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GRAFOS DO CRESCIMENTO: DETECTANDO ANOMALIAS EM MOVIMENTOS 

INFANTIS COM REDES CONVOLUTIVAS 

 

RESUMO 

 

Transtornos do desenvolvimento cognitivo (TDC) é uma designação geral para 

deficiências decorrentes do mau desenvolvimento do sistema nervoso. Bebês 

prematuros são a população mais afetada e, embora não haja cura para TDCs, 

tratamentos estão disponíveis assim que o transtorno é identificado. A Avaliação de 

Movimentos Gerais (AMG) é uma ferramenta de diagnóstico para discernir entre 

neurodesenvolvimento típico e indicativo de risco em bebês abaixo de 6 meses de 

idade via a observação de repertórios de movimento específicos – alguns dos quais 

são anormais e atribuem risco à criança. Apesar de seu alto valor preditivo para 

CDDs, a AMG é pouco utilizada em ambientes clínicos devido a um programa de 

treinamento e certificação complexo e custoso. O objetivo desta dissertação é 

desenvolver uma metodologia para a automatização da AMG: de registros em vídeo 

do movimento de bebês em ambientes hospitalares, para a classificação de 

movimento normal e anormal e posterior identificação de risco. Foi desenvolvido um 

sistema de classificação baseado em Redes Neurais Convolutivas de Grafo para 

atribuir risco ou não-risco de CDDs em três datasets publicamente disponíveis, 

contendo sequências com dados posicionais de bebês. No total, dados de 137 bebês 

foram usados para treinar o algoritmo de classificação. Mudanças à arquitetura 

interna da rede e etapas de regularização foram feitas a fim de adaptá-la ao caráter 

ruidoso dos dados. Conduzimos um processo de otimização de hiperparâmetros em 

diversas configurações experimentais, submetendo nosso modelo a diferentes tipos 

de dados, tanto intra-datasets – treinamento e teste no mesmo dataset – quanto 

inter-datasets. 

 

Palavras-Chave: Avaliação de Movimentos Gerais, redes neurais convolutivas, 

aprendizado profundo, movimentos gerais. 



 

 

GRAPHS OF GROWTH: DETECTING INFANT MOVEMENT ANOMALIES WITH 

GRAPH CONVOLUTIONAL NETWORKS 

 

ABSTRACT 

 

Cognitive development disorder (CDD) is an umbrella term for impairments arising 

from the maldevelopment of the nervous system. Premature infants are the most 

affected population and although most CDDs have no cure, treatment is available as 

soon as the disorder is identified. The General Movements Assessment (GMA) is a 

diagnostic tool for discerning between typical and disorder-like neurodevelopment of 

infants below 6 months of age via the observation of specific movement repertoires -

- some of which are abnormal and attribute risk to the infant. Despite its high 

predictive value for CDDs, GMA is scarcely used in clinical settings due to a difficult 

and costly training and certification program. This dissertation’s purpose is to develop 

a methodology for automating GMA: from video-recordings of moving infants in 

hospital settings to the classification of normal and abnormal movement and later risk 

identification. We developed a classification system based on a Graph Convolutional 

Neural Network to sort out infant skeleton time-series data of three different publicly 

available datasets into risk of CDDs and no-risk of CDDs. In total, data from 137 

infants were used to train our classification algorithm. Changes to the internal 

architecture of the network and regularization steps were made to adapt to the noisy 

nature of our data. We performed hyperparameter optimization on different 

experimental setups, subjecting our model to different data, both intra-datasets – 

training and testing on the same dataset and – and inter-datasets.  

 

Keywords: General Movements Assessment, convolutional neural networks, deep 

learning, general movements. 
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1 INTRODUCTION 

Cognitive development disorder (CDD) is an umbrella term for impairments arising from the 

maldevelopment of the nervous system. Premature infants, above all, are the most affected 

population. In very preterm groups — born 8 or fewer weeks before a normal birth —, the 

likelihood of developmental delay reaches 47% (Caesar et al., 2021). Overall, the degree of 

prematurity is associated with an increased risk of motor, behavioral, and cognitive 

impairments (Craciunoiu & Holsti, 2017).  Although most CDDs have no cure, treatments are 

available — and most effective when started early in the patient’s life.  

For treatments to be addressed, diagnosis must happen. Many methods have been 

developed to evaluate the neurodevelopment of newborns. Among them, three are of the most 

predictive value regarding developmental outcomes (Craciunoiu & Holsti, 2017; Novak et al., 

2017). The Test of Infant Motor Performance (TIMP), the Hammersmith Infant Neurological 

Examination (HINE), and the General Movements Assessment (GMA) all aim to assess an 

infant’s motor functions such as posture, movement patterns, and reflexes. While HINE yields 

better outcome predictions when applied in infants between 2 and 24 months of age, the TIMP 

and GMA achieve better results in infants under 4 and 5 months, respectively. In this work, 

special interest will be given to the GMA.  

Briefly, the General Movements Assessment (GMA) is a reliable method for discerning 

between typical and atypical neurodevelopment of infants in the first 5 months of life. It is 

especially valuable in indicating risk of cerebral palsy (CP), as its implementation in the clinical 

setting has dropped CP’s age of diagnostic from 19.5 to 9.5, on average (Maitre et al., 2020). 

GMA is defined as a standardized, non-invasive, comfortable, and cheap method  (Einspieler et 

al., 2004). It is feasible for use in neonatal intensive care units and requires no effort from the 

infant. Two experts lead the assessment — usually pediatricians or neurologists —, analyzing 

the spontaneous movement of an infant for 5 to 10 minutes. The infant must lie in a supine 

position in the incubator, bed, or mattress, depending on its age and health state (see Figure 1). 

The target movements, general movements, should occur naturally, given comfortable 

temperature and clothing conditions (Einspieler et al., 1997). Age-specific movement patterns 

can be labeled as normal or abnormal. Multiple assessments during the development of the 

infant are brought together and assessed, so intervention can take place. Although abnormal 

outcomes do not indicate specific disorders, they flag a degree of risk for their development. 
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Figure 1 - Spontaneous movements from a newborn in the supine position. 

(Prechtl, 1977). 

 

A unique characteristic of the GMA method, when compared to its alternatives, is that the 

assessment procedure involves little interaction between the assessor and the infant. Whereas 

HINE and TIMP assessments rely on information such as response to handling and 

visual/auditory cues, GMA relies solely on the observation of involuntary infant movements 

(Haataja et al., 1999; Kim et al., 2011; Romeo et al., 2016). As a result, recordings of the infant’s 

movement are sufficient, and even desirable, for the assessment. In fact, GMA is widely applied 

non-concurrently via pre-recorded footage (Einspieler et al., 1997).  

Additionally, while being far easier to conduct than most of its alternatives, GMA has not 

been established as a clinical routine standard — for GMA can only be performed by certified 

experts. To certify oneself, proper training, regular practice, and recalibration are needed, which 

is not always available or affordable. Certifications are issued by the General Movements Trust 
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(GMT)1 and require fulfilling the basic course. Both basic and advanced courses are available 

via the GMT and vary from US$800,00 to US$1000,00. The GMA’s manual can be bought for 

approximately US$55,002. Ultimately, this renders a predictive tool inaccessible and hard to 

apply widely. 

With that in mind, attempts at automating this diagnostic tool have been proposed — 

largely within the computer vision, machine, and deep learning literature (Schmidt et al., 2019; 

Silva et al., 2021). GMA is of special interest to automation attempts precisely because of its 

non-intrusive method: the only material needed for prediction is the uninterrupted movement 

of the infant. With proper preparation of the infant and setup, infant movement should be 

captured, and GMA automation can be applied to the data afterward. Movement may be 

captured either by sensors directly attached to the infant’s body – such as accelerometers, 

gyroscopes, and marker-based motion capture (Gao et al., 2019; Meinecke et al., 2006) –, or 

indirectly via algorithms applied to video footage. As a result, data often contains time-series of 

acceleration, orientation, or coordinates of specific parts of the infant’s body. The second step 

is classification (Groos, Adde, Aubert, et al., 2022; Ni et al., 2023). Specifically, to answer the 

question: how can this data be used to successfully classify movement patterns as normal or 

abnormal? 

Both steps make up challenges. Regarding data capture, most difficulties arise from the 

unique set of shapes and motions that newborns’ and infants’ bodies possess, as well as the 

limited space in which to attach sensors (Groos, Adde, Stoen, et al., 2022; Hesse et al., 2020; Li 

et al., 2021). Although different approaches for transforming raw data will be discussed in this 

work, our focus is on classification. Data capture system’s literature is broad, even if limited to 

infants’ bodies, and discussing it will be left out. Whenever mentioned, however, further 

explanation will be given. 

 

1 https://general-movements-trust.info/. 
2 Price data was accessed on February 7, 2024. Different institutions have different prices. Two institutions were 
accessed for this work, corresponding to the latest provided courses. The Karolinska Institutet basic course — 
offered on March January 24/25th, 2024 —, is priced at US$935,00. Advanced courses often cost an additional fee 
of around US$900,00, and can only be taken by having completed the basic course. Different courses, their dates 
and costs, were accessed via the GMA Trust website (https://general-movements-trust.info/47/dates). 

https://general-movements-trust.info/
https://general-movements-trust.info/47/dates
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For this specific task, classification is binary: movement pattern is either normal or 

abnormal. To achieve proper classification, a relevant set of quantitative features must be 

extracted from the raw data. These might come in distinct ways: hand-made features, thought 

of specifically for their power to represent certain movement patterns (i.e. the entropy of the 

right arm), general statistics derived from movement (i.e. the standard deviation of each limb’s 

velocity), or embeddings computed by deep learning algorithms – which often don’t carry a 

semantical interpretation (Balta et al., 2022; Ni et al., 2023; Redd et al., 2021; Tong et al., 2022). 

Once decided upon, the resulting classifiers are evaluated on cohorts of healthy and unhealthy 

infants, and their performance is reported. Medical cohorts, however, are often particular to 

certain research groups and cannot be shared between different studies for comparison. This 

yields a lack of benchmark data in which classifiers can be commonly assessed, and hinder 

discussion between researchers (Silva et al., 2021). Recent work has tried to establish publicly 

available datasets (Gong et al., 2022; K. McCay et al., 2022; K. D. McCay et al., 2019; Tong et al., 

2022); however, these are small in size and greatly imbalanced – being prone to the overfitting 

of classifiers and lack of generalization. 

 

1.1 Objectives 

This work aims to tackle some of these issues by developing a classifier and designing different 

experimental setups using publicly available datasets. Our overall objective is to provide a 

methodology for the preprocessing of data from different sources and its classification using 

deep neural networks. In particular, we adapt a Graph Convolutional Network to train on labeled 

data provided from three datasets: the MINI-RGBD, RVI-38, and PMI-GMA. Graphs can be 

powerful representational tools, especially when dealing with skeleton-like data. By 

representing 2D coordinates of different joints as nodes, and connecting as edges, a graph 

become a natural representation of infant movement data. 

By training and validating our model on different data partitions from distinct data, a more 

robust classifier can be achieved. Additionally, these experimental setups might serve as 

paradigms for further testing and comparison of different classification systems in the 

literature, and promote a clearer discussion of the benefits and detriments of existing methods. 

That said, our specific goals in this work are: 
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• Define a preprocessing pipeline for the time-series pose data of three publicly available 

datasets that allows its conjoined use as training and testing data; 

• Adapt a Graph Convolutional Network to perform action recognition –  where the action 

is general movements –, and subsequently classify entire sequences as normal or 

abnormal patterns of movement; 

• Design different experimental setups for the training, validation, and testing, of the deep 

learning model; 

• Adjust the model’s inner structure and hyperparameters to best perform on the 

available data. 

 

1.2 Structure 

This dissertation is organized as follows. The next section contains the theoretical framework, 

which is divided into two subjects. First, general movements and GMA’s methodology and 

reliability will be tackled, which will familiarize the reader with the classification problem and 

serve as the rationale for specific choices regarding our classifier. Secondly, deep learning 

architectures, computing modules, and metrics used for reporting performance – focused on 

Graph Convolutional Networks – will be described. Related work on state-of-the-art 

approaches to GMA automation is discussed in Section 3. The methodology for the collection 

and preparation of data, as well as the development of the classifier and experiments, will be 

presented in Section 4. Section 5 contains the results concerning the model’s performance on 

different experiments and different parameters. Finally, a discussion of our results and 

considerations for future work are contained in Section 6. 
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2 THEORETICAL FRAMEWORK 

This section describes the basic concepts which will be used throughout this work. First, an 

overview of the General Movements Assessment will be conducted, going over its objective, 

procedure, and reliability within clinical practice. Then, the core architecture of a deep learning 

model will be presented. Computing modules, basic operations, regularization techniques, and 

the metrics used for reporting performance in this work will be outlined. 

2.1 General Movements Assessment (GMA) 

The General Movements Assessment (GMA) is a diagnostic tool in the field of neonatal 

neurology. It is used for the early detection and prediction of neurodevelopmental outcomes in 

newborns and infants. The assessment involves observing infants’ spontaneous movements 

and evaluating their quality and maturity. Understanding these movements and the procedure 

by which they are evaluated is essential if any extension of the tool is desired.  

This section goes through an overview of the General Movements Assessment, its 

objective, development, techniques, procedures, and application in clinical practice. A 

comparison between GMA and its alternatives, such as the TIMP and the HINE, is also included. 

2.1.1 Objective and development 

The nervous system is responsible for coordinating many of the body’s functions, from sensory 

perception and movement to memory and learning (Ludwig et al., 2022). Taking care of it should 

start early and be a priority. Neurological examination of newborns – whether pre-term or full-

term – is of utmost importance. Notably, infants who may have suffered birth or pregnancy 

trauma, and those who were born into families with a complicated medical history, should all 

be subject to some kind of assessment. These are often called “at risk” infants (Prechtl, 1977). 

The important purpose of the neurological examination is to document the newborn’s 

neurodevelopment. If irregular, follow-up care is extremely beneficial (Novak et al., 2017; 

Sokołów et al., 2020). If an examination predicts motor maldevelopment, for instance, early 

physiotherapy may be crucial for the infant’s subsequent years (Sant et al., 2021). When there 

is a risk of intellectual disability, programs tend to focus on education and support for caregivers 

(Hadders-Algra, 2021). 
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The main hypothesis that enabled GMA as a reliable method for neurological examination 

is that low-risk and high-risk infants have different spontaneous motor patterns (Einspieler et 

al., 2004). Subsequent investigation confirmed the validity of this hypothesis, as clinicians were 

first unable to discern a quantitative discrepancy until the introduction of video recording, which 

revealed a qualitative contrast (Ferrari et al., 1990).  

Specifically, a subset of movements, called “general movements”, had contrasting 

patterns depending on the development of the newborn’s brain (Prechtl, 1990). The GMA’s 

method, then, relies on the qualitative observation of such movements to predict the 

neurodevelopmental outcome of infants.  

2.1.2 What are general movements? 

Infants show a variety of spontaneous movement patterns (see Figure 1), which are motor 

activities not related to external stimulation (de Vries et al., 1982; Prechtl, 1990). General 

movements (GMs) are a prominent subset of an infant’s spontaneous movements, 

characterized generally as being of special complexity (Prechtl, 2001). These movements are 

observed already during the fetal stage, in infants with 9 weeks postmenstrual3 age (Einspieler 

et al., 1997). The same movement pattern continues until the end of the second month of 

corrected age4 (CA) when new GM patterns gradually appear. 

Broadly, general movements have been defined as gross movements that involve the whole 

body, lasting from a few seconds to a minute. They “wax and wane in intensity, force, and speed, 

and their onset and end are gradual” (Prechtl, 1990). Most of the “extension or flexion of arms 

and legs is complex, with superimposed rotations and often slight changes in direction of the 

movement” (ibid.). Across the years, general movements have been consistently characterized 

by predicates such as “always graceful in character” (de Vries et al., 1982). In fact, being “fluent 

and elegant” is part of its common definition (Prechtl, 1990), which continued to be used in 

 

3 Ascribing neonate age is standardized. “Gestational age” refers to the time elapsed between the first day of the 
mother’s last menstrual period and the day of delivery. “Chronological age” is the time elapsed since birth. 
“Postmenstrual age” is defined as the sum of gestational and chronological age (Committee on Fetus and 
Newborn, 2004).  
4  “Corrected age” is a term often used to describe children up to 3 years of age who were born preterm. It is 
computed as the chronological age reduced by the number of months born before expected day of delivery (40 
weeks). This terminology will be used throughout this work. 
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subsequent research  (Bos et al., 1997; Einspieler et al., 1997; Ferrari et al., 1990; Prechtl, 1990) 

and in the recent literature (Gima et al., 2019; Y.-C. Wu et al., 2021). 

More relevant to the General Movement Assessment is the description of age-specific 

patterns. Healthy infants from term age to their second month show GMs called writhing 

movements (Einspieler et al., 1997). It is important to note that, despite having different names, 

fetal/preterm movements, and writhing movements have a very similar appearance (Einspieler 

& Prechtl, 2005). Figure 2 illustrates the chronological order of GMs. 

 

 
Figure 2 - Developmental course of general movements. 

(Einspieler & Prechtl, 2005). 

 

Writhing movements have small to moderate amplitude and slow to moderate speed. Extensor 

movements, such as an extension of the arms and legs, are common during this period. These 

movements are typically of an elliptical – writhing – form. Furthermore, co-contraction of 

antagonist muscles is frequent (Prechtl & Hopkins, 1986).   

At the age of 6 to 9 weeks post-term, writhing movements gradually transform into another 

pattern, named fidgety movements. Fidgety movements have a circular shape, small 

amplitude, moderate speed, and irregular acceleration of the neck, trunk, and limbs (Einspieler 

et al., 1997). They are continuous when the infant is awake and not in focused attention. Present 

until 15 to at most 20 weeks corrected age (see Footnote 3), initially occurring as isolated 
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events, then increasing in frequency, and finally wearing off to be replaced by antigravity and 

intentional movements (Einspieler et al., 2016). 

