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ESTRATÉGIA DE DETECÇÃO DE PADRÕES APLICADA À

INVESTIGAÇÃO DE CRIMES EM AMBIENTES IOT

RESUMO

A adoção da Internet das Coisas (IoT) trouxe muitas vantagens, mas também

apresenta desafios para o campo da Perícia Digital. A heterogeneidade dos dados afeta

diretamente o processo investigativo em cenários que envolvem aplicações de IoT. Por

meio da análise de um conjunto de dados heterogêneo e abrangente coletado de dis-

positivos IoT, este estudo analisa o uso de algoritmos de aprendizado de máquina para

detectar padrões específicos e estimar o número de pessoas em ambientes físicos que

envolvem dispositivos IoT, com o objetivo de auxiliar em investigações criminais. Os re-

sultados destacam a capacidade dos modelos de Aprendizado de Máquina em identificar

padrões relevantes e fornecer informações valiosas para investigações em ambientes de

IoT, como casas inteligentes, escritórios inteligentes e edifícios inteligentes. Essas desco-

bertas contribuem para o avanço da Perícia Digital e demonstram o potencial de aborda-

gens baseadas em aprendizado de máquina na análise de dados de dispositivos IoT em

contextos forenses.

Palavras-Chave: Internet das Coisas, Perícia Digital, Aprendizado de Máquina.



PATTERN DETECTION STRATEGY APPLIED TO CRIME

INVESTIGATION IN IOT ENVIRONMENTS

ABSTRACT

The adoption of the Internet of Things (IoT) has brought many advantages, but it

also presents challenges for the field of Digital Forensics. The heterogeneity of the data

directly affects the investigative process in scenarios involving IoT applications. Through

the analysis of a comprehensive and heterogeneous dataset collected from IoT devices,

this study analyzes the use of machine learning algorithms to detect specific patterns

to estimate the number of people in physical environments involving IoT devices, with

the aim of helping in crime investigations. In this work, we discuss the use of Machine

Learning approaches to enhance criminal investigations based on data collected from IoT

environments. The experimental evaluation not only showcases the potential enhance-

ment of Digital Forensics through the utilization of IoT data but also serves to emphasize

the effectiveness of machine learning-based approaches in these environments.

Keywords: Internet of Things, Digital Forensics, Machine Learning.
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1. INTRODUCTION

1.1 Overview

The term Internet of Things (IoT) has been increasingly used to refer to a variety

of devices and equipment with low computational power that are connected to the Inter-

net. Due to the embedded sensors in these devices, it is possible to collect data from the

environment in which they are placed and transmit them to the network, allowing them to

be monitored and controlled remotely. Data collected from sensors and actuators in IoT

environments can be used to remotely monitor and control them. Furthermore, IoT de-

vices offer significant advantages in various sectors, including industry, healthcare, trans-

portation, and agriculture, allowing process optimization and improving product quality

[25].

The intersection between IoT and Digital Forensic (DF) presents a complex and

challenging dynamic. As the IoT continues to expand and diversify, an increasing number

of connected devices generate a massive amount of data, becoming a valuable source of

evidence for forensic investigations. However, the heterogeneous nature and large vol-

ume of data from these devices require specific and customized approaches. The conver-

gence of DF with Machine Learning (ML) algorithms offers unique opportunities to improve

investigation and forensic analysis in IoT environments, allowing analysis of patterns, de-

tection of suspicious events, and a deeper understanding of the investigated scenarios

[4, 58].

Thus, DF is a science field dedicated to the collection, analysis, and preservation

of digital data to be used as evidence in a court of law [26]. It is an area of growing im-

portance as the world becomes increasingly digitized. DF involves the retrieval, analysis,

and interpretation of data stored on electronic devices such as computers, mobile phones,

and IoT devices, among others.

Although there are numerous publications focused on the context of DF devices

of IoT, there is still a lack of tools designed and developed to handle the large volume

and heterogeneity of the data generated by these devices [26]. Furthermore, these tools

can allow for an accurate assessment of the consequences of the loss or destruction of a

specific IoT device. Therefore, it is necessary to develop specific tools to aid in conducting

investigations in this scenario, as current tools are not able to meet this demand [29, 28].

This is one of the main challenges in the field, as the quality of the investigations directly

impacts the success of legal proceedings.

Oriwoh et al. [42] proposed Next Best Thing (NBT) screening model considering

the challenges of forensics during data analysis. This model aims to help researchers
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identify potential sources of evidence. According to the authors, IoT devices along with

any evidence stored within them can become inaccessible or compromised due to various

incidents such as destruction, theft, or tampering. Investigators responsible for research-

ing the IoT ecosystem must be able to identify additional elements beyond those that

make up the subject of the analysis to determine whether these elements may provide

meaningful insights. This recognition capability is crucial for researchers to gain a better

understanding of the functioning of the ecosystem studied and to conduct a more detailed

analysis.

The field of DF still lacks tools that can analyze the entire context of a smart

environment more accurately. Analyzing the collected data is crucial to the efficiency of

DF work, but the tools available are currently inadequate for this purpose [29, 28, 44].

This analysis is essential for DF efficiency and therefore solutions must be sought for this

issue.

Detecting patterns in IoT data can be instrumental in uncovering criminal activi-

ties within smart environments. Such data can provide valuable information on the modus

operandi and potential culprits. This research is part of our effort to identify patterns in

physical environments, ultimately contributing to the improvement of crime detection in

physical smart environments. Specifically, this study aims to evaluate and discuss the

adoption of ML models to accurately detect specific patterns of a given envi-

ronment using data collected from IoT devices in the domain of DF to aid crime

investigations in physical environments.

To achieve the objectives outlined in this research, a publicly available IoT mul-

tisensor room dataset was used for comprehensive data analysis. The use of supervised

machine learning techniques, including Random Forest, Decision Tree, and XGBoost, is

a crucial aspect of the approach, facilitating accurate detection of room occupancy. The

methodology involves the deployment of these machine learning models, and compar-

isons are conducted to assess their efficacy in this context. The collected results were

meticulously evaluated, and the discussion shed light on the insights gained, providing a

deeper understanding of the performance and implications of the techniques used.
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1.2 Project Objective

Identifying patterns in IoT data can help uncover crimes committed in smart en-

vironments. This information can provide clues about how the crime was perpetrated and

who may be involved. Here are some examples. In a smart office environment equipped

with IoT sensors, access to various areas is logged by analyzing patterns in the access

logs, hence unusual behavior can be identified. For example, if an employee typically ac-

cesses his office during regular working hours but suddenly starts entering the building

late at night, it could be flagged as an anomaly. This pattern might suggest unauthorized

access or even potential suspicious activity.

Another scenario could be in a smart neighborhood, where environmental sen-

sors monitor various factors such as noise levels, air quality, and temperature. Unusual

patterns, such as a significant increase in noise or a sudden change in air quality, could be

indicative of a disturbance or an event that requires attention. By analyzing the data and

identifying patterns, authorities can gain insight into potential criminal activities, such as

a loud party or environmental hazards that need attention.

Imagine a state-of-the-art university campus where cutting-edge IoT devices seam-

lessly integrate into every part of its infrastructure. Among these innovations, smart

classrooms stand out, meticulously equipped with a variety of sensors, high-resolution

cameras, and interconnected devices designed to serve educational and security func-

tions. One day, late in the evening, a tragedy unfolds as a highly regarded professor,

renowned for groundbreaking research, falls victim to an assassination during a private

lecture within one of these classrooms equipped with IoT devices.

As the scenario unravels, the IoT ecosystem within the smart classroom becomes

a crucial player in the investigation. The access control system, designed to monitor en-

try and exit, exposes an unauthorized breach during an unusual time, highlighting the

critical time frame of the crime. Meanwhile, security cameras, with facial recognition ML

techniques, capture the image of the assailant, transforming the classroom into a virtual

witness stand.

At the same time, audio sensors record ambient sounds, capturing the echo of

the crime itself. This auditory evidence becomes a key element in reconstructing the

sequence of events and understanding the dynamics at play during the incident. In addi-

tion, occupancy sensors and motion detectors can reveal anomalies in the room’s activity.

These data points, when analyzed, create a vivid timeline of crime, helping investigators

piece together the puzzle of the assassination.

In this scenario, the smart classroom transforms from a space of education to a

critical node in data-driven investigation. The fusion of technology and security not only el-
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evates the capabilities of law enforcement but also underscores the ethical considerations

surrounding the use of advanced surveillance in pursuit of evidence, facts, and justice.

Therefore, the objective of this project is to evaluate and discuss the adop-

tion of ML models to accurately detect specific patterns in a given environment

using data collected from IoT devices in the domain of DF to aid crime inves-

tigations in physical environments. An IoT multisensor room has been implemented

for data collection and ML techniques have been used to allow for the detection of room

occupancy. The results have been evaluated and discussed.

1.3 Thesis Outline

This section summarizes the layout and content of the thesis chapters.

• Chapter 2: Explores fundamental concepts and reviews the relevant literature in

the field.

• Chapter 3: Provides a comprehensive overview of DF and ML.

• Chapter 4: Introduces the proposed model, outlines the study’s objectives, and

delineates the research questions.

• Chapter 5: Details the experiment, presents findings, addresses research ques-

tions, and discusses study limitations.

• Chapter 6: Serves as the conclusion, discussing the achievement of initial objec-

tives and offering reflections on future work.
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2. RELATED WORK

The literature has extensively examined diverse methodologies aimed at tack-

ling the intricate challenge of pattern detection, applicable to environments both indoors

and outdoors. The complexity of this issue arises from the myriad variables that require

careful consideration, including but not limited to user privacy, desired accuracy levels,

and system costs. This chapter provides a comprehensive survey of these methods, pre-

senting a panoramic view of the current state-of-the-art within the broader context of this

work. This analysis serves as a foundational reference point for the project, influencing

decisions that range from the selection of methods for the evaluation of the results to the

initiation of a thorough feasibility analysis.

