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RECONHECIMENTO DE SINAIS ISOLADOS DE LIBRAS

RESUMO

O presente trabalho tem foco no reconhecimento isolado da língua de sinais na

Língua Brasileira de Sinais, fundamental para promover acessibilidade digital à comuni-

dade surda. Porém, a escassez de dados e a diversidade limitada de sinais disponíveis e

atores dificultam o desenvolvimento de modelos capazes de generalização e avanço na

área. Trabalhos anteriores, como o dataset MINDS, limitam-se a vocabulários reduzidos,

ambientes controlados e baixa diversidade de sinalizadores, o que tende a resultar, em

alguns casos, em modelos super-especializados e com baixa acurácia em cenários dife-

rentes do que é visto no conjunto de treinamento. Com o intuito de abordar as atuais li-

mitações, foi desenvolvido um conjunto de dados, MALTA-LIBRAS, construído pela coleção

de vídeos de LIBRAS disponíveis publicamente, introduzindo variabilidade em sinalizado-

res, ambientes e condições de gravação. Três arquiteturas baseadas em Transformers,

VideoMAE, TimeSformer e ViViT, são investigadas em três configurações experimentais:

pré-treinamento em conjuntos de dados de reconhecimento de ações, aplicação de es-

tratégias de aumento de dados e exploração de possível transferência de conhecimento

entre línguas de sinais a partir de conjuntos de dados das línguas de sinais norte ameri-

cana e russa. Resultados no dataset MALTA-LIBRAS indicam que os modelos pré-treinados

em tarefas de reconhecimento de ações atingem 29% de acurácia, enquanto modelos

sem pré-treino atingem o equivalente a predição aleatória. Técnicas de aumento de da-

dos auxiliam na generalização do modelo, aumentando a acurácia de 29% para 33,6%.

A transferência de conhecimento entre línguas para LIBRAS mostrou-se limitada, com ga-

nhos de 2,7% em acurácia, reforçando a necessidade de adaptação específica por domí-

nio. Conclui-se que a diversidade de dados (sinalizadores, ambientes) é tão crucial quanto

o volume para aplicações reais, e é proposto um framework unificado para SLR em cená-

rios de baixos recursos, combinando pré-treinamento em ações humanas, aumento de

dados direcionado e fine-tuning.

Palavras-Chave: LIBRAS, reconhecimento isolado de línguas de sinais, Vision Transfor-

mers.



ISOLATED SIGN LANGUAGE RECOGNITION IN LIBRAS

ABSTRACT

The present work focuses on the isolated recognition of sign language in Brazilian

Sign Language (LIBRAS), essential for promoting digital accessibility for the Deaf commu-

nity. However, data scarcity and the limited diversity of available signs and actors hin-

der the development of models capable of generalization and advancement in the field.

Previous works, such as the MINDS dataset, are limited to reduced vocabularies, con-

trolled environments, and low signer diversity, which tends to result, in some cases, in

super-specialized models with low accuracy in scenarios different from what is seen in

the training set. To address current limitations, a dataset, MALTA-LIBRAS, was developed,

constructed by collecting publicly available LIBRAS videos, introducing variability in sign-

ers, environments, and recording conditions. Three architectures based on Transformers,

VideoMAE, TimeSformer, and ViViT, are investigated in three experimental configurations:

pre-training on action recognition datasets, application of data augmentation strategies,

and exploration of possible knowledge transfer between sign languages using datasets

from North American and Russian sign languages. Results on the MALTA-LIBRAS dataset

indicate that models pre-trained on action recognition tasks achieve 29% accuracy, while

models without pre-training achieve the equivalent of random prediction. Data augmenta-

tion techniques aid model generalization, increasing accuracy from 29% to 33.6%. Knowl-

edge transfer between languages to LIBRAS proved limited, with gains of 2.7% in accu-

racy, reinforcing the need for domain-specific adaptation. It is concluded that data di-

versity (signers, environments) is as crucial as volume for real-world applications, and a

unified framework for SLR in low-resource scenarios is proposed, combining pre-training

on human actions, targeted data augmentation, and fine-tuning.

Keywords: LIBRAS, isolated sign language recognition, Vision Transformers.
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1. INTRODUCTION

In recent years Artificial Intelligence (AI) has gained increasing importance in a

wide range of applications, becoming an important component in many aspects of mod-

ern life. Its integration into computational tools and services has streamlined processes

and supported decision-making in a wide range of subjects, from healthcare and trans-

portation to entertainment and communication [36]. This growth has been closely tied

to progress in Machine Learning (ML), a branch of AI that is able to identify patterns in

data and make predictions or decisions without explicit instructions [11]. In particular,

Deep Learning (DL), a subfield of ML that leverages multi-layer Neural Networks (NNs) to

learn hierarchical representations directly from raw data, have set in motion a new wave

of breakthroughs in areas such as Computer Vision (CV) and Natural Language Process-

ing (NLP). The recent development of large-scale datasets, coupled with improvements in

computing resources, such as Graphics Processing Units (GPUs), has enabled DL models

to handle complex tasks with a level of sophistication and scalability previously unattain-

able [52].

Within the domain of computer vision, DL models have transitioned focus on

tasks from static image analysis to the more challenging realm of video understanding.

This transition recognizes that dynamic scenes, captured as sequences of frames, con-

tains valuable temporal information. By incorporating both spatial and temporal cues,

models designed for video classification can recognize actions, detect events, and inter-

pret interactions that unfold over time [50, 85]. These methods have become increasingly

relevant over the years in diverse applications, such as security, sports analytics and

human-machine interfaces [34, 84]. As research in CV has evolved, the field has grown

more comprehensive, integrating specialized applications such as Sign Language Recog-

nition (SLR). Rather than a narrow shift, frameworks now embrace SLR as one facet of a

diversified research agenda, leveraging advances in spatio-temporal feature extraction,

cross-modal alignment and real-time processing to address challenges in CV [102, 58].

According to the World Health Organization (WHO) [101], more than 1.5 billion

people worldwide experience some degree of hearing loss, and around 466 million of them

face serious hearing impairments. Although members of the Deaf community have their

own linguistic and cultural traditions, these identities are frequently overlooked. Many

hearing societies perceive deafness as a disability, rather than recognizing it as part of

a distinct culture, which can lead to general marginalization [81]. SLs, as unique and

natural languages expressed through manual and non-manual visual signals, present dis-

tinct challenges to computational modeling [46]. Unlike spoken languages, which heavily

rely on linear sequences of phonemes and words, SLs convey meaning through complex

spatial-temporal patterns of hand shapes, orientations, movements, facial expressions,

and body postures.
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This form of communication is not merely a transcription for spoken languages

but, instead, a linguistic system with unique grammars and lexicons [13]. The inherent

complexity of SLs, along with variations in signing style, dialects, signer appearance, and

recording conditions, makes the creation of robust and adaptable recognition models non-

trivial [46]. While the advent of wearable devices and assistive technologies, such as

SLR gloves and gesture-based interfaces, initially promised significant improvements in

accessibility, their adoption within Deaf communities has been limited due to practical

and cultural reasons. Deaf individuals often express skepticism towards these devices be-

cause they fail to fully capture the nuances and linguistic richness of SL, particularly the

crucial role of facial expressions and body language integral to meaning. Additionally, the

requirement for specialized equipment or unnatural signing conditions further diminishes

their practicality and acceptance. Moreover, research highlights that many Deaf users

prefer interacting with technologies that respect their natural linguistic behaviors, rather

than adapting their signing style to fit technological constraints. Consequently, effective

SLR technologies must incorporate these considerations, focusing on naturalistic sign cap-

ture and recognition methods to genuinely enhance accessibility, inclusivity, and usability

for Deaf communities [35].

SLR involves interpreting signs at varying levels of granularity, ranging from

character-level recognition, commonly referred to as fingerspelling, to word-level, Isolated

Sign Language Recognition (ISLR), and finally to Continuous Sign Language Recognition

(CSLR), which captures entire phrases or sentences [8]. Fingerspelling typically involves

recognizing handshapes that represent individual letters of an alphabet and is often con-

sidered a more straightforward task, as it comprises a limited and fixed set of gestures.

However, challenges still arise from variations in speed, style, and signer proficiency [83].

ISLR, in contrast, deals with recognizing discrete signs corresponding to individual words,

which introduces additional complexities, including significant variability in handshapes,

motion trajectories, facial expressions, and contextual nuances [8]. CSLR further elevates

the complexity by requiring recognition of a continuous stream of signs, where segmen-

tation and temporal alignment become crucial issues, compounded by the lack of explicit

boundaries between signs. Additionally, CSLR faces substantial challenges due to the

complex grammar, fluid transitions, and extensive vocabulary present in natural SL com-

munication [21]. The focus on ISLR in this dissertation was primarily driven by the already

limited availability of datasets at the word level in LIBRAS. Pursuing CSLR would have

significantly exacerbated the data scarcity issue, hindering the feasibility and robustness

of developing effective recognition models. Thus, focusing on ISLR allowed for a more

achievable scope while still addressing critical gaps in existing research and dataset avail-

ability.

Several Sign Languages (SL), such as American Sign Language (ASL), Russian

Sign Language (RSL), German Sign Language (GSL), and Chinese Sign Language (CSL), are
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supported by extensive datasets that have enabled the training of DL models addressing

the SLR task. For instance, the WLASL dataset [53] for ASL, the SLOVO dataset [49] for

RSL, the RWTH-PHOENIX-Weather dataset [30] for GSL, and the CSL dataset [44] for CSL

collectively serve as benchmarks for evaluating spatio-temporal DL models. In contrast,

Brazilian Sign Language (LIBRAS) remains limited by a shortage of large, diverse datasets,

resulting in a constrained training scenario for DL approaches. Models trained on currently

available LIBRAS datasets often show poor generalization, primarily due to insufficient and

less representative data.

Among the initiatives for LIBRAS, the MINDS [78] dataset stands out as an effort

in the area of ISLR. However, the constrained vocabulary and lack of a dedicated test set

limit the extent to which models trained solely on MINDS can generalize to unseen signers,

broader contexts and novel signs. Models trained on MINDS data risk overfitting, as they

do not encounter sufficient diversity in vocabulary, signing style or recording conditions

to handle real-world scenarios effectively.

In view of these issues, this dissertation introduces a novel dataset, named MALTA-

LIBRAS, which was compiled through web scraping from multiple open sources. Our

dataset encompasses over 11,000 videos, with 60 unique actors performing signs and

over 4,500 unique signs. MALTA-LIBRAS intersects with the MINDS vocabulary but extends

coverage to more signers and less controlled video samples, aiming to capture some of

the variability found in everyday signing. The dataset’s complementary nature enables

it to function as a test set for models originally trained and validated on MINDS, thereby

shedding light on generalization capabilities of DL models.

This dissertation examines three State-Of-The-Art (SOTA) attention-based video

classification architectures, VideoMAE [95], TimeSformer [10], and ViViT [6], in the con-

text of ISLR for LIBRAS. These architectures exploit attention mechanisms to analyze both

spatial and temporal dynamics, suitable to handle the gestural complexity of SLs. Our

experiments consider multiple facets of model development, including the effect of pre-

training on large-scale action recognition tasks, cross-datasets experiments using other

SLs datasets, and the impact of different data augmentation techniques on model perfor-

mance.

Ultimately, understanding and improving automated ISLR in LIBRAS bear prac-

tical significance. Effective SLR tools could aid in education, make public services more

inclusive [90], support content creation in SL [93], and strengthen the connection be-

tween deaf and hearing communities [13]. By bridging the gap between the controlled

conditions of existing datasets and the variability inherent in genuine everyday use, the

research presented here aspires to contribute to the design and evaluation of models that

are ready for deployment in diverse real-life signing contexts.

Our findings indicate that training these models exclusively on a small, controlled

dataset like MINDS leads to an overfit scenario, whereas introducing additional data or pre-
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training techniques improves convergence speed and generalization. The MALTA-LIBRAS

dataset, by presenting a broader range of signing conditions, highlights the limitations

of models that have only been exposed to homogeneous training data. In sum, this dis-

sertation aims to advance ISLR in LIBRAS beyond small or highly controlled datasets by

demonstrating how data diversity, augmented training pipelines, and transfer learning

strategies can help build DL models that more accurately reflect the complexities of real-

world signing.
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2. BACKGROUND

This chapter outlines the theoretical foundations for the research presented in

this work. We begin by examining the nature and diversity of SLs, with particular empha-

sis on the distinctive features of LIBRAS. The discussion then turns to the key paradigms

of machine learning, including supervised, unsupervised, semi-supervised, and reinforce-

ment learning, followed by an overview of deep learning concepts—from early perceptrons

to modern architectures designed to handle complex tasks at scale. The final sections ad-

dress the domain of video understanding, focusing on attention-based models such as

Transformers and Vision Transformers that capture spatiotemporal relationships and have

proven effective in tasks like SLR.

2.1 Sign Languages

SLs are rich and complex forms of communication that naturally emerged to meet

the communicative needs of Deaf individuals. Each SL has its own grammatical structure

and syntactic rules that are distinct and are not mere gestural transcriptions of their cor-

responding spoken languages. For instance, ASL has its own grammatical system, which

is significantly different from North American English [13].

Estimates indicate the existence of more than 200 SLs used by over 70 million

Deaf people worldwide [100]. Within each SL, there are variations analogous to the di-

alects found in spoken and written languages. SLs incorporate manual elements, such as

hand position, movement, shape, and orientation. They also rely on non-manual charac-

teristics, including facial expressions, body posture, and the use of gaze to convey more

subtle meanings [2, 78].

SLs have distinctive characteristics that differentiate them considerably from

spoken languages, not only in grammatical aspects but also in terms of general structure,

word sequence, and lexicon [89]. For example, when translating from a spoken language

to its corresponding SL, translators face the challenge of mapping language concepts to

equivalent signs, which may be represented by one or more specific gestures. This task

requires a deep understanding of semantic nuances and the universal linguistic rules gov-

erning sign formation [47].