When these patterns do not occur in the way they are supposed to, they are labeled as 

abnormal movements and indicate a risk of cognitive and motor maldevelopment. For the 

writhing period, three abnormalities can occur:  

• Poor repertoire (PR): sequences of successive movement that are monotonous and 

do not happen in the complex way that GMs normally have (Ferrari et al., 1990); 

• Cramped-synchronized (CS): GMs appear rigid while limb and trunk muscles 

contract and relax almost in a synchronized manner (Einspieler et al., 1997) 

• Chaotic (Ch): all limb’s movements are of large amplitude occurring in a chaotic and 

abrupt manner, with neither fluency nor smoothness (ibid.).  

An infant (B) with poor-repertoire GMs, born at 28 weeks postmenstrual age, is contrasted to a 

healthy infant (A), born at term age, in Figure 3. Poor-repertoire GMs are recognizable by the 

nearly identical frames.  
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Figure 3 - Video frames (left to right, top to bottom) of recordings from infants in the fidgety period. 

Infant A (above) has healthy GMs, infant B (below) has abnormal, PR GMs. Interval between frames is 0.24s 
(Hadders-Algra, 2004). 

 

Regarding the fidgety period, patterns are said to be abnormal when either: fidgety movements 

are never observed from ages 6 to 20 weeks post-term; or they have exaggerated amplitude, 

speed, and jerkiness. Such patterns are called “absent” and “abnormal” (Prechtl et al., 1997). 

A summary of normal and abnormal GMs is given in Table 1. 
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Table 1 - Definition of GMs and their abnormalities, in accordance with the General Movements Trust. 
(Prechtl, 2001). 

Age Period Normal GMs Abnormal GMs 
Prenatal and 

preterm 
Whole body movements. Variable sequence of arm, 
leg, neck, and trunk motion. Gradual beginning and 
end, with irregular intensity, force, and speed. 
Complex extension of arms and legs. Superimposed 
rotations and change of direction. 

Poor repertoire (PR): monotonous 
sequence of successive 
movements. Motion is not as 
complex as seen in normal GMs.                
Cramped-synchronized (CS): rigid 
movements that lack smoothness. 
Limb and trunk muscles contract 
and relax simultaneously.                
Chaotic (Ch): Large amplitude, no 
fluency nor smoothness, and abrupt. 

Term age 
until 8 

weeks’ post-
term age          
(writhing 
period) 

Small-to-moderate amplitude, slow-to-moderate 
speed. Fast and large extension motion, especially in 
the arms. Elliptical in shape. Co-contraction of 
antagonist muscles. 

6 to 20 
weeks’ 

postterm age 
(fidgety 
period) 

Circular movements of small amplitude, moderate 
speed, variable neck, trunk, and limbs acceleration. 
Continual in the awake infant, except during focused 
attention periods. Initially happen as isolated events, 
gradually increasing in frequency and finally wearing 
off to be replaced by intentional movements. 

Absent (FM-): Fidgety movements 
are never observed from ages 6 to 20 
weeks post-term.                      
Abnormal (AF): moderately or greatly 
exaggerated amplitude, speed, and 
jerkiness. 

 

2.1.3 Techniques and procedure 

The procedure to assess motor function by GMA is agreed upon. This subsection goes over it 

briefly, to the extent that it contributes to this work. Concerning the setup, recording footage is 

usually preferred over in loco assessment, allowing re-playability and slow-motion features, 

and avoiding interference of observers in the infant’s behavior  (Einspieler et al., 2004). The best 

view of the baby is obtained by filming from above (ibid.). Besides, the infant should lie in the 

supine position in the incubator, bed, or on a mattress, depending on its age, and temperature 

should be comfortable, as well as the infant’s clothing, so that movement is not limited 

(Einspieler et al., 1997).  

Video recording and analysis of GMs should be done longitudinally. One hour of recording 

is sufficient so that smaller intervals (3-5 minutes) containing GMs are identified and separated 

from the full footage. In the end, a full collection of an infant’s movement recording should 

contain (i) many recordings of the preterm period; (ii) one recording of term age; (iii) one 

recording between 3 and 6 weeks; and (iv) at least one recording during fidgety movement 

period (Einspieler et al., 1997). Several assessments done longitudinally are often called 

“developmental trajectories,” describing the quality of general movements across an infant’s 
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first 2 months of age. Table 2 shows the developmental trajectories for 6 distinct infants, all born 

preterm (<37 weeks), and their neurological outcome at 2 years of age.  

 

Table 2 - Developmental trajectories and longitudinal GM assessments. 
•, moment of birth; N, normal movement or outcome; DR, developmental retardation; CP, cerebral palsy. 

Adapted from (Einspieler et al., 1997). 
 Postmenstrual age (weeks) 

2y Infant 
nº  

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

1   •  N N N  N   N     N 

2     • PR  PR  PR   PR  N  N 

3   •  CS  PR  PR   PR   PR  DR 

4 • PR Ch  Ch  Ch  PR  PR   PR   CP 

5   • PR PR CS  CS   CS    CS  CP 

6 •  CS CS CS CS  CS   CS    CS  CP 

 

 

These are valuable to the extent that similar trajectories might yield similar developmental 

outcomes. Further analysis, especially of abnormal movements, can be done via scoring 

standards. Scoring standards are irrelevant to this proposal’s topic, namely, computer-based 

approaches for automating GMA. Similarly, procedures for interscorer agreement and examiner 

knowledge prior to assessment are equally out of scope. However, it is noteworthy that 

diagnosis done via GMA is always subjected to interscorer agreement analysis, and is only 

considered reliable with high scores. For scoring standards, interscorer agreements, and 

examiner’s prior knowledge requisites, see respectively (Einspieler et al., 1997; Ferrari et al., 

1990; Prechtl, 1977), (Peyton et al., 2021), and (Y.-C. Wu et al., 2021). 

2.1.4 GMA in clinical practice: prediction, advantages, and reliability 

Accumulated evidence supports GMA as a reliable tool for indicating neuromotor risk, 

particularly mild cognitive delays, and cerebral palsy (Akcakaya et al., 2019; Bosanquet et al., 

2013; Caesar et al., 2021; Craciunoiu & Holsti, 2017; Kwong et al., 2018; Noble & Boyd, 2012; 

Novak et al., 2017). Furthermore, GMA can consistently indicate the risk of specific cerebral 

palsy (CP) types. Spastic and dyskinetic CP are the most common subtypes, with over 70% 

prevalence in CP populations (Novak et al., 2017). These are characterized by a combination of 

loosened and stiffened musculature, which results in poor walking and reflexes, feeding and 

posture issues, and comorbidities such as musculoskeletal, behavioral, and intellectual 
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problems (ibid.). Cramped-synchronized GMs seem to be highly correlated with the late 

development of severe spastic CP (Einspieler & Prechtl, 2005). Additionally, the risk of both 

spastic and dyskinetic variations of CP is accurately indicated by the absence of fidgety 

movements (FM-) (ibid.). 

Overall, GMA is used in clinical settings for the early identification of developmental 

disorders and the assessment of infants at risk. The earlier the identification of risk, the better 

intervention plans can be suitably planned for the infant and its family. Historically, cerebral 

palsy is accurately diagnosed in infants between 12 to 24 months of age (Te Velde et al., 2021). 

Implementing GMA as a clinical routine dropped this mark, on average, from 19.5 (95% CI [16.2 

- 22.8]) to 9.5 months of age (95% CI [4.5 – 14.6]) (Maitre et al., 2020).  

Metrics for the reliability of GMA and other neurological assessments are computed by 

comparing the predicted outcome and the subsequent, decisive, outcome. This final outcome 

is usually acquired via neurological follow-ups based on scales, such as the Griffith Mental 

Development Scales (GMDS) and the Bayley Scales of Infant and Toddler Development (BSID). 

Briefly, these scales measure motor, cognitive, language, and social-emotional skills of the 

infant and output a score, that is representative of the infant's neurodevelopment 

(Balasundaram & Avulakunta, 2022; Pino et al., 2022). This enables standardized comparison 

between different methods. 

Although choosing an assessment technique should consider the primary purpose of 

examination, GMA has consistently high values for positive and negative prediction, sensitivity, 

and specificity. In a systematic review of 8 neonatal assessments of preterm infants up to 4 

months, GMA achieved the best scores for all metrics mentioned, followed by the Test of Infant 

Motor Performance (Noble & Boyd, 2012). In a 19 studies review (Bosanquet et al., 2013), GMA 

had estimates of 95 to 100% sensitivity and 96 to 98% specificity in 2 studies. In another 2 

studies made during the fidgety period, assessment on preterm infants achieved sensitivity and 

specificity of 87 to 100% and 82% to 95%, respectively (ibid.). Four additional studies 

comprising 326 infants with a 29% prevalence of CP had a pooled sensitivity/specificity of 98% 

(95% CI [73-100]) and 91% (95% CI [83-95]) respectively (ibid.). Magnetic resonance scans 

(MRIs) and Cranial ultrasounds (CUSs) had similar results in predicting CP, with 86-100% 

sensitivity and 87-97% specificity (Bosanquet et al., 2013). A review of 6 systematic reviews and 

2 evidence-based guidelines described MRI and GMA as the most reliable tools for predicting 



28 

 

CP before 5 months CA, with 86-89% and 98% sensitivity scores respectively (Novak et al., 

2017). Conducted in a clinic where GMA is standardly used, a study with 80 infants (60% 

prevalence of motor disabilities) achieved 95.8% sensitivity and 87.5% (Akcakaya et al., 2019). 

Even though the General Movement Assessment is well supported, there are two main 

disadvantages. Firstly, abnormal movement patterns indicate risk at different degrees of 

reliability. The absence of fidgety, as seen before, is highly predictive (see Table 3 for a summary 

of predictive scores for different patterns). One drawback is that specificity values for GMA of 

writhing movements are low (59% CI [45-71]) (Kwong et al., 2018). This indicates an elevated 

number of false positives, which means that a high number of infants might be wrongly induced 

into intervention. Secondly, since general movements stop manifesting after 20 weeks 

corrected age, GMA can no longer be applied (Caesar et al., 2021). 

 

Table 3 - Summary of predictive scores for distinct abnormal patterns by GMA. 
Adapted from (Kwong et al., 2018). 

Test Sensitivity, % (95% CI) Specificity, % (95% CI) PPV range, % NPV range, % 
Cramped-synchronized 70 (54-82) 97 (74-100) 36-100 74-94 
Poor-repertoire 93 (86-96) 59 (45-71) 8-68 80-100 
Absent fidgety 89 (66-97) 81 (64-91) 6-56 96-100 

 

 

Despite all, GMA is often judged for its subjective analysis and evaluation. GMA is consistent 

and reliable when carried out by experts, but falls off when applied by practitioners with a basic 

training course and fewer years of experience (Y.-C. Wu et al., 2021). Requiring vast experience 

and advanced training damages GMA’s applicability and hampers it as a standard in clinical 

practice. This motivates automation attempts, to which we now turn. 

2.2 Automating GMA with Deep Neural Networks 

Deep neural networks (DNNs) are a class of machine learning algorithms based on neurons – 

computational units responsible for mathematical operations – organized in hierarchical layers. 

By continuously passing information through these layers, and adjusting themselves, DNNs can 

extract useful features for different machine learning tasks, such as image segmentation and 

action recognition (Bishop, 2006; Theodoridis, 2015). When the goal is human action 

recognition, a particular type of DNN architecture, namely Graph Convolutional Networks 
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(GCNs), has been thoroughly used and shown great results due to its power to convolute on 

graph-structure data (Ahmad et al., 2021; S. Zhang et al., 2019).  

Data from infant movement can be easily represented in graphs (see Figure 4) both spatially 

and temporally, and GCNs offer the computational modules required for dealing with these 

data.  

 

 

Figure 4 - A skeleton-like structure superimposed on a video recording frame of a moving infant. 

The points can be naturally modelled as nodes whose edges are the connecting lines (Groos, Adde, Stoen, et al., 
2022). 

 

Specifically, we will be dealing with time-series of 2D skeleton data, i.e., 2D coordinates for 

different body parts over time. Skeleton data naturally translates to graphs, and can be further 

modeled temporally. That said, this section briefly goes over the core functioning of the 

generalized DNN structure, the convolution operation and its use in Convolutional Neural 

Networks (CNNs), and its extension to graph input data in GCNs. Additionally, we describe 

regularization techniques and common metrics used for evaluating the performance of these 

DL systems, which will be later used in our performance report. 

2.2.1 Deep neural networks and learning 

Deep neural networks owe their origin to the foundational work of Frank Rosenblatt in 1957 with 

the perceptron, a rudimentary linear classifier (Rosenblatt, 1957). Although the perceptron 
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originally represented a single-layer network, we use the term here as a precursor to 

understanding more complex architectures, which usually involve several, deep, layers. The 

architecture of a perceptron encompasses three fundamental parts: input, weighted 

summation, and output. These layers play distinctive roles in processing information for various 

machine-learning tasks, such as classification, regression, and segmentation (Georgevici & 

Terblanche, 2019). 

Perceptrons can be stacked parallelly to create a Multi-layer perceptron (MLP), known for 

its power to capture non-linear relationships in the data (Murtagh, 1991). MLPs share the 

essential features of a perceptron, with the addition of an activation function after each layer, 

from which non-linearity emerges. In it, the input units 𝑥𝑖  are connected to the second layer’s 

units ℎ𝑗 , called a hidden layer through weights 𝑤𝑖,j. For a hidden unit ℎ1, its input will be the 

weighted sum of the input units 𝑥𝑖  with the weights 𝑤𝑖,1, and similarly for all hidden units. Then, 

the output of the weighted sum is non-linearly transformed by an activation function σ.5 Thus, 

the output from a hidden unit ℎ𝑗  is 

 

 ℎ𝑗 = 𝜎(𝐰j 𝐱) (1) 

where 𝑤j is the vector of weights going from the input vector 𝐱 to the hidden unit of index 𝑗. The 

activation function σ can take many forms, but it is here taken to be the sigmoid function (Dubey 

et al., 2022), for clarity purposes. The sigmoid function simply reduces its input into the range 

[0,1], and allows for efficient training in later phases – as will be seen. Finally, the output layer 

can be mapped by ϕ to whatever range of values corresponds to the desired outcome. It is 

similar to Equation 1 in which 

 

 �̂�𝑘 = ϕ(𝑤k 𝒉) (2) 

 

 

5 Our description of neural networks omit biases, as they are unessential in this introduction. Similarly to weights, 
biases are parameters usually added to each previous layer state, such that a hidden layer ℎ𝑗  is computed as the 
product of the previous layer, e.g. the input, with the corresponding weights summed with a set of input-
independent biases. During the learning phase both weights and biases are adjusted, but we will consider weights 
solely. 
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where 𝑤k  is the vector of weights going from the hidden layer 𝒉 to the output of index 𝑘 (our 

example has only one output). The final activation function, ϕ, may or may not differ from the 

activation function of the hidden layers, σ. Well-known non-linear functions include softmax for 

multi-class classification (Dubey et al., 2022) and ReLU, which will be further described in 

Section 4. Figure 5 illustrates the MLP architecture. Stack more than three hidden layers with, 

for instance, 64 units each, and the MLP is commonly denoted as a deep neural network 

(Goodfellow et al., 2016). If all units – from the input, hidden layers, and output – are connected, 

then the resulting architecture is often called a fully-connected neural network (FCNN) and 

belongs to the most basic class of DNNs. 

Learning, however, plays no role in the process of going from input to output, the feed-

forward or forward pass step of a neural network. Opposite to that, learning is present in the 

backward pass, in which the output is compared to the expected value, e.g., the image label, 

and weights are adjusted. In the next paragraphs, we will quickly go over the process of 

computing loss functions and updating weights through the backpropagation function, as these 

are the essential features of every neural network learning capabilities. 

 

 

Figure 5 - Multi-layer perceptron’s basic architecture. 

The example illustrates an input of 𝑖 elements and one hidden layer 𝒉  with 𝑗 hidden units. The computation for 𝒉 
and the output 𝒚 in matrix form is also shown, wherein weights and layer units are multiplied and transformed by 

their respective activation functions. 

 

Say our toy example has as its input an image that contain a toddler (positive class). Consider 

our MLP model computed an output of 0.4, corresponding to the probability 𝑝 that the input 
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belongs to a positive true label. We would like to say our model made a bad prediction, but most 

importantly that it requires some adjustments. The adjustment of our model takes place in the 

learning phase – and requires computing a loss function and using it to update its weights. 

Loss functions, or cost functions, provide an “error measure” by which a model can guide 

its learning. Different functions exist, each with their own advantages and disadvantages (Wang 

et al., 2022). For binary classification problems, binary cross-entropy (BCE) is a common choice. 

Given one example as input, BCE computes the negative log of the probability of the true label, 

𝑦 , given the predicted outcome �̂� , as seen in Equation 3. Forward passes, however, often 

happen in batches instead of single examples, where a defined number of examples is passed 

through the model before updating its parameters. That said, a more general way of presenting 

BCE is as the average of the negative log-likelihood of 𝑛 examples (Janocha & Czarnecki, 2017): 

 

 
𝐵𝐶𝐸 =

1

𝑛
(∑ 𝑦(𝑖)  × 𝑙𝑜𝑔(�̂�(𝑖)) + (1 − 𝑦(𝑖))  × 𝑙𝑜𝑔(1 − �̂�(𝑖))

𝑛

𝑖=1

) (3) 

 

Large loss values indicate the model needs large changes to better perform. To guide how 

change must happen in a model’s parameters, we can compute the effect of tweaking particular 

parameters on the loss function. Most often, backpropagation is the algorithm responsible for 

indicating in which direction and with what magnitude each of the model’s parameters needs 

to be adjusted to minimize the loss function (Goodfellow et al., 2016). Its detailed inner workings 

are complex and will not be covered here. 