2.1 Digital Forensics

Several authors emphasize the urgency of developing innovative approaches to

address the complex DF scenario in IoT. The exponential growth in the number of con-

nected devices has generated a substantial volume of data, necessitating specialized

strategies for the collection, analysis, and interpretation of this information. The chal-

lenge lies not only in the quantity of data, but also in the diversity and interdependence

of these devices, making the adaptation of forensic techniques essential to ensure effec-

tiveness in the investigation and preservation of the integrity of digital evidence. In this

dynamic context, the continuous evolution of DF practices in IoT is crucial to keep pace

and overcome the emerging challenges in this field [38, 21, 20, 47, 5, 57].

Adedayo [1] highlights the complexity associated with one of the main challenges

facing DF: the considerable volume of data that requires analysis. The authors underscore

the imperative need to reassess our approaches in the field of DF, recognizing the constant

evolution of the technological landscape in recent years. The authors’ paper introduced

and discussed several solutions and techniques to enhance better collection, analysis,

preservation, and presentation in the face of the challenges of DF.

In the same line of thinking, Shams Zawoad and Ragib Hasan [59] highlight that

the era of Big Data presents numerous opportunities across various fields, but simulta-

neously introduces several challenges for the field of DF. According to the authors, exist-

ing tools and infrastructures do not meet the expected response time when dealing with

large datasets. Forensics investigators encounter difficulties in identifying crucial pieces

of evidence within large datasets, and collecting and analyzing said evidence becomes a

challenging task. Furthermore, they emphasize that this challenge is significantly exacer-

bated by the growth in both the variety and quantity of IoT devices, driving a substantial

increase in the volume of digital data.
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To address these challenges and improve the processing of digital evidence, NIJ

initiated research collaborations with Purdue and Rhode Island Universities. In particu-

lar, the NIJ journal [41] refers to the work of Marco Vega at Rhode Island University [55].

Vega’s research resulted in the creation of a groundbreaking software called DeepPatrol,

leveraging advanced ML and Deep Learning algorithms. The software is designed to assist

investigators in the examination of child sexual abuse materials, highlighting the potential

of cutting-edge technology to play a pivotal role in forensic endeavors.

To face the challenges associated with the volume of data, heterogeneous data,

and the cognitive load on investigators to understand the relationships between artifacts,

Mohammed et al. [38] introduced a framework designed to address these issues. Their

framework emphasizes that data analysis should be entrusted to a set of Artificial Intelli-

gence algorithms. However, they leave open the specific algorithms to be employed, as

further studies are warranted to evaluate the efficacy of these algorithms and their ability

to identify pertinent information crucial to investigations.

Yaacoub et al. shed light on the current landscape of cyber attacks on IoT and the

associated challenges. The authors not only draw conclusions and advocate for more re-

search in the realm of smart automated evidence detection tools, incorporating ML tech-

niques, but also underscore the need for increased investment in the field of forensics.

They emphasize that a greater commitment to resources is essential for researchers to

effectively address current demands and challenges in the field.

2.2 Machine Learning

Machine learning techniques have attracted considerable attention from researchers,

showcasing a diverse range of applications. Although some studies may not be explicitly

tailored to address the challenges of DF, there is a growing recognition that certain ML

applications hold significant promise within the forensic domain. These applications have

the potential to improve data analysis, pattern recognition, and anomaly detection, con-

tributing to the efficiency and efficacy of DF investigations. As technology continues to

evolve, the integration of ML methodologies into the forensic toolkit becomes increasingly

essential, paving the way for innovative approaches to address the evolving challenges of

the digital landscape.

Consistent with the potential of ML, Dey et al. [17] devised a way to infer the

number of people in a specific room of a smart environment using ML. In their work, they

constructed a model that utilizes temperature, CO2 levels, air volume, and air conditioning

temperature data for their analysis. The authors successfully predicted real-time room

occupancy in a building at the University of Washington with up to 95% precision. To

enhance data analysis, they also explored the use of parallel processing techniques for
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data analysis and normalization of the collected data. The use of data stream processing

(DSP) techniques proved to be highly beneficial due to the abundance of data ingested by

the application, enabling real-time data processing.

Also, Jiho et al. [43] proposed an activity recognition system for smart homes

based on a variant of the recurrent neural network (RNN). This system outperforms other

variants of classic RNN, such as Long-Short-Term Memory (LSTM) and Gated Recurrent Unit

(GRU). Although activity monitoring in smart homes is not a new topic, many applications

have been developed and are available to the public; however, these tools focus only

on individual systems, not the entire environment [14]. As observed by the authors, the

proposed system manages to eliminate less relevant data for analysis, thus improving

performance and significantly outperforming related models, achieving results of up to

90% accuracy in the explored dataset.

These studies highlight significant advances in the application of ML in smart

environments. Dey et al. demonstrated the effectiveness of the model in predicting room

occupancy, while Jiho et al. developed a robust activity recognition system for smart

homes. Both works underscore the importance of advanced data processing techniques

and ML approaches to handle the complexity and volume of data generated by smart

environments.

However, it is important to note that these studies focus more on applications

within specific environments, such as university buildings and smart homes. On the con-

trary, this research aims to explore the detection of specific patterns to estimate the num-

ber of people in physical environments in the highly heterogeneous infrastructure of the

IoT, within a broader context of criminal investigations in physical environments involving

IoT devices. Therefore, while these studies are relevant to the fields of IoT and ML, they

do not directly address the scope and objectives of this research.
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3. DIGITAL FORENSICS AND MACHINE LEARNING STUDY

In the previous chapter, we explored the applications of ML across various do-

mains, showcasing its effectiveness in detecting various phenomena and occurrences.

Expanding on this groundwork, the current chapter provides an in-depth analysis of the

exploration of ML and DF in the research context, outlining the essential frameworks and

algorithms that serve as the bedrock for our investigation.

3.1 Digital Forensics Overview

To ensure the admissibility of credible digital evidence in a court of law, it be-

comes imperative to employ scientifically validated DF investigation techniques that sup-

port a suspected security incident. Although conventional DF methods have traditionally

focused on computer desktops and servers, the evolving landscape of digital technologies

requires the extension of these practices to encompass a broader spectrum.

Recent advances in digital media and platforms have underscored the growing

necessity for applying DF investigation techniques to diverse subdomains. This expanded

scope encompasses not only computer desktops and servers, but also the examination of

mobile devices, databases, networks, cloud-based platforms, and the vast realm of the IoT.

This strategic broadening of focus acknowledges the pervasive nature of digital evidence

in a multitude of interconnected and technologically sophisticated domains.

By recognizing the need to adapt and apply DF methodologies beyond traditional

computing environments, practitioners can more fully address the complexities presented

by modern technology landscapes. This adaptability ensures a more robust and nuanced

approach to the investigation process, enabling the extraction and validation of digital

evidence from a variety of sources critical to legal proceedings.

To support forensic investigators in their navigation of investigations within these

specific subdomains, academic researchers have endeavored to formulate various inves-

tigative methodologies and frameworks. Therefore, the framework used to structure the

research in this study was conceived by Guilherme Schneider in [50].

Schneider, G., proposes an investigative model that organizes the investigative

process into three distinct phases: Planning, Execution, and Conclusion. The planning

phase encompasses preinvestigation steps and the identification of potential sources of

evidence, with the aim of developing an action plan to be implemented in the execution

phase. The execution phase, in turn, involves the acquisition, preservation, and exam-

ination of information that will be subsequently analyzed. In the conclusion phase, the

analysis stage aims to validate and correlate the information obtained to characterize the
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evidence and compile the final report. After completion of the report, an evaluation of all

the documentation generated during the process is performed.

Figure 3.1 – Foca-IoT - Investigative Model Phases [50]

The investigative model introduced by Schneider, G., is presented in Figure 3.1,

illustrating the three stages, their interconnections and the steps involved in each phase.

To facilitate a clear understanding of where this study stands within an investigative pro-

cess guided by a specific model, Figure 3.2 emphasizes the aligned stages of this work,

which are analysis and evaluation.

Figure 3.2 – Foca-IoT - Investigative Model Phases [50]

According to Schneider [50], the analysis phase aims to relate and reconstruct

the crime scene or events relevant to the investigation. In addition, it determines the

significance of the collected evidence and reconstructs fragmented data to formulate con-

crete conclusions. The appropriate presentation of the results of this phase is essential.

The evaluation process assesses the sufficiency of the evidence derived from the analysis

to draw conclusions about the case.

This work falls within the intersection of these two forensic phases, as analysis,

conducted using ML models, can yield artifacts and vital evidence during an investigation,

aiding in its progression. The results of this phase, such as the identified patterns, should

be presented in a manner suitable for discussion and analysis. Therefore, the current

research is guided by the work of Schneider.
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3.2 Machine Learning Overview

Machine learning, a branch of artificial intelligence, revolutionizes the way com-

puter systems perform tasks by embracing a variety of algorithms and statistical methods.

Unlike traditional programming paradigms that follow explicit sequential instructions, ML

empowers systems to perform tasks by leveraging vast datasets. These datasets serve as

repositories, allowing machines to learn patterns, correlations, and trends autonomously,

enabling them to make informed decisions and predictions without being explicitly pro-

grammed for each step.

The essence of ML lies in its ability to generalize from data, facilitating the de-

velopment of models that can adapt and evolve based on new and unseen information.

This approach enables computers to exhibit a form of intelligence, making decisions or

predictions in real-time scenarios without requiring predefined step-by-step commands

[51, 3].

Tom M. Mitchell provided a formal and widely quoted definition of an ML algorithm

in [37]: ’A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P if its performance on tasks in T, measured by P,

improves with experience E’. These algorithms use statistical approaches to uncover rela-

tionships and patterns in training data, enabling their application across different domains.

When discussing ML, a few important approaches need to be considered: supervised,

semi-supervised, unsupervised learning, and reinforcement learning. [51, 32].

• Supervised Machine Learning is an algorithm that uses a dataset with labels to

teach itself. Each training example consists of an input, also referred to as features,

and a desired output, also known as a label. The goal of supervised learning is to

teach the model how to correctly map the inputs to the desired outputs. During

training, the algorithm analyzes patterns in training data and learns to make accu-

rate predictions on new data based on acquired knowledge, enabling the model to

generalize and make predictions on unexplored data [24, 7, 9].

• Unsupervised Machine Learning is an algorithm that is trained using a dataset

that does not have any class information or predefined labels associated with it. Un-

like supervised learning, there are no desired outputs present during training. The

goal of this type of learning is to explore the data for intrinsic patterns, structures,

or clusters, to gain insight and knowledge about the data. Unsupervised learning

is useful for tasks such as data segmentation, anomaly detection, or dimensional-

ity reduction, where the emphasis is on discovering hidden information in the data

without prior knowledge of the desired results [24, 7, 56].
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• Semi-supervised learning is a hybrid approach that combines elements of su-

pervised and unsupervised learning. In this paradigm, the algorithm is trained on

a dataset that contains both labeled and unlabeled examples. Although some in-

stances in the dataset have associated labels, a substantial portion of the dataset

remains unlabeled. This unique characteristic allows the algorithm to learn from

both the explicit guidance provided by the labeled data and the inherent patterns

within the unlabeled data. Semi-supervised learning is particularly advantageous

in scenarios where obtaining labeled data for training is resource intensive or im-

practical. Using unlabeled data, the algorithm can improve its understanding of the

underlying structures and relationships within the dataset, ultimately improving its

performance on tasks that involve predicting labels for new unseen data [60, 11].

• Reinforcement learning on the other hand, is a distinct paradigm in which an

agent learns to make decisions by interacting with an environment. The agent re-

ceives feedback in the form of rewards or penalties based on the actions it takes, en-

abling it to learn optimal strategies over time. This approach is well-suited for tasks

where an agent must navigate a dynamic environment and make sequential deci-

sions. Reinforcement learning has found applications in various domains, including

game playing, robotics, and autonomous systems, where learning from experience

and adapting to changing conditions are crucial aspects [53].

Due to the form of our dataset and the scope of this research, the study will lever-

age a range of supervised ML algorithms to identify patterns within the source dataset,

contributing to the enhancement of forensic investigations. Additionally, unsupervised ML

algorithms will be applied to identify outliers. The selection of algorithms for this research

is based on the most prevalent and widely recognized models used in various application

domains [49]. The subsequent subsections will provide detailed insights into the function-

alities of the chosen algorithms.

3.2.1 Decision Tree

The Decision Tree algorithm solves classification and regression problems by con-

tinuously splitting data based on a specific parameter. Decisions are made on the leaves

of the tree, and the data are divided into nodes. The goal is to create a model that can

predict the values of a target variable by learning simple decision rules from the charac-

teristics of the data [48]. Decision trees are widely used in various application domains

due to their intuitive nature and ease of interpretation. This model can handle variables

of different types, including categorical and numerical variables, providing great flexibility

in data manipulation [31].
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The main components of a decision tree model are nodes and branches, and the

most important steps in building a model are splitting, stopping, and pruning.

• Nodes can be categorized into three types. First, there is the root node, often re-

ferred to as a decision node. This node signifies a pivotal choice that leads to the

subdivision of all records into two or more mutually exclusive subsets. Second, the

internal nodes, also known as chance nodes, represent one of the options available

within the tree structure. These nodes connect to their parent node through the up-

per edge and link to their child nodes or leaf nodes through the lower edge. Finally,

the leaf nodes, alternatively termed the end nodes, symbolize the final outcome re-

sulting from a sequence of decisions or events. This classification provides a clear

understanding of the various roles these nodes play in the context of decision trees.

• Branches symbolize the possible outcomes or events that originate from both the

root nodes and the internal nodes. The construction of a decision tree model entails

establishing a hierarchical structure composed of these branches. Each trajectory,

which extends from the root node through internal nodes and ends at a leaf node,

delimits a unique classification decision rule. These decision tree paths are not only a

graphical representation but can also be expressed as ’if-then’ rules. For instance, a

rule might be framed as follows: "If condition 1 and condition 2 and... condition

k occurs, then the outcome y is anticipated." This concise articulation illustrates

the logical connections within the decision tree, translating complex pathways into

understandable decision rules.

• Splitting is the pivotal stage in decision tree construction, where a node is parti-

tioned into multiple subnodes with the objective of creating relatively pure subsets

and creating decision rules that effectively capture patterns and relationships within

the data. The essence of this process lies in identifying the optimal split for a node,

a task that can be approached through various methods. The goal is to enhance

the homogeneity within each resulting subset, thereby facilitating the generation of

a decision tree that effectively captures distinct patterns in the data. The determi-

nation of the best split involves evaluating different criteria, such as Gini impurity

or information gain, to ensure that the resulting nodes encapsulate coherent and

discernible patterns, contributing to the overall predictive accuracy of the model.

• Stopping process serves as a key determinant in the construction of the decision

tree, defining when the expansion of the tree should come to a halt. This strategic

intervention is essential to guard against overfitting, a scenario in which the model

becomes overly intricate and excessively tailored to the idiosyncrasies of the training

data, potentially compromising its ability to generalize effectively to new data.

During the stopping process, specific conditions or criteria are established to signal

the end of tree growth. These criteria may include parameters such as a predefined
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maximum depth of the tree, ensuring that the tree does not become overly complex.

Alternatively, a minimum number of data points in a node might be specified to

prevent the creation of nodes that are too specific to the training set.

By implementing a well-considered stopping process, the decision tree strikes a bal-

ance between capturing meaningful patterns in the data and avoiding an overly in-

tricate model. This thoughtful approach enhances the tree’s ability to generalize,

making it more robust when applied to unseen data and contributing to the overall

effectiveness of the predictive model.

• Pruning process is a pivotal step in the optimization of decision trees, designed to

counteract the potential pitfall of overfitting and bolster the model’s ability to gener-

alize beyond the training data. In contrast to the stopping process, which determines

when the growth of the tree should cease, pruning involves the discerning removal of

branches or subtrees that might not significantly contribute to the model’s predictive

accuracy.

As the decision tree evolves during training, certain branches may become overly in-

tricate, capturing noise or peculiarities specific to the training dataset. Pruning aims

to identify and trim these superfluous branches, fostering a more streamlined and

generalizable tree structure. This selective removal is typically guided by metrics

such as cross-validation error or impurity reduction, ensuring that the pruned tree

maintains its predictive power while avoiding unnecessary complexity.

By executing a judicious pruning process, decision trees strike an optimal balance be-

tween capturing meaningful patterns and avoiding undue complexity. The resultant

pruned tree is more resilient against overfitting, making it better suited to provide

accurate predictions on new, unseen data and contributing to the overall robustness

of the model.

Figure 3.3 illustrates the concept and components of a decision tree model.

3.2.2 Naive Bayes

The Naive Bayes algorithm is based on conditional probability. In this approach,

there is a probability table that serves as the model and is updated through the training

data. This table is based on the values of its features, where it is necessary to consult

class probabilities to predict a new observation. The basic assumption is conditional inde-

pendence, which is why it is called naive. However, in most analyses, it is challenging to

maintain the assumption that all input characteristics are independent of each other [46].

The core equation of Naive Bayes is expressed by 3.1.
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Figure 3.3 – Representation of decision tree.

P(A|B) =
P(B|A)P(A)

P(B)
(3.1)

Equation 3.1 encapsulates the conditional probability, representing the probabil-

ity that event A will occur given the occurrence of event B. Naive Bayes leverages this

formula to make predictions by estimating the probabilities involved, making it a powerful

and widely used algorithm in various fields, despite its simplistic assumption of feature

independence.

There are three most common types of Naive Bayes models, they are:

• Gaussian: Suited for continuous data, the naive Gaussian Bayes model assumes

that the features follow a normal distribution.

• Multinomial: This model is appropriate for discrete data, commonly used in text

classification tasks. It is particularly effective when dealing with features that repre-

sent counts or frequencies.
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• Bernuolli: Designed for binary data, this model is well suited for situations where

features are binary variables, typically representing the presence or absence of spe-

cific attributes.

These three variants accommodate diverse data characteristics, allowing the

Naive Bayes algorithm to be applied effectively across a range of applications and datasets.

3.2.3 Support Vector Machine

The SVM algorithm is a powerful tool used for both classification and regression

tasks. It operates by using support vectors to establish boundaries to classify input data.

Here is a more detailed explanation:

SVM treats each data point as a distinct entity within a n-dimensional space,

where n corresponds to the number of features present in the dataset. In this space, the

value of each feature corresponds to the coordinate of the respective point. This geometric

interpretation allows SVM to create a line or hyperplane that effectively segregates the

data into distinct classes [10].

Key Attributes of SVM includes:

• Linear Algorithm: SVM is inherently a linear algorithm, and its primary function is

to identify the optimal linear separation or hyperplane in the feature space. This is

achieved by strategically placing the hyperplane to maximize the margin between

different classes, enhancing the model’s ability to generalize well to unseen data.

• Support Vectors: These are the critical data points that lie closest to the decision

boundary, influencing the positioning of the hyperplane. SVM aims to find the op-

timal hyperplane that not only separates classes but also maximizes the distance

from the support vectors.

• Flexibility in Kernel Functions: While SVM starts as a linear classifier, it can be

adapted to non-linear problems through the use of kernel functions. This flexibility

allows SVM to handle complex relationships between features, providing a solution

for tasks where linear separation is insufficient.

• Effective in High-Dimensional Spaces: SVM performs well even in high-dimensional

feature spaces, making it suitable for datasets with a large number of features.

In essence, SVM excels at creating robust decision boundaries, especially in sce-

narios where classes are not easily separable. Its ability to handle both linear and non-

linear relationships, along with its effectiveness in high-dimensional spaces, makes SVM a

versatile and widely used ML algorithm.
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Figure 3.4 illustrates the concept and hyperplane for a SVM model.

Figure 3.4 – Representation of SVM and its best hyperplane.

3.2.4 Random Forest

Random Forest employs an ensemble approach to solve classification and re-

gression problems. This algorithm combines multiple individual decision trees, each trained

on a random sample of the training data, to make predictions. These individual trees are

known as random decision trees and are combined to form the forest. Each tree con-

tributes to the final decision through a voting or averaging process of the results [8, 15].

Moving to the intricacies of Random Forest, a closer examination reveals key

attributes that contribute to its effectiveness and wide-ranging applicability. In particular,

the strength of Random Forest lies in its robustness and versatility. Its ensemble nature

allows it to adapt to diverse and noisy datasets, making it particularly resilient in scenarios

where individual trees may struggle. This characteristic, coupled with the randomization

of the features in each split, mitigates the risk of overfitting, improving the generalization

capacity of the algorithm [8].
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One notable feature of Random Forest is its ability to provide insights into the

importance of variables. By assessing the contribution of each feature to the overall pre-

dictive accuracy, users can gain valuable insight into the relevance of different variables,

aiding in feature selection and model interpretation.

Widely recognized for its effectiveness, Random Forest has become a popular

choice in a spectrum of ML applications. Its ability to handle intricate relationships within

the data, coupled with its adaptability to various problem domains, makes it a robust and

reliable algorithm in the ML toolkit [15].

3.2.5 AdaBoost

The operation of AdaBoost involves iteratively training a series of weak classi-

fiers on modified subsets of the training data. At each iteration, the algorithm adjusts the

weight of the training examples, placing greater importance on the examples misclassified

in previous iterations. Thus, the algorithm emphasizes the most challenging examples to

classify, allowing subsequent classifiers to focus on these difficult cases [19].

At the end of AdaBoost’s process, a final classifier is produced, which is a com-

bination of individual weak classifiers with weights determined by their error rates. This

technique amplifies the effect of classifiers with higher accuracy, thus creating a powerful

and adaptive classifier that can make accurate predictions on test data [19].

AdaBoost’s strength lies in its ability to iteratively enhance its performance by

prioritizing difficult-to-classify instances, ultimately achieving a robust and accurate pre-

dictive model. This adaptability makes AdaBoost a valuable asset in addressing complex

classification challenges in various domains.

3.2.6 Extreme Gradient Boosting

The XGBoost algorithm is based on tree committees, much like the Random For-

est. It belongs to the family of boosting algorithms, which combine multiple weak models

to form a strong model. XGBoost is known for its exceptional efficiency and performance,

widely used in data science competitions and real-world applications [13].

Rather than constructing each tree independently, XGBoost utilizes a sequential

training approach. This method involves successive trees rectifying the mistakes of the

ensemble of prior trees, thereby gradually improving the model’s predictive accuracy.

The optimization mechanism within XGBoost is notable, as it aims to minimize

a defined objective function. This function combines the training loss with a penalty for

model complexity, emphasizing a balanced trade-off between accuracy and simplicity. By



29

strategically combining these decision trees, XGBoost seeks the optimal configuration that

minimizes the overall objective function [13].

This unique methodology contributes to the effectiveness of XGBoost, making it

a preferred choice in various ML applications. Its ability to iteratively refine its predictions

and manage model complexity positions XGBoost as a powerful algorithm, particularly in

situations where predictive accuracy is paramount.

AdaBoost and XGBoost are two ensemble learning techniques that belong to the

boosting family. However, they have considerable differences in their algorithms, tech-

niques, and outcomes. XGBoost can be thought of as a more sophisticated and improved

version of the traditional AdaBoost. Here are some of the main differences:

• Model Complexity: AdaBoost focuses on combining multiple weak learners, usu-

ally shallow decision trees, to form a strong learner. Each weak learner is designed to

rectify the errors of its predecessor. XGBoost, however, utilizes a more intricate base

learner, usually decision trees. It incorporates a regularization term into the objec-

tive function, which allows it to manage more intricate relationships and potentially

outperform AdaBoost.

• Objective Function: The aim of AdaBoost is to reduce the exponential loss function

by giving greater importance to incorrectly classified examples in each iteration.

XGBOOSt optimizes a differentiable objective function that combines a loss element

and a regularization element. This allows for a more precise adjustment of the model

complexity and helps to avoid overfitting.

• Weighted Voting versus Gradient Boosting: AdaBoost utilizes weighted voting,

where each learner has a weight based on its accuracy that contributes to the final

prediction. In contrast, XGBoost applies gradient boosting, where each weak learner

is added to the model in sequence, and each successive tree tries to rectify the

residual errors of the collective.

• Handling Missing Values: XGBoost has a feature that allows it to manage miss-

ing values when training and predicting, making it more reliable when working with

incomplete datasets. On the contrary, AdaBoost does not manage missing values

well, as it is based on weighted voting, which can be affected by the lack of values.

• Parallelization: AdaBoost’s boosting process is sequential, thus limiting its abil-

ity to be parallelized. In contrast, XGBoost is designed to be highly parallelizable,

allowing for faster training on multicore machines.

In conclusion, both AdaBoost and XGBoost use the boosting technique of com-

bining weak learners. However, XGBoost has several improvements, including a more

flexible base learner, a complex objective function, and the ability to manage missing
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values effectively. These enhancements are likely the reason why XGBoost is so popular

and successful in many ML tasks, often making it the preferred choice over other boosting

algorithms.

3.2.7 Isolation Forest

The Isolation Forest algorithm, a powerful anomaly detection technique, oper-

ates by employing binary trees to isolate and identify anomalies within a dataset. This ap-

proach contributes to a remarkable linear time complexity, making it particularly efficient

for processing large datasets with minimal computational burden. The unique strategy of

isolating anomalies through the creation of individual trees allows the algorithm to quickly

discern irregularities, making it an advantageous choice for real-time applications.

In more detail, the algorithm constructs random trees and isolates anomalies

based on their shorter average path lengths within these trees. Anomalies typically re-

quire fewer partitioning steps to be separated, resulting in shorter paths. This distinctive

characteristic improves the efficiency and effectiveness of the Isolation Forest, making it

a robust tool for anomaly detection across diverse datasets.

Using binary trees also translates into low memory usage, a crucial factor when

dealing with large datasets. This characteristic not only contributes to computational ef-

ficiency but also facilitates the scalability of the algorithm, ensuring its applicability to

datasets of varying sizes.

The Isolation Forest algorithm’s proficiency in swiftly identifying anomalies while

maintaining efficiency and scalability renders it well-suited for applications in numerous

fields, including cybersecurity, fraud detection, and IoT forensics. Its inherent advantages

make it a valuable asset in situations where rapid anomaly detection is paramount, con-

tributing to the growing arsenal of tools available for data-driven analyses and investiga-

tive insights.
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4. PROPOSED MODEL

In the previous chapter, various concepts of DF and ML were discussed. Further-

more, as seen in Chapter 2, ML models have demonstrated their ability to identify a wide

range of phenomena and events within different scenarios. For example, they can assist

investigators in examinations of child sexual abuse materials, detect instances of cyber

attacks, infer the number of people in a specific room, activity monitoring in smart houses,

and more. These examples illustrate the versatility and potential impact of ML algorithms

in various domains, including DF and IoT.

Given the potential of ML models to recognize patterns and anomalies in IoT en-

vironments, we have created a model tailored to this specific purpose. In this chapter,

we will introduce our proposed model, explain our objectives, and present the research

questions we will use to validate these claims.

4.1 Model Design

Our proposed model aims to aid criminal investigations by incorporating various

layers of technology. From data gathering sensors to cloud-based computation and anal-

ysis systems, this design will yield actionable insights for various stakeholders. Analyzing

the layers and elements of this model will reveal how it converts raw data into informative

results that shape decision-making processes in various ways.

The Environment layer consists of various intelligent sensors such as temperature

sensors, luminosity sensors, sound sensors, CO2 sensors, presence sensors, gas sensors,

and smart devices including personal assistants like Alexa and Google Home, luminaires,

lights, switches, sockets, coffee makers, TVs, among others. Additionally, user devices are

connected and interact with these smart devices, such as computers connected to smart

sockets.

Next, we have the Cloud Computing layer, which comprises several sub-layers.

The first sub-layer is the Applications layer, which aims to communicate with all sensors

and smart devices within the intelligent environment, collecting data from these sensors

and devices and saving it to the centralized database, the next sub-layer of cloud com-

puting. The next layer of cloud computing is the ML layer, where these applications will

query the database and analyze the data to identify potential patterns that can assist in

the analysis of criminal investigations. Finally, they will generate reports with the data

and information found.

The Users layer is the final part of our model. It consists of individuals and entities

who are interested in analyzing environmental data for different purposes. These stake-
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holders can be criminal investigators who want to gain insights from the data collected

at crime scenes, researchers who conduct specialized studies, or facility managers who

want to improve resource utilization and operational efficiency. This layer acts as a bridge

between the insights obtained from the cloud computing layer and real-world applications.

Its main role is to enable informed decision making and achieve meaningful results.

Figure 4.1 outlines the model proposed above, showcasing the layered architec-

ture designed to analyze environmental data in smart environments. This visual represen-

tation provides a comprehensive overview of the components, including the Environment

layer with its array of sensors and devices, the Cloud Computing layer with its sub-layers

for data processing and ML, and the Users layer comprising various stakeholders inter-

ested in leveraging the insights derived from the model. Figure 4.1 serves as a visual

aid to improve understanding and visualization of the architecture and functionality of the

proposed model.

Figure 4.1 – Proposed model.
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4.2 Goal and Research Questions

The objective of this research is to evaluate and discuss the adoption of ML

models to accurately detect specific patterns in a given environment using data collected

from IoT devices, such as temperature, luminosity, CO2, as well as sound and passive

infrared, in the domain of Digital Forensic to aid crime investigations in physical envi-

ronments.

With information from several IoT devices, we believe that we could identify sev-

eral pertinent pieces of information about the environment being analyzed, such as the

number of people in the room, temperature fluctuations, ambient light levels, sound lev-

els, air quality metrics including CO2 levels, presence of specific gases, occupancy pat-

terns over time, energy consumption patterns, and even potential safety hazards such as

fire or gas leaks. Additionally, insights into user behavior, usage patterns of various de-

vices, and environmental trends could also be gleaned from the data collected by these

IoT devices. This wealth of information has the potential to significantly enhance our un-

derstanding of the environment and facilitate more informed decision-making processes.

While there are numerous aspects to explore within the realm of IoT data analysis,

this research seeks to compare various ML algorithms to estimate the number of people in

a smart environment, using a range of different sensors. The following research questions

have been formulated to guide the study:

• RQ1: What methods are suitable to detect specific patterns within a large database

generated from IoT data?

• RQ2: What ML algorithms can be utilized to identify these patterns effectively?

• RQ3: How can the identified patterns contribute to the forensic analysis of IoT envi-

ronments?

• RQ4: Can ML algorithms be utilized to detect outliers within a large database gener-

ated from IoT data?

• RQ5: How accurately can ML algorithms estimate the number of people in a smart

environment based on data collected from different types of sensors?

• RQ6: Which ML algorithm demonstrates the highest accuracy and reliability in esti-

mating the number of people in a smart environment?
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5. EXPERIMENT

This chapter presents the details of our experiment with the aim of offering a de-

tailed explanation of the tools, frameworks, and dataset utilized. Our main objective is to

clarify the methodologies employed, ensuring a clear understanding of the experimental

setup and its various elements. Moreover, we will offer a comprehensive analysis of the

results derived from the experiment, elucidating the findings and the significance of our

research.

5.1 Planning

In this section, we offer a comprehensive overview of the strategic planning and

methodology used in our study. Our research is based on the utilization of an existing

dataset, meticulously chosen from another research project, to align with our study ob-

jectives. We started by establishing the necessary environment and computational re-

sources, followed by the careful curation of the selected dataset to ensure its relevance

and suitability to address our research questions. The selection of variables and the for-

mulation of hypotheses were driven by a thorough understanding of the field and informed

by the pertinent literature. We aim to enhance transparency and clarity in our planning

approach by providing a comprehensive explanation. This will establish a strong basis for

the subsequent analysis and interpretation of the results.

5.1.1 Environment Setup

We began our environment setup by installing Python, a widely used and ver-

satile programming language. Python was chosen because of its extensive libraries and

frameworks that are suitable for data analysis, ML, and data processing. To establish a

clean and isolated environment for this research, we utilized the venv tool, which is part

of the Python standard library. This tool allowed us to create a self-contained environment,

separate from the system-wide Python installation, avoiding any potential problems with

packages and dependencies. The specific Python version used throughout this research

was 3.11.

Within this virtual environment, we used the Python package manager pip for the

installation and management of essential libraries and modules. These libraries included

popular tools for data manipulation (e.g., Numpy, pandas), ML (e.g., scikit-learn, XGboost),

data visualization (e.g., Matplotlib, Seaborn), and more. Jupyter Notebooks were used to

facilitate interactive and exploratory data analysis, enabling us to document our research



35

process by integrating code, visualizations, and explanations in a single document. This

iterative approach allowed for the development and testing of code while maintaining a

comprehensive record of the research.

We chose PyCharm Professional as our Integrated Development Environment

(IDE) to facilitate streamlined development, coding efficiency, and seamless integration.

PyCharm’s advanced features, such as code autocompletion, code analysis, version con-

trol, and support for Jupyter Notebooks, were instrumental in improving our coding expe-

rience. To ensure robust version control, code tracking, and collaborative development,

we use Git as our version control system and GitHub as our online platform. This enabled

the management of code modifications and the maintenance of a research record.

Table 5.1 shows all tools and libraries used and their respective versions during

this research.

Table 5.1 – Summary of Utilized tools and libraries.
Name Type Version

PyCharm Professional Tool 2023.3.2
Jupyter Notebooks Tool 7.0.2

Python Tool 3.11
Venv Tool 20.16.7
Pip Tool 22.3.1
Git Tool 2.39.3

Scikit-learn Library 1.3.0
Matplotlib Library 3.7.2

Pandas Library 2.0.3
Numpy Library 1.25.2

XGBoost Library 1.7.6
Seaborn Library 0.12.2

5.1.2 Computational Resources

We employed two MacBook models, namely the MacBook Pro M1 and MacBook

Pro M2 Pro, to perform our computational tasks. The MacBook Pro M1 features Apple’s in-

novative M1 chip, encompassing an 8-core CPU and an 8-core GPU, delivering exceptional

performance across diverse computational workloads. Boasting 16GB of unified mem-

ory, this MacBook ensures seamless multitasking and responsiveness. In contrast, the

MacBook Pro M2 Pro elevates computational capabilities by integrating the M2 Pro chip,

showcasing a 12-core CPU, a 19-core GPU, and 16GB of RAM.

It is essential to note that, despite disparities in hardware specifications, our re-

search yields consistent results in both MacBook models. Our analysis focuses on the

accuracy and final results of ML models, rather than the time required for classification
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tasks. Thus, any variations in computational performance between the MacBook Pro M1

and MacBook Pro M2 Pro do not impact the reliability or precision of our research findings.

This approach safeguards the credibility of our results, ensuring their independence from

specific computational resources.

To validate the accuracy of the results, we conducted a test in a cloud environ-

ment using an Oracle Cloud ARM instance equipped with a 4-core ARM CPU and 24GB of

RAM. This cloud-based infrastructure adds an additional layer of assurance regarding the

reproducibility and applicability of our research.

5.1.3 Dataset

The primary dataset for this study, which serves as the basis for the analysis,

was originally collected and compiled by Adarsh et al. [52]. This dataset was obtained

from a controlled laboratory environment. The laboratory consists of a room measuring 6

x 4.6 m, containing four office tables. It is important to note that the experiments were

conducted without the use of HVAC systems to maintain consistent conditions during data

collection.

The laboratory’s network infrastructure is based on a Zigbee star network con-

figuration, which consists of seven slave nodes that send data to a central master node.

The choice to use multiple multivariate nodes was motivated by the notion that such a

system would provide improved dependability in larger areas compared to a single-node

deployment.

Data were collected at an interval of 30 seconds to ensure a thorough capture

of the environment’s changes. This high-frequency sampling was intended to provide a

precise and comprehensive description of the connections between IoT devices and their

environment.

These data provide a valuable source of information for the analysis performed.

For the execution of this experiment, five different types of noninvasive sensors were

used: temperature, luminosity, CO2, as well as sound and passive infrared (PIR) sensors.

This diversity of data offers a comprehensive and detailed understanding of the envi-

ronment analyzed, allowing a more accurate and comprehensive analysis of occupancy

patterns. Table 5.2 presents the representation of the dataset used.

The room used by Adarsh et al. for data collection purposes is shown in Figure

5.1. This figure visually presents the layout and dimensions of the laboratory environment,

which helps in comprehending the spatial context of the data collection process.

However, it should be noted that acquiring a suitable and extensive dataset for

this type of analysis can often be a formidable task. One of the significant challenges

we faced was the availability of data, as datasets that met the specific criteria required
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Figure 5.1 – Room used for data acquisition by Adarsh et al. [52].

for this research were limited. Furthermore, data quality was a meticulous process as we

needed to address inconsistencies, errors, and missing values within the dataset. Addi-

tionally, the diversity of the dataset in terms of sensor types, environmental conditions,

and occupancy patterns had to be evaluated, as a more diverse dataset is essential for

a comprehensive analysis. Although this dataset proved invaluable for our study, these

challenges underscore the importance of having access to more extensive and diverse

datasets in the field of occupancy analysis, while also highlighting areas that may benefit

from improvements in future research endeavors.

Table 5.2 – Database representation
Parameters Unit Column Name
Temperature ºC [S1,S2,S3,S4]_Temp
Luminosity Lux [S1,S2,S3,S4]_Light

Sound Volts [S1,S2,S3,S4]_Sound
CO2 PPM S5_CO2

Infrared Binary [S6,S7]_PIR
CO2 Slope Decimal S5_CO2_Slope

Occupant Count Integer Room_Occupancy_Count
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5.1.4 Selection of Variables

To evaluate the efficacy of trained models, performance metrics will be used.

This research will incorporate precision, F1 score, accuracy, and recall metrics, which will

provide a comprehensive assessment of the model’s capacity to fit the data and execute

the classification task effectively.

• Precision: Precision is a measure that evaluates the accuracy of a model to avoid

false positives. It is calculated by dividing the number of correctly classified in-

stances by the total number of classified instances, as shown in Formula 5.1. In

this formula, TP stands for true positives (instances correctly classified as positive)

and FP stands for false positives (instances incorrectly classified as positive).

Precision =
TP

TP + FP
(5.1)

• Recall: Recall is a performance measure used to evaluate a model’s ability to recog-

nize all positive examples while reducing false negatives. It gauges the proportion of

accurately identified positive cases compared to the total number of positive cases

in the dataset. The formula for calculating the recall is shown in Formula 5.2, where

TP stands for true positives (instances correctly classified as positive) and FN stands

for false negatives (instances incorrectly classified as negative). Therefore, recall

quantifies the model’s sensitivity in accurately detecting positive cases, preventing

cases that should have been identified from slipping through. The higher the recall

value, the better the model’s capacity to precisely retrieve positive cases.

Recall =
TP

TP + FN
(5.2)

• F1-Score: The F1 score is a metric that combines precision and recall into one mea-

sure, providing an overall evaluation of the model’s performance. This metric is

determined by the harmonic mean of precision and recall, giving both metrics equal

importance. The formula 5.3 illustrates how this metric is calculated. Generally, a

score of F1 close to 1 implies a good balance between precision and recall, indicating

a good classification performance of the model. On the contrary, a value close to 0

suggests poor model performance.

F1 =
2 · Precision · Recall
Precision + Recall

=
2 · TP

2 · TP + FP + FN
(5.3)

• Accuracy: Accuracy is a measure of how many instances are correctly classified

compared to the total number of instances. To calculate it, we divide the number of
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correct predictions by the total number of predictions. In other words, it is the sum

of true positives and true negatives divided by the total number of predictions, as

expressed in equation 5.4.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.4)

• k-Fold Cross-Validation: Cross-validation is a method that is used to evaluate the

performance of ML models. It involves splitting the dataset into subsets and iterating

the training and testing of the model. In each iteration, one subset is used for testing,

while the rest are combined and used for training.

This research used the k-fold technique. This approach divides the dataset into k sec-

tions, each of which is approximately the same size. The K models are then trained,

each iteration using one subset as the testing data and the rest as the training data.

Finally, the results are combined to give an overall assessment of the effectiveness

of the model.

The benefit of k-fold cross-validation is that it enables all data to be utilized for both

training and testing, guaranteeing a more precise assessment of the model’s per-

formance. In addition, it helps reduce the variance in the evaluation, as the perfor-

mance is determined based on multiple combinations of training and tests. Figure

5.2 shows how k-fold works.

Figure 5.2 – Representation of cross validation.

• Final Evaluation: An assessment of the program with real-world data is often done

by splitting the data into training and validation sets. In this case, 90% of the data

is assigned for training and the other 10% is used for validation. This data division

technique enables the model to be trained on most of the available data to recognize

the patterns and structures present in the data. Subsequently, the validation set is

used to assess the model’s performance on data that have not been seen before.
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This technique allows us to check if the model can apply the patterns it learned

during training to make precise predictions on fresh data. The ultimate validation

gives a more realistic assessment of how the model will perform in a production

setting where new data will be provided.

An approach was used to evaluate the models trained with real-world data, which in-

volved dividing the data into training sets (90%) and validation (10%). As illustrated

in Figure 5.3, 10% of the dataset was set aside for the final evaluation of the mod-

els. These data points were not altered in any way, with no normalization or SMOTE

technique applied. The results presented in Section 5.2.5 give an explanation of the

comparison between the models when applied to these particular data points.

Figure 5.3 – Unmodified real sampling for final model validation.

5.1.5 Definition of Hypotheses

We have formulated the following hypotheses for investigation:

• Null Hypothesis (H0): patterns cannot be detected in established IoT environ-

ments using the defined strategies.

• Alternative Hypothesis (H1): patterns can be detected in established IoT envi-

ronments using defined strategies.
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5.2 Execution

In this section, we explain the systematic steps and techniques used to test our

hypotheses and answer the research questions. We provide a clear description of how our

study was conducted and demonstrate the thoroughness of our approach.

5.2.1 Exploratory Data Analysis

Analysis of sensor time series graphs, as presented in Figure 5.4, revealed that

data from the luminosity, temperature, sound, PIR and CO2 sensors provide an indication

of the number of occupants in the room.

l

Figure 5.4 – Representation of sensor data related to the number of occupants.

Furthermore, Figure 5.5 allows us to visualize the correlation between variables

in the dataset utilized. We observe that the S1_Temp and S5_CO2 sensors exhibit a strong

correlation, indicating that temperature changes may be related to variations in carbon

dioxide CO2 levels. On the other hand, we notice that the S1_Temp and S4_Light sensors

do not exhibit a strong relationship, suggesting that temperature changes are not directly

related to variations in luminosity.

A significant correlation between variables can indicate a direct relationship be-

tween them, which is useful for prediction and pattern identification. This information is

particularly relevant in forensic analyzes, where the goal is to uncover specific patterns to

estimate the number of people in physical environments within the heterogeneity of the

IoT.

Identifying highly correlated variables allows us to take advantage of this infor-

mation to enhance forensic analyzes. These variables can provide valuable information on

interactions among connected devices and help identify potential evidence during foren-

sic investigations. Understanding the correlation between variables allows one to focus

analysis efforts on the most relevant aspects, facilitating the detection of patterns and

suspicious behaviors.
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Figure 5.5 – Correlation analysis between independent and target variables.

Furthermore, understanding the dataset allows us to explore and employ tech-

niques such as oversampling and undersampling. These techniques are widely used to

address class imbalance in datasets, as significant disparities in class distribution often

occur in forensic investigation problems in IoT environments. These approaches aim to

balance the class distribution, allowing ML models to be trained more fairly [39].

However, it is important to note that some ML algorithms may struggle when

dealing with highly correlated variables. The presence of correlation among variables

can introduce bias in the results and affect the accuracy of the models. It should be

mentioned that the correlation between variables is not directly related to oversampling

or undersampling, but rather to how data are treated and processed before applying these

techniques [54].

By understanding the nature of the data and the correlation among the variables,

we can identify which oversampling or undersampling techniques are most suitable for the

given dataset [39], thus enhancing the effectiveness of forensic analyzes in IoT environ-

ments. However, before applying oversampling or undersampling techniques, it is crucial

to detect and address outliers in the datasets.
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5.2.2 Outlier Detection and Treatment

Outlier detection and treatment are crucial steps in data analysis. Outliers are

atypical values that deviate significantly from the data distribution pattern. These out-

lier observations may arise due to measurement errors, data flaws, or rare and relevant

events. The presence of outliers can distort descriptive statistics and negatively impact

the performance of ML models [22].

A commonly used method to identify outliers is the Interquartile Range (IQR),

which uses the difference between the third quartile (Q3) and the first quartile (Q1) of a

distribution. The IQR represents the range of central data used to define a range within

which the majority of data is considered normal. Equation 5.5 defines the criteria for

identifying outliers based on IQR [2].

x < Q1 − 1.5 · IQR or x > Q3 + 1.5 · IQR (5.5)

Once identified, there are different approaches to dealing with outliers. One op-

tion is to remove them from the dataset, but this should be done with caution, as excluding

such data may result in the loss of important information. Another alternative is to per-

form data transformations, such as applying logarithms or robust normalization, to reduce

the impact of outliers on the results [22].

In this work, we chose to adopt the approach of removing outliers from the

dataset. This choice was made because outliers can distort statistical analysis and harm

the performance of ML models. By removing these outlier data points, our aim is to en-

sure a more accurate and reliable representation of patterns within the data, potentially

leading to more consistent and reliable outcomes in the analysis and prediction of room

occupancy.

Figures 5.6 and 5.7 illustrate the comparison between certain classes containing

outliers and the same classes after the application of the IQR method (interquartile range).

It is evident that after removing outliers using this method, the data distribution became

more homogeneous and devoid of outlier values. This indicates that the IQR method was

effective in identifying and removing outliers, contributing to a more robust and accurate

data analysis [35].

5.2.3 Data Preprocessing

After the outlier detection and treatment step in the datasets, we can proceed

with data preprocessing using undersampling and oversampling techniques. These tech-
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Figure 5.6 – Outlier analysis before the application of IQR.

Figure 5.7 – Outlier analysis after the application of IQR.

niques aim to balance the distribution of classes, ensuring that all classes have appropri-

ate representation for training ML models.

The dataset used consists of more than 10,000 records and 16 columns, each

representing data from a specific sensor. However, the dataset was found to exhibit a

significant class imbalance, as illustrated in Figure 5.8. Such an imbalance can hinder the

performance of certain ML models [30]. To address this issue, we chose to employ the

oversampling technique known as SMOTE (Synthetic Minority Oversampling Technique)

[12].

SMOTE is a widely used technique in data pre-processing to address the class

imbalance in a dataset. Class imbalance occurs when one class has significantly fewer

examples compared to another class, which can lead to performance issues and bias in

ML models [12].

This approach involves oversampling the minority class to improve classification

performance using ML models. Instead of simply replicating existing examples, this tech-

nique creates additional synthetic examples of the minority class, increasing its represen-
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Figure 5.8 – Imbalanced dataset.

tation in the dataset. This allows models to have access to more information about the

minority class, contributing to better generalization and accurate classification [12].

When SMOTE is applied to the dataset, synthetic examples are generated along

the segments connecting the nearest neighbors of the minority class. The number of syn-

thetic examples to be generated is determined by a parameter called k, which represents

the number of nearest neighbors to consider. The choice of these neighbors is made at

random to ensure diversity in the synthetic examples generated [12].

As illustrated in Figure 5.9, it can be seen that, after applying SMOTE, the training

sample has been balanced so that the minority class matches the majority class in terms

of the number of examples.

Another technique for balancing datasets is undersampling. This technique in-

volves reducing the majority classes while keeping the minority classes intact [12]. Un-

dersampling is used to decrease the disparity between classes, providing a more balanced

distribution of data. By reducing the number of examples from the majority class, the aim

is to mitigate bias and improve the performance of ML models when dealing with imbal-

anced classes [40].

An example of an undersampling technique can be found in the work of Es-

tabrooks et al. [18]. In this study, the authors propose a nonheuristic algorithm that

balances the dataset by randomly eliminating data from the majority class. However, it

is important to note that this technique can remove valuable data [40], particularly in

forensic analyzes where each data point is a valuable source of information. Therefore,
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Figure 5.9 – Balanced training sample.

the application of undersampling in forensic scenarios should be carefully considered, to

avoid the loss of crucial information for the investigation.

Despite the literature listing various works and algorithms in this area [36, 23,

33, 34], this study does not utilize any undersampling technique on the data to prevent

the loss of important information.

5.2.4 Data Normalization

Normalization is a process in which the attributes of a dataset within a model

are adjusted or rearranged to enhance the coherence and consistency of the data. This

technique helps in the flexibility of the data, allowing them to be compared and related

more efficiently [45].

Through data normalization, redundancy and duplication of information are re-

duced, avoiding contradictions in the data and rendering it more reliable. This step plays

a crucial role, as it classifies and organizes the data in a standardized manner [27].

5.2.5 Results

In this section, we present the findings of our study that allow us to test the

hypotheses we have formulated.
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After analyzing the results presented in Table 5.3, we observed that most models

showed satisfactory performance, achieving metrics that exceed 0.90. In particular, the

models based on Random Forest [15] and XGBoost [13] exhibited the best results in terms

of precision, precision, recall and F1 score. These results indicate that these models are

better suited to infer and detect specific patterns in the IoT infrastructure based on the

features analyzed. These models demonstrated a superior ability to predict and accurately

identify relevant events and behaviors within the context of the IoT, thus contributing to

more informed and efficient decision making.

Table 5.3 – Metrics of the analyzed models
Model Accuracy F1-Score Precision Recall

Decision Tree 0.993 0.975 0.976 0.975
Random Forest 0.994 0.977 0.976 0.979

SVM 0.979 0.922 0.923 0.922
KNN 0.973 0.901 0.899 0.903

XGBoost 0.995 0.981 0.980 0.982
Naive Bayes 0.944 0.787 0.799 0.804

AdaBoost 0.858 0.610 0.634 0.632

Regarding the Decision Tree model, a high accuracy rate can be observed across

all classes, demonstrating its effectiveness in the classification task. However, there was

a higher incidence of errors in predicting the class representing the presence of 3 people

in the room, totaling 3 incorrect cases. Figure 5.10 shows the confusion matrix resulting

from applying this model to the analyzed data, providing a visual representation of the per-

formance of the classification algorithm. It shows the distribution of predicted classes in

relation to actual classes; for example, in the second class, there were 47 correct matches

between predicted and actual labels, with only one error out of a total of 48 labels.

The Random Forest ML model showed that luminosity, sound, and temperature

were the most influential attributes, as seen in Figure 5.11. These variables had a major

effect on the model’s decision making, demonstrating their critical role in recognizing

patterns and making inferences related to the IoT. These data are useful in understanding

which features were the most important.

However, the AdaBoost and Naive Bayes models showed less satisfactory results.

This performance difference can be attributed to various factors. In the case of AdaBoost,

as mentioned earlier, it can be sensitive to imbalanced data or the presence of outliers.

Therefore, if the dataset used possesses these characteristics, it may have adversely af-

fected the performance of the AdaBoost model.

A potential explanation for the performance gap between AdaBoost and XGBoost

could lie in the differences in the algorithms and strategies employed. XGBoost is an

extension of AdaBoost that employs a more advanced boost approach, allowing greater

capacity to learn and adapt to complex patterns in the data. This distinction may have



48

Figure 5.10 – Confusion matrix of the Decision Tree.

directly influenced the results, making XGBoost more effective in inferring and detecting

specific patterns within the IoT infrastructure.

In summary, although the negative outcome of AdaBoost might suggest a con-

nection to outlier handling, further investigation is necessary to confirm this assumption.

Furthermore, the discrepancy in performance between AdaBoost and XGBoost under-

scores the importance of exploring and comparing different algorithms and techniques

to achieve more accurate and reliable results in the analysis of IoT data.

Regarding Naive Bayes, it is important to highlight that this model makes a strong

assumption of conditional independence between variables, which may not always hold

true in all datasets. If the analyzed features possess dependencies among themselves,

Naive Bayes can fail to capture these relationships, and consequently, provide less precise

results.

It is evident that it is feasible to recognize patterns in existing IoT environments

utilizing the ML algorithms that have been examined and described. This allows us to re-

ject our null hypothesis H0 due to the high precision of the trained ML models investigated

in this research in determining the number of people in a room.

The original dataset temperature readings, primarly consist of regular patterns

with minimal variations, making it challenging to assess the Isolation Forest algorithm

performance in identifying outliers. In order to comprehensively test the model’s capabil-

ity, synthetic temperature data is generated to include specific types of anomalies, such

as prolonged outliers.
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Figure 5.11 – Feature Importance for the Random Forest model.

Synthetic anomalies are strategically designed to mimic potential irregularities

that may occur in a real-world scenario, even if they are infrequent in the original dataset.

By introducing these synthetic anomalies, the evaluation becomes more rigorous, allowing

for a thorough examination of the algorithm’s sensitivity to different types of deviations

from the norm.

This synthetic data creation is significant as it enables researchers to measure

the algorithm’s effectiveness in scenarios that might not be prevalent in the existing

dataset but could have critical implications in practical applications. It provides a proactive

approach to testing the model’s adaptability to a broader range of anomalies, ultimately

enhancing its robustness and reliability in anomaly detection tasks. In addition, the pur-

pose of this was to determine whether unsupervised ML could successfully identify these

data points and distinguish which are considered anomalous.

Figure 5.12 illustrates all temperature data points from the S1_Temp sensor, in-

cluding synthetic data, along with the results of the analysis of the Isolation Forest model.

During analysis, the algorithm successfully identified the synthetic data as out-

liers, indicating the ability of the isolation forest model to distinguish unusual patterns in

the temperature data. Additionally, the identification of synthetic outliers showcases the

model’s capability in handling these situations, providing valuable insights for detecting

anomalies in similar datasets.

Although this may not be a highly complex real-world situation, due to the syn-

thetic data, it is important to emphasize the potential importance of these algorithms in

assisting criminal investigations.
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Figure 5.12 – Temperature Outliers Identified with Synthetic Data Points.

5.2.6 Discussion of Results

This section discusses the results obtained from our study and thus answers our

defined research questions.

This study has demonstrated the ability of Random Forest and XGBoost to rec-

ognize patterns in data obtained from IoT devices, thus affirming their usefulness in this

context. The effectiveness of these models in recognizing significant features in the IoT

infrastructure shows their potential to help in criminal investigations within this environ-

ment.

Using these models in criminal investigations in IoT settings, it is possible to de-

tect suspicious events and anomalies that could be indicative of criminal behavior. For

example, irregular patterns of brightness, CO2 concentrations, or noise could be signs

of illegal or unauthorized activities. These models can be adjusted and improved over

time, improving their ability to recognize relevant patterns for criminal activities. We use

the models in our context to calculate the number of people in a certain room, and they

achieved a success rate of more than 97% for multiple metrics.

• RQ1: We have conducted a thorough investigation to identify methods that are best

suited to decipher the complex patterns found in large datasets created from IoT

data. By comparing different techniques, we have been able to pinpoint the ap-

proaches that are most effective in deriving meaningful information from our data

set.

• RQ2: This research has demonstrated the effectiveness of ML techniques in recog-

nizing and interpreting patterns. Random Forest and XGBoost have been used to

great effect, showcasing the potential of the right algorithms in this field.

• RQ3: Our research has revealed patterns that could be of great benefit to forensic

analysis in the IoT environment. These patterns can help identify unusual events

and potential criminal behavior, providing useful clues and information that can be

of great help in investigations.

• RQ4: Our analysis of unsupervised ML algorithms, such as Isolation Fores illustrated

in Figure 5.12, reveals their effectiveness in identifying outliers within datasets gen-
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erated by IoT data. For example, Isolation Forest works by isolating outliers in the

data by selecting a feature and then randomly selecting a split value between the

maximum and minimum values of the selected feature. The number of splits re-

quired to isolate the outlier is used as a measure of its abnormality.

• RQ5: Our research has demonstrated the effectiveness of ML algorithms, particu-

larly Random Forest and XGBoost, in accurately estimating the number of people

in a smart environment. We found that these algorithms achieved a success rate of

more than 97%. Furthermore, our findings highlight the potential of ML algorithms to

provide valuable information on occupancy patterns, thus facilitating more informed

decision-making processes in various applications.

• RQ6: The ML algorithms that demonstrated the highest accuracy and reliability

in estimating the number of people in a smart environment were Random Forest

and XGBoost. These algorithms consistently outperformed others in our research,

achieving success rates that exceed 97%.

In conclusion, our study has shown that Random Forest and XGBoost are capa-

ble of accurately detecting the number of individuals in a given room. Additionally, our

results indicate that these ML algorithms can be utilized to enhance and support criminal

investigations in the field of IoT forensics. Furthermore, the ability of these algorithms to

identify patterns and anomalies in IoT data not only highlights their immediate usefulness,

but also suggests potential advancements in the application of data-driven methods for

more comprehensive investigative insights and detailed forensic analyses in the coming

years.

5.3 Hyperparameters Tuning

In this section, we will dive into the process of optimizing the hyperparameters

of our ML models. Hyperparameters play a fundamental role in determining the perfor-

mance and effectiveness of these models, and finding the right combination is essential

to achieve the best possible results. Through a systematic exploration of hyperparame-

ter settings, we aim to enhance the predictive power and generalizability of our models,

ultimately fine-tuning their performance to meet the specific demands of our problem

domain. This section will outline the strategies and methodologies we used to optimize

hyperparameters, shedding light on the critical decisions made to improve the overall

efficacy of our ML algorithms.

In the realm of ML, hyperparameter tuning is the fine-tuning of the settings of a

powerful instrument that aims to infer room occupancy from data. These settings, known
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as hyperparameters, are the keys to orchestrating the performance of our ML models,

specifically tailored to the task of inferring room occupancy.

Our primary goal in hyperparameter tuning is to identify the ideal combination

of hyperparameters that results in the highest accuracy and reliability in inferring room

occupancy. This optimal configuration ensures that our model excels not only in training

but, most importantly, in making accurate real-time predictions. However, the computa-

tional resources required to navigate a complex landscape of possibilities are substantial.

Therefore, we must tread carefully to avoid overfitting our model to the training data.

To address these challenges, we will exclusively employ Grid Search and Ran-

dom Search to fine-tune our hyperparameters. Grid Search systematically explores a pre-

defined hyperparameter grid, while Random Search randomly samples hyperparameters

from specified ranges.

Hyperparameter tuning, particularly through Grid Search and Random Search, is

a dynamic process where the right combinations create a powerful model that accurately

and reliably infers room occupancy. It is a fundamental part of our journey to harness

the full potential of ML in the context of room occupancy inference. For the hyperpa-

rameter tuning process, we opted for Random Search, primarily because of its superior

performance in efficiently exploring the hyperparameter space. Additionally, our focus for

hyperparameter tuning was directed at both the Random Forest and XGBoost models.

Table 5.4 – Hypertuned models
Model Accuracy F1-Score Precision Recall

Random Forest 0.994 0.975 0.977 0.979
XGBoost 0.995 0.978 0.981 0.981

In our research, while rigorously optimizing the hyperparameters for our XGBoost

model, we observed a marginal decrease in model performance, compared to the untuned

baseline model, as summarized in Table 5.4. This phenomenon is not uncommon in the

field of ML and can be attributed to various factors [6]. One possibility is that, in our pur-

suit of optimizing hyperparameters, the model may have been unintentionally fine-tuned

to the validation data to such a degree that it no longer generalized as effectively to un-

seen data. Additionally, intricate interactions among hyperparameters can sometimes

result in suboptimal combinations that appear to perform well in the validation phase, but

fail to maintain their effectiveness in real-world data. It is crucial to consider that, due

to inherent noise or randomness in real-world datasets, observed fluctuations in model

performance can occur. Furthermore, the evaluated metric chosen for optimization, the

F1 score, although carefully selected, may not be perfectly aligned with the real world

goals of our room occupancy inference task. In light of this observation, our study empha-

sizes the importance of not only the pursuit of optimal model configurations but also the

recognition of the broader challenges and trade-offs inherent in ML.
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5.4 Limitations and Lessons Learned

Our research encountered a certain limitation, that our ML models were tested

on only our initial dataset. To address this, we took proactive steps to reduce potential

biases. We allocated 10% of the initial dataset for testing, allowing us to assess the gen-

eralizability and strength of our models beyond the data on which they were trained.

To maximize the accuracy and dependability of our results, we extended our

methodology by using cross-validation techniques. This involves dividing the dataset into

separate parts, training the models on one part, and then testing them on the other. This

iterative process provides a thorough evaluation of the models’ performance in different

data sets, which helps to more accurately determine their effectiveness in recognizing

patterns in various IoT environments.

Using cross-validation, our research exceeded the restrictions that come with re-

lying on a single set of tests. It safeguarded against the possibility of overfitting and

increased the model’s ability to handle data that have not been seen before. Further-

more, cross-validation is in line with the construct validity framework, which guarantees

that our models accurately capture the complex patterns and behaviors common in IoT

environments.

At the start, our testing approach gave us some understanding, but by adding

cross-validation we made our findings more reliable, providing a more thorough assess-

ment of how the ML models worked with a wider range of data.

The use of ML models in pattern detection within IoT environments can be im-

proved by taking into account several aspects. Through the development of this study

and the analysis of the results, it was possible to identify and consider relevant factors

that can help to better understand the use of these models. These lessons learned can be

used to guide future research and improve investigation approaches in scenarios involving

IoT devices.

• Significance of Proper Selection of ML Models: The choice of the right ML mod-

els is essential to achieve good performance and accurate results. By carefully com-

paring and evaluating different models, it was possible to determine which models

were more effective in recognizing certain patterns within the IoT infrastructure. This

emphasizes the importance of making a well-considered selection of models, taking

into account the characteristics of the data and the objectives of the research.

• Importance of Data Exploration and Preprocessing: Data preprocessing, such

as dealing with outliers and normalization, can have a major effect on the outcomes.

Additionally, it is critical to investigate the characteristics of the data and understand
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their significance in the decision-making process of the models to draw meaningful

conclusions and direct the analysis.

• Need for a Representative and Balanced Dataset: The importance of the qual-

ity and representation of the dataset cannot be overstated when it comes to the

performance of ML models. To ensure reliable and accurate results, it is essential to

have a dataset that is diverse, balanced, and reflective of the context being stud-

ied. To avoid bias in the results, comprehensive data collection and consideration

of potential class or event imbalances must be taken into account. In the cases of

imbalanced datasets, such as those found in the IoT, techniques such as SMOTE can

be used to even out minority classes.

Throughout the development of this study, another lesson we have learned is

the importance of carefully considering the size and complexity of the datasets used.

Eventually, especially when dealing with extensive databases, we encountered significant

challenges related to the memory requirements for training these models.

Memory issues can arise due to the vast amount of data that models need to

process and store during training. This situation may cause practical constraints in terms

of the computational resources that are available, leading to extended training durations,

system instability, and potential failures during the training phase.

Hence, it became clear to us that, apart from dealing with the technical and al-

gorithmic aspects of machine learning, it is essential to also take into account constraints

like memory when creating machine learning solutions. Consequently, we have acquired

the knowledge to embrace a comprehensive strategy, integrating methods like data pre-

processing, effective sampling, and deliberations on model structure to address memory-

related issues and guarantee successful training of our models.

This experience has taught us that while machine learning offers incredible op-

portunities, it is essential to maintain a broad and balanced perspective, considering not

only the technical aspects but also the practical and operational challenges that may arise

when dealing with large datasets.

These lessons offer invaluable advice to those looking to use ML to detect pat-

terns in IoT settings. By taking these elements into account, future studies can gain from

better model selection, more reliable data preprocessing, and more precise and reliable

results.
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6. CONCLUSION

The results obtained in this study highlight the ability of Random Forest and XG-

Boost to identify patterns in the data collected by IoT devices, solidifying their role in

this context. The efficiency of these models in detecting relevant features in the IoT in-

frastructure demonstrates their potential to assist in criminal investigations within this

environment. By applying these models to criminal investigations in IoT environments, it

is possible to identify suspicious events and anomalies that may indicate criminal or unau-

thorized activities. For example, abnormal patterns in brightness, CO2 levels, or sounds

can serve as indications of illicit activities. These models can be adapted and refined over

time, enhancing their ability to detect relevant patterns related to crime.

While Random Forest and XGBoost have demonstrated satisfactory efficiency in

estimating the number of people in an environment based on data collected from IoT

devices, these models must be interpretable. This means that the results should be com-

prehensible and explainable, allowing investigative professionals and stakeholders to un-

derstand how decisions are made and trust the results obtained. In summary, the results

underscore that the Random Forest and XGBoost algorithms show the potential to detect

room occupancy in IoT environments, highlighting their efficiency for investigation pur-

poses. In this study, both models exhibited the best performance, validating their utility

in analyzing data from IoT environments.

However, it is important to note that ML models should be used as a supple-

mentary tool in the investigation process and that the interpretation of results and the

consideration of other available evidence are essential. As technology related to IoT and

DF continues to evolve, new opportunities and challenges will arise for the application of

ML models. With proper data collection and analysis, these models can lead to significant

advancements in the ability to detect, prevent, and elucidate crimes in IoT environments.

Furthermore, it is essential that this evolution is accompanied by an ethical and responsi-

ble approach, which ensures the protection of individual privacy and the appropriate use

of the collected information.

In conclusion, the results suggest that the use of ML models can be a promising

approach to detecting patterns in IoT environments and assisting in criminal investiga-

tions, but their use must be exercised with caution, combining them with other techniques,

and considering the specifics of each individual case.

It is important to note that part of the results found in Chapter 4 of this work are

based on the research presented in the publication [16]: ’Machine Learning for Forensic

Occupancy Detection in IoT Environments’ at the WorldCist 2024 conference. This recog-

nition highlights the potential impact of our methodologies and findings, further enriching

the ongoing academic discourse within the field of DF.
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6.1 Future Work

In light of the challenges associated with sourcing a pertinent dataset for ML

applications in people detection within an IoT environment, we will create a new compre-

hensive dataset. This data collection will be meticulously collected from a single room

within the IoT environment, incorporating a wide range of sensory inputs. The primary

objective of this data collection effort is to facilitate more thorough testing and validation,

providing an improved understanding of how ML models can effectively identify patterns

and anomalies within the unique context of room dynamics. This specialized dataset is

expected to significantly advance forensic IoT analysis, providing additional fresh insights

into this dynamic field.

To ensure the completeness of the dataset, we will incorporate various scenarios

of room dynamics. This will include variations in occupancy levels, various lighting con-

ditions, and a spectrum of human activities. By integrating these diverse scenarios, the

dataset will closely emulate the complexities of real-world IoT environments, providing a

robust foundation for testing ML models.

An emphasis will be placed on introducing unique and challenging scenarios,

commonly referred to as edge cases. These carefully chosen instances will strategically

assess the adaptability and resilience of ML models to handle unexpected situations, con-

tributing to the refinement of their overall performance.

Recognizing the sensitivity of person detection data, we commit ourselves to im-

plementing rigorous privacy protocols. Employing anonymization techniques and secure

data handling practices will ensure ethical collection and use of data, upholding the high-

est standards of privacy protection.

Prioritizing the exploration of real-time data acquisition methods will allow the

simulation of dynamic and evolving scenarios within the room. This approach allows for

the evaluation of ML models in situations where the environment undergoes continuous

changes, providing a more authentic assessment of their adaptability.

To increase the complexity of the data set, we plan to integrate multimodal data

sources, including audio and video inputs. This comprehensive approach seeks to offer a

holistic representation of the IoT environment, enhancing the models’ ability to adapt to a

diverse range of sensory inputs.

A crucial component of our research will involve benchmarking the performance

of ML models trained on our newly generated dataset against established datasets com-

monly employed in similar studies. This comparative analysis aims to underscore the

distinctive qualities and effectiveness of our dataset, contributing to the advancement of

research in IoT forensics.
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We are actively exploring the prospect of contributing our dataset to the open re-

search community. By openly sharing the dataset, our intention is to foster collaboration,

promote experiment reproducibility, and contribute to the establishment of standardized

benchmarks in the field of IoT forensics.
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