Moreover, interlinguistic translation between SLs and spoken languages is not a

direct transcription but a transposition requiring adjustments to accommodate structural

differences. While spoken languages often rely on syntax and word order for meaning,

SLs frequently utilize physical space, movement and even near objects and individuals to
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express concepts, leading to unique sentence constructions and a spatial representation

that is intrinsic to how signs are produced and understood [81].

2.1.1 LIBRAS

In 2002, LIBRAS was recognized as an official language of Brazil through Law No.

10,436 [14], establishing it as a legal means of communication and expression [32]. As

part of the ongoing commitment to accessibility, Brazil’s Ministry of Health developed a

manual to improve access for individuals with disabilities to the Unified Health System

(SUS), thus ensuring the availability of adequate health information and services [64, 19].

According to data from the 2019 National Health Survey (NHS), published by the

Brazilian Institute of Geography and Statistics (IBGE) in 2021, approximately 1.1% of the

Brazilian population, equivalent to about 2.3 million people, have some degree of hearing

impairment. Among this group, 22.4% use LIBRAS as a form of communication [4].

As a language that emerged naturally, LIBRAS employs a grammatical system

composed of unique syntax, morphology, and phonology. Its core word order typically

follows Subject-Verb-Object (SVO), though alternative structures appear through topical-

ization and the use of non-manual markers such as facial expressions, gaze, and head

movements. For example, the portuguese sentence "João deu o livro para Maria." (or

"John gave the book to Maria" in english) is rendered in LIBRAS as "MARIA EMPHASIZED

GESTURE JOÃO LIVRO DAR" (or "MARIA EMPHASIZED GESTURE JOHN BOOK GIVE" in en-

glish), moving "MARIA" to the front and using an emphasized gesture, such as an eyebrow

movement or head tilt, to signal the shift in phrase structure. In LIBRAS, the verb "GIVE" is

signed with a directional movement that visually connects the subject to the object, mark-

ing their relationship and emphasizing the object phrase by moving it to the beginning of

the phrase. These features transmit grammatical relationships and emphasis, contribut-

ing to clear communication. Furthermore, the sign for boredom, gestured with different

intensities and facial expressions, can semantically signify varying degrees of boredom.

In ISLR, capturing these syntactic and morphological elements is crucial for inter-

preting signs within their linguistic context. This includes attending to factors such as the

distinction between inflecting and plain verbs, agreement processes, and the coordination

of manual and non-manual signals [25, 47].

2.2 Machine Learning

ML can be broadly described as the study and development of models that learn

patterns from data rather than relying on explicit programming rules. Unlike traditional
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software engineering, which encodes every logic path in a hard-coded manner, ML enables

systems to adapt and generalize from a set of examples, then apply that knowledge when

confronted with new, unseen inputs. This flexibility supports many applications, including

computer vision, NLP, and recommender systems [65, 11].

A standard ML workflow begins with data collection and preparation, ensuring

that the dataset encompasses a broad range of user groups and environmental condi-

tions. This diversity reduces the likelihood that certain subsets of data are overrepre-

sented or underrepresented, which could bias the model or limit its applicability. It is

common practice to divide the dataset into training and validation sets for model training

and hyperparameter tuning, while a separate test set is used to evaluate how well the

model generalizes to examples it has not encountered before. During the training stage,

the model iteratively adjusts its weights to optimize metrics such as accuracy or validation

loss. Once training concludes, the model moves to an inference phase in which it employs

learned patterns to handle novel input data [65, 36].

Broadly speaking, ML methods fall into four paradigms, each defined by the type

of data involved and the nature of the learning objective: supervised learning, unsu-

pervised learning, semi-supervised learning, and reinforcement learning. Supervised al-

gorithms rely on labeled examples for direct guidance, whereas unsupervised methods

discover underlying patterns in unlabeled data. Semi-supervised techniques integrate

both labeled and unlabeled samples to mitigate the costs of labeling, and reinforcement

learning teaches an agent to select actions based on a reward. Recognizing these dif-

ferences is essential when selecting solutions to address specific problems or data con-

straints [11, 69, 36].

Although ML models are able to learn from training data, they often presume

that conditions at testing mirror those during training. If the real-world data shifts, model

performance may decline unless additional adaptive measures are introduced. Moreover,

advanced models and large networks can require substantial computational resources for

training and real-time operation, sometimes needing specialized hardware. Addressing

these factors, alongside considerations such as bias, data heterogeneity, and distribution

changes, helps ensure that ML solutions remain relevant in different settings [65, 11].

2.2.1 Supervised Learning

Supervised learning uses labeled data as guidance. Each training sample has an

associated label or target, and the objective is to learn a function that effectively maps

inputs to the desired outputs. Common supervised tasks include classification (i.e., as-

signing discrete labels, such as the "cat" vs "dog" classification task) and regression (i.e.,

predicting continuous values, such as housing market prices) [11, 69]. In a typical super-
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vised workflow, the dataset is split into training, validation, and test sets; the model iter-

atively learns from the training set, tunes hyperparameters using the validation set, and

demonstrates its performance on the test set. In SLR, supervised methods require anno-

tated videos of signs, each aligned with a word-level or sentence-level label, class or gloss.

While these methods often yield high accuracy when many labeled examples are avail-

able, collecting comprehensive and diverse annotations is time-intensive and can limit

dataset size, especially for SLs like LIBRAS with fewer available resources [65]. In video

action recognition task, supervised models such as Inflated 3D ConvNets (I3D) are trained

on labeled datasets (e.g., Kinetics-400 [51]), achieving SOTA accuracy on UCF101 [88]

dataset by mapping RGB frames to action labels.

2.2.2 Unsupervised Learning

Unsupervised learning trains on unlabeled data by finding latent patterns or struc-

tures. Models such as clustering (e.g., K-means [70]) or dimensionality reduction (e.g.,

PCA [63]) seek to group similar inputs or capture essential features of the data without

explicit labels [11]. This paradigm can be beneficial when labeled data is scarce. For

instance, an unsupervised approach in SLR might cluster different hand configurations

or gesture trajectories. Although unsupervised approaches can reveal insights into data

organization and substructures, they often require domain expertise to interpret outputs

or to select meaningful hyperparameters [11]. Unsupervised methods may also serve

as a foundation for other paradigms by producing initial groupings or embeddings that

guide subsequent supervised training. Techniques that learn spatiotemporal video rep-

resentations without explicit labels, such autoencoder-based methods or deep clustering

approaches applied to raw video data are examples of this paradigm which discovers la-

tent video patterns and features solely from the video content.

2.2.3 Self-Supervised Learning

Self-supervised learning has emerged as a distinct paradigm where training pat-

terns come solely from inherent data structures, rather than manual labels. The model

predicts masked or transformed portions of data, leveraging patterns like temporal conti-

nuity or spatial coherence to learn representations [37]. For textual data, masked lan-

guage modeling (e.g., BERT [26]) operates by obscuring some tokens and asking the

model to reconstruct them. In image or video domains, related approaches hide patches

or frames and task the model with reconstruction of missing data.
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In SLR, such methods can learn spatiotemporal representations without exhaus-

tive annotation. For example, VideoMAE [95] adopts a masked autoencoder strategy for

video, masking a large fraction of input patches and reconstructing them. This method

is referred to as self-supervised because it does not rely on external labels to define the

objective; the data itself provides the learning signal. Once trained in this manner, the

network can be fine-tuned on smaller labeled sets for tasks like SLR.

2.2.4 Semi-supervised Learning

Semi-supervised learning lies between supervised and unsupervised approaches,

blending a limited quantity of labeled data with a larger pool of unlabeled data [105, 18].

The rationale is that labeled examples provide direct guidance, while unlabeled ones help

the model uncover broader data structures or manifold properties. In practice, semi-

supervised algorithms often attempt to ensure that data points close in the feature space

share the same label or combine label consistency with unsupervised objectives. For SLR,

semi-supervised strategies could leverage partly annotated SL datasets: a small set of

gloss-labeled samples plus many unlabeled videos. These methods can diminish labeling

costs by propagating labels or constraints from a few annotated samples to many unla-

beled examples, potentially yielding higher coverage of different signers and scenarios.

2.2.5 Reinforcement Learning

Reinforcement learning is a learning paradigm wherein an agent interacts with

an environment to maximize a cumulative reward signal, rather than relying on labeled

examples. At each time step, the agent observes the current state, selects an action, and

receives feedback in the form of a reward and a new state. Over time, it refines its pol-

icy, which is essentially a mapping from states to actions, to optimize long-term reward.

This trial-and-error process allows the agent to adapt to uncertain or changing environ-

ments, with close to none prior knowledge of explicit objectives. While early methods

often employed tabular representations for small-scale problems, more recent work com-

bines principles with deep Neural Networks (NN) to handle high-dimensional inputs and

complex tasks, such as robotics control and game-playing. In all cases, the core idea is

that an agent can learn effective behaviors by iteratively observing and acting on feed-

back rather than depending on pre-defined training labels or direct instructions [66, 91].
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2.2.6 Artificial Neural Networks

Artificial Neural Networks (ANNs) are models inspired by simplified views of how

biological neurons process information in the human brain. ANNs are built upon intercon-

nected layers of artificial neurons, or nodes, each performing weighted sums of inputs and

passing the result through an activation function. This structure allows ANNs to approx-

imate a wide variety of functions, making them useful for classification, regression, and

numerous other learning tasks [65, 80, 11, 36].

The Perceptron represents one of the earliest forms of ANNs. It classifies an input

vector x by computing a weighted sum of its features and passing the result through a

step function. Mathematically, the Perceptron’s output ypred can be expressed as:

z = w⊤x + b, ypred =

+1 if z ≥ 0,

−1 otherwise,
(2.1)

where w is the weight vector, and b is the bias term. During training, if a data

point is misclassified, the Perceptron adjusts w and b by an amount proportional to the in-

put and the prediction error [65]. Here, the step function (often named signal) saturates to

0 for negative values and 1 otherwise. A recognized drawback is the Perceptron’s reliance

on a linear decision boundary, making it unsuitable for data that require more complex,

nonlinear separation. Figure 2.1 illustrates an example of this limitation, where a purely

linear boundary prevents the solution of tasks like the XOR problem.

Figure 2.1 – Perceptron’s linear decision boundary [92].

The Multi-Layer Perceptron (MLP) was introduced to overcome the Perceptron’s

limitation [65, 11]. An MLP consists of multiple Perceptrons interconnected and arranged

in the fashion of an input layer, one or more hidden layers, and an output layer. Each layer

typically performs an affine transformation of the preceding layer’s outputs, followed by



24

a nonlinear activation function instead of the typical step function. One commonly used

activation in modern architectures is the Rectified Linear Unit (ReLU) [?], defined as

ReLU(x) = max(0, x). (2.2)

Thus emerged a novel feed-forward network by stacking multiple hidden layers

and non-linear activations [36]. Training a Neural Network (NN) involves three key ele-

ments: a loss function, the forward pass, and the backward pass. The loss function quan-

tifies how far a model’s output deviates from the desired target. For regression tasks, the

Mean-Squared Error (MSE) is a frequent choice:

J(w) =
1
2

N∑
i=1

(yi − ŷi)2, (2.3)

where yi and ŷi represent the ground-truth and predicted values, respectively. Addition-

ally, for classification tasks, Cross-Entropy loss is the most usual:

J(w) = − 1
N

N∑
i=1

C∑
c=1

yi ,c log(ŷi ,c), (2.4)

where N is the number of samples, C is the number of classes, yi ,c is a binary indicator (0

or 1) of whether class c is the correct class for sample i , and ŷi ,c is the predicted probability

for class c for sample i . During the forward pass, the network computes its predictions by

applying the learned weights to the input data and then evaluates how well it performed

via the loss function. In the backward pass, the network updates its weights using the

backpropagation algorithm, which calculates the gradients of the loss with respect to each

parameter and adjusts them based on an optimization method such as Gradient Descent.

This iterative cycle minimizes the error over time, aligning predictions more closely with

actual targets [36].

The introduction of the backpropagation algorithm enabled these networks to

adjust internal parameters through gradient-based optimization, thus learning more de-

tailed patterns than a single Perceptron could capture. Even though early MLPs could ap-

proximate a variety of functions, they sometimes suffered from issues such as vanishing

gradients and limited computational power [65].

As hardware advanced and new techniques arose (improved weight initialization,

momentum-based optimization, alternative activation functions), deeper networks with

more hidden layers became feasible [36]. This evolution led to architectures like Convolu-

tional Neural Networks (CNNs) for image analysis and Recurrent Neural Networks (RNNs)

for sequence modeling. More recently, attention-based architectures have gained promi-

nence for tasks involving language and vision. Nevertheless, the core principle remains

that a network’s capacity to approximate complex functions hinges on its layered com-
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position of linear transformations and nonlinear activations. Larger networks, equipped

with more parameters, can learn complex representations, though they also require larger

datasets and often greater computational resources [36].

2.3 Deep Learning

DL is a subfield of ML that employs NNs to learn complex representations from

data. Instead of relying on feature engineering procedures designed by human experts,

DL architectures are able to determine these features through hierarchical representa-

tions. Early layers may capture low-level features (such as edges or simple textures in

images), while deeper layers combine those basic elements into increasingly abstract con-

cepts. This end-to-end learning approach has shown effectiveness in tasks ranging from

image recognition to natural language processing, demonstrating greater performance

compared to shallow models in many benchmark evaluations [36, 9].

Several factors contributed to the rise of DL, such as the rapid growth of ac-

cessible training data, often referred to as "Big Data". Large, annotated datasets, such

as ImageNet [52], enabled deep networks to learn intricate patterns that had previously

been beyond reach by traditional ML approaches. Advances in parallel computing further

accelerated progress, especially with Graphics Processing Units (GPUs), which handle the

large-scale matrices computations required by DL models more efficiently than traditional

CPUs [52, 80].

In contrast to early ANNs that employed only a handful of layers, DL architectures

may include dozens or even hundreds of layers, increasing their representational ability.