 Once backpropagation yields gradient values for each parameter – broadly corresponding 

to their tweaking effect on cost values --, an optimization algorithm such as gradient descent 

does the model’s update (Nielsen, 2015). Gradient descent (GD) can be separated into three 

variants: batch, stochastic, and mini-batches gradient descent. These are related to the way the 

training data is allocated and offer a trade-off between accuracy and efficiency for updating its 

parameters 𝜽 (Ruder, 2017). Broady, batch GD updates 𝜽 after a full pass through the network; 

stochastic GD (SGD) performs updates after each randomly selected training example; and 

mini-batch GD updates for every mini-batch of 𝑛 training examples. A full training cycle for a 

model usually defines an optimization algorithm, such as SGD, together with a learning rate α 
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hyperparameter6. If working with mini-batches, batch size also becomes a hyperparameter. For 

optimization to happen, a cost function (or functions) must be specified – usually reflecting the 

task the model aims to complete. Thus, a single forward-pass, backpropagation, and parameter 

updates over all training data establish an epoch. Typically, training happens for several epochs 

until the model's performance stabilizes or reaches a satisfactory level, and the exact number 

of epochs is a hyperparameter. 

This subsection aimed to familiarize the reader with how deep networks emerge from 

computations between weights and activation functions. It also described the basic learning 

mechanisms shared by most complex DNNs. The next subsections go over the convolution 

operation, its use in DL architectures, and graph inputs in GCNs. 

2.2.2 Convolutional neural networks 

The convolution operation enables images (and any other two-dimensional data, e.g. time 

series) to be fed as 2D vectors and to extract meaningful features from their local regions 

(O’Shea & Nash, 2015). It works by sliding a filter, or kernel, over the input data – in this case, a 

two-dimensional image –, and computing a combination of the kernel elements and the image 

pixels, often called a feature map. Whereas FCNNs had connections going from every neuron 

in a layer to every neuron in the following layer, CNNs do not. This is due to kernels being smaller 

than the input matrix, and combining fewer elements into their computations. For instance, 

Figure 6 shows the computation of a 2 × 2 kernel in the top-left region of a 4 × 4 input, which 

connects to only four elements of the input – instead of being fully-connected to all 16 of them. 

This property is called sparse connectivity and amounts to a great part of the representational 

capacity of CNNs, as well as their efficiency (Alzubaidi et al., 2021; Goodfellow et al., 2016). 

Secondly, CNNs use the same parameters more than once for a single kernel “slide”: the same 

four parameters of our 2 × 2  kernel will be convoluted to different regions of the input. 

Parameter sharing – the second important property of CNNs – favors the learning of features 

that well-represent spatial patterns and structures. 

 

6  To distinguish between values of the model – such as weights and biases – and values that influence its 
learning/training process, the term hyperparameter is henceforth used (as is usual among the literature 
(Goodfellow et al., 2016; Nielsen, 2015; Ruder, 2017)). 
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Figure 6 - 2D convolution.  

One must imagine the 2 × 2 kernel sliding through the 4 × 4 matrix, from the top-left to the bottom-right corner. 
In this example, the convolution operation happens only where the kernel lies entirely within the input tensor. 

Adapted from (Goodfellow et al., 2016). 

 

Convolution is implemented in CNNs as a convolutional layer, which yields a number of feature 

maps corresponding to different kernels working on the input. Feature maps’ elements are the 

central learnable parameters of CNNs, which will be updated throughout backward passes. 

During the implementation of CNNs, kernel size, stride size, the number of feature maps, and 

other values, are considered hyperparameters to be set. Stride size corresponds to the number 

of elements (e.g., pixels) by which the kernel is slid every step. Typically, the output from 

convolutional layers is run through a non-linear activation function prior to being modified by a 

pooling layer, which further enhances the generalizability and invariance of the net. 

Pooling is responsible for summarizing the output of the previous layer among its neighbors. 

Summary statistics such as the maximum and mean value of 𝑠 elements help to further make 

features invariant to small translation changes in previous layers (see Figure 7). Similarly to 

convolution, pooling is applied considering a kernel and stride size, and different choices for 

these hyperparameters affect the granularity of selected features and the number of 

parameters.  
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Figure 7 - Pooling operation on the output of non-linear activation functions (post-convolution). 

Top:  Max pooling with width three and stride of one element operating on a 1D vector. Bottom: Average pooling 
with a kernel size of 2 × 2 and stride of two elements (vertically and horizontally) on a 2D vector. Adapted from 

(Goodfellow et al., 2016). 

 

Wide kernels for pooling will likely lead to coarser summaries of the data – which might 

represent general patterns of the data –, while smaller kernels might capture finer details, but 

are susceptible to capturing noise and ungeneralizable patterns (O’Shea & Nash, 2015). 

A convolutional neural network specializes in grid-structured data. Most exceedingly, it 

deals with images and two-dimensional data. All modules in a CNN are designed to capture 

spatial patterns and to generalize on them while trying not to be misdirected by noise or 

information from specific regions of the input. As the data of interest to this dissertation is video 

data, CNNs seem especially promising in dealing with video frames, but might still not be the 

best way to represent human motion. The next section goes over graph convolutional networks, 

an extension of CNNs that allows graph-structured data to be used as its input. 

2.2.3 Graph convolutional networks 

CNNs mostly rely on grid patterns for feature extraction –, and once non-Euclidean structures 

are considered CNNs lose most of their advantages (S. Zhang et al., 2019).  A prime example of 

a non-Euclidean structure is the graph, where entities and their relationships can be 

represented by nodes and edges – which carry additional information by themselves. Intuitively, 
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graphs are great representations for human motion. Mapping to the GMA domain, consider 

different body parts represented as nodes and their connecting bones as edges, and graphs turn 

into a useful structure for representing human poses – which in turn encapsulates the needed 

information for identifying movements. In fact, graphs became widely used for portraying 

skeleton-based data, with an emerging class of DNNs’ architectures adapted CNNs to work on 

its non-Euclidean structure (Ahmad et al., 2021; Gori et al., 2005). 

Graph convolutional networks (GCNs) allow the basic operations of CNNs to work on 

graph-structured inputs and differ mostly in the way they aggregate information. As illustrated 

in Figure 8, grid-like topologies such as images allow us to presume a fixed number of 

neighboring elements and an order-like structure, while graphs do not. Convolution and pooling, 

thus, must be adapted for this context. Briefly, we next describe the graph structure and the 

fundamental functions of GCNs. 

 

 

Figure 8 - Range of operations on different topologies. 

(Left) on a two-dimensional Euclidean grid topology and (right) on a graph topology. Blue squares represent the 
center node on which the kernel, in yellow, operates. 

 

Generally, the input of a GCN will be a graph 𝐺 = (𝑉, 𝐸, 𝑿𝑉 , 𝑿𝐸), where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} and 

𝐸 =  {(𝑖, 𝑗) | 𝑖 is connected to 𝑗} are the set of nodes and edges, respectively; 𝒙𝑖 is the feature 

vector of node 𝑣𝑖 , and 𝑿𝑉 = {𝒙1, 𝒙2, … , 𝒙𝑛} is the 𝑛-sized set of feature vectors of all nodes. 

Similarly, 𝒙(𝑖,𝑗) denotes the feature vector of the edge (𝑖, 𝑗) and 𝑿𝐸  =  {𝒙(𝑖,𝑗)|(𝑖, 𝑗) ∈ 𝐸} is the 𝑚-

sized set of feature vectors of all edges. Connections of the graph are contained in an adjacency 

graph 𝐀 ∈ ℝ𝑛×𝑛 where 𝐀(𝑖,𝑗) = 1 if nodes 𝑖 and 𝑗 are connected, otherwise 0. As with any DNN, 
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distinct tasks can be undertaken by GCNs, e.g., classification, segmentation, and regression. 

Moreover, these tasks can be aimed at specific nodes, edges, or entire graphs (Zhou et al., 2020). 

Graphs may be construed in numerous ways, and a discussion of how GCNs can adapt to each 

one is beyond the scope of this work. Let us limit ourselves, then, to undirected and unweighted 

graphs – where 𝑿𝑉  exhausts the total number of features – and to graph-level classification, 

where an entire graph structure is classified. 

The first step of a GCN is usually a convolution layer, same as with CNNs. The required 

information for a convolution layer is the set of features 𝑿𝑉  and the graph’s adjacency matrix 𝐀, 

and its output consists of a new graph with updated embedding vectors. Node-wise, 

convolution is often called message-passing (Ward et al., 2022) as it collects information from 

neighboring nodes to update its own features and a set of learnable parameters, 

mathematically defined as 

𝐡𝑣
(𝑠) = σ( ∑

𝐡𝑗
(𝑠−1)

𝐰

√|𝓝(𝑣)||𝓝(𝑗)|
𝑗∈𝓝(𝑣)

)  (4) 

 

where 𝐡𝑣
(𝑠) is the embedding vector of node 𝑣 at step (𝑠), σ is an activation function, 𝓝(𝑣) and 

𝓝(𝑗) are the neighbors of nodes 𝑣 and 𝑗, 𝐡𝑗
(𝑠−1) is the embedding vector of node 𝑗 at step (𝑠 −

1) , and 𝐰  is a learnable weight matrix. As with CNNs, learnable parameters 𝐰  are shared 

among node updates, ensuring the benefits of parameter-sharing previously mentioned. 

Overall, Equation 4 sets the value of a node embedding to be the weighted sum of its direct 

neighboring nodes’ embeddings, normalized by a value representing the total number of 

“potential” message transmitters available to the target node (Kipf & Welling, 2017). A full pass 

through a convolutional layer, thus, yields 𝑛 embedding vectors with unchanged connections 

(i.e., 𝐀  is unaltered). Stacking these layers allows nodes to integrate information from far-

reaching nodes since their neighbor’s embeddings will also contain information from their 

neighboring nodes. In fact, most GCN architectures rely on the stacking of convolutional layers 

to capture potential relationships across the entire graph (X.-M. Zhang et al., 2021). 

Node-wise embeddings, however, are not sufficient for graph-level classification. To 

achieve this, it is common to further aggregate these embeddings into a single vector. This 

corresponds to the pooling operation in traditional CNNs and is most often achieved by 
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compressing the node embeddings via mean- or max-pooling, and using the resulting vector 𝐳 

as input to an MLP or FCNN, which can finally generate an appropriate output (Zhou et al., 2020). 

Figure 9 concisely illustrates a single pass through a basic GCN for graph-level classification. 

This subsection exhausts the architectural design concepts of deep neural networks which 

will be used in this work. To ensure these models perform well on actual data, and that they 

generalize well to unseen information, regularization techniques are indispensable The next 

section goes over these techniques. 

 

Figure 9 - Overview of operations in a GCN architecture. 

From left to right, the schematic illustrates the convoluting of node 𝑣1 and its neighbors’ features to form 𝒉𝑣1
. 

After repeating convolution for all nodes, max-pooling of the final node embeddings is computed to create a 
graph-level embedding, 𝒛. 

 

2.2.4 Regularization techniques 

When training DNNs – especially with small quantities of data –, learning can sometimes be 

hampered by noisy, un-generalizable data. To keep models from “memorizing” these faulty 

patterns, two common methods have been widely used: batch normalization and dropout. 

Recall the notion of a loss value when training models. If the loss decreases during training but 

increases on unseen data (during testing), it is probable that the model is overfitting. That is, it 

has possibly learned noisy patterns that do not generalize to unseen data (Kukačka et al., 2017). 

Regularization can be seen as a general term for all techniques whose aim is to reduce 

overfitting (Tian & Zhang, 2022). 
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When training, each layer’s learnable parameters get updated for every batch of data. After 

each update, the parameters’ distribution is mostly random, which hinders a fast and optimal 

convergence and subsequent learning (Tian & Zhang, 2022). Batch normalization (BN) 

standardizes the activation output of every batch or mini-batch. Implemented as a layer in a 

DNN, it computes the mean and standard deviation of its input, separately for each feature 

dimension. Then, BN normalizes distributions based on these statistics, which yields a more 

stable and generalizable model. This, in turn, encourages the model to learn more robust 

features of the data and avoid overfitting  (Goodfellow et al., 2016). 

Dropout is also commonly implemented as a layer and does a quite simple job. A dropout 

layer of 𝑝 = 0.5  put after a fully connected layer of 64 neurons means that each of these 

neurons have a 50%  chance of being set to 0 . Besides reducing the number of trained 

parameters, dropout prevents co-adaptation of specific neurons and improves the chance that 

learned features are global and generalizable (Tian & Zhang, 2022). 

2.2.5 Metrics for ML model evaluation 

To standardly evaluate the reliability of machine learning models we need standard metrics. 

This subsection goes over some of the most often used metrics and some of the usual steps for 

evaluating models. Since infants’ motion data is usually small-sized, the most used method for 

training and validation of models is Leave-One-Out cross-validation (LOOCV) (Adde et al., 2013; 

K. D. McCay et al., 2019). This consists of separating data into 𝑁 sets where one set is used for 

validation and 𝑁 − 1 is used for training. This can be done for 𝑛 times, where 𝑛 is the number of 

subsets the data was split into (Bishop, 2006). Then, the metrics can be computed as the 

average between all splits made via LOOCV. 

Sensitivity and specificity were already mentioned in section 2.1.4 but will be described 

here. Let us say that in our classification problem, two discrete outcomes are possible: normal 

movement (0) and abnormal movement (+1). Consider that the “positive” class is +1. In this 

case, sensitivity (or recall) is the proportion of positive classes that were successfully classified, 

i.e., abnormal movements that were correctly classified as abnormal movements. Specificity 

(Spc.) tells us the proportion of negative classes that were correctly classified. For instance, a 

sensitivity value of 1 means that all of the abnormal movements in the data were correctly 

classified as such; a specificity value of 0 means that all of the normal movements were 



40 

 

mistakenly classified as abnormal (Trevethan, 2017). The number of positive classes 

successfully classified among all positive classes is called the positive predictive value (PPV). 

The same holds for negative values, and it is called negative predictive value (NPV) (ibid.). See 

Figure 10 and Equations 5-8 for further reference. 

 
Figure 10 - Reference diagram for sensitivity, specificity, PPV, and NPV.  

Adapted from (Trevethan, 2017). 

 

Sensitivity =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

(5) 

Specificity =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
  (6) 

PPV =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (7) 

NPV =  
𝑇𝑁

𝐹𝑁 + 𝑇𝑁
  (8) 

 

Accuracy and AUC-ROC are also frequent in statistical analysis for ML. Accuracy is simply the 

ratio between correct predictions and the total number of predictions (Bishop, 2006). The Area 

Under the Curve of the Receiver Operating Characteristic (AUC-ROC) is a common metric to 

summarize a model performance. Put briefly, ROC is a probability curve that plots sensitivity 

against one-minus-specificity at different thresholds, corresponding to decision boundaries to 

classify instances as either positive or negative (Hajian-Tilaki, 2013).  
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By computing the area under the probability curve, we generate the AUC (see Figure 11), a 

summary measure representing a model’s ability to distinguish between positive and negative 

classes. An AUC of 1 means that the model correctly distinguishes between all positive and 

negative classes; an AUC of 0 means that it predicts all positives as negatives and vice-versa. 

 

 

Figure 11 - AUC-ROC for two classifiers, A and B. 

In this example, A has a larger AUC value than B, corresponding to the light grey area (Melo, 2013). 

 

When dealing with unbalanced datasets, where negative classes outnumber positive, summary 

statistics such as the F1-score and the PR-AUC are better suited. The F1 score is the harmonic 

mean of PPV and sensitivity (also called precision and recall, respectively). The PR is a curve 

plotting precision and recall at different thresholds, and the PR-AUC is a summary value 

describing the overall ability of a model to classify negative and positive classes in a highly 

unbalanced set of data. 
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3 RELATED WORK 

This section contains a summary of related works found through a systematic literature review. 

A brief explanation of the review’s methodology, followed by its main findings and summary 

tables containing relevant information from selected studies will be presented along with a 

small discussion.  

This review was conducted using the PRISMA guidelines (Page et al., 2021), firstly carried 

out on May 24, 2023, and updated on January 13, 2024, on Embase7, Pubmed8, Scopus9, Web 

of Science10, IEEE Xplore11, and ACM Digital Library’s Guide to Computing Literature12. Table 4 

shows the queried terms, which could be contained in the study’s title, abstract, or keywords.13 

Only studies from 2012 onwards were included (11-year period). 

 

Table 4 - Literature review’s search terms separated by topic (measurement, movement, and population). 

Search 
item Search terms 

(i) 
'ai' OR 'features' OR 'computer-based' OR 'video**' OR 'sensor*' OR 'automat*' OR 'acceleromet*' 
OR 'inertial measurement unit' OR 'imu' OR 'motion analysis' OR 'instrumented' OR 'deep*learning' 
OR 'machine* 

(ii) 
'general movement* assessment' OR 'gma' OR 'spontaneous movement*' OR 'fidgety movement*' 
OR 'writhing movement*' 

(iii) 
'infant*' OR 'newborn*' OR 'child*' OR 'preterm' OR 'neonate*' OR 'neonatal' OR 'cerebral palsy' OR 
'high-risk' 

 

 

Eligibility criteria for inclusion are listed in Table 5, and studies had to meet all criteria to be 

included. Additionally, systematic reviews and case studies involving only one subject were 

excluded. A total of 1042 articles were collected across the six queried databases. After 

duplicate removal and a first screening, 93 articles remained – which were fully read and 

 

7 https://embase.com 
8 https://pubmed.ncbi.nlm.nih.gov 
9 https://scopus.com 
10 https://webofknowledge.com 
11 https://ieeexplore.ieee.org 
12 https://dl.acm.org/ 
13 See Table 35 in the APPENDIX for full query strings for each database. 

https://embase.com/
https://pubmed.ncbi.nlm.nih.gov/
https://scopus.com/
https://webofknowledge.com/
https://ieeexplore.ieee.org/
https://dl.acm.org/
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included. Additionally, three studies were added via manual search. As a result, 38 papers were 

included in this systematic review. 

 

Table 5 - Literature review’s inclusion eligibility criteria and their description.  

