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MINIMIZANDO LATÊNCIA E TEMPO DE MANUTENÇÃO DURANTE
ATUALIZAÇÃO DE SERVIDORES EM INFRAESTRUTURAS DE

COMPUTAÇÃO NA BORDA

RESUMO

A Computação na Borda oferece baixa latência para aplicações de tempo real,
transferindo tarefas de processamento de data centers tradicionais na nuvem para a borda
da rede, em proximidade às fontes dos dados. À medida que as expectativas sobre a
Computação na Borda se amplificam, também aumenta a pressão sobre profissionais de
TI responsáveis por planejar e executar manutenções em infraestruturas de borda. Manu-
tenções na borda são essenciais, dado que servidores de borda—especialmente aqueles
posicionados em instalações ao ar livre—são expostos a várias vulnerabilidades, incluindo
problemas de hardware e ameaças de segurança. Para complicar ainda mais a situação,
muitas características únicas de infraestruturas de borda, como requisitos estritos de la-
tência das aplicações e a dispersão física dos servidores, dificultam a possibilidade de
reutilização de estratégias de manutenção projetadas para a nuvem. Diante deste cenário,
esta tese de doutorado busca possibilitar atualizações mais rápidas de servidores de borda,
reduzindo o impacto da manutenção no desempenho das aplicações. Para isso, esta tese
de doutorado faz as seguintes contribuições: (i) Uma revisão de literatura que organiza a
pesquisa existente sobre manutenção direcionada à Computação na Borda e dois para-
digmas relacionados (Computação em Nuvem e Internet das Coisas) de acordo com uma
nova taxonomia; (ii) Um simulador, chamado EdgeSimPy, que modela vários componentes
de infraestruturas de borda e dá suporte a casos de uso de manutenção; (iii) Duas estraté-
gias de manutenção, chamadas Lamp e Laxus, que incorporam a localização dos usuários
na tomada de decisões de manutenção para reduzir o impacto de atualizações de servido-
res de borda na latência das aplicações; e (iv) Uma estratégia de manutenção, chamada
Hermes, que toma vantagem do conteúdo compartilhado de imagens de contêineres das



aplicações de borda para reduzir o tempo de manutenção através de realocações otimiza-
das. Experimentos extensivos mostram que as soluções propostas são capazes de acelerar
a atualização de servidores de borda, reduzindo o impacto da manutenção no desempenho
das aplicações em comparação com estratégias da literatura.

Palavras-Chave: Gerência de Recursos, Manutenção, Atualização de Servidores, Compu-
tação na Borda, Latência de Aplicações.



MINIMIZING LATENCY AND MAINTENANCE TIME DURING SERVER
UPDATES ON EDGE COMPUTING INFRASTRUCTURES

ABSTRACT

Edge Computing offers low latency for real-time applications by shifting processing
tasks from traditional cloud data centers to the network’s edge, near data sources. As ex-
pectations about Edge Computing grow, so does the pressure on IT personnel responsible
for planning and executing maintenance operations on edge infrastructures. Maintenance
at the edge is critical, given that edge servers, especially those installed in outdoor facilities,
are exposed to several vulnerabilities, including hardware issues and security threats. To
make things even more complicated, many unique characteristics of edge infrastructures,
such as tight application latency requirements and the physical dispersion of edge servers,
hinder the possibility of reusing maintenance strategies designed for the cloud. In light of
the given scenario, this doctoral thesis seeks to enable faster updates of edge servers while
reducing maintenance’s impact on edge application performance. To this end, this doc-
toral thesis makes the following contributions: (i) a literature review that organizes existing
maintenance research targeting Edge Computing and two related paradigms (Cloud Com-
puting and Internet of Things) according to a novel taxonomy; (ii) a simulation toolkit, called
EdgeSimPy, that models various components of edge infrastructures and supports mainte-
nance use cases; (iii) two maintenance strategies, called Lamp and Laxus, that incorporate
user location awareness into maintenance decision-making to reduce the impact of server
updates on application latency; and (iv) a maintenance strategy, called Hermes, that capital-
izes on the shared content of container images of edge applications to reduce maintenance
time through optimized relocations. Extensive experiments show that proposed solutions
can accelerate edge server updates while reducing the impact of maintenance on edge ap-
plication performance compared to strategies from the literature.



Keywords: Resource Management, Maintenance, Server Updates, Edge Computing, Ap-
plication Latency.
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1. INTRODUCTION

1.1 Motivation

Cloud computing has been recognized as the reference model for deploying appli-
cations through the Internet since the release of popular services managed by big players
such as Amazon Web Services (AWS)1 in 2006 [120] [23]. While the cloud domain was
unchallenged for many years, advances in hardware production and telecommunications
enabled the emergence of the Internet of Things [53], which introduced new classes of
sensor-rich applications whose latency and bandwidth requirements could not be satisfied
solely by cloud data centers due to their distance from data sources.

As a response to the challenge of handling the demand for real-time IoT applica-
tions, a new paradigm called Edge Computing [132] was introduced. The main idea of Edge
Computing is acting as an extension of the cloud that brings computing resources closer to
data sources to alleviate the demand upon the Internet’s core and to cope with the appli-
cation’s low latency requirements [131]. Despite their contrasting characteristics, cloud and
edge infrastructures share some commonalities, including the need for meticulous mainte-
nance strategies, which serve as countermeasures against undesired events that can affect
the performance and security of applications [167] [44] [110] [149]. Although maintenance
planning is a complex task for both cloud and edge infrastructures, some unique character-
istics of the edge increase the difficulty of such a process even further.

To better illustrate the challenges of conducting maintenance at the edge, let us
consider an edge server patching scenario where advancing maintenance requires relocat-
ing applications to avoid downtime during the updates. The first consideration in such a
scenario is that edge infrastructures are often made up of heterogeneous hosts with varying
processing and capacity, and edge applications have strict performance requirements [175].
Consequently, there are limited provisioning options that preserve application performance
during maintenance work. Furthermore, edge servers are typically connected by public net-
works without mandatory redundancy and performance guarantees [160] [8]. As a result,
network operations are subject to unexpected instability, thereby delaying any maintenance
operations that depend on them.

While considerable research advancements have been made to optimize the plan-
ning and execution of maintenance operations in cloud data centers, little effort has been
directed toward Edge Computing environments. On top of this, the aforementioned mainte-
nance demands of edge infrastructures make the problem more complex than simply reusing
existing strategies designed for cloud environments. Consequently, new maintenance ap-

1https://aws.amazon.com/

https://aws.amazon.com/
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proaches are required to ensure that updates are quickly applied to the edge infrastructure
while keeping the impact on application performance as low as possible.

1.2 Objective

This thesis aims to optimize maintenance operations on Edge Computing envi-
ronments, enabling faster updates of edge components while ensuring that the impact of
maintenance work on the performance of edge applications is reduced.

1.3 Hypothesis and Research Questions

We formulate the following hypothesis to guide this doctoral research:

“Driving maintenance decisions according to performance requirements and
characteristics of edge applications could enable faster updates of edge

components with reduced impact on application performance.”

We advocate that resource allocation decisions made during maintenance should
take into account the performance requirements of edge applications and the constraints
of edge infrastructures when determining “when” and “how” to update components. By ad-
hering to this approach, we believe maintenance strategies could be less intrusive to the
performance of applications running at the edge, while ensuring the stability and security of
the infrastructure through faster updates.

Guided by the above rationale, we define the following research questions:

• Research Question 1: What are the main approaches and metrics of interest in the
context of maintenance on Edge Computing infrastructures?

– The objective of this research question is twofold. First, it aims to understand
what requirements are considered during maintenance operations on Edge Com-
puting environments and how they are expressed through performance indicators.
Second, it seeks to catalog the main edge maintenance approaches.

• Research Question 2: How can we evaluate research prototypes of maintenance
strategies for Edge Computing infrastructures?

– This research question seeks to identify the available resources for validating
and evaluating maintenance strategies for edge environments, analyzing areas
of improvement and potential alternatives to support the maturation process of
research prototypes in the field.
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• Research Question 3: What is the impact of location-aware application relocation
during maintenance on Edge Computing infrastructures?

– The objective of this research question is twofold. First, it aims to demonstrate that
simply reusing maintenance strategies designed for cloud environments during
the update of components on edge infrastructures is ineffective due to the incurred
degradation of edge application performance. Second, it seeks to understand
how location awareness can be incorporated into maintenance decision-making
to reduce the impact of maintenance on application performance.

• Research Question 4: How can we leverage characteristics of edge applications to
reduce maintenance time during edge server updates?

– This research question focuses on optimizing edge server updates. In this con-
text, the aim is to identify which characteristics of edge applications impact the
maintenance time during edge server updates and how they can be incorporated
into maintenance strategies to accelerate such a process.

1.4 Main Contributions

This thesis advances the state of the art through the following contributions:

• It presents a novel taxonomy that organizes existing maintenance strategies targeting
physical and logical components of Edge Computing environments and two related
paradigms (Cloud Computing and Internet of Things).

• It introduces EdgeSimPy, a simulation toolkit that enables the modeling and simulation
of resource management policies for edge infrastructures. In addition to implementing
a conceptual model that accurately represents the entire lifecycle of edge applications,
EdgeSimPy supports the evaluation of maintenance strategies for various components
of edge infrastructures, including edge servers and network devices.

• It proposes three novel maintenance strategies tailored to the needs of the edge. The
first two strategies, Lamp and Laxus, incorporate user location awareness into mainte-
nance decision-making to reduce the impact of server updates on application latency.
The third strategy, Hermes, leverages the shared content of container images of edge
applications to reduce maintenance time through optimized relocations.
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1.5 Thesis Organization

Figure 1.1 shows the relationship between the subsequent chapters of this thesis.
It is worth noting that portions of the content of subsequent chapters have been partially
derived from a series of papers published throughout the doctoral candidature.
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Figure 1.1 – Thesis organization.

The remainder of this thesis is organized as follows:

• Chapter 2 reviews the concepts that shape the foundation of our research, including
Cloud Computing, Internet of Things, Edge Computing, and maintenance.

• Chapter 3 presents a review of the literature that organizes maintenance research
focusing on Edge Computing and related paradigms according to a novel taxonomy.
This chapter addresses Research Question 1 and is partially derived from a research
paper under review in the ACM Computing Surveys journal.

• Chapter 4 presents a novel simulation toolkit that implements several functional ab-
stractions to model the entities that compose edge infrastructures and provides support
for modeling and evaluating maintenance strategies. This chapter addresses Research
Question 2, and it is partially derived from [148]:

– Souza, P. S.; Ferreto, T.; Calheiros, R. N. “EdgeSimPy: Python-based modeling
and simulation of edge computing resource management policies”, Future Gen-
eration Computer Systems, vol. 148–1, November 2023, pp. 446–459.

• Chapter 5 introduces two maintenance strategies that incorporate user location aware-
ness into maintenance decision-making to reduce edge application latency during
edge server updates. This chapter addresses Research Question 3, and it is partially
derived from [149]:
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– Souza, P. S.; Ferreto, T. C.; Rossi, F. D.; Calheiros, R. N. “Location-aware mainte-
nance strategies for edge computing infrastructures”, IEEE Communications Let-
ters, vol. 26–4, February 2022, pp. 848–852.

• Chapter 6 expands the work of Chapter 5 through a maintenance strategy that capi-
talizes on the shared content of container images to reduce maintenance time through
optimized application relocations. This chapter addresses Research Question 4.

• Chapter 7 presents the final considerations, including an overview of contributions,
a discussion on how established research questions are answered, and a listing of
challenges and open questions related to maintenance operations on Edge Computing
infrastructures.
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2. BACKGROUND

This chapter discusses the core concepts that shape the foundation of this work,
including Cloud Computing (Section 2.1), Internet of Things (Section 2.2), and Edge Com-
puting (Section 2.3). In addition, it highlights the interaction between these paradigms and
emphasizes the importance of maintenance in such environments (Section 2.4).

2.1 Cloud Computing

Cloud Computing has been established over the years as a de facto standard for
hosting applications on the Internet [23]. The basic idea behind Cloud Computing is provid-
ing users on-demand access to infrastructure, platforms, and software applications through
a subscription business model that works on a pay-as-you-go basis [11]. The service-based
cloud model has lowered the barrier to entry for entrepreneurs and low-to-midsize compa-
nies, who previously had to afford a significant investment to build and manage their own
data center infrastructure.

One of the key enablers for the on-demand subscription model offered by the cloud
is elasticity, which dynamically fits resources to cope with the demand [62]. When demand
increases, elastic cloud systems add resources to services, allowing them to scale accord-
ing to workload. Cloud scalability occurs by giving a service a larger slice of its host server
resources (vertical scaling) or dividing the demand for services across multiple servers
(horizontal scaling) [48]. Conversely, underutilized resources are released to reduce the
provider’s operational costs.

Cloud elasticity is generally enabled by virtualization technology, which decouples
software applications from the underlying hardware, granting fine-grained control over com-
puting resources. In addition to scaling applications on-the-fly, virtualization technology al-
lows a single physical instance to host multiple applications simultaneously, improving over-
all resource usage. Although virtualization is transparent to end-users, it usually takes two
possible forms: Virtual Machines (VMs) and containers.

Virtualization also allows developers and infrastructure operators to avoid repeti-
tive tasks during application deployment through template images [161]. At this point, the
differences between VMs and containers become more visible. Whereas VM images are
monolithic, most modern container solutions follow Docker’s1 lead, splitting container im-
ages into read-only layers representing software instructions. This difference may seem
subtle, but it affects the entire lifecycle management of applications (i.e., building, deploying,
and terminating operations) [166].

1https://docs.docker.com/storage/storagedriver/#images-and-layers

https://docs.docker.com/storage/storagedriver/#images-and-layers
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When a container needs to be spawned, a new writable layer is created on top
of the container image’s filesystem. All changes made to the container are stored in that
writable top layer, so the image layers remain unchanged regardless of the changes at the
application level, which allows containers to share common container layers, reducing the
storage and memory overhead [32].

The shared layer structure of container images also enables optimization of provi-
sioning time and network traffic when provisioning containerized applications. This is pos-
sible because transferring the complete container image is not mandatory if the target host
already retains some of the container’s layers. Instead, only the missing layers must be
pulled from dedicated repositories for container images called container registries [151].
Conversely, spawning a VM requires the creation of a complete copy of the base image,
as no persistence measure is taken to prevent applications from changing instructions from
their base images. Consequently, provisioning a VM-based application is generally slower
and generates higher disk demand than a container-based application [81].

In addition to the differences in template images, VMs and containers rely on differ-
ent types of virtualization. In the VM model, a control layer, known as a hypervisor, virtualizes
the hardware, giving each VM a dedicated virtual CPU, memory, I/O, and network devices.
In the container model, a control layer, known as container runtime, virtualizes the host OS
kernel instead of the hardware, so containers share the host Operating System (OS) kernel
while isolation is handled at the OS level. Although containerized applications do not need
a standalone OS, containers display a lower virtualization overhead than VMs at the cost
of weaker isolation among co-hosted instances [138]. Figure 2.1 illustrates the architectural
differences between VMs and containers.
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Figure 2.1 – Architectural differences between typical VM and container deployments.
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Although virtualization enables better resource usage, it also raises some perfor-
mance concerns, as applications running on the same host can degrade each other’s perfor-
mance [117]. In this context, Service Level Agreements (SLAs) emerge as one of the main
ways to increase consumer confidence in the performance provided by the cloud [104].

In general, SLAs are contracts signed between stakeholders to formalize that a
certain level of Quality of Service (QoS) should be delivered over a certain period, subject to
penalties if not met. At scale, SLAs can comprise several key metrics, called Service Level
Objectives (SLOs), used to assess service performance (e.g., availability, response time,
etc.). Once SLAs are created, stakeholders can check if services remain SLA-compliant by
observing the Service Level Indicators (SLIs), which are actual measurements of the SLOs.

As cloud technology matures and new players enter the market, providers set SLAs
with increasingly strict performance promises to stand out against the competition. While
ever-increasing performance expectations raise customer satisfaction, they also put pres-
sure on IT operations teams, who need to create efficient maintenance strategies to allow
data center resources to be repaired and updated to ensure continued compliance with per-
formance and security requirements while causing the least possible service disruption.

2.2 Internet of Things

Despite significant advances in Information and Communications Technology, most
of the interaction between physical and electronic components has been dependent on hu-
man intervention, restricting the potential of technology to the time, attention, and accuracy
constraints of human beings [53]. To avoid this bottleneck, several discussions have pointed
to the potential of the Internet of Things [53], which incorporates networking capabilities
(Internet) into physical objects (Things), allowing such devices to automatically collect, com-
municate, and process environmental data supporting intelligent and data-driven decisions.

By encompassing a variety of devices, IoT enables several compelling use cases,
from agriculture [41], where smart irrigation reduces water waste and improves harvest effi-
ciency, to personal healthcare [68], where body sensors in patients provide real-time insights
to doctors. As IoT embraces pervasiveness, wireless technology is generally preferred for
connectivity in IoT deployments, imposing bandwidth and latency constraints. Additionally,
IoT sensors and actuators are subject to space, energy, and thermal constraints to ensure
that they remain seamlessly integrated into the environment, ultimately favoring design de-
cisions that restrict their computational power.

Although the abundance of data fuels the rich use cases of IoT, it also poses a
significant challenge for data processing. As IoT devices are resource-constrained, they
must offload data to third-party entities, which perform the processing and send the feedback
to IoT devices for on-site decision-making. In addition to making IoT communication costly,
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this raises concerns about potential leaks of sensitive user information, such as geographical
location and medical diagnoses [73]. This broad attack surface forces IoT operations teams
to constantly run after efficient maintenance plans to update devices, safeguarding them
from security vulnerabilities [86].

2.3 Edge Computing

Early IoT and mobile applications offloaded computing-intensive tasks to the cloud,
where resource-abundant data centers could easily hold the demand [76]. However, the
increasing need for high bandwidth and low latency highlighted the negative consequences
of the cloud’s centralized model, where computing resources are distant from data sources.

Although the many hops necessary for communication between data sources (IoT
sensors and actuators, mobile devices, etc.) and cloud data centers incur network round-
trip times that conflict with the real-time latency requirements of mobile applications, holding
IoT processing in consolidated data centers also leads to high ingress bandwidth demand,
reducing overall network performance [133]. Consequently, the decision to process data
from such applications in the cloud became more arguable, paving the way for emerging
paradigms such as Edge Computing [132].

Edge Computing refers to placing networked computing devices at the Internet’s
edge, close to end devices. The fundamental idea of decentralizing computing resources
to the edge solves two major problems that challenge the cloud model. Although distribut-
ing edge servers to different locations avoids bottlenecks at specific hotspots, the network
proximity to data sources grants faster application response times [131].

The coordination between edge resources, cloud data centers, and data sources
shapes a three-tiered computing model [134], as shown in Figure 2.2. At Tier 1, cloud data
centers hold large-scale computing and storage scalability, with stable network infrastructure
and robust security mechanisms. Tier 2 represents edge resources distributed near data
sources, displaying lower latency than Tier 1 at the cost of limited scalability due to restricted
space, cooling, and power supply. Finally, Tier 3 hosts data producers and consumers,
including mobile devices and IoT sensors.

Similarly to cloud data centers, edge infrastructures rely on virtualization technol-
ogy to achieve greater manageability over physical resources. There is no consensus about
what type of virtualization should be employed on edge infrastructures. Some researchers
argue that VMs and containers should be used depending on deployment needs, allowing a
broader spectrum of demands to be managed more efficiently [55].

In such a line of reasoning, containers can fit better when shorter provisioning
times and small footprints are needed, while VMs can deliver better security and isolation
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Figure 2.2 – Interplay between cloud data centers, edge sites, and end devices.

in multi-tenant deployments. Despite the potential use cases for both types of virtualization,
containers have been taking the lead as the primary architecture for deploying applications
on the edge, as their small footprint and low virtualization overhead fit well with the resource
constraints of edge infrastructures while also meeting strict provisioning time constraints of
edge applications [69].

Edge Computing deployments typically span networked compute nodes dispersed
across the environment, as installing large-scale edge data centers is often unfeasible in var-
ious scenarios, such as urban centers. While physical dispersion allows edge servers to be
located only a few hops from end devices, it also introduces significant technical challenges
related to edge IT operations. Once edge servers are deployed outdoors in small-sized
facilities, they are inherently exposed to hardware issues (e.g., accelerated aging due to
increased temperatures, power outages, physical damage, etc.) and security threats (e.g.,
network attacks, physical tampering, etc.). In this context, maintenance strategies are critical
in ensuring that performance and security issues do not nullify the potential gains of edge
infrastructure’s network proximity to data sources.

2.4 Maintenance Operations

The IT market is in the middle of a significant shift, with cloud and edge platforms
working together to produce actionable insights from the overwhelming amount of data pro-
duced in real-time by mobile and IoT applications. To accomplish such a goal, IT operations



28

teams managing such a three-tiered computing model (Cloud-Edge-IoT) must overcome
several operational challenges, such as equipment failures, cyber-attacks, and hardware
and software aging. In this context, proper maintenance planning (what to do) and schedul-
ing (when to do it) are critical to maintaining the various software stacks and their underlying
infrastructure running smoothly.

Multiple maintenance policies have been proposed over the years. Initially, enter-
prises invested in corrective maintenance, following a “run-to-failure” strategy where compo-
nents remain in operation until they fail. Corrective maintenance is based on the assumption
that maintenance cost savings are higher than the cost of disruption. However, such an as-
sumption cannot hold in cases where high availability is required. In addition, certain assets
present detectable states of degradation (e.g., failing more often with increasing age), en-
abling less disruptive maintenance decisions than run to failure [103]. Figure 2.3 illustrates
a P-F Curve [105], a typical cumulative damage model that represents the progression of
misbehavior symptoms towards functional asset failure. In such scenarios, preventive mea-
sures can be taken within the so-called P-F Interval, a period between the beginning of
misbehavior and the asset crash.
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Figure 2.3 – Typical representation of the P-F Curve, a cumulative damage model that rep-
resents an asset’s degrading behavior towards functional failure.

The simplest preventive maintenance approach is Schedule-Based Maintenance
(SBM) [116], in which assets are repaired at predefined intervals. Given that excessively
long maintenance intervals increase the risk of asset failure, SBM is usually performed within
significantly short periods—even if this is not always necessary—to avoid functional failures.
Although SBM shows a natural advantage over corrective maintenance by avoiding service
disruption, it assumes that degradation progresses steadily so that failures do not occur be-
tween maintenance actions. In contrast to SBM, Condition-Based Maintenance (CBM) [116]
follows a more flexible approach, triggering maintenance actions only when the asset’s state
has deteriorated to a certain threshold, optimistically avoiding both delayed and hasty main-
tenance decisions.
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Preventive maintenance assumes that the degradation leaves clues for long enough
for maintenance measures to be taken, which does not apply to situations where failures dis-
play non-linear progression or occur due to external factors such as cascading errors. Given
these limitations, significant efforts have been made to replace proactive maintenance deci-
sions based on thresholds with predictive approaches [144].

Predictive maintenance techniques determine the maintenance schedule by esti-
mating an asset’s Remaining Useful Life (RUL) based on its internal attributes and the state
of neighboring components. Predictive maintenance techniques are divided into two cate-
gories: model-based and data-based methodologies. While the former relies on mathemati-
cal models built through the knowledge of engineers, the latter uses statistical and machine
learning algorithms to predict the state of the asset through historical data [78]. Figure 2.4
presents a taxonomy based on Silvestri et al. [142] and Kim et al. [78] that categorizes the
different maintenance approaches.

Maintenance

Reactive Approach

Corrective Maintenance

Proactive Approach

Preventive Maintenance

Condition-Based Maintenance

Schedule-Based Maintenance

Predictive Maintenance

Data-Based Maintenance

Model-Based Maintenance

Figure 2.4 – Taxonomy of maintenance approaches [142, 78].

2.5 Closing Remarks

Despite the strategic value of maintenance in preserving the continuous operation
of complex ecosystems such as Cloud Computing, Edge Computing, and the Internet of
Things, there is a lack of review studies in the field, which raises the barrier to entry for
new researchers. To fill this gap, we proposed a novel taxonomy that characterizes the
main research efforts in the field according to multiple characteristics. The following chapter
details the review methodology, proposed taxonomy, and literature analysis.
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3. TAXONOMY AND LITERATURE REVIEW

This chapter reviews maintenance strategies for cloud, edge, and IoT environ-
ments. Although this thesis primarily focuses on maintenance operations on Edge Comput-
ing, the literature review encompasses investigations in related paradigms, such as Cloud
Computing and the Internet of Things, to analyze potential intersections and synergies
among existing contributions designed for these different scenarios, thereby providing a
comprehensive understanding of the broader landscape.

3.1 Motivation

Despite the contrasting characteristics between cloud, edge, and IoT infrastruc-
tures, these environments share some commonalities, including the need for meticulous
maintenance strategies, which act as countermeasures against various undesired events
that can affect the applications’ performance and security (e.g., component failures and
cyber-attacks) [167] [44] [110] [149]. In this context, the wide range of tasks encompassed
by maintenance work raises significant concerns about the potential damage caused by poor
provisioning decisions during such activities.

From a networking perspective, the increased traffic incurred by maintenance-
related operations (e.g., patch distributions and application migrations) can quickly saturate
the network and cause several side effects, such as packet losses and increased latency.
From a computing perspective, maintenance work can affect infrastructure stability by either
making components temporarily unavailable (e.g., when patches require device reboots to
take effect) or by excessively increasing the concurrent demand under physical resources
(e.g., when applications are stacked on a single server while other servers are updated).

The potential side effects of infrastructure maintenance put significant pressure on
IT personnel, who must have a deep understanding of it to avoid the undesirable effects of
such a resource-intensive activity. Several research efforts have addressed maintenance-
related challenges in the Cloud-Edge-IoT ecosystem. However, summarizing and extracting
insightful and actionable information from their findings and drawing parallels between mul-
tiple works is challenging due to the large number of papers in the literature.

Review papers stand out as valuable sources of systematic knowledge. Overall,
review papers can be helpful for the community, as their content can benefit both active
members in the field with overviews of the state of the art and indications of research sub-
jects requiring further attention and newcomers with a rich source of learning material.



31

3.2 Related Surveys

This section analyzes existing maintenance reviews on cloud, edge, and IoT envi-
ronments. In addition, it highlights how this chapter’s review complements their efforts and
lists our contributions to the community.

Benestad et al. [17] presented a literature review on software maintenance, focus-
ing on analyzing the objectives and attributes that drive maintenance work targeting software
systems throughout their lifecycles. Among the identified gaps, the authors highlighted the
need for software maintenance strategies based on theoretical models that could be adapted
to different contexts to complement existing approaches, which rely on empirical observa-
tions that result in a lack of extensibility.

Abadi et al. [42] addressed maintenance work under a different facet, with a litera-
ture review on maintenance in cloud data center facilities. The authors focused on operations
tasks such as managing cooling and power supply systems, indicating open challenges re-
lated to infrastructure management activities (e.g., developing availability benchmarks for
data center facilities).

More recently, some reviews have focused on maintenance research applied to
emerging subjects such as Industry 4.0 [84], which envisions a digital transformation in
the manufacturing industry through IoT-related technologies. Silvestri et al. [142] surveyed
existing maintenance solutions for Industry 4.0, highlighting the need for new diagnostic
and prognostic algorithms to integrate intelligence into manufacturing processes. Zonta et
al. [179] presented a literature review on predictive maintenance applied to Industry 4.0,
introducing a taxonomy that organizes research works and describes several research op-
portunities, such as using image analysis to evaluate the state of manufacturing equipment
and trigger maintenance work accordingly.

Table 3.1 compares the coverage of this work and existing reviews. While existing
reviews analyze the literature from specific facets (e.g., scoping the study to certain compo-
nents, maintenance approaches, and specific scenarios), our work incorporates a broader
analysis, covering research work that presents maintenance strategies targeting physical
and logical components in cloud, edge, and IoT environments.

Table 3.1 – Comparison of the scope of this chapter’s review and previous studies.
Study Year Target Components Covered Paradigms

Physical Logical Cloud Computing Edge Computing Internet of Things
Benestad et al. [17] 2009 ✘ ✔ ✔ ✘ ✘

Abadi et al. [42] 2020 ✔ ✘ ✔ ✘ ✘

Silvestri et al. [142] 2020 ✔ ✔ ✘ ✘ ✔

Zonta et al. [179] 2020 ✔ ✔ ✘ ✘ ✔

This Review 2023 ✔ ✔ ✔ ✔ ✔
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To the best of our knowledge, none of the existing reviews provides a unified anal-
ysis and categorization of the existing academic literature on the various maintenance ap-
proaches designed to address the needs of physical and logical components in cloud, edge,
and IoT environments.

To fill this gap, this chapter’s review makes the following contributions:

• It presents a literature review of academic solutions for addressing the various main-
tenance needs of the physical and logical components (e.g., replacement of defective
equipment and software updates) that compose cloud, edge, and IoT environments.

• It introduces a novel taxonomy that organizes existing maintenance solutions accord-
ing to diverse characteristics (e.g., target components, maintenance approaches, and
target metrics) to reduce the barrier to entry for new researchers in the field.

• It sheds light on several research challenges and opportunities that represent promis-
ing directions for future investigations.

3.3 Methodology

This survey follows the research methodology presented by Brereton et al. [21],
which divides the review process into three stages, namely Planning, Execution, and Report,
as shown in Figure 3.1. Although such a methodology was initially designed for the field of
Software Engineering, it provides a generic guide for identifying and synthesizing relevant
research studies. As such, it has been adopted in several domains, including areas that
intersect this work’s scope, such as Cloud Computing [88] and Edge Computing [143].

9. Write Review Report

10. Validate Review Report

STAGE 3

Report4. Identify Relevant Research

5. Select Primary Studies

6. Assess Study Quality

7. Extract Required Data

8. Synthesize Data

STAGE 2

Execution

1. Specify Research Questions

2. Develop Review Protocol

3. Validate Review Protocol

STAGE 1

Planning

Figure 3.1 – Review methodology presented in Brereton et al. [21].

This review employs three research questions (RQs), presented in Table 3.2. With
RQ1, answered in the remainder of this Section, we seek to quantify the number of published
works on the addressed research topics. Regarding RQ2, the goal is to identify the relevant
characteristics of the selected studies. RQ2 is answered in Section 3.4, which comprises a
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taxonomy that organizes the selected research according to its characteristics. Finally, RQ3
aims to identify research opportunities. RQ3 is answered in Section 3.5, highlighting the
open challenges within the investigated research subject.

Table 3.2 – List of research questions addressed in this review.
Identifier Research Question

RQ1 How many papers on maintenance in Cloud Computing, Edge Computing,
and the Internet of Things have been published between 2017 and 2022?

RQ2 What are the metrics of interest, strategies, and validation methodologies
used to perform maintenance in the evaluated scenarios?

RQ3 What are the challenges and open questions on maintenance in Cloud
Computing, Edge Computing, and the Internet of Things?

This review surveys academic studies indexed in three search engines: Associa-
tion for Computing Machinery (ACM) Digital Library1, Institute of Electrical and Electronics
Engineers (IEEE) Xplore2, and Scopus3. Although ACM and IEEE are two of the largest
academic organizations in Computer Science and Electrical Engineering, contributing to
the organizing committees of numerous high-impact venues, Scopus provides a large-scale
database that indexes several publishers such as Springer4, ScienceDirect5, and Wiley6.

The search string used to retrieve research works in the selected databases is
shown in Figure 3.2. As maintenance comprises several activities (e.g., replacement of
defective equipment, device patching, software update, etc.), our search string incorporates
a group of keywords (i.e., maintenance, patch, repair, update, upgrade, rejuvenation, and
recovery) representing the maintenance process. We configured the selected databases to
look for the search string in their indexed papers’ titles, abstracts, and keywords.

(
) ( )

"Maintenance" OR "Patch" OR "Repair" OR "Update" OR "Upgrade" OR "Rejuvenation"

OR "Recovery"  AND "Cloud Computing" OR "Edge Computing" OR "Internet of Things"

Figure 3.2 – Search string used in the review.

After collecting the papers returned by the search engines, we applied a set of
inclusion and exclusion criteria to filter the results. As inclusion criteria, we only considered
primary studies (i.e., those that make direct contributions to the field rather than reviewing
previous research) with at least four pages written in English. The exclusion criteria eliminate

1https://dl.acm.org/
2https://ieeexplore.ieee.org/Xplore/home.jsp
3https://www.scopus.com/search/form.uri
4https://www.springer.com/
5https://www.sciencedirect.com/
6https://www.wiley.com/

https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com/search/form.uri
https://www.springer.com/
https://www.sciencedirect.com/
https://www.wiley.com/
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documents that are not regular research papers (e.g., book chapters, technical reports, and
patents), duplicates of the same paper, studies that present no explicit validation of proposed
solutions, and those not primarily focused on the maintenance of cloud, edge, or IoT devices
and applications. Papers targeting Industry 4.0 were also excluded since previous reviews
have already surveyed this group of studies (see Section 3.2).

The search string returned 14711 entries. After collecting the initial sample, we
started filtering papers according to the methodology shown in Figure 3.3. In the initial
filtering stage, inclusion and exclusion criteria filtered papers based on their titles, reducing
the number of selected studies to 380. Then, inclusion and exclusion criteria were applied
by looking at the paper abstracts, reducing the number of selected studies to 210. Finally,
we analyzed the entire manuscript of the remaining studies according to the inclusion and
exclusion criteria, reducing the final review list to 42 papers.

Selection based on

title reading

380 papers selected

Filtering Stage #1

Selection based on

abstract reading

210 papers selected

Filtering Stage #2
Initial list

of records



(14711 papers)

Selection based on

full-text reading

42 papers selected

Filtering Stage #3
Final list

of records



(42 papers)

Figure 3.3 – Methodology used to filter papers during the review.

Figure 3.4 answers RQ1 by presenting the distribution of selected papers by target
paradigm and year of publication. Despite the growing interest in the subject since 2019,
88.1% of the research efforts have focused on addressing maintenance challenges in cloud
and IoT environments, highlighting the initial stage of maintenance research on edge envi-
ronments. A detailed discussion of existing contributions is presented in Section 3.4.
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3.4 Taxonomy and Survey

This section presents a systematic review of existing maintenance research in the
fields of cloud, edge, and IoT. As maintenance in target scenarios comprises various activi-
ties, we categorize the surveyed studies according to the taxonomy presented in Figure 3.5,
which groups research efforts according to the following characteristics:

• Target: Components updated, repaired, or replaced during maintenance.

• Strategy: Maintenance strategies employed during the scenarios approached.

• Technique: Algorithms and methods used to implement maintenance strategies.

• Metric: Performance indicators used to drive allocation decisions during maintenance.

• Validation: Evaluation methodologies used to assess proposed solutions.

Our review employs the Faceted Taxonomy model, where observed entities are
not constrained to a single branch of the taxonomy [158]. On the contrary, the taxonomy
is divided into several facets representing aspects of the observed entities. In this work’s
scope, a research paper can introduce a corrective maintenance approach (Strategy) based
on Reinforcement Learning (Technique) for reducing migration time (Metric) during server
updates (Target) in simulated (Validation) data center scenarios. This taxonomy model has
been adopted by several reviews in related areas, such as Qu et al. [121] and Liu et al. [93],
as it eases the categorization of solutions with common characteristics.

Taxonomy of Maintenance Research on Cloud, Edge, and IoT Environments

Target★

Physical

Logical

Technique▲

Heuristic

Petri Net

Answer Set

Programming

Machine

Learning

Genetic

Algorithm

Blockchain

Metric▲

Cost

Time

Resource

Efficiency

Quality

of Service

Validation▲

Formal

Modeling

Simulation

Experimentation

Corrective

Preventive

Predictive

Strategy★

Figure 3.5 – Proposed taxonomy that organizes maintenance research aiming at cloud,
edge, and IoT environments. A paper can fit in a single item of categories with the star mark
(⋆) and in multiple items of categories with the triangle mark (▲).
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The remainder of this section discusses selected maintenance strategies for cloud,
edge, and IoT, categorizing them according to the branches of the proposed taxonomy.

3.4.1 Target

The “Target” category indicates the components manipulated in maintenance ac-
tivities. We divide maintenance targets into physical and logical components, as shown
in Figure 3.6. While maintenance work targeting physical components mainly focuses on
servers and storage devices, maintenance of logical components comprises low-level con-
trol applications (firmware and hypervisors), network applications (routing rules and Virtual
Network Functions (VNFs)), and general-purpose applications. Research studies that did
not detail the target software were included in the “general-purpose applications” category.

PHYSICAL

Storage DevicesServers

LOGICAL

General-Purpose Applications
Generic Applications

Provide the features 
accessed by end users

Virtual Network 
Functions Routing Rules

Network Applications

Provide network support to 
general-purpose applications

HypervisorsFirmware
Low-Level Applications

Provide low-level control 
over hardware components

Figure 3.6 – Components targeted by maintenance on cloud, edge, and IoT sites.

Physical Components

Wu et al. [168] was the only study focused on storage-specific challenges during
maintenance. The authors considered IoT scenarios composed of mobile nodes that coop-
erate to process and store data. Although node mobility enhances the network’s flexibility,
it raises concerns about fault tolerance, as nodes can move out of the cluster’s coverage
area, causing loss of the data they hold. The authors tackled this challenge with a predictive
repair strategy based on erasure codes. Once they identify that a node is about to leave the
cluster’s coverage, they migrate and reconstruct that node’s data on the other nodes.
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Most existing studies on routine server maintenance argue that servers often must
be rebooted for updates to take effect [63] [112] [162]. Therefore, the proposed solutions
employ rolling update policies, in which servers are grouped into batches according to vari-
ous criteria, and each batch is updated at a time. Before being updated, servers undergo a
draining process, where their applications are relocated to alternative hosts, avoiding appli-
cation downtime due to server reboots. In this context, some efforts proposed algorithms that
orchestrate migrations during maintenance for various purposes, such as reducing mainte-
nance time [174] and avoiding network saturation [63].

In addition to migration planning, some researchers, such as Okuno et al. [112],
focused on routine maintenance activities without strict deadlines. As such, these authors
presented maintenance scheduling policies that perform maintenance during idle periods
to reduce maintenance’s impact on applications. Other specific contributions include defin-
ing initial application replica placement for scenarios where infrastructure operators cannot
migrate applications during server updates due to regulatory constraints [162].

Although routine maintenance typically does not have strict completion deadlines,
other events may require fast responses to minimize damage. Wu et al. [167] discussed the
impact of power outages on the quality of service of applications in cloud data centers. In
this scenario, on the one hand, infrastructure operators must relocate applications hosted
by the affected components as early as possible to avoid downtime. On the other hand,
poorly planned migrations can prematurely drain the emergency power supply, leading to a
complete data center blackout. In response to such a challenge, the authors presented two
scheduling algorithms that move applications out from affected servers without unnecessar-
ily increasing the infrastructure’s power consumption.

Like power outages, patching security vulnerabilities requires timely decisions to
maintain the integrity of the environment. As servers typically need to be rebooted for
patches to take effect, preserving application continuity implies relocating them to alter-
native hosts. Taking into account this scenario, Souza et al. [149] presented two mainte-
nance strategies that make location-based migration decisions, keeping applications near
their users to avoid latency increases during server updates on edge infrastructures.

Although virtualization techniques allow applications to be relocated with reduced
downtime, Russinovich et al. [127] highlighted that these techniques produce a significant
network communication overhead. Accordingly, they employed an approach that replaces
relocation techniques by allowing servers to be rebooted faster and without discarding the
state of running applications.

Logical Components

In general, existing research on firmware updates focused on optimizing patch dis-
tribution for IoT devices. As downloading firmware updates is a prerequisite to start main-
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tenance, some studies presented routing strategies to avoid network bottlenecks and allow
devices to download patches as soon as possible [89]. In contrast to the traditional update
distribution model, where devices download firmware updates from predetermined nodes
managed by vendors, several studies employed peer-to-peer architectures [152] [165] [47],
where devices can download patches from neighbor nodes, avoiding saturation at specific
points of the network and improving fault tolerance in case some of the nodes serving up-
dates fail. As firmware distribution is typically carried out over the Internet, some studies also
focused on ensuring the integrity of downloaded updates, especially when they are retrieved
from neighbor nodes [83] [12] [61].

Whereas virtualization gives more flexibility to resource management policies, in-
frastructure operators must keep hypervisors up-to-date to preserve the environment’s in-
tegrity and performance. One of the primary motivations for updating hypervisors is to avoid
software aging, which occurs when hypervisors running for long periods start presenting
bugs that can affect applications. Most software rejuvenation approaches have resorted
to migrating the running applications from aged hypervisors to healthy ones, which can be
co-located [25] or within different hosts within the infrastructure [43] [156].

Although migration techniques allow infrastructure operators to rearrange applica-
tions within the infrastructure during maintenance, the number of simultaneous migrations is
limited by the resulting network communication overhead. In addition, seamless migration
often requires compatibility between hypervisors, narrowing the migration options on hetero-
geneous infrastructures. Alternatively, some studies focused on in-place upgrade strategies,
where hypervisors are patched without migrating applications.

Segalini et al. [137] presented Hy-FiX, an in-place upgrade solution for Kernel-
based Virtual Machine (KVM)7 hypervisors. Hy-FiX combines two checkpoint techniques
(suspend-to-disk and suspend-to-RAM), which dump VM data to disk but keep its state
in memory for faster recovery. Additionally, Hy-FiX employs a lazy initialization technique
that reduces server reboot time, making in-place upgrades less intrusive for applications.
Ngoc et al. [110] introduced a solution called HyperTP, which supports Xen8 and KVM
hypervisors and allows infrastructure operators to choose whether to migrate applications
before updating hypervisors (out-of-place upgrade) or temporarily pause applications during
patching (in-place upgrade).

The lack of compatibility among network appliances from different vendors and
other manageability issues have paved the way for Software-Defined Networking (SDN) [82],
which decouples control and data planes and gives more freedom to network operators.
In a typical SDN infrastructure, controller nodes manage the entire network, defining, for
example, the routing rules that guide packet-forwarding devices. Whenever routing rules
change, controllers must broadcast them to all forwarding devices to ensure that the net-

7https://www.linux-kvm.org/page/Main_Page
8https://xenproject.org/

https://www.linux-kvm.org/page/Main_Page
https://xenproject.org/
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work is up-to-date. Whereas such a centralized model grants fine-grained control, frequent
rule changes can lead to significant network communication overhead. In response, some
research efforts presented algorithms that schedule route update flows to avoid network sat-
uration [122] [109]. Other specific contributions related to the maintenance of network ser-
vices include the repair of deprecated routing rules in scenarios with link failures [14] [108].

In addition to enabling better management of routing rules, SDN provides the un-
derlying features for Network Function Virtualization (NFV) [58], which replaces traditional
hardware appliances by hosting Virtual Network Functions (VNFs) such as firewalls and
intrusion detection systems on general-purpose servers. Maintenance research efforts tar-
geting VNFs focused primarily on improving their fault tolerance. Raza et al. [153] presented
a checkpoint and rollback VNF failure recovery strategy that regularly takes checkpoints and
timely rolls back VNFs as failures are detected. Other studies also predict host failures and
proactively provision VNFs on alternative servers to avoid downtime [65] [67].

Maintenance research efforts targeting general-purpose applications on cloud and
edge sites have focused on repairing failures. Saxena et al. [135] presented an algorithm that
proactively identifies and mitigates resource starvation problems, in which applications with
time-varying workloads overload their hosts, causing performance degradation and other
related issues. Olorunnife et al. [113] proposed a framework that tackles software failures
caused by runtime changes in containerized applications. Whenever the proposed frame-
work identifies a failing application, it rebuilds it based on healthy nodes metadata, discard-
ing any settings that might have caused the failure. Other investigations also focused on
repairing hang bugs [60] and avoiding aging-related issues [100].

Research works also focused on general-purpose IoT applications committed to
scheduling and security challenges in the distribution of updates. Weißbach et al. [164]
and Bui et al. [22] proposed patch distribution scheduling strategies that consider software
dependencies that add constraints regarding the update order. Regarding security-related
efforts, the focus was on defining nodes to distribute patches to their neighbors in peer-to-
peer infrastructures [54] [10] [96]. In such a scenario, choosing isolated nodes to distribute
patches can delay maintenance. In addition, compromised nodes can propagate malicious
software across the infrastructure.

Summary and Takeaways

Existing maintenance work covers repairing, upgrading, and replacing various phys-
ical and logical components in cloud, edge, and IoT environments. Most research efforts tar-
geting the maintenance of physical components focused on cloud data centers considering
hyper-converged infrastructures [124] [57], which replace storage appliances with servers
that bundle both compute and storage capabilities. Consequently, most of the strategies
were designed for conducting server maintenance.
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As for research on the maintenance of logical components, we can observe spe-
cific directions followed by cloud and IoT papers. While cloud research focused on hyper-
visor maintenance, most IoT research optimized resource usage, cost, and security during
patch distribution. The few papers targeting logical components at edge sites presented
maintenance strategies for VNFs and general-purpose applications.

3.4.2 Strategy

The category “Strategy” discusses the role of the different maintenance approaches
presented in the taxonomy of Figure 2.4 (i.e., corrective maintenance, preventive mainte-
nance, and predictive maintenance) in the research efforts for cloud, edge, and IoT envi-
ronments. In addition to summarizing the commonalities between solutions under the same
maintenance strategy, we present a holistic view that examines the pros and cons of each
approach regarding the various maintenance demands in the addressed paradigms.

Corrective Maintenance

Most maintenance research efforts focused on corrective strategies, acting on fail-
ure or delegating the decision of “when” to initiate maintenance to third-party entities or
events (e.g., the release of security patches or the arrival of new components to replace
existing ones). Consequently, proposed solutions have focused mainly on optimizing “how”
maintenance takes place, which comprises several decisions, such as defining strategies to
reduce maintenance impact on applications [137] [110] and the order of updates for compo-
nents when they cannot be updated at once (typically due to QoS constraints) [149] [174].

Although some corrective maintenance strategies can advance or postpone main-
tenance work in a convenient way in scenarios without strict deadlines, they act on the
premise that the decision to perform maintenance has already been taken, solely deciding
the best schedule for it [112] [174]. In such cases, the decision to perform maintenance
often comes from external sources, such as anomaly detection algorithms, which analyze
logs and performance metrics to identify problematic events [87] [49]. In computing infras-
tructures, anomaly detection algorithms rely on monitoring systems (e.g., Zabbix9, Nagios10,
and Instana11) that collect data through monitoring agents installed in the hardware and
various software layers (hypervisor, operating system, and applications).

Despite growing evidence about the potential of proactive strategies [179], there is
concern about prediction errors, as maintenance work performed unnecessarily can quickly

9https://www.zabbix.com/
10https://www.nagios.org/
11https://www.instana.com/

https://www.zabbix.com/
https://www.nagios.org/
https://www.instana.com/
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saturate the infrastructure and degrade application performance. Consequently, corrective
maintenance has remained in the view of the research community, especially due to the
potential risks incurred by some events that are hard to predict (e.g., power outages [167]
and certain cyberattacks [156]). In such cases, maintenance strategies have mainly focused
on mitigating the problem that triggered the maintenance as efficiently as possible rather
than taking the risk of making wrong maintenance decisions based on inaccurate feedback
from proactive approaches.

Preventive Maintenance

Although corrective maintenance is effective in some scenarios, preventive ap-
proaches can reduce maintenance costs when handling issues with deterministic behavior,
such as software aging. Preventive maintenance strategies mitigate software aging through
software rejuvenation techniques, which typically involve gracefully restarting software com-
ponents to clean up their internal state [66].

As discussed in Section 2.4, preventive maintenance comprises schedule-based
and condition-based approaches. While schedule-based maintenance strategies do not re-
quire real-time monitoring mechanisms, finding appropriate maintenance intervals is chal-
lenging in some situations. On the other hand, condition-based maintenance strategies grant
enhanced flexibility but assume that degradation advances slowly enough to enable on-point
correction. Consequently, existing preventive maintenance strategies employ schedule-
based and condition-based policies for convenience, often combining them when needed.

Fakhrolmobasheri et al. [43] discussed the criticality of hypervisor rejuvenation in
virtualized infrastructures, as hypervisor failures intrinsically affect all hosted VMs. In such
a scenario, aging occurs due to several factors, such as the lifetime and workload pattern of
hosted VMs. The authors employed a condition-based maintenance approach that avoids
aging-related failures through a two-threshold policy. Whenever a hypervisor indicates slight
aging, the first threshold is triggered, and hosted VMs are migrated if the hosts of other
hypervisors have enough available resources. However, since migrations are not mandatory,
a hypervisor can reach an advanced aging level where failures are more likely to occur before
its virtual machines are relocated. In that case, the second threshold is triggered, and hosted
VMs enter the queue for immediate migration regardless of the occupation of alternative
hosts, as their hypervisor must be evacuated for rejuvenation as early as possible. The
proposed solution also performs migrations to consolidate VMs on the most occupied hosts,
switching off idle servers to save power and reverse any aging effects of hosted hypervisors,
which makes hypervisors ready for later usage if their servers are restarted.

Meng et al. [100] tackled aging-related issues more broadly, discussing the role of
software rejuvenation in preserving the health of general-purpose applications. The authors
described that aging progression damages components until it leads to functional failure.
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In such a scenario, if threshold-based maintenance policies are able to detect aging prop-
erly, rejuvenation is eventually triggered, resetting the accumulated damage. However, if
the aging progression pattern is unknown to the thresholds, maintenance takes place only
in a corrective fashion after software failure. After discussing the risks of relying solely on
threshold-based maintenance policies, the authors implement a hybrid strategy that triggers
software rejuvenation at certain damage thresholds or predefined intervals, whichever oc-
curs first. Accordingly, even failures that show an unknown progression that could bypass
the thresholds are mitigated by maintenance work performed at fixed intervals.

Predictive Maintenance

Preventive maintenance strategies are based on maintenance intervals (schedule-
based maintenance) and damage thresholds (condition-based maintenance), which might
be hard to define in some scenarios. In addition, preventive maintenance requires certain
assumptions to be true for the system to function correctly. While schedule-based mainte-
nance assumes that damage progression is predictable so that failures do not occur between
maintenance runs, condition-based maintenance assumes that damage progresses slowly
enough so that the intervals in which thresholds are triggered and functional failures are suf-
ficiently long for maintenance personnel to act. As such assumptions may not be satisfied
in certain scenarios, some research works leverage predictive maintenance approaches to
forecast the upcoming system state and take more effective measures.

Liu et al. [168] focused on increasing disk fault tolerance in clusters of mobile IoT
nodes (e.g., smart vehicles and drones). In such a scenario, mobile nodes can quickly leave
the cluster’s coverage area, causing loss of the data they store. The authors presented two
proactive data repair techniques based on predictions that indicate nodes about to leave the
cluster’s area (so-called soon-to-fail nodes). More specifically, the first technique replicates
data from soon-to-fail nodes into healthy nodes through migration over the network, and the
second technique proactively reconstructs data chunks from several healthy nodes through
erasure codes. While replication and erasure codes optimize various aspects within the
system (i.e., avoiding single points of failure and reducing disk usage), the authors do not
detail how node mobility prediction happens, delegating this feature to third-party entities.

Huang et al. [65] discussed the challenges of providing fault-tolerant VNFs on edge
infrastructures. In such a scenario, the authors argued that the potential failure surface at
the edge spans physical and logical layers in the edge servers and network components,
such as switches and links. Additionally, acting reactively upon failure incurs a high oper-
ational cost as VNFs provide the core underlying features for end-user applications (e.g.,
firewall, load balancing), and the lack of these features even for a short period can lead to
significant security and performance issues. To address these issues, the authors presented
a proactive VNF failover architecture that details the requirements and core components to
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provide resilient VNF services at the edge. In addition, Huang et al. [67] presented a novel
algorithm that predicts network failures and proactively reprovisions VNF instances on unaf-
fected components to avoid service outages.

Saxena et al. [135] focused on ensuring high availability and fault tolerance for
general-purpose applications in cloud data centers. The authors argued that resource sat-
uration represents a significant portion of service outages in cloud environments, often oc-
curring due to unexpected workload variations and over-extended time needed for repro-
visioning applications. Therefore, they introduced a resource utilization forecast mecha-
nism that anticipates server overutilization. The proposed solution categorizes applications
into two groups, normal and failure-prone, depending on whether their servers have suffi-
cient resources for the near future or they are about to be overloaded, respectively. Then,
the resource usage predictions feed migration and replica placement policies that provision
failure-prone applications on alternative servers to avoid service outages and improve the
data center’s resource efficiency.

Summary and Takeaways

Existing maintenance work employed different approaches depending on the ad-
dressed scenarios. Corrective solutions typically offload the decision of when to start mainte-
nance to third-party entities (e.g., external analytics tools), focusing on components with low
repair costs without strict maintenance completion deadlines or when maintenance triggers
are caused by hard-to-predict events (e.g., security patch releases). We can also observe
that preventive maintenance is favored when maintenance triggers display well-defined pat-
terns (e.g., software aging). Finally, predictive maintenance is often used when proactive-
ness is a requirement and monitoring indicators move too fast for preventive approaches to
be used. In such cases, predictive methods can forecast the state of the system to support
infrastructure operators with actionable insights and sufficient time to work.

3.4.3 Technique

The “Technique” branch classifies the methods and algorithms used within the
maintenance strategies surveyed. As some studies propose conceptual maintenance ar-
chitectures instead of algorithms to perform maintenance, we put them into the “Heuristic”
category. To this end, we follow the definition of Romanycia et al. [125], considering heuristic
any procedure that adopts rules of thumb to solve a certain problem and, within the scope
of this review, that also does not fit into the other methods and techniques discussed.
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Heuristic

As maintenance encompasses the coordination of several complex decision-making
processes, most of the strategies in the literature employ heuristic procedures to obtain suf-
ficiently good solutions in a reasonable time. Maintenance heuristics generally incorporate
groups of predefined rules that trigger various actions during maintenance. Despite the
significant differences among solutions due to the varying requirements of the scenarios
addressed, maintenance heuristics often have similarities, such as the adoption of sorting
policies based on custom cost and score functions to make decisions such as scheduling
application migrations and defining the update order of components [63] [27]. Furthermore,
some heuristic solutions also make more specific decisions, such as identifying maintenance
trigger events such as software bugs [60].

While most maintenance heuristics implemented problem-specific procedures to
make accurate decisions, some proposals employed ensemble approaches, which combine
multiple techniques to cope with broader scenarios or to increase the solution’s robustness
(e.g., targeting global optima rather than local optima). Saxena et al. [135] proposed an
ensemble maintenance heuristic called OFP-TM. While OFP-TM follows a set of predefined
rules during allocation decisions to improve the fault tolerance of cloud applications, it em-
ploys Artificial Intelligence models to proactively identify failure-prone applications.

Petri Net

The need to represent the variety of simultaneous processes and events during
maintenance has drawn the community’s attention to modeling techniques such as Petri Net-
works (Petri Nets) [107], which provide means for graphically modeling complex processes.
Petri Nets comprise groups of places, transitions, and arcs. While places and transitions de-
note system states and events that move the system from one place to another, respectively,
arcs represent relationships between places and transitions. In this setting, tokens denote
the Petri Net workflow as its transitions are triggered. Some studies used Petri Nets to model
dynamic maintenance systems where concurrent events can occur, subject to precedence
and frequency constraints. Specifically, we observe an interest in Petri Nets in model main-
tenance scheduling algorithms in software rejuvenation scenarios, where concurrent events,
such as user requests, directly affect how fast component aging progresses.

Fakhrolmobasheri et al. [43] proposed a hypervisor rejuvenation system based on
Stochastic Activity Networks (SANs) [129], an extension of Petri Nets that facilitates the
modeling of activities such as user requests whose duration impacts system performance.
The proposed SAN model comprises five sub-models representing the arrival of concurrent
user requests, application migrations between hypervisors, a shutdown mechanism for idle
servers, hypervisor rejuvenation, and aging-related failures. In this setting, several functions
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determine appropriate times to rejuvenate the hypervisors to mitigate software failures while
reducing the infrastructure’s power consumption.

Torquato et al. [156] followed a similar line of reasoning, employing Stochastic Re-
wards Networks (SRNs) [28], which extend SANs with reward-based functions to measure
the reliability of complex systems. The authors presented a maintenance system that sched-
ules application migrations to rejuvenate hypervisors while reducing the vulnerability surface
of applications against network attacks.

Answer Set Programming

Maintenance modeling typically encompasses several problems with high compu-
tational complexity, such as application migration [140] and process scheduling [40]. As a
result, finding optimal solutions to large-scale maintenance problems in a reasonable time is
often unfeasible. Although heuristics are typically used as an alternative approach, defining
the appropriate rules of thumb for such strategies might be challenging in some maintenance
scenarios with several components and dynamic behavior.

In this context, Answer Set Programming (ASP) [98] comes into the spotlight as
an efficient alternative that, unlike traditional programming paradigms, which require explicit
search instructions, employs Answer Set Solvers to efficiently find solutions through the
definition of an objective function and constraints that must be satisfied for a solution to be
considered valid [39]. In this way, ASP avoids suboptimal solutions resulting from inaccurate
algorithmic instructions.

Okuno et al. [112] employed ASP to formulate a cloud server maintenance prob-
lem that focuses on optimizing two conflicting goals: preserving application availability and
reducing maintenance time. To this end, the proposed model tries to minimize maintenance
time while a set of constraints restricts the migration scheduling during periods where ap-
plications are under heavy load. Given the high complexity of defining optimal maintenance
scheduling in such a scenario, the proposed solution employs a Divide-and-Conquer ap-
proach that partitions maintenance scheduling into subproblems composed of groups of
servers and time slots. After solving each subproblem individually, the proposed solution
combines the partial solutions, obtaining the optimal maintenance schedule for the entire
data center. The authors demonstrated that the proposed solution finds optimal maintenance
schedules while displaying reduced time and space complexity compared to the baseline ap-
proach that employs ASP without the proposed divide-and-conquer strategy.

Machine Learning

Efficient maintenance planning requires extensive effort, even for domain experts,
as resource allocation decisions during maintenance (e.g., component update order defini-
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tion or application migration scheduling) can lead to undesirable cascading events that are
difficult to track. This problem becomes even more challenging for the maintenance of criti-
cal assets, where proactive decisions are required to reduce repair costs and avoid service
disruption. In this context, some research efforts advocated the usage of Machine Learning
(ML) [74] models to obtain accurate maintenance decisions. Unlike traditional algorithms,
ML models can discover hidden patterns and correlations in input data to identify ongoing
events or predict upcoming environment states.

Several ML algorithms learn how to approach target problems through a training
phase, building their internal rules through identified patterns in historical data. In this con-
text, ML learning algorithms can define biased rules if their starting search point in the train-
ing dataset leads to local optima. To overcome such challenges, a branch of ML called
Ensemble Learning [36] combines the output of multiple ML algorithms. The diversity of
Ensemble methods often grants them higher accuracy than individual models, as they are
not restricted to the decisions of a single learning algorithm. Saxena et al. [135] presented
an Ensemble algorithm that combines three ML models (Feed-Forward Neural Network,
Support Vector Machine, and Linear Regression) to predict failures in cloud applications.
Similarly, Huang et al. [65] used a tree-based ensemble algorithm called Random Forest to
predict failures that could affect VNFs on edge infrastructures.

Although ML models display great potential for handling non-trivial optimization
problems, they typically require significant training data. As such, they fall short when the
input data frequently changes or when there are no historical data for training. In response,
Reinforcement Learning (RL) [75] emerged as a branch of ML that employs intelligent agents
capable of adjusting their internal rules on-the-fly based on reward and penalty systems.

Motivated by the benefits of RL algorithms, Nain et al. [109] employed this type
of model to tackle the challenge of coordinating the distribution of routing rules in SDN-
supported IoT environments. In such a scenario, while indiscriminately broadcasting up-
dated routing rules to nodes incurs network saturation, excessively delaying the distribution
of new rules may expose the network to transmission failures and security vulnerabilities.
Consequently, the authors employed an RL algorithm called Q-Learning, which dynamically
coordinates the distribution of updated routing rules to ensure that nodes are up-to-date
as early as possible without causing network saturation. Using a different scenario, Ying
et al. [174] used Reinforcement Learning to schedule application migrations during mainte-
nance in cloud data centers where there is no prior knowledge about the state of the network
(e.g., link delays, bandwidth usage, etc.).

Genetic Algorithm

Like declarative paradigms and ML models, metaheuristics [19] are heuristic re-
placements that define high-level and problem-independent procedures for tackling complex
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optimization problems. One of the most known metaheuristic methods is called the Genetic
Algorithm (GA) [102], which mimics the biological process described by Darwin’s theory of
evolution by natural selection. Rather than evolving solutions independently, GAs employ a
population-based search strategy that evolves multiple solutions simultaneously according to
predefined objectives. One of the main features of GAs is the use of mutation and crossover
mechanisms to balance exploration and exploitation when looking for efficient solutions [30].
While exploration suggests visiting new regions in the search space (often far from explored
points), exploitation suggests visiting the surroundings of already explored regions.

Souza et al. [149] employed a multiobjective GA called Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) [34] to perform server maintenance on edge infrastructures
while considering application latency requirements. Unlike traditional GAs, NSGA-II is de-
signed to find Pareto-optimal solutions for multiobjective optimization problems through an
elitist approach that favors non-dominated solutions. As the authors adopted a batch-based
maintenance model in which the servers drained in a given batch are updated in the next,
the application migration schedule affects the server update order. Consequently, the pro-
posed solution finds the best application migration scheduling to reduce maintenance time
without neglecting end-user latency requirements.

Blockchain

Patch distribution is a vital maintenance process that involves transferring updated
binaries over the network from vendors to outdated nodes. One of the main challenges
with patch distribution is ensuring the integrity of patches against potential malware injec-
tions into the network. Patch distribution security is even more concerning in peer-to-peer
infrastructures, where the attack surface goes beyond the network, as compromised nodes
may distribute malware to neighboring nodes. In this context, distributed ledger technology
such as Blockchain [178] comes into the spotlight as distributed databases that store trans-
action records on multiple nodes simultaneously, allowing the implementation of consensus
mechanisms to prevent malicious changes during patch distribution.

Several research works have proposed solutions using Blockchain technologies
such as Bitcoin12, Hyperledger Fabric13, and Ethereum14 for secure patch distribution. Most
of the proposals presented frameworks that leverage the Blockchain’s block validation pro-
cess, where individual transactions (e.g., patch submissions) are verified before being added
to the permanent ledger of the Blockchain, reducing the chances of malware distribution on
the network [61] [5] [106] [157] [64] [165] [10]. As Blockchain security increases as more
nodes join the network, some research efforts also presented incentive strategies that com-
pensate nodes for participating in the Blockchain network as patch distributors [89] [152] [47].

12https://bitcoin.org/
13https://www.hyperledger.org/
14https://ethereum.org/

https://bitcoin.org/
https://www.hyperledger.org/
https://ethereum.org/
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Summary and Takeaways

Existing maintenance solutions use multiple technologies depending on the ad-
dressed scenarios. Most of the solutions employed heuristic procedures to increase flexi-
bility and improve the prototyping speed. We observe a clear preference for ML to develop
predictive approaches. In addition, Petri Nets serve as good alternatives for graphically
modeling complex maintenance systems, while GAs and ASP facilitate the development of
maintenance strategies for scenarios where it is challenging to define algorithmic proce-
dures to find solutions. Finally, most approaches focused on distributing firmware to nodes
in IoT environments used Blockchain technology for enhanced security, which is vital as IoT
devices are typically installed outdoors, which increases the risk of physical tampering, and
connectivity is often provided by public wireless networks, which widens the attack surface.

3.4.4 Metric

The “Metric” category organizes and discusses the metrics used as performance
indicators to evaluate maintenance strategies. We group the metrics evaluated into four
groups: Cost, Time, Resource Efficiency, and Quality of Service, as depicted in Figure 3.7.
A single metric (or variations of it) can be used to evaluate several performance facets, given
the wide variety of maintenance scenarios addressed in the reviewed papers.
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Figure 3.7 – Classification of metrics used to evaluate maintenance strategies.

Cost

Most maintenance research works that employ cost metrics are somehow related to
Blockchain’s usage. In Blockchain networks, miners play a critical role in preserving network
security by validating each transaction before adding it to the Blockchain ledger [178]. As an
incentive, miners are rewarded for the computational effort incurred by transaction validation
through network fees charged to Blockchain users [38]. In addition to incentivizing miners’
work, fees help prevent spam attacks, which become costly to implement at scale. Although
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network fees are vital in the Blockchain’s security ecosystem, some maintenance papers
evaluated the cost efficiency of proposed Blockchain systems, as indiscriminately inflated
fees can hinder Blockchain’s sustainability [89] [10] [5] [47] [106] [157].

In this line of reasoning, Tapas et al. [152] presented P4UIoT, a firmware update
distribution system that uses Bitcoin’s Lightning Network15 to increase network throughput
during patch distribution without excessively raising network fees. The Lightning Network
creates payment channels between parties in the network, allowing cheaper and faster trans-
actions to be exchanged outside the main Blockchain. Once the payment channel is closed,
off-chain transactions are consolidated and broadcast to the main Blockchain. As just a sin-
gle transaction resulting from the payment channel is added to the main Blockchain ledger,
the Lightning Network enables reduced traffic on the Blockchain and lower fees.

Huang et al. [67] deviated from the Blockchain’s scope, employing cost as a perfor-
mance indicator during the maintenance of failing VNF deployments comprised of a master
and multiple backup instances. While failures in the master VNF instance require selecting a
new master among the backup instances and updating the routing path accordingly, failures
in the backup instances only require the deployment of replacement backup instances. In
this context, the authors presented a failure recovery cost function that considers the VNF
recovery time during failures in the master and backup instances.

Time

Performance and security concerns typically place time efficiency as a critical per-
formance indicator for maintenance strategies. This happens because maintenance work
comprises costly processes such as application relocations that produce significant side
effects such as service disruption and infrastructure saturation. Additionally, maintenance
completion often means mitigating undesirable conditions such as performance degrada-
tion, component failures, and security vulnerabilities. In general, research efforts measure
the time efficiency of maintenance strategies from two perspectives: (i) planning time and
(ii) maintenance execution time. Planning time studies the feasibility and scalability of pro-
posed strategies in terms of the time needed to find appropriate maintenance action plans.
Maintenance execution time evaluates how much it takes to execute the maintenance plans,
either from a global perspective or looking at the duration of different procedures during the
maintenance implementation (e.g., patching, application migrations, etc.).

Okuno et al. [112] evaluated the time needed to define the rolling update schedule
for cloud servers. In such a scenario, applications must be migrated to alternative hosts
before their servers undergo maintenance to avoid downtime. As such, migration decisions
can have cascading effects on how maintenance proceeds. As looking for optimal solutions
can become impractical due to the large search space, the proposed maintenance scheduler

15https://lightning.network/

https://lightning.network/
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employs a divide-and-conquer approach that extends an ASP-based model to find quality
solutions within a reasonable time. The authors evaluated the execution time of their sched-
uler in different scenarios with a varying number of servers and applications, comparing
the baseline ASP model to the proposed divide-and-conquer approach. During the evalua-
tion, they also measured the time taken by the divide-and-conquer approach to solving the
smallest and largest scheduling subproblems, identifying possible performance bottlenecks.

In a similar line of reasoning, Bui et al. [22] used planning runtime as a performance
indicator during the maintenance of composite IoT applications. The authors compared
the running time of a proposed heuristic against the CPLEX mathematical solver in five
scenarios with different numbers of devices, demonstrating that the proposed heuristic could
find near-optimal solutions orders of magnitude faster than the CPLEX solver.

Research works evaluated maintenance execution time through two approaches:
(i) the number of batches and (ii) the duration of events during maintenance. Maintenance
modeling generally encompasses several events that can occur simultaneously and poten-
tially affect each other. As representing such interactions incurs high computational effort at
scale, batch-based maintenance modeling emerges as a lightweight alternative.

Although the batch-based model allows measuring the duration of specific events
during maintenance (see Souza et al. [149] for example), some studies employ simplified
models where maintenance time is evaluated by the number of batches needed to update
all target components. Following this reasoning, Hou et al. [63] used batch-based modeling
to evaluate the time efficiency during edge server updates. In this scenario, each batch
incorporates the selection of the servers that will undergo maintenance and the migration
of applications on those servers to alternative hosts before the update starts. The authors
assessed the effectiveness of migration decisions in reducing the number of batches needed
to complete maintenance.

Wang et al. [162] used the number of batches to evaluate maintenance plans in a
more restrictive scenario, where regulatory rules prevent applications from migrated at run-
time. In response to this constraint, the authors leveraged replica placement strategies to
avoid service disruption during maintenance. By spreading replicas across the infrastruc-
ture, maintenance can advance gradually without affecting application availability as long as
at least one replica of each application is hosted outside the group of servers updated in
each batch. In such a scenario, the resulting number of maintenance batches indicates the
effectiveness of replica placement strategies.

Although the number of batches provides a notion of time, most research efforts
evaluated maintenance strategies by unraveling maintenance time according to the dura-
tion of various events, such as application migrations, recovery, patching, and other specific
operations. In addition to indicating how time-consuming relocations are during mainte-
nance [149], migration time is also used to measure application downtime [25], which is
related to the quality of service metrics discussed in Section 3.4.4.
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There are different approaches to measuring the update time depending on the
scenario and the techniques used. While some investigations discussed the generic benefits
of shorter update times, such as performance improvements [149], other works indicated
specific gains, such as reduced attack surface (security patches) [110] [27], and shortened
service disruption (failure correction updates) [113] [168] [135] [60] [127].

Specific update time measures are seen in some maintenance scenarios, such as
in-place hypervisor updates, where the time to store/restore application states and restart
the servers is also considered [137] [110] [127]. Other operations comprised within the main-
tenance time include the computations performed to decode encrypted patches [12] [54] and
the time required to release patches on Blockchain networks [10] [5].

Resource Efficiency

As maintenance encompasses several processes that might cause resource sat-
uration in the network and compute nodes, some research work considered resource effi-
ciency as a performance indicator while evaluating maintenance strategies.

Network resource efficiency is predominantly assessed during broken link recovery
in SDN infrastructures, where control packets with updated routing rules must be distributed
to forwarding devices to isolate failing resources and avoid packet losses. In such scenar-
ios, decisions disregarding the dispatch order and the bandwidth reserved for propagating
control packets can render damaging effects such as network starvation. Consequently,
resource efforts targeting this scenario evaluated the resource efficiency of maintenance
strategies with respect to the number of links and bandwidth used during the distribution of
control packets to identify over-consuming approaches [122] [14].

Regarding compute node resource efficiency, there is a preference for reducing
memory consumption during the maintenance of low-level applications (i.e., firmware and
hypervisors). While firmware update approaches aimed to minimize memory usage in oper-
ations such as patch propagation, downloading, decompression, integrity check, and update
installation [83] [44] [106], hypervisor repair papers focused on minimizing the memory re-
quirements of in-place updates and application migrations [137] [110].

In addition to raw compute and network usage, power consumption was also con-
sidered to assess resource efficiency in scenarios where energy-draining operations could
impact service continuity and sustainability goals. Wu et al. [167] discussed the impact of mi-
gration decisions on energy efficiency during data center evacuation under power outages.
Although data centers typically have abundant power supplies, this situation is reversed dur-
ing power outages, where infrastructure operators must define application migration plans to
evacuate affected data centers while spare power supply systems are still working. In such
a scenario, inefficient migration decisions can drain the backup energy supply and cause
various issues, such as data loss and hardware failures due to improper halting.
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Fakhrolmobasheri et al. [43] discussed how large-scale cloud data centers repre-
sent a substantial portion of society’s electricity usage and how this impacts greenhouse
gas emissions. As such, the authors included power efficiency as a maintenance tar-
get for hypervisor rejuvenation work. Other research efforts focused on minimizing main-
tenance power consumption in IoT environments, where expensive operations such as
Blockchain computations and network transfers can quickly drain the battery life of com-
puting devices [106] [5] [108].

Quality of Service

As maintenance encompasses several resource-intensive activities, there is con-
cern about their possible degradation in the quality of service for end users. In this context,
network-related metrics such as delay and throughput come into the spotlight as key quali-
ties of service indicators.

Banikhalaf et al. [14] evaluated the application delay during route repairs in vehicu-
lar networks, where wireless connectivity and vehicle movement amplify the potential impact
of improper route changes. He et al. [61] approached a different scenario, evaluating the
delay of transactions that verify the integrity of firmware patches on Blockchain networks,
in which increased response times can result from bottlenecks both on the network and on
computing nodes.

Other efforts evaluated the impact of network-hungry operations such as patch
distribution [64] [165] and routing rules propagation [109] [108] on application throughput.
Given that several events during maintenance can undermine the applications’ behavior
during maintenance (e.g., migrations, software failures, etc.), affecting the end-users’ qual-
ity of service, some maintenance strategies were also evaluated regarding their impact on
application reliability and service continuity.

Maintenance works that included fault tolerance metrics in their evaluation were
primarily concerned with preventing failures or mitigating their effects on the environment.
He et al. [60] concentrated on the repair of hang bugs, which are difficult to identify as
they undermine the system’s responsiveness without causing explicit failures. Taking this
into account, the authors evaluated the effectiveness of repair strategies with respect to the
number of partially and completely fixed hang bugs.

Similarly, Fakhrolmobasheri et al. [43] evaluated the impact of hypervisor rejuvena-
tion strategies on preventing software failures. During their evaluation, the authors employed
several fault tolerance metrics, such as the number of hypervisor failures, the ratio of serving
VMs to accepted requests, and the number of VM failures. Torquato et al. [156] evaluated
the impact of migrations performed to mitigate hypervisor aging on application availability.
Other research efforts discussed the potential downsides of migrations more generically,
highlighting their implications on application performance and availability [135] [63].
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Some works also evaluated the impact of maintenance on the quality of service in
terms of both application performance and service continuity. Souza et al. [149] concen-
trated on server updates on edge infrastructures, where maintenance decisions, such as
server update order and application migrations, can undermine the availability and perfor-
mance of applications. Whereas ineffective update order decisions can result in unneces-
sary migrations, which cause temporary service disruption, poorly planned migrations can
place applications on edge servers far from users, resulting in communication delays that
conflict with the existing SLAs, which represent the performance expectations of end-users
in terms of application delay. Some research efforts also discussed the performance and
service continuity implications of maintenance activities such as in-place updates and appli-
cation migrations during hypervisor repairs [137] [25] [110].

Summary and Takeaways

Maintenance typically aims to mitigate or prevent critical issues, such as security
vulnerabilities and infrastructure failures, where poor decisions can lead to severe conse-
quences. As such, the quality of maintenance strategies is often measured through cost
metrics that consider several factors, from monetary charges to failure costs. Several re-
search efforts also evaluate maintenance strategies regarding time-related metrics such as
patching time and the number of batches/rounds required to complete the maintenance.

Although maintenance helps preserve the performance and security of target en-
vironments, it encompasses several resource-intensive activities that can cause harmful ef-
fects on the infrastructure if not accompanied by proper planning and execution. In this con-
text, resource usage and QoS-related metrics are also considered to assess the feasibility
and efficiency of maintenance strategies. Whereas resource efficiency includes the demand
of compute nodes (i.e., CPU, memory, and disk), the network occupation (ingress/egress
traffic and the number of used links), and the infrastructure’s power consumption, QoS is
typically represented through network-related metrics (e.g., delay and throughput) and ser-
vice continuity (e.g., availability and the number of failures). Some research works also
consider the number of migrations in QoS assessments since applications often suffer from
downtime and degraded network performance during migrations.

3.4.5 Validation

The category “Validation” indicates the validation approaches used to evaluate
maintenance solutions. We divide the validation approaches into three groups: (i) for-
mal modeling, (ii) simulation, and (iii) empirical experimentation. While simulation is self-
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explanatory, formal modeling comprises the adoption of mathematical models and formal
analyses, and empirical experimentation implies conducting experiments on practical testbeds.

Formal Modeling

Formal methods enable the analysis and evaluation of research prototypes without
requiring practical implementations, allowing cost savings related to building and maintaining
real testbeds or developing simulation tools.

Hu et al. [64] used a formal analysis to validate their approach to secure delivery of
firmware updates to IoT devices. The authors introduced several theorems demonstrating
their system’s effectiveness in preventing various cyberattacks, such as denial of service
and the distribution of malware pretending to be regular firmware updates. In addition, they
presented a computational complexity analysis to compare the proposed solution with an
approach from the literature. Okuno et al. [112] also employed a formal method during
their evaluation, representing the scenario addressed with clingo [51], an ASP system that
enables the modeling of large-scale combinatorial problems as logic programs.

Simulation

Although formal modeling methods are suitable for early-stage research projects,
they typically require the adoption of many high-level abstractions to find reasonable solu-
tions in a feasible time. In this context, simulation comes into the scene as an alternative that
allows for rapid prototyping with more realistic conceptual models and lower implementation
costs. Most existing research efforts that present simulation-based evaluations used custom
simulators [100] [167] [27] [63] [122] [22] [10] [65] [162] [67] [135] [168] [174]. Although this
facilitates the modeling of specific scenarios, it usually undermines performance compar-
isons, especially since the source code of custom simulators is often private. Despite the
predominance of custom simulators whose source code is not publicly available, some re-
search work used open-source simulation frameworks. In general, maintenance simulations
use three types of simulation tools: (i) general-purpose simulators, (ii) network simulators,
and (iii) maintenance-related simulators.

Malik et al. [96] modeled the coordination of patch distributions in software-defined
vehicular networks using AnyLogic16, a general-purpose simulation framework that provides
a flexible programming interface that supports three simulation models. Agent-Based Sim-
ulation Modeling, Discrete Event Simulation Modeling, and System Dynamics Simulation
Modeling. While some works employed general-purpose simulators such as AnyLogic aim-
ing at flexible support for multiple types of conceptual models, others have chosen simulation
tools with more specific purposes.

16https://www.anylogic.com/

https://www.anylogic.com/
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Fakhrolmobasheri et al. [43] modeled a hypervisor rejuvenation scenario with the
Möbius [31] simulator, which focuses on modeling and analyzing stochastic processes such
as Markov chains and Petri Nets. Möbius adopts a discrete-event simulation model with
flexible monitoring capabilities that enable measuring several metrics (e.g., reliability, avail-
ability, performance, and security) at varied intervals (e.g., specific time points, over periods
of time, or when the system reaches steady state). Torquato et al. [156] took a similar ap-
proach, modeling a hypervisor rejuvenation scenario with TimeNET [52], which focuses on
providing flexible support to Petri Net simulations (e.g., evaluation of models with nonexpo-
nentially distributed transition firing delays and support to Colored Stochastic Petri Nets).

As several maintenance-related activities involve intense network communication
(e.g., patch distribution and application migrations), some research works employed network
simulators during their evaluations. Banikhalaf et al. [14] considered a route repair scenario
where the IoT infrastructure is composed of moving vehicles. The authors used NS-2 [2]
along with SUMO17 to validate the proposed strategy. While NS-2 simulates various aspects
of the wireless network infrastructure, such as routing and traffic control, SUMO enables
modeling vehicle mobility based on real and synthetic traces.

Nain et al. [109] [108] addressed a different scenario, employing the Cooja simu-
lator [114] to perform network route updates in low-power and lossy IoT networks, where
network devices and transmission modes are resource-constrained. While NS-2 addresses
network simulation from a more general perspective (e.g., supporting both wired and wire-
less networks), Cooja focuses on simulating Wireless Sensor Networks (WSNs), providing
built-in support for emulating real hardware platforms. In addition to supporting several net-
work technologies, such as the Routing Protocol for Low Power and Lossy Networks, Cooja
provides fine-grained control over network stacks and real-time monitoring of various met-
rics, such as network throughput and power consumption.

Although general-purpose and network simulators provide suitable features for some
maintenance scenarios, they lack support to model specific maintenance problems, high-
lighting the need for specialized simulators. Souza et al. [149] modeled an edge server
maintenance scenario using EdgeSimPy18, a simulation toolkit designed to facilitate the
prototyping of resource management policies on Edge Computing infrastructures through
system models that accurately represent various elements, including the lifecycle of con-
tainerized applications. Although EdgeSimPy can model maintenance work involving mul-
tiple components (e.g., edge servers, applications, and network devices), other simulation
toolkits concentrate on specific maintenance scenarios.

An example of a specialized maintenance simulator is FUOTASim [1], used by
Anastasiou et al. [5] to model firmware updates in IoT environments. In addition to simu-

17https://sourceforge.net/projects/sumo/
18https://edgesimpy.github.io/

https://sourceforge.net/projects/sumo/
https://edgesimpy.github.io/
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lating the behavior of wireless network protocols such as LoRaWAN19, FUOTASim eases
the monitoring of several metrics, such as patch distribution time and power consumption.

Experimentation

Empirical experimentation consists of validating research prototypes in testbeds
with characteristics similar to production environments, which enables the identification of
real-world challenges and requirements. In addition to approximating research outcomes
to practical applications, many research works present update/repair frameworks that rely
on optimizations upon hardware-specific behaviors that are difficult to simulate accurately,
which makes empirical experimentation even more attractive.

One of the main challenges in this context is related to the cost of building testbeds
at scale, which involves the acquisition of several components (e.g., compute and network
devices, cooling and power supply systems, among others) and continuous environment
supervision. As a result, we observe that most existing academic efforts performed empirical
tests on small-sized testbeds comprised of a few servers or personal computers equipped
with networking and virtualization technologies [164] [12] [61] [54] [83] [60] [165] [113] [137]
[25] [110] [47] [44] [106] [157] [153].

In contrast, some contributions included practical tests on mid-to-large infrastruc-
tures. For example, Leiba et al. [89] and Tapas et al. [152] used IoT testbeds composed
of 48 and 50 single-board computers, respectively, while Russinovich et al. [127] evaluated
their proposed server update approach by performing driver updates in Microsoft Azure’s
data centers with millions of servers.

Summary and Takeaways

Existing maintenance research efforts employ various validation approaches ac-
cording to the addressed scenario. In general, few maintenance strategies are validated
through formal modeling methods. This is mainly because maintenance scenarios often in-
clude nondeterministic phenomena caused by cascading events, which can be challenging
to model and evaluate at scale. In contrast, several works use simulation tools to represent
conceptual models with significant levels of detail at low implementation costs. We also ob-
serve that most simulated evaluations use custom simulators, highlighting the absence of a
de facto standard maintenance simulation toolkit. In addition, many existing research efforts
perform empirical experiments, as proposed solutions leverage hardware-specific behaviors
that are difficult to model artificially.

19https://lora-alliance.org/about-lorawan/

https://lora-alliance.org/about-lorawan/
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3.5 Closing Remarks

Despite the promising use cases for the unified IoT-Edge-Cloud model, IT per-
sonnel face the challenge of implementing efficient maintenance strategies to preserve the
environment’s performance and security, which resorts to understanding the numerous re-
quirements, demands, and challenges of such a complex ecosystem. While the abundant
resources from the academic literature could help in that regard, extracting actionable in-
sights from their findings and drawing parallels between multiple works is challenging due to
the massive number of existing papers. In this context, we observed a need for review pa-
pers providing an overview of existing solutions and indications of open challenges to lower
the barrier to entry for new researchers.

This chapter presented a comprehensive survey of maintenance research aimed at
cloud, edge, and IoT environments. As the scope of our study intersected multiple research
subjects, we proposed a taxonomy that provides a logical organization of existing works
based on various characteristics, such as maintenance approaches, techniques used, and
metrics of interest.

Although our review covers three paradigms (edge, cloud, and IoT), this thesis fo-
cuses primarily on optimizing maintenance on edge infrastructures. That said, throughout
our literature analysis, we have identified some research topics concerning edge mainte-
nance that require further investigation. The identified gaps constitute the primary motiva-
tion for the research work detailed in the subsequent chapters, where we coordinate ideas
from the other paradigms explored in this review (i.e., cloud and IoT) with novel strategies to
optimize maintenance work within Edge Computing infrastructures.

The next chapters address the following identified challenges:

• Modeling and simulation of maintenance at the edge: We have observed that simu-
lation has been the primary validation approach for maintenance strategies as it allows
for the cost-effective evaluation of research prototypes in large-scale environments.
Despite the widespread use of simulation, most research efforts resort to general-
purpose simulation tools, which fall short in modeling maintenance-specific operations
such as patching and component versioning. This research gap is addressed in
Chapter 4, where we introduce EdgeSimPy, an Edge Computing simulation tool writ-
ten in Python that models various features of the edge environment (e.g., infrastruc-
ture power consumption and application composition), while also supporting use cases
such as edge server maintenance, applications, and network devices.

• Location-aware application relocations during maintenance: Existing maintenance
strategies that consider scenarios where applications must be relocated during main-
tenance are designed for cloud data centers, where application relocation is performed
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by observing if the application demand could be met by a candidate host, regardless of
that new host location within the data center, given the robust network capacities avail-
able. This situation is inversed on Edge Computing environments, as edge servers are
interconnected by less reliable networks, and applications have strict latency require-
ments. This research gap is addressed in Chapter 5, where we introduce Lamp and
Laxus, two maintenance strategies that mitigate latency issues during maintenance by
incorporating user-location awareness into application relocations.

• Optimized container provisioning during maintenance: We have observed that
existing maintenance strategies relocate applications during maintenance using VM-
based techniques such as cold migration. However, modern computing platforms are
increasingly adopting containers as the preferred virtualization technology over VMs.
Although the architectural differences between containers and VMs may seem sub-
tle, they significantly influence how applications are provisioned, as discussed in Sec-
tion 2.1. One of the key differences is that container images typically employ layered
file systems, which enable software instructions to be shared amongst container im-
ages, making room for significant reductions in the application provisioning time when
servers already possess parts of container images. As initiatives in the literature rely on
the VM model, they cannot leverage the shared content of container images to speed
up relocations performed during maintenance to reduce the overall maintenance time.
This research gap is addressed in Chapter 6, where we introduce Hermes, a main-
tenance strategy that reduces maintenance time during edge server updates through
efficient relocations of containerized applications.

It is worth noting that some of our contributions presented in subsequent chapters
(i.e., Lamp, Laxus, and EdgeSimPy) have been cataloged in our literature review due to
variations in their individual manuscript publication timelines.



59

4. SIMULATION TOOLKIT FOR EDGE INFRASTRUCTURES

In the previous chapter (Section 3.5), the first identified challenge was enabling the
modeling and simulation of maintenance operations at the edge. This chapter addresses
such a challenge through EdgeSimPy, a simulation framework written in Python that incor-
porates various functional abstractions for the entities that compose edge infrastructures
and supports several use cases, including maintenance operations targeting physical and
logical components.

First, this chapter presents a motivation for EdgeSimPy (Section 4.1) and a com-
parison against existing simulators (Section 4.2). Then, it describes EdgeSimPy’s architec-
ture (Section 4.3) and checks the correctness of EdgeSimPy’s core features implementation
(Section 4.4). Finally, it presents two use cases for EdgeSimPy (Section 4.4).

4.1 Motivation

While proximity to data sources grants Edge Computing a natural advantage over
the cloud, it also introduces significant technical constraints. As deploying large-scale edge
data centers in urban centers is typically not feasible, edge sites often comprise groups of
devices with reduced computing power distributed across small physical spaces with limited
power and cooling supply [160]. As such, ensuring efficient use of resources, which is more
critical than ever, becomes challenging. Therefore, efficient resource management policies
must be developed and tested to ensure that they achieve the expected goals.

In addition to the cost and time required to prototype resource management poli-
cies, the distributed nature of edge infrastructures adds additional barriers to empirical ex-
perimentation of new resource management policies. Examples of such barriers are net-
work instability and power outages. Such challenges favored the rise of several edge sim-
ulators that promise to close the gap between conceptual research and prototyping (see
Section 4.2). Despite such initiatives, researchers and practitioners still face barriers when
designing edge resource management policies, as existing simulators do not provide fine-
grained modeling of edge infrastructures, which comprises a variety of processes such as
application provisioning, network flow scheduling, server maintenance, and others.

To overcome this challenge, this chapter introduces EdgeSimPy, a Python-based
simulator for modeling and evaluating resource management policies on Edge Computing
environments. EdgeSimPy ships with a modular architecture with several functional ab-
stractions for edge servers, network devices, and applications. EdgeSimPy embodies a
novel conceptual model that replicates the application provisioning method of widely used
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platforms such as Docker1, allowing seamless integration with repositories such as Dock-
erHub2. In addition to demonstrating the effectiveness of EdgeSimPy through an in-depth
verification that checks the correctness of the simulator implementation, we describe two
case studies available in the literature [146, 149] showing EdgeSimPy in action in different
large-scale scenarios.

The contributions of this chapter are the following:

• We provide a high-level interface that leverages the features of well-known modeling
solutions such as Mesa [77] and NetworkX [56] to facilitate the development of re-
source management policies and simulator extensions (Section 4.3.1).

• We propose a conceptual model that accurately represents the lifecycle of edge appli-
cations by replicating the behavior of widely used platforms like Docker (Section 4.3.3).

• We implement multiple system models to simulate several features of edge environ-
ments, such as infrastructure power consumption, application composition, service
workload variations, and user mobility (Sections 4.3.2–4.3.4).

• We perform a verification that checks the correctness of EdgeSimPy’s core features im-
plementation by comparing the simulation results to the expected outputs (Section 4.4).

• We demonstrate EdgeSimPy’s utility through two case studies based on peer-reviewed
papers [146] [149] that have employed the simulator in different scenarios (Section 4.5).

4.2 Related Simulators

During the past decade, simulation tools such as CloudSim [24] and GreenCloud [79]
have been widely adopted to accelerate the development and validation of resource man-
agement strategies for cloud data centers. Similarly, the dawn of Edge Computing has
motivated the development of several edge simulators. This section starts with an overview
of simulation tools for Edge Computing (Section 4.2.1). Then, it highlights the differences
and contributions of EdgeSimPy over existing simulators (Section 4.2.2).

4.2.1 Edge Computing Simulators

Sonmez et al. [145] highlight the limitations of cloud and network simulators when
modeling the characteristics of edge environments. While cloud simulators such as CloudSim

1https://www.docker.com/
2https://hub.docker.com/

https://www.docker.com/
https://hub.docker.com/
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lack user mobility and wireless support, network simulators are not focused on modeling
edge servers and users. Accordingly, the authors present EdgeCloudSim, a simulator that
implements user mobility, edge device power modeling, and network management, facilitat-
ing the prototyping of placement strategies on Edge Computing environments.

Qayyum et al. [119] argue that edge simulators abstract network characteristics,
restricting the options for designing new resource management strategies. The authors
introduce a new simulator, FogNetSim++, which models the power consumption of edge
devices, supports various communication protocols (e.g., MQTT and CoAP), and simulates
the handover of mobile users in the network. Also, the authors present a use case that
shows FogNetSim++’s effectiveness in modeling edge placement and scheduling policies.

Puliafito et al. [118] discuss the critical role of application migration in preserv-
ing low latency for users despite their mobility and how edge simulators lack the features
needed to evaluate migration decisions. Based on these observations, the authors propose
MobFogSim, a simulator that models the application migration process based on user mo-
bility (including attributes such as speed and moving direction) and the coverage area of
access points spread in the environment.

Amarasinghe et al. [4] present a novel simulator called ECSNeT++, which is fo-
cused on the deployment and processing of stream-based applications on Edge Computing
environments. Unlike other simulators, ECSNeT++ enables fine-grained resource manage-
ment for streaming applications, where allocation policies can determine how tasks are pro-
cessed at the core level on edge devices (where each CPU core has a processing queue),
aiming to reduce the network delay and power consumption of edge devices.

Lera et al. [90] introduce YAFS, an edge simulator focused on evaluating allocation
decisions for composite applications (i.e., applications composed of multiple components)
on edge infrastructures. In YAFS, routing policies coordinate the communication of the ap-
plication across the network, allowing modules of a given application to be allocated on
different edge devices. The authors discuss several use cases, including scenarios with
dynamic scheduling of application components, infrastructure failures, and user mobility.

Jha et al. [71] discuss the complexity of the Cloud-Edge-IoT ecosystem, which in-
volves allocating resources across heterogeneous devices using multiple network protocols
(e.g., LoRa and Zigbee) and messaging protocols (e.g., CoAP and MQTT). After highlighting
the lack of edge simulators considering the protocols of the Cloud-Edge-IoT ecosystem, the
authors present the IoTSim-Edge simulator. The simulator allows the prototyping of edge
resource management strategies based on the energy consumption of edge devices, appli-
cation composition, user mobility, and communication protocols.

Alwasel et al. [3] make a case for Osmotic Computing, a paradigm that involves
workload migration between cloud data centers and edge devices based on performance
and security events. The authors present a novel simulator, IoTSim-Osmosis, focused on
Osmotic Computing scenarios, which implements a variety of models for data transmission,
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energy consumption, and application performance. Finally, the authors present a use case
where IoTSim-Osmosis is used to model strategies that optimize performance, energy con-
sumption, and budget in Cloud-Edge scenarios.

Mahmud et al. [95] highlight the lack of support for real datasets on edge simulators,
which limits the evaluation of resource management policies on edge environments compris-
ing composite applications. Then, the authors introduce iFogSim2, a simulator with native
support to real datasets that incorporates modeling and simulation of service migration in
multi-tier infrastructures (e.g., Cloud-Edge), user mobility, service orchestration, and edge
devices clustering. They present use cases that demonstrate the effectiveness of iFogSim2
in simulating several resource allocation scenarios at the edge.

4.2.2 Discussion

Despite the significant research interest in simulation modeling focused on Edge
Computing environments, existing edge simulators lack native support for managing the
lifecycle of containerized applications. At first, extending existing simulators may seem triv-
ial, as most of them are built with programming stacks that facilitate the inclusion of new
features. However, in this case, several changes may be needed to allow evaluation of
container management strategies at the edge, such as including several new entities (e.g.,
container registries, images, layers, etc.) and modeling the container provisioning process
from scratch, as it differs significantly from the VM model, as discussed in Section 2.1.

EdgeSimPy models aspects of edge computing that are also supported by existing
simulators, such as user mobility, energy consumption (for computing and network devices),
and application composition. Complementarily, it provides functional abstractions that are
not covered by existing edge simulators (e.g., container registries, container images, and
container layers), enabling the simulation of the lifecycle of containerized applications (e.g.,
placement, scheduling, migration, update, and removal operations). Table 4.1 summarizes
the main differences between EdgeSimPy and related simulators regarding built-in features.

Table 4.1 – Built-in features supported by existing simulators and EdgeSimPy.

Simulator Power Modeling Network
Routing

User
Mobility

Application
Composition

Container
LifecycleServers Network

EdgeCloudSim [145] ✘ ✘ ✘ ✔ ✘ ✘

FogNetSim++ [119] ✔ ✔ ✔ ✔ ✘ ✘

MobFogSim [118] ✔ ✘ ✘ ✔ ✔ ✘

ECSNeT++ [4] ✔ ✔ ✔ ✔ ✔ ✘

YAFS [90] ✔ ✘ ✔ ✔ ✔ ✘

IoTSim-Edge [71] ✔ ✘ ✔ ✔ ✔ ✘

IoTSim-Osmosis [3] ✔ ✘ ✔ ✘ ✔ ✘

iFogSim2 [95] ✔ ✘ ✔ ✔ ✔ ✘

EdgeSimPy (this work) ✔ ✔ ✔ ✔ ✔ ✔
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In addition to its built-in functionalities, EdgeSimPy aims to contribute to the com-
munity by providing more comprehensive support for specific use cases, as shown in Ta-
ble 4.2. Although specific simulators such as MobFogSim and iFogSim2 support the model-
ing of service migration strategies, they focus predominantly on VM-based migration models.
For instance, although MobFogSim provides a ContainerVM class, such an entity follows the
VM migration model, where containers are relocated from a source to a destination server,
overlooking the shareable structure of container images and the role of container registries.

Table 4.2 – Use cases supported by existing simulators and EdgeSimPy.

Simulator Service
Migration

Network Flow
Scheduling

Container Registry
Management

Maintenance
Operations

EdgeCloudSim [145] ✘ ✘ ✘ ✘

FogNetSim++ [119] ✘ ✔ ✘ ✘

MobFogSim [118] ✔ ✘ ✘ ✘

ECSNeT++ [4] ✘ ✔ ✘ ✘

YAFS [90] ✘ ✘ ✘ ✘

IoTSim-Edge [71] ✘ ✔ ✘ ✘

IoTSim-Osmosis [3] ✘ ✔ ✘ ✘

iFogSim2 [95] ✔ ✔ ✘ ✘

EdgeSimPy (this work) ✔ ✔ ✔ ✔

Unlike MobFogSim and iFogSim2, EdgeSimPy’s has abstractions for container-
related entities (i.e., container registries, container images, and container layers), which al-
lows it to support the design of relocation strategies for containerized applications, widening
EdgeSimPy potential use cases. For instance, as EdgeSimPy represents container reg-
istries as domain-specific services, it supports the design of provisioning policies that man-
age such entities aiming at optimizations in the lifecycle of containerized instances. In ad-
dition, EdgeSimPy facilitates modeling maintenance operations for physical resources (e.g.,
servers, network devices) and applications, which is not supported by existing simulators.
An in-depth analysis of EdgeSimPy’s suitability in two case studies and a comparison with
existing simulators in these scenarios is provided in Section 4.5.

4.3 Simulator Architecture

EdgeSimPy’s primary design goal is to support researchers interested in evaluating
resource management strategies for the edge. For example, EdgeSimPy models different
resource allocation decisions (e.g., placement, migration, scheduling, and maintenance)
while considering the infrastructure’s heterogeneity (power consumption, resource capacity),
users (mobility, access profile), and applications (composition, performance requirements).
Figure 4.1 shows a sample EdgeSimPy simulation scenario where entities interact with each
other and different resource management decisions affect the environment.
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Figure 4.1 – Sample EdgeSimPy simulation scenario. While “L" and “ES" denote the network
links and edge servers, “S", “CI", and “CL" represent the services, container images, and
container layers.

Before starting the simulation, EdgeSimPy expects an input file defining the sim-
ulated scenario. EdgeSimPy input files are written in JavaScript Object Notation (JSON)
format, which has a human-friendly file structure [111] and is widely adopted in various soft-
ware domains [115], which facilitates EdgeSimPy integration with other tools. EdgeSimPy
input files organize the metadata of each simulated entity into a well-defined structure made
up of two distinct information groups: attributes and relationships. Attributes refer to the in-
ternal characteristics of entities, such as edge server capacity, network link bandwidth, and
application delay, among others. Relationships represent the associations between entities
(e.g., a service’s host or a user’s applications). By adhering to this predefined structure,
EdgeSimPy can automatically identify entity input metadata and construct the simulated
scenario, even in cases where custom attributes and relationships have been specified. Fig-
ure 4.2 shows a sample EdgeSimPy input file with the metadata of an application entity.

Simulated entities can carry geospatial metadata, which facilitates the integration
of datasets containing real or synthetic coordinates into EdgeSimPy and allows the modeling
of events such as user mobility. By default, EdgeSimPy uses the map model proposed by
Aral et al. [9], which divides the environment into hexagonal cells.

Once the simulation starts, EdgeSimPy triggers a monitoring mechanism that stores
snapshots of the entity’s state at the end of each time step. Simulation logs are stored in
MessagePack3, a binary serialization format designed to be a faster and smaller alterna-
tive to JSON [159]. Instead of writing data to disk each time step, EdgeSimPy stores the
simulation output at configurable intervals, reducing the I/O pressure during the simulation.

3https://msgpack.org/index.html

https://msgpack.org/index.html
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{

        "Application": [

                {

                        

1
"medium"


                        

"class": "Service", "id": 1


"class": "EdgeServer", "id": 1


my_custom_function


                },

        ...

        ]

}

"attributes": {

                                

                        },


"id": ,

                                "privacy_requirement": 

"relationships": {

                                

                        }


"services": [

                                        {

                                                
                                        },

                                        ...

                                ],

                                "preferred_host": {

                                        
                                },



                                "comm_model":  

Entity attributes with

multiple data formats

One-to-many relationship

pointing to multiple entities

One-to-one relationship

pointing to a single entity

One-to-one relationship

pointing to a Python function

edgesimpy_dataset.json

Figure 4.2 – Sample EdgeSimPy input file.

EdgeSimPy’s flexibility stems from a modular architecture (depicted as a block dia-
gram in Figure 4.3), which divides the functional abstractions into four layers (Core, Physical,
Logical, and Management). Each abstraction is self-contained to streamline the integration
of new features and algorithms.

EdgeSimPy

Core

Base

Station

Network

Link

Network

Switch

Edge

Server User

Physical

Container

Registry

Container

Image

Container

Layer Application Service Network


Flow

Logical

Placement Migration Routing Scheduling Maintenance

Management

Figure 4.3 – EdgeSimPy architecture.
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4.3.1 Core Layer

Edge computing environments can be seen as complex systems with several enti-
ties that interact with each other in a non-linear way. This ecosystem may assemble emer-
gent phenomena [136], which are the product of interactions between entities. An example
of an emerging phenomenon at the edge is infrastructure saturation generated by a series
of poor allocation decisions. While detecting these events is key to avoiding erroneous al-
location decisions, understanding its causes through the attributes of individual entities is
challenging as it arises from the interaction between multiple entities.

One of the most popular techniques for studying emergent phenomena is Agent-
Based Modeling (ABM) [94] [20], which represents the world through a bottom-up approach,
where independent entities (called agents) interact with each other and the environment over
time according to communication and decision-making rules. Most ABM-based simulation
systems adopt the Fixed-Increment Time Advance (FITA) strategy [85], which advances the
simulation clock in fixed increments of the time delta (∆). If multiple events are scheduled
for the same time step t , they are considered to have occurred concurrently at the end of t .

FITA-based simulators have two main properties: ∆’s granularity and the agents’
activation regime [85]. ∆’s granularity affects the accuracy of the simulation output and the
simulation time—lower ∆ yields higher simulation accuracy, as it reduces the number of
events computed simultaneously at the cost of a longer runtime. The activation regime de-
fines the order in which the simulator computes simultaneous events at each time step, which
can affect the simulation output, especially if simultaneous events influence each other.

EdgeSimPy employs the ABM approach, representing entities of edge scenarios as
interactive agents. The features that comprise the simulation core (i.e., agent modeling, acti-
vation regime, and time advance) are managed by Mesa [77], a well-known ABM framework
that ships several built-in modules that encompass the building, analysis, and visualization
of ABM simulations. EdgeSimPy’s simulation workflow is depicted in Figure 4.4.

1. Loading

Dataset

2. Executing

Resource Management


Algorithms

3. Activating Agents

and Advancing


Simulation Clock

4. Monitoring

System State

6. Displaying

Results

5. Stopping 
Criterion is Met?

No

Yes

Figure 4.4 – EdgeSimPy’s simulation workflow.
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When EdgeSimPy is started, it loads input data from JSON files or Python dic-
tionaries, spawning simulated entities accordingly (Figure 4.4, step 1). After loading the
scenario, EdgeSimPy starts an iterative process until a user-defined stopping criterion is
met. At each time step, EdgeSimPy executes user-defined resource management policies,
calls the activation regime to update agent state, increases the simulation clock, and collects
logs of the state of the system, respectively (Figure 4.4, steps 2–4).

Once the stopping criterion is met, EdgeSimPy stops the simulation and displays
the collected metrics and logs (Figure 4.4, step 6). Thanks to EdgeSimPy’s decoupled archi-
tecture, it is possible to define custom stopping criteria, resource management algorithms,
and personalized routines for collecting and exhibiting simulation metrics.

4.3.2 Physical Layer

The Physical layer contains functional abstractions for users and resources that
comprise the edge infrastructure. Regardless of their distinct functions, all components in
the Physical layer have a coordinates attribute, which carries the component’s geospatial
information. Physical entities that provide networking capabilities leverage the features of
NetworkX [56], a well-known graph library for manipulating complex networks that ships
several built-in methods (e.g., shortest path and community finding).

The remainder of this section discusses the components in the Physical layer.

Base Stations

Base Stations act as gateways in the edge network, providing wireless connectivity
for seamless communication between users and edge servers. EdgeSimPy assumes that
the base stations cover the entire map area so that users always have connectivity regard-
less of location. As such, the set of coordinates of the base stations comprehends the whole
available area for user transit, so users cannot be in a position that represents a different co-
ordinate from all base stations, as they would not have network connectivity. Base stations
on EdgeSimPy embody multiple customizable attributes, such as energy consumption and
wireless latency, allowing various scenarios to be modeled.

In addition to providing wireless connectivity, EdgeSimPy automatically handles
user handoff between base stations based on user mobility patterns. Accordingly, EdgeS-
imPy allows for a realistic simulation of users moving through the edge network and the
associated changes in connectivity as they transition from one base station to another. Ad-
ditionally, base stations can be equipped with network switches for wired connectivity and
network flow management and edge servers for hosting services, ensuring an adaptable
model for edge environments.
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EdgeSimPy can also be customized to support map models where a single base
station covers multiple coordinates, and attributes such as wireless latency are affected by
the distance between the user’s and base station’s positions. This allows the modeling and
analysis of various connectivity scenarios and their impact on edge application performance.

Network Switches

Network switches provide wired connectivity between infrastructure components
(e.g., base stations and edge servers) and manage data flow in the network. These com-
ponents ship multiple configurable parameters, such as chassis types and varying numbers
of ports with specific delay and bandwidth properties. In EdgeSimPy, network switches are
modeled as nodes in the graph representing the network topology.

Although network switches are used as network nodes by default, EdgeSimPy al-
lows other entities to be modeled for this purpose, enabling a variety of networking scenarios
to be simulated. For example, cars can act as topology nodes in vehicular networks, serving
the environment as intermediary data exchange and communication entities.

EdgeSimPy assumes that user requests are protected by QoS policies so that one
user’s request does not negatively affect others. On the other hand, more demanding data
transfers between edge servers (e.g., service migrations) are modeled as network flows,
sharing the bandwidth of network links. The duration of a network flow depends on the band-
width of the links it spans over and the resource allocation policy of the network switches.
Whenever a network flow starts or ends, EdgeSimPy runs a flow scheduling algorithm to up-
date the occupation of the involved links, redistributing the available bandwidth, if applicable.

Since a network flow can use a path with links containing different bandwidth de-
mands, EdgeSimPy normalizes the bandwidth available to a network flow to the lowest avail-
able bandwidth between the links in its path. The Max-Min Fairness algorithm [18] is used
as the default flow scheduling algorithm, dividing the network bandwidth proportionally to
the flow demand. As the flow scheduling logic is fully encapsulated, it is possible to define
custom flow scheduling algorithms without burden.

During simulation, the power consumption of the network varies according to the
resource usage and the technical features of the network switches. By default, EdgeS-
imPy includes the network power models proposed by Conterato et al. [29] and Riviriego et
al. [123]. However, the behavior of power models is fully encapsulated, allowing new models
to be implemented without requiring changes to the simulator’s core.

Edge Servers

Edge servers are used to host services. EdgeSimPy assumes that the edge in-
frastructure is virtualized so that edge servers can host multiple services simultaneously. In
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addition to capacity parameters such as CPU, RAM, and disk storage, edge servers can
also have performance parameters like Million Instructions Per Second (MIPS), which al-
lows for an alternative representation of server performance and resource allocation. It is
possible to define the distribution of MIPS among applications on a server based on custom
criteria, allowing the modeling of advanced phenomena such as resource contention among
co-hosted applications.

Technical specifications such as hardware resources and resource usage affect
the power consumption of edge servers during simulation. EdgeSimPy incorporates three
built-in generic power consumption models (LinearPowerModel, QuadraticPowerModel, Cu-
bicPowerModel) [16], which assume that edge server power consumption grows according
to their CPU usage following linear, quadratic, and cubic functions, respectively. EdgeS-
imPy’s energy modeling enables the implementation of advanced features, such as tem-
porarily turning off edge servers to save energy. As the properties of power models are fully
encapsulated, EdgeSimPy supports custom power models for edge servers.

As edge servers have static coordinates, they are immobile by default. Never-
theless, EdgeSimPy can be extended to assign mobility models to edge servers, allowing
the representation of mobile devices with computing capabilities, such as drones or Single-
Board Computers (SBCs) connected to automobiles.

Users

As part of the Physical layer, users have a coordinates attribute that defines their
location on the map. Users can remain in the same position during the entire simulation or
move according to the mobility models. By default, EdgeSimPy incorporates two mobility
models, Random and Pathway [70], which can be easily replaced by other synthetic models
or real mobility traces.

Users and applications are linked by a many-to-many relationship, which allows a
user to access multiple applications or even an application to be accessed jointly by multiple
users. Following this design principle, each user has properties that define their delay and
availability requirements for each application they access. As each entity is self-contained,
adding new user requirements such as security and budget is possible, which opens room
for prototyping custom allocation strategies.

Each user has his access pattern, specifying when he will call his applications
and how long each access will last. By default, EdgeSimPy incorporates two user access
pattern templates, Random and Circular. While the former arbitrarily defines when and for
how long the user will access their applications, the latter establishes a pattern that repeats
indefinitely. Figure 4.5 illustrates four users using the Random and Circular access patterns.

User access patterns are defined through independent classes, allowing the def-
inition of custom patterns without burden. This functionality allows EdgeSimPy to model
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Figure 4.5 – EdgeSimPy’s built-in user access patterns.

different workloads, from streaming to batch processing applications and serverless func-
tions. As a user’s access can be intermittent, allocation policies may choose to deprovision
applications during idle periods, which can be beneficial in terms of resource saving or harm-
ful if there are long application provisioning times after the user’s request (as in the case of
serverless functions facing cold starts [141]).

4.3.3 Logical Layer

The Logical layer comprises functional abstractions for applications running on the
edge infrastructure. Despite supporting VMs, EdgeSimPy adopts containerization as the de-
fault virtualization model (see details in Chapter 2). Consequently, abstractions for container
registries, container images, and container layers are provided. The rest of this section
describes the components of the Logical layer.

Applications

Applications are modeled as abstract entities that represent data flows between
services. In this way, the application services are allocated within the infrastructure, rather
than the applications themselves. As self-contained entities, applications can receive custom
attributes to support the modeling of specific scenarios (e.g., QoS priority and budget).

EdgeSimPy calculates the latency of an application based on the time it takes to
visit the servers that host all its services. The default implementation of the application in
EdgeSimPy assumes that the data flow starts at the application users and passes through
all its services sequentially. In addition to the built-in application communication behavior,



71

EdgeSimPy supports custom communication patterns to model multiple software architec-
tures, from monoliths to microservices [45] and stream applications [33]. It is also possible
to specify custom communication policies among the services that compose an application
based on various criteria, such as inter-service latency and edge server characteristics.

Services

The services in EdgeSimPy are modeled as container instances within the infras-
tructure. While a service’s disk demand corresponds to the size of the layers that comprise
its container image, its CPU and memory demand describe the computational resources
required by the service instance, and therefore are unrelated to the service’s image. Each
service also has a state attribute that defines whether it is stateless or stateful.

Services leverage a layered file system model to separate service components and
ensure that changes in one containerized service do not affect other co-hosted services us-
ing the same base image. This containerization approach provides an efficient and isolated
environment for hosting services in the edge infrastructure. The layered file system model
used by EdgeSimPy services is shown in Figure 4.6.
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Figure 4.6 – Layered file system used by service in EdgeSimPy.

The layered file system used by services divides the service image into two parts:
the container and image layers. In this setting, each service has its container layer with its
runtime files and user session data. As the container layer is not shared with co-hosted ser-
vices, it has read-write permissions. Conversely, image layers hold read-only permissions
as they provide static files, libraries, and dependencies, and are shared among co-hosted
services. This separation enables a streamlined relocation process and ensures that ser-
vices can be efficiently transferred across edge servers without affecting other instances or
interfering with shared resources.

The state attribute plays a crucial role in the way the service is relocated. State-
less services maintain no user session data or runtime state, allowing them to be relocated
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without downtime, as their container layer can be easily discarded on the target host and
recreated on the destination host. In contrast, stateful services require the transfer of both
image layers and the container layer containing user session data, resulting in a brief down-
time while the service’s state is transferred to the destination host.

Container Registries

Container registries are the main component when allocating a service in the edge
infrastructure, as the service’s container image is pulled from it to the destination host. A
container registry is a containerized service built on top of a registry image that embeds
image distribution and storage functionality. Thus, a container registry also has its own CPU
and memory requirements to perform image distribution processing.

EdgeSimPy supports the definition of custom policies for selecting from which con-
tainer registries container images are pulled to the edge servers. This feature fosters the
design of resource management strategies that optimize service provisioning considering
factors such as network usage and the location of container registries. Additionally, as con-
tainer images follow a layered file system model, EdgeSimPy allows resource management
strategies that leverage multiple container registries to download the layers of a given image.

EdgeSimPy also allows one to define how many layers of a particular image are
downloaded simultaneously to a given host. This level of control enables the design of
resource management strategies that optimize service provisioning by balancing multiple
metrics of interest, such as network usage, provisioning time, and resource availability.

As container registries are modeled as domain-specific services that distribute con-
tainer images across the edge infrastructure, EdgeSimPy enables dynamic provisioning of
container registries as it does with regular services. This feature allows users to adapt the
deployment of the container registry to changing network conditions, resource requirements,
or application demands, ensuring efficient image distribution and optimized resource utiliza-
tion in the edge environment.

Container Images

Container images embed the basic functionality for services. Each image has a tag
attribute representing its version, allowing the modeling of scenarios where new image ver-
sions are released during the simulation. Like applications, container images are modeled
as abstract entities, so they have no resource requirements by themselves. Instead, the disk
demand for a given container image results from the aggregated size of its layers.

EdgeSimPy models container images according to the Open Container Initiative
(OCI) 4 format, a well-known standard for container images. By adhering to the OCI format,

4https://opencontainers.org/

https://opencontainers.org/
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EdgeSimPy can incorporate metadata from real-world container images from repositories
like DockerHub, providing a more accurate representation of services in the edge infrastruc-
ture. In addition to providing compatibility with real image traces, EdgeSimPy’s container
image format allows the definition of service provisioning constraints to model edge-specific
scenarios. For instance, it is possible to define datasets with container image specifica-
tions that narrow the service provisioning options based on the architecture and hardware
capabilities of available hosts.

Container Layers

The container layers represent the instructions aggregated into container images.
Each container layer represents a set of files added or modified from the previous layer. In
EdgeSimPy, container layers can be identified by a digest attribute, enabling hosts to check
the integrity of downloaded container layers.

Each container layer has attributes representing its software instruction and disk
size. As container images in EdgeSimPy adhere to a layered filesystem model, co-hosted
services can share read-only image data, resulting in considerable disk savings. This model
makes room for the design of layer-aware resource management strategies that could re-
duce application provisioning time by selectively choosing hosts that already possess the
necessary service layers.

4.3.4 Management Layer

In addition to modeling the behavior of several entities of Edge Computing sce-
narios, EdgeSimPy provides fine-grained control over network and edge server resources.
Consequently, it facilitates prototyping various resource management policies, such as:

• Service Placement: Defining the placement of application services in the infrastruc-
ture represents a vital decision to ensure the efficient use of resources. By supporting
the definition of custom user access patterns, EdgeSimPy enables the modeling of
online and offline placement strategies [176, 154]. In offline placement scenarios, the
allocation policy has a priori knowledge about all the applications it needs to provision.
In online placement scenarios, application provisioning requests occur at runtime, and
provisioning policies must allocate application services on demand.

• Service Migration: Given the strict latency requirements of applications running on
the edge infrastructure, user mobility may require relocation of services at runtime.
To support this functionality, EdgeSimPy supports the modeling of allocation policies
with fine-grained control over the migration process. In this way, migration policies can
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define which edge servers should host the services, from which container registries
the layers should be pulled, and which network paths should be used in this process.

• Maintenance: Updates for applications and physical devices are often released to
add new features, fix bugs, or mitigate security vulnerabilities. As components of the
Physical and Logical layers have versioning attributes, EdgeSimPy supports the mod-
eling of maintenance scenarios, incorporating decisions such as the order in which
components are updated.

• Network Flow Scheduling: In large-scale edge scenarios, events such as user mo-
bility can trigger the provisioning of multiple applications simultaneously. However,
the lack of network management can allow large flows to indiscriminately saturate the
network, causing the starvation of smaller flows and the reduction in the overall per-
formance of the network [139] [155]. Accordingly, EdgeSimPy allows the definition of
scheduling strategies for network flows that can control the priority of each flow based
on objectives modeled through built-in or custom attributes.

The entities comprising EdgeSimPy’s architecture shape a robust platform for mod-
eling various Edge Computing scenarios, where different resource allocation policies can be
prototyped and validated without burden. In addition, each component is designed to work
independently, which facilitates the inclusion of new attributes and entities to the simulator,
extending the breadth of potential EdgeSimPy use cases. The next section describes the
verification process used to demonstrate the correctness of EdgeSimPy implementation.

4.4 Verification

Simulation is known to allow the analysis of real-world phenomena with lower com-
plexity and cost than empirical experimentation [170]. As modeling all the details and behav-
iors of a real-world system might be infeasible given the high complexity involved, simulators
usually make assumptions and abstractions about the real world. Although these can reduce
the simulation complexity, they inherently add inaccuracies to the model [130].

One of the most critical tasks in simulation studies is checking if a simulator deliv-
ers acceptable accuracy levels given the assumptions and abstractions it implements. This
task generally involves two processes: validation and verification [13]. While validation de-
termines whether the conceptual model accurately represents the real world, verification
checks whether the conceptual model’s implementation is correct.

The conceptual model adopted in EdgeSimPy is based on well-known abstractions
representing user mobility, network scheduling, and application provisioning, which have al-
ready been formalized and discussed in previous work [70] [50] [80]. As EdgeSimPy adopts
such abstractions without modification, model validation is beyond the scope of this work.
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The remainder of this section presents a verification that demonstrates the correct-
ness of the implementation of EdgeSimPy’s conceptual model. The verification process is
conducted using two well-known techniques, Animation and Tracing [170], which display the
simulated entities’ behavior over time, allowing us to check the simulator’s logic correctness.

4.4.1 Scenario Description

Figure 4.7 depicts the edge infrastructure used in EdgeSimPy’s verification. We
consider three NVIDIA Jetson TX2 boards that represent edge servers. Each edge server
has 4 CPU cores, 8 GB of RAM, and 64 GB of storage (CPU and memory values are
obtained from Süzen et al. [150]). Edge servers can download at most three container
layers at once, following Docker’s default configuration to avoid network congestion5. The
edge network comprises nine links with heterogeneous capacities (for simplicity sake, L1-L4
have a bandwidth capacity of 9 Mbps while L5–L9 have 2.5 Mbps).

User 1
S1

Workflow 1

User 2
S2 S3

Workflow 2

User 1

User 2

S3
S2S1

L9

L8

L7L6

L5

L4

L3L2

L1 ES1

ES2

ES3

Figure 4.7 – Overview of the infrastructure considered in EdgeSimPy’s verification. Symbols
“L", “ES", and “S" denote the infrastructure’s network links, edge servers, and services.

In this scenario, two users move according to the Pathway model [70], each ac-
cessing one of the two existing applications. As shown in Figure 4.8, Application 1 has a
stateless service (S1), while Application 2 comprises a stateless service (S2) and a stateful
service (S3). Services S1 and S2 use the same image with a single layer (L1), while S2 has
an image with four layers (L1–L4). All services are initially on edge server ES1, which also
hosts a container registry demanding 1 CPU core, 1 GB of memory, and 10 MB of disk.

5https://docs.docker.com/engine/reference/commandline/pull/#concurrent-downloads

https://docs.docker.com/engine/reference/commandline/pull/#concurrent-downloads
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Service 3 (S3)
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State: 0 MB

CPU Demand: 1 core

Memory Demand: 1 GB

Image 1
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Application 1

Figure 4.8 – Application specifications used in EdgeSimPy’s verification.

In the first time step, all services start to be moved out of edge server ES1. This
behavior is defined through a simple resource allocation strategy to demonstrate the pro-
visioning process. Specifically, S1 is moved to edge server ES3 through links L3 and L6,
while S2 and S3 are moved to edge server ES2 through link L4. The reallocation of the three
services takes six time steps. For simplicity, each time step corresponds to 1 second, and
the Max-Min Fairness algorithm [50] is used as the network flow scheduling policy.

The remainder of this section presents a discussion that demonstrates that EdgeS-
imPy reproduces the expected behavior. For such, we draw a parallel between the result of
the EdgeSimPy simulation, presented in Figures 4.9-4.10 and Table 4.3, and the conceptual
model adopted within the simulator (i.e., provisioning services according to the container
lifecycle and sharing bandwidth based on the Max-Min Fairness algorithm [50]).

Table 4.3 – Edge servers state throughout EdgeSimPy’s verification simulation.
Step Instance Demand Services Waiting Queue Download Queue LayersCPU RAM Disk

T1

1 4 4096 46 S1, S2, S3 Registry, L1, L2, L3, L4
2 2 2048 36 L4 L1, L2, L3
3 1 1024 12 L1

T2

1 4 4096 46 S1, S2, S3 Registry, L1, L2, L3, L4
2 2 2048 36 L4 L1, L3 L2
3 1 1024 12 L1

T3

1 4 4096 46 S1, S2, S3 Registry, L1, L2, L3, L4
2 2 2048 36 L1, L4 L2, L3
3 1 1024 12 L1

T4

1 4 4096 46 S1, S2, S3 Registry, L1, L2, L3, L4
2 2 2048 36 L2, L3, L1, L4
3 1 1024 12 L1

T5

1 2 2048 46 S1, S3 Registry, L1, L2, L3, L4
2 2 2048 36 S2 L2, L3, L1, L4
3 1 1024 12 L1

T6

1 1 1024 46 Registry, L1, L2, L3, L4
2 2 2048 36 S2, S3 L2, L3, L1, L4
3 1 1024 12 S1 L1
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4.4.2 Verification Discussion

Figure 4.9 shows the progress of the network flows spawned by migrations. Service
S1 is migrated over links L3 and L6, which have different bandwidths (9 Mbps and 2.5 Mbps,
respectively). EdgeSimPy equalizes the bandwidth available for service provisioning with the
bandwidth of the link with the lowest capacity. Consequently, layer L1, which corresponds to
the image of service S1, is transferred at 2.5 Mbps during time steps 1–5.

T1 T2 T3 T4 T5

Service 3 State

Service 2

Layer 1

Layer 2

Layer 3

Layer 4

Service 1 Layer 1 BW:2.5. Left:9.5 BW:2.5. Left:7 BW:2.5. Left:4.5 BW:2.5. Left:2

BW:3. Left:9 BW:3. Left:6

BW:3. Left:3 BW:3. Left:0

BW:3. Left:3 BW:3. Left:0

BW:3. Left:6 BW:3. Left:3

BW:3. Left:6 BW:6. Left:0

BW:9. Left:0

BW:3. Left:0

BW:2. Left:0

Figure 4.9 – Network flows used to transfer container layers and service states among
servers. For conciseness, “BW" denotes the bandwidth available for the network flows, and
“Left" denotes the remaining data that will be transferred in subsequent time steps.

Services S2 and S3 are moved from edge server ES1 to edge server ES2 through
the same path, sharing the bandwidth of link L4. As the images of S2 and S3 are based on
layer L1, ES2 does not pull L1 twice. Despite the layer sharing optimization, the edge server
ES2 can only pull three layers at once, forcing layer L4 to wait during time steps T1 and T2

until the number of active downloads of ES2 decreases as the transfer of layer L2 ends.

At time step T4, the Max-Min Fairness algorithm distributes 3 Mbps and 6 Mbps to
the active flows of layers L1 and L4, respectively, instead of giving them an equal bandwidth
share. This happens because Max-Min Fairness divides the available bandwidth proportion-
ally to the size of the network flows. As layer L1’s flow only needs 3 Mbps to finish, the 1.5
Mbps leftover is offered to L4’s flow, which can be transferred at 6 Mbps.

The differences between stateless and stateful service provisioning are noticeable
in time step T5. Once all layers of S3’s image are present in edge server ES2, S3 is stopped
on its source host ES1, and its state is transferred to ES3. EdgeSimPy keeps S3 unavailable
during time step T5 while its state is transferred, as shown in Figure 4.10. Further informa-
tion on service provisioning is presented in Table 4.3, which details resource demand and
provisioned layers on the edge servers throughout the simulation.
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Figure 4.10 – Dynamics of each time step of EdgeSimPy’s verification. Dashed arrows
represent the network paths used for communication between users and services.

4.5 Case Studies

This section presents two case studies from research papers that used EdgeSimPy
as a validation platform for resource management on edge infrastructures. An in-depth dis-
cussion of each case study can be found in the original publications [146] (Section 4.5.1)
and [149] (Section 4.5.2). Consequently, this section focuses on describing the motivation,
scenarios, and adjustments made to EdgeSimPy for the simulations rather than discussing
the results. These case studies illustrate how EdgeSimPy can be easily extended to com-
prehend various resource management scenarios.

4.5.1 Case Study 1: Application Migration

As Edge Computing research matures, large-scale infrastructure providers are
starting to move toward a new service model called Edge-as-a-Service (EaaS), which har-
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nesses the physical proximity of the edge in an infrastructure capable of providing the speed
necessary to meet the demand of latency-sensitive applications [26] [72]. Just as cloud
services have led a technological shift over the past decade, EaaS offerings display great
potential to become the “next big thing" in the IT industry.

This case study explored the possibility of federated edges, in which coalitions of
EaaS providers are created to improve profits and meet application performance expecta-
tions [6]. In such a scenario, microservice-based applications must be migrated according
to user mobility while respecting the privacy requirements of specific microservices.

Whereas infrastructure providers are willing to share resources to reduce applica-
tion latency bottlenecks, users exhibit distinct levels of trust with different providers, which
restricts allocation options for services with special privacy requirements. Performance eval-
uation compared a novel algorithm with three migration strategies from the literature on the
number of migrations and SLA violations, which consider predefined latency thresholds of
applications and the privacy requirements of microservices.

EdgeSimPy’s base architecture does not include a functional abstraction for infras-
tructure providers. Therefore, to support this case study, a “provider ” attribute is added
to edge servers to identify their infrastructure providers, and a “trusted_providers” attribute
is added to users with the providers they trust. During simulation, both parameters are
checked to arrange edge servers according to the level of trust between users and infras-
tructure providers. In addition, a “privacy_requirement” attribute is added to the services to
specify their level of privacy requirement.

The simulated scenario consisted of an infrastructure with 60 edge servers man-
aged by two infrastructure providers and 240 services with heterogeneous capacity, privacy,
and latency requirements. The results obtained demonstrated that certain migration deci-
sions, that is, prioritizing services with special privacy requirements from applications with
tight latency demands, can reduce privacy leaks by up to 7.95% at federated edges without
sacrificing application latency [146].

4.5.2 Case Study 2: Edge Server Maintenance

Edge infrastructures typically comprise computing resources deployed near end
users, as they help to provide low latency to applications [132]. At the same time, proximity
also forces infrastructure dispersion, as the deployment of large-scale data centers close to
urban centers may not be feasible [134]. Although the distribution of computing resources
allows them to be close to end users, it also introduces IT operation challenges.

In case of edge resources cannot be deployed on a large scale within centralized
facilities, communication between nodes is typically based on public networks, which in-
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creases the chance of instability caused by outages and a lower bandwidth [8]. In addition,
edge devices deployed outdoors are more prone to physical problems and security threats.
In such a scenario, infrastructure operators must invest in maintenance strategies to mitigate
possible security threats and infrastructure failures.

This case study focused on an edge server maintenance scenario. This case as-
sumed that the patches require the edge servers to be rebooted for the changes to take
effect. Consequently, before an edge server can be updated, the applications it hosts must
be relocated to another server to avoid downtime (this process is called server draining).
As such, maintenance strategies need to schedule the server update order and define new
hosts for the applications hosted by the servers that will be updated.

This case study imposed two main objectives on maintenance strategies: reducing
maintenance time and application latency bottlenecks. From a security perspective, mainte-
nance must be completed as soon as possible, as patches can correspond to critical security
updates, so the infrastructure remains vulnerable until all edge servers are updated. At the
same time, applications hosted on the infrastructure are latency sensitive, so migration de-
cisions performed to drain servers must keep applications close enough to their users to
ensure that latency remains low.

The default implementation of edge servers in EdgeSimPy does not have an at-
tribute related to maintenance. Therefore, to support this case study, an “updated” attribute
is added to edge servers to denote their updated status (this attribute is False by default).
An entity “Patch” is also created with the time required to complete the update. Edge servers
and patches are bounded through a relationship attribute. Finally, a method “update()” is im-
plemented within the edge server entity, representing the patching process. Once an edge
server starts to be updated, it is tagged as unavailable for its patch duration, and when the
update period ends, the edge server’s update status is changed accordingly. In this case
study, the simulation continues until all edge servers are updated.

This case study evaluation compared two novel algorithms with two strategies from
the literature regarding maintenance time, the number of migrations, latency requirement vi-
olations, and vulnerability surface (which quantifies how long edge servers remain outdated
during maintenance). The simulated scenario comprises an infrastructure with 40 edge
servers hosting 90 applications with heterogeneous capacity and latency requirements. The
results showed that user-location-aware migration decisions could reduce latency require-
ment violations by 30.67% on average without extending maintenance time [149].

4.5.3 Discussion

This section motivates the adoption of EdgeSimPy to address the needs of the de-
scribed case studies, highlighting how using it is more practical than the existing simulators.
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The first case study focused on the migration of composite applications within an
edge environment composed of multiple infrastructure providers. While many of the ex-
isting edge simulators offer support for application composition (e.g., IoTSim-Edge, YAFS,
and iFogSim2), they lack functional abstractions for infrastructure providers. Additionally,
they do not provide features for managing the lifecycle of containers, which is the preferred
virtualization technology for composite applications.

The second case study focused on edge server maintenance. Unlike EdgeSimPy,
existing edge simulators do not provide the features for modeling maintenance operations,
which involves incorporating version attributes to differentiate updated devices from outdated
devices and functions to represent the update process.

Although EdgeSimPy’s built-in entity attributes had to be extended for conducting
the simulations, EdgeSimPy allowed such changes to be included out of the box without
requiring modifications to its base features. This was possible because EdgeSimPy auto-
matically identifies custom entity attributes, provided that its input format is followed. This
feature mitigates the risk of human-induced errors arising from changes to the simulator’s
base features.

The ease with which EdgeSimPy allows adding custom attributes and entities is
an advantage over existing simulators, which generally require the creation or extension
of classes to represent such attributes and entities. For example, ECSNeT++ and FogNet-
Sim++ are built on top of OMNeT++, a discrete-event simulator written in C++. In OMNeT++,
custom entities can be modeled using C++ classes called modules. Despite the flexibility
of creating classes for new entities to suit specific needs, entity instances are bound by
the attributes previously defined in their class definitions, meaning they cannot incorporate
unique attributes not initially present in their class constructors. This constraint is also ob-
served in EdgeCloudSim [145], MobFogSim [118], IoTSim-Edge [71], IoTSim-Osmosis [3],
and iFogSim2 [95], which extend the functionality of CloudSim [24] and require the extension
of built-in classes or the creation of new ones to represent the necessary features.

YAFS [90] shows the closest resemblance to EdgeSimPy in extensibility, as it is
also written in Python, which is highly flexible in extending classes. Nevertheless, as YAFS
lacks a well-defined format for importing and exporting entities, custom components must be
built manually rather than automatically imported through dataset files, as compatible serial-
ization formats (e.g., JSON and XML) cannot recognize advanced data structures used, for
example, to define relationships between objects. Additionally, manual instructions must be
sent to the simulator regarding how entities are updated over the simulation time and how
entity metrics should be gathered. Once the import of custom entities becomes a manual
process, YAFS suffers from the same issue as other Java and C++ based simulators. Al-
though this behavior may not be an issue for small tests, it hinders the efficient execution of
large-scale batch executions.
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4.6 Lessons Learned

Several reflections have emerged during EdgeSimPy’s development, providing valu-
able insights for researchers and practitioners interested in developing simulation tools.

Selecting Python as the base language for EdgeSimPy has enabled users to ben-
efit from a broad ecosystem of libraries, especially those related to emerging fields such as
Artificial Intelligence. One key takeaway from our experience developing EdgeSimPy that
could benefit future simulator developers involves carefully considering the base program-
ming language, especially regarding the language’s popularity within the community and the
number of available libraries that users could leverage when using the developed simulator.
This approach aims to broaden the simulator’s utility, enabling users to harness community-
supported algorithms and thus potentially reducing the need for manual implementation.

Throughout our internal testing, we also found that EdgeSimPy’s native support for
Jupyter Notebooks6 considerably eases code sharing, as online platforms like Google Colab-
oratory7 and MyBinder8 facilitate real-time collaboration among EdgeSimPy users, eliminat-
ing the need for local asset installation. With this in mind, we advise researchers interested
in simulator development to select a base programming language and design the simulator
with user interactivity as the primary requirement. Leveraging interactive computing plat-
forms can enhance the user experience through an environment that supports real-time
collaboration and learning, where users can run experiments with different configurations,
observe the results in real-time, and adjust their approaches accordingly.

Another lesson we can share with researchers interested in simulator development
is the importance of designing a framework with a decoupled architecture. In EdgeSimPy,
we have observed that its strength primarily comes from this highly decoupled structure,
which includes class-based modularization and standardized input format, which facilitate
the implementation of new entities and attributes, thereby supporting users with specific
simulation requirements. This degree of decoupling further translates into a high level of
configurability, where users can adjust simulation parameters out-of-the-box, including the
simulation tick rate and system models (e.g., user mobility, power consumption of compute
and networking devices, network bandwidth sharing control, etc.).

Finally, it should be noted that appropriate calibration of simulator parameters is
critical to obtaining an accurate representation of real-world experimental setup. The cal-
ibratable parameters include the simulation tick rate and the configuration of the system
model to match the scenario being modeled. For example, this may involve defining a ge-
ographically accurate map, setting up a realistic power consumption model, or mimicking

6https://jupyter.org/
7https://colab.research.google.com/
8https://mybinder.org/

https://jupyter.org/
https://colab.research.google.com/
https://mybinder.org/
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actual user mobility patterns. Additionally, the selection of metrics to be collected during the
simulation is another crucial factor that must be carefully calibrated.

4.7 Closing Remarks

Aside from the development challenges, experimental research at the edge can be
expensive and time-consuming as it involves building and instrumenting an infrastructure
with many interconnected devices. Furthermore, the distributed nature of the edge makes
room for several external factors (e.g., network instability) to affect the reproducibility and
reliability of results, undermining the extraction of insights needed to mature prototypes.
Consequently, simulation has been considered the main approach to accelerate the valida-
tion of prototypes in the early stages at a reduced cost [128].

Existing Edge Computing simulators incorporate various features for modeling user
mobility, application composition, and energy consumption of the edge infrastructure. How-
ever, they fail to provide fine-grained control over container provisioning, which has been
acknowledged as the primary choice for deploying applications at the edge.

To fill this gap, we presented EdgeSimPy, a novel simulator that models the life-
cycle of containerized applications through several functional abstractions that replicate the
behavior of container runtimes like Docker. In addition, EdgeSimPy features a flexible input
format that allows users to define custom parameters for simulated entities out-of-the-box,
extending the simulator’s built-in capabilities without modifying its core features. EdgeS-
imPy’s source code can be accessed via GitHub9. Furthermore, a tutorial library10 with sev-
eral practical examples has been developed to help researchers and practitioners effectively
integrate EdgeSimPy into their work.

The following chapter presents two maintenance strategies, modeled and evaluated
with EdgeSimPy, that optimize maintenance operations at the edge, addressing the second
identified challenge described in Section 3.5 regarding performing location-aware application
relocations during maintenance at the edge.

9https://github.com/EdgeSimPy/EdgeSimPy
10https://github.com/EdgeSimPy/edgesimpy-tutorials

https://github.com/EdgeSimPy/EdgeSimPy
https://github.com/EdgeSimPy/edgesimpy-tutorials
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5. LOCATION-AWARE EDGE SERVER UPDATES

The second challenge identified during our review of the literature (Section 3.5)
was to perform location-aware application relocations during edge maintenance. This chap-
ter addresses such a challenge through two maintenance strategies (Lamp and Laxus),
which incorporate user location awareness into migration decisions performed during edge
maintenance, reducing latency issues during edge server updates.

First, this chapter discusses the motivations that highlight the literature gap related
to edge maintenance (Section 5.1). Then, it introduces the system model (Section 5.2) and
the design details of the proposed strategies (Section 5.3). Finally, it presents a performance
evaluation that demonstrates the effectiveness of proposed solutions compared to existing
maintenance algorithms (Section 5.4).

5.1 Motivation

Edge Computing infrastructure operators have the responsibility of keeping the
edge infrastructure up and running, which is not trivial as resources are scarce, and the
network infrastructure is less robust than its cloud counterpart. Worse still, attacks targeting
the edge are becoming more and more frequent [171]. For example, the Mirai virus [7] or-
chestrated a Distributed Denial of Service attack against edge servers that led to downtime
in more than 178000 domains.

During maintenance in cloud data centers, operators can evacuate servers by relo-
cating hosted applications to other servers, typically observing if the demand for applications
could be met, regardless of the new server location within the data center [174]. However,
edge servers may have heterogeneous hardware configurations, meaning that some hosts
in the edge infrastructure may not deliver analogous performance for applications. Addi-
tionally, applications executed on edge environments usually have tight locality and latency
constraints, which narrow the candidate hosts that could accommodate them while deliver-
ing acceptable response times.

There has been considerable prior work on cloud maintenance [177] [174] [147].
While some strategies could be adapted to edge computing, they overlook users’ locations
when relocating applications. Although this characteristic does not significantly impact cloud
data centers, it can generate a significant increase in application latency on edge environ-
ments. Therefore, migration techniques that consider users’ location [91] can be adapted
to maintenance scenarios, ensuring that the impact of maintenance on applications’ perfor-
mance remains as low as possible.
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5.2 System Model

This section describes the edge maintenance scenario that is approached in this
work. First, we describe the elements of the edge infrastructure. Then, we formulate the
steps that comprise the maintenance process. Table 5.1 summarizes the notations.

Table 5.1 – Summary of main notations used in this chapter.
Symbol Description
bf Wireless latency of base station Bf

ξu Delay of network link Lu

ℵu Bandwidth capacity of network link Lu

ρi Capacity of edge server Si

ηi Demand of edge server Si

µi Update status of edge server Si

℘i Update time of edge server Si

∂i Sanity check time of edge server Si

λj Demand of application Aj

ωj Delay of application Aj

ℏj Delay threshold of application Aj

xi ,j Matrix that represents the application placement
Υ(Aj ,Si) Set of links used to migrate Aj to Si

We represent the environment as in Aral et al. [9], dividing the map into several
hexagonal cells. Edge infrastructure comprises a set of interconnected base stations B
equipped with edge servers S, positioned in each map cell. While base stations provide
wireless connectivity to a set of users U , edge servers host user applications A. We repre-
sent a base station as Bf ← {bf}, where bf is Bf ’s wireless latency, and a network link as
Lu ← {ξu,ℵu}, where the attributes ξu and ℵu represent Lu ’s latency and bandwidth.

We model an edge server as Si = {ρi , ηi ,µi ,℘i , ∂i}. Attributes ρi and ηi represent
Si ’s capacity and demand, respectively. More specifically, ηi is the sum of the demand of all
applications hosted by Si . The update status of Si is denoted by µi , which is set to 1 when
Si is updated and to 0 otherwise. Patching Si takes ℘i units of time. After patching Si , we
execute sanity checks that validate its integrity after the update, which takes ∂i units of time.

An application has the following properties Aj = {λj ,ωj , ℏj}. Here, λj represents
the application’s demand, which is considered when choosing which server will host it. The
latency ωj of application Aj is calculated as in Eq. 5.1, considering the wireless latency of
the base station used by Aj ’s user (denoted as Bf ) summed to the aggregated latency of the
network links used to communicate Aj to its user.

AsAj ’s user moves around the map, a handoff process switches him from one base
station to another. In such a scenario, if Aj ’s user is not connected to the same base station
whose server hosts Aj , the connection between them is made by routing Aj ’s data through
a set of network links called θ. We define the set of links θ through the Dijkstra shortest
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path algorithm [37] using the link latencies as weight. An SLA violation occurs when the
application’s latency ωj exceeds its latency threshold ℏj . The application placement is given
by a binary matrix x , where xi ,j receives 1 if Si hosts Aj and 0 otherwise.

ωj ← bf +
|θ|∑

v=1

ξv (5.1)

The addressed maintenance scenario focuses on updating each server Si ∈ S,
where the maintenance process is divided into a set of batches Q = {Q1,Q2, ...,Q|Q|} as in
the model by Zheng et al. [177]. Maintenance continues in several batches until

∑|S|
i=1 µi = |S|,

which means that all servers have been updated. Our goal is to update servers as soon as
possible while performing as few migrations as possible and avoiding SLA violations.

In our modeling, servers need to be rebooted for patches to take effect. Also, only
servers that host no applications can be updated as a means of avoiding application down-
time. At each maintenance batchQe ∈ Q, all outdated edge servers that host no applications
are updated. Then, migrations take place, relocating applications out of the remaining out-
dated servers so that they can be updated in the next batch (this migration process is called
“server draining” as the goal of migrations is “emptying” the outdated servers)1. This process
is repeated for a number of maintenance batches until all servers are updated.

We assume that there is no shared storage in the infrastructure. Therefore, migrat-
ing an application Aj to an edge server Si implies transferringAj ’s demand λj from its current
host to Si through a set of links Υ(Aj ,Si) ⊆ L that interconnect the edge servers’ base sta-
tions. We define Υ(Aj ,Si) through the Dijkstra shortest path algorithm (link bandwidths are
used as weight) [37]. In this context, the time it takes to migrate Aj to Si is given by the ratio
between Aj ’s demand λj and the bandwidth available for migration, as shown in Eq. 5.2. As
the edge network may be heterogeneous, the set of links Υ(Aj ,Si) may have different band-
width capacities. Accordingly, the lowest available bandwidth between the links in Υ(Aj ,Si)
is considered the actual bandwidth for the migration.

κ(Aj ,Si) =
λj

min{ℵu | u ∈ Υ(Aj ,Si)}
(5.2)

5.3 Location-Aware Edge Server Maintenance

This section presents two maintenance strategies that incorporate user location
awareness into migration decisions. The first strategy, Lamp, introduces cost functions that
decide when and how the servers are drained (Section 5.3.1). The second strategy, Laxus,
uses a genetic algorithm to make Pareto-optimal migration decisions (Section 5.3.2).

1Migrations are performed sequentially as in Zheng et al. [177].
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5.3.1 Lamp

At the beginning of each maintenance batch, Lamp updates all outdated servers
that do not host applications (Alg. 1, lines 3–6). Then, if there are still outdated servers in
the infrastructure, it starts to migrate applications to drain the servers that still need to be
updated (Alg. 1, lines 8–20).

Algorithm 1: Lamp maintenance strategy.
1 while There are outdated servers in S do
2 F ← Outdated servers in S
3 foreach Fi ∈ F do
4 if Fi hosts no application then
5 Update Fi
6 Remove Fi from F
7 if F is not empty then
8 Sort the elements of F by Eq. 5.3 (asc.)
9 T ← {}

10 foreach server Fi ∈ F do
11 N ← Applications in Fi sorted by demand (desc.)
12 Y ← S − {T ∪ Fi}
13 if checkCapacity(Y , N) = |N| then
14 foreach application Nj ∈ N do
15 Y ← Servers in Y sorted by Eq. 5.4 (asc.)
16 foreach server Yi ∈ Y do
17 if ρi − ηi ≥ λj then
18 Migrate Nj to Yi
19 break
20 T ← T ∪ {Fi}

To select the order in which servers are drained, Lamp sorts outdated servers ac-
cording to a cost functionϖ (Eq. 5.3), which considers the normalized capacity, demand, and
time required to update outdated servers (we normalize variables that have different scales
with Min-Max Normalization [59] to ensure that equations are not unbalanced). While patch-
ing larger servers means being able to accommodate a larger number of applications on
updated servers early, prioritizing less occupied servers with shorter patching time ensures
that the infrastructure has up-to-date resources early.

ϖ(Si)← norm
(

1
ρi

)
+ norm (ηi) + norm (℘i + ∂i) (5.3)

Before performing any migration to drain a given server Si , Lamp calls a method
described in Alg. 2 to check if the other servers that are not being drained in the current
batch have enough capacity to host all the applications hosted by Si (Alg. 1, line 13). In
this way, it avoids migrations that will not result in servers being drained in the current batch,
shortening the duration of maintenance batches, which leads to servers being updated early.
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Algorithm 2: Lamp’s server capacity checking method.
1 Function checkCapacity(Y, N):
2 Y ′ ← List of servers in Y
3 N ′ ← List of applications in N
4 κ ← 0
5 foreach N ′

j ∈ N ′ do
6 foreach Y ′

i ∈ Y ′ do
7 if ρi − ηi ≥ λj then
8 Host application N ′

j on edge server Y ′
i

9 κ ← κ + 1
10 break
11 return κ

After ensuring that a server Si can be drained in the current maintenance batch,
Lamp uses a cost function ϕ (Eq. 5.4) to sort the servers that can accommodate each of
the applications hosted by Si according to their update status, occupation, and latency to
the user that accesses the application being migrated, represented by ℜ (Alg. 1, line 15). In
this way, Lamp tries to guarantee that applications are placed on up-to-date servers close
enough to users to avoid SLA violations. Finally, Lamp goes through the ordered list of
candidate servers, migrating applications to the first server found with enough capacity to
host them (Alg. 1, lines 14–19).

ϕ(Si)← (1− µi) + norm (ρi − ηi) + norm(ℜ) (5.4)

5.3.2 Laxus

Laxus starts each maintenance batch by updating outdated edge servers that are
not hosting applications (Alg. 3, lines 3–6). After that, if there are still outdated edge servers,
Laxus performs migrations in an attempt to drain those servers (Alg. 3, lines 8–12). Laxus
makes migration decisions through a function called NSGAII, a metaheuristic called Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) [35]. We use NSGA-II as it effectively
finds Pareto-optimal solutions for several multi-objective problems with an O(MN2) time com-
plexity, where M represents the number of objectives and N is the population size [35].

Genetic encoding2. The NSGA-II algorithm used by Laxus creates chromosomes
representing migration plans to drain outdated servers. Each chromosome Pv of population
P is a vector of size |V|, where V denotes the set of applications hosted by outdated servers.
Each index j of Pv represents one of the applications in V, and the value of each index
represents the suggested edge server to host these applications. Thus, Pv ,j ← Si indicates
that Vj should migrate to Si . No migration is performed if Si already hosts Vj .

2At the beginning of the NSGA-II’s execution, P is generated randomly.
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Algorithm 3: Laxus maintenance strategy.
1 while There are outdated servers in S do
2 F ← Outdated servers in S
3 foreach server Fi ∈ F do
4 if Fi hosts no application then
5 Update Fi
6 Remove Fi from F
7 if F is not empty then
8 W ← NSGAII(S,V)
9 υ ← Placement ∈ W w/ the lowest ϱ (Eq. 5.10)

10 for k ← 1 to |υ| do
11 if edge server υk does not host application Vk then
12 Migrate Vk to υk

Constraints and fitness functions. In our modeling, a solution is only considered
valid if

∑|S|
i=1 [ηi > ρi ] = 0, which means that the demand of none of the edge servers exceeds

its capacity. We use three fitness functions α, β, and γ that aim to minimize: (i) the number
of outdated servers hosting applications; (ii) the migration cost; and (iii) the number of SLA
violations, respectively.

The first fitness function α (Eq. 5.5) quantifies the effectiveness of Pv in draining
outdated servers. As maintenance continues until all edge servers are updated, solutions
that drain a larger number of servers per batch tend to finish the maintenance early. In
addition, in many maintenance scenarios, updating servers as soon as possible is essential.
For instance, when servers must receive security patches, draining more of them sooner
implies that these can be updated early, reducing the infrastructure’s attack surface [147].
Therefore, α accounts for the number of outdated edge servers hosting applications.

α(Pv )←
|Pv |∑
j=1

1− µPv ,j (5.5)

The second fitness function β (Eq. 5.6) quantifies the migration cost imposed by
Pv . First, β considers the average migration time (given by τ (Pv ), in Eq. 5.7) so that solu-
tions that perform long migrations are penalized. In addition, β also considers the function
ζ(Pv ) (Eq. 5.8), which penalizes solutions that make undesired migrations. More specifically,
function ζ(Pv ) treats as undesired those migrations that meet at least one of the following
criteria: (i) the current server of the application being migrated hosts other applications that
will not be relocated (meaning that, despite the migration, that server will not be drained in
that maintenance batch); (ii) the application is being migrated to an outdated server.

β(Pv )← τ (Pv ) ·max(1, ζ(Pv )) (5.6)



90

τ (Pv )← 1
|Pv |

|Pv |∑
j=1

κ(Vj ,Pv ,j) (5.7)

ζ(Pv )←
|Pv |∑
j=1

[
xPv ,j ,j = 0

]
·
([
{Si ∈ S|xi ,j = 1} ⊂ Pv

]
+ 1− µPv ,j

)
(5.8)

The third fitness function γ (Eq. 5.9) quantifies the number of SLA violations pro-
duced by allocation decisions made by a solution Pv . Thus, solutions that overlook users’
location and migrate applications to servers too distant from users so that the access latency
exceeds the application SLAs are penalized for sacrificing the delivered quality of service.

γ(Pv )←
|Pv |∑
j=1

[
ωj > ℏj

]
(5.9)

Non-dominated sorting. After assigning fitness scores to the population, individ-
uals are arranged on different fronts based on their dominance over other individuals in the
population. In addition, each individual receives a score called crowding distance [35], which
corresponds to the distance of the individual to its neighboring solutions on the Pareto front.
Once the population is arranged on different fronts and the crowding distance of each in-
dividual is calculated, the population for the next generation is chosen based on the fronts
structure (individuals on the first fronts and with larger crowding distances are prioritized).
After this sorting process, only the |P| best individuals are selected to be part of the popula-
tion P. We define a fixed number of generations ψ as the stopping criterion. Therefore, the
evolution process is repeated until the maximum number of generations ψ is reached.

Pareto-optimal selection. Instead of looking for a single optimal solution in the
search space, NSGA-II returns a Pareto Set W comprising non-dominated solutions in the
Pareto Front. Accordingly, as soon as the algorithm’s stopping criterion is reached, we must
choose which Pareto-Optimal solution will be employed in the maintenance process. For
this, we evaluate each solution Wv ∈ W according to a cost function ϱ (Eq. 5.10), selecting
the solution with the lowest ϱ (Alg. 3, line 9).

ϱ(Wv )← norm(α(Wv )) + norm(β(Wv )) + norm(γ(Wv )) (5.10)

5.4 Performance Evaluation

This section details the experiments conducted to validate the proposed strategies
(Lamp and Laxus). First, we discuss our methodology (Section 5.4.1). Then, we detail the
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sensitivity analysis executed to find the best set of parameters for Laxus (Section 5.4.2).
Finally, we present the results achieved against the baseline strategies (Section 5.4.3).

5.4.1 Experiments Description

We consider an edge computing infrastructure with 40 edge servers interconnected
by a Barabási-Albert network topology [15] with links containing latency = {5, 10} and band-
widths = {5, 10}. We assume that servers have heterogeneous capacities = {200, 250}. We
update the edge servers with two patches with duration = {250, 350}. Each patch type has
sanity checks with duration = {300, 400}. We consider a set of 90 users distributed randomly
across the environment and 90 applications with demands = {20, 40, 60} and latency SLAs
= {45, 90}3. The initial application placement is defined according to Alg. 4.

Algorithm 4: Initial application placement heuristic.
1 A′ ← List of applications in A arranged randomly
2 foreach A′

j ∈ A′ do
3 Ur ← User that accesses application A′

j
4 S ′ ← List of edge servers in S sorted by latency from Ur (asc.)
5 foreach edge server S ′i ∈ S ′ do
6 if ρi − ηi ≥ λj then
7 Host application A′

j on edge server S ′i
8 break

To the best of our knowledge, we are the first to update edge servers while con-
sidering the application latency requirements. Therefore, we compare Lamp and Laxus with
two maintenance strategies designed to update servers in cloud data centers. The first
baseline strategy, called Greedy Least Batch (GLB) [177], aims to reduce the number of
maintenance batches needed to update a group of servers. The second baseline strategy,
called Salus [147], focuses on security patch scenarios, where the main goal is to reduce
the period during which servers are still outdated (i.e., vulnerable to attacks) during main-
tenance. We chose these baseline strategies because they also model the maintenance
process in batches while considering most of the performance metrics we evaluate.

We compare the strategies analyzed in terms of maintenance time, number of mi-
grations, Vulnerability Surface (VS) [147] (which quantifies how long servers remain outdated
during maintenance), and number of SLA violations. While the first three metrics assess spe-
cific maintenance goals, the number of SLA violations measures the impact of migrations on
the quality of service delivered to end-users.

We conducted our experiments on an Ubuntu 20.04.1 LTS host with 8 CPU cores
and 32 GB of RAM. The virtual machine was configured with Python 3.7.10 (PyPy 7.3.5 with

3Network, edge server, and application parameters are assigned uniformly.
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GCC 7.3.1 20180303). We strive to follow reproducible research and open science principles
in our investigation. The companion material hosted in a public GitHub repository4 contains
the source code, dataset, and instructions to reproduce our results.

5.4.2 Sensitivity Analysis

Among the compared strategies, Laxus is the only one that contains configurable
parameters. Without loss of generality, we define the population size |P| = 120 and mutation
probability to 1

|V| . We conducted a sensitivity analysis to determine the best settings between
different generations ψ = {100, 200, 300, ..., 1000} and crossover probabilities = {25%, 50%,
75%, 100%}. After testing each combination σ among these parameters, we choose the best
configuration based on a score function δ(σ) (Equation 5.11), which considers the normalized
sum of each evaluated metric.

δ(σ)← norm
(
σtime) + norm

(
σmigr) + norm

(
σvs) + norm

(
σviol) (5.11)

Figure 5.1 presents the δ score for each number of generations ψ considering the
best crossover probability among the tested configurations. The best configurations found
were ψ = {800, 900} with crossover probability = 100%. We used ψ = 800 with crossover
probability = 100% when comparing Laxus against the other strategies.
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Figure 5.1 – Sensitivity analysis of Laxus parameters.

5.4.3 Comparison with Baseline Heuristics

Figure 5.2(a) shows the results in terms of maintenance time. We can observe
that Laxus updates servers faster than other strategies, followed by Lamp, Salus, and GLB,

4Experiment assets: https://github.com/paulosevero/lamp_laxus.

https://github.com/paulosevero/lamp_laxus
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respectively. The total time spent on migrations during maintenance was the factor that most
influenced the maintenance time during the experiments. While Salus and GLB spent 4556
and 5954 units of time with migrations, Laxus and Lamp completed all their migrations in
only 2322 and 2930 units of time, respectively.
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Figure 5.2 – Comparison between Lamp, Laxus and baseline approaches.

The reduction in the total time spent on migrations results from Laxus and Lamp’s
location awareness. As these strategies avoid placing applications far away from their users,
they perform fewer long migrations than the other strategies. This characteristic is reflected
in the average migration time of Laxus and Lamp (8.18 and 9.61 respectively) compared to
GLB and Salus (14.91 and 15.29 respectively).

Figure 5.2(b) shows the number of migrations performed by the strategies during
the tests. As we can see, GLB is the one that performs the most migrations during main-
tenance. This behavior occurs because GLB is the only strategy that does not take into
account the demand of applications when performing migrations, which opens space for
potential waste of resources compared to other strategies that prioritize migrating larger
applications. Although Laxus does not order applications by demand directly, its ability to
evolve over a number of generations allows it to find the best packing of applications to drain
servers with the lowest migration cost.

Figure 5.2(c) shows the number of SLA violations that occurred while executing
the compared strategies. We can observe that the baseline strategies (GLB and Salus)
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obtained similar results regarding the number of SLA violations (72 and 78, respectively), as
they are both designed to perform maintenance on cloud data centers, performing migrations
regardless of users’ locations.

Unlike cloud data centers, the edge infrastructure is distributed so that migrations
between edge servers distant from one another can significantly affect the application’s la-
tency. As Lamp considers the distance between servers and users when performing migra-
tions, it reduces the number of SLA violations by 27.78% and 33.33% compared to GLB and
Salus, respectively. Still, Laxus achieves the best results, completing maintenance without
any SLA violation. Such gains come from Laxus’ ability to test several placement alternatives
as it evolves to select the configuration that ultimately achieves the best results.

Figure 5.2(d) presents the results on Vulnerability Surface, which evaluates the time
required by maintenance strategies to update servers. As we can see, GLB shows the worst
results by overlooking servers’ exposure during maintenance. Salus, which strives to avoid
unnecessary migrations and update servers as soon as possible, manages to reduce the
Vulnerability Surface by 19.72% compared to GLB.

The proposed strategies reduce the Vulnerability Surface by 23.46% on average
compared to Salus. This shows the importance of performing short migrations when carrying
out security patches on edge computing infrastructures, allowing servers to be updated early.
Laxus achieves the best results among the evaluated strategies, updating 30 of the 40 edge
servers in the infrastructure 39.65% faster than Lamp, 49.38% faster than Salus, and 61.91%
faster than GLB. These gains are primarily due to the reduced migration time.

5.5 Closing Remarks

This chapter presented two maintenance strategies, Lamp and Laxus, which in-
corporate user location awareness into migration decisions to reduce the impact of main-
tenance on application latency. While Lamp uses cost functions that reduce application
latency issues during maintenance by 31% while performing 23% fewer migrations than ex-
isting strategies, Laxus adopts a genetic algorithm that updates the edge infrastructure while
causing no application latency issue, performing only 5% more migrations than Lamp.

The following chapter extends this chapter’s work on edge server updates through
a more realistic system model and a maintenance strategy that leverages the shared con-
tent of container images of edge applications to reduce maintenance time through optimized
relocations, addressing the third identified challenge described in Section 3.5 regarding op-
timized container provisioning during maintenance.
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6. CONTAINERIZATION-AWARE EDGE SERVER UPDATES

The third challenge identified during our literature review (Section 3.5) was optimiz-
ing the provisioning process of containerized applications to reduce maintenance time. This
chapter addresses this challenge through a maintenance strategy called Hermes. Hermes
extends our work on edge server updates described in the previous chapter, capitalizing
on the shared content of container images to reduce maintenance time through optimized
application relocations.

First, this chapter revisits the motivation to reduce maintenance time (Section 6.1).
Then, it introduces the adopted system model (Section 6.2) and the Hermes design details
(Section 6.3). Finally, it presents a performance evaluation that shows the effectiveness of
Hermes in reducing maintenance time compared to baseline strategies (Section 6.4).

6.1 Motivation

When maintenance involves applying updates that require server reboots, affected
applications must be relocated to alternative servers to ensure service continuity. During this
process, deciding on target servers for applications that must be relocated involves consid-
ering several factors. Considering Edge Computing infrastructures, where applications have
stringent latency requirements, it is necessary to assess the relocation’s impact on the qual-
ity of service delivered to end-users. Also, it is vital to analyze how relocations contribute
to maintenance progression, as prolonged relocations can delay server maintenance, which
becomes even more critical in scenarios where maintenance is aimed at correcting security
vulnerabilities, and patches must be applied as fast as possible.

Although existing maintenance strategies [112] [156] [25] [174], including our work
in Chapter 5, have exploited specific virtualization-based approaches during server updates
at the edge, they present some limitations that motivate further research. First, the proposed
strategies employ theoretical models assuming sequential relocations, overlooking the re-
quired coordination of concurrent relocations within the network, which distances them from
practical implementations. Secondly, relocations occur according to the VM model. While
there is a motivation for using VMs in specific scenarios, containers have taken the lead as
the prime architecture for deploying applications at the edge.

As discussed in Section 2.1, there are considerable differences between relocating
VM-based and container-based applications. Since VM images are monolithic, VM-based
applications are migrated directly from a source server to a target. On the contrary, relocating
container-based applications involves pulling their container images from image repositories
called container registries to the target servers and optionally transferring application infor-
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mation (e.g., user session data and runtime state) from the source server to the target server
in cases where applications are stateful [151] [172]. Additionally, since co-hosted containers
share common layers of their respective images, provisioning a containerized application on
a server already possessing layers that constitute its container image is faster, as fewer data
needs to be downloaded from container registries.

This chapter’s research builds on the observation that existing maintenance strate-
gies rely on conceptual models grounded in the VM paradigm. As such, they neglect the
composition of container images stored on edge servers during the decision-making pro-
cess for application relocation, thereby missing opportunities to reduce relocation times.

To fill this gap, we introduce a novel conceptual model that formalizes maintenance
operations where applications residing on outdated edge servers are relocated to alternative
hosts using a containerization procedure that mirrors the behavior of well-known container
platforms like Docker. In addition, we propose a novel maintenance strategy that reduces
maintenance time through efficient application relocations that consider the degree of con-
tainer layer sharing among applications that require relocation and on the set of container
layers downloaded from edge servers. Finally, we demonstrate the effectiveness of our strat-
egy through a set of simulated experiments against baseline approaches that overlook the
architectural characteristics of containerized applications during maintenance work.

6.2 System Model

This section describes the edge server maintenance scenario addressed. First, we
detail the core elements of the edge infrastructure. Then, we describe the various steps
that constitute the maintenance process, including the specification of the application provi-
sioning process and their performance requirements, alongside our optimization objectives.
Table 6.1 summarizes the notations.

We represent the geographical positioning of elements according to the map model
presented by Aral et al. [9], which divides the map regions into hexagonal cells. Although
such a model abstracts discrete locations within the same hexagonal cell and assumes
nonintersection among different cells, it provides a suitable representation for typical cellular
networks [9]. The edge infrastructure leverages the base stations that compose the cellular
network and are positioned in each map cell. In this setting, base stations are interconnected
by network links and can be optionally equipped with edge servers. Whereas base stations
provide wireless connectivity to users, network links allow wired communication among edge
servers across different base stations.

Each edge server is modeled as Ei = {ci , ri , di , pi}, where ci , ri , and di represent Ei ’s
CPU, RAM, and disk capacity specifications, respectively. In addition to capacity attributes,
each edge server Ei has an attribute pi that describes the time required to patch it and a
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Table 6.1 – Summary of notations used in this chapter.
Symbol Description
Q Set of maintenance batches
B Set of base stations
E Set of edge servers
N Set of network links
A Set of applications
L Set of container layers
F Set of network flows
Ω(Qq) Duration of maintenance batch Qq

ci Ei ’s CPU capacity
ri Ei ’s RAM capacity
di Ei ’s Disk capacity
pi Ei ’s Patch Time
ξ(Ei) Ei ’s Update state
δ(Ei) Ei ’s Downloaded layers
∂(Ei) Ei ’s Download queue
λ(Ei) Ei ’s Waiting queue
γ(Ei ,Qq) Ei ’s capacity limit compliance check
bu Fu ’s source
eu Fu ’s target
ou Fu ’s path
tu Fu ’s total size
ζ(Fu) Amount of data from Fu already downloaded
gf Lf ’s latency
hf Lf ’s Bandwidth capacity
ϕ(T ) Shortest path finder
Ψ(P) Path’s accumulated delay
wj Aj ’s user’s base station
zj Aj ’s user’s latency SLA
xj Aj ’s image layers
sj Aj ’s state
mj Aj ’s CPU demand
nj Aj ’s RAM demand
β(Aj , Ei ,Qq) Aj ’s SLA compliance check
α(Ei ,Aj ,Qq) Application placement at maintenance batch Qq

lk Lk ’s size

function ξ(Ei) that returns its update status (i.e., 1 if Ei is updated and 0 otherwise) at any
point during maintenance work. In our modeling, the patching procedure involves rebooting
edge servers for updates to take effect. As shutting down applications, even temporarily,
should be avoided to preserve the QoS delivered for end-users, only edge servers hosting
no applications can be updated. Consequently, maintenance work progresses in a rolling
update fashion, where groups of edge servers are gradually evacuated and updated in turns
called maintenance batches [177]. Let Q be the set of maintenance batches required for
patching a group of edge servers. For simplicity, we assume that a maintenance batch
Qq ∈ Q lasts until all events it comprises are terminated, and its duration can be obtained
through a function Ω(Qq). Figure 6.1 illustrates the adopted batch duration representation.
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Flow 1 (Container Layer 1)

(Container Registry 1 -> Edge Server 2)

Flow 2 (Container Layer 7)

(Container Registry -> Edge Server 5)

Flow 3 (Container Layer 2)

(Container Registry -> Edge Server 5)

Flow 4 (Application State)

(Edge Server 3 -> Edge Server 5)

Maintenance Batch 2

(Application Relocations)

Time

...
Patch Task (Edge Server 7)

Patch Task (Edge Server 2)

Patch Task (Edge Server 5)

Maintenance Batch 1

(Server Patching)

Figure 6.1 – Adopted maintenance batch duration model.

Maintenance progression is heavily influenced by the time necessary to relocate
applications housed by outdated servers to alternative hosts. In this context, relocating ap-
plications to updated hosts is preferable, as any application relocated to an outdated edge
server would need to be moved at least once more when that new host needs to be evacu-
ated to receive its patch. Additionally, our model assumes the existence of no shared storage
within the infrastructure. As such, when an application needs to be relocated, its image is
pulled to the target host from a container registry, and the application state data are migrated
from the source to the target server, if the application is stateful.

Popular container platforms such as Docker1 set a limit on the number of container
layers that edge servers can download simultaneously. Based on that, we define three
functions associated with the container layers of a given edge server: the container layers
that the edge server has downloaded already (δ(Ei)), the container layers currently being
downloaded (∂(Ei)), and the container layers waiting to be downloaded (λ(Ei)).

When an application is assigned to an edge server, layers from its container image
that are absent on that edge server and need to be pulled from a container registry are
either added to the edge server’s download queue or waiting queue, depending on the edge
server’s status. More specifically, once the edge server reaches its maximum number of
layers being downloaded simultaneously, new layers are added to the waiting queue until
the layers from the download queue are successfully downloaded. Otherwise, layers are
immediately added to the download queue and start being pulled immediately.

Data transfers across the network infrastructure are modeled as network flows,
where each network flow is represented as Fu = {bu, eu, ou, tu}. Here, bu and eu represent
Fu ’s source and target edge servers, respectively, ou is the network path used to connect
bu and eu, and tu represents Fu ’s total size (e.g., the size of the application state or the
container layer to be transferred). Beyond these static attributes of network flows, we define

1https://docs.docker.com/engine/reference/commandline/pull/#concurrent-downloads

https://docs.docker.com/engine/reference/commandline/pull/#concurrent-downloads
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a helper function, ζ(Fu), to verify the amount of data from Fu that has been successfully
downloaded until any given point in time. Accordingly, a network flow Fu remains active until
ζ(Fu) = tu. The time it takes to complete the transfer of a network flow Fu depends on the
bandwidth provided by the links it spans and the resource allocation policy of the network
switches, which can adjust the available bandwidth for network flows based on changing
factors such as network load.