However, deeper networks also become more susceptible to problems like vanishing or

exploding gradients if not designed or initialized carefully. Techniques such as weight

initialization, batch normalization, and different activation functions (such as ReLU [?],

PReLU [38], GeLU [40], etc) helped mitigate these difficulties, enabling the stable training

of deeper and larger models [36].

Recent developments moved beyond purely feed-forward networks by integrat-

ing specialized approaches for different data types. Convolutional Neural Networks (CNNs)

are commonly used as a mechanism for feature extraction in images, while Recurrent Neu-

ral Networks (RNNs) addresses temporal information in domains such as speech or text.

Attention-based architectures are able to capture longer-range dependencies without ex-

plicit recurrences. Despite structural differences and distinct application areas, DL models

embraces the idea of stacking multiple layers to process raw inputs and uncover relevant

patterns for the given task [96].
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2.3.1 Video Understanding

Video classification tasks encompass a range of applications that involve analyz-

ing spatiotemporal patterns in sequences of video frames to categorize various types of

content. For instance, models can be employed in tasks such as event detection, where

the goal is to identify occurrences like sports highlights or public gatherings [45]; scene

classification, which involves categorizing videos based on settings such as urban envi-

ronments or natural landscapes [104]; gesture recognition, focusing on subtle hand or

body movements [67]; and video sentiment analysis, which assesses the emotional tone

conveyed by visual cues [1]. In all these cases, models must effectively capture both spa-

tial features, such as body posture, object presence, and facial expressions, and temporal

coherence that reflects movement, transitions, and the continuity of objects over time.

Among these, action recognition is a task that focuses on identifying specific

human actions. In this process, models learn to extract spatial features, such as body

posture and the appearance or continuity of objects, and combine them with temporal

information that captures the movement and transitions over time. The challenge lies in

discerning subtle cues that distinguish one action from another, even when variations in

lighting, perspective, or background occur.

Moreover, action recognition systems must handle sequences of variable length

and ensure that the extracted representations are robust to changes throughout the video.

The unique challenges posed by these tasks have fostered the development of specialized

architectures for video understating, such as 3D CNNs and transformer-based models,

which are frequently evaluated on large-scale benchmark datasets like Kinetics-400 [51]

and UCF101 [88].

Although SLR has its own set of unique requirements, such as capturing subtle

hand configurations and facial expressions, it does share similarities with action recogni-

tion in terms of modeling spatiotemporal patterns and dealing with motion across video

frames. Both tasks must manage variable video lengths, account for background vari-

ations, and encode body movements. Despite these parallels, how advances in action

recognition could be directly transferred to SLR remains underexplored. As SLR often re-

quires finer-grained analysis and linguistic contextualization, bridging the gap between

these domains poses a valuable research direction, with the potential to enrich SLR ap-

proaches through knowledge gained from action recognition tasks.
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2.3.2 Attention

Early neural architectures, such as RNNs, often found it challenging to maintain

relevant information over extended sequences or to parallelize computation efficiently.

Convolutional approaches are effective at extracting local features but rely on increasingly

deeper architectures to capture long-range dependencies, which can lead to vanishing

gradients in very deep networks. As gradients travel back through many layers, they

become progressively smaller, complicating the training of early layers. These challenges

motivated the design of a mechanism that is able to focus on relevant parts of the data at

any point in a sequence without relying on explicit recurrence or a large number of hidden

layers. This mechanism, known as attention, dynamically reassign weights so that each

segment of the model is able to selectively prioritize the most informative features [43,

62, 96, 9].

Attention is used in Neural Machine Translation (NMT), where an encoder-decoder

framework processes one language at the input and produces another language at the

output. In a typical setup, the encoder reads the source sequence token by token, forming

context representations, called embeddings, that summarizes each token’s semantics.

The decoder then generates the target sequence one step at a time, but instead of using

all encoder states uniformly, it uses attention to decide which encoded tokens matter most

for each output token. This selective approach often outperforms naive encoding and

helps address the vanishing context problem by letting the decoder dynamically retrieve

relevant information from the entire source sequence [7].

In practice, the data is split into tokens (e.g., words or "subwords"), and each

token is associated with an embedding that represents basic features. Due to the em-

bedding alone not conveying the position of a token, models usually also add positional

information, which ensures it’s discernment of the relative ordering of the sequence el-

ements. Once the notion of tokens and embeddings is in place, the core of attention

revolves around Queries, Keys, and Values: the model measures how similar a query vec-

tor is with a set of key vectors and produces a weighted combination of corresponding

value vectors. The most common way which models measures this similarity is using the

scaled dot-product attention:

Attention(Q, K, V) = softmax
(Q K⊤
√

dk

)
V, (2.5)

where Q, K, and V are the Queries, Keys, and Values, dk is the dimension of

queries and keys, and the denominator
√

dk helps normalize the dot-product magnitudes [62].

To expand the model’s ability to capture different relationship types in parallel,

some architectures split the projection space into multiple “heads,” each performing the
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attention step independently. This idea, referred to as multi-head attention, aggregates

the outputs of each head after they have processed Queries, Keys, and Values in their own

subspace. By combining these multiple perspectives, attention-based models are able to

learn a variety of contextual cues from the data in a single pass.

Because the encoder-decoder structure in NMT demonstrates how attention can

dynamically link an input context to the tokens being generated, the concept has been

adapted to other tasks where the model must retrieve relevant details from large or un-

structured sources. In image analysis, for instance, tokens can represent patches, while

in audio or video, tokens may represent segments of a waveform or frames of a sequence.

Although these different data modalities require specific transformations, the primary ben-

efit remains: attention directs the model’s focus to the most pertinent features at any

given time, rather than relying on uniform weighting [96, 62].

2.3.3 Transformer Architecture

From the desire to alleviate the drawbacks of earlier sequence-processing mod-

els, the Transformer architecture emerged. It’s design was centered on the attention

mechanism, much like previous encoder-decoder architectures, with the exception that it

explicit relies on multi-head self-attention in both the encoder and decoder. At each layer,

multi-head self-attention directs how tokens in the sequence attend to one another, with-

out enforced sequential operations. By splitting the attention into the multiple heads, the

model is able to capture representations in parallel. Formally, each head is expressed as:

headi = Attention
(

Q WQ
i , K WK

i , V WV
i

)
, (2.6)

where WQ
i , WK

i , WV
i are trainable projection matrices for head i . The final output

of the multi-head attention is obtained by concatenating the outputs of all heads, then

passing them through a linear transformation WO:

MultiHead(Q, K, V) =
[
head1; head2; ... ; headh

]
WO. (2.7)

Residual connections and layer normalization help maintain gradient flow as the

data propagate through deeper layers. This enables the Transformer to be able to learn

contextual dependencies across an entire sequence in a single forward pass rather than

through accumulation, reducing the time complexity per token and improving paralleliza-

tion. Furthermore, in contrast to previous architectures, each token additionally receives

a positional embedding that tracks sequence order. Consequently, it captures and prop-

agates information across the entire architecture directly, while retaining the encoder-

decoder paradigm [96].
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While the encoder reads the entire input at once and produces a rich contextual

embedding for each token, the decoder, as exemplified by Figure 2.2, relies on two types

of attention: self-attention over the tokens already generated and cross-attention that

aligns the decoder’s current state with relevant parts of the encoder output. This encoder-

decoder division makes the Transformer well suited for tasks such as NMT, which require

continuous reference to earlier tokens or contexts in another language [62, 7].

Figure 2.2 – The Transformer architecture [96].

Due to its ability to handle all positions in a sequence in parallel, the Transformer

cuts down the training bottlenecks found in RNNs, allowing longer-range dependencies to

be captured more effectively. In addition, the attention weights yield partial interpretabil-

ity, as they indicate which tokens or encoded features the network emphasizes at each

step. Although the Transformer was initially applied to text-focused tasks, recent adapta-

tions involve images, audio, and even multimodal applications by dividing input data into

token-like patches or segments. Thus emerging Vision Transformer models, where video

frames are segmented into spatial or spatio-temporal patches and processed in a manner
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reminiscent of NLP tokens. This approach leverages the Transformer’s original principles,

parallel attention, positional embeddings, and layered processing, but repurposes them

to model visual sequences rather than purely textual inputs [26, 15].

2.3.4 Vision Transformers

The success of Transformer-based architectures in NLP led researchers to explore

whether similar attention mechanisms could benefit vision tasks. Instead of relying on

convolutions or purely sequential operations, Vision Transformers (ViTs) restructure im-

age or video data into token-like units, allowing multi-head self-attention to capture pat-

terns across spatial or spatio-temporal dimensions [27]. By dividing inputs into different

patches, these models leverage the scalability and parallelization advantages provided by

the transformer architecture, adapting concepts such as positional embeddings to account

for two or three-dimensional layouts.

ViTs divide an image of size H × W with three color channels into patches of size

P × P, producing N = HW
P2 patches. Each patch is then flattened and linearly mapped into

a d-dimensional embedding:

xpatch
i = Flatten

(
Patchi

)
We + be, i = 1, ... , N, (2.8)

where We ∈ R(P2·3)×d and be ∈ Rd are learnable parameters. A learnable class

token, xclass, is added to these embeddings, and positional embeddings Epos are added to

retain spatial information:

X0 =
[
xclass; xpatch

1 ; ... ; xpatch
N

]
+ Epos. (2.9)

This sequence is processed by the Transformer encoder, where multi-head self-

attention and feed-forward layers capture increasingly complex spatial and contextual

patterns. The class token aggregates global context across patches, serving as a compact

image representation for classification tasks. When extended with a decoder, ViTs enable

applications such as image-to-text mapping and generative tasks [27]. Unlike CNNs, ViTs

leverage global attention, improving performance on tasks requiring understanding, such

as scene analysis and object interactions [48, 12]. A depiction of the ViT architecture is

shown in Figure 2.3, from Dosovitskiy et al. [27].

By replacing localized processing with global self-attention, ViTs effectively cap-

ture both fine-grained details and high-level semantics, achieving SOTA results across

various benchmarks, particularly when pre-trained on large-scale datasets such as Kinet-

ics [22, 51]. Among various approaches, TimeSformer [10], ViViT [6], and VideoMAE [95]

have emerged as efficient tools for video classification tasks.



31

Figure 2.3 – Overview of the Vision Transformer architecture designed by [27].

TimeSformer

TimeSformer addresses the spatiotemporal nature of video data by extending

the self-attention mechanism to operate across both spatial and temporal dimensions. It

adopts a purely transformer-based architecture, leveraging its capacity for parallelization

and global attention. This design enables the model to capture dependencies within indi-

vidual frames as well as across sequences of frames.

The model processes video data by dividing each frame into non-overlapping

patches, similar to the ViT architecture. These patches are flattened and embedded into a

high-dimensional space, effectively transforming each patch into a token. To retain spatial

and temporal information, positional embeddings are added to the tokenized input. The

resulting sequence of tokens is then fed into an encoder, where self-attention mechanisms

model relationships within and across frames.

TimeSformer employs a few variants of spatiotemporal attention, as can be seen

by Figures 2.4 and 2.5. In the divided space-time attention mechanism, spatial attention

is applied independently within each frame to capture intra-frame relationships, followed

by temporal attention across frames to model dependencies over time. In contrast, joint

space-time attention applies attention across spatial and temporal dimensions simultane-

ously, providing a comprehensive representation at the expense of higher computational

demands. Other variants, such as space-only or time-only attention, restrict the model

to focus on either spatial or temporal dimensions, simplifying computation but sacrific-

ing performance. Sparse local-global attention combines local attention over subsets of

tokens with global attention to retain overall context, further optimizing computational

efficiency.

The model is trained using supervised learning, with cross-entropy loss serving

as the primary objective for classification tasks. Pre-training on general video datasets
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enhances the model’s ability to generalize to specific tasks, such as action recognition.

During training, techniques like patch tokenization, positional embeddings, and layer nor-

malization are employed to stabilize learning and improve convergence. Patch tokeniza-

tion reduces input dimensionality by segmenting frames into smaller regions, while posi-

tional embeddings ensure the model captures the sequential ordering of frames and layer

normalization mitigates gradient instability during the optimization process [10, 27].

Figure 2.4 – Overview of the attention mechanisms explored in TimeSformer: illustrating
five variations of attention strategies, including space-only attention, joint space-time at-
tention, divided space-time attention (separate temporal and spatial), sparse local-global
attention (combining localized and global attention), and axial attention (sequentially ap-
plied along time, width, and height dimensions), showcasing the flexibility in capturing
spatiotemporal relationships [10].
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Figure 2.5 – Visualization of different attention mechanisms in TimeSformer: demonstrat-
ing five approaches: space attention (S), joint space-time attention (ST), divided space-
time attention (T+S), sparse local-global attention (L+G), and axial attention (T+W+H).
Showcasing variations in the regions and frames emphasized during video analysis [10].

ViViT

The ViViT model is a transformer-based architecture specifically designed for

video classification tasks. Building on the success of Vision Transformers (ViTs) in im-

age recognition, ViViT extends the transformer framework to process spatiotemporal data.

The model leverages self-attention mechanisms to capture both spatial features within in-

dividual frames and temporal relationships across sequences of frames. By using a purely

transformer-based approach, ViViT eliminates the need for convolutional or recurrent mod-

ules, providing a unified framework for video understanding.

The ViViT model also relies on the success of ViT’s in image recognition and, such

as the TimeSformer model, extends the transformer framework to process spatiotemporal

data. It also applies the self-attention mechanism to capture spatial features within frames

and temporal features across sequences of frames. Much like the TimeSformer model, it

creates non-overlapping patches, which are flattened, linearly embedded, tokenized and

a positional embedding is also added to preserve sequential ordering of frames and spatial

arrangement of patches.

It also offers architectural variants, seen on Figure 2.6. Joint spatiotemporal at-

tention processes all tokens simultaneously, capturing global interactions across both spa-

tial and temporal dimensions. While this method provides comprehensive feature model-

ing, it is computationally intensive, especially for long video sequences or high-resolution



34

frames. The factorized spatiotemporal attention variant separates spatial and temporal

attention into distinct stages. Spatial attention is first applied within individual frames

to extract local features, followed by temporal attention to model dependencies across

frames. This approach reduces the computational cost while maintaining performance.

Another variant, factorized encoder attention, uses separate transformer en-

coders for spatial and temporal processing. This design further simplifies the attention

computation by isolating spatial and temporal interactions. The fourth variant, factorized

dot-product attention, divides attention computations into spatial and temporal compo-

nents across different attention heads, offering a balance between computational effi-

ciency and representational capacity. These architectures leverage different tokeniza-

tion methods and regularization techniques to handle the high computational demands of

video data while achieving SOTA performance across multiple benchmarks [6].

Figure 2.6 – Overview of the ViViT architecture: the model tokenizes video frames, applies
positional embeddings, and processes them through a Transformer encoder with multi-
ple layers of self-attention. Different factorization strategies are illustrated: (1) factorized
encoder separates spatial and temporal encoding, (2) factorized self-attention splits at-
tention operations across spatial and temporal dimensions, and (3) factorized dot-product
fuses spatial and temporal features across different heads [6].

VideoMAE

VideoMAE draws it’s principles from masked autoencoders in NLP. It randomly

masks video tokens (patches) at a high ratio (90–95%) and reconstructs the missing re-

gions, using the temporal redundancy of videos to create a challenging reconstruction

task. This process encourages the model to learn spatiotemporal representations. Video-

MAE represents video tokens through temporal downsampling and a joint space-time em-

bedding strategy, facilitating efficient handling of video data. It is built on a standard

ViT backbone that employs joint space-time attention and achieves competitive results

without depending on pre-training datasets or external labels.
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VideoMAE extends the concept of Masked Autoencoders (MAEs) from NLP to the

domain of spatiotemporal data, focusing on learning video representations without the

need for extensive annotated datasets. The model processes video data by dividing each

frame into patches, tokenizing these patches, and combining spatial patch extraction with

temporal downsampling. A high proportion of tokens, typically ranging from 90% to 95%,

is randomly masked during training, leaving only a small subset of visible patches. This

masking strategy introduces a challenging reconstruction task for the model.

During training, VideoMAE reconstructs the masked patches using the informa-

tion from the visible ones, driving the model to capture meaningful spatiotemporal fea-

tures that account for both motion and appearance. This reconstruction task emphasizes

learning temporal dynamics and spatial details simultaneously, which are critical for un-

derstanding video content. Figure 2.7 illustrates this tokenization and masking process.

Various masking strategies were evaluated to determine their impact on model perfor-

mance. As shown in Figure 2.8, tube masking, which masks tokens along both spatial and

temporal dimensions, was found to achieve the best performance in experiments con-

ducted in [95]. This approach ensures that the model learns coherent representations

across frames, leveraging the inherent redundancy of video data to facilitate efficient self-

supervised learning.

Figure 2.7 – "Illustration of the VideoMAE [95] training process, showcasing video down-
sampling, tube masking with a high ratio, encoding of visible tokens, and reconstruction
of the masked content by the decoder to generate the target video clip."

Similar to masked language modeling, this setup exploits the redundant nature of

videos to make reconstruction a challenging task, pressing the model to identify relevant

structures over time rather than focusing solely on single-frame patterns. VideoMAE em-

ploys a standard ViT backbone, where tokens are processed by multi-head self-attention

in space and time. The key difference from pure Transformer architecture lies in the re-

construction objective: the model predicts missing patches to minimize a reconstruction

error, typically in the pixel or feature space. By handling videos in a tokenized, masked

framework, VideoMAE avoids labeling requirements and can harness large-scale unanno-

tated video data for representation learning.
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Figure 2.8 – "Comparison of masking strategies in VideoMAE [95]: (a) input video without
masking, (b) frame masking applied across entire frames, (c) random masking applied to
scattered patches, and (d) tube masking applied along spatial and temporal dimensions,
capturing consistent patterns across time."

When fine-tuned on downstream tasks, such as action recognition, VideoMAE

often achieves favorable results compared to supervised or other self-supervised meth-

ods, highlighting the effectiveness of learning from extensive temporal context. Since

the model operates on a “vanilla” ViT backbone, it inherits the modular advantages of

Transformers, including the capacity for parallel processing and flexible integration of

spatiotemporal cues. Because masking leads to a reduced computation burden on the

network, the approach also scales well, making it feasible to handle sizable video datasets

without heavy external supervision [95].

2.4 Metrics

All experiments focus on word-level recognition in LIBRAS, where each video is

labeled with exactly one sign class. In a multi-class classification scenario, each class is

treated as the “positive” class in turn, while all other classes are grouped as “negative”.

Metrics such as accuracy, precision, recall, and F1-score are then computed for each class

i , and the final result is obtained by taking the macro-average across all classes. This

approach ensures that each class, even if it has fewer samples, is weighed equally in the

overall evaluation, an essential consideration when the class distribution is not perfectly

balanced [11, 69].

When training each model, the MINDS dataset’s validation set guides early stop-

ping and learning rate adjustments. The newly curated subset of the MALTA-LIBRAS dataset

is used exclusively as an unseen test set to measure model generalization.
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• Accuracy:

Accuracy provides a straightforward ratio of the total number of correctly classified

samples to the total number of samples [65, 11]. In binary form:

Accuracy =
TP + TN

TP + TN + FP + FN
.

For multi-class classification, we extend this concept by counting correct predictions

for each class i and then computing the overall fraction of correct predictions:

Accuracy =
∑C

i=1 Correcti∑C
i=1 Totali

,

where Correcti is the number of correctly classified samples of class i , and Totali is

the total number of ground-truth samples of class i . Although accuracy is easy to

interpret, it may not fully capture performance on minority classes in unbalanced

datasets [69].

• Precision:

Precision captures the proportion of samples predicted as belonging to a given class

i that actually do belong to that class [11]. In the binary setting:

Precision =
TP

TP + FP
.

To handle multiple classes, each class i is considered “positive” in turn, yielding

Precisioni . The macro-average precision aggregates these values equally:

Precisionmacro =
1
C

C∑
i=1

TPi

TPi + FPi
.

A high macro-average precision indicates that, across all classes, when the model

predicts a certain sign, it is typically correct.
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• Recall:

Recall (also called sensitivity) quantifies the fraction of actual positives the model

correctly identifies [69]. In the binary case:

Recall =
TP

TP + FN
.

For multiple classes, each class i again becomes the positive class, and Recalli is

computed. The macro-average recall is the unweighted mean over all classes:

Recallmacro =
1
C

C∑
i=1

TPi

TPi + FNi
.

A high macro-average recall indicates that, on average, classes rarely go unde-

tected.

• F1-score:

The F1-score is the harmonic mean of precision and recall, striking a balance be-

tween them [69]. In binary form for class i:

F1i = 2 × Precisioni × Recalli
Precisioni + Recalli

.

Extending to a multi-class context, we compute F1i for each class i and take the

average across all classes:

F1-scoremacro =
1
C

C∑
i=1

F1i .

This measure provides a single score that accounts for both false positives (through

precision) and false negatives (through recall). It is often considered more informa-

tive than accuracy for unbalanced datasets, as it requires strong performance across

both dimensions [11].

Throughout our experiments, top-1 accuracy remains the primary measure, while

macro-averaged precision, recall, and F1-score offer additional insights into error patterns.

Metrics are averaged over multiple runs with different random seeds to mitigate variability

in training and allow a more reliable assessment of each model’s ability to generalize.
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3. RELATED WORK

The ISLR task is conceptualized as a multi-class classification task where each

video serves as the input variable and the corresponding sign serves as the target vari-

able. Consequently, every unique sign in the vocabulary constitutes a distinct class that

the model must learn to discriminate. In this framework, the spatiotemporal features cap-

tured in consecutive frames, which encompass hand configurations, facial expressions,

and body movements, are analyzed by the model to classify the intended sign. This task

poses unique challenges, as the models must effectively integrate both spatial details and

temporal coherence to recognize signs, a requirement that has driven the exploration of

diverse DL architectures [23, 46].

Datasets Language Signers Vocabulary Vídeos Task Input
SIGNUM [98] German 25 450 11,375 CSLR+ISLR RGB
RWTH-PHOENIX14 [31] German 9 1,117 4,667 CSLR+ISLR RGB
CSL [44] Chinese 50 500 125,000 ISLR RGB+D
WLASL-1000 [53] English 222 1,000 25,513 ISLR RGB
SLOVO [49] Russian 194 1,000 20,000 ISLR RGB
AUTSL [86] Turkish 43 226 38,336 ISLR RGB+D
GrSL-Isol. [2] Greek 7 310 40,785 ISLR RGB+D
MINDS-LIBRAS [?] Portuguese 12 20 1,200 ISLR RGB+D
MALTA-LIBRAS (ours) Portuguese 60 4,586 11,093 ISLR RGB

Table 3.1 – Well-stablished datasets on SLR for both ISLR and CSLR tasks. Input differs on
using solely RGB data and RGB with depth (D) information.

Existing datasets for SLR vary in annotation granularity and video capture modal-

ities, with some limited to RGB frames and others incorporating depth data [8, 23]. Key

characteristics of these datasets, including the novel MALTA-LIBRAS corpus under devel-

opment, are detailed in Table 3.1. While differing in scope, all these datasets exhibit large

signer diversity, vocabulary size and total number of videos, all critical factors for enhanc-

ing the robustness of DL models for real-world applicability [2, 3].

Recent advancements leverages weights from models pre-trained on action recog-

nition tasks, capitalizing on large-scale datasets [51, 82, 76]. Alternatively, a common ap-

proach involves keypoint extraction, where joint positions of the body, hands, or face are

tracked in videos using tools like OpenPose [16] and MediaPipe [61], enabling pose-driven

gesture modeling [68, 46, 72].

Specialized capture methods, such as depth-sensing cameras and sensory gloves,

have also been investigated [29, 41]. While these devices improve motion tracking accu-

racy, their reliance on hardware constraints, such as user discomfort and research-specific

setups, limits practical adoption. Moreover, such methods often overlook complex and

critical aspects of SL communication, such as facial expressions, which are essential to

semantic interpretation [46, 99].
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3.1 Models

ISLR targets word-centric gestures in video and still presents itself as a challenge

in various SLs. These challenges mainly stem from the restricted size and diversity of

annotated samples, as well as the simultaneous integration of hand movements, orien-

tations, and non-manual cues (e.g., facial expressions, head poses) required to convey

meaning [87, 53, 8, 39].

Common ISLR approaches explore DL models that account for spatial-temporal

patterns in signing. Usual pipelines rely on pose estimations (e.g., Mediapipe or OpenPose)

to isolate hand coordinates before classification via RNNs [61, 16]. Recent work, however,

focuses on end-to-end models [71, 23].

Hybrid models, utilizing combinations of CNNs and RNNs, exploit the spatial fea-

ture extractions from convolutional layers and temporal modeling from recurrent net-

works. Earlier ISLR work was heavily dependent on these hybrid networks due to data

scarcity, where utilizing augmentations such as optical flow and pose estimators were the

go-to alternative [54].

Building upon classic 2D CNNs, inflated 3D CNNs emerged with the intention to

be able to also handle the temporal domain, Inflated 3D ConvNets (I3D) is an example of

these networks. However, due to the number of convolutional layers they can be compu-

tationally expensive. Additionally, their receptive fields still needs to be careful initialized

to capture subtle body or hand movements [51].

Inspired by breakthroughs in NLP, attention-based models have increasingly been

tested on SLR. Early uses of Transformers in SL have shown that the global context cap-

tured by attention can improve generalization, especially when balancing hand shape,

facial expression, and body posture [71, 24].

Within the Transformer-based model alternatives, models such as TimeSformer [10],

ViViT [6], and VideoMAE [95] have begun to shape spatiotemporal modeling in videos.

These adaptations replace or supplement convolutions with tokenized patches and multi-

head self-attention. By allowing any patch to directly attend to others in a video, Trans-

formers sidestep limitations posed by purely sequential or local operations. However,

researchers also grapple with high computational demands and data scarcity, especially

when SLs are low-resourced.
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3.2 Datasets

Within the dataset realm, most existing SL datasets were originally developed for

educational or instructional purposes, not specifically for training DL models. Researchers

address this gap by collecting specialized resources that facilitate training and bench-

marking. RWTH-PHOENIX-Weather 2014 is an example, aimed at the CSLR task in GSL.

It encompasses weather forecast recordings paired with word and sentence level anno-

tations, serving as a reference for modeling complexities such as signer variation and

infrequent vocabulary. An n-gram language model was trained and tested on a single-

signer subset and attained a Word-Error Rate (WER) of 49.2%, highlighting the need for

robust data design and models that adapt to linguistic variety [31].

A dedicated dataset for CSL was compiled to explore the CSLR task. This collec-

tion surpasses 25,000 labeled video sequences from 50 signers, captured in RGB, depth,

and body-joint modalities using a Microsoft Kinect sensor. The recorded data averaged

seven words per sentence and was allocated to training a total of 17,000 clips, validation

of 2,000 clips, and testing of 6,000 clips. A Hierarchical Attention Network with Latent

Space (LS-HAN) showed that an extensive dataset combined with attention-based model-

ing, can capture spatiotemporal properties effectively. LS-HAN achieved 82.7% accuracy

and performed strongly when evaluated on RWTH-PHOENIX-Weather as well, illustrating

the benefits of a self-attention approach without explicit segmentation [44].

In ASL, the Word-Level American Sign Language (WLASL) dataset is comprised

of of videos focusing on the ISLR task. It includes over 20,000 clips of more than 2,000

glosses, each gloss displayed by multiple signers to accommodate inter-signer diversity.

Subsets (e.g., WLASL-100, WLASL-300, WLASL-1000, WLASL-2000) vary the training and

testing conditions. Strategies such as the Inflated 3D CNN (I3D) and a pose-driven Tem-

poral Graph Convolutional Network (Pose-TGCN) illustrate the effectiveness of spatiotem-

poral modeling approaches. On WLASL-2000, I3D achieved a top-1 accuracy of 32% and

a top-10 accuracy of 66%, while Pose-TGCN reached 23.65% top-1 accuracy and 62%

top-10. The discrepancy between top-1 and top-10 highlights the complexities arising in

large-vocabulary, word-level sign recognition [53].

Researchers also introduced the SLOVO dataset for RSL, featuring 20,000 videos

of 1,000 distinct words recorded in varied settings. In their experiments, each video was

resized and augmented before training. Three models were experimented, leveraging pre-

training weights from the action recognition dataset Kinetics-400 [51]: MViTv2-small [55],

Swin-large [59], and ResNet3D-50 [51]. Different frame sampling strategies and frame in-

terval settings from 1 to 4 were tested. MViTv2-small achieved an accuracy of 64% when

using 32 frames with interval of 2 frames, whereas ResNet3D-50 achieved an accuracy of

44% when using 48 frames with interval of 1 frame, suggesting that Transformer-based
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designs outperform 3D CNN approaches in modeling spatiotemporal features. By captur-

ing inter-signer and environmental diversity, SLOVO provides a testbed for ISLR that seeks

to handle large vocabularies and unconstrained real-world scenarios [49]. This direction

parallels work in other SLs, where greater data coverage supports more flexible and robust

models, an approach similarly sought for LIBRAS, where data is limited.

For LIBRAS, data is scarce. The MINDS dataset was introduced to support ISLR in

LIBRAS using a standardized protocol. It is comprised of 1,158 annotated videos featuring

20 signs, with each sign performed 5 times by 12 signers, and each video summarized

into 10 frames. In initial experiments, a 3D CNN architecture was explored, testing both

RGB and grayscale inputs, the inclusion of optical flow, and limited data augmentation

techniques such as temporal frame displacement, horizontal flips, and zooming. Results

indicated that normalizing test samples in accordance with training data, as well as in-

creasing the training sample count through augmentation techniques, led to improved

accuracy.

The best-performing method, which incorporated grayscale frames and the data

augmentation pipeline, achieved an average accuracy of 93%. One constraint of the ex-

periments, however, was the absence of a designated test set, leaving training-validation

splits to serve as the sole basis for assessing performance [78].

Despite this limitation, the MINDS dataset demonstrates how targeted data aug-

mentation techniques can enhance ISLR in low-data conditions and lays groundwork for

further LIBRAS research. This configuration makes it challenging to assess how well mod-

els generalize to broader, real-world scenarios with more signers, different lighting condi-

tions, and varying signing styles.

Building on insights from larger corpora in other SLs and the MINDS dataset, we

introduce the MALTA-LIBRAS dataset, which intersects with the 20 classes from MINDS.

MALTA-LIBRAS was assembled from diverse, open-source materials, aiming for a broader

distribution of signers and recording settings. This extension of 131 novel videos parallels

efforts in other SLs, where expanding vocabulary coverage and environmental complexity

supports evaluations of different DL architectures, including those based on Transformers.

The present work in LIBRAS exploration utilizes these insights by focusing on spa-

tiotemporal Transformer-based video models, targeted data augmentation pipeline, and

cross-dataset experiments. The aim is to address the scarce representation in LIBRAS,

bridging the gap between smaller, controlled datasets such as MINDS and real-world con-

ditions. The combination of carefully curated data and strategies that capture both spatial

details and temporal cues is key to designing systems capable of accomplish the ISLR

task in LIBRAS. By unifying these strategies, this study seek to extend achievements from

existing SL corpora and architectures to the specific needs of LIBRAS ISLR.
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4. RESEARCH GOALS

SLR presents unique challenges that extend beyond the analysis of generic hu-

man actions. A single sign may blend distinct handshapes, orientations, and motion trajec-

tories with facial expressions or head poses, all of which guide how the sign is perceived

and interpreted [53, 87]. To unravel these features it is necessary robust datasets and

models that are able to capture both spatial and temporal features, as well as inter-signer

variability.

Recently, languages such as ASL and CSL have been widely explored, leading

to progress in the ISLR task due to large and diverse datasets. However, LIBRAS remains

under-resourced, limiting systematic development of data-driven approaches. MINDS [78]

offers a structured basis for LIBRAS ISLR yet contains a small vocabulary and insufficient

samples to form a standalone test set. These constraints make it difficult to assess how

well models can generalize beyond the dataset’s restricted vocabulary.

We outline two objectives in this dissertation:

• I. Expand current LIBRAS data by gathering novel videos that may serve as a desig-

nated test set;

• II. Explore how different approaches using transformer-based video classification ar-

chitectures can enhance ISLR in LIBRAS.

By leveraging advanced spatiotemporal attention mechanisms and previous knowl-

edge attained from action recognition datasets, the aim is to address the scarcity and

narrow coverage of the only current available LIBRAS data. Investigations encompass de-

veloping a suitable data augmentation pipeline and cross dataset transfer learning. These

steps intend to improve the reliability of LIBRAS ISLR while minimizing the need for exten-

sive manual annotation.

4.1 Research Questions

To address our objectives we’ve devised three Research Questions (RQ) we an-

swer in this dissertation followed by the methods used to achieve those answers.

• RQ1: How does pre-training in action recognition task affect LIBRAS ISLR?

• RQ2: How data augmentation impacts LIBRAS ISLR?

• RQ3: How cross-sign-language transfer learning, from ASL to LIBRAS; RSL to LIBRAS;

and combined ASL and RSL to LIBRAS, affect LIBRAS ISLR?
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To answer each of our RQs, we will follow a specific methodology. The first step

involves gathering and curating LIBRAS videos from open online sources to increase avail-

able data for experimentation. After curating these videos, the resulting samples will

serve as a separate test set, complementing MINDS data, thereby enabling the evaluation

of model generalization. These curated samples comprehend what we call MALTA-LIBRAS

data set. A series of experiments will then be conducted to address each RQ, ensuring

robustness and mitigating the impact of random fluctuations. All experiments will be per-

formed with ten preset seeds and performance metrics will then be averaged across these

runs.

To answer RQ1, three attention-based video classification models will be evalu-

ated. Each model will be tested both with pre-trained weights, initially trained on action

recognition tasks, and with randomly initialized weights. Models with pre-trained weights

will be fine-tuned on MINDS and then tested on the newly curated MALTA-LIBRAS set, while

models with randomly initialized weights will be trained solely on MINDS and tested on the

same novel set.

To address RQ2, a video data augmentation pipeline will be explored, incorporat-

ing random rotation, random perspective, color jitter, and Mixup [103]. Each technique

will be applied separately at various intensities during training, validated on the MINDS

dataset, and ultimately tested on MALTA-LIBRAS. The goal is to identify which augmenta-

tion approach best improves generalization.

For RQ3, we investigate cross-lingual transfer learning by fine-tuning the Video-

MAE model (pretrained on Kinetics-400) end-to-end on the WLASL and SLOVO datasets.

The model is then fine-tuned on MINDS without freezing any layers, ensuring full parame-

ter updates, and finally evaluated on the MALTA-LIBRAS subset to assess generalization to

unseen LIBRAS signs. WLASL, focused on ISLR in ASL, contains videos in more controlled

settings, whereas SLOVO addresses ISLR in RSL with more varied scenarios. Models will

be trained on these two datasets, then fine-tuned on MINDS and tested on MALTA-LIBRAS

to determine whether knowledge from other SLs can transfer effectively to LIBRAS. The

outcomes of these experiments may prompt further expansions in LIBRAS data collec-

tion, cross-dataset transfer learning studies, and potential exploration of alternative ap-

proaches for ISLR in LIBRAS.
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5. METHODOLOGY

This chapter presents the steps and rationale behind the experiments conducted

in this dissertation. The goal is to evaluate Isolated Sign Language Recognition (ISLR) in LI-

BRAS using a newly introduced MALTA-LIBRAS dataset as a test bed. Section 5.1 formalizes

ISLR as a classification task. Section 5.2 describes how we quantify model performance

of all our experiments. Section 5.3 details data collection and curation for MALTA-LIBRAS,

and all datasets used in our experiments. Section 5.4 outlines the selected transformer-

based video classification models and their configurations. Section 5.5 describes in detail

our experiments and rationale to answer each of our RQs.

5.1 ISLR as a Classification Problem

ISLR is, in it’s core, a supervised multi-class classification task where a model

learns to map input videos to discrete sign labels. Formally, given a dataset D = {(Xi , yi)}N
i=1

of N labeled videos, the goal is to learn a function φ : X → Y that minimizes prediction

errors on unseen test data. Here, X denotes the input space of videos, and Y = {1, ... , K}
represents the set of K possible sign classes (e.g., LIBRAS glosses) [5, 20, 36, 94].

As an input X ∈ X we have a video sequence of T frames:

X = [x1, x2, ... , xT ], xt ∈ RH×W×C, (5.1)

where H, W , and C are the height, width, and channels (e.g., RGB), respectively, of each

frame. Commonly, for computational efficiency, videos are downsampled to fixed dimen-

sions (e.g., 224 × 224 pixels) and truncated to a uniform number of frames T [51].

The output y ∈ Y is a categorical label representing the lexical sign in X. For instance, in

LIBRAS, y = 1 might denote the sign for “book” and y = 2 for “help”. The model outputs a

probability distribution over Y:

p = [p1, p2, ... , pK ],
K∑

k=1

pk = 1, (5.2)

where pk = P(y = k | X) is the estimated probability of class k [11]. The function φ is

parameterized by a network that extracts spatiotemporal features from X and computes

class probabilities. For transformer-based models (discussed in detail in Section 5.4), this

involves a few steps:
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• Tokenization: First, each frame is splitted into P × P patches, yielding tokens zt ∈
RN×d for frame t , where N = HW

P2 and d is the embedding dimension [27].

• Positional Encoding: Then, it’s injected spatial and temporal positional information

into each token [96].

• Self-Attention: It’s then modelled dependencies between tokens across space and

time dimensions [10].

• Classification Head: The aggregated features is then mapped into class probabili-

ties through two steps:

– Linear Projection: First, transforming the hidden state h into class scores (log-

its):

zk = w⊤
k h + bk , (5.3)

where wk ∈ Rd and bk ∈ R are learnable parameters for class k .

– Softmax Normalization: Then, logits are converted {z1, ..., zK} into probabili-

ties by a softmax function:

pk =
exp(zk )∑K
j=1 exp(zj)

= softmax(zk ) (5.4)

This ensures 0 ≤ pk ≤ 1 and
∑K

k=1 pk = 1.

The final hidden state h (e.g., from the [CLS] token) contains compressed spatiotem-

poral information from all patches. The softmax operation emphasizes large logit

values while suppressing smaller ones, producing interpretable probabilities [36].

5.1.1 Loss Function

In general, classification models are optimized to minimize their loss function dur-

ing training. For multi-class scenarios, the categorical cross-entropy loss function (CCE)

is commonly employed to measure the discrepancy between the predicted probability

distribution and the true distribution, which is typically represented using one-hot encod-

ing [36].

Given a dataset D = {(xi , yi)}N
i=1, where each yi = [yi ,1, yi ,2, ... , yi ,C] is a one-hot

vector indicating the correct class among C possible classes, and ŷi = [ŷi ,1, ŷi ,2, ... , ŷi ,C]
denotes the model’s predicted probabilities for each class, the categorical cross-entropy

loss is defined as [36]:
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LCCE = − 1
N

N∑
i=1

C∑
c=1

yi ,c log(ŷi ,c) (5.5)

This loss function penalizes deviations between the predicted probabilities ŷi ,c and the

ground-truth indicators yi ,c for each class:

• When yi ,c = 1, the term log(ŷi ,c) encourages ŷi ,c → 1.

• Since yi ,c = 0 for all other classes, only the correct class contributes to the summa-

tion, ensuring that the model focuses on assigning high probability to the true class.

Minimizing LCCE over the entire dataset aligns the model’s predicted probability

distribution with the actual labels, ensuring that if the model assigns a low probability to

the correct class, log(ŷi ,c) becomes large and negative, increasing the overall loss. Alter-

natively, if the model consistently assigns high probability to the correct class across all

samples, the loss decreases, indicating better performance [11].

As a result, CCE serves as a direct measure of how confident the model is about

its predictions. By driving ŷi ,c towards 1 for the correct class, this loss effectively optimizes

model precision while preserving a proper probability interpretation of the outputs [69].

This makes CCE a standard choice in multi-class settings such as image classification,

speech recognition, and, in the case of this dissertation, isolated sign language recogni-

tion.

5.2 Metrics

In this dissertation, the evaluation of classification performance relies on top-1

accuracy, along with macro-averaged precision, recall, and F1-score to account for poten-

tial class imbalances and provide a balanced view of model performance. These metrics

are discussed in greater detail in Chapter 2, where their definitions and extensions to

multi-class scenarios are thoroughly explained.

5.3 Datasets

To achieve the objectives of this study and answer our RQ, we utilized SLOVO [49],

WLASL [53], MINDS [78], and our novel MALTA-LIBRAS dataset. SLOVO and WLASL are used

as pre-training datasets to assess how transfer learning between distinct SL affect LIBRAS

ISLR.



48

These datasets were selected based on their size and distinct focus: WLASL em-

phasizes maintaining control over instances, while SLOVO prioritizes covering various sce-

narios. This combination enables us to answer our RQ3, thus evaluating the effectiveness

of transfer learning for LIBRAS and how the differences between datasets influence the

models. On the other hand, MINDS and MALTA-LIBRAS are used to fine-tuning, validation

and testing the models.

All video samples were resized to a standardized resolution of 224×224 pix-

els. Due to variations in recording protocols (e.g., frame rates, video durations) across

datasets, samples exhibited significant disparities in total frame counts. To ensure unifor-

mity, we extracted 32 temporally equidistant frames from each video. During training, a

subset of 16 frames was randomly selected from these 32 preprocessed frames to serve as

input to the model, balancing computational efficiency with temporal representation and

matching the required number of frames for all models used. The following subsections

provide detailed specifications for each dataset.

5.3.1 MALTA-LIBRAS

To address the limitation of the MINDS dataset, namely the absence of a dedi-

cated test set and its relatively controlled recording conditions, we collected and curated

additional videos to perform testing in models fine-tuned to MINDS. Initially, using web

scraping techniques, we compiled a total of 21,000 LIBRAS videos from INES Dictionary

2.0 [56], INES Dictionary 3.0 [57], V-LIBRASIL [79], Libras-Corpus [75], SignBank [74], UFV

LIBRAS Dictionary [33], and Spread the Sign [42] platforms. These dictionaries alone,

with statistics shown in Table 5.1, did not contain enough samples per sign to serve as a

standalone dataset, so combining them was a necessary step. For our experiments, we

used a curated subset of our dataset, with samples aligned with the same class labels as

the MINDS dataset. The resulting subset introduces variability in terms of signers, back-

grounds, and recording conditions, while encompassing the same 20 classes as the MINDS

dataset but featuring different signers and environments. Due to data usage policies, we

provide instructions on how to download all MALTA-LIBRAS data in our repository, along

with all annotations and code used in this dissertation1.

After assembling this video collection, we undertook manual analysis of all col-

lected data. Each video was examined independently at least by two different researchers

to label the corresponding word or phrase and to identify the signer performing it. Video

resolutions vary between 240×180 and 1280×720 pixels, and frame rates range from 24

to 30 frames per second. The MALTA-LIBRAS dataset was exclusively used for testing to

1https://github.com/Malta-Lab/ISLR_LIBRAS.git

https://github.com/Malta-Lab/ISLR_LIBRAS.git
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Figure 5.1 – An illustration showcasing a single frame from all datasets used and from
each collected source from MALTA-LIBRAS dataset, emphasizing the variability of data in
the creation of the MALTA-LIBRAS dataset.

evaluate the model’s ability to generalize to new signers and environments not encoun-

tered during training.

Since we design MALTA-LIBRAS to be a test set for models trained in MINDS, we

are interested only in a subset of signals that appear on both datasets. The first data

source collected was from the National Institute of Deaf Education (INES) online LIBRAS

dictionaries. Data collection yielded two collections of videos: one from LIBRAS Dictionary

2.0 [56] and another from LIBRAS Dictionary 3.0 [57]. From these, we obtained 24 and

23 video instances that matched 20 and 19 signs in the MINDS dataset, respectively. We

also explored the V-LIBRASIL [79] dataset, yielding 26 video instances across 9 signs that

align with the MINDS dataset. The LIBRAS Corpus [75] provided 18 instances across 19

signs. UFV LIBRAS Dictionary [33] provided 7 instances for 7 different signs. Signbank [74]

contributed 19 instances covering 17 signs featured in the MINDS dataset. Additionally,

we utilized data from Spread The Sign [42], an initiative by the European Sign Language

Center that features over 400,000 video signs across 44 languages. From this dataset, we

were able to match only 12 instances for 12 signs within the MINDS dataset.

The resulting collection, our MALTA-LIBRAS dataset, includes 129 unique samples

covering the 20 signs that intersect with the MINDS dataset. We preprocessed each video

to be resized to 224×224 pixels. To lower the compute demand we extract 32 frames

Table 5.1 – Specification of each open data source collected through web scraping. Last
column shows the intersection size between our dataset and MINDS dataset.

Signers Videos Length [h] Resolution |Vocabulary| |
⋂

MINDS|
INES Dictionary 2.0 [56] 1 3,287 1.19 240x180 3,066 20
INES Dictionary 3.0 [57] 1 3,208 3.34 240x180 2,993 19
V-LIBRASIL [79] 3 4,089 6.49 1920x1080 1,363 7
Libras-Corpus [75] 1 1,011 0.77 360x300 929 19
SignBank [74] 9 1,000 0.66 1280x720 916 20
UFV LIBRAS Dictionary [33] 6 242 0.27 831x467 242 6
Spread the Sign [42] 40 1,788 1.79 320x240 1,788 16
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uniformly spaced throughout the video, and as a part of our data augmentation strat-

egy, among these 32 frames we randomly sample 16 frames that serve as model input.

This approach ensured a manageable and consistent input size while capturing essential

temporal information.

Figure 5.1 illustrates that each dataset was recorded under predefined protocols,

including standardized clothing, backgrounds, and resting poses, in order to reduce vari-

ability and assist students in focusing on learning sign features. While such consistency

may help individuals understand signs more easily, it limits the model’s exposure to di-

verse conditions and thus restricts its ability to adapt to more realistic scenarios.
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5.3.2 MINDS

The MINDS-Libras dataset was developed to serve as a standardized and repro-

ducible resource for research on ISLR in LIBRAS [78, 78]. The creation process followed a

strict protocol to ensure consistency, diversity, and the ability to replicate the methodol-

ogy. The dataset includes 20 signs carefully selected by a LIBRAS expert to capture a wide

range of phonological parameters. These parameters encompass aspects such as move-

ments, palm orientations, and non-manual expressions, ensuring the dataset represents

the linguistic complexity of LIBRAS.

To compile the dataset, twelve signers participated in the recording sessions,

varying in gender, age, hearing status, and fluency in LIBRAS, allowing the dataset to ac-

count for some of the natural variability present in real-world scenarios. Participants were

not required to follow strict clothing guidelines, although a significant number chose to

wear black. The recording protocol resulted in videos with a resolution of 1920x1080 pix-

els, all conducted in a controlled studio with fixed lighting and a chroma key background,

which allows for potential manipulation of the background. Additionally, the distance be-

tween the participant and the recording device was standardized to achieve uniformity in

the framing of gestures.

During the recording process, each of the 12 participants performed the 20 se-

lected signs five times, resulting in an initial total of 1200 samples. Participants were

instructed to maintain a neutral facial expression and start each gesture from a fixed po-

sition with hands at their sides. Each recording lasted five seconds, capturing 150 frames

at a rate of 30 frames per second.

The dataset encompasses multiple types of data, including RGB videos, depth

videos, and textual files containing body and face point coordinates. This multimodal

approach ensures comprehensive coverage of the gestural elements critical for SLR. The

data underwent preprocessing to separate individual gestures, ensuring usability across

different research applications. Despite careful planning, some data were lost due to

equipment malfunctions, reducing the final dataset to 1158 samples.

One of the limitations of the MINDS dataset is the absence of a designated test-

ing set, making it difficult to assess model generalization to data not seen during train-

ing. Without this dedicated set and without a larger dataset focused on LIBRAS, it is not

straightforward to determine how well models trained on MINDS would perform in other

scenarios.
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5.3.3 WLASL

The WLASL [53] dataset was created to provide a large-scale resource for ISLR

in ASL. The dataset was developed to address the limitations of existing resources, such

as their small vocabulary sizes and limited signer diversity, which hinder scalability and

practical applications.

To build the dataset, the authors used two main sources. The first source com-

prised educational SL websites, including ASLU [97] and ASL-LEX [17], which provided

gloss-to-sign mappings verified by experts. The second source involved ASL tutorial videos

available on YouTube. Videos were selected based on clear titles that described the gloss

being signed. In total, 68,129 videos covering 20,863 unique ASL glosses were gathered

from 20 websites. These videos featured signers performing a single sign in a near-frontal

view with various backgrounds.

The dataset underwent a thorough filtering process. Videos with gloss annota-

tions consisting of more than two English words were excluded to ensure consistency with

single-word glosses. Glosses with fewer than seven videos were also removed, as such

small sample sizes would compromise the dataset’s utility for training DL models. This

step reduced the dataset to 34,404 video samples covering 3,126 glosses.

Annotations were then added to each video to enhance its utility for ML appli-

cations. Each video was labeled with its corresponding gloss, along with metadata such

as temporal boundaries, body bounding boxes, signer identification, and dialect varia-

tions. Temporal boundaries were defined to indicate the start and end frames of a sign.

In cases where videos included repeated signs, only one instance was retained to avoid

redundancy during training. Body bounding boxes were identified using the YOLOv3 [77]

detection algorithm to minimize background interference. Signer identities were deter-

mined using FaceNet embeddings, ensuring diversity in signer appearances and reducing

potential biases in model training.

Dialect variations were also annotated to reflect linguistic diversity within ASL.

Annotators, trained to understand ASL nuances, labeled these variations by comparing

signs from different videos. Variations with fewer than five examples were discarded to

maintain sufficient data for training, validation, and testing splits.

The final dataset was structured into four subsets based on vocabulary size:

WLASL-100, WLASL-300, WLASL-1000, and WLASL-2000, containing 100, 300, 1,000, and

2,000 glosses, respectively. These subsets facilitated the evaluation of models under vary-

ing levels of complexity. The largest subset, WLASL2000, comprised 21,083 videos with

an average duration of 2.41 seconds and 10.5 samples per gloss. In our study we chose

to employ the 1,000-Class subset. This choice of subset provides us with an average of 8

training instances and 4 validation instances per class for pre-training to evaluate the ef-
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fectiveness of transfer learning from ASL to LIBRAS, aiming to enhance our model’s ability

to recognize LIBRAS signs by leveraging knowledge learned from ASL.

5.3.4 SLOVO

The creation of the SLOVO [49] dataset, a novel large-scale dataset for RSL, fol-

lowed a structured three-stage process: video collection, validation, and gesture annota-

tion. The dataset was designed to address the scarcity of diverse, high-quality RSL data

and involved a total of 194 signers producing 20,000 videos across 1,000 classes of iso-

lated RSL gestures.

Initially the authors selected 1,000 glosses to represent the most frequent words

used in daily life. These glosses covered topics such as food, emotions, colors, and ani-

mals. Crowdworkers were recruited through an online platform to record videos of them-

selves signing these glosses. Each participant was provided with templates sourced from

the Spread The Sign [42] website to standardize the signing process.

Subsequently, a video validation process was conducted to assess if the quality

of video was in conformity to what was expected. This step was also executed by crowd-

workers and each video underwent verification by at least three different validators. In

cases of disagreement, additional validators were brought in, with up to five reviewers

per video. Videos failing to meet quality standards were excluded from the dataset. To

maintain technical consistency, accepted videos were resized to a minimum edge of 720

pixels and converted to a frame rate of 30 frames per second.

Finally, gesture annotation addressed the presence of uninformative frames at

the start and end of the recordings, often where participants prepared for or concluded

their signing. Crowdworkers also annotated the temporal boundaries of each gesture,

marking the start and end times. In situations where a video contained multiple gestures,

these were annotated as a single gloss. Each video was annotated by three different

workers, and the final boundaries were calculated using an aggregation algorithm. This

process identified average start and end points while excluding annotations with high

variance.

During post-processing, it was observed that some signers produced gestures

significantly slower than others, leading to inconsistencies in video duration within the

same gloss. To address this, videos that were slower than the class average by more than

30 frames were sped up, resulting in more homogeneous data. This adjustment improved

the dataset’s usability for ML applications.

The final dataset comprises of HD and FullHD videos with an average length of

1.67 seconds. It includes a "no event" class derived from frames with no signing activity,

contributing 400 additional samples. The dataset was split into training and validation
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sets, with a 75%-25% split ratio. Efforts were made to minimize signer overlap between

these sets to mitigate a overfitting scenario. The SLOVO dataset’s design and method-

ology prioritize diversity and quality, making it a valuable resource for ISLR in RSL, even

though it has the same limitation as the MINDS dataset, where both lack a designated test

set.

5.4 Models

We selected three attention-based video classification architectures ViViT [6],

TimeSformer [10] and VideoMAE [95], to investigate the task of ISLR in LIBRAS. The selec-

tion was guided by three key considerations: (i) robustness in spatiotemporal modeling,

(ii) availability of open-source implementations, and (iii) proven performance in related

video classification benchmarks such as Kinetics-400 [51].

TimeSformer was included because it represents a straightforward yet effective

adaptation of the Transformer paradigm to video data, splitting attention into spatial and

temporal components while avoiding the need for 3D convolutions. ViViT similarly em-

ploys a pure-Transformer approach but offers multiple factorization strategies for combin-

ing space and time, making it a flexible candidate for extracting fine-grained gestural cues

critical to SLR. Finally, VideoMAE leverages masked autoencoders to learn video represen-

tations with minimal supervision, a valuable property in data-constrained scenarios like

ISLR for LIBRAS.

Table 5.2 presents a side-by-side comparison of these models, including their

backbone configurations, attention variants, pre-training datasets, and approximate pa-

rameter counts. They each tokenize, in their own way, video frames into patches, apply

multi-head self-attention mechanisms to capture spatiotemporal dependencies, and use a

classification head for final predictions.

Table 5.2 – Comparison of Transformer-based models employed for video classification.

Model Name Variant Employed Attention Scheme Total Parameters

TimeSformer Divided Space-Time Spatial, then Temporal (Divided) ∼121M
ViViT Joint Spatiotemporal Global Space-Time ∼86M
VideoMAE Tube Masking (MAE) Global Space-Time ∼86M

All models accept an input of T frames (sampled from the full video) at a reso-

lution of 224 × 224 pixels. The number of frames T is set to 16 unless otherwise stated.

Each run uses a batch size of 16, the AdamW optimizer [60] with initial learning rate of

1 × 10−5, and a plateau scheduler is set, lowering the learning rate if the validation loss

stabilizes within five consecutive epochs. Early stopping is triggered if validation accuracy
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does not improve for 30 consecutive epochs, with a maximum of 200 epochs to maintain

computational constraints.

For our implementation, we relied on the PyTorch framework [73], which served

as the backbone for our code. We also leveraged PyTorch Lightning [28] to train and eval-

uate all of our models, which streamlined our workflow and improved efficiency. To con-

duct our experiments, we utilized as hardware six NVIDIA A6000 graphics cards, an AMD

Threadripper with 32 cores, and 110GB of RAM. In the sections that follow we summarize

the logic behind each different architecture.

5.4.1 TimeSformer

TimeSformer extends the self-attention mechanism of Transformers to both spa-

tial and temporal dimensions. Instead of relying solely on 3D convolutions or recurrent

modules, it divides a video into patches along frame and spatial axes. Each patch be-

comes a token, allowing the self-attention mechanism to link spatial and temporal cues

in a parallel manner, as opposed to step-by-step processing. Several variants of TimeS-

former have been explored in prior work [10], including factorized space-time attention

and full space-time attention. In all approaches, TimeSformer receives a sequence of to-

kens of shape (T × patches) in an embedding layer, employs multi-head attention over

space and time, and concludes with a classification head that produces an output over the

possible classes. For our work, we employ the divided space-time attention variant, which

outperformed all other variants, according to the authors of [10].

5.4.2 ViViT

ViViT also utilizes a tokenization strategy for video frames, creating patches that

represent spatial regions of each frame. In contrast to approaches that combine convolu-

tions with attention, ViViT is a pure-Transformer architecture [6]. Several versions of the

model explore ways to factorize or jointly apply attention across space and time, aiming

to balance computational requirements and performance. The model version chosen in

our work applies attention jointly across all spatio-temporal tokens from the input video.

Despite differences in the variations of ViViT, all variations follows a common scheme of

flattening video frames into patches, augmenting them with positional embeddings, and

learning dependencies in a multi-head self-attention block. A classification layer then out-

puts a probability distribution over the sign classes.
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5.4.3 VideoMAE

VideoMAE adapts masked autoencoding from the NLP domain to the video do-

main [95]. It masks a high proportion of patches (often 90%-95%) and learns to re-

construct the missing patches during training, assuming that videos contain redundant

temporal information. Once trained in this fashion, VideoMAE can be fine-tuned for clas-

sification or other downstream tasks. For classification, the pre-processing step involves

sampling and tokenizing frames. Next, a joint space-time embedding is created, and the

model is tasked with reconstructing masked patches to learn meaningful spatiotemporal

features. During fine-tuning for ISLR, the final layer classifies each input as one of the

vocabulary signs. Since VideoMAE can perform well without external pre-training labels, it

is suitable for settings with constrained or partially labeled data.

5.5 Experiments

Our experiments aimed to evaluate the performance of SOTA video classification

models in the task of ISLR for LIBRAS at different settings. For each of our RQ, we devise a

experiment.

5.5.1 Pre-training Experiment

Our first experiment aimed to determine whether models pre-trained on large-

scale action recognition tasks could provide advantages when fine-tuned for ISLR in LI-

BRAS. Specifically, we sought to measure how effectively knowledge acquired from the

Kinetics-400 [51] dataset, which encompasses thousands of videos capturing a broad

range of human actions, could be adapted to the domain of SLR.

To this end, we evaluated each of the three models in two configurations: one

pre-trained on Kinetics-400, and another initialized from scratch with randomly assigned

weights. We then fine-tuned the models on the MINDS dataset, allowing them to learn

the nuances of LIBRAS signs. Finally, we tested the resulting models on the MALTA-LIBRAS

dataset to assess their ability to generalize to new signers and varied environments not

encountered during training.

Results were measured using accuracy, precision, recall, and F1-score. By com-

paring the pre-trained models against those trained solely on the MINDS dataset, we

aimed to determine if leveraging prior knowledge from general action recognition tasks
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would improve ISLR performance for LIBRAS, thus providing evidence of effective transfer

learning and answering our RQ1.

5.5.2 Data Augmentation Experiment

Our second experiment focused on evaluating how different data augmentation

techniques influence the model’s performance throughout the training process. Other

studies, such as the development of the MINDS [78] dataset, employ limited data aug-

mentation techniques in LIBRAS, such as temporal displacement of frames, horizontal

mirroring and zoom. Since this experiment does not aim to find the best model among

the three tested, we chose to only perform data augmentation experiment on the less

compute intensive model, VideoMAE [95].

We experimented with four augmentation techniques: (i) color jitter, which varies

brightness, contrast, saturation and hue in order to emulate varying background scenarios

common in video augmentation experiments; (ii) Mixup [103] as a way to blend different

samples and introduce controlled noise; (iii) random rotation to account for minor shifts in

sign execution, and (iv) random perspective to simulate different camera angles. As part

of the data augmentation process, a random sampling strategy was also implemented.

From the total set of 32 frames in each video, a subset of 16 frames was randomly selected

for further processing.

Subsequently, each technique’s intensity was incrementally adjusted from 0.05
to 0.5 in steps of 0.05. To ensure robustness and account for stochastic variations, train-

ing was repeated with ten different preset seeds for each intensity level. Averaging the

performance metrics across these runs allowed us to mitigate the impact of random fluc-

tuations.

After identifying the best intensity for each individual augmentation technique

based on performance on the MALTA-LIBRAS dataset, we conducted a new training session

on the MINDS dataset, using all augmentation techniques simultaneously at their respec-

tive optimal intensity levels. We then evaluated the model on MALTA-LIBRAS once again,

comparing the results to those from experiments without data augmentation. Utilizing

the MALTA-LIBRAS dataset to determine the optimal intensity levels for each augmenta-

tion technique deviates from standard protocol, as it effectively redefines MALTA-LIBRAS

as a validation set rather than a test set. However, this approach was adopted due to

resource constraints and the near-perfect validation metrics observed on all experiments.

This comparative assessment, designed to answer our RQ2, enabled us to measure the

cumulative benefits of the optimized augmentation pipeline and determine whether it fur-

ther enhanced the model’s generalization capabilities.
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5.5.3 Transfer learning Experiment

Our final experiment was designed to assess the potential of transfer learning

between different SLs. VideoMAE was the model selected for this experiment following

the same rationale of the previous one.

Initially, we trained the VideoMAE model on the SLOVO dataset, the RSL dataset.

After training, we fine-tuned the model on the MINDS dataset and then tested it on our

MALTA-LIBRAS dataset to evaluate its ability to generalize to new signers and environ-

ments not seen during training.

Subsequently, we repeated the same procedure using the WLASL dataset. The

model was trained on WLASL, fine-tuned on MINDS, and tested on MALTA-LIBRAS. Further-

more, we explored a combined pre-training approach by pre-training the model on both

the SLOVO and WLASL datasets before fine-tuning on MINDS and testing on MALTA-LIBRAS.

This approach allowed us to thoroughly evaluate the transfer learning capabilities among

different SLs and to assess whether pre-training on multiple SLs enhances performance

on LIBRAS recognition tasks.

The initial training on the SLOVO and WLASL datasets was performed without

data augmentation to isolate the effects of augmentation during fine-tuning. During the

fine-tuning step on the MINDS dataset, we used the optimal set of augmentations obtained

from the previous experiment. This training was conducted with a single preset seed to

reduce computational time and resources. Results of this experiment provides a thorough

assessment of the model’s classification capabilities and its ability to generalize across

different SLs and datasets, enabling us to answer our RQ3.

The experiments in this chapter seek to help understand how each step, pre-

training, data augmentation, and cross-dataset transfer learning, contributes to model

performance in LIBRAS ISLR. The first experiment compares random initialization against

weights learned from action recognition tasks, answering our RQ1. The second experi-

ment searches for suitable augmentation approaches to address the scarcity and uniform

conditions in the MINDS dataset, answering our RQ2. The third experiment tests whether

SL data from other languages helps address domain gaps in LIBRAS ISLR, answering our

RQ3. Collectively, these experiments give a comprehensive view of how attention-based

video classifiers can be adapted to LIBRAS ISLR.
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6. RESULTS

Dennis: Sugeriu seguir a estrutura: descrição do experimento -> link com a pergunta de pesquisa -> resultados; e na conclusão trazer de volta o link com a pergunta de

pesquisa e a ’análise’ final.

his chapter provides results from the experiments described in Chapter 5, focus-

ing on the research questions (RQ1, RQ2, RQ3) described in Chapter 4. All experiments

use the same evaluation metrics (accuracy, precision, recall, and F1-score) and the same

data splits introduced earlier.

6.1 Pre-Training Experiment

RQ1 explores whether models pre-trained on the Kinetics-400 dataset [51] achieve

better performance on LIBRAS ISLR than models initialized from scratch. Three architec-

tures, TimeSformer [10], ViViT [6], and VideoMAE [95], were tested under two conditions:

(i) one with pre-trained weights and (ii) another with randomly initialized weights (NPT).

For the NPT models, He [38] initialization was employed to maintain stable variance by

scaling weights according to the number of input connections in each layer, mitigating

vanishing and exploding gradients situations.

Each model configuration (pre-trained and NPT) was fine-tuned on the MINDS

dataset, following a 75-25% training-validation split for each sign. The MALTA-LIBRAS

dataset served as a separate test set to evaluate model generalization. No data augmen-

tation was applied, and each experiment was repeated with ten preset seeds, averaging

the resulting metrics.

Table 6.1 displays the average accuracy, precision, recall, and F1-score for each

model under both pre-trained and NPT settings, revealing that models pre-trained on

Kinetics-400 achieve notably higher validation metrics compared to those trained solely

on MINDS. From Table 6.1 and Table 6.2, it is evident that the VideoMAE model outperforms

all others in both MINDS validation and MALTA-LIBRAS testing. We attribute this advantage

to its masked auto-encoding method, where random portions of the input are concealed

and the model is trained to reconstruct these hidden segments, effectively learning more

robust representations.

Though these models attain high validation scores, their metrics on MALTA-LIBRAS

remains lower. This result indicates that the models may be learning patterns in the train-

ing data that do not generalize well to the unseen test set, revealing an overfitting sce-

nario.

An additional evaluation examined performance metrics across each data source

in MALTA-LIBRAS, as summarized in Table 6.2. Across these different conditions, the Video-
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MAE model consistently surpassed ViViT and TimeSformer, achieving higher accuracy and

showing effectiveness in managing sign variety and other differences found in MALTA-

LIBRAS. Moreover, the metrics appeared stable across these sources, indicating no obvi-

ous biases that might complicate model performance on any single subset.

Even though models trained exclusively on MINDS struggled to generalize, pre-

training on the Kinetics-400 dataset played a major role in bridging this gap. A comparison

of validation and test outcomes in Table 6.1 reveals that NPT models achieved accuracy

equivalent to random guessing over the 20 classes of the test set, whereas pre-trained

counterparts achieved accuracy levels above random chance.

This finding addresses RQ1 by showing that pre-training on action recognition

tasks can indeed benefit LIBRAS ISLR. Despite MALTA-LIBRAS having varied signers and

recording conditions, knowledge from general human motion appears valuable for feature

extraction. All models improved top-1 accuracy and F1-score when leveraging Kinetics-

400 pre-training, suggesting that large-scale motion representations from general action

data transfer effectively to sign recognition, especially when training is limited by data

constraints such as those in MINDS.

6.2 Data Augmentation Experiment

RQ2 focused on the effect of different data augmentation approaches on LIBRAS

ISLR. Due to computational constraints and previous experiment outcomes, we use the

VideoMAE model for subsequent experiments, as it is less resource-intensive than TimeS-

former or ViViT.

In contrast to the original MINDS setup, which made limited use of data augmen-

tation, our study employed a more extensive range of augmentation methods and inten-

sities. Specifically, we tested Color Jitter (changing brightness, contrast, saturation, and

hue), Mixup [103] (mixing training samples with samples from other classes to introduce

controlled noise), Random Rotation, and Random Perspective for simulating camera angle

variations. Each method was examined at intensities ranging from 0.05 to 0.50 in incre-

Table 6.1 – Validation and test results of pretrained and non-pretrained (NPT) models.

Model
MINDS Validation MALTA-LIBRAS Test

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

VideoMAE .994 .995 .994 .994 .290 .256 .258 .227
TimeSformer .980 .983 .980 .980 .254 .257 .224 .207
ViVit .984 .986 .984 .984 .181 .177 .155 .134
VideoMAE NPT .767 .791 .767 .766 .048 .020 .043 .022
TimeSformer NPT .774 .783 .774 .769 .051 .040 .059 .028
ViVit NPT .552 .563 .552 .549 .055 .036 .054 .034
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Table 6.2 – Test metrics for each data source within MALTA-LIBRAS of all pretrained and
non-pretrained (NPT) models.

Source VideoMAE VideoMAE NPT TimeSformer TimeSformer NPT ViVit ViVit NPT

Spread The Sign

Accuracy .293 .056 .312 .031 .206 .081
Precision .179 .022 .236 .017 .159 .024
Recall .272 .046 .289 .024 .189 .064
F1-score .207 .026 .252 .019 .169 .030

INES Dictionary 2.0

Accuracy .234 .061 .219 .080 .219 .050
Precision .177 .007 .158 .028 .146 .023
Recall .248 .044 .222 .078 .226 .046
F1-score .191 .011 .167 .030 .158 .026

INES Dictionary 3.0

Accuracy .300 .050 .287 .045 .137 .050
Precision .262 .012 .242 .012 .118 .012
Recall .280 .055 .270 .055 .139 .044
F1-score .244 .014 .236 .017 .111 .016

V-LIBRASIL

Accuracy .314 .040 .214 .044 .148 .051
Precision .150 .006 .122 .014 .073 .032
Recall .214 .036 .166 .035 .112 .037
F1-score .160 .010 .114 .018 .064 .027

Signbank

Accuracy .278 .057 .257 .063 .215 .052
Precision .233 .005 .202 .019 .137 .022
Recall .248 .061 .223 .065 .184 .054
F1-score .229 .009 .205 .024 .146 .026

LIBRAS Corpus

Accuracy .331 .026 .263 .036 .178 .057
Precision .266 .001 .202 .009 .119 .018
Recall .306 .027 .236 .038 .153 .054
F1-score .276 .002 .205 .012 .119 .025

ments of 0.05, repeated with ten different seeds to address random fluctuations. Models

were trained on MINDS (75% training, 25% validation) and tested on MALTA-LIBRAS. The

highest accuracy from each augmentation was then merged into a single pipeline.

Table 6.3 shows the intensities, highlighting the best mean accuracy and stan-

dard deviation for each technique. A key observation emerged with Mixup: moderate

intensities (approximately 0.20–0.30) tended to yield higher mean accuracy than lower or

higher intensities. Minimal intensities may help generalization, while high intensities of-

ten distort signs to the extent that classification becomes challenging. This pattern aligns

with the idea that overly strong mixing can produce samples that the model struggles to

recognize.

For Color Jitter, all parameters (brightness, contrast, saturation, and hue) were

varied uniformly, making it difficult to assess the contribution of each aspect individually.

Nonetheless, higher Color Jitter intensities improved generalization. Intensities of 0.40
and 0.50 both achieved an accuracy of 0.310, though the 0.40 setting displayed lower

variance, suggesting it is preferable overall.

Turning to Random Perspective, higher intensities similarly aided model gener-

alization, with 0.50 yielding 0.293 in accuracy. All techniques boosted performance ex-

cept for Random Rotation. Across all rotation intensities, 0.35 recorded 0.274 in accuracy,
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which is lower than the baseline without augmentation (see Table 6.1). Sign gestures

rely significantly on hand angles, so strong rotation may alter sign shape or orientation,

leading to misclassification.

Based on these findings, the following intensities were chosen for the final data

augmentation pipeline: 0.40 for Color Jitter, 0.25 for Mixup, 0.35 for Random Rotation, and

0.50 for Random Perspective. Using these intensities across 10 preset seeds, a new set

of runs was performed on the VideoMAE model, both with (PT) and without pre-training

(NPT).

Table 6.4 shows that data augmentation by itself does not surpass the advan-

tages of pre-training. In addition, the NPT VideoMAE still struggles despite the new pipeline,

while the PT model improves from an accuracy of 0.29 to 0.336 when using these tech-

niques.

By analyzing these results, we can address RQ2 and conclude that introducing

variation during training helps models manage diverse backgrounds, lighting conditions,

and signer characteristics. However, these improvements did not eliminate the perfor-

mance gap between MINDS and MALTA-LIBRAS, suggesting that additional variety in train-

ing data or alternative approaches, including more specialized video augmentations, may

be necessary for robust generalization.

All explored augmentation methods enhanced model accuracy, but each had an

optimal range, after which further transformations were no longer helpful. Moderate trans-

formations appear to generate more varied training instances without obscuring key sign

features. These outcomes indicate that careful data augmentation can be beneficial for

SLR, particularly in resource-limited contexts.

Table 6.3 – Mean and standard deviation of MALTA-LIBRAS test accuracy for the VideoMAE
model, pretrained on Kinetics-400 and fine-tuned on MINDS, on various intensities for each
data augmentation technique.

Intensity Color Jitter Mixup Random Rotation Random Perspective

0.05 .290 ± .016 .286 ± .026 .271 ± .027 .288 ± .025
0.10 .288 ± .018 .291 ± .035 .271 ± .027 .279 ± .025
0.15 .301 ± .026 .279 ± .018 .271 ± .027 .277 ± .022
0.20 .295 ± .021 .289 ± .038 .271 ± .027 .288 ± .036
0.25 .305 ± .025 .298 ± .027 .271 ± .027 .283 ± .021
0.30 .305 ± .014 .293 ± .022 .258 ± .029 .286 ± .019
0.35 .302 ± .024 .254 ± .042 .274 ± .028 .276 ± .029
0.40 .310 ± .014 .287 ± .047 .266 ± .039 .286 ± .015
0.45 .296 ± .028 .277 ± .031 .274 ± .031 .283 ± .029
0.50 .310 ± .029 .273 ± .042 .268 ± .033 .293 ± .021
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Table 6.4 – Test accuracy on MALTA-LIBRAS with and without the augmentation pipeline.

Model
Without Augmentation With Augmentation

Acc Top-5 Acc Acc Top-5 Acc

VideoMAE PT .290 ± .021 .541 ± .027 .336 ± .013 .523 ± .028
VideoMAE NPT .048 ± .012 .260 ± .021 .074 ± .016 .269 ± .017

6.3 Transfer Learning Experiment

The final experiment investigated the potential for cross-dataset or cross-lingual

knowledge transfer to support LIBRAS ISLR. A VideoMAE model, pre-trained on Kinetics-

400, was further pre-trained (PT) on the SLOVO dataset following the author’s split but

merging the validation and test sets into a single validation set, then fine-tuned (FN) on

MINDS. Separately, the model was PT on the WLASL-1000 subset, maintaining the author’s

original splits, then FT on MINDS. Finally, another scenario involved PT on both SLOVO and

WLASL-1000 before FT on MINDS.

No augmentation was used during the SLOVO or WLASL PT phases, though the

RQ2 pipeline was applied during MINDS fine-tuning. Only one seed was used in each

experiment to reduce training times, creating a common validation approach across both

datasets and facilitating direct comparisons.

This step addressed RQ3 by assessing whether sign-based knowledge could im-

prove performance in LIBRAS ISLR. Table 6.5 shows mean accuracy in MALTA-LIBRAS for

each PT scenario, including a baseline with no cross-dataset PT.

Table 6.5 – Results for the VideoMAE pre-trained (PT) on Russian and American Sign Lan-
guages then fine-tuned (FT) on MINDS.

Model
MINDS Validation MALTA-LIBRAS Test

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

SLOVO PT + MINDS FT 1 1 1 1 .317 .242 .274 .226
WLASL PT + MINDS FT .996 .996 .996 .996 .290 .263 .263 .238
SLOVO PT + WLASL PT + MINDS FT .996 .996 .996 .996 .290 .263 .263 .238
MINDS FT .994 .995 .994 .994 .290 .256 .258 .227

Contrary to initial expectations, pre-training on SLOVO, WLASL, or both offered

limited gains compared to a baseline PT model. In Table 6.5, only PT with SLOVO provided a

slight boost in test accuracy, even though validation achieved perfect performance. Cross-

lingual SL data yielded smaller benefits than pre-training on action recognition, indicating

that any spatiotemporal overlap across SLs might be overshadowed by the broader motion

patterns learned from general action datasets.

Variations in linguistic structure, sign formation, and visual appearance likely re-

duced the potential for transferring features across different SLs. These findings point
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to the complexity of cross-lingual adaptation and the need for approaches that directly

address language or domain-specific differences.
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7. CONCLUSION

This dissertation tackled thetask of improving ISLR in LIBRAS, an endeavor vi-

tal for breaking down communication barriers and fostering broader accessibility for Deaf

communities. Through focused explorations in three different approaches, leveraging ac-

tion recognition pre-training (RQ1), broadening data augmentation strategies (RQ2), and

pursuing cross-dataset transfer learning across diverse Sign Languages (RQ3), this work

aimed to enhance model robustness and generalizability. Experiments were conducted on

the MINDS dataset for training and validation, while a subset of our novel MALTA-LIBRAS

dataset served as a real-world test set to evaluate metrics on a more varied set of videos

and signers. Three attention-based video classification architectures, TimeSformer, ViViT,

and VideoMAE, were employed to capture the subtle spatial and temporal cues that define

sign articulation. By integrating these techniques and models, this study demonstrates a

promising path toward more accurate, inclusive, and scalable LIBRAS recognition systems.

We present next our RQs and their respective findings:

• RQ1: How does pre-training in action recognition tasks affect LIBRAS ISLR?

Models pre-trained on Kinetics-400 performed better than those trained solely on

MINDS. The difference was clear for the VideoMAE architecture, which achieved higher

metrics across multiple MALTA-LIBRAS dictionaries, consistently outperforming other mod-

els. These findings suggest that large-scale human action datasets capture motion fea-

tures that can transfer to LIBRAS signs. While MINDS is narrow in scope, it may still benefit

from these motion priors, improving convergence and mitigating overfitting.

• RQ2: How different data augmentation techniques impacts LIBRAS ISLR?

Random perspective transformations, color jitter, and Mixup helped improve gen-

eralization from MINDS to MALTA-LIBRAS. Although the gains did not fully address the over-

fitting issue, the observed rise in accuracy and F1-score shows the benefits of a structured

data augmentation pipeline tailored for SLR. Moderate intensities in most techniques pro-

vided better results, indicating that excessive transformations can obscure important sign

features.

• RQ3: How cross-dataset transfer learning, between ASL and RLS, affect LIBRAS ISLR?

Pre-training with the RSL-based SLOVO dataset yielded improvements in accu-

racy and recall, while the ASL-based pre-training and the combination of both SLOVO and

ASL benefited precision and F1-score, compared to a baseline without cross-lingual data.

These gains, however, were smaller than those from Kinetics-400. This finding implies that

while certain features may be shared across different SLs, broader motion representations

learned from general action datasets may carry more influence.
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7.1 Implications

Training on a small, controlled dataset such as MINDS can lead to overfitting,

though performance can be improved by leveraging pre-training on large-scale action

datasets or by employing carefully chosen data augmentation strategies. Cross-lingual

pre-training offers less benefit than expected, possibly reflecting limited overlap across

different SLs.

Introducing additional data or domain-specific augmentations can help address

the lack of variety in existing LIBRAS datasets, producing tangible gains. The MALTA-

LIBRAS dataset emphasizes the importance of evaluation sets that differ from controlled

conditions, providing a more realistic measure of model performance. Large-scale human

action pre-training remains valuable for capturing motion cues relevant to SLs, yet only

small improvements arose from cross-lingual transfer, indicating a need for deeper collab-

orations or more consistent labeling protocols to fully utilize multi-language sign data.

7.2 Limitations

7.3 Limitations

The methods described in this work face challenges related to data diversity,

model capacity, and computational resources, limiting both the conclusions regarding SLR

in LIBRAS and their applicability to broader SL contexts. In addition, the chosen evaluation

strategy relies on a fixed holdout set rather than more robust statistical methods such as

k-fold cross-validation. While the holdout approach allows for a simpler workflow, it may

leave open questions about model variance and the representativeness of the chosen

splits, especially when datasets are small or unbalanced. Future studies could explore

more comprehensive sampling strategies to gain deeper insights into model performance

and generalization.

7.3.1 Datasets

MINDS is smaller than resources such as WLASL and has limited environmen-

tal variety compared to datasets like SLOVO, leading to pronounced overfitting. MALTA-

LIBRAS broadens signer and recording conditions but remains constrained in both total

videos and samples per gloss. Both datasets concentrate on only 20 signs, covering a
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minimal fraction of LIBRAS vocabulary and possibly overlooking the broader complexity

found in day-to-day signing.

7.3.2 Models

All tested architectures use attention-based patch embeddings for spatiotempo-

ral modeling, and while these approaches worked well, integrating skeleton or pose-based

features in a hybrid strategy may offer further gains. The large number of parameters can

complicate training under limited data or hardware constraints.

Additionally, the same hyperparameters were applied across different experi-

ments, leaving open the possibility that certain configurations might be less effective for

specific data splits or augmentation procedures. Large networks can overfit when data is

scarce, and they may benefit from stronger regularization or broader augmentation tech-

niques.

7.3.3 Hardware

All experiments were conducted on a computational cluster with two NVIDIA

A6000 GPUs using fixed parallelization strategies to ensure reproducibility. For RQ1 three

transformer architectures (TimeSformer, ViViT, VideoMAE) were tested under two training

settings (pre-trained on Kinetics-400 vs. He-initialized weights) across 10 preset seeds.

This resulted in a total of 60 runs, 3 models, 2 pre-training settings across 10 preset seeds,

requiring 480 GPU hours (±20 days) at approximately 8 hours per run.

RQ2 investigated data augmentation techniques, testing four strategies (color

jitter, random rotation, random perspective, Mixup) at 10 intensity levels (0.05–0.50/) with

10 seeds per technique. After identifying optimal intensities, a combined pipeline was

evaluated with 10 additional seeds, totaling 410 runs. This experiment used 3,280 GPU

hours (±137 days).

For RQ3, cross-lingual transfer learning involved three steps:

1. SLOVO pretraining: VideoMAE trained on SLOVO with 10 seeds, followed by fine-

tuning the best seed on MINDS.

2. WLASL pretraining: VideoMAE trained on WLASL-1k with 10 seeds, then fine-tuning

the best seed on MINDS.

3. Combined pretraining: Sequential training on SLOVO (1 seed), then on WLASL-1k (1

seed), then fine-tuning on MINDS (1 seed).
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This culminated in 25 runs for RQ3, requiring approximately 200 GPU hours (±8.3

days). Collectively, the study executed 495 runs with over 3,960 GPU hours (±165 days),

highlighting the computational intensity of transformer-based video modeling in low-resource

SLR.

7.4 Future Work

Several directions could broaden the scope of LIBRAS ISLR research. Emphasis

may be placed on enlarging dataset resources, combining models that handle signing

nuances, and refining transfer learning.

One direction involves collecting additional LIBRAS videos on a scale similar to

other SL datasets, which would also support a shift from ISLR to CSLR and help limit over-

fitting. Involvement from Deaf communities or educational institutions may enhance the

authenticity of collected data.

Another direction centers on methods that rely on 2D or 3D skeletal inputs, key-

point detection, or depth estimation. These steps can reduce the model’s dependence on

color or background settings. Incorporating pose data into an attention-based structure

might address lexical and grammatical elements of LIBRAS. Finally, techniques such as

domain adaptation, adversarial training, and multi-lingual SL embeddings may leverage

cross-lingual data more effectively than direct fine-tuning.

7.4.1 Published Work and Fundings

This work was submitted to the 2025 International Joint Conference on Neural

Networks. Future publications will likely focus on extended LIBRAS corpora and domain

adaptation experiments to expand real-world usability of sign language systems. Funding

for our work included the 2022 Google Award for Inclusion Research (AIR), with which

we were able to obtain the GPU’s used here. This study was also financed in part by the

Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES) – Finance

Code 001 and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS,

grant nr. 22/2551-0000390-7).

This dissertation emphasizes both the opportunities and the difficulties in LIBRAS

ISLR. Data scarcity remains a significant limitation, yet pre-training on general human mo-

tion datasets and carefully chosen augmentations can alleviate overfitting and contribute

to moderate gains. Cross-lingual sign data yields only limited improvements, indicating

the need for additional data collection efforts, cross-lingual alignment approaches, and

specialized architectures for SLs. The MALTA-LIBRAS test set, along with the experimental
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findings, forms a starting point for further LIBRAS investigations and may guide expanded

research in academic and practical domains.
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