Inclusion criteria Description 

Population Infant population of ≤ 6 months corrected age (CA); 

Quantitative measurement Employ quantitative instruments for measuring infant movement; 

Comparison with GMA-related 
measurements 

Contain analysis of the quantitative movement data concerning GM or 
derived-diagnosis (e.g., CDDs, CP), be it from statistical analysis or ML; 

Outcome Report outcome measures for classification/multivariate analysis; 
Additional Written in English; peer-reviewed; full articles. 

 

 

The methodology for this review is illustrated in Figure 12. Table 6 and Table 7 describe key 

features of the selected studies which used traditional machine learning and deep learning 

techniques, respectively. This split captures two clear trends identified in the review: ML and DL 

approaches. Besides being different by themselves, the choice of raw data and features is 

usually shaped with these trends in mind. 

3.1 Study population 

All studies here discussed monitored infant movement in some way. It is the data collected via 

this monitoring that is subsequently analyzed. Papers that did not share common datasets 

(n=26) summed 3586 infants. These were often preterm or had other comorbidities with a high-

risk of developing CDDs. In all studies, infants’ GMs were evaluated either by Precthl’s 

(Einspieler & Prechtl, 2005) or Hadders-Algra’s (Hadders-Algra, 2004) GMA methodology. 

Studies analyzing fidgety movement (n=26) used different methodologies, while those analyzing 

writhing GMs employed only Precthl’s method. Optionally, some studies (n=13) assessed 

infants for neurodevelopmental outcomes after 2 years. More information on study population 

for every included study can be found in Table 36 and Table 37 in the APPENDIX. 
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Figure 12 - Identification, screening, and inclusion steps in this review according to the PRISMA flow diagram. 

 

3.1.1 Measurement tools for monitoring movement and raw data 

Regarding measurement tools, we divided studies into those using wearables (n=6) and non-

wearables (n=32) sensors. Wearables included tri-axial accelerometers (n=3), magnet tracking 

systems (n=2), and IMSs (n=1). All non-wearable studies used video recordings of the infants’ 

movement. They differ, however, regarding processing. Specifically, studies applied either 

optical flow (n=9) or pose estimation (n=23) algorithms. Details on all monitoring tools are 

summarized in the “Raw data” column of Table 6 and Table 7. 

3.1.2 Derived features 

In most cases, data for subsequent usage was not the raw sensor data, but specific features 

thought to be relevant. These included motion features – i.e., cross-correlation between 

opposite-sided joints – and frequency features – i.e., mean velocity, acceleration, jerk for each 

limb – calculated over temporal windows. Recent studies tend to use raw video frames or 
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derived pose coordinates in combination with neural networks. Details on derived features are 

found in the column “Derived features” of Table 6 and Table 7. 

 

Table 6 - Information on ML classification studies’ data, methodology, and primary outcome. 
Studies with shared raw data, features, or methods are grouped in different colors. 

Study Raw data Derived features Method Primary outcome (%) 

Gravem et 
al., 2012 

Triaxial 
acceleration 
from 5 
accelerometers 
(t=1hr, s.r.≈19Hz) 

166 statistical and 
temporal features over 1, 2, 
4s windows 

SVM, DT, 
Dynamic 
Bayes + RF 
Val.: 10-fold 
crossval. 

Sn./sp.: 
SVM:  6.9/96.4 
DT: 10.3/93.9 
DB: 49.8/76.4 

Stahl et 
al., 2012 

RGB video (t=n/s) 
w/ Huber-L 
variation optical 
flow 

Absolute motion distance 
(D), relative frequency (F), 
magnitude of wavelet 
coefficients (M) 

SVM 
Val.: 10-fold 
crossval. 

SVM sn./sp./acc. for 
each feature: 
D: 76.7/95.1/91.7 
F: 85.3/95.5/93.7 
M: 56/90.7/84.4 

Adde et 
al., 2013 

RGB video 
(t=50s-5min) + 
GMT 

Quantity of motion mean 
(QM) and std. (QSD), 
centroid of motion std. 
(CSD), and their 
combination (CPP) 

LR 
Val.: LOOCV 

Sn./sp. for CP and FM 
class: 
QM: 67/58 – 67/65 
QSD: 78/51 – 56/56  
CSD: 100/74 – 89/77 
CPP: 89/74 – 89/79 

Støen et 
al., 2017 Q, C, CSD  

Generalized 
Linear Mixed 
Model 

CSD was lower in 
normal infants (p < 
0.001)  

Rahmati 
et al., 
2015 

Coordinates 
from 6 
electromagnetic 
sensors (t=n/s, 
s.r.=n/s) + RGB 
video (t=n/s) 

Mean and std. of power 
spectrum as obtained by 
FFT applied on motion data 

PLSR matrix 
rank 
Val.: LOOCV 

Sn./sp./acc. of sensor 
and video data: 
Sensor: 85/92/91 
Video: 92/87/88 

Orlandi et 
al., 2018 

RGB video 
(t=>3min) + 
LDOF QM, mean silhouette 

orientation, mean velocity 
minimum (VMIN), mean 
velocity of silhouette (VsM), 
ratio of velocity on x and y, 
median velocity of centroid 

LR, AdaBoost, 
LogitBoost, 
RF 
Val.: LOOCV 

Sn./sp./acc./AUC for 
CP and FM class: 
LR: 44/95/88.19/77 – 
41/91/79.53/79 
Ada: 13/96/85.83/73 – 
55/95/85.83/82 
Log: 25/94/85.04/77 – 
48/91/81.10/82 
RF: 44/99/92.13/82 – 
31/94/79.53/83  

Raghuram 
et al., 
2019 

VMIN, VsM, mean vertical 
velocity (VY) 

LR Sn./sp./acc.: 
79/63/66 

Raghuram 
et al., 
2022 

RGB video (t=n/s) 
+ LDOF Median of Q, QSD, VY, 

minimum of Q 

Sn./sp.: 
55.17/79.64 

Gao et al., 
2019 

Triaxial 
acceleration 
from 4 
accelerometers 
(t=10min, 
s.r.=100Hz) 

Low dimensional PCA 
features (d=100) 

Discriminativ
e Pattern 
Discovery 
(DPD) 
Val.: LOOCV 

Sn./sp./acc./pr.: 
DPD: 70/87/80/57 
No-DPD: 88/68/70/43 
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Study Raw data Derived features Method Primary outcome (%) 

Ihlen et 
al., 2019 

RGB video 
(t≈5min) + LDOF 

990 statistical and 
temporal features, pixel 
center of 6 body parts 
decomposed via MEMD 
and Hilbert Huang 
transformation 

CIMA model 
(PLSR + LDA) 
Val.: Double 
layer 
crossval. 

Sn./sp./AUC: 
92.7/81.6/87 

K. D. 
McCay et 
al., 2019 

MINI-RGBD 
dataset + 
OpenPose pose 
estimation HOG-based Histograms of 

Joint Orientation 2D 
(HOJO2D) and of Joint 
Displacement (HOJD2D) 
for n-sized windows 

kNN (k=1, 
k=3), LDA, 
Ensemble 
Val.: LOOCV 

Avg. acc. over all 
tested n-sizes, joints, 
and bin-size: 
kNN(k=1): 58.33 
kNN(k=3): 54.16 
LDA: 61.84 
Ensemble: 68.42 

K. D. 
McCay et 
al., 2021 

Ensemble 
Val.: LOOCV 

Avg. sn./sn./acc.: 
100/100/100 

K. D. 
McCay et 
al., 2022 

MINI-RGBD and 
RVI-38 dataset + 
OpenPose pose 
estimation 

HOJO2D, HOJD2D, 
Histogram of Angular 
Displacement, Relative 
Joint Orientation, Relative 
Joint Angular 
Displacement, FFT of Joint 
Displacement Orientation 

LR, SVM, LDA, 
DT, 
Ensemble, 
kNN (k=1, 
k=3) 
Val.: LOOCV 

Avg. sn./sp./acc. for 
all features with their 
best classifiers for 
each dataset: 
MIN: 87.50/91.25/90 
RVI: 75/95.63/92.37 
 

Tsuji et al., 
2020 

RGB video 
(t≈442s) + own 
algorithm optical 
flow 

25 features derived from 
movement magnitude, 
balance, rhythm, and 
movement of body centre 

Log-linearized 
Gaussian 
mixture 
network 
(LLGMN) 
Val.: LOOCV 

Acc. for classifying 4 
(WM/FM/CS/PR) and 2 
classes (Ab./N.): 
4: 83.1 
2: 90.2 

Doroniewi
cz et al., 
2020 

RGB video 
(t≈10min) + 
OpenPose pose 
estimation 

Factor of movement area 
and shape, center of 
movement’s area 

SVM, LDA, RF 
Val.: LOOCV 

Sn./sp./acc.: 
SVM: 71/83/80 
LDA: 40/94/80 
RF: 44/93/81 

Fontana et 
al., 2021 

Triaxial 
acceleration 
from 4 
accelerometers 
(t=10min, 
s.r.=150Hz) 

Cross-correlation of jerk 
for upper/lower limbs, 
kurtosis of the 
acceleration’s first PCA 
component’s probability 
distribution 

LR Sn./sp./AUC: 
88/86/89 

Wu, Xu, 
Wei, 
Kuang, et 
al., 2021 

MINI-RGBD 
dataset + RGB 
videos (t≈5min) + 
PifPaf pose 
estimation Angle between joints 

Grassberger-
Procaccia + 
Spearman 
correlation 
coefficient 
matrix 

Sn./sp./acc.: 
100/87.8/91.5 

Wu, Xu, 
Wei, 
Chen, et 
al., 2021 

MINI-RGBD 
dataset + PifPaf 
pose estimation 

Sn./sp./acc.: 
100/87.5/91.67 

Q. Wu et 
al., 2023 

MINI-RGBD and 
RVI-38 dataset + 
own method 
pose estimation 

Histogram-encoded joint 
coordinates and velocities 

Affinity 
Propagation 
Clustering 
Model 

Sn./sp./acc. on each 
dataset: 
MIN: 100/87.5/91.67 
RVI: 100/87.5/89.47 
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Study Raw data Derived features Method Primary outcome (%) 

Ji et al., 
2023 

RGB video 
(t≈630s) + 
OpenPose pose 
estimation 

72 features derived from 
wrist and angle velocity, 
acceleration and angular 
velocity/acceleration 

SVM, DT, RF, 
GBDT, kNN, 
AdaBoost, 
GNB, MLP 
Val.: LOOCV 

Avg. AUC over 
classifiers: 
0.851; 

s.r.: sample rate; SVM: support vector machine; DT: decision tree; RF: random forest; GMT: General Movements Toolbox; 
LR: logistic regression; LOOCV: leave-one-out cross-validation; FFT: fast-Fourier transform; PLSR: partial least squares 
regression; LDOF: large displacement optical flow; PCA: principal component analysis; LDA: linear discriminant 
analysis; HOG: histogram of gradient; kNN: k-nearest neighbors; GBDT: gradient boosting decision tree; GNB: gaussian 
naïve Bayes; MLP: multi-layer perceptron. 
 

3.1.3 Classification methods 

Data were primarily used for designing and validating classifiers (n=34), or simply for analyzing 

relationships between variables (n=4). Among classification studies, traditional machine 

learning methods were employed in 20 papers, the most frequently implemented algorithms 

being SVMs (n=7), LRs (n=5), and RF (n=5). Fourteen papers used deep learning networks, 

including convolutional (n=5), graph-based (n=4), and attention-based architectures (n=4). All 

classifications were binary, and most systems aimed to predict abnormal GM, either in the 

entire sequences or in video segments. Column “Method” of Table 6 and Table 7 show the 

specific methods for each study that used ML and DL approaches. 

3.1.4 Statistical analysis and study outcomes 

Sensitivity and specificity, along with accuracy, are the most commonly used metrics for 

evaluating a classifier’s performance. The AUC-ROC was also reported in several studies. 

Comparison between ML and DL approaches’ performance is difficult since both data and 

processing are vastly distinct (see column “Primary outcome” of Table 6 and Table 7). An 

emerging exception is the use of the MINI-RGBD and the RVI-38 datasets, which provide frames 

+ 2D/3D coordinates and OpenPose-generated coordinates, respectively. Eleven studies 

evaluated their classifiers on the MINI-RGBD dataset and 5 on the RVI-38 (6 on both). When first 

proposed as an annotated infant movement dataset, classifier performance on the MINI-RGBD 

had already reached 100% accuracy using an Ensemble classifier with 16-binned histograms of 

the right leg’s displacement (K. D. McCay et al., 2019). An Ensemble classifier proposed by 

McCay, K. D. et al. (2021) achieved 100% accuracy, sensitivity and specificity values. More 

recently, Wu, Q. et al. (2023) achieved 100% sensitivity (Sp.: 87.5, Acc.: 91.67) using an Affinity 

Propagation Clustering model and Zhang, Ho, et al., (2022) got 100% accuracy (Sn.: 100, Sp.: 
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100) using a graph convolutional network with an attention module. Performance on the RVI-38 

traded sensitivity and specificity values, while slightly improving accuracy, which went from 

92.37% (K. D. McCay et al., 2022) to 97.37 (H. Zhang, Ho, et al., 2022; H. Zhang, Shum, et al., 

2022) – corresponding to an improvement of 2 successfully classified infants. Currently, 

alongside the 97.37% accuracy level, sensitivity and specificity values are, respectively, 83.33% 

and 100%. Both Wu. Q et al. (2023) and Sakkos, D. et al. (2021) achieved 100% sensitivity values, 

although Sakkos’ study was evaluated on a smaller (n = 25), previous group from the RVI-38 

dataset. 

 

Table 7 - Information on DL and ML/DL both (*) classification studies’ data, methodology, and primary outcome.  
Studies with shared raw data, features, or method are grouped in different color. 

Study Raw data Derived features Method Primary outcome (%) 

K. D. 
McCay et 
al., 2020 

MINI-RGBD 
dataset + 
OpenPose 
pose 
estimation; 
MINI-RGBD 
dataset 
provided 3D 
coordinates 

HOG-based Histograms of 
Joint Orientation (HOJO2D) 
and of Joint Displacement 
(HOJD2D) for n-sized frame 
windows. 

FCNN, Conv1D, 
Conv2D 
Val.: LOOCV 

Avg. acc. for 
HOJO2D+HOJD2D: 
FCNN: 84.72 
Conv1D: 81.25 
Conv2D: 81.25 

Zhu et al., 
2021 

2D-coordinate time-series 
of body joints 

Squeeze-
Excitation + 
attention + 
Conv2D + FCNN 
Val.: LOOCV 

Avg. acc. with and w/o 
attention: 
W: 91.67 
W/O: 91.67 

Garello et 
al., 2021(*) 

RGB video 
(t≈5min) + 
DeepLabCut 
pose 
estimation 

Velocity’s cross-correlation 
of left/right limbs; 
Skewness of velocity 
distribution; periodicity of 
limbs’ trajectory; area out 
of limb’s trajectory std.  
… 
+ 125 general kinematic/ 
frequency features 

RF, SVM 
(Polynomial/ 
Gaussian), FCNN 
Val.: LOOCV 

Overall acc. with 
all/best parameters: 
RF: 56.4/69.1 
FCNN: 54.5/74.5 
SVM-P: 50.9/72.7 
SVM-G: 50.9/78.2 

Moro et 
al., 2022(*) 

RGB video 
(t≈8min) + 
DeepLabCut 
pose 
estimation 

RF, SVM 
(Polynomial/ 
Gaussian), FCNN, 
LSTM 
Val.: 5-fold 
crossval. 

Avg. acc. for each 
model: 
RF: 62.6 
SVM-P: 59.3 
SVM-G: 59.4 
FCNN: 58.0 
LSTM: 59.5 

Nguyen-
Thai et al., 
2021 

RGB video 
(t≈2.5min) + 
OpenPose 
pose 
estimation 

2D-coordinate time-series, 
velocity, acceleration, and 
travel distance of body 
joints. 

Spatiotemporal 
attention-based 
model (STAM) 
Val.: Voting based 
prediction. 

AUC: 
0.8187±0.0377 

Reich et 
al., 2021 

RGB video 
snippets 
(t≈5s) + 
OpenPose 
pose 
estimation 

2D-coordinate time-series 
of body joints 

Shallow 
Multilayer Neural 
Network 
Val.: 5-fold 
crossval. 

Avg. sn./sp./acc. of 
best architecture: 
88/88/88 
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Study Raw data Derived features Method Primary outcome (%) 

D. Sakkos 
et al., 2021 

MINI-RGBD 
and RVI-25 
dataset + 
OpenPose 
pose 
estimation 

2D-coordinate time-series 
of body joints 

LSTM, Conv1D 
Val.: LOOCV 

Sn./sp./acc. for each 
dataset: 
MINI: 100/87.5/91.67 
RVI: 100/87.9/91.5 

Tong et al., 
2022 

RGB videos 
(t=30s) + 
HRNet pose 
estimation 2D-coordinate time-series 

of body joints 

Spatiotemporal, 
Actional-
Structural, and 
Channel-wise 
Topology 
Refinement 
GCNs 

Sn./acc. for each 
model: 
ST-GCN: 77.3/79.0 
AS-GCN: 88.9/87.0 
CTR-GCN: 94.7/87.0 

Gong et 
al., 2022 

Pmi-GMA 
dataset + 
HRNet pose 
estimation 

Acc. for each model: 
ST-GCN: 82.48 
AS-GCN: 79.84 
CTR-GCN: 95.54 

Groos, 
Adde, 
Stoen, et 
al., 2022 

RGB video 
(t≈5min) + 
EfficientPose 
pose 
estimation 

Position, velocity, and 
distance from neighboring 
joint of 2D-coordinate time-
series of body joints 

Ensemble GCN + 
attention + FCNN 
Val.: 7-fold 
crossval. 

Sn./sp./acc.:  
71.4/94.1/90.6 

Hashimoto 
et al., 2022 

RGB video 
(60-210s) + 
OpenPose 
pose 
estimation 

Single frames and multi-
frame optical flow output 
(see Farnebäck, 2003 for 
method) 

Conv + FCNN 
Val.: 5-fold 
crossval. 

Sn./pr./acc.: 
73.7/78.0/75.2 

Luo et al., 
2022 

RGB video 
(t=24-653) + 
OpenPose 
pose 
estimation 

2D-coordinate time-series 
of body joints 

GCN + Conv2D + 
Conv1D + LSTM 
Val.: 5-fold 
crossval. 

Acc./F1/AUC: 
93.8/94.4/96.9 
 

Zhang, 
Shum, et 
al., 2022 

MINI-RGBD 
and RVI-38 
dataset + 
OpenPose 
pose 
estimation 

FFT + frequency-binning of 
2D-coordinate time-series 
of body joints 

GCN + attention + 
FCNN 
Val.: LOOCV 

Sn./sp./acc. for each 
dataset: 
MINI: 100/100/100 
RVI: 83.33/100/97.37 Zhang, Ho, 

et al., 2022 

HOG: histogram of gradient; LOOCV: FCNN: fully-connected neural network; Conv(x)D: x(D)-convolutional neural 
network; leave-one-out cross-validation; RF: random forest; SVM: support vector machine; LSTM: long short-term 
memory neural network; GCN: graph-convolutional neural network; FFT: fast-Fourier transform. 
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4 METHODOLOGY 

In this section, we present the methodology employed in this study. This includes a description 

of our data, the pipeline for preprocessing data, and the adaptation of a graph-based 

convolutional neural network for identifying abnormal GMs in movement sequences – as well 

as the experimental setups used for its training, validation, and testing (see Figure 13). 

 

 

Figure 13 - Methodology overview. 

4.1 Data 

We collected infant movement data from publicly available datasets containing GMA-

annotated sequences of infant movement. Three datasets were selected: the MINI-RGBD 

(Hesse et al., 2019)14, RVI-38 (K. D. McCay et al., 2022), and PMI-GMA (Gong et al., 2022; Tong 

et al., 2022). The MINI-RGBD data consists of 12 sequences of synthetically created moving 

infants. These sequences were first captured from infants up to 7 months of age in the Ludwig 

Maximilian University of Munich and later registered to the Skinned Multi-Infant Linear body 

model (SMIL), which renders the synthetic, anonymized, sequences (Hesse et al., 2018). Each 

sequence is composed of 1000 RGBD frames, and labeled either “normal” for containing 

movement from typically developing infants or “abnormal” if concerning movements were 

present, by an independent GMA expert (K. D. McCay et al., 2019). The RVI-38 dataset 

comprises 38 videos of 38 different infants aged between 3 and 5 months postterm, collected 

from the Royal Victoria Infirmary in Newcastle upon Tyne. Each video varies from 40 seconds to 

5 minutes of duration, with an average of 3min36s. Videos are labeled “FM+” or “FM-” whether 

fidgety movements are normal or abnormal, respectively. Lastly, the PMI-GMA contains 1120 

 

14 Dataset available at http.fhg.de/mini-rgbd. 

http://s.fhg.de/mini-rgbd
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segments of 300 frames each, collected from 87 newborns. For each dataset, the available data 

consists of pose coordinates outputted by pose estimation algorithms. Sequences from the 

MINI-RGBD and RVI-38 are available as the raw output of OpenPose (Z. Cao et al., 2021): 2D 

pose coordinates and corresponding confidence scores. PMI-GMA’s sequences were available 

as the output of the HRNet model (Sun et al., 2019): 2D pose coordinates without confidence 

scores. Further details are summarized in Table 8. 

 

Table 8 - Summary description of the three datasets used in this study 

Characteristic 
Dataset 

MINI-RGBD RVI-38 Pmi-GMA 

Nº of subjects 12 infants (8 normal, 4 abnormal) 38 infants (32 absent, 6 
present FM) 

87 newborns (64 absent, 
23 present PR) 

Age interval < 7 months (not specified unit) 36 - 60 weeks (not 
specified unit) 

Not specified (by 
newborn definition: < 28 
days ChA). 

Annotation 
type 

Normal/abnormal general 
movement patterns, as assessed 
by a GMA assessor in K. D. McCay 
et al., 2019; Wu, Xu, Wei, Kuang, 
et al., 2021) 

Presence/absence of 
fidgety movements (FM), 
as assessed by two GMA 
assessors 

Presence/absence of 
poor-repertoire (PR) 
movement patterns 

Available as 12 2D pose coordinates + 
confidence scores for 25 joints + 
label 

38 2D pose coordinates + 
confidence scores for 25 
joints + label 

2D pose coordinates 
w/o confidence scores 
for 17 joints + label 

 

 

In total, sequences from 137 infants were used, from which 33 contained abnormal GMs and 

104 had healthy GMs. For each sequence, GM quality was indicated by a binary label, where +1 

(positive class) corresponded to abnormal GM sequences. The number of sequences summed 

1170 and had variable lengths. 

4.2 Pre-processing 

Regardless of the dataset, samples (sequences) contained positional data and a label. As 

different datasets had distinct ways of organizing data, the first step in our pipeline is to 

standardize their structure – detailed in Section 4.2.1. Then, further processing is applied to 

each dataset to reduce unnecessary variance of positional data both internally and among each 

other. Internally, noisy aspects of the data derived from either video capture or pose estimation 

algorithms, such as missing values and outliers, were addressed and treated by normalization 

and smoothing techniques. The last row of Table 8 shows how the data is available in each 
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dataset. Among different datasets, the position and scale of infants were normalized by 

rescaling, pivoting, and rotation operations. Overall, this allows us to better train our model on 

mixed data coming from different origins, as particularities of each dataset (e.g., video capture 

ratio and distance, FPS) and of irrelevant infant features (e.g., body size and orientation) are 

reduced. These steps are described in Section 4.2.2. 

All preprocessing was done in Python v3.9.17 and its following packages: Pandas v1.5.3 

and NumPy v1.25 for data handling; Matplotlib v3.7.1 for visualizations; and SciPy v.1.10.1 and 

Scikit-learn v.1.2.2 for normalization and statistics. 

4.2.1 Inter datasets standardization 

Data were transformed to represent 2D movement signals for different body joints over time. 

For each sample, we define a 3D tensor 𝑇𝐅,𝐉,𝐂 where 𝐅 = {𝐟0, 𝐟1, … 𝐟𝑛} denotes the set of indices 

representing frames, 𝐉 = {𝐣0, 𝐣1, … 𝐣𝑚}  represents the set of indices of joints, and 𝐂 =  {𝐱, 𝐲} 

represent the two axes of positional data. Here, 𝑛 and 𝑚 denote the total number of frames and 

joints, respectively. Additionally, samples contain a label: +1  for abnormal movement 

sequence, 0 otherwise. Thus, all 1170 samples, can be represented as a set of tensors 𝑇𝐅,𝐉,𝐂
(𝑠)  

where (𝑠) is the sample ID, specifying the origin dataset and an infant identification number. 

Figure 14 shows a visual representation of such a tensor. 

Frame and joint quantity, 𝑛  and 𝑚, were variable among different datasets. MINI-RGBD 

samples had a fixed length of 𝑛 = 1000, RVI-38 samples had a variable length, and PMI-GMA 

had 𝑛 =  300. For now, we keep the original frame quantities. Regarding joints, these datasets 

had respectively 𝑚 = 25, 𝑚 = 25, and 𝑚 = 17, which corresponds to joints from the torso, 

limbs, face, and feet. As feet and facial joints do not contribute to GMs – identifiable by limbs’ 

movement –, they were excluded, except the nose joint which loosely tracks head movement. 

Then, joints shared by all datasets were selected and used as a standard, resulting in 13 joints 

for each sample (see Figure 15). 
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Figure 14 - Tensor structure for a single sample, illustrating three dimensions corresponding to frame quantity, 
number of joints, and x-y coordinates. 

 

 

 
MINI-RGBD dataset PMI-dataset Our work 

Figure 15 - Different numbers of joints and their natural connections across datasets. 

Joints from (left) MINI-RGBD and RVI-38; (center) PMI-GMA, and (right) joints used throughout this work 
overlayed on an infant silhouette mask from the MINI-RGBD dataset. 

 



54 

 

Thus, we set the number of joints to 13 (𝑚 = 13) for all samples, which allows for a more 

straightforward comparison and interpretation of the subsequent results across all sequences 

and ensures that each sequence captures the same underlying movements and patterns. Table 

9 shows the selected joints’ names and an associated numbering system.  

 

Table 9 - The 13 selected joints’ numbers and names. 
L- and R- prefixes correspond, respectively, to left and right. 

Joint nº Joint name 

01 Nose 
02 L-shoulder 
03 R-shoulder 
04 L-elbow 
05 R-elbow 
06 L-wrist 
07 R-wrist 
08 L-hip 
09 R-hip 
10 L-knee 
11 R-knee 
12 L-feet 
13 R-feet 

 

4.2.2 Inner dataset normalization and smoothing 

Normalization and smoothing of data were conducted to address inconsistencies in the 

movement signals, such as pose estimation errors, self-occlusions, and outliers. Large outliers 

are mostly a result of self-occlusions, especially among leg joints (e.g., knee occluding hip and 

feet), and present themselves as zeroed values in the movement signal. Otherwise, joint 

coordinates with an associated low confidence score are also usually outliers. Thus, the first 

step in our pipeline is to remove zeroes and low confidence values (when available, on MINI-

RGBD and RVI-38) and replace them via an interpolation function. Then, we apply the following 

set of operations on all movement signals to reduce irrelevant variability: 

- Rescaling, so that infant size and camera-related aspects (e.g., ratio, distance from 

infant) are discarded; 

- Pivoting, so that at least one of the infant’s joint 2D position is fixed throughout the 

sequence; and 

- Rotation, so that infant orientation and specific positions in the 2D space are discarded.    
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Finally, we set the range of all signals to a specific numerical range and apply a final smoothing 

function to filter the remaining outliers. Further details are described below. 

We first remove all 𝑥 −  and 𝑦 −coordinates with a value of 0 , setting it to NaN (not a 

number). This step yields big gaps in both axes of movement. When dealing with low confidence 

scores (CIs), the already big gaps of data led us to experiment with different thresholds for 

discarding these values. MINI-RGBD’s and RVI-38’s samples had low average CIs, especially for 

the lower limbs (see Figure 16), and a large threshold for discarding CIs would lead to a 

disproportionate drop of data points. With that in mind, for each sample, we compute the mean 

confidence score 𝑆𝐜𝐨𝐧𝐟  of each joint 𝑗  for every frame 𝑓  multiplied by a scalar 𝜀  for different 

thresholds. In this context, lower values of 𝜀  allow more low-confidence values to remain 

untouched, while a 𝜀 = 1 means that all coordinates with a confidence score that is lower than 

the joint’s mean will be discarded. Then, all coordinates below 𝑆𝐜𝐨𝐧𝐟 are set to NaN. 

 

 

Figure 16 - Mean confidence scores, 𝑆𝐜𝐨𝐧𝐟 of all samples joints’ from (right) MINI-RGBD and (left) RVI-38. 

Value in parenthesis on the x-axis corresponds to the label of each sample; 0: negative class, 1: positive class. 

 

A value of 𝜀 =  0.7 was found to keep a mean of 25% of the amount of data in each sample and 

was used throughout the preprocessing. See Figure 17 for an illustration of the drop of low 

confidence values, and Equation 9 for the computation used, where 𝑐(𝐟,𝐣)  represents the 

confidence score of joint 𝐣 at frame 𝐟. 
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Figure 17 - 𝑋 − and 𝑌 − movement signals from a low-quality MINI-RGBD sample for the left knee joint at 
different stages of pre-processing. 

𝑆𝐜𝐨𝐧𝐟 = 
1

𝑛
∑𝑐(𝐟,𝐣) ×  𝜀

𝑛

𝐣=1

  (9) 

 

The next step is to fill gaps through interpolation. Different methods were tested, including 

simple linear, quadratic, and cubic interpolation, Akima interpolation (Akima, 1970), and 

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) (Fritsch & Butland, 1984). All 
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methods except PCHIP and linear interpolation tended to overshoot datapoints while 

interpolating on large gaps, i.e., connecting lines would go way over/below the datapoint, before 

connecting. Although linear interpolation can be considered a safe option, commonly used 

across the literature (Moro et al., 2022; Q. Wu et al., 2023; H. Zhang, Shum, et al., 2022), PCHIP 

is more well-suited to monotonic signals such as ours and better captures the signal’s trends 

without large oscillations. Thus, we are the first study in the GMA automation literature – to the 

best of our knowledge – to use the PCHIP method (see McCay et al., 2022 for an application of 

Akima interpolation). Figure 18 shows the result of some of the interpolation methods 

experimented with. 

 

 
Signal after zero-

removal and removing 
low-confidence values 

 

Linear Interpolation Akima Interpolation PCHIP Interpolation 

Figure 18 - An illustration of different interpolation methods on a segment of 𝑥 − and 𝑦 − movement signals. 

 

Once the signal is interpolated, unwanted variability between samples still remains – such as 

infant size and orientation. These are irrelevant for the assessment of general movements and 

the subsequent classification into normal or abnormal sequences, and only contribute as noise 

for our task. So, to remove such variability, we pass all datasets’ signals through a three-phase 

process: rescaling, pivoting, and rotation. This assures all infant's motion representation in their 

respective signals are of the same size, positioned in the same place, and oriented in the same 

direction. Rescaling was done by finding the vector �⃗⃗� , which connects the nose joint with the 
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midpoint between the left and right hip, and using its length ‖�⃗⃗� ‖ (frame-invariant) to divide all 

𝑥𝑦 − coordinates. We pivot all coordinates around the nose coordinate by subtracting its value 

from all other coordinates, for each frame. Then, rotation is achieved by aligning all coordinates 

with reference to the angle θ  between  �⃗⃗�  and the horizontal x −axis, resulting in a standard 

orientation for all samples. A plot of pose coordinates for a single frame in the first step of 

preprocessing and after the three-phase process can be found in Figure 19. 

High-frequency oscillations are consistently found throughout all the movement signals, 

and represent fast, abrupt changes in position otherwise impossible to occur naturally, such as 

a leg-length spasm in 200ms. To address these, we smoothed each axes signal by a rolling 

window median filter. We set the window to 5 frames, and filter out values that exceed the 

computed median (see Figure 20). By applying this technique, we are able to filter out most of 

the remaining noise and outliers, despite having no clear confirmation on whether filtered 

coordinates were a result of natural movement or not.15  

Recall about the duration and frame quantities of RVI-38’s samples, which varies from 40s 

to 5min, averaging 3min and 36s. To standardize this, we split these sequences into 1000 frames 

segments and discard segments with less than 1000 frames (for instance, a sequence of 5583 

frames would be segmented into 5 segments of 1000 frames, and 583 frames would be 

discarded). This process “expands” RVI-38 size from 38 samples to 124, while keeping the 

positive class largely unchanged, from 18% to 16%. Finally, we normalize all signals to a 

common range of [0, 1] using min-max normalization, resulting in 1256 pre-processed samples 

which will be used for feature extraction. 

 

15  When inspecting data quality, we created pose data animations by plotting the 𝑥𝑦 −  coordinates and their 
connective lines along a sequential (frame) axis. While it was possible to identify clear outliers resulting from miss-
estimations from the pose estimation algorithm, we were not able to manually inspect all frames of all samples. 
That said, it is not certain that all datapoints here considered noise/outliers were not a result of natural movement, 
a limitation scarcely admitted by related studies. 
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Figure 19 - Random samples for the MINI-RGBD and RVI-38 datasets during the three-phase process of 
variability removal. 
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Figure 20 - A random sample’s joint movement signal after applying different filtering methods. 

(Top) without median filtering and with median filtering with window sizes of (middle) 5, as applied, and (bottom) 
15, for comparison. 



61 

 

4.3 Feature extraction, histogram encoding, and the graph 

We aim to capture both movement magnitude and direction. Since we are dealing with deep 

neural networks, we believe that high-level features will be represented by the hidden layers of 

our architecture, and thus its input should consist of low-level features. Magnitude is captured 

by a 2D displacement vector for each joint between frames, and direction is captured by 

computing the motion orientation of each joint between frames. Furthermore, we use sliding 

windows and a stride parameter – the distance between consecutive windows –  to set the frame 

intervals on which feature extraction happens. For a joint 𝐣 in frame 𝐟 at position 𝑃(𝑥,𝑦) , with 

window size 𝑤 and stride size 𝑠, the Euclidean distance and motion orientation are computed, 

respectively, by Equations 10-11, and illustrated on Figure 21. 

1011 

∆𝑃𝐣
𝐟,𝑤 = ‖(𝑥𝐟, 𝑦𝐟) − (𝑥𝐟+𝑤, 𝑦𝐟+𝑤)‖√(𝑃(x)𝐣

𝐟 − 𝑃(x)𝐣

(𝐟+𝑤))
2

+ (𝑃(y)𝐣

𝐟 − 𝑃(y)𝐣

(𝐟+𝑤))
2

 (10) 

𝜃𝐣
𝐟 = tan−1(∆𝑃(𝑦)𝐣

𝐟,𝑤, ∆𝑃(𝑥)𝐣

𝐟,𝑤 ) (11) 

 

Figure 21 - Illustration of the feature extraction process. 

For a joint 𝒋 in frame 𝒇 at position 𝑃(𝑥,𝑦)𝒋

𝒇  (in blue) with a window size 𝑤, ∆𝑃 is the Euclidean distance between 

points at different places in the 𝒇-axis; 𝜃 is the angle between the starting point of vector 𝑣  and the horizontal 𝑥 −
𝑎𝑥𝑖𝑠. 
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Computing these features for every frame would not only render a large quantity of features, i.e., 

a large feature space, but could also encourage the model to overfit – given that these features 

would correspond to very small changes in displacement and orientation, often 

unrepresentative of GMs. By applying window-sliding with window and stride set to 30 frames 

(1s), we are able to reduce the feature space considerably, ignoring the small changes in 

orientation and magnitude that happen in unobservable ranges of 300ms-500ms while retaining 

those intervals commonly noted by GMA assessors (≈ 1 − 5𝑠)  (Einspieler & Prechtl, 2005; 

Hadders-Algra, 2004). After this step, each sample is transformed from its previous form 𝑇𝐅,𝐉,𝐂 

to 𝑇𝐖,𝐉,𝐅𝑠𝑝𝑐, where 𝐖 = 
𝐅−𝑤

𝑠
+ 1 and 𝐅𝑠𝑝𝑐 = [∆𝑃, 𝜃], that is, the number of frames is reduced 

to the number of resulting windows, joints remain untouched, and 2D coordinates are replaced 

by the abovementioned features. 

To further summarize the feature space, we follow McCay’s et al. (2021, 2022) method of 

histogram encoding. We partition each feature vector into 𝑏 bins delimited by the minimum and 

maximum value of the vector and count occurrences falling within each bin. By normalizing 

these counts, a histogram represents the probability distribution of the feature vector, and 

further reduces feature space from the number of computed windows to the number of bins, 𝑏, 

as seen in Figure 22. These histograms represent the temporal dimension of each sequence, as 

feature values that vary significantly over time will be reflected in the histogram’s shape and 

distribution. 

Finally, we construe a graph 𝐺 = (𝑉, 𝐸, 𝐗𝑉) where 𝑉 is the set of 13 joints, 𝐸 is the set of 12 

connecting bones, and the node features – histograms per joint – are represented by 𝐗𝑉 = {𝐴 ∈

ℝ13×10} . The graph is undirected: edges have no direction. The connectivity information of 

nodes is stored in a adjacency matrix 𝐀 = {𝐴 ∈  ℝ13×13}, where connected nodes are denoted 

by ones, and unconnected by zeroes. In our graph, nodes are connected to themselves via self-

loops by adding the identity matrix onto 𝐀. If we were to use the raw 𝐀 matrix, convolution would 

generate feature embeddings with large magnitudes for nodes with many neighbors, and small 

magnitudes for nodes with few neighbors. As layers stack, this may become a numerical 

stability problem where weights achieve unmanageable magnitudes. To prevent that, we 



63 

 

normalize the adjacency matrix by how many neighbors a single node has, and how many 

neighbors each neighbor have (see Figure 23) (Kipf & Welling, 2017)16.  

 

 

Figure 22 - Normalized histogram-encoded features for one joint of a random sample.  

The y-axis represents the relative frequency of occurrence and the x-axis represents the feature values. Features 
are (right) ∆𝑃 and (left) 𝜃. 

 

1 .71 0 0 .29 0 0 0 0 0 0 0 0 

.71 1 .71 0 0 0 0 0 0 0 0 0 0 

0 .71 1 .71 0 .29 0 0 0 0 0 0 0 
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0 0 0 0 0 .29 0 0 .29 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 .29 0 .29 1 0 

0 0 0 0 0 0 0 0 0.29 0 0 0.29 1 

Figure 23 - Representation of the normalized adjacency matrix, A. 

 

The pair of features and normalized adjacency matrix (𝐗𝑉, 𝐀) constitute the final representation 

of a single sample, and will be used as the input for our neural network architecture, described 

in section 4.4. Figure 24 illustrates a summary of the feature extraction process, from the 

 

16  A detailed explanation is out of scope. Broadly, this normalization technique leaves unconnected edges as 
zeroes, but transforms connected ones to be the inverse of the square root of multiplying the number of direct 
neighbors and indirect (neighbors of neighbors). This allows peripherical nodes (e.g. feet and hands) to have similar 
weights to central nodes (e.g. shoulders). See (Kipf & Welling, 2017). 
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extraction of motion signals to the computing of window-wise features, and finally the 

histogram-encoding of these features into b bins. 

 

 
Pose coordinates (frame-wise) Feature extraction (window-wise) Histogram-encoding (feature-wise 

Figure 24 - Overview of the feature extraction procedure for one arbitrary joint. 

 

4.4 Multi-stage spatio-temporal graph convolutional network architecture 

Our model architecture is adapted from the Multi-stage spatio-temporal graph convolutional 

network (MS-STGCN) proposed by (Filtjens et al., 2023), which extends on the architecture of 

ST-GCNs (Yan et al., 2018). Originally, the MS-STGCN is an action segmentation system whose 

final output is a mask-like vector containing the model predictions for each frame. This means 

that its original goal is to identify the start and end point of single actions (e.g. jumping, yawning, 

etc.), and its output is a vector with size equal to the length of the inputted sequence, where 

action classes are encoded. For instance, a sequence of 10 frames where jumping occurs in 

frame 2-4 and yawning in frames 6-7 could be represented by the vector [0,1,1,1,0,2,2,0,0,0], 

where jumping and yawning are encoded as ones and twos.  

Here, we adapt the network so that it predicts a label for each of the histogram-encoded 

bins, which represent summary aspects of each sequence’s temporal dimension. As we still 

aim for binary classification of sequences containing either normal or abnormal movements, a 

threshold is applied to this prediction vector transforming it into a binary prediction. The inner 

architecture and implementation details are described below. 
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4.4.1 Model architecture 

An overall picture of the model structure is illustrated in Figure 25. For the following explanation, 

let BS = batch size, FT = number of features, HB = number of histogram-encoded bins, J = 

number of joints, and 𝐟𝐭𝐦 = number of feature maps. As a first step, the feature vector 𝐗𝑉  of 

shape (𝐵𝑆, 𝐹𝑇, 𝐻𝐵, 𝐽)  passes through a batch normalization (BN) layer, which standardizes 

feature distribution along the batch. A reshaped vector (𝐵𝑆, 𝐹𝑇 × 𝐽, 𝐻𝐵) is expanded through a 

1D convolution layer which outputs a (𝐵𝑆, 𝐟𝐭𝐦, 𝐻𝐵, 𝐽) vector. 

A series of 10 ST-GCNs units is then applied, which uses the adjacency matrix 𝐀 to perform 

convolution on both spatial (joint-wise) and temporal (bin-wise) dimensions. First, spatial 

convolution is done by a spatial module (𝐒𝐩𝐂𝐦), which (i) expands the feature vector according 

to a kernel and stride size; (ii) use Einstein summation to aggregate information from 

neighboring nodes, again reducing the feature vector to (𝐵𝑆, 𝐟𝐭𝐦, 𝐻𝐵, 𝐽), and (iii) applies batch 

normalization.  

Secondly, temporal convolution happens inside the temporal module (𝐓𝐩𝐂𝐦 ), which (i) 

applies the ReLU activation function element-wise; (ii) does temporal convolution on the 

histogram-encoded features – which serves as an abstraction on the raw, sequential frames – 

with a specific kernel and stride size; and (iii) applies batch normalization. Finally, a dropout 

layer with probability 𝑝 = 0.2  is applied and the ST-GCN output is concatenated with a 

residual17 (the feature vector earlier generated by the 1D convolution). 

After 10 ST-GCN iterations, we apply pooling to the spatial dimension of the vector, 

resulting in a (𝐵𝑆, 𝐟𝐭𝐦, 𝐻𝐵)  vector. This aggregates the high-level spatial embeddings 

determined by the previous layer, and functions as a down-sampling technique towards our 

binary classification.  

Our model’s last step is to apply convolution on the 𝐟𝐭𝐦  dimension, which reduces the 

feature vector to (𝐵𝑆, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 𝐻𝐵),  which is then passed through a soft-max 

function.  

 

17 Residuals, or “skip connections”, were first proposed as part of the ResNet architecture (He et al., 2016) for 
facilitating the optimization process, as well as regularizing an architecture’s activations by skipping layers. For a 
detailed explanation on using residuals and their advantages see (Shafiq & Gu, 2022). 
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The final output for a single sample, thus, is a mask containing the probabilities of each of 

the 𝐻𝐵 -bins pertaining to the negative or positive class. However, as we intend for binary 

classification of entire sequences (i.e., not singular actions), we set a threshold 𝑡ℎ𝑟 so that a 

sequence is classified as positive only if the ratio of 1s in the mask exceeds 𝑡ℎ𝑟.  

4.4.2 Implementation details 

The threshold value 𝑡ℎ𝑟  was set as a hyperparameter, and evaluated on our optimization 

experiments. For the spatial module, 𝐒𝐩𝐂𝐦, the kernel size and stride size are set to 2 and 1, 

respectively. 𝐓𝐩𝐂𝐦’s same parameters are 1 and 1, respectively. The number of feature maps 

𝐟𝐭𝐦  and bins were experimented for optimization (see Section 4.5.2). Our loss function is a 

combination of binary cross entropy (see Equation 4) and mean squared error (MSE), as 

proposed by (Filtjens et al., 2023). 

 

 

Figure 25 - Model architecture. 
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We used Adam (Kingma & Ba, 2015) as our optimizer, and experimented with different weight 

decay parameters, as well as with different learning rate values. Learning rate, or 𝛼, controls the 

rate at which the model learns; weight decay, on the other hand, prevents the model from 

learning large weights that might lead to overfitting. We set a number of epochs equal to 50 for 

all experiments. Batch sizes were different for each experimental design, and is reported in the 

next section. 

The model and all related experiments were implemented using the PyTorch v2.2.1 module 

of Python v3.9.17. All experiments were run on a NVIDIA Tesla T4 GPU, with 16GB of RAM, 2560 

CUDA cores, through the Google Colab service. 

4.5 Experiments design 

This subsection describes our methodology for arranging the available data into different setups, 

splitting data into training, validation, and testing sets, optimizing a selection of our network’s 

hyperparameters, and reporting relevant metrics. 

4.5.1 Experiments setups 

We arranged the three available datasets in four different ways, resulting in distinct 

experimental setups. These setups allow us to compare our results with the related literature, 

which has the most commonly reported results on single datasets (D. Sakkos et al., 2021; K. D. 

McCay et al., 2019, 2020, 2021; K. McCay et al., 2022; Q. Wu et al., 2023; Y.-C. Wu et al., 2021; 

H. Zhang, Ho, et al., 2022; H. Zhang, Shum, et al., 2022), while also exploring all the potential of 

publicly available data. We describe the training, validation, and testing information of each 

setup on Table 10. All splits are stratified with regard to class. Those named “Single-

[dataset]“ refer to setups whose data comes from only one dataset. Setups with regular splits 

had 80% of data separated for training, and the remaining 20% was additionally split 80/20% to 

form validation and testing data. An adapted Nested-LOOCV was used when data samples were 

significantly small, as in Single-MINI. It worked by separating one sample for testing, and then 

further splitting the remaining 𝑁 − 1 samples into training and validation by 80/20% splitting. 

For Single-MINI, we assured that the validation split would always contain one positive class 

and one negative class; for the Single-RVI setup, at least 3 positive instances were always 

present in the validation split. 
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Table 10 - Experimental setups’ information regarding total number of samples, class balance, method used for 
data splitting, and batch size. 

 Total Training/Validation/Testing    

Setup Nº of samples 
(prevalence of 
positive class) 

Nº of samples Split method Batch 
size 

 

Single-MINI 12 (0.33) 9  / 2 / 1 Nested-LOOCV 1  
Single-RVI 124 (0.16) 99 / 20 / 5 0.8/0.2/0.2 (out of 

val.) split 
13  

Single-PMI 1120 (0.50) 896 / 179 / 45 0.8/0.2/0.2 (out of 
val.) split 

16  

MINI+RVI+PMI 1256 (0.46) 1004 / 201 / 51  0.8/0.2/0.2 (out of 
val.) split 
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4.5.2 Hyperparameters optimization 

We performed a random search (Bergstra & Bengio, 2012; Liashchynskyi & Liashchynskyi, 2019) 

40 times on a pre-defined set of values for learning rate, weight decay, video threshold, 

number of feature maps, number of bins, and pooling operation (see Table 11).  Thus, 40 

models with random combinations of hyperparameters are created according to each 

experiment. Our aim is to find the combination of hyperparameters that yields the best results 

on the validation set of each setup. We evaluate metrics on each trial of the random search, 

then select the best performing one for evaluation on the unseen data of the testing split. The 

optimization procedure is done in each setup, separately, and metrics are reported. 

 

Table 11 - Hyperparameter’s names, meanings, and set of values used throughout hyperparameter 
optimization. 

Hyperparameter Meaning Values 

Learning rate (𝜶) Rate at which the model learns from data {0.01, 0.005, 0.001} 
Weight decay (𝝀) Amount of penalization to large parameter values {1𝑒 − 3, 1𝑒 − 4, 1𝑒 − 5} 
Video threshold (thr.) Ratio of positive mask values needed for 

classifying a sequence as positive 
{0.3, 0.4, 0.5} 

Nº  of feature maps (ftm) Quantity of filters applied to input data {32, 64, 128} 
Nº of bins (b) Quantity of bins used during histogram-encoding {6, 12, 18} 
Pooling operation (pool) Type of pooling used in the model {‘max’, ‘mean’} 
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4.5.3 Reported metrics 

We follow the related literature on reporting accuracy, the AUC-ROC, sensitivity, and 

specificity. As seen in section 2.2.5, these are standard metrics for evaluating the performance 

of classification systems. We also investigate the precision (PPV), F1 score and the PR-AUC, as 

these can be more meaningful when dealing with unbalanced datasets such as the MINI-RGBD 

and the RVI-38. A summary of these metrics, their meaning, and their formula are listed for 

reference in Table 12. 

 

Table 12 - Reported metrics and their meaning. 
“Unhealthy” subjects, in this context, refer to sequences containing abnormal GMs (i.e., positive classes).  

Metric  Meaning Formula 

Accuracy Total number of instances correctly classified 𝑇𝑃 + 𝑇𝑁 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁⁄  
Sensitivity 
(Recall) 

Number of unhealthy instances correctly 
classified among unhealthy subjects 

𝑇𝑃 𝑇𝑃 + 𝐹𝑁⁄  

Specificity  Number of healthy instances correctly classified 
among healthy subjects 

𝑇𝑁 𝑇𝑁 + 𝐹𝑃⁄  

AUC-ROC Area under the ROC curve, representing a trade-
off between sensitivity and 1-specificity 

Numerical integration for 
approximating area under curve 

Precision 
(PPV) 

Number of unhealthy instances correctly 
classified among all unhealthy predictions 

𝑇𝑃 𝑇𝑃 + 𝐹𝑃⁄  

F1 Score Harmonic mean of precision and sensitivity 2 × (𝑃𝑅𝐶 × 𝑅𝐶𝐿 𝑃𝑅𝐶 + 𝑅𝐶𝐿)⁄  
PR-AUC Area under the PR curve, representing trade-off 

between precision and recall. 
Numerical integration for 
approximating area under curve 

TP: true positive; TN: true negative; FP: false positive; FN: false negative; AUC-ROC: area under the receiver operating 
characteristic curve; PPV: positive predictive value; PRC: precision; RCL: recall; PR-AUC: area under the precision-recall 

curve. 
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5 RESULTS AND DISCUSSION 

This section presents our experiments on validating the use of the adapted MS-STGCN to 

predict general movements patterns. Specifically, our model predicts a positive class for 

sequences that contain abnormal GMs, and negative otherwise. As a result from our pre-

processing pipeline, data from different datasets have been processed so that only variability 

pertinent to general movements’ behavior remains, while differences on size, data capture 

setups, and specific pose algorithms were reduced. Furthermore, by dropping segments of low 

quality (e.g. low confidence values) and reconstructing the movement signals, we address 

some of the bad quality issues with the data, and increase the chances that our model is able 

to generalize and learn properly. 

For each experimental setup, we first describe and discuss the performance of our optimal 

models for each fold/iteration. Secondly, we analyze results achieved during hyperparameter 

optimization, which justifies the choices made for the optimal models.  As datasets are unequal 

in size and proportion of classes, results varied significantly. Our last experiment, 

MINI+RVI+PMI, was thought of in order to better represent the model’s learning capabilities, and 

is discussed in further detail.  

Performance metrics for all hyperparameters during the optimization procedure for each 

experimental setup are reported below. For every experimental setup we present summary 

metrics for each hyperparameter impact throughout all the training runs, the distribution of the 

F1 score for each hyperparameter, and the hyperparameters of the best performing models 

together with their performance on the testing split. 

5.1 Single-MINI 

This experiment accounts for the MINI-RGBD dataset, which contains 12 samples, 4 of which 

are positive. We used an adapted Nested-LOOCV to train 40 models with random selected 

hyperparameters on each of the 12 folds, select the best performing model (i.e., optimal model) 

in each fold, retrain a model with the best hyperparameters, and assess it in the remaining one 

sample of the testing split. The true class of the test sample can be derived from the metrics in 

Table 13 by looking at whether sensitivity or specificity are unachievable (“---“), corresponding 

to being a negative or positive true class. We achieve an average accuracy of 75%, with a 
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balanced sensitivity and specificity of 75% –corresponding to 2 missed predictions for each 

class.  

Overall, our results on the MINI-RGBD are below the most recent state-of-the-art literature, 

which have yielded performances of 100% with Attention-based neural networks on LOOCV 

protocols. (H. Zhang, Ho, et al., 2022; H. Zhang, Shum, et al., 2022). By using a Nested-LOOCV, 

we believe our results better represent the model capabilities, which reached an average of 75% 

accuracy, sensitivity, and specificity in the test split across all folds (see Table 13). The table 

also shows the optimal hyperparameter combinations of each model. Since Single-MINI testing 

split only contains one sample, we report only accuracy, sensitivity, and specificity. 

 

Table 13 - Optimal model for each fold of Single-MINI and their performance on the testing split. 

Fold 
Hyperparameter values Performance on testing split (n=1) 

𝛼 𝜆 thr. ftm b pool Acc. Sns. Spc. 
1 0.01 0.01 0.5 64 6 max 1. --- 1. 

2 0.001 0.001 0.4 128 6 avg 1. --- 1. 

3 0.001 0.0001 0.4 128 12 max 1. --- 1. 

4 0.01 0.0001 0.3 64 6 avg 1. 1. --- 

5 0.01 0.01 0.3 128 18 avg 1. --- 1. 

6 0.0001 0.01 0.3 64 18 avg 0. --- 0. 

7 0.0001 0.01 0.4 32 12 avg 1. --- 1. 

8 0.01 0.0001 0.4 128 12 max 1. --- 1. 

9 0.01 0.01 0.3 32 12 max 1. 1. --- 

10 0.01 0.001 0.4 128 6 max 0. --- 0. 

11 0.0001 0.0001 0.4 128 18 avg 1. 1. --- 

12 0.001 0.01 0.4 32 6 max 0. 0. --- 

      Average: 0.75 0.75 0.75 

 

The influence of hyperparameter values on the model's behavior is presented in the following 

sections. Information on each hyperparameter is summarized through tables and figures, which 

are grouped by set of values and show the individual distribution for each of the 12 folds used in 

Single-MINI’s Nested-LOOCV procedure. 

5.1.1 Learning rate 

A low learning rate of 0.0001 was found to have the best results on MINI-RGBD, possibly due to 

the small and unbalanced nature of its data (see Table 14). By taking small steps in learning, a 

model is able to neglect large weights that could potentially lead to overfitting and small 

sensitivity values. Indeed, along with the F1 score of 0.71, a sensitivity of 85% was achieved 
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using 0.0001, far from the 62% and 64% of 𝛼 = 0.01 and 𝛼 = 0.001, which varied significantly 

on different folds (see Figure 26). 

 

Table 14 - Performance metrics for learning rate (𝛼) values on Single-MINI. 
Values throughout all (n=480) training runs on the Single-MINI-RGBD experimental setup. 

𝜶 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity 

AUC-
ROC 

Precision 
F1 
Score 

PR-AUC 

0.01 0.64 
(0.22) 

0.75 
(0.44) 

0.54 (0.5) 
0.51 
(0.05) 

0.51 
(0.37) 

0.59 
(0.37) 

0.53 
(0.05) 

169 

0.001 0.62 
(0.21) 

0.73 
(0.44) 

0.51 (0.5) 
0.51 
(0.04) 

0.48 
(0.35) 

0.57 
(0.35) 

0.52 
(0.04) 

154 

0.0001 0.72 
(0.24) 

0.85 
(0.36) 

0.59 (0.5) 
0.52 
(0.05) 

0.64 
(0.35) 

0.71 
(0.34) 

0.53 
(0.06) 

157 

 

 
Figure 26 - Distribution of the F1 Score for different learning rate (𝛼) values on Single-MINI. 

 

5.1.2 Weight decay 

The same can be loosely said about weight decay. “Large” weight decay values, such as λ =

0.0001 seem to have had an impact on how large weights – in this case, due mostly to negative 

classes – affect the model. It can be seen that λ = 0.01, although having a lower average of the 

F1 score, has a more balanced trade-off between sensitivity and specificity (see Table 15 and 

Figure 27). In our particular application, however, it is more desirable that the classification 

system be able to correctly classify positive instances, even if it increases the number of false 
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negatives. This is the case because it is often better to initiate GMA-related treatment (e.g., 

physiotherapy) on healthy infants than it is to discharge unhealthy infants. Thus, we see  λ =

0.001 and λ = 0.0001 as better performing models. 

 

Table 15 - Performance metrics for weight decay (𝜆) values on Single-MINI. 
Values throughout all (n=480) training runs on the Single-MINI experimental setup. 

𝝀 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity AUC-

ROC 
Precision F1 

Score 
PR-AUC 

0.01 0.66 
(0.23) 

0.71 
(0.45) 

0.6 (0.49) 
0.51 
(0.05) 

0.52 
(0.39) 

0.58 
(0.4) 

0.53 
(0.06) 

164 

0.001 0.66 
(0.23) 

0.81 
(0.39) 

0.5 (0.5) 
0.51 
(0.05) 

0.56 
(0.35) 

0.64 
(0.35) 

0.53 
(0.06) 

153 

0.0001 0.66 
(0.23) 

0.8 (0.4) 0.52 (0.5) 
0.51 
(0.05) 

0.56 
(0.36) 

0.64 
(0.35) 

0.53 
(0.06) 

163 

 

 
Figure 27 - Distribution of the F1 Score for different weight decay (𝜆) values on Single-MINI. 

 

5.1.3 Threshold 

The best performing model’s threshold value was 0.3 , rendering an F1 score of 0.67  and 

precision of 0.6 (see Table 16 and Figure 28). A value of 0.3 meant that 30% of the bins had to be 

predicted as positive to ascribe a positive class to the sequence. Thus, it is clear that a small 

value would increase sensitivity, but not so that it would also increase specificity (58%). The 
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reason this happened is not clear as far as this analysis reaches, but correlation analysis 

between different hyperparameters could give insights into it. 

 

Table 16 - Performance metrics for threshold (𝑡ℎ𝑟.) values on Single-MINI experimental setup. 
Values throughout all (n=480) training runs on the Single-MINI experimental setup. 

thr. 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity 

AUC-
ROC 

Precision F1 Score PR-AUC 

0.3 
0.7 (0.24) 

0.81 
(0.39) 

0.58 
(0.49) 

0.52 
(0.05) 

0.6 (0.37) 
0.67 
(0.36) 

0.53 
(0.06) 

153 

0.4 0.65 
(0.23) 

0.77 
(0.43) 

0.54 (0.5) 
0.51 
(0.05) 

0.53 
(0.37) 

0.61 
(0.37) 

0.53 
(0.06) 

162 

0.5 0.63 
(0.22) 

0.75 
(0.43) 

0.52 (0.5) 
0.51 
(0.05) 

0.51 
(0.36) 

0.59 
(0.37) 

0.52 
(0.05) 

165 

 

 
Figure 28 - Distribution of the F1 Score for different threshold (𝑡ℎ𝑟.) values on Single-MINI. 

 

5.1.4 Number of feature maps and number of bins 

Few conclusions can be made from the distribution of F1 scores for number of feature maps 

and bins during optimization. Small differences in their means and standard deviations suggest 

these can have less impact on the model predictions than other hyperparameters (see Table 17 

and Table 18). The mean sensitivity of 𝐟𝐭𝐦 = 32 shows a slight improve in detecting positives, 

backed up by the concurrent increase in precision. Overall, Figure 29 and Figure 30 illustrate 
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that different values for 𝑏𝑖𝑛𝑠  and 𝐟𝐭𝐦  vary greatly on different folds and have inconsistent 

behavior. 

Table 17 - Performance metrics for nº of feature maps (𝐟𝐭𝐦) values on Single-MINI. 
Values throughout all (n=480) training runs on the Single-MINI experimental setup. 

𝐟𝐭𝐦 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity 

AUC-
ROC 

Precision F1 Score PR-AUC 

32 0.69 
(0.24) 

0.81 (0.4) 0.57 (0.5) 
0.52 
(0.05) 

0.59 
(0.37) 

0.66 
(0.36) 

0.53 
(0.06) 

144 

64 0.63 
(0.22) 

0.75 
(0.44) 

0.52 (0.5) 
0.51 
(0.05) 

0.51 
(0.36) 

0.59 
(0.37) 

0.52 
(0.06) 

159 

128 0.66 
(0.23) 

0.77 
(0.42) 

0.55 (0.5) 
0.51 
(0.05) 

0.55 
(0.37) 

0.62 
(0.37) 

0.53 
(0.06) 

177 

 

 
Figure 29 - Distribution of the F1 Score for different nº of feature maps (𝐟𝐭𝐦) values on Single-MINI. 

 

Table 18 - Performance metrics for nº of bins (𝑏𝑖𝑛𝑠) values on Single-MINI. 
Values throughout all (n=480) training runs on the Single-MINI experimental setup. 

𝒃𝒊𝒏𝒔 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity AUC-

ROC 
Precision F1 

Score 
PR-AUC 

6 0.65 
(0.23) 

0.78 
(0.42) 

0.51 (0.5) 
0.51 
(0.05) 

0.53 
(0.36) 

0.62 
(0.36) 

0.52 
(0.06) 

162 

12 0.64 
(0.23) 

0.79 
(0.41) 

0.49 (0.5) 
0.51 
(0.06) 

0.54 
(0.35) 

0.63 
(0.35) 

0.52 
(0.07) 

170 

18 0.69 
(0.24) 

0.75 
(0.43) 

0.64 
(0.48) 

0.51 
(0.04) 

0.57 
(0.39) 

0.63 
(0.39) 

0.53 
(0.05) 

148 
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Figure 30 - Distribution of the F1 Score for different nº of bins (𝑏𝑖𝑛𝑠) values on Single-MINI. 

 

5.1.5 Pooling methods 

Pooling had a significant effect on classification. Table 19 shows an F1 score of 0.81 for the max 

pooling method, compared to 0.43 for mean pooling. Additionally, a standard deviation of 0.22 

and the distributions in Figure 31 describe a consistent performance for this hyperparameter. It 

can also be seen that the F1 score median for 5 out of the 12 folds was equal to 1. and no value 

below 0.6 occurred.  

 

Table 19 - Performance metrics for type of pooling method (𝑝𝑜𝑜𝑙) on Single-MINI. 
Values throughout all (n=480) training runs on the Single-MINI experimental setup. 

𝒑𝒐𝒐𝒍 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity 

AUC-
ROC 

Precision 
F1 
Score 

PR-AUC 

max 0.74 
(0.25) 

0.97 
(0.17) 

0.51 (0.5) 
0.52 
(0.06) 

0.73 
(0.28) 

0.81 
(0.22) 

0.54 
(0.07) 

243 

mean 0.58 
(0.18) 

0.57 (0.5) 
0.58 
(0.49) 

0.5 
(0.03) 

0.36 
(0.36) 

0.43 
(0.39) 

0.52 
(0.04) 

237 
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Figure 31 - Distribution of the F1 Score for different methods of pooling (𝑝𝑜𝑜𝑙) on Single-MINI. 

 

5.2 Single-RVI 

For this experiment, we trained on 80% of the whole dataset, 20% of which were used to validate 

and perform hyperparameter optimization, while testing was done on the remaining 20%.  

The dataset consists originally of 38 samples, 6 of which were positive classes. As a data 

augmentation step, we segmented sequences into smaller, 1000 frames-wide (see Section 

4.2.2), thus resulting in 124 samples with an equal class distribution.  

Each split had approximately 20% of positive classes. Ten iterations were run so we could 

gather summary statistics of both validation and testing splits. Our optimal models do not reach 

state-of-the-art models such as those in McCay et al’s (2022) study, which yielded an accuracy 

of 97.37%. While their model reached 100% specificity and had trouble classifying all positive 

classes, ours achieved 100% sensitivity, and some of our models reached 100% accuracy. 

Despite average results on the validation splits during optimization, the optimal models found 

throughout the experiment yielded decent results on the testing splits, with a permanent 

sensitivity of 100% and 5 out of 10 iterations with 100% accuracy. The remaining 5 had clear 

issues to predict negative classes, as they might have overfitted to positive samples’ features. 

See Table 20 for the details of the optimal models and their performance on Single-RVI’s 10 

iterations.  
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The influence of hyperparameter values on the model's behavior is presented in the 

following sections. Figures and Tables are here reported in the same manner as in the previous 

section. 

 

Table 20 - Optimal model for each of the 10 iterations on Single-RVI and their performance on the testing split. 

Iteration 
Hyperparameter values Performance on testing split (n=5) 

𝛼 𝜆 thr. ftm b pool Acc. Sns. Spc. F1 
1 0.001 0.0001 0.5 128 12 max 1. 1. 1. 1. 

2 0.001 0.0001 0.5 128 12 max 1. 1. 1. 1. 
3 0.001 0.0001 0.5 128 12 max 1. 1. 1. 1. 

4 0.0001 0.01 0.3 64 18 max 1. 1. 1. 1. 

5 0.0001 0.01 0.3 64 18 max 0.2 1. 0. 0.33 

6 0.0001 0.01 0.3 64 18 max 0.4 1. 0.25 0.4 

7 0.0001 0.01 0.3 64 18 max 1. 1. 1. 1. 

8 0.0001 0.01 0.3 64 18 max 0.4 1. 0.25 0.4 

9 0.0001 0.01 0.3 64 18 max 0.6 1. 0.5 0.5 

10 0.0001 0.01 0.3 64 18 max 0.4 1. 0.25 0.4 

      Average: 0.7 1. 0.625 0.703 

 

5.2.1 Learning rate 

The intermediate value 𝛼 = 0.001 had the best performance as it yielded balanced values for 

sensitivity and specificity. Although the model skews to the negative, more populated, class, 

with a specificity of 82%, different learning rates are able to reduce this skewness and predict 

positive classes more consistently, as seen by the precision of 79% of 𝛼 = 0.001, compared to 

61% and 60% on Table 21. Moreover, Figure 32 shows that the averages for this value of 𝛼 are 

consistently higher and with less poor performing cases than, for instance, 𝛼 = 0.01.  

 

Table 21 - Performance metrics for learning rate (𝛼) values on Single-RVI. 
Values throughout all (n=400) training runs on the Single-RVI experimental setup. 

𝜶 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity 

AUC-
ROC 

Precision 
F1 
Score 

PR-AUC 

0.01 
0.79 (0.2) 

0.58 
(0.26) 

0.82 
(0.26) 

0.54 
(0.04) 

0.6 (0.32) 
0.49 
(0.15) 

0.18 
(0.03) 

121 

0.001 0.86 
(0.16) 

0.57 
(0.25) 

0.91 
(0.21) 

0.58 
(0.05) 

0.79 
(0.28) 

0.58 
(0.16) 

0.21 
(0.05) 

130 

0.0001 0.81 
(0.18) 

0.56 
(0.26) 

0.85 
(0.24) 

0.55 
(0.05) 

0.61 
(0.33) 

0.5 
(0.18) 

0.19 
(0.04) 

149 
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Figure 32 - Distribution of the F1 Score for different learning rate (𝛼) values on Single-RVI. 

 

5.2.2 Weight decay 

Weight decay had a lesser impact on all trials, with no apparent significance. F1 score’s 

medians for all values throughout the trials are around 0.5, as seen in Figure 33. Regarding 

outliers, 𝜆 = 0.0001 had more cases of 𝐹1 = 1, which might suggest that “larger” decays help 

in reducing overfitting and improving generalization – as happened with Single-MINI. All metrics, 

means and standard deviations, for weight decay are similar (see Table 22). 

 

 

Table 22 - Performance metrics for weight decay (λ) values on Single-RVI. 
Values throughout all (n=400) training runs on the Single-RVI experimental setup. 

𝝀 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity 

AUC-
ROC 

Precision 
F1 
Score 

PR-AUC 

0.01 0.81 
(0.19) 

0.56 
(0.27) 

0.85 
(0.25) 

0.55 
(0.05) 

0.64 
(0.33) 

0.5 
(0.18) 

0.19 
(0.04) 

144 

0.001 0.82 
(0.17) 

0.58 
(0.24) 

0.86 
(0.22) 

0.56 
(0.05) 

0.68 
(0.31) 

0.53 
(0.15) 

0.19 
(0.04) 

126 

0.0001 0.82 
(0.18) 

0.57 
(0.26) 

0.87 
(0.24) 

0.56 
(0.06) 

0.68 
(0.32) 

0.53 
(0.18) 

0.2 
(0.05) 

130 
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Figure 33 - Distribution of the F1 Score for different weight decay (λ) values on Single-RVI. 

 

5.2.3 Threshold 

Small threshold values show a better results, slightly improving sensitivity (see Table 23). Figure 

34 shows that median value for 𝑡ℎ𝑟. = 0.3 are mostly higher, withs some trials obtaining high F1 

scores. Regarding other values, 0.4 and 0.5 both show similar performance and distributions of 

the F1 score, although models with 𝑡ℎ𝑟. = 0.5 had instances of 𝐹1 = 1 inside their standard 

deviations (see Figure 34). Again, correlation analysis could show whether these values are due 

to other hyperparameters co-occurrences. 

 

 

Table 23 - Performance metrics for threshold (𝑡ℎ𝑟.) values on Single-RVI. 
Values throughout all (n=400) training runs on the Single-RVI experimental setup. 

𝒕𝒉𝒓. 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity AUC-

ROC 
Precision F1 Score PR-AUC 

0.3 0.84 
(0.16) 

0.6 (0.25) 0.88 
(0.21) 

0.57 
(0.05) 

0.7 (0.3) 0.56 
(0.17) 

0.2 
(0.05) 

118 

0.4 0.81 
(0.19) 

0.57 
(0.25) 

0.85 
(0.25) 

0.55 
(0.05) 

0.63 
(0.32) 

0.51 
(0.16) 

0.19 
(0.04) 

123 

0.5 0.81 (0.2) 0.55 
(0.26) 

0.85 
(0.26) 

0.55 
(0.05) 

0.67 
(0.33) 

0.5 
(0.18) 

0.19 
(0.04) 

159 
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Figure 34 - Distribution of the F1 Score for different threshold (𝑡ℎ𝑟.) values on Single-RVI. 

 

5.2.4 Number of feature maps and number of bins 

A higher value for precision was found using 64 feature maps: 71% compared to 63/66% on 

𝐟𝐭𝐦 = 𝟑𝟐,= 𝟏𝟐𝟖, respectively (see Table 24). Means for this number of feature maps fluctuated 

slightly above others, and had more values inside their upper quartile, as seen in Figure 35. 

Regarding number of bins, no significant impact was found on different trials (see Table 26 and 

Figure 36). 

 

Table 24 - Performance metrics for nº of feature maps (𝐟𝐭𝐦) values on Single-RVI. 
Values throughout all (n=400) training runs on the Single-RVI experimental setup. 

𝐟𝐭𝐦 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity AUC-

ROC 
Precision F1 Score PR-AUC 

32 0.79 
(0.22) 

0.57 
(0.27) 

0.83 
(0.28) 

0.55 
(0.05) 

0.63 
(0.34) 

0.5 
(0.19) 

0.19 
(0.04) 

122 

64 0.84 
(0.16) 

0.55 
(0.26) 

0.89 
(0.21) 

0.56 
(0.05) 

0.71 
(0.32) 

0.53 
(0.17) 

0.19 
(0.05) 

123 

128 0.82 
(0.17) 

0.58 
(0.25) 

0.86 
(0.22) 

0.56 
(0.05) 

0.66 
(0.31) 

0.53 
(0.15) 

0.2 
(0.04) 

155 
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Figure 35 - Distribution of the F1 Score for different nº of feature maps (𝐟𝐭𝐦) values on Single-RVI. 

 

Table 25 - Performance metrics for nº of bins (𝑏𝑖𝑛𝑠) values on Single-RVI. 
Values throughout all (n=400) training runs on the Single-RVI experimental setup. 

bins 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity 

AUC-
ROC Precision F1 Score PR-AUC 

6 
0.8 (0.21) 

0.58 
(0.27) 

0.83 
(0.27) 

0.55 
(0.05) 

0.64 
(0.32) 

0.51 
(0.16) 

0.19 
(0.04) 

136 

12 0.83 
(0.16) 

0.58 
(0.26) 

0.88 
(0.21) 

0.56 
(0.06) 

0.67 
(0.32) 

0.53 
(0.18) 

0.2 
(0.05) 

138 

18 0.82 
(0.18) 

0.55 
(0.24) 

0.87 
(0.24) 

0.56 
(0.05) 

0.68 
(0.32) 

0.52 
(0.18) 

0.19 
(0.04) 

126 

 

 
Figure 36 - Distribution of the F1 Score for different nº of bins (𝑏𝑖𝑛𝑠) values on Single-RVI. 
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5.2.5 Pooling methods 

Finally, differently from what was found on Single-MINI, pooling methods had a lesser impact 

on Single-RVI. Max pooling increased sensitivity but dropped precision values, meaning that it 

overall predicted more positive classes, not necessarily correctly. A higher F1 score, thus, was 

achieved by mean pooling (see Table 26). Figure 37 shows that max pooling, yet, had more 

outliers in the higher end of F1 scores. 

 

Table 26 - Performance metrics for type of pooling method (𝑝𝑜𝑜𝑙) on Single-RVI. 
Values throughout all (n=400) training runs on the Single-RVI experimental setup. 

𝒑𝒐𝒐𝒍 
Metric, avg. (std.)  

Nº 
Accuracy Sensitivity Specificity AUC-

ROC 
Precision F1 

Score 
PR-AUC 

max 0.77 
(0.23) 

0.63 
(0.26) 

0.8 (0.3) 0.55 
(0.06) 

0.61 
(0.34) 

0.51 
(0.19) 

0.18 
(0.03) 

193 

mean 0.86 (0.1) 0.52 
(0.24) 

0.92 
(0.14) 

0.56 
(0.05) 

0.71 (0.3) 0.53 
(0.15) 

0.21 
(0.05) 

207 

 

 

Figure 37 - Distribution of the F1 Score for different methods of pooling (𝑝𝑜𝑜𝑙) on Single-RVI. 
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5.3 Single-PMI 

Among the available datasets, the PMI-GMA outstands in that it has a balanced, near 50/50%, 

ratio of negative and positive classes. In total, it contains 1120 segments, which were separated 

into different splits. This experiment follows the same procedure as Single-RVI’s: 80% of data 

goes into training and 20% is used for testing; 20% of the training split is used for validation 

during hyperparameter optimization. 

Due to the PMI-GMA size, only 5 iterations were run. Among the Single experiments, our 

model had the poorest performance with the PMI-GMA dataset, with optimal models achieving 

an average accuracy of 51%, near to a random classifier. Table 27 shows that models either 

overfitted to positive or negatives classes, generating sensitivity/specificity combinations of 

97/3% and 0/100%, for instance. In fact, all optimal models had a precision value of 

approximately 50%, meaning that it ascribed one class to mostly all samples. 

 

Table 27 - Optimal model for each of the 5 iterations on Single-PMI and their performance on the testing split. 

Iteration 
Hyperparameter values Performance on testing split (n=45) 
𝛼 𝜆 thr. ftm b pool Acc. Sns. Spc. F1 

1 0.0001 0.001 0.5 32 18 max 0.5 0.97 0.03 0.66 

2 0.0001 0.001 0.5 32 18 max 0.52 0.98 0.05 0.67 

3 0.01 0.0001 0.5 128 6 max 0.5 0. 1. 0. 

4 0.0001 0.01 0.5 64 6 avg 0.52 0.9 0.14 0.6 

5 0.0001 0.01 0.5 64 6 avg 0.52 0.83 0.21 0.33 

      Average: 0.51 0.74 0.28 0.45 

 

Driven by the poor performance on the PMI-GMA, we do not report our hyperparameter 

optimization process for Single-PMI, as it seemed to rely mostly on chance and no parameter 

had a significant impact on performance. We still evaluate the effect of PMI’s data on our next 

experiment, containing data from all available datasets. 

5.4 MINI+RVI+PMI 

All samples (n=1256) were used for this experiment. By joining data from different datasets, we 

aim to assess our model’s generalization power. We do a (80/20%)/20% split for training, 

validation, and testing, and perform 5 training iterations with 40 models containing randomly 

selected hyperparameters.  
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As we are, to our knowledge, novel to include all publicly available GM-annotated datasets, 

we are not able to compare our results externally. Additionally, despite the pre-processing 

procedure described, it is not clear whether our assumptions regarding model architecture are 

optimal for this kind of setup.  

Lastly, recall that MINI-RGBD’s samples had a length of 1000 frames and RVI’s were 

segmented to 1000 as an augmentation process. PMI’s samples, however, are 300-frames 

wide. The impact of this has not been deeply investigated, and poor performance might arise 

from such differences.  

Our optimal models in this experiment yielded an average accuracy of 62%, 83% sensitivity, 

and 44% specificity. Compared to the significantly poor performance on Single-PMI, these are 

average results above a random classifier. The model predicts most instances as positive, 

which might be due to the small threshold values experimented with. For this experiment, F1 

Scores were mostly the same across all trials with all hyperparameters. Thus, we set specificity 

as our metric of interest. We also report model’s training statistics. 

 

Table 28 - Optimal model for each of the 6 iterations on MINI+RVI+PMI and their performance on the testing split. 

Iteration 
Hyperparameter values Performance on testing split 

(n=51) 
 

𝛼 𝜆 thr. ftm b pool Acc. Sns. Spc. F1 
1 0.0001 0.0001 0.4 128 18 max 0.64 0.76 0.54 0.67 

2 0.01 0.01 0.5 128 6 avg 0.57 0.97 0.21 0.68 

3 0.0001 0.001 0.4 128 18 avg 0.64 0.79 0.5 0.67 

4 0.01 0.0001 0.5 128 12 avg 0.63 0.8 0.48 0.67 

5 0.01 0.0001 0.5 32 12 avg 0.63 0.82 0.45 0.67 

      Average: 0.62 0.83 0.44 0.67 

 

This experiment strongly indicates that those changes made in regularization and inner 

architecture of our model had a negative impact when dealing with a balanced dataset. 

Differently from the previous Single-MINI and Single-RVI (which were originally meant as the 

sole experiments), Single-PMI and MINI+RVI+PMI have a nearly balanced number of positives 

and negatives classes, and it is possible that the 90%> sensitivities occurred due to these 

decisions. Yet, as Table 28 shows, testing splits using the optimal models still managed to 

achieve 40-50% specificity values while maintaining ±80% sensitivity.  
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Figure 38 - PR and ROC curves for optimal model of iteration 1 during training and testing. 

5.4.1 Learning rate 

Small learning rates continue to be better for our small-sized training splits (see Table 29). By 

limiting learning steps, the model avoids large, often non-optimal, learning patterns. Although 

all values for 𝛼 give high sensitivities, we consider 𝛼 = 0.0001 to be optimal given the resulting 

(more) balanced ratio of sensitivity and specificity. Figure 39 shows that a large 𝛼 (in trial 1 and 

3) might invert the model’s predictions from mostly positive to negative, represented by the 

±100% specificity outliers. 

 

Table 29 - Performance metrics for different learning rate (𝛼) values on MINI+RVI+PMI.  
Values throughout all (n=200) training runs on the MINI+RVI+PMI experimental setup. 

𝜶 
Metric, avg. (std.)  

Nº Accuracy Sensitivity Specificity AUC-
ROC 

Precision F1 
Score 

PR-AUC 

0.01 0.51 
(0.02) 

0.94 (0.2) 0.08 
(0.21) 

0.5 
(0.01) 

0.5 (0.09) 0.64 
(0.12) 

0.51 
(0.01) 

71 

0.001 0.53 
(0.02) 

0.95 
(0.07) 

0.1 (0.08) 0.51 
(0.01) 

0.52 
(0.01) 

0.67 
(0.02) 

0.51 
(0.01) 

56 

0.0001 0.53 
(0.03) 

0.9 (0.14) 0.15 
(0.16) 

0.5 
(0.01) 

0.52 
(0.02) 

0.65 
(0.05) 

0.5 
(0.01) 

73 
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Figure 39 - Distribution of the F1 Score and specificity for different learning rate (𝛼) values on MINI+RVI+PMI. 

 

5.4.2 Weight decay 

Weight decays, on the other hand, present an unusual behavior. A “small” value of λ = 0.01 was 

correlated with the higher – despite still low – specificity of 14% (see Table 30). In this case, it is 

plausible that our architectural choices regarding regularization, which aimed to counter-

balance few positive classes in the data, did the opposite when dealing with this experiment 

which had a 50/50% positive/negative ratio of classes. Figure 40 shows for trial 3, for instance, 

that higher specificities were only obtained with the co-occurrence of low F1 scores and, 

therefore, low sensitivities. 

 

Table 30 - Performance metrics for different weight decay (𝜆) values on MINI+RVI+PMI.  
Values throughout all (n=200) training runs on the MINI+RVI+PMI experimental setup. 

𝝀 
Metric, avg. (std.)  

Nº Accuracy Sensitivity Specificity AUC-
ROC 

Precision F1 
Score 

PR-AUC 

0.01 0.53 
(0.02) 

0.9 (0.2) 0.14 
(0.21) 

0.5 
(0.01) 

0.5 (0.09) 0.64 
(0.12) 

0.51 
(0.01) 

76 

0.001 0.52 
(0.02) 

0.94 
(0.11) 

0.09 
(0.12) 

0.5 
(0.01) 

0.51 
(0.01) 

0.66 
(0.03) 

0.51 
(0.01) 

62 

0.0001 0.52 
(0.02) 

0.95 
(0.12) 

0.09 
(0.13) 

0.5 
(0.01) 

0.51 
(0.01) 

0.66 
(0.04) 

0.51 
(0.01) 

62 
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Figure 40 - Distribution of the F1 Score and specificity for different weight decay (λ) values on MINI+RVI+PMI. 

 

5.4.3 Threshold 

Figure 41 and Table 31 show that larger values for threshold work as intended, as a higher value  

𝑡ℎ𝑟. = 0.5  increases the specificity due to requiring more positive bins to be predicted as 

positive for a sample to be assigned the positive class. Accuracy was higher with lesser values, 

however, as the lower threshold values resulted in 93 − 98%  sensitivity rates with a not so 

significant (e.g. from 16% 𝑡𝑜 12%) change in specificity. 

 

Table 31 - Performance metrics for different threshold (𝑡ℎ𝑟.) values on MINI+RVI+PMI. 
Values throughout all (n=200) training runs on the MINI+RVI+PMI experimental setup. 

𝒕𝒉𝒓. 
Metric, avg. (std.)  

Nº Accuracy Sensitivity Specificity AUC-
ROC 

Precision F1 
Score 

PR-AUC 

0.3 0.53 
(0.02) 

0.93 
(0.15) 

0.12 
(0.17) 

0.51 
(0.01) 

0.52 
(0.02) 

0.66 
(0.06) 

0.51 
(0.01) 

69 

0.4 0.52 
(0.01) 

0.98 
(0.02) 

0.05 
(0.05) 

0.5 
(0.01) 

0.51 
(0.01) 

0.67 
(0.01) 

0.5 
(0.01) 

64 

0.5 0.52 
(0.02) 

0.88 (0.2) 0.16 
(0.21) 

0.5 
(0.01) 

0.5 (0.09) 0.63 
(0.12) 

0.51 
(0.01) 

67 
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Figure 41 - Distribution of the F1 Score and specificity for different threshold (𝑡ℎ𝑟.) values on MINI+RVI+PMI. 

 

5.4.4 Number of feature maps and number of bins 

The number of feature maps and bins had little effect on changes of specificity, and seem to be 

insignificant for this experiment (see Figure 42/41 and Table 32Table 33/33). 

Table 32 - Performance metrics for different nº of feature maps (𝐟𝐦𝐩) values on MINI+RVI+PMI.  
Values throughout all (n=200) training runs on the MINI+RVI+PMI experimental setup. 

𝐟𝐦𝐩 
Metric, avg. (std.)  

Nº Accuracy Sensitivity Specificity AUC-
ROC 

Precision F1 
Score 

PR-AUC 

32 0.52 
(0.02) 

0.95 
(0.11) 

0.08 
(0.13) 

0.5 
(0.01) 

0.51 
(0.01) 

0.66 
(0.04) 

0.51 
(0.01) 

69 

64 0.53 
(0.03) 

0.9 (0.19) 0.15 (0.2) 0.5 
(0.01) 

0.51 
(0.09) 

0.64 
(0.12) 

0.51 
(0.01) 

75 

128 0.52 
(0.02) 

0.94 
(0.12) 

0.1 (0.13) 0.5 
(0.01) 

0.51 
(0.01) 

0.66 
(0.04) 

0.5 
(0.01) 

56 
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Figure 42 - Distribution of the F1 Score and specificity for different nº of feature maps (𝐟𝐦𝐩) values on 
MINI+RVI+PMI. 

 

Table 33 - Performance metrics for different nº of bins (𝑏𝑖𝑛𝑠) values on MINI+RVI+PMI.  
Values throughout all (n=200) training runs on the MINI+RVI+PMI experimental setup. 

𝒃𝒊𝒏𝒔 
Metric, avg. (std.)  

Nº Accuracy Sensitivity Specificity AUC-
ROC 

Precision F1 
Score 

PR-
AUC 

6 0.52 (0.02) 0.95 
(0.12) 

0.08 
(0.14) 

0.5 
(0.01) 

0.51 (0.01) 0.66 
(0.05) 

0.51 
(0.01) 

65 

12 0.52 (0.02) 0.92 
(0.16) 

0.12 
(0.17) 

0.5 
(0.01) 

0.51 (0.06) 0.65 
(0.09) 

0.51 
(0.01) 

72 

18 0.52 (0.02) 0.92 
(0.17) 

0.13 
(0.18) 

0.51 
(0.01) 

0.51 (0.07) 0.65 
(0.09) 

0.51 
(0.01) 

63 

 

 

Figure 43 - Distribution of the F1 Score and specificity for different nº of bins (𝑏𝑖𝑛𝑠) values on MINI+RVI+PMI. 
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5.4.5 Pooling methods 

Lastly, max pooling doubled the specificity of mean pooling, while retaining an F1 score of 0.65. 

Max pooling tends to be a better method than mean pooling as it focuses on the most prominent 

features, and not so on the overall behavior.  

The overall behavior of both normal and abnormal GMs, as seen, can be easily mixed; the 

differences lie in the details. In this case, it can be supposed that mean pooling encouraged the 

model to overfit to the positive class, while max pooling reduced its influence – yielding a 

positive difference of 7% in sensitivity (see Table 34). No significant conclusions can be drawn 

from Figure 44.  

 

Table 34 - Performance metrics for type of pooling method (𝑝𝑜𝑜𝑙) on MINI+RVI+PMI.  
Values throughout all (n=200) training runs on the MINI+RVI+PMI experimental setup. 

𝒑𝒐𝒐𝒍 
Metric, avg. (std.)  

Nº Accuracy Sensitivity Specificity AUC-
ROC 

Precision F1 
Score 

PR-AUC 

max 0.53 
(0.02) 

0.9 (0.18) 0.15 
(0.19) 

0.5 
(0.01) 

0.51 
(0.07) 

0.65 
(0.1) 

0.51 
(0.01) 

104 

mean 0.51 
(0.01) 

0.96 
(0.11) 

0.07 
(0.12) 

0.5 
(0.01) 

0.51 
(0.01) 

0.66 
(0.04) 

0.51 
(0.01) 

96 

 

 

Figure 44 - Distribution of the F1 Score and specificity for different methods of pooling (𝑝𝑜𝑜𝑙) values on 
MINI+RVI+PMI. 
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6 CONCLUSION 

This work theme has been the automation of the General Movements Assessment, a diagnostic 

tool for predicting neurodevelopmental risk on infants below 6 months of age. Gathering data 

from infants, especially video sequences, is a difficult process frequently hindered by ethical 

and anonymity issues. Recently, public datasets – available as the 2D pose coordinates of 

moving infants – have been published in the literature. By using these data, we explored how 

deep neural networks could be leveraged to classify sequences of infant movement.  

6.1 Contributions 

We proposed a throughout pre-processing pipeline so that different publicly available datasets, 

containing noisy and low-quality sequences, could be jointly used in experimental setups. To 

the best of our knowledge, we are the first work to report our results of both hyperparameter 

optimization and testing performance on data coming from multiple publicly datasets.  By doing 

this, we are able to analyze how our model adapts when trying to generalize to more than one 

dataset’s data. Besides, it encourages models not to overfit to features specific to a dataset – 

specifically small and unbalanced ones. 

A great amount of data has been generated in our experiments, which could highly 

contribute to the discussion of GMA automation and how specific architectural choices relating 

to DNNs impact GM detection and classification. Additionally, a detailed set of metrics has 

been reported in order to transparently describe our model’s performance. 

6.2 Limitations 

Our data is small-sized, consisting of only 1170 samples. Even when training shallow DNNs, the 

usual amount of data is much larger than ours, and more complex architectures tend to ask for 

more data. As our model is complex, it is expected that either overfitting or bad learning might 

occur. On top of that, the quality of our data – as well as overall hospital-derived data – is poor, 

which also contributes to the mentioned disadvantages. Furthermore, most of our pre-

processing decisions are based on the related literature and have not been experimented with. 

For instance, although different interpolation techniques were qