexing channels. Using the token steering components for fan-in steering is accom-
plished by merging the output of multiple token steering components into a single channel
and enabling only one of them. In Pulsar RTL-like input descriptions, channel merging is
accomplished by placing multiple drivers in a wire; this is similar to using tristate buffers on
synchronous circuits. During dual-rail expansion, this merging is implemented by ORing the
data rails of the merged channels.

5.3 PS-SDDS-NCL - The Pseudo-synchronous SDDS-NCL Template

The Pseudo-synchronous SDDS-NCL template is the first template developed for
Pulsar. It combines SDDS-NCL for combinational logic with the Pseudo-Synchronous WCHB
for sequential logic. To synthesise Pseudo Synchronous WCHB circuits, pulsar uses the fol-
lowing handshake channel and components configuration: the handshake channel interface
comprises two data rails and the acknowledgement signal; the combinational components
are implemented using strong indicating virtual functions; and the sequential components
manually instantiate pseudo-synchronous WCHB pseudo-flops from the target technology
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library. At the virtual netlist level, every channel and component uses the RTZ protocol. This
virtual netlist is synthesised using Genus into a flattened netlist comprising NCL and NCLP
gates. During this synthesis, negative unate gates are inserted, creating regions using the
RTO protocol. The pseudo-flops are instantiated manually and preserved with “size-only”
during synthesis. They, along with primary inputs and outputs, are guaranteed to be at the
RTZ domain, thus serving as start and endpoints for the graph colouring netlist fixing al-
gorithm. The registers, primary inputs and outputs also are the start and endpoints for the
timing constraints derived from the HBCN.

Figure 5.12 depicts the template structure on a simplified view of a pipeline stage.
It shows only two handshake channels (out and in) with a combinational logic block placed in
between. Each handshake channel has two opposing propagation paths, the forward- and
the backwards-propagation paths. The two data rails (t and f ) is the forward-propagation
path, and the ack signal is the backwards-propagation path. The combinational logic block
comprises both the strong indicating SDDS-NCL logic in the forward-propagation path and
the C-Element completion tree in the backwards-propagation path. It is worth noting that
this logic block, in fact, has multiple input and potentially multiple output channels; however,
for simplicity, only a pair of input and output channels are shown.

W
H

C
B 

du
al

-ra
il 

re
gi

st
er

in.t

in.f
Strong indicating
SDDS-NCL logic

out.ackin.ack C-Element
completion tree

W
C

H
B 

du
al

-ra
il 

re
gi

st
er

out.t

out.f

Figure 5.12: Pseudo-Sync SDDS-NCL template structure of a pipeline stage. This Figure
depicts a simplified view with a single channel between two dual-rail registers, when in fact,
a real pipeline stage comprises multiple channels and multiple registers at both sides.

The combinational logic block consumes data from multiple input channels to pro-
duce results in one or more output channels. This creates a dependency relationship be-
tween the inputs and output of a logical block; an output channel can only produce data
once all inputs are valid, and an input channel can only be acknowledged once all output
channels are acknowledged. Some coordination is required to guarantee a consensus on
the acknowledgement signal to each input channel. The C-element provides the desired
behaviour; however, due to physical limitations, it is impractical to build C-elements with
more than 4 inputs on a CMOS process. However, C-elements placed in a tree structure are
equivalent to a C-element with an arbitrary number of inputs. A C-element tree is placed in
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the back-propagation path for each input channel to collect the acknowledgements from all
output channels dependent on it. This C-element tree is called a completion tree because it
collects the acknowledgements from the completion detectors in the registers.

The completion trees are constructed as a byproduct of using a SystemVerilog in-
terface to model the handshake channels. Listing 5.6 depicts the implementation for the
handshake channel interface and a combinational component. Notice how in line 3 the ac-
knowledgement signal is declared using Verilog’s wand wire type. When a channel has
multiple consuming components, each consumer propagates their acknowledgements back
by assigning them to the acknowledgement wire (lines 14-15). A wire of type wand performs
an AND-reduction of multiple assignments; since channels are described using the RTZ pro-
tocol, the AND virtual function maps to C-elements. Similarly, when a channel has multiple
components acting as producers, each assigns some value to the data rails (lines 12-13).
The data rails’ declaration in line 2 uses the wor wire type to OR-reduce these multiple as-
signments to a channel. Notice that multiple producers are not allowed to use a channel
simultaneously. However, choice [SNC22] requires channels with multiple producers and
the choice components provide the multiplexing logic to avoid the simultaneous use of a
channel.

1 in ter face drw i re ( ) ;
2 wor t , f ;
3 wand ack ;
4
5 modport i n ( input t , f , output ack ) ;
6 modport out ( input ack , output t , f ) ;
7 endinterface / / d rw i re
8
9 module nand2

10 ( d rw i re . i n a , d rw i re . i n b , d rw i re . out y ) ;
11
12 assign y . t = a . f & b . t | a . f & b . f | a . t & b . f ;
13 assign y . f = a . t & b . t ;
14 assign a . ack = y . ack ;
15 assign b . ack = y . ack ;
16 endmodule / / nand2

Listing 5.6: SystemVerilog implementation of the handshake channel and NAND2
combinational component for the Pseudo-Synchronous SDDS-NCL template.

The construction of combinational logic from virtual functions using SDDS-NCL
leverages advanced optimisation techniques employed by commercial EDA tools. Among
these optimisations, logic sharing aids in reducing the gate count. For highly regular struc-
tures such as the completion trees, it enables multiple channels to share common subtrees.
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5.4 WInDS - The Weakly Indicating Dual Spacer Logic Template

Strong indication logic requires that every input channel is complete prior to pro-
ducing an output. Although robust, this can incur some performance and area penal-
ties. Consider the two implementations of the two-input dual-rail AND gate depicted in Fig-
ures 3.11 and 3.12. The former is a weakly indicating version of the AND gate; it outputs
false as soon as any of its inputs are false. The latter is the strongly indicating version;
it waits for all inputs to be complete before producing a result, even if it has enough in-
formation to produce a correct result. A combinational component implementing a strong
indicating dual-rail gate requires extra logic to validate its input completion, thus incurring
some area overhead. This overhead compounds when constructing logic blocks comprising
strong indicating components.

Weakly indicating dual spacer (WInDS) logic is the second template developed for
Pulsar; it is first introduced here in this thesis. The synthesis procedure for WInDS is identical
to the one used for the Pseudo-synchronous SDDS-NCL. The only differences are in the
implementation of the handshake channel and components. WInDS aims at reducing the
compound overhead of associating multiple strong indicating combinational components in
sequence. A simplified view of a WInDS pipeline stage is depicted in Figure 5.13. WInDS is
similar to a pseudo-synchronous SDDS-NCL pipeline stage: they both employ a C-element
completion tree on their back-propagation paths, and they both employ pseudo-synchronous
dual-rail registers. However, WInDS employs a weakly indicating variant of SDDS-NCL logic
in the forward completion path. This simple change, of course, requires modifications in the
template to guarantee its proper operation. Among these changes is the inclusion of a ready
signal and a second completion detection tree.

W
In

D
S 

du
al

-ra
il 

re
gi

st
er

in.t

in.f
Weak indicating
SDDS-NCL logic

in.rdy C-Element
completion tree

out.ackin.ack C-Element
completion tree

W
In

D
S 

du
al

-ra
il 

re
gi

st
er

out.t

out.f

out.rdy

Figure 5.13: Simplified cut of a WInDS pipeline stage structure. The WInDS dual-rail register
is a modified pseudo-synchronous WCHB dual-rail register.

Weakly indicating components do not observe the indication principle as they can
produce results prior to having all of their inputs complete. Using them to construct com-
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binational blocks can result in logic blocks that can produce data without having all inputs
complete. When a logic block produces some data at its output, the sequential component
can acknowledge this data. The C-element completion tree in the back-propagation path
thus collects this acknowledgement and delivers it to the input channels. This can cause
the input to be acknowledged before it even introduces data, thus violating the handshake
protocol. Moreover, the weakly indicating logic block can also produce a spacer before all
of its inputs have returned to spacers, causing similar protocol violations at the inputs. The
solution for this problem is the adoption of forward completion detectors to indicate the com-
pletion of the logic block’s inputs as proposed by Brej [Bre05] in his thesis. Adding a forward
completion detector implies changing the RTZ handshake protocol to include a ready signal;
this new protocol, promptly called WInDS-modified RTZ protocol, is depicted in Figure 5.14.
A C-Element completion tree is introduced in the forward-propagation path to collect the
ready signals from the input channels and propagates them to the output channels. The
propagated ready signal, in conjunction with the DR code, indicates the codeword validity;
in this manner, the indication principle is upheld at a block level.

phase sack dreq dack sreq sack dreq dack sreq sack

d.ack

d.t

d.f

d.rdy

null true null false null

c f i l

a d

g j

b e h k

Figure 5.14: The WInDS-modified RTZ protocol, depicting the inclusion of a ready signal
(rdy). The arrows indicate the causal relations between signals involved in the protocol. The
example depicts the early generation of a spacer (d) and the early generation of a false token
(g). In both cases, the received only acknowledges the spacer (f) and the token (i) after the
ready signal agrees with the data lines (e and h).

Listing 5.7 depicts the drwire interface implementing the WInDS handshake chan-
nel. It is similar to the drwire implementation for the PS-SDDS-NCL template; its only differ-
ence is the inclusion of the ready signal in line 2. It is declared using the wor wire type, just
as the data rails, to allow multiple producers on a channel. The combinational components
are responsible for collecting the ready signals from their inputs and propagating them to
their outputs. Since WInDS employs the same synthesis technique as SDDS-NCL, the ack
signal is declared using the wand wire type to construct the C-element propagation tree.