The duration of network flows (and, consequently, the provisioning time of applica-
tions) is inherently affected by the characteristics of the network links involved in the data
transfer. In our modeling, a network link is represented by Lf = {gf , hf}, where gf and hf

represent Lf ’s latency and overall bandwidth capacity, respectively. To facilitate the compu-
tation of network operations, we define two additional helper functions. The first function,
ϕ(T ), returns the shortest network path that connects a set T with any two elements within
the infrastructure (e.g., users, applications, edge servers, etc.). The second function, Ψ(P)
(Eq. 6.1), calculates the accumulated delay of any network path P obtained using ϕ(T ).

Ψ(P) =
∑

Nf ∈ ϕ(T )

gf (6.1)

An application is represented as Aj = {wj , zj , xj , sj , mj , nj}. The first two attributes,
wj and zj , are related to the application’s user: while wj references the base station to
which Aj ’s user is connected, zj describes the latency requirement of Aj ’s user. As main-
tenance decisions to evacuate outdated edge servers may imply assigning applications to
edge servers at varying network distances to their users, observing the impact of relocations
over application latency is desirable.

We obtain the latency of an application Aj by combining functions ϕ(T ) and Ψ(P)
to find the shortest path between Aj ’s user and Aj ’s host server and then calculate the
accumulated delay of such path. We also use a helper function β(Aj , Ei ,Qq) (Eq. 6.2) to
check if Aj ’s current latency meets its latency requirement in a maintenance batch Qq, given
thatAj is hosted by an edge server Ei . In our modeling, SLA violations refer to periods where
Aj ’s latency exceeds its user’s latency requirement (i.e., when β(Aj , Ei ,Qq) = 1).

β(Aj , Ei ,Qq) =

1 if Ψ(ϕ({wj , Ei})) > zj

0 otherwise.
(6.2)

As we focus on containerized deployments, attribute xj of an application Aj refer-
ences the list of container layers that constitute Aj ’s container image, with each of these
container layers represented as Ik = {lk}, where lk stands for Lk ’s size. Since container-
ized applications can be stateless or stateful, attribute sj carries the size of Aj ’s state, set to
zero if Aj is stateless. Finally, attributes mj and nj represent Aj ’s CPU and RAM demand,
respectively. The application’s placement can be checked at any point during maintenance
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using the helper function α(Ei ,Aj ,Qq), described in Eq. 6.3. As edge servers have limited
capacity, we use a helper function γ(Ei ,Qq) to check if the aggregated demand of the appli-
cations hosted by an edge server Ei in a maintenance batch Qq does not exceed Ei ’s overall
capacity (i.e., γ(Ei ,Qq) = 1 if Ei is overloaded and 0 otherwise).

α(Ei ,Aj ,Qq) =

1 if edge server Ei hosts application Aj at maintenance batch Qq

0 otherwise.
(6.3)

We consider a twofold objective function (Eq. 6.4), which minimizes the number
of SLA violations and the overall maintenance duration (i.e., the sum of the duration of all
batches required to patch all outdated edge servers), subject to two constraints. The first
constraint (Eq. 6.5) ensures that each application is provisioned only on one edge server in
a given maintenance batch Qq ∈ Q. The second constraint (Eq. 6.6) ensures that no edge
server is overloaded. As the problem objectives can assume values on different scales, they
are normalized using the Min-Max Normalization method [59].

Min:
|Q|∑
q=1

norm(Ω(Qq)) + norm(β(Aj , Ei ,Qq)) (6.4)

Subject to:

|E|∑
i=1

α(Ei ,Aj ,Qq) = 1, ∀k ∈ {1, ..., |A|}, ∀q ∈ {1, ..., |Q|} (6.5)

|E|∑
i=1

γ(Ei ,Qq) = 0, ∀q ∈ {1, ..., |Q|} (6.6)

6.3 Containerization-Aware Edge Server Updates

This section presents Hermes, a maintenance strategy that leverages characteris-
tics of containerized deployments to reduce latency SLA violations and maintenance time
during server updates on Edge Computing infrastructures.

Hermes is designed to perform maintenance according to a batch-based model.
Based on that, it divides maintenance work into two groups of activities: server patching
(Alg. 5, lines 4–6) and application relocations (Alg. 5, lines 8–20), which are scheduled
for separate maintenance batches and occur in turns until all target edge servers have been
updated. In this context, application relocations aim to drain (i.e., evacuate) outdated servers
so that they can be patched in the next maintenance batch.



101

Algorithm 5: Hermes maintenance strategy.
1 Q ← {}
2 while There are outdated servers in E do
3 Qq ← New maintenance batch
4 S ← Outdated edge servers in E hosting no applications
5 foreach edge server Si ∈ S do
6 Update Si
7 if S is empty then
8 D ← Outdated edge servers sorted by Eq. 6.7 (desc.)
9 T ← {}

10 foreach edge server Di ∈ D do
11 N ← Applications hosted by Di sorted by Eq. 6.11 (desc.)
12 Y ← All edge servers except Di and elements of T
13 if checkCapacity(Y , N, Qq) = |N| then
14 foreach application Nj ∈ N do
15 Y ′ ← Edge servers in Y sorted by Eq. 6.14 (desc.)
16 foreach edge server Y ′

i ∈ Y ′ do
17 if edge server Y ′

i has enough free resources to host Nj then
18 Relocate application Nj to edge server Y ′

i
19 break
20 T ← T ∪ {Di}

The decision-making made by Hermes to patch edge servers is straightforward.
After grouping outdated edge servers that host no applications into a list S (Alg. 5, line 4),
Hermes iterates over edge servers in S, initiating their patching process (Alg. 5, lines 5–6).
At this stage, Hermes does not sort the servers in S due to three assumptions about the
employed maintenance model. First, the servers being updated cannot interfere with each
other’s patching process. Second, the order of elements in S does not affect the speed of
patching operations. Third, the subsequent maintenance batch only starts when all servers
in S are updated.

In maintenance batches reserved for application relocations, the first decision made
by Hermes is to select the order in which outdated edge servers will be drained (Alg. 5,
line 8). As edge infrastructures are typically resource-constrained, sorting outdated edge
servers can imply selecting which servers will be drained and updated in the subsequent
maintenance batch and which outdated edge servers will only be drained in later mainte-
nance batches. As such, defining the order in which outdated edge servers are drained
affects the entire maintenance workflow.

The order in which outdated servers are drained is determined according to a score
function ℵ(Ei ,Qq), presented in Eq. 6.7, which favors outdated edge servers that predomi-
nantly present three characteristics. First, Hermes prioritizes edge servers with larger capac-
ity to ensure early availability of larger updated computational capacity to host applications
(Eq. 6.8). Given that we consider a multidimensional representation of edge server capac-
ity with values on different scales (i.e., while CPU is represented by the number of cores,
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RAM and disk are represented in gigabytes), the overall edge server capacity is normalized
using geometric mean. Second, Hermes prioritizes edge servers that host applications with
smaller state sizes based on smaller container images, assuming that draining these servers
would be faster given the lower network traffic necessary to provision their applications on
alternative hosts (Eq. 6.9). Third, Hermes prioritizes edge servers that host applications with
less strict delay SLAs (more specifically, the average latency SLA of hosted applications), as
in the early stages of maintenance, there are fewer updated resources and, consequently,
lower chances of ensuring that all applications on the edge server being drained could be
relocated to updated edge servers near their users (Eq. 6.10).

ℵ(Ei ,Qq) = norm(ℵcap(Ei)) + norm(ℵimg(Ei ,Qq)) + norm(ℵsla(Ei ,Qq)) (6.7)

ℵcap(Ei) = 3
√

ci · ri · di (6.8)

ℵimg(Ei ,Qq) =
1

max
(

1,
∑|A|

j=1

(
sj +

∑
Lk∈xj

lk
)
· α(Ei ,Aj ,Qq)

) (6.9)

ℵsla(Ei ,Qq) =

∑|A|
j=1 zj · α(Ei ,Aj ,Qq)

max
(

1,
∑|A|

j=1 α(Ei ,Aj ,Qq)
) (6.10)

Hermes iterates over the ordered list of outdated edge servers to define their drain-
ing plans (Alg. 5, lines 10-20). At this stage, Hermes sorts the applications hosted by each
edge server to be drained according to a function ℶ(Aj), presented in Eq. 6.11, to define the
relocation order (Alg. 5, line 11). The application sorting function considers two criteria. The
first criterion prioritizes applications with more strict SLAs (Eq. 6.12). This criterion aims to
prevent applications with more flexible SLAs from occupying resources that could be used to
avoid SLA violations of applications with stricter SLAs. The second sorting criterion favors
applications with lower CPU and RAM demand to promote better use of updated resources
by consolidating applications into a reduced set of updated edge servers (Eq. 6.13).

ℶ(Aj) = norm(ℶsla(Aj)) + norm(ℶdem(Aj)) (6.11)

ℶsla(Aj) =
1
zj

(6.12)

ℶdem(Aj) =
√

mj · nj (6.13)
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Before starting relocating applications, Hermes uses a checking function, described
in Alg. 6, to verify if all applications of the outdated edge server to be drained could be
provisioned in alternative hosts (Alg. 5, line 13). If so, Hermes proceeds with draining the
outdated edge server. Otherwise, Hermes moves to the next host in the list of outdated
edge servers to be drained without performing any relocations. This checking procedure
avoids unnecessarily extending the maintenance batch duration due to relocations that are
insufficient to evacuate a given outdated edge server.

Algorithm 6: Hermes edge server capacity checking method.
1 Function checkCapacity(Y, N, Qq):
2 Y ′ ← List of edge servers in Y
3 N ′ ← List of applications in N
4 κ ← 0
5 foreach N ′

j ∈ N ′ do
6 foreach Y ′

i ∈ Y ′ do
7 if edge server Y ′

i has enough free resources to host application N ′
j then

8 Host application N ′
j on edge server Y ′

i
9 κ ← κ + 1

10 break
11 return κ

If Hermes determines that it is feasible to drain a server in the current mainte-
nance batch, it begins the draining procedure by iterating over the server’s application list.
While choosing a new host for an application Aj that needs to be relocated, Hermes per-
forms a sorting procedure (Alg. 5, line 15) that prioritizes updated hosts to speed up main-
tenance progression and safeguard applications when patches fix vulnerability issues. As a
tie-breaking measure, each candidate edge server to host Aj is sorted according to a func-
tion Υ(Aj , Ei ,Qq) (Eq. 6.14), which favors candidate edge servers that predominantly show
three characteristics.

The first tie-breaking criterion in Υ(Aj , Ei) observes the network distance between
the candidate edge servers and the application’s user, prioritizing edge servers close enough
to the application’s user to avoid an SLA violation (Eq. 6.15). The second criterion favors
edge servers that possess a larger amount of the container layers that compose the appli-
cation’s container image (we look into each edge server’s downloaded layers list and their
download and waiting queues), as they are likely to be able to provision the application faster
(Eq. 6.16). The third criterion prioritizes edge servers with shorter download and waiting
queues (Eq. 6.17), with the aim of preventing long waiting times during application reloca-
tion due to network contention (server’s download queue) and download limit constraints
imposed by container runtimes (server’s waiting queue).

Υ(Aj , Ei ,Qq) = Υsla(Aj , Ei ,Qq) + norm(Υimg(Aj , Ei)) + norm(Υqueues(Ei)) (6.14)
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Υsla(Aj , Ei ,Qq) =
1

β(Aj , Ei ,Qq)
(6.15)

Υimg(Aj , Ei) =
∑

Lk ∈ xj

lk if lk ∈ δ(Ei) ∨ lk ∈ ∂(Ei) ∨ lk ∈ λ(Ei)

0 otherwise.
(6.16)

Υqueues(Ei) =
1

|∂(Ei)| + |λ(Ei)|
(6.17)

Finally, Hermes iterates on the ordered list of candidate servers, relocating appli-
cations to the first edge server with enough available capacity to host the application (Alg. 5,
lines 16–19). The workflow of edge server patching and application relocations is repeated
until all edge servers are updated.

6.4 Performance Evaluation

This section details the experiments carried out to demonstrate the effectiveness
of Hermes in reducing maintenance time and latency SLA violations during server updates
on Edge Computing infrastructures. First, Section 6.4.1 describes the dataset, baseline
strategies, and evaluated metrics. Then, Section 6.4.2 presents a sensitivity analysis used
to fine-tune the parameters of one of the baseline strategies. Finally, Section 6.4.3 discusses
the results obtained.

6.4.1 Experiments Description

The maintenance scenario considered involves updating 25 heterogeneous edge
servers, whose specifications are presented in Table 6.2. Although we could not find pub-
lic storage specifications, CPU and RAM specifications are based on real servers [99]. Al-
though capacity specifications are evenly distributed among the 25 edge servers, we assume
that all edge servers take 120 seconds to be updated. The edge servers are interconnected
by 169 base stations equipped with network switches, forming a partially-connected mesh
topology distributed across a 13x13 hexagonal grid map. The base station communication
is done through links with 100 Mbps of bandwidth and 5 ms of latency.

Table 6.2 – Edge server capacity specifications [99].
Model CPU Cores RAM Disk
Dell PowerEdge R620 16 24 GB 128 GB
SGI Rackable C2112-4G10 32 32 GB 128 GB
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Edge servers host 60 containerized applications, each accessed by a single user.
We assume that container images are pulled into the edge infrastructure from a centralized
container registry located in the cloud. In this setup, network links with 40 Mbps of bandwidth
connect edge servers and the container registry to simulate network congestion between the
core network and the edge infrastructure, which is consistent with data provided by previous
studies, such as Ye et al. [173]. Since the positioning of elements within the infrastructure
influences the application latency, edge servers and users are positioned at random posi-
tions on the map. In addition, applications are initially provisioned on random edge servers
positioned close enough to their users so as not to violate their SLAs.

The 60 applications in our dataset are based on uniformly distributed specifications
for demand, SLAs, and container images. As we did not find publicly available specifications
for container capacity limits, we assume five demand specifications (Table 6.3). As for la-
tency SLAs, we use specifications from 3GPP2, representing remote surgery (15 ms) and
collaborative gaming (20 ms) applications, which are potential Edge Computing use cases.

Table 6.3 – Application demand specifications.
Specification CPU Cores RAM
Tiny 1 1 GB
Small 2 2 GB
Medium 4 4 GB
Large 6 6 GB
Extra Large 8 8 GB

Applications are built based on 10 of the 150 most popular DockerHub3 container
images. These container images, whose specifications are shown in Table 6.4, were se-
lected based on the following observations. First, they form the backbone for many real-
world software use cases, including web applications, databases, and data processing sys-
tems. Second, the selected container images collectively form a distribution where one-third
of the container layers are shared across multiple container images, which, according to Fu
et al. [46], is a baseline behavior on large-scale containerized deployments. Without loss
of generality, we assume that the generic application images are the only stateful, i.e., with
state sizes greater than zero (Flink = 100 and Couchbase = 200).

Our experiments are carried out in EdgeSimPy [148], detailed in Chapter 4. In ad-
dition to incorporating functional abstractions for the various components that compose the
edge infrastructure (e.g., edge servers, network switches, and base stations), EdgeSimPy
provides a fine-grained model of the provision of containerized applications, which is key
for representing the addressed scenario. We set EdgeSimPy’s tick rate to 1 s and employ
the Max-Min Fairness algorithm [18] to determine bandwidth shares for concurrent network
flows generated by application relocations performed during maintenance.

2https://www.etsi.org/deliver/etsi_ts/122200_122299/122261/16.16.00_60/ts_122261v161600p.pdf
3https://hub.docker.com/

https://www.etsi.org/deliver/etsi_ts/122200_122299/122261/16.16.00_60/ts_122261v161600p.pdf
https://hub.docker.com/
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Table 6.4 – Container image specifications.
Category Name # of Layers Size of Unique Layers Size of Shared Layers Avg. Layer Size

Operating
Systems

Debian 1 0 MB 47.2559 MB 47.2559 MB
CentOS 1 79.6491 MB 0 MB 79.6491 MB
Ubuntu 1 28.1653 MB 0 MB 28.1653 MB
Fedora 1 65.1558 MB 0 MB 65.1558 MB

Language
Runtimes

Python 7 27.8841 MB 332.543 MB 51.4896 MB
Perl 5 14.9323 MB 332.543 MB 69.495 MB
Erlang 5 0 MB 544.541 MB 109.095 MB
Elixir 6 6.04197 MB 544.541 MB 91.9191 MB

Generic
Applications

Flink 5 537.725 MB 0 MB 107.718 MB
CouchBase 3 632.935 MB 0 MB 210.98 MB

To the best of our knowledge, no maintenance strategy before Hermes focused
on reducing the maintenance time at the edge by optimizing the relocation of container-
ized applications while reducing latency SLA violations. Therefore, our evaluation com-
pares Hermes with three strategies, Lamp (Chapter 5), Salus [147], and Greedy Least Batch
(GLB) [177], which partially optimize the objectives addressed in our work. Although Lamp is
a maintenance strategy described earlier to reduce latency SLA violations during server up-
dates at the edge (see Section 5.3.1), Salus and GLB are maintenance strategies designed
to update servers as fast as possible in cloud data centers (i.e., they overlook the impact of
relocations on application latency).

As none of the baseline strategies chosen from the literature reduces maintenance
time through optimized relocations of containerized applications, our comparison also con-
siders a metaheuristic called Non-Dominated Sorting Genetic Algorithm (NSGA-II) [35], con-
figured to find Pareto-optimal application relocation plans for each maintenance batch where
there are no outdated edge servers ready to be patched (i.e., hosting no application) ac-
cording to the objective function described in Section 6.2. Although this approach does not
guarantee the optimal solution since it iteratively assembles the overall solution batch by
batch, it provides a good baseline for the other evaluated heuristic strategies (i.e., Lamp,
GLB, Salus, and Hermes).

As we seek to follow the principles of reproducible research and open science,
companion materials are publicly available on GitHub4, including the dataset, source code,
and instructions to reproduce our results.

6.4.2 Sensitivity Analysis

The NSGA-II algorithm employed uses a predefined number of generations as stop-
ping criterion. Given that the ideal number of generations may vary according to the eval-
uated scenario, we performed a sensitivity analysis to determine the optimal choice for this

4https://github.com/paulosevero/hermes/

https://github.com/paulosevero/hermes/
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parameter. Without loss of generality, we define the population size as 300, the mutation
probability as 10%, and the crossover probability as 100%. The algorithm was configured
with the Uniform Crossover and Polynomial Mutation methods. The initial population was set
using a Random-Fit Algorithm defined by Souza et al. [146]. Although the used Random-Fit
algorithm does not make maintenance-specific decisions, it ensures that the initial popu-
lation comprises only valid solutions (in our case, relocation plans compliant with Eq. 6.5
and Eq. 6.6, i.e., which do not provision an application on multiple hosts simultaneously and
respect the capacity limits of edge servers).

We assess 30 number of generations, ranging from 100 to 3000, increasing in
increments of 100. Each combination of parameters was evaluated using the objective func-
tion defined in Section 6.2, which seeks to minimize the sum between the normalized main-
tenance time and the normalized number of SLA violations achieved by the solutions. As
indicated in Figure 6.2, the NSGA-II algorithm achieved the best results with 1700 and 1800
generations. Consequently, we used 1700 generations in the evaluation of Section 6.4.3.
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Figure 6.2 – NSGA-II sensitivity analysis.

6.4.3 Comparison with Baseline Algorithms

Execution Time. Figure 6.3 presents the execution time (in seconds) of the evalu-
ated algorithms. Results are displayed on a log2-scale to facilitate visualization of values with
varying magnitudes. Overall, the heuristic algorithms (e.g., GLB, Salus, Lamp, and Hermes)
exhibited similar execution times. In contrast, NSGA-II took, on average, 6561 times longer
to execute than the other strategies. NSGA-II’s longer execution time is due to the number of
operations it had to perform to find its final outcome. More specifically, for each maintenance
batch where application relocations were needed, NSGA-II had to execute simulations with
multiple action plans in addition to performing selection, crossover, and mutation operations
until Pareto-optimal solutions were found.
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Figure 6.3 – Execution time analysis.

The difference in execution time between NSGA-II and the other strategies provides
a strong rationale for the use of heuristics in the addressed scenario. While the evaluated
heuristics had slightly inferior results compared to NSGA-II regarding the evaluated metrics
(as will be discussed in more detail in this section), they compensated for these losses with
a significantly reduced execution time. Although not relevant in some situations, reduced
execution time may be a critical requirement when maintenance plans must be devised
within a short time frame (e.g., when patches to fix security vulnerabilities must be applied).

Maintenance Time. Figure 6.4(a) displays the results concerning the time required
by the evaluated strategies to update all edge servers within the infrastructure. Hermes
achieved a result only 5.57% worse than NSGA-II, being able to reduce the maintenance
time 29.38% on average compared to GLB, Salus, and Lamp, which showed very similar
results. Given that evaluated strategies adhere to a rolling upgrade model, excessive delays
in specific maintenance batches can conceal fast progress in the rest of the maintenance
work if we look only at the overall maintenance time. Therefore, our maintenance time
evaluation also includes an analysis of how fast the evaluated strategies manage to update
the computational resources within the infrastructure (Figure 6.4(b)).
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(a) Overall maintenance time
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(b) Maintenance progression over time

Figure 6.4 – Maintenance time results.
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Figure 6.4(b) shows the maintenance progression over time, allowing observation
of the speed with which edge servers are updated. Since the patching time for the edge
servers is equal to all strategies, Figure 6.4(b) allows us to identify the impact of relocation
decisions on the maintenance progression and, consequently, on the overall maintenance
time. GLB, Salus, and Lamp spent significantly more time relocating applications than Her-
mes and NSGA-II, which on average could update 54% of the infrastructure resources 166
time steps faster than GLB, Salus, and Lamp. The prolonged period in which most of the in-
frastructure is outdated is alarming, especially when outdated resources pose vulnerabilities
to the infrastructure (e.g., when hosts can be used to spread malware to their peers).

Figure 6.5 presents a more in-depth analysis of the application relocations con-
ducted by the evaluated strategies. As we can observe in Figure 6.5(a), all strategies exhib-
ited highly variable relocation times. This occurred as the analyzed scenario includes appli-
cations with container images with highly varied sizes, making some relocations inevitably
longer, regardless of the effectiveness of specific strategy decisions.

In general, NSGA-II and Hermes were more effective during application relocations,
reducing the average relocation time by 47.62% compared to GLB, Salus, and Lamp. The
primary reason for the reduced relocation time achieved by NSGA-II and Hermes is their
ability to take advantage of the shared content of container images to accelerate application
provisioning. As NSGA-II is a metaheuristic and, therefore, does not make fixed decisions
to achieve its objectives, the following relocation time analysis discusses which decisions
Hermes took allowed it to achieve such gains compared to GLB, Salus, and Lamp.

Figure 6.5(b) presents waiting time results, which account for the period in which
the container layers that compose the container images used by the applications being re-
located need to wait before being downloaded due to restrictions on the number of simul-
taneous downloads imposed by the container runtimes. As we can see, Hermes reduced
the average waiting time for application relocations by 78.61% compared to GLB, Salus, and
Lamp. This was possible because when choosing candidate hosts for applications that need
to be relocated, in addition to prioritizing updated edge servers to progress maintenance
more quickly, Hermes adopts a set of sorting criteria that includes favoring those updated
edge servers with smaller download and waiting queues (Alg. 5, line 15).

Figure 6.5(c) presents the pulling time results, which account for the period in which
the container layers are downloaded from the container registry. Hermes reduced the av-
erage download time of container layers by 28.27% compared to GLB, Salus, and Lamp,
as it focuses on relocating applications to edge servers with a larger amount of container
layers that form the container images of the applications (Alg. 5, line 15). As a result, appli-
cation relocations performed by Hermes required the download of fewer container layers, as
shown in Figures 6.5(e) and 6.5(f), which present the number of container layer cache hits
and misses incurred from relocations performed during maintenance. In this context, while
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(a) Application relocation time
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(b) Waiting time
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(c) Layer pulling time

	 � � � � � � � � � � � 
 � 	 � � � � 
 � � � � �

�

� �

� �

� �

� �

�

�


�
��

��
�
�


�
�



��

�	
�

� � � � � � � � � � � � � � � � 
 � � � 
 	 � � � � � � � 
 � � � 
 � �

� � � � � � 	 � �

(d) Application state migration time
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(e) Number of layer cache hits
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(f) Number of layer cache misses

Figure 6.5 – Application relocation time results.

cache hits account for the layers that were already present at their target hosts and did not
have to be downloaded from the container registry, cache misses mean the opposite.

Figure 6.5(d) presents the state migration time results. Among the application relo-
cation stages, the state migration process was the one that showed the least differences be-
tween the evaluated strategies. The smaller difference in the state migration results occurred
for some reasons. First, only Flink and CouchBase instances were stateful, accounting for
only 12 of the 60 applications, meaning most relocations did not require state migration.
Second, unlike container layers, state data is not shared among applications, so none of the
maintenance strategies makes specific decisions to reduce the state migration time.



111

Latency SLA Violations. Figure 6.6 presents the results related to the number of
latency SLA violations incurred by the assessed strategies. Although being 22% worse than
NSGA-II, Hermes achieved an average reduction of 43% in the number of SLA violations
compared to the other heuristics evaluated. As expected, GLB and Salus showed the worst
results regarding SLA violations, given their focus on maintenance in cloud data centers,
where the impact of relocations on application latency is not considered, given the robust
network capabilities available to all cloud hosts.
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(a) SLA violations in the 2nd maintenance batch
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(b) SLA violations in the 4th maintenance batch
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(c) Relocations in the 2nd maintenance batch
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(d) Relocations in the 4th maintenance batch

Figure 6.6 – Latency SLA violations and number of relocations per SLA (15 ms and 20 ms).

It should be noted that, in the adopted conceptual model, the two operations con-
ducted during maintenance (i.e., edge server patching and application relocations) are sep-
arated into distinct maintenance batches and take turns until maintenance completion. In
this context, the compared strategies make only different decisions during the maintenance
batches reserved for application relocations. Based on this, our analysis of SLA violations
will focus solely on the second and fourth maintenance batches, where application relo-
cations took place, as in the maintenance batches reserved for edge server patching, the
number of SLA violations did not change compared to their previous relocation batch.

The reduction in the number of SLA violations achieved by Hermes was achieved
through two main decisions. First, when setting the draining order of the outdated edge
servers, Hermes prioritizes those hosting applications with less strict SLAs (Alg. 5, line 8).
This ordering criterion is based on the rationale that, especially at the beginning of main-
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tenance, there may be fewer updated resources available in proximity to users and, there-
fore, the chances of SLA violations occurring are higher. We can observe the impact of
this decision by looking at the number of application relocations performed in each mainte-
nance batch, displayed in Figures 6.6(c) and 6.6(d). Compared to other heuristic strategies,
Hermes relocated 18.82% fewer applications with the most strict SLA specification at the
beginning of maintenance (i.e., the second batch of maintenance), achieving an average
reduction of 43.48% in the number of SLA violations for these applications compared to all
baseline heuristics and a reduction of 31.58% compared to Lamp, which is also designed
for maintenance at the edge but does not include application SLAs when deciding the order
of edge server draining and application relocations.

Even if postponed, relocating applications with more strict SLAs is necessary for
their hosts to be drained and updated. At this stage, the second key decision made by Her-
mes that contributed to reducing SLA violations comes into play. When Hermes decides
to drain a particular edge server, it first relocates applications with more strict SLAs to pre-
vent updated resources close to such applications from being unnecessarily occupied by
applications with less strict SLAs (Alg. 5, line 11). Based on such a decision, Hermes also
reduced SLA violations by 46.27% on average during the second round of relocations during
maintenance (i.e., the fourth batch of maintenance), as shown in Figure 6.6(b).

6.5 Closing Remarks

Reducing maintenance time during server updates has been the target of several
research efforts [177] [147] [174] [149]. Motivations to reduce maintenance time are numer-
ous. For instance, server updates often relate to critical aspects such as security vulnerabil-
ity mitigation. In addition, maintenance work usually requires application relocations, which
increase the load on the infrastructure and, depending on application characteristics, can
cause service disruption, affecting the quality of service offered to end-users.

Despite existing efforts, during our survey on existing maintenance research, we
discussed that existing maintenance strategies do not take advantage of the shared con-
tent of images from containerized applications, missing optimization opportunities that could
reduce maintenance time (see Section 3.5). Based on such observations, this chapter pre-
sented a novel maintenance strategy called Hermes, which extends our work on edge server
updates described in Chapter 5, reducing the maintenance time during server updates on
edge infrastructures by leveraging the shared content of containerized application images
during relocations carried out during maintenance work. Our experiments show that Her-
mes reduces maintenance time by 29.38% on average compared to baseline strategies.

The work presented in this chapter concludes the set of contributions of this thesis.
First, Chapter 4 introduced a simulation toolkit with support for edge maintenance oper-
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ations. Then, Chapter 5 and this chapter presented maintenance strategies that reduce
maintenance time during edge server updates while alleviating the impact of maintenance
work on the performance of edge applications. These contributions address the research
challenges identified by our review of the literature (Section 3.5).

The following chapter presents our final remarks, including a discussion on how
our contributions answer the Research Questions established in the introduction and a list
of future research directions.
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7. CONCLUSIONS AND FUTURE DIRECTIONS

This chapter presents the final considerations of this thesis. First, it recapitulates
the motivation for this work, answers the research questions defined in Chapter 1, and sum-
marizes the main contributions (Section 7.1). Then, it concludes by listing future research
directions (Section 7.2).

7.1 Overview and Discussion

Advances in telecommunications and the emergence of the Internet of Things have
introduced new classes of mobile and sensor-rich applications with latency and bandwidth
requirements that could not be satisfied by the traditional Cloud Computing model, given the
significant distance between data sources and cloud data centers. The evident limitations
of the cloud’s centralized model led to the rise of a new computing paradigm called Edge
Computing, where computing devices, often called edge servers, are dispersed in strategic
positions at the Internet’s edge, in close proximity to end devices.

Whereas decentralizing the infrastructure helped mitigate congestion at specific
high-traffic zones, it introduced substantial technical challenges related to IT operations. As
edge servers are often deployed in small-scale facilities with limited cooling and power sup-
ply, they are inherently susceptible to various hardware issues. In addition, the typical edge
infrastructure’s lack of robustness makes room for a broad spectrum of security threats, in-
cluding network attacks and physical tampering, especially when edge servers are located in
outdoor facilities. In this context, maintenance strategies are critical in ensuring that perfor-
mance and security concerns do not undermine the edge’s inherent advantages. This thesis
has focused on optimizing edge maintenance operations by coordinating maintenance re-
quirements (e.g., reducing component update times) with the performance demands of edge
applications and the resource constraints of edge infrastructures.

The central hypothesis defined in this thesis was based on the rationale that main-
tenance strategies should be optimized according to the unique characteristics of edge in-
frastructures. We assumed that improved decisions such as “when” to update components
and “how” to relocate applications to advance maintenance could reduce maintenance time
while keeping the impact on application performance to a minimum. To organize our re-
search work, we divided the defined hypothesis into four research questions. Based on the
research work detailed throughout the chapters of this thesis, the answers to the established
research questions are the following:

• Research Question 1: What are the main approaches and metrics of interest in the
context of maintenance on Edge Computing infrastructures?
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– Maintenance operations comprise a broad spectrum of activities depending on
the scenario at hand. Research efforts generally focus on correcting or preventing
critical issues, such as security vulnerabilities and infrastructure failures. In such
instances, maintenance follows the rolling upgrade model, progressing gradually.
When the target components are edge servers, affected applications are relo-
cated to alternative hosts to avoid downtime. In addition to directly influencing
maintenance progression (as servers must be evacuated before being updated),
relocation decisions can also impact application performance. As such, we ob-
serve that several studies evaluate the effectiveness of maintenance strategies
according to their impact on the quality of service exhibited by the applications. Al-
ternatively, some authors consider resource efficiency metrics during their evalu-
ations, acknowledging that maintenance operations can impose significant stress
on edge infrastructures.

• Research Question 2: How can we evaluate research prototypes of maintenance
strategies for Edge Computing infrastructures?

– We have observed that existing maintenance research efforts employ various val-
idation approaches depending on the addressed scenario. In general, simulation
is the preferred option, as it allows for cost-effective evaluations of research pro-
totypes in large-scale environments. Moreover, we noticed that most simulated
evaluations use custom simulators, highlighting the lack of a widely-accepted
maintenance simulation toolkit. Given this context, we developed EdgeSimPy,
a Python-based simulation toolkit designed for modeling and evaluating resource
management policies, including maintenance of physical resources (e.g., edge
servers and network devices) and applications on edge infrastructures. Unlike
existing simulators, EdgeSimPy integrates several functional abstractions and a
novel conceptual model that accurately represents the lifecycle of edge applica-
tions and ensures seamless integration with real application traces.

• Research Question 3: What is the impact of location-aware application relocations
during maintenance on Edge Computing infrastructures?

– While edge infrastructures typically comprise distributed hosts often interconnected
via public networks without mandatory redundancy and performance guarantees,
edge applications have tight latency requirements. Consequently, the quality of
service exhibited by applications can be severely degraded if they are moved to
edge servers too far from their users. In this context, we identified that the ab-
sence of location awareness in application relocations is one of the main factors
that prevent the use of maintenance strategies designed for the cloud during the
update of edge components. In response, we proposed two maintenance strate-
gies, Lamp and Laxus, that incorporate user location awareness into application
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relocation decisions conducted during edge server maintenance. The results in-
dicated that Lamp and Laxus could reduce latency issues by an average of 65.5%
compared to existing maintenance strategies designed for cloud data centers.

• Research Question 4: How can we leverage characteristics of edge applications to
reduce maintenance time during edge server updates?

– Most research efforts on server maintenance assume that servers must be re-
booted for updates to take effect. In this context, the shutdown of applications,
even temporarily, is avoided to preserve the quality of service delivered to end-
users, so servers must be evacuated through relocation techniques before under-
going maintenance. As a result, relocation decisions become a significant factor
influencing total maintenance time. During our literature review, we observed that
existing maintenance strategies employed migration strategies designed for VM-
based applications, overlooking the emergence of containerization as the leading
architecture for deploying edge applications and consequently missing the relo-
cation optimization opportunities offered by containerization. To fill this gap, we
designed Hermes, a maintenance strategy that capitalizes on the shared content
of container images to reduce maintenance time through optimized application
relocations. Our experiments showed that Hermes can reduce maintenance time
by 29.38% on average compared to baseline strategies that perform application
relocations based on the VM model.

Based on the research work presented in this thesis, our conclusion reinforces our
hypothesis that maintenance strategies that implement intelligent decisions based on the
performance requirements and characteristics of edge applications can achieve significant
reductions in edge component update times, while reducing the impact of maintenance work
on application performance.

In summary, this thesis has made the following contributions:

• A taxonomy that provides a systematic organization of maintenance research target-
ing Edge Computing environments and two related paradigms (Cloud Computing and
the Internet of Things) based on various characteristics, including maintenance ap-
proaches, techniques used, and metrics of interest (Chapter 3).

• A simulation toolkit that implements several functional abstractions for edge infrastruc-
ture components and incorporates a conceptual model that replicates the provisioning
method of widely used containerization platforms, supporting several use cases, in-
cluding the maintenance of computing and network devices at the edge (Chapter 4).

• Three maintenance strategies that reduce application latency and maintenance time
during edge server updates by integrating user location and containerization aware-
ness into the maintenance decision-making process (Chapters 5–6).



117

7.2 Future Directions

This thesis has addressed several challenges related to coordinating maintenance
operations on Edge Computing infrastructures. Nevertheless, we observe that many other
key challenges require further investigation.

7.2.1 Optimized Prioritization of Maintenance Decisions

Prioritization policies play a vital role during maintenance operations on large-scale
infrastructures, where the order in which events occur can affect the quality of maintenance
through cascading phenomena. In such a scenario, scheduling algorithms can determine
the order of various decisions (e.g., component updates and application migrations) based
on multiple factors, including the criticality of affected components within the infrastructure
and the application workload.

There are several use cases where maintenance prioritization policies can enhance
the effectiveness of updates on edge infrastructures. For example, server groupings can pri-
oritize edge sites with known vulnerabilities. Additionally, during critical security updates,
edge servers from sandbox environments can be assigned a lower priority than produc-
tion edge servers, as hosts from sandbox environments can be temporarily disabled without
affecting critical applications, while delaying the update of production environments can fa-
cilitate vulnerability propagation.

Existing maintenance efforts use prioritization policies to support the scheduling of
patch distribution [109], application migration [174], and component updates [149]. How-
ever, these policies focus primarily on generic goals such as reducing maintenance time,
leaving other factors, such as infrastructure security, out of the scheduling decision-making.
New robust prioritization policies considering parameters such as the edge infrastructure or-
ganization (e.g., sandbox and production environments) and workload characteristics (e.g.,
how many users and applications depend on affected components) should be developed to
enhance the effectiveness of maintenance work. Also, another promising approach would
be the design of novel metrics that characterize the impact of prioritization policies on the
quality of maintenance decisions.

7.2.2 Inter-Service Communication Awareness

Application composition architectures have been gaining traction within the IT com-
munity as loosely coupled services expand the provisioning possibilities compared to tra-
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ditional monoliths [92]. One of the advantages of composite applications is the enhanced
ability to handle workload fluctuations efficiently. As services from composite applications
are deployed independently, infrastructure operators can adjust the computational capac-
ity available to the services based on the specific demand of each application component,
which is typically not feasible for monolithic applications, that are deployed as single soft-
ware units. Given that edge infrastructures can comprise resource-constrained hosts, the
ability to break down an application into multiple small components is beneficial as it allows
multiple heterogeneous edge servers to cooperate to deliver desirable performance levels.

Despite the benefits of application composition, its distributed nature introduces
some challenges that must be considered during maintenance operations, especially since
application relocations are often required to advance maintenance. One of the notewor-
thy challenges in relocating composite applications is the narrowed provisioning options:
services from composite applications must be provisioned close to each other to avoid net-
work bottlenecks, especially on edge infrastructures, where poor positioning of services can
lead to significant latency increases, given that network instability can occur without prior
notice [163]. Although some initiatives consider maintenance scenarios with composite ap-
plications [22], the proposed solutions do not focus on implementing optimized provisioning
decisions. Therefore, there is a need for more sophisticated edge maintenance strategies
that consider the performance requirements of composite applications to mitigate the impact
of maintenance work on the quality of service delivered to end users.

7.2.3 Mitigation of Resource Contention

Virtualization is at the core of most modern computing platforms, providing in-
creased provisioning flexibility and fine-grained control of physical resources [97]. One of the
main features virtualization provides is multiplexing, which allows multiple applications to run
on top of the same physical resources [101]. Whereas multiplexing widens the provisioning
options, it introduces performance concerns related to resource contention (also known as
performance interference), where co-located applications, especially those that rely on the
same type of resource (e.g., CPU cache and I/O), degrade each other performance [169].

Although performance interference is not exclusive to the edge, the resource con-
straints of the edge servers and the strict performance requirements of edge applications
amplify the problem at the edge. The side effects of performance interference at the edge
are particularly alarming during maintenance operations, where widely-used approaches
such as rolling upgrade strategies, often result in stacking applications on updated hosts
as maintenance progresses [149]. Although some maintenance strategies successfully
alleviate specific infrastructure issues such as network bottlenecks and application down-
time [110] [174], there is a lack of study on the potential performance interference induced
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by maintenance decisions. Therefore, more research is needed on interference-aware al-
location approaches that can accommodate the demands of maintenance scenarios and
alleviate the impact on application performance during maintenance operations.

7.2.4 Energy Consumption Reduction

Despite existing efforts to reduce power consumption during maintenance, existing
solutions that address this concern are predominantly focused on IoT environments, acting
under the motivation that IoT nodes have limited power supply [22] [109], and overlooking the
fact that edge servers can also operate under power supply constraints. In general, existing
edge maintenance solutions primarily focus on optimizing maintenance goals (e.g., reducing
maintenance time) and reducing the impact of maintenance over application performance,
so they are not concerned with ensuring that maintenance work meets sustainability goals.

Although some initiatives have incorporated power-saving considerations into main-
tenance decision-making [126], they resort to simple approaches like switching off idle edge
servers that become idle during maintenance. While deactivating idle hosts during main-
tenance is effective in cloud data centers due to the abundance of computing resources, it
may yield limited benefits in resource-constrained edge infrastructures where the number of
idle edge servers during maintenance can be negligible.

Therefore, there is a need for novel energy-aware maintenance strategies tailored
to the specific needs and constraints of edge infrastructures to ensure that maintenance
work aligns with sustainability goals as closely as possible. Potential research directions
include adopting alternative power-saving techniques such as Dynamic Voltage and Fre-
quency Scaling (DVFS), which can leverage fluctuating workloads of edge applications to re-
duce the energy consumption of edge servers, and combining conventional energy sources
(i.e., fossil fuels and nuclear power) with renewable energy (e.g., solar and wind energy).
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[30] Črepinšek, M.; Liu, S.-H.; Mernik, M. “Exploration and exploitation in evolutionary
algorithms: A survey”, ACM Computing Surveys, vol. 45–3, July 2013, pp. 1–33.

[31] Daly, D.; Deavours, D. D.; Doyle, J. M.; Webster, P. G.; Sanders, W. H. “Möbius:
An extensible tool for performance and dependability modeling”. In: International
Conference on Modelling Techniques and Tools for Computer Performance
Evaluation, 2000, pp. 332–336.

[32] Darrous, J.; Lambert, T.; Ibrahim, S. “On the importance of container image placement
for service provisioning in the edge”. In: International Conference on Computer
Communication and Networks, 2019, pp. 1–9.



123

[33] de Assuncao, M. D.; da Silva Veith, A.; Buyya, R. “Distributed data stream processing
and edge computing: A survey on resource elasticity and future directions”, Journal of
Network and Computer Applications, vol. 103, February 2018, pp. 1–17.

[34] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. “A fast and elitist multiobjective
genetic algorithm: Nsga-ii”, IEEE Transactions on Evolutionary Computation, vol. 6–2,
April 2002, pp. 182–197.

[35] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. “A fast and elitist multiobjective
genetic algorithm: Nsga-ii”, IEEE Transactions on Evolutionary Computation, vol. 6–2,
April 2002, pp. 182–197.

[36] Dietterich, T. G. “Ensemble methods in machine learning”. In: International Workshop
on Multiple Classifier Systems, 2000, pp. 1–15.

[37] Dijkstra, E. W.; et al.. “A note on two problems in connexion with graphs”, Numerische
Mathematik, vol. 1, December 1959, pp. 269–271.

[38] Dotan, M.; Pignolet, Y.-A.; Schmid, S.; Tochner, S.; Zohar, A. “Survey on blockchain
networking: Context, state-of-the-art, challenges”, ACM Computing Surveys, vol. 54–
5, May 2021, pp. 1–34.

[39] Eiter, T.; Ianni, G.; Krennwallner, T. “Answer set programming: A primer”. In:
Reasoning Web International Summer School, 2009, pp. 40–110.

[40] El-Rewini, H.; Ali, H. H.; Lewis, T. “Task scheduling in multiprocessing systems”,
Computer, vol. 28–12, December 1995, pp. 27–37.

[41] Elijah, O.; Rahman, T. A.; Orikumhi, I.; Leow, C. Y.; Hindia, M. N. “An overview of
internet of things (iot) and data analytics in agriculture: Benefits and challenges”,
IEEE Internet of Things Journal, vol. 5–5, October 2018, pp. 3758–3773.

[42] Fadaeefath Abadi, M.; Haghighat, F.; Nasiri, F. “Data center maintenance: applications
and future research directions”, Facilities, vol. 38–9/10, April 2020, pp. 691–714.

[43] Fakhrolmobasheri, S.; Ataie, E.; Movaghar, A. “Modeling and evaluation of power-
aware software rejuvenation in cloud systems”, Algorithms, vol. 11–10, October 2018,
pp. 1–15.

[44] Fan, Y.-H.; Wang, M.-Q.; Li, Y.-B.; Hu, K.; Li, M.-Z. “A secure iot firmware update
scheme against scpa and dos attacks”, Journal of Computer Science and Technology,
vol. 36–2, March 2021, pp. 419–433.

[45] Faticanti, F.; De Pellegrini, F.; Siracusa, D.; Santoro, D.; Cretti, S. “Throughput-aware
partitioning and placement of applications in fog computing”, IEEE Transactions on
Network and Service Management, vol. 17–4, September 2020, pp. 2436–2450.



124

[46] Fu, S.; Mittal, R.; Zhang, L.; Ratnasamy, S. “Fast and efficient container startup at the
edge via dependency scheduling”. In: Workshop on Hot Topics in Edge Computing,
2020, pp. 1–7.

[47] Fukuda, T.; Omote, K. “Efficient blockchain-based iot firmware update considering
distribution incentives”. In: Conference on Dependable and Secure Computing, 2021,
pp. 1–8.

[48] Galante, G.; de Bona, L. C. E. “A survey on cloud computing elasticity”. In:
International Conference on Utility and Cloud Computing, 2012, pp. 263–270.

[49] Garg, S.; Kaur, K.; Kumar, N.; Kaddoum, G.; Zomaya, A. Y.; Ranjan, R. “A hybrid
deep learning-based model for anomaly detection in cloud datacenter networks”, IEEE
Transactions on Network and Service Management, vol. 16–3, July 2019, pp. 924–
935.

[50] Gebali, F. “Analysis of computer and communication networks”. Springer Science &
Business Media, 2008, 669p.

[51] Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T. “Multi-shot asp solving with
clingo”, Theory and Practice of Logic Programming, vol. 19, January 2019, pp. 27–
82.

[52] German, R.; Kelling, C.; Zimmermann, A.; Hommel, G. “Timenet: a toolkit for
evaluating non-markovian stochastic petri nets”, Performance Evaluation, vol. 24–1-2,
November 1995, pp. 69–87.

[53] Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. “Internet of things (iot): A vision,
architectural elements, and future directions”, Future Generation Computer Systems,
vol. 29–7, September 2013, pp. 1645–1660.

[54] Gupta, H.; Van Oorschot, P. C. “Onboarding and software update architecture for iot
devices”. In: International Conference on Privacy, Security and Trust, 2019, pp. 1–11.

[55] Ha, K.; Abe, Y.; Eiszler, T.; Chen, Z.; Hu, W.; Amos, B.; Upadhyaya, R.; Pillai, P.;
Satyanarayanan, M. “You can teach elephants to dance: Agile vm handoff for edge
computing”. In: Symposium on Edge Computing, 2017, pp. 1–14.

[56] Hagberg, A.; Swart, P.; S Chult, D. “Exploring network structure, dynamics, and
function using networkx”, Technical Report, Los Alamos National Laboratory, 2008,
5p.

[57] Halabi, S. “Hyperconverged Infrastructure Data Centers: Demystifying HCI”. Cisco
Press, 2019, 544p.



125

[58] Han, B.; Gopalakrishnan, V.; Ji, L.; Lee, S. “Network function virtualization:
Challenges and opportunities for innovations”, IEEE Communications Magazine,
vol. 53–2, February 2015, pp. 90–97.

[59] Han, J.; Pei, J.; Kamber, M. “Data mining: concepts and techniques”. Elsevier, 2011,
703p.

[60] He, J.; Dai, T.; Gu, X.; Jin, G. “Hangfix: automatically fixing software hang bugs for
production cloud systems”. In: ACM Symposium on Cloud Computing, 2020, pp. 344–
357.

[61] He, X.; Alqahtani, S.; Gamble, R.; Papa, M. “Securing over-the-air iot firmware
updates using blockchain”. In: International Conference on Omni-Layer Intelligent
Systems, 2019, pp. 164–171.

[62] Herbst, N. R.; Kounev, S.; Reussner, R. “Elasticity in cloud computing: What it is,
and what it is not”. In: International Conference on Autonomic Computing, 2013, pp.
23–27.

[63] Hou, W.; Li, W.; Guo, L.; Sun, Y.; Cai, X. “Recycling edge devices in sustainable
internet of things networks”, IEEE Internet of Things Journal, vol. 4–5, July 2017, pp.
1696–1706.

[64] Hu, J.-W.; Yeh, L.-Y.; Liao, S.-W.; Yang, C.-S. “Autonomous and malware-proof
blockchain-based firmware update platform with efficient batch verification for internet
of things devices”, Computers & Security, vol. 86, September 2019, pp. 238–252.

[65] Huang, H.; Guo, S. “Proactive failure recovery for nfv in distributed edge computing”,
IEEE Communications Magazine, vol. 57–5, March 2019, pp. 131–137.

[66] Huang, Y.; Kintala, C.; Kolettis, N.; Fulton, N. D. “Software rejuvenation: Analysis,
module and applications”. In: International Symposium on Fault-Tolerant Computing,
1995, pp. 381–390.

[67] Huang, Z.; Huang, H. “Proactive failure recovery for stateful nfv”. In: International
Conference on Parallel and Distributed Systems, 2020, pp. 536–543.

[68] Islam, S. R.; Kwak, D.; Kabir, M. H.; Hossain, M.; Kwak, K.-S. “The internet of things
for health care: a comprehensive survey”, IEEE Access, vol. 3, June 2015, pp. 678–
708.

[69] Ismail, B. I.; Goortani, E. M.; Ab Karim, M. B.; Tat, W. M.; Setapa, S.; Luke, J. Y.;
Hoe, O. H. “Evaluation of docker as edge computing platform”. In: IEEE Conference
on Open Systems, 2015, pp. 130–135.



126

[70] Jardosh, A.; Belding-Royer, E. M.; Almeroth, K. C.; Suri, S. “Towards realistic mobility
models for mobile ad hoc networks”. In: Annual International Conference on Mobile
Computing and Networking, 2003, pp. 217–229.

[71] Jha, D. N.; Alwasel, K.; Alshoshan, A.; Huang, X.; Naha, R. K.; Battula, S. K.;
Garg, S.; Puthal, D.; James, P.; Zomaya, A.; Dustdar, S.; Ranjan, R. “Iotsim-edge:
A simulation framework for modeling the behavior of internet of things and edge
computing environments”, Software: Practice and Experience, vol. 50–6, June 2020,
pp. 844–867.

[72] Jindal, A.; Aujla, G. S.; Kumar, N. “Survivor: A blockchain based edge-as-a-service
framework for secure energy trading in sdn-enabled vehicle-to-grid environment”,
Computer Networks, vol. 153, April 2019, pp. 36–48.

[73] Jing, Q.; Vasilakos, A. V.; Wan, J.; Lu, J.; Qiu, D. “Security of the internet of things:
Perspectives and challenges”, Wireless Networks, vol. 20–8, June 2014, pp. 2481–
2501.

[74] Jordan, M. I.; Mitchell, T. M. “Machine learning: Trends, perspectives, and prospects”,
Science, vol. 349–6245, July 2015, pp. 255–260.

[75] Kaelbling, L. P.; Littman, M. L.; Moore, A. W. “Reinforcement learning: A survey”,
Journal of artificial intelligence research, vol. 4, May 1996, pp. 237–285.

[76] Kantarci, B.; Mouftah, H. T. “Sensing services in cloud-centric internet of things: A
survey, taxonomy and challenges”. In: International Conference on Communication
Workshop, 2015, pp. 1865–1870.

[77] Kazil, J.; Masad, D.; Crooks, A. “Utilizing python for agent-based modeling: The mesa
framework”. In: International Conference on Social Computing, Behavioral-Cultural
Modeling and Prediction and Behavior Representation in Modeling and Simulation,
2020, pp. 308–317.

[78] Kim, D.; Lee, S.; Kim, D. “An applicable predictive maintenance framework for the
absence of run-to-failure data”, Applied Sciences, vol. 11–11, June 2021, pp. 1–17.

[79] Kliazovich, D.; Bouvry, P.; Khan, S. U. “Greencloud: a packet-level simulator of energy-
aware cloud computing data centers”, The Journal of Supercomputing, vol. 62–3,
November 2012, pp. 1263–1283.

[80] Knob, L. A. D.; Kayser, C. H.; de Souza, P. S. S.; Ferreto, T. “Enforcing deployment
latency sla in edge infrastructures through multi-objective genetic scheduler”. In:
International Conference on Utility and Cloud Computing, 2021, pp. 1–9.



127

[81] Kominos, C. G.; Seyvet, N.; Vandikas, K. “Bare-metal, virtual machines and containers
in openstack”. In: Conference on Innovations in Clouds, Internet and Networks, 2017,
pp. 36–43.

[82] Kreutz, D.; Ramos, F. M.; Verissimo, P. E.; Rothenberg, C. E.; Azodolmolky, S.; Uhlig,
S. “Software-defined networking: A comprehensive survey”, Proceedings of the IEEE,
vol. 103, December 2014, pp. 14–76.

[83] Langiu, A.; Boano, C. A.; Schuß, M.; Römer, K. “Upkit: An open-source, portable, and
lightweight update framework for constrained iot devices”. In: International Conference
on Distributed Computing Systems, 2019, pp. 2101–2112.

[84] Lasi, H.; Fettke, P.; Kemper, H.-G.; Feld, T.; Hoffmann, M. “Industry 4.0”, Business &
Information Systems Engineering, vol. 6, June 2014, pp. 239–242.

[85] Law, A. M.; Kelton, W. D.; Kelton, W. D. “Simulation modeling and analysis”. Mcgraw-
hill New York, 2015, vol. 5, 776p.

[86] Lee, B.; Lee, J.-H. “Blockchain-based secure firmware update for embedded devices
in an internet of things environment”, The Journal of Supercomputing, vol. 73–3,
September 2017, pp. 1152–1167.

[87] Lee, E. K.; Viswanathan, H.; Pompili, D. “Model-based thermal anomaly detection in
cloud datacenters”. In: International Conference on Distributed Computing in Sensor
Systems, 2013, pp. 191–198.

[88] Lehrig, S.; Eikerling, H.; Becker, S. “Scalability, elasticity, and efficiency in cloud
computing: A systematic literature review of definitions and metrics”. In: International
ACM SIGSOFT Conference on Quality of Software Architectures, 2015, pp. 83–92.

[89] Leiba, O.; Bitton, R.; Yitzchak, Y.; Nadler, A.; Kashi, D.; Shabtai, A. “Iotpatchpool:
Incentivized delivery network of iot software updates based on proofs-of-distribution”,
Pervasive and Mobile Computing, vol. 58, August 2019, pp. 1–21.

[90] Lera, I.; Guerrero, C.; Juiz, C. “Yafs: A simulator for iot scenarios in fog computing”,
IEEE Access, vol. 7, July 2019, pp. 91745–91758.

[91] Liang, Z.; Liu, Y.; Lok, T.-M.; Huang, K. “Multi-cell mobile edge computing:
Joint service migration and resource allocation”, IEEE Transactions on Wireless
Communications, vol. 20–9, April 2021, pp. 5898–5912.

[92] Linthicum, D. S. “Practical use of microservices in moving workloads to the cloud”,
IEEE Cloud Computing, vol. 3–5, November 2016, pp. 6–9.



128

[93] Liu, X.; Buyya, R. “Resource management and scheduling in distributed stream
processing systems: A taxonomy, review, and future directions”, ACM Computing
Surveys, vol. 53–3, May 2020, pp. 1–41.

[94] Macal, C. M.; North, M. J. “Tutorial on agent-based modeling and simulation”. In:
Winter Simulation Conference, 2005, pp. 14–pp.

[95] Mahmud, R.; Pallewatta, S.; Goudarzi, M.; Buyya, R. “ifogsim2: An extended ifogsim
simulator for mobility, clustering, and microservice management in edge and fog
computing environments”, Journal of Systems and Software, vol. 190, August 2022,
pp. 1–17.

[96] Malik, A. W.; Rahman, A. U.; Ahmad, A.; Santos, M. M. D. “Over-the-air software-
defined vehicle updates using federated fog environment”, IEEE Transactions on
Network and Service Management, vol. 19–4, June 2022, pp. 5078–5089.

[97] Mansouri, Y.; Babar, M. A. “A review of edge computing: Features and resource
virtualization”, Journal of Parallel and Distributed Computing, vol. 150, April 2021,
pp. 155–183.
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