The WInDS-modified RTZ protocol can easily be converted to and from the conven-
tional RTZ protocol employed by PS-SDDS-NCL. Converting to conventional RTZ requires
only C-elements, each placed in a data rail to merge with the ready signal. Whilst converting
from conventional RTZ requires only an OR-gate acting as a completion detector to generate
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1 in ter face drw i re ( ) ;
2 wor t , f , rdy ;
3 wand ack ;
4
5 modport i n ( input t , f , rdy , output ack ) ;
6 modport out ( input ack , output t , f , rdy ) ;
7 endinterface / / d rw i re

Listing 5.7: SystemVerilog implementation of the handshake channel on WInDS.

the ready signal. This ease of conversion enables using sequential and choice components
designed for the conventional dual-rail RTZ protocol. This protocol conversion is necessary
to interface the environment when producing WInDS circuits with Pulsar. Listing 5.8 presents
the WInDS implementation of the drinput and droutput modules instantiated on the virtual
netlist to interface the environment. The drinput module converts from conventional RTZ
to WInDS-modified RTZ, the only logic involved in this process is the instantiation of a com-
pletion detector in Line 9, the rest of the lines are just connecting the wires coming from the
environment to the internal wires in the handshake channel interface. The droutput module
converts from the WInDS-modified RTZ to conventional RTZ; since WInDS employ the same
technology mapping as SDDS-NCL, the C-elements merging the ready signal with the data
rails can be inferred from the AND virtual functions in lines 19 and 20.

1 module d r i n p u t
2 ( input logic t ,
3 input logic f ,
4 output logic ack ,
5 drw i re . out drw ) ;
6
7 assign drw . t = t ;
8 assign drw . f = f ;
9 assign drw . req = t | f ;

10 assign ack = drw . ack ;
11 endmodule / / d r i n p u t
12
13 module drou tpu t
14 ( output logic t ,
15 output logic f ,
16 input logic ack ,
17 drw i re . i n drw ) ;
18
19 assign t = drw . t & drw . req ;
20 assign f = drw . f & drw . req ;
21 assign drw . ack = ack ;
22 endmodule / / d rou tpu t

Listing 5.8: SystemVerilog implementation of the input and output modules on WInDS.

Although it is possible to convert protocols and adopt the dual-rail RTZ register
from PS-SDDS-NCL, it is preferable to employ dual-rail registers designed for the WInDS-
modified RTZ protocol. Figure 5.15 illustrates the register designed for WInDS; it is almost
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identical to the WCHB register, except for including a third input pin to its C-elements. The
ready signal from the left-hand channel is connected to this pin; it guarantees that the regis-
ter does not latch any prematurely generated data or spacer. The completion detector (the
OR-gate) is placed after the C-element; therefore, it only acknowledges the left-hand side
after the data is safely latched. The same completion detector also generates the ready sig-
nal for the right-hand side. Different from early output logic [BG03,BE09,Bre05], the WInDS
register only allows data and spacer propagation to the next pipeline stage after all inputs
are complete. This simplifies the timing analysis, as the timing assumptions are constrained
to within the pipeline stage.

out.req

out.t

out.f

out.ack

in.ack

in.t

in.f

reset

C

C

in.req

Figure 5.15: WInDS dual-rail register. The C-elements used here are modelled as pseudo-
flops during synthesis; however, the pseudo-clock pin G is omitted here since it is not present
in the circuit layout.

The forward completion tree depth grows logarithmically with the number of inputs
entering the logic cone of a given logic block output. Depending on the circuit, this approach
can have a lower overhead than a strongly-indicating logic block, which must acknowledge
every single intermediary signal. Also, multiple outputs of a logic block can share parts of
their completion trees, reducing its overhead. Of course, the addition of forward completion
detectors leads to gate orphans. However, their presence in SDDS-NCL circuits indicates
they are not as troublesome as first hypothesised.

Figure 5.15 depicts the changes to the sequential components, which were already
discussed. Listing 5.9 details the changes to the implementations of the nand2 combinational
component. The forward-propagation completion tree is constructed using the C-element
RTZ virtual function (AND) in an assignment (line 6) inside the combinational component
description. The data rails are assigned to the weakly indicating virtual function (lines 4-5)
corresponding to the component function. The back-propagation completion tree is con-
structed by assigning the ack signal from the output channel y to the ack signals declared
as wand in channels a and b.
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1 module nand2
2 ( d rw i re . i n a , d rw i re . i n b , d rw i re . out y ) ;
3
4 assign y . t = a . f | b . f ;
5 assign y . f = a . t & b . t ;
6 assign y . rdy = a . rdy & b . rdy ;
7 assign a . ack = y . ack ;
8 assign b . ack = y . ack ;
9 endmodule / / nand2

Listing 5.9: SystemVerilog implementation of the NAND2 combinational component on
WInDS.

The use of weakly indicating functions in WInDS grants the EDA tool more room for
optimisation of combinational logic. This comes at the cost of additional control circuitry in
the form of an additional completion tree and bigger dual-rail registers. This additional area
employed in the forward-completion completion tree can be offset by some logic sharing with
the back-propagation completion tree of the previous pipeline stage. Also, depending on the
logical depth of the pipeline stage, this completion tree can be smaller than the compound
overhead of associating multiple levels of strong indicating components.

5.5 ALHO - The Asynchronous Limited Hysteresis Organisation Template

WInDS employs hysteretic gates to implement weak indication logic; this is, in fact,
wasteful, as the role of hysteresis in ST circuits is to guarantee the indication principle.
Hysteretic gates are bigger, consume significantly more power and are slower than non-
hysteretic gates of the same virtual function. Consider the 2 input C-element in Figure 3.7;
it comprises 12 transistors. On the RTZ protocol, its virtual function6 is the 2-input AND,
and it is the 2-input OR for the RTO protocol. Both 2-inputs AND and OR gates can be
implemented with as little as 6 transistors on a static CMOS configuration, half the number
of transistors in a C-element. This difference is even more staggering when considering the
difference between a C-element with inverted output (12 transistors) and a NAND or NOR
gate (both at 4 transistors). Given the EDA tools’ preference for negative unate gates, this
represents a one-third best-case area reduction.

Asynchronous Limited Hysteresis Organisation (ALHO)7 is the third template pro-
posed for Pulsar that aims to reduce area and increase performance. Like WInDS, it re-
lies on the use of forward completion trees to indicate the completion of inputs in a logical
block. However, it uses conventional logic gates for implementing both logic and completion
trees. Figure 5.16 presents a simplified view of the template structure. The completion trees

6Remember that the virtual function captures the behaviour of the gate during the data propagation phase
of the handshake cycle.

7Fun fact: the name ALHO is a wordplay. It means garlic in Portuguese.



93

for both the readiness and acknowledgement propagation are now split in two. Instead of
using a C-Element tree, ALHO adopts an AND-reduction and an OR-reduction tree. The
AND-reduction produces a high logical level only when all of its inputs are high; similarly, the
OR-reduction produces a low logical level when all its inputs are low. These properties make
the AND-reduction suitable to propagate the presence of data in the completion detectors
and the OR-reduction suitable to propagate the presence of spacers.
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Figure 5.16: ALHO simplified pipeline stage structure.

This split in the completion trees demands changes to the handshake protocol; the
aptly named ALHO-modified RTZ handshake protocol, depicted in Figure 5.17, splits the
ready and acknowledge signals from the WInDS-modified RTZ protocol in two each. The
data acknowledgement (ack_data) and data ready (rdy_data) signals are active high. The
spacer acknowledgement (ack_null) and spacer ready (rdy_null) signals are active low.
The protocol relies solely on the rise of ack_data and rdy_data to acknowledge and signalise
data readiness, ignoring these signals’ fall. Also, it relies solely on the fall of ack_null and
rdy_null to acknowledge and signalise spacer readiness, ignoring their rise. This behaviour
is what enables employing AND and OR reduction trees to propagate acknowledgement
and readiness. It is worth noting that the data rails may change ahead of or after the ready
signals; a weak indicating logic block can produce its result before all inputs are complete.
But it may also produce a result in the data rails long after the ready signals indicate the
completion of the input. This is not an issue since the register will only latch the data or the
spacer once the relevant ready signals and the data rails agree.

Listing 5.10 depicts the ALHO implementation of the drwire handshake channel
interface. Like the previous templates, the back-propagation completion trees are synthe-
sised from the expansion of the handshake channel interface; the AND-reduction tree is
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phase sack dreq dack sreq sack dreq dack sreq sack
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Figure 5.17: The ALHO-modified RTZ protocol, depicting the splitting of the ready (rdy)
and acknowledge (ack) signals in their data (_data) and null variants (_null). The arrows
indicate the causal relations between signals involved in the protocol. The example depicts
the early generation of a spacer (d) and a false token (g). In both cases, the received only
acknowledges the spacer (f) and the token (i) after the relevant ready signals agree with the
data lines (e and h).

constructed using the wand wire type in line 4, and the OR-reduction tree is constructed
using the wor wire type in line 5.

1 in ter face drw i re ( ) ;
2 wor t , f ;
3 wor rdy_data , r d y _ n u l l ;
4 wand ack_data ;
5 wor ack_nu l l ;
6
7 modport i n ( input t , f , rdy_data , rdy_nu l l ,
8 output ack_data , ack_nu l l ) ;
9 modport out ( input ack_data , ack_nul l ,

10 output t , f , rdy_data , r d y _ n u l l ) ;
11 endinterface / / d rw i re

Listing 5.10: SystemVerilog implementation of the drwire handshake channel interface on
ALHO.

However, hysteresis is still required to guarantee the proper functionality of the ST
circuits. ALHO employs an asymmetric C-element to collect the completion information from
the completion trees in both forward- and back-propagation paths. This specific C-element is
depicted in Figure 5.18. It presents two positive and two negative asymmetric inputs (P0, P1

and M0, M1 respectively) and one symmetric common input (C). The asymmetric inputs are
only sensitive to a single logical level: the positive inputs are sensitive to logical high, and the
negative inputs are sensitive to logical low. The C-element output (Q) goes high when both
positive inputs and the common input is high, regardless of the state of the negative inputs,
and it goes low when both negative inputs and the common input are low, independently
from the state of the positive inputs. This arrangement enables collecting 5 signals (the
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output of the combinational logic, the two back-propagating and the two forward-propagating
completion trees) in a gate with the same number of transistors as a 3-input C-element.
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Figure 5.18: C-element with two positive and two negative asymmetric inputs and one sym-
metric input.

ALHO employs the asymmetric C-Element from Figure 5.18 in its register imple-
mentation. Figure 5.19 presents its schematic. The C-elements are presented to the EDA
tools as a pseudo-flop model; the pseudo-clock G is not depicted in the diagram as it is not
realised in the final circuit. The data rails of the left-hand side (lh.t and lh.f) are connected
to the common input of either C-elements. The data ready and spacer ready signals from the
left-hand environment (lh.rdy_data and lh.rdy_null) are respectively connected to a pos-
itive and a negative asymmetric input in both C-elements. This arrangement conditions the
latching and propagation of the data rails to the completion of the logic block inputs. Similarly
to the conventional WCHB, the acknowledgement signals from the right-hand environment
are inverted before entering the C-element. The inverted data and spacer acknowledge-
ment signals (rh.ack_data and rh.ack_null) are respectively connected to the remaining
negative and positive asymmetric inputs. This configuration guarantees the correct imple-
mentation of the handshake protocol; the progression of data and spacers is conditioned to
the progression on the next pipeline stage. Like on the WInDS register, the OR-gate placed
after the C-elements generates the acknowledgement and readiness signals to the left- and
right-hand environments. At this point, the distinction between the spacer and data readi-
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ness (and acknowledgement) is non-existent; it only becomes relevant after the AND- and
OR-reduction trees.

lh.t rh.t

lh.f
rh.f

rh.rdy_null

rh.rdy_data
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rh.ack_data

lh.rdy_null

lh.rdy_data

reset
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+
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-
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C

lh.ack_data
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Figure 5.19: ALHO register. lh is the left-hand channel and rh is the right-hand channel.
The pseudo-clock pin is omitted for simplicity, as it is only present to aid synthesis but is not
realised in the final circuit.

Since circuits synthesised with Pulsar present to its environment an interface im-
plementing the RTZ protocol, ALHO circuits must be able to convert between standard RTZ
and the ALHO-modified RTZ protocol. Converting to conventional RTZ involves merging the
ready signals with the data rails to produce spacers and tokens only when the ready signals
and the data rails agree. This can be achieved using the asymmetric C-element depicted
in Figure 5.20. Its behaviour is similar to the asymmetric C-element previously; however, it
only has a single positive and negative input.

Listing 5.11 presents the drinput and droutput modules implementation for ALHO.
At the droutput, lines 7 and 8 place an asymmetric C-element for each rail; the rdy_data

signal is connected to its positive asymmetric input, the rdy_null to its negative asymmetric
input, and the data rail to the common input. Since ALHO employ conventional gates in
its synthesis process, hysteretic gates cannot be inferred from virtual functions and must
be manually instantiated. Still on droutput, the acknowledgement signal coming from the
environment can be simply connected to both acknowledgement signals in lines 10 and 11.
The drinput module converts from conventional RTZ to the ALHO-modified RTZ protocol.
This process involves inferring an OR-gate to act as a completion detector to generate the
two request signals in lines 21 to 23 and instantiating a 2-input C-element to merge the two
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Figure 5.20: C-element with one positive and one negative asymmetric input and one sym-
metric input.

ack signals into one in line 25. Notice that the two data rails from the environment are simply
bypassed to the drwire interface internal rails in lines 27 and 28.

1 module drou tpu t
2 ( output logic t ,
3 output logic f ,
4 input logic ack ,
5 drw i re . i n drw ) ;
6
7 ACELEM11X4 t _ i ( . A( drw . t ) , .P( drw . req_data ) , .M( drw . req_nu l l ) , .Q( t ) ) ;
8 ACELEM11X4 f _ i ( . A( drw . f ) , .P( drw . req_data ) , .M( drw . req_nu l l ) , .Q( f ) ) ;
9

10 assign drw . ack_data = ack ;
11 assign drw . ack_nu l l = ack ;
12 endmodule / / d rou tpu t
13
14 module d r i n p u t
15 ( input logic t ,
16 input logic f ,
17 output logic ack ,
18 drw i re . out drw ) ;
19 logic req ;
20
21 assign req = f | t ;
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22 assign drw . req_data = req ;
23 assign drw . req_nu l l = req ;
24
25 CELEM2X4 ack_i ( . A( drw . ack_data ) , .B( drw . ack_nu l l ) , .Q( ack ) ) ;
26
27 assign drw . t = t ;
28 assign drw . f = f ;
29 endmodule / / d r i n p u t

Listing 5.11: SystemVerilog implementation of the input and output modules on ALHO.

However, the widespread use of asymmetric C-element in ALHO assumes that
the data-ready signal will be de-asserted before the propagation of new data; likewise, it
is assumed that the null-ready signal will be asserted before the arrival of a new spacer.
This is a somewhat safe assumption given that the OR-reduction tree starts propagating a
rise in cascade when any of its inputs rise, and the AND-reduction tree behaves similarly
when propagating a fall on any of its inputs. To avoid this assumption, alternatively, a 5-
input C-element (or a multiple C-element equivalent) could be employed in registers instead
of the asymmetric C-element; likewise, a 3-input C-element could replace the asymmetric
C-elements at outputs. These changes would acknowledge the rise and fall of all signals
involved at the cost of area and power.

The synthesis procedure for ALHO is rather straightforward. Since it employs
conventional gates, Genus is capable of synthesising the correct final netlist directly, thus
eliminating the netlist correction step required for circuits employing hysteretic gates. List-
ing 5.12 depicts the implementation of the nand2 component. Similar to WInDS, the forward-
propagation completion trees are constructed within the combinational components: line 6
constructs the forward-propagation AND-reduction tree, and line 7 the OR-reduction tree.
The combinational component’s logical functionality is implemented using weakly indicating
virtual functions (lines 4 and 5). The assignments that construct the back-propagation trees
are depicted from line 8 to 11.

1 module nand2
2 ( d rw i re . i n a , d rw i re . i n b , d rw i re . out y ) ;
3
4 assign y . t = a . f | b . f ;
5 assign y . f = a . t & b . t ;
6 assign y . rdy_data = a . rdy_data & b . rdy_data ;
7 assign y . r d y _ n u l l = a . r d y _ n u l l | b . r d y _ n u l l ;
8 assign a . ack_data = y . ack_data ;
9 assign a . ack_nu l l = y . ack_nu l l ;

10 assign b . ack_data = y . ack_data ;
11 assign b . ack_nu l l = y . ack_nu l l ;
12 endmodule / / nand2

Listing 5.12: SystemVerilog implementation of the NAND2 combinational component on
ALHO.
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6. EXPERIMENTAL RESULTS AND CONCLUSION

This Chapter evaluates and compares the three templates using a set of experi-
ments. The experiments are split into two subsets; first, the templates are subject to a set
of low-complexity designs crafted to stress specific aspects of the templates, and later the
three templates are employed to implement an asynchronous RISC-V processor [NSMC23].
The last Section of this Chapter is reserved for the author’s final remarks and ideas for future
work.

6.1 Experimental Setup

The synthesis process for all experiments in this Chapter is the same. The Pulsar
front end uses Cadence Genus to produce virtual netlists from the RTL-like description for
each circuit. In the front end, each circuit is re-timed to reduce the logic depth in the forward
propagation paths. Similarly to the front end, the Pulsar back end also relies on Cadence
Genus for logical synthesis. The resulting virtual netlists are synthesised to each template
using the suitable Pulsar back end under a range of cycle time constraints. At the end of
the logical synthesis, the back end produces reports that are used to extract some of the
results depicted in this Chapter; the pulsar back end also extracts delay-annotated netlists
for simulation at this step. After the logical synthesis step, all circuits are placed and routed
using Cadence Innovus, where delay-annotated netlists are extracted again for simulation.

The delay-annotated netlists extracted at the logical synthesis step comprise only
gate delays, the wires at this step are considered ideal, and the delay resulting from their
estimated capacitance is lumped into the gates’ output delay. This implies that all wire forks
are guaranteed to be isochronic in the netlist delayed-annotated at logical synthesis. Con-
versely, the delay-annotated netlists extracted after place-and-routing adopt a more realistic
wire model. In this wire model, the delays resulting from resistive and capacitive effects
affect each wire branch differently, thus possibly violating the isochronic fork assumption on
sensitive forks.

All syntheses are performed using the worst corner of ASCEND-FreePDK45, a
standard cell library developed by the author of this thesis in the course of his PhD elabora-
tion. A version of this library is publicly available in his GitHub [SMC20b] and will be updated
by the time of this thesis’ publication. The corners characterised in this library are:

• best : fast PMOS and NMOS transistors at 1.25 V and 0 ◦C.

• nominal : typical PMOS and NMOS transistors at 1.1 V and 25 ◦C.

• worst : slow PMOS and NMOS transistors at 0.95 V and 25 ◦C.
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The resulting delay-annotated netlists, including and excluding wire delays, are sim-
ulated using Cadence XCelium at all library corners. Since Pulsar produces netlists with the
same interface for all templates, all implementations of a particular design share the same
SystemVerilog testbench. This guarantees that the stimulus applied to all implementations of
each circuit is equal across templates, constraints and corners. Each testbench checks the
correction operations of the design under test and collects the cycle time as a performance
metric at its inputs and outputs. The testbenches simulate a null-delay ideal environment;
as such, only the design under test affects the cycle time measures. Power figures were ex-
tracted using Cadence Voltus for each post-layout simulation using the characterised liberty
file for the respective corners. The power estimations were elaborated using the switching
activity annotation collected during the first 2 µs of each simulation.

6.1.1 Low complexity Benchmarks

The low-complexity designs employed as benchmarks are:

1. ripple_adder : A 32-bit purely combinational ripple-carry adder.

2. piped_adder : A 32-bit 4-stage pipelined adder comprising 8-bit ripple-carry adders.

3. Four 8-by-8 to 24bit multiply-accumulate circuits:

(a) mac3: With a 3-stage accumulation loop.

(b) mac4: With a 4-stage accumulation loop.

(c) mac5: With a 5-stage accumulation loop.

(d) mac6: With a 6-stage accumulation loop.

4. Four 32-by-32 to 64bit booth multiplier circuits:

(a) mult3: With a 3-stage accumulation loop.

(b) mult4: With a 4-stage accumulation loop.

(c) mult5: With a 5-stage accumulation loop.

(d) mult6: With a 6-stage accumulation loop.

Circuit 1 explores the corner case of a pure combination circuit; it is also a circuit that poten-
tially benefits from weakly-indication to produce output before carry propagation. Circuit 2
also potentially benefits from weakly indication; however, the inclusion of pipelining aims at
stressing how the templates and pulsar deal with sequential logic compared to an equiva-
lent pure combinational approach. Circuits 3a to 3d are non-linear deterministic pipelines;
as such, they have been used previously to stress the cycle-time constraining capabilities
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of Pulsar in [SWMC19] and [SMC20a]. Circuits 4a to 4d are non-linear non-deterministic
pipelines comprising a state-machine control logic; they stress not only the cycle-time con-
straining capabilities but also how the circuit copes with token steering.

The RTL-like source code for these designs is included in Apendix B. Figure 6.1 de-
picts the component count extracted from the front-end synthesis reports detailing the pro-
portion of combinational and sequential components employed in each test circuit. These
proportions will be important when evaluating the extracted figures and comparing the tem-
plates.

mac3 mac4 mac5 mac6
mult3 mult4 mult5 mult6

piped_adder

ripple_adder
0

200
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800
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1200

Component Count
sequential
combinational

Figure 6.1: Component count of each circuit.

The designs were synthesised to each template under a range of cycle-time con-
straints from 2 ns to 10 ns in steps of 250 ps, limited to a minimum delay of 500 ps per
propagation path. This minimum delay limitation guarantees a minimal timing budget for
each propagation path, especially in tighter cycle-time constraints. However, it restricts the
lower bound of the cycle-time constraint range in circuits comprising long critical cycles. The
back-end synthesis resulted in 924 circuit implementations combining all design variations,
templates and constraints. All these implementations were subsequently placed and routed
using Innovus. The netlists resulting from the back-end synthesis and their placed-and-
routed layouts were each delay-annotated and simulated to all three corners of the ASCEnD
FreePDK45 Library. This resulted in 6 simulation corners for each implementation, three
annotated from the layout and three from the logical synthesis.

6.1.2 High Complexity Benchmark: Asynchronous RISC-V Processor (ARV)

ARV, an asynchronous RISC-V processor, was chosen to evaluate the templates’
performance on a high-complexity real-world design. ARV originated from a concurrent
communication processes description [Sar17], and later Nunes et al. [NSMC23] translated
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Figure 6.2: The ARV processor organisation. There are five stages, identified and separated
by vertical dashed lines. Numerals in edges show elements that take part in three processing
loops: (1) control loop; (2) datapath loop; and (3) register lock loop.

it to Pulsar’s RTL-like SystemVerilog. ARV exploits the inherent structure of asynchronous
circuits to enable instruction-level parallelism. Figure 6.2 depicts the ARV organisation; it
comprises two main inter-wound loops, the control and the datapath loops. A third loop, the
register lock loop, resolves data hazards within the pipeline.

The control loop is responsible for the program execution flow, beginning at the
Fetch Unit, which contains the Program Counter (PC) and ending at the Retire Unit; the
control loop is closed by the Jump Address channel between these units. Instruction fetch
addresses are generated at the pipeline’s first stage, where they receive a stream tag to
identify the instruction execution flow. When a jump occurs, a new program counter value
is received through the Jump Address channel and the stream tag is updated; instructions
holding an outdated stream tag can then be discarded.

The datapath loop is responsible for performing computation and handling data
hazards. The datapath loop begins at the Hazard Detection and Operand Fetch Unit and
terminates at the Register Bank; the loop is closed by the Register Bank. After instructions
are fetched and decoded, they enter the Hazard Detection and Operand Fetch Unit to re-
trieve operands data from the Register Bank when these are required. The Register Locking
Queue keeps track of pending writes to the Register Bank to detect possible data hazards.
A hazard avoidance mechanism is part of the register lock loop. If the current instruction de-
pends on data of a pending write, the former is stalled at the Hazard Detection and Operand
Fetch Unit and bubbles are issued until the required data is ready. Once all operands are
available, the instruction is dispatched to the suitable Execution Unit. Here, a limited form of
parallelism can occur, as instructions with different speeds may execute concomitantly. To
recover the execution order, a program ordering queue parallel to the Execution Unit is used
to preserve the program order, thus allowing the Retire Unit to retire them in order.

The decision-making and token steering components introduced in Section 5.2 are
heavily employed in the construction of ARV. In fact, these components were developed
concomitantly with ARV to enable the use of Pulsar in its synthesis.
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• The fetch unit employs the probe component to detect the arrival of a jump address
and update the program counter.

• The register locking loop uses the hold, discard and condhi components to hold in-
structions and issue bubbles.

• The register bank relies on the discard component to efficiently multiplex the register
read and write operations.

• The dispatcher uses the discard component to steer instructions into the proper exe-
cution unit.

• The retire unit uses the hold component to recover instructions in the program order
from their respective execution units.

The only choice component not employed in the construction of ARV is the arbiter. This
widespread use of choice makes ARV the ideal candidate to stress the implementation of
these components in all three templates.

The front-end synthesis resulted in a virtual netlist with the component count profile
depicted in Figure 6.3. The resulting virtual netlist was synthesised to all three templates
under a range of cycle time constraints from 4 ns to 10 ns in steps of 250 ps with a minimum
propagation delay of 400 ps.

0 2000 4000 6000 8000 10000

ARV

Component Count
sequential
combinational

Figure 6.3: ARV component count

The back-end logical synthesis process resulted in 75 implementations of ARV,
comprising 25 cycle-time constraints for each of the 3 templates, from which 74 resulted in
placed-and-routed layouts. Unfortunately, a bug in Innovus triggered a memory explosion
deadlock when placing and routing the 10 ns ALHO implementation. Due to time limitations
in finishing the experiments for this thesis submission, the bug was not resolved, but it will
be for the final revision of this volume.

The 75 resulting synthesised netlists and 74 placed-and-routed layouts were delay
annotated and simulated using the three corners of the ASCEnD FreePDK45 Library. Result-
ing in six simulation corners for each implementation (sauf the missing layout), three anno-
tated from logical synthesis and three from layout. Two testbenches were employed in these
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simulations: the first ran RISC-V Fundation’s official RISC-V compliance test suite [RIS15],
henceforth wrongly named BerkeleySuite in plotted results; the latter ran one iteration of
EMBC’s Coremark [EDN02]. The cycle time figures extracted from ARV are measured as
the time between two instruction fetches from memory. Due to ARV’s internal organisa-
tion, internal execution factors like bubble insertion for data-dependency hazard correction,
branching, and variable execution time of instructions impact the collected cycle time figure.

6.2 Comparisons of Experimental Results

The testbenches employed in the simulations checked the circuits’ behaviour cor-
rectness. They tested if the circuit completed their computation and if they were producing
the expected result. From all simulations in all corners, unfortunately, some presented faults.
Figure 6.4 depicts the simulation success rate for each design in each corner. Theoretically,
it was expected that ALHO would present more faults as it relies on more timing assump-
tions, followed by WInDS and PS-SDDS-NCL, with the last expected to have fewer faults.
However, the experiments show a different picture; ALHO fared pretty well at tolerating the
limited delay variability presented at the simulated corners. It presented the highest success
rate on ARV and presented fewer faults than WInDS on the low-complexity benchmarks.
Moreover, WInDS fared rather badly, presenting most faults in both high- and low-complexity
benchmarks. PS-SDDS-NCL fared great on the low-complexity benchmarks, presenting no
faults, but struggled with the ARV benchmark.
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Figure 6.4: Percentage of circuits passing tests at all corners for each template.

A detailed view of the faults observed in the multiplier circuits is depicted in Fig-
ure 6.5. Whilst the circuits implemented with WInDS failed by producing wrong results, the
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faulty ALHO circuits only became deadlocked. Producing a wrong output is worse than
just stopping to compute results altogether. A deadlocked circuit is non-functional and can
be easily detected and discarded, whilst a circuit producing wrong results, especially if it
only does so under specific conditions, requires more elaborated testing to detect the fault.
Also, observe that most faults occur in the least tightly-constrained implementations. On
more relaxed cycle-time constraints, the path constraints allow the creation of very slow
paths concurrent with fast paths; this increases the delay difference in the propagation paths
of combinational logic, increasing the chance to violate the assumption proposed in Sec-
tion 3.8. Furthermore, notice that in some cases, wire delays fix the observed faults; this is
true for all observed faults on the mult4 ALHO circuits. This indicates that these faults ob-
served in mult4 do not arise from violating the isochronic fork assumption, as such violations
are only observable when modelling wire delays. The correction of delays in these cases
is attributed to the wire delays, potentially reducing the delay difference between the fastest
and slowest paths. Conversely, for the mult6 WInDS circuits, wire delays have introduced
faults in most constraints and eliminated them in just one. Introducing faults with the intro-
duction of wire delays is the expected behaviour, as wire forks can become another source
of orphans in the circuit.

Figure 6.6 details the faults observed when simulating ARV. Albeit very similar, the
fault profile on ARV depends on the program being executed. When running Coremark,
the circuits implemented with ALHO only presented faults on the post-layout worst corner.
However, when running the BerkeleySuite, the circuit synthesised to a constraint of 4.5 ns
becomes deadlocked on the best post-layout corner. This is mostly due to the instruction
ordering and timing exercising an unresolved orphan in one program but not in the other. The
widespread use of choice components potentially exacerbates this effect. Also, notice that
the trend of presenting faults at the more relaxed cycle time constraints is maintained, except
that on ARV the circuit presents more faults at the worst post-layout corner on all templates.
Furthermore, the only template observed to produce circuits misexecuting programs in these
experiments was PS-SDDS-NCL.

It is noticeable that the only circuits presenting faults in Figure 6.4 are the ARV and
two of the booth multipliers, all circuits employing choice components. This indicates that
these components might have introduced unpredicted timing problems or made the circuits
more sensitive to sources of delay variations. Further research on this phenomenon ought
to be the subject of future work.

The rationale behind the construction of ALHO and WInDS was trading robustness
for performance, power and area (PPA). An analysis of the observed faults in simulation
show that their robustness varies, with PS-SDDS-NCL showing the best robustness on the
low-complexity benchmarks but with ALHO faring better on the high-complexity ARV design.
It is expected that due to the widespread use of conventional gates, ALHO will fare better in
all PPA metrics compared to the two other templates.
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Figure 6.5: Detailing per template and cycle-time constraint of the multiplier faults observed
in Figure 6.4. Green means correctly computing all 10000 multiplications, yellow means
the circuit became deadlocked at some point, and red means the circuit produced a wrong
output.
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Figure 6.6: Detailing per template and cycle-time constraint of the ARV faults observed in
Figure 6.4. Green that the program completed its execution correctly, yellow means the
circuit became deadlocked at some point, red means the program misexecuted, and white
means it lacks that simulation.
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Figure 6.7 depicts the PPA figures of the two adders. It plots the mean cycle time
against the gate area and the power figure for each circuit implementation. The mean cycle
time is collected from the nominal corner post-layout simulation, the gate area is extracted
from synthesis reports, and the power figures are computed using Voltus with activity annota-
tion collected from the aforementioned simulation. These results show that the expectations
for the templates’ PPA are clearly met when analysing the pure-combinational ripple_adder
design. However, when analysing the figures for the piped_adder, it is possible to notice that
although ALHO’s performance and area figures are far superior, the three templates present
similar power figures in the range of cycle times they overlap. Still, ALHO can reach low
cycle times that the two other templates cannot.

The effort made by the EDA tool for each template can also be observed when
analysing how the cycle-time constraint affects the adders’ PPA in Figure 6.8.1 Remember
that all circuits were synthesised to the worst corner; therefore, the cycle time constraint
attempts to restrict the cycle time of the worst corner. It is possible to observe that the area
and power figures explode on circuits where the worst corner simulation shows violations
of the cycle time constraint. This behaviour shows the EDA tool tries to apply many optimi-
sation techniques to increase performance and meet the constraint; however, although the
increase in area and power, the tool ultimately fails, as shown by the consecutive marginal
gains in performance not being enough to meet the cycle time constraint. As expected, the
circuits designed with PS-SDDS-NCL start violating their cycle time constraint at a higher
constraint value. WInDS has shown a bit more flexibility in this regard, with its area not in-
creasing as much as PS-SDDS-NCL’s, as it is able to meet slightly tighter constraints. ALHO
excelled in meeting the cycle time constraint, only violating it for constraints under 3 ns on
the ripple adder and only violating the 2 ns constraint on the piped adder. However, ALHO
presents higher power figures overall on the piper adder, whilst its mean cycle time remains
comparatively low regardless of the constraint. This higher power is attributed to the higher
switching activity caused by the overall faster circuit.

Figures 6.9 and 6.10 present the PPA results for multiply-accumulate (MAC) de-
signs. The 4-stage MAC is the fastest design for ALHO, presenting a good balance between
sequential and combinational components. Whereas PS-SDDS-NCL and WInDS benefit
from the extra pipeline stages on the 5- and 6-stage designs. The 3-stage design is the most
dominated by combination components of all MAC. In the 3-stage MAC, ALHO achieves a
lower cycle time at a fraction of the power and area of the fastest 3-stage WInDS or PS-
SDDS-NCL implementation. Also, the 3-stage ALHO implementations presented slightly
lower power figures on all cycle times achieved by the three templates, indicating a gain in
power efficiency. As the ratio of sequential to combinational components increase, ALHO’s
advantage in power efficiency diminishes. It is possible to observe in the 6-stage MAC de-

1Notice that although the ripple adder is a pure combination circuit, the C-Elements manually instantiate on
the ALHO implementation to convert from and to the RTL-protocol account here as sequential gates, whereas
the equivalent C-elements on WiNDS are inferred, thus account as combinational gates.
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(b) Detailed figures of area vs mean cycle time.
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(c) Detailed figures of power vs mean cycle time.

Figure 6.7: PPA results for the adder designs. Power and cycle-time results extracted from
nominal corner post-layout simulations.
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Figure 6.8: Effect of the cycle-time constraint on the PPA of the adder designs.
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sign that, although achieving a faster cycle time with less peak power, the power figures
of the ALHO implementations are slightly higher for the same cycle times observed in the
other templates. Also, similar to the ripple adder, the ALHO slowest 6-stage MAC is sig-
nificantly faster than the slowest implementations on the other templates for the same con-
straint range. This indicates that the ALHO implementation has a lot of free slack, and with
a deeper pipeline, the power employed on sequential logic and the completion trees domi-
nates. Since ALHO dual-rail registers are more complex and the completion trees present
double the number of gates compared to WInDS, albeit simpler, the energy spent switching
the additional gates on sequential-dominated circuits overcomes the gains of using conven-
tion gates.

This effect occurs even more strongly on the booth multipliers. Figure 6.11 presents
the PPA figures for the 5- and 6-stage booth multipliers. This circuit takes 32 internal cycles
to complete computation, and it employs token steering components to selectively hand-
shake with the environment. Therefore, the cycle time measured in simulation is the time
between two computations and not the time of the worst cycle internally. Sequential compo-
nents dominate these two designs; in this scenario, the power efficiency of ALHO is the worst
of the three templates. Surprisingly, against all expectations, in these circuits, PS-SDDS-
NCL presents the best power efficiency. Also, WInDS presents the worst area efficiency
overall, and surprisingly, PS-SDDS-NCL presents the best area efficiency on its slowest im-
plementations of the 6-stage design. However, ALHO still presents the best performance,
presenting the fastest cycle time in both designs.

Lastly, to conclude this Section, Figure 6.12 depicts ARV’s PPA results. On this
complex circuit, ALHO produced circuits with the smallest area and highest performance but
with the worst power efficiency. Similar to what was previously observed in most sequential-
dominated circuits. Also, WInDS fared slightly worst than PS-SDDS-NCL in terms of both
area and power on ARV.
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(a) Combined power, area and cycle time figures.
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(b) Detailed figures of area vs mean cycle time.
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(c) Detailed figures of power vs mean cycle time.

Figure 6.9: Power, performance and area results for the 3- and 4-stage multiply-accumulate
designs. Power and cycle-time results extracted from nominal corner post-layout simula-
tions.
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(b) Detailed figures of area vs mean cycle time.
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(c) Detailed figures of power vs mean cycle time.

Figure 6.10: Power, performance and area results for the 5- and 6-stage multiply-accumulate
designs. Power and cycle-time results extracted from nominal corner post-layout simula-
tions.
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(a) Combined power, area and cycle time figures.
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(b) Detailed figures of area vs mean cycle time.
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(c) Detailed figures of power vs mean cycle time.

Figure 6.11: Power, performance and area results for the 5- and 6-stage booth multiplier de-
signs. Power and cycle-time results extracted from nominal corner post-layout simulations.
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(a) Combined power, area and cycle time figures.
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(b) Detailed figures of area vs mean cycle time.
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(c) Detailed figures of power vs mean cycle time.

Figure 6.12: Power, performance and area results for ARV, stratified by test program. Power
and cycle-time results extracted from nominal corner post-layout simulations.
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6.3 Final Remarks and Future Work

The results show some of the advantages of employing conventional gates in the
automated synthesis ST circuits with the proposed ALHO template. ALHO consistently
shows the potential of producing faster ST circuits compared to PS-SDDS-NCL and WInDS.
It also presented a tendency to produce area-efficient circuits, sauf exceptions. Also, ALHO
advantages may extend to power efficiency if the circuit is predominantly combinational.
Its ability to deal well with combinational logic is no surprise, given that the initial intention
behind the proposal of using weakly-indicating logic blocks of conventional gates was to
cheapen combination logic. However, originally inconspicuous to the author, using an AND
and an OR reduction tree instead of a single C-element tree seems to increase the switching
activity on heavily pipelined circuits, consequently reducing its power efficiency.

WInDS, the other proposed template, has shown limited potential in its current
form. It presents little to no clear advantage over its predecessor, PS-SDDS-NCL. WInDS
acted more as a “stepping stone” in the author’s exploration. However, it might be key to
reducing the power consumption of ALHO. A merge of the two templates, employing the
hysteretic completion trees from WInDS with the non-hysteretic combinational logic blocks
from ALHO, might aid in reducing the switching activity. This, of course, would come at some
area and perhaps performance expense. Also, in the current state of Pulsar and with the
use of virtual functions to instantiate hysteretic gates, it would be somehow tricky to limit the
use of hysteretic gates to only the completion trees. It is left as future work exploring the
viability and benefits of this merged template.

A significant issue hinted at but not solved in this thesis is how to guarantee the cor-
rect operation of ST circuits in the presence of orphans. Section 3.8 hypothesise a constraint
sufficient to guarantee the correct operation of ST circuits comprising handshake channels
in the presence of any kind of orphans. However, despite some shreds of evidence of its
veracity, this hypothesis remains to be tested. Since the proposed constraint involves clearly
defined linear propagation paths, it might be possible to use the pseudo-synchronous model
and STA tools to delay annotate an HBCN model, possibly in the signoff phase. From the
delay-annotated HBCN, it could be possible to derive min_delay constraints to be applied to
the design, guaranteeing the correct operation of the circuits, at least on the characterised
corners. It is also left as future work proofing the hypothesised timing assumption and de-
veloping the tools to correctly constrain it.

Even after accounting for the proper treatment of orphans, the robustness of the
proposed templates is still not validated. This would require extensive analogue simulation
with random local and global variability. This is tricky since the timing sensitivities tend to
show on more complex circuits, not small-scale, low-complexity designs friendly to analogue
simulation. Some weak evidence in the form of having validated PS-SDDS-NCL circuits built
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with Pulsar to work with both random variability and voltage scaling exists. This is especially
interesting because the method employed in synthesising the evaluated PS-SDDS-NCL cir-
cuits is susceptible to producing gate orphans. Evaluating the robustness of the PS-SDDS-
NCL circuit with orphans gives a glimpse of what to expect from other circuits with orphans.
This is not definitive, as the length and number of these orphans are also expected to impact
the circuit’s robustness. Evaluating the robustness of the new proposed templates is also
the subject of possible future work.
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APPENDIX B – BENCHMARKS’ RTL-LIKE SOURCE CODE

Listing B.1: rtl/ripple_adder.sv

1 module r i pp le_adder #(WIDTH=32)
2 ( input logic c lk , reset ,
3 input logic [WIDTH−1:0 ] a , b ,
4 input logic c ,
5 output logic [WIDTH: 0 ] out ) ;
6 logic [WIDTH: 0 ] ca r ry ;
7
8 assign car ry [ 0 ] = c ;
9

10 for ( genvar i = 0 ; i < WIDTH ; i ++) begin
11 assign out [ i ] = a [ i ] ^ b [ i ] ^ ca r ry [ i ] ;
12 assign car ry [ i +1] = ca r ry [ i ] & ( a [ i ] | b [ i ] ) | a [ i ] & b [ i ] ;
13 end
14
15 assign out [WIDTH] = car ry [WIDTH ] ;
16
17 endmodule

Listing B.2: rtl/piped_adder.sv

1 module r i pp le_adder #(WIDTH=32)
2 ( input logic c lk , reset ,
3 input logic [WIDTH−1:0 ] a , b ,
4 input logic c ,
5 output logic [WIDTH: 0 ] out ) ;
6 logic [WIDTH: 0 ] ca r ry ;
7
8 assign car ry [ 0 ] = c ;
9

10 for ( genvar i = 0 ; i < WIDTH ; i ++) begin
11 assign out [ i ] = a [ i ] ^ b [ i ] ^ ca r ry [ i ] ;
12 assign car ry [ i +1] = ca r ry [ i ] & ( a [ i ] | b [ i ] ) | a [ i ] & b [ i ] ;
13 end
14
15 assign out [WIDTH] = car ry [WIDTH ] ;
16
17 endmodule
18
19 module piped_adder #(DEPTH=4 , WIDTH=8)
20 ( input logic c lk , reset ,
21 input logic [WIDTH*DEPTH−1:0 ] a , b ,
22 input logic c ,
23 output logic [WIDTH*DEPTH: 0 ] out ) ;
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24
25 logic [WIDTH−1:0 ] a_pipe [DEPTH* (DEPTH+1) / 2 ] ;
26 logic [WIDTH−1:0 ] b_pipe [DEPTH* (DEPTH+1) / 2 ] ;
27 logic [WIDTH: 0 ] out_pipe [DEPTH* (DEPTH+1) / 2 ] ;
28 logic [DEPTH: 0 ] c_pipe ;
29
30 assign c_pipe [ 0 ] = c ;
31
32 for ( genvar y = 0; y < DEPTH; y++) begin
33 assign a_pipe [ y * ( y+1) / 2 ] = a [ y *WIDTH +: WIDTH ] ;
34 assign b_pipe [ y * ( y+1) / 2 ] = b [ y *WIDTH +: WIDTH ] ;
35 assign out [ y *WIDTH +: WIDTH] = out_pipe [ ( DEPTH−y ) * (DEPTH−1−y ) / 2 ] [ WIDTH− 1 : 0 ] ;
36 r ipp le_adder #(WIDTH) adder ( . c lk , . reset , . a ( a_pipe [ y * ( y+1) /2+ y ] ) ,

. b ( b_pipe [ y * ( y+1) /2+ y ] ) , . c ( c_pipe [ y ] ) ,

. out ( out_pipe [ ( DEPTH−y ) * (DEPTH−1−y ) /2+DEPTH−1−y ] ) ) ;
37 always_ff @( posedge c l k )
38 c_pipe [ y +1] <= out_pipe [ ( DEPTH−y ) * (DEPTH−1−y ) /2+DEPTH−1−y ] [ WIDTH ] ;
39
40 for ( genvar x = 1; x<=y ; x++)
41 always_ff @( posedge c l k ) begin
42 a_pipe [ y * ( y+1) /2+ x ] <= a_pipe [ y * ( y+1) /2+x − 1 ] ;
43 b_pipe [ y * ( y+1) /2+ x ] <= b_pipe [ y * ( y+1) /2+x − 1 ] ;
44 end
45
46 for ( genvar x = DEPTH−1−y ; x > 0; x−−)
47 always_ff @( posedge c l k )
48 out_pipe [ ( DEPTH−y ) * (DEPTH−1−y ) /2+x −1] <=

out_pipe [ ( DEPTH−y ) * (DEPTH−1−y ) /2+ x ] ;
49 end
50
51 assign out [DEPTH*WIDTH] = out_pipe [ 0 ] [ WIDTH ] ;
52
53 endmodule

Listing B.3: rtl/mac3.sv

1 module mac3 #(WIDTH=16)
2 ( input logic [ ( WIDTH/ 2 ) −1:0] a ,
3 input logic [ ( WIDTH/ 2 ) −1:0] b ,
4 input logic c lk , reset ,
5 output logic [WIDTH+(WIDTH/ 2 ) −1:0] out ) ;
6 logic [ ( WIDTH/ 2 ) −1:0] reg_a ;
7 logic [ ( WIDTH/ 2 ) −1:0] reg_b ;
8 logic [WIDTH+(WIDTH/ 2 ) −1:0] acc ;
9 logic [WIDTH+(WIDTH/ 2 ) −1:0] prod ;

10 logic [WIDTH+(WIDTH/ 2 ) −1:0] r e s u l t ;
11
12 assign r e s u l t = prod + acc ;
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13
14 always @( posedge c l k ) begin
15 reg_a <= a ;
16 reg_b <= b ;
17 prod <= reg_a * reg_b ;
18 out <= r e s u l t ;
19 end
20
21 always @( posedge c l k or negedge rese t )
22 i f ( ! rese t )
23 acc <= ’ 0 ;
24 else
25 acc <= r e s u l t ;
26
27 endmodule / / mac3

Listing B.4: rtl/mac4.sv

1 module mac4 #(WIDTH=16)
2 ( input logic [ ( WIDTH/ 2 ) −1:0] a ,
3 input logic [ ( WIDTH/ 2 ) −1:0] b ,
4 input logic c lk , reset ,
5 output logic [WIDTH+(WIDTH/ 2 ) −1:0] out ) ;
6 logic [ ( WIDTH/ 2 ) −1:0] reg_a ;
7 logic [ ( WIDTH/ 2 ) −1:0] reg_b ;
8 logic [WIDTH+(WIDTH/ 2 ) −1:0] r e s u l t ;
9 logic [WIDTH+(WIDTH/ 2 ) −1:0] prod ;

10 logic [WIDTH+(WIDTH/ 2 ) −1:0] acc ;
11
12 always @( posedge c l k ) begin
13 reg_a <= a ;
14 reg_b <= b ;
15 prod <= reg_a * reg_b ;
16 r e s u l t <= prod + acc ;
17 out <= r e s u l t ;
18 end
19
20 always @( posedge c l k or negedge rese t )
21 i f ( ! rese t )
22 acc <= ’ 0 ;
23 else
24 acc <= r e s u l t ;
25
26 endmodule / / mac4

Listing B.5: rtl/mac5.sv

1 module mac5 #(WIDTH=16)
2 ( input logic [ ( WIDTH/ 2 ) −1:0] a ,
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3 input logic [ ( WIDTH/ 2 ) −1:0] b ,
4 input logic c lk , reset ,
5 output logic [WIDTH+(WIDTH/ 2 ) −1:0] out ) ;
6 logic [ ( WIDTH/ 2 ) −1:0] reg_a ;
7 logic [ ( WIDTH/ 2 ) −1:0] reg_b ;
8 logic [WIDTH+(WIDTH/ 2 ) −1:0] r e s u l t [ 2 ] ;
9 logic [WIDTH+(WIDTH/ 2 ) −1:0] acc ;

10 logic [WIDTH+(WIDTH/ 2 ) −1:0] prod ;
11
12 always @( posedge c l k ) begin
13 reg_a <= a ;
14 reg_b <= b ;
15 prod <= reg_a * reg_b ;
16 r e s u l t [ 0 ] <= prod + acc ;
17 r e s u l t [ 1 ] <= r e s u l t [ 0 ] ;
18 out <= r e s u l t [ 1 ] ;
19 end
20
21 always @( posedge c l k or negedge rese t )
22 i f ( ! rese t )
23 acc <= ’ 0 ;
24 else
25 acc <= r e s u l t [ 1 ] ;
26
27 endmodule / / mac5

Listing B.6: rtl/mac6.sv

1 module mac6 #(WIDTH=16)
2 ( input logic [ ( WIDTH/ 2 ) −1:0] a ,
3 input logic [ ( WIDTH/ 2 ) −1:0] b ,
4 input logic c lk , reset ,
5 output logic [WIDTH+(WIDTH/ 2 ) −1:0] out ) ;
6 logic [ ( WIDTH/ 2 ) −1:0] reg_a ;
7 logic [ ( WIDTH/ 2 ) −1:0] reg_b ;
8 logic [WIDTH+(WIDTH/ 2 ) −1:0] r e s u l t [ 3 ] ;
9 logic [WIDTH+(WIDTH/ 2 ) −1:0] acc ;

10 logic [WIDTH+(WIDTH/ 2 ) −1:0] prod ;
11
12 always @( posedge c l k ) begin
13 reg_a <= a ;
14 reg_b <= b ;
15 prod <= reg_a * reg_b ;
16 r e s u l t [ 0 ] <= prod + acc ;
17 r e s u l t [ 1 ] <= r e s u l t [ 0 ] ;
18 r e s u l t [ 2 ] <= r e s u l t [ 1 ] ;
19 out <= r e s u l t [ 2 ] ;
20 end
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21
22 always @( posedge c l k or negedge rese t )
23 i f ( ! rese t )
24 acc <= ’ 0 ;
25 else
26 acc <= r e s u l t [ 2 ] ;
27
28 endmodule / / mac6

Listing B.7: rtl/mult3.sv

1 module mul t_con t ro l #(WIDTH)
2 ( input logic c lk , reset ,
3 output logic accept_output , accept_ input
4 ) ;
5 logic [ $clog2 (WIDTH−1) −1:0] counter , counter_next ;
6 typedef enum b i t [ 1 : 0 ] {LOAD, OPERATE, UNLOAD} s t a t e _ t ;
7 s t a t e _ t ps , ns ;
8
9 / / Cont ro l FSM

10 always_ff @( posedge c l k or negedge rese t )
11 i f ( ! rese t )
12 ps <= LOAD;
13 else
14 ps <= ns ;
15
16 always_ff @( posedge c l k )
17 case ( ps )
18 LOAD : ns <= OPERATE;
19 OPERATE :
20 i f ( ! counter )
21 ns <= UNLOAD;
22 else
23 ns <= OPERATE;
24 UNLOAD : ns <= LOAD;
25 defaul t : ns <= ps ;
26 endcase / / case ( ps )
27
28 always_comb begin
29 accept_ input <= ps == LOAD ? 1 ’b1 : 1 ’b0 ;
30 accept_output <= ps == UNLOAD ? 1 ’b1 : 1 ’b0 ;
31 end
32
33 / / Counter
34 always_ff @( posedge c l k or negedge rese t )
35 i f ( ! rese t )
36 counter <= (WIDTH/ 2 ) −2;
37 else
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38 counter <= counter_next ;
39
40 always_ff @( posedge c l k )
41 i f ( ps == OPERATE)
42 counter_next <= counter −1;
43 else
44 counter_next <= (WIDTH/ 2 ) −2;
45
46 endmodule / / mu l t _con t ro l
47
48 module mult3 #(WIDTH=64)
49 ( input logic c lk , reset ,
50 input logic [WIDTH/2 −1:0 ] a , b ,
51 output logic [WIDTH−1:0 ] r e s u l t ) ;
52 logic [WIDTH/2 −1:0 ] a_r , b_r , a_next ;
53 logic [WIDTH/2 −1:0 ] upper , a_comp ;
54 logic [WIDTH: 0 ] acc , acc_r ;
55 logic accept_ input , accept_output ;
56
57 / / Cont ro l FSM
58 mu l t_con t ro l #(WIDTH) c t r l ( . * ) ;
59
60 / / I npu t A c o n d i t i o n a l handshake
61 for ( genvar i = 0 ; i < WIDTH/2 ; i ++) begin
62 d iscard discard_a ( . a ( a_next [ i ] ) , . en ( ! accept_ input ) , . q ( a_r [ i ] ) , . * ) ;
63 hold hold_a ( . a ( a [ i ] ) , . en ( accept_ input ) , . q ( a_r [ i ] ) , . * ) ;
64 end
65
66 always_ff @( posedge c l k or negedge rese t )
67 i f ( ! rese t )
68 a_next <= ’ 0 ;
69 else
70 a_next <= a_r ;
71
72 / / I npu t B c o n d i t i o n a l handshake
73 d iscard discard_acc ( . a ( acc [ 0 ] ) , . en ( ! accept_ input ) , . q ( acc_r [ 0 ] ) , . * ) ;
74 condlo nu l l_acc ( . en ( accept_ input ) , . q ( acc_r [ 0 ] ) , . * ) ;
75 for ( genvar i = 1 ; i < WIDTH/2+1 ; i ++) begin
76 d iscard discard_acc ( . a ( acc [ i ] ) , . en ( ! accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
77 hold hold_b ( . a ( b [ i −1 ] ) , . en ( accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
78 end
79 for ( genvar i = WIDTH/2+1 ; i < WIDTH+1 ; i ++) begin
80 d iscard discard_acc ( . a ( acc [ i ] ) , . en ( ! accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
81 condlo nu l l_acc ( . en ( accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
82 end
83
84 / / Computation loop
85 always_comb
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86 begin
87 case ( acc_r [ 1 : 0 ] )
88 2 ’b01 : a_comp <= a_r ;
89 2 ’b10 : a_comp <= ~( a_r ) +1;
90 defaul t : a_comp <= ’ 0 ;
91 endcase
92 end
93
94 assign upper = acc_r [WIDTH:WIDTH/2+1 ] + a_comp ;
95
96
97 always_ff @( posedge c l k or negedge rese t )
98 i f ( ! rese t )
99 acc <= ’ 0 ;

100 else
101 acc <= { upper [WIDTH/2 −1] , upper , acc_r [WIDTH / 2 : 1 ] } ; ;
102
103 / / Output Cond i t i ona l Handshake
104 for ( genvar i = 0 ; i < WIDTH ; i ++)
105 d iscard d iscard_out ( . a ( acc [ i +1 ] ) , . en ( accept_output ) , . q ( r e s u l t [ i ] ) , . * ) ;
106
107 endmodule / / mul t

Listing B.8: rtl/mult4.sv

1 module mul t_con t ro l #(WIDTH)
2 ( input logic c lk , reset ,
3 output logic accept_output , accept_ input
4 ) ;
5 logic [ $clog2 (WIDTH−1) −1:0] counter , counter_next ;
6 typedef enum b i t [ 1 : 0 ] {LOAD, OPERATE, UNLOAD} s t a t e _ t ;
7 s t a t e _ t ps , ns ;
8
9 / / Cont ro l FSM

10 always_ff @( posedge c l k or negedge rese t )
11 i f ( ! rese t )
12 ps <= LOAD;
13 else
14 ps <= ns ;
15
16 always_ff @( posedge c l k )
17 case ( ps )
18 LOAD : ns <= OPERATE;
19 OPERATE :
20 i f ( ! counter )
21 ns <= UNLOAD;
22 else
23 ns <= OPERATE;
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24 UNLOAD : ns <= LOAD;
25 defaul t : ns <= ps ;
26 endcase / / case ( ps )
27
28 always_comb begin
29 accept_ input <= ps == LOAD ? 1 ’b1 : 1 ’b0 ;
30 accept_output <= ps == UNLOAD ? 1 ’b1 : 1 ’b0 ;
31 end
32
33 / / Counter
34 always_ff @( posedge c l k or negedge rese t )
35 i f ( ! rese t )
36 counter <= (WIDTH/ 2 ) −2;
37 else
38 counter <= counter_next ;
39
40 always_ff @( posedge c l k )
41 i f ( ps == OPERATE)
42 counter_next <= counter −1;
43 else
44 counter_next <= (WIDTH/ 2 ) −2;
45
46 endmodule / / mu l t _con t ro l
47
48 module mult4 #(WIDTH=64)
49 ( input logic c lk , reset ,
50 input logic [WIDTH/2 −1:0 ] a , b ,
51 output logic [WIDTH−1:0 ] r e s u l t ) ;
52 logic [WIDTH/2 −1:0 ] a_r , b_r , a_next ;
53 logic [WIDTH/2 −1:0 ] upper , a_comp ;
54 logic [WIDTH: 0 ] acc , acc_r , acc_next ;
55 logic accept_ input , accept_output ;
56
57 / / Cont ro l FSM
58 mu l t_con t ro l #(WIDTH) c t r l ( . * ) ;
59
60 / / I npu t A c o n d i t i o n a l handshake
61 for ( genvar i = 0 ; i < WIDTH/2 ; i ++) begin
62 d iscard discard_a ( . a ( a_next [ i ] ) , . en ( ! accept_ input ) , . q ( a_r [ i ] ) , . * ) ;
63 hold hold_a ( . a ( a [ i ] ) , . en ( accept_ input ) , . q ( a_r [ i ] ) , . * ) ;
64 end
65 always_ff @( posedge c l k or negedge rese t )
66 i f ( ! rese t )
67 a_next <= ’ 0 ;
68 else
69 a_next <= a_r ;
70
71 / / I npu t B c o n d i t i o n a l handshake
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72 d iscard discard_acc ( . a ( acc [ 0 ] ) , . en ( ! accept_ input ) , . q ( acc_r [ 0 ] ) , . * ) ;
73 condlo nu l l_acc ( . en ( accept_ input ) , . q ( acc_r [ 0 ] ) , . * ) ;
74 for ( genvar i = 1 ; i < WIDTH/2+1 ; i ++) begin
75 d iscard discard_acc ( . a ( acc [ i ] ) , . en ( ! accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
76 hold hold_b ( . a ( b [ i −1 ] ) , . en ( accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
77 end
78 for ( genvar i = WIDTH/2+1 ; i < WIDTH+1 ; i ++) begin
79 d iscard discard_acc ( . a ( acc [ i ] ) , . en ( ! accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
80 condlo nu l l_acc ( . en ( accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
81 end
82
83 / / Computation loop
84 always_comb
85 begin
86 case ( acc_r [ 1 : 0 ] )
87 2 ’b01 : a_comp <= a_r ;
88 2 ’b10 : a_comp <= ~( a_r ) +1;
89 defaul t : a_comp <= ’ 0 ;
90 endcase
91 end
92
93 assign upper = acc_r [WIDTH:WIDTH/2+1 ] + a_comp ;
94
95 always_ff @( posedge c l k )
96 acc_next <= { upper [WIDTH/2 −1] , upper , acc_r [WIDTH / 2 : 1 ] } ; ;
97
98
99 always_ff @( posedge c l k or negedge rese t )

100 i f ( ! rese t )
101 acc <= ’ 0 ;
102 else
103 acc <= acc_next ;
104
105 / / Output Cond i t i ona l Handshake
106 for ( genvar i = 0 ; i < WIDTH ; i ++)
107 d iscard d iscard_out ( . a ( acc [ i +1 ] ) , . en ( accept_output ) , . q ( r e s u l t [ i ] ) , . * ) ;
108
109 endmodule / / mul t

Listing B.9: rtl/mult5.sv

1 module mul t_con t ro l #(WIDTH)
2 ( input logic c lk , reset ,
3 output logic accept_output , accept_ input
4 ) ;
5 logic [ $clog2 (WIDTH−1) −1:0] counter , counter_next ;
6 typedef enum b i t [ 1 : 0 ] {LOAD, OPERATE, UNLOAD} s t a t e _ t ;
7 s t a t e _ t ps , ns ;



135

8
9 / / Cont ro l FSM

10 always_ff @( posedge c l k or negedge rese t )
11 i f ( ! rese t )
12 ps <= LOAD;
13 else
14 ps <= ns ;
15
16 always_ff @( posedge c l k )
17 case ( ps )
18 LOAD : ns <= OPERATE;
19 OPERATE :
20 i f ( ! counter )
21 ns <= UNLOAD;
22 else
23 ns <= OPERATE;
24 UNLOAD : ns <= LOAD;
25 defaul t : ns <= ps ;
26 endcase / / case ( ps )
27
28 always_comb begin
29 accept_ input <= ps == LOAD ? 1 ’b1 : 1 ’b0 ;
30 accept_output <= ps == UNLOAD ? 1 ’b1 : 1 ’b0 ;
31 end
32
33 / / Counter
34 always_ff @( posedge c l k or negedge rese t )
35 i f ( ! rese t )
36 counter <= (WIDTH/ 2 ) −2;
37 else
38 counter <= counter_next ;
39
40 always_ff @( posedge c l k )
41 i f ( ps == OPERATE)
42 counter_next <= counter −1;
43 else
44 counter_next <= (WIDTH/ 2 ) −2;
45
46 endmodule / / mu l t _con t ro l
47
48 module mult5 #(WIDTH=64)
49 ( input logic c lk , reset ,
50 input logic [WIDTH/2 −1:0 ] a , b ,
51 output logic [WIDTH−1:0 ] r e s u l t ) ;
52 logic [WIDTH/2 −1:0 ] a_r , b_r , a_next ;
53 logic [WIDTH/2 −1:0 ] upper , a_comp ;
54 logic [WIDTH: 0 ] acc , acc_r , acc_next [ 2 ] ;
55 logic accept_ input , accept_output ;
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56
57 / / Cont ro l FSM
58 mu l t_con t ro l #(WIDTH) c t r l ( . * ) ;
59
60 / / I npu t A c o n d i t i o n a l handshake
61 for ( genvar i = 0 ; i < WIDTH/2 ; i ++) begin
62 d iscard discard_a ( . a ( a_next [ i ] ) , . en ( ! accept_ input ) , . q ( a_r [ i ] ) , . * ) ;
63 hold hold_a ( . a ( a [ i ] ) , . en ( accept_ input ) , . q ( a_r [ i ] ) , . * ) ;
64 end
65 always_ff @( posedge c l k or negedge rese t )
66 i f ( ! rese t )
67 a_next <= ’ 0 ;
68 else
69 a_next <= a_r ;
70
71 / / I npu t B c o n d i t i o n a l handshake
72 d iscard discard_acc ( . a ( acc [ 0 ] ) , . en ( ! accept_ input ) , . q ( acc_r [ 0 ] ) , . * ) ;
73 condlo nu l l_acc ( . en ( accept_ input ) , . q ( acc_r [ 0 ] ) , . * ) ;
74 for ( genvar i = 1 ; i < WIDTH/2+1 ; i ++) begin
75 d iscard discard_acc ( . a ( acc [ i ] ) , . en ( ! accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
76 hold hold_b ( . a ( b [ i −1 ] ) , . en ( accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
77 end
78 for ( genvar i = WIDTH/2+1 ; i < WIDTH+1 ; i ++) begin
79 d iscard discard_acc ( . a ( acc [ i ] ) , . en ( ! accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
80 condlo nu l l_acc ( . en ( accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
81 end
82
83 / / Computation loop
84 always_comb
85 begin
86 case ( acc_r [ 1 : 0 ] )
87 2 ’b01 : a_comp <= a_r ;
88 2 ’b10 : a_comp <= ~( a_r ) +1;
89 defaul t : a_comp <= ’ 0 ;
90 endcase
91 end
92
93 assign upper = acc_r [WIDTH:WIDTH/2+1 ] + a_comp ;
94
95 always_ff @( posedge c l k ) begin
96 acc_next [ 1 ] <= { upper [WIDTH/2 −1] , upper , acc_r [WIDTH / 2 : 1 ] } ;
97 acc_next [ 0 ] <= acc_next [ 1 ] ;
98 end
99

100
101 always_ff @( posedge c l k or negedge rese t )
102 i f ( ! rese t )
103 acc <= ’ 0 ;
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104 else
105 acc <= acc_next [ 0 ] ;
106
107 / / Output Cond i t i ona l Handshake
108 for ( genvar i = 0 ; i < WIDTH ; i ++)
109 d iscard d iscard_out ( . a ( acc [ i +1 ] ) , . en ( accept_output ) , . q ( r e s u l t [ i ] ) , . * ) ;
110
111 endmodule / / mul t

Listing B.10: rtl/mult6.sv

1 module mul t_con t ro l #(WIDTH)
2 ( input logic c lk , reset ,
3 output logic accept_output , accept_ input
4 ) ;
5 logic [ $clog2 (WIDTH−1) −1:0] counter , counter_next ;
6 typedef enum b i t [ 1 : 0 ] {LOAD, OPERATE, UNLOAD} s t a t e _ t ;
7 s t a t e _ t ps , ns ;
8
9 / / Cont ro l FSM

10 always_ff @( posedge c l k or negedge rese t )
11 i f ( ! rese t )
12 ps <= LOAD;
13 else
14 ps <= ns ;
15
16 always_ff @( posedge c l k )
17 case ( ps )
18 LOAD : ns <= OPERATE;
19 OPERATE :
20 i f ( ! counter )
21 ns <= UNLOAD;
22 else
23 ns <= OPERATE;
24 UNLOAD : ns <= LOAD;
25 defaul t : ns <= ps ;
26 endcase / / case ( ps )
27
28 always_comb begin
29 accept_ input <= ps == LOAD ? 1 ’b1 : 1 ’b0 ;
30 accept_output <= ps == UNLOAD ? 1 ’b1 : 1 ’b0 ;
31 end
32
33 / / Counter
34 always_ff @( posedge c l k or negedge rese t )
35 i f ( ! rese t )
36 counter <= (WIDTH/ 2 ) −2;
37 else
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38 counter <= counter_next ;
39
40 always_ff @( posedge c l k )
41 i f ( ps == OPERATE)
42 counter_next <= counter −1;
43 else
44 counter_next <= (WIDTH/ 2 ) −2;
45
46 endmodule / / mu l t _con t ro l
47
48 module mult6 #(WIDTH=64)
49 ( input logic c lk , reset ,
50 input logic [WIDTH/2 −1:0 ] a , b ,
51 output logic [WIDTH−1:0 ] r e s u l t ) ;
52 logic [WIDTH/2 −1:0 ] a_r , b_r , a_next ;
53 logic [WIDTH/2 −1:0 ] upper , a_comp ;
54 logic [WIDTH: 0 ] acc , acc_r , acc_next [ 3 ] ;
55 logic accept_ input , accept_output ;
56
57 / / Cont ro l FSM
58 mu l t_con t ro l #(WIDTH) c t r l ( . * ) ;
59
60 / / I npu t A c o n d i t i o n a l handshake
61 for ( genvar i = 0 ; i < WIDTH/2 ; i ++) begin
62 d iscard discard_a ( . a ( a_next [ i ] ) , . en ( ! accept_ input ) , . q ( a_r [ i ] ) , . * ) ;
63 hold hold_a ( . a ( a [ i ] ) , . en ( accept_ input ) , . q ( a_r [ i ] ) , . * ) ;
64 end
65 always_ff @( posedge c l k or negedge rese t )
66 i f ( ! rese t )
67 a_next <= ’ 0 ;
68 else
69 a_next <= a_r ;
70
71 / / I npu t B c o n d i t i o n a l handshake
72 d iscard discard_acc ( . a ( acc [ 0 ] ) , . en ( ! accept_ input ) , . q ( acc_r [ 0 ] ) , . * ) ;
73 condlo nu l l_acc ( . en ( accept_ input ) , . q ( acc_r [ 0 ] ) , . * ) ;
74 for ( genvar i = 1 ; i < WIDTH/2+1 ; i ++) begin
75 d iscard discard_acc ( . a ( acc [ i ] ) , . en ( ! accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
76 hold hold_b ( . a ( b [ i −1 ] ) , . en ( accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
77 end
78 for ( genvar i = WIDTH/2+1 ; i < WIDTH+1 ; i ++) begin
79 d iscard discard_acc ( . a ( acc [ i ] ) , . en ( ! accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
80 condlo nu l l_acc ( . en ( accept_ input ) , . q ( acc_r [ i ] ) , . * ) ;
81 end
82
83 / / Computation loop
84 always_comb
85 begin
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86 case ( acc_r [ 1 : 0 ] )
87 2 ’b01 : a_comp <= a_r ;
88 2 ’b10 : a_comp <= ~( a_r ) +1;
89 defaul t : a_comp <= ’ 0 ;
90 endcase
91 end
92
93 assign upper = acc_r [WIDTH:WIDTH/2+1 ] + a_comp ;
94
95 always_ff @( posedge c l k ) begin
96 acc_next [ 2 ] <= { upper [WIDTH/2 −1] , upper , acc_r [WIDTH / 2 : 1 ] } ;
97 acc_next [ 1 ] <= acc_next [ 2 ] ;
98 acc_next [ 0 ] <= acc_next [ 1 ] ;
99 end

100
101
102 always_ff @( posedge c l k or negedge rese t )
103 i f ( ! rese t )
104 acc <= ’ 0 ;
105 else
106 acc <= acc_next [ 0 ] ;
107
108 / / Output Cond i t i ona l Handshake
109 for ( genvar i = 0 ; i < WIDTH ; i ++)
110 d iscard d iscard_out ( . a ( acc [ i +1 ] ) , . en ( accept_output ) , . q ( r e s u l t [ i ] ) , . * ) ;
111
112 endmodule / / mul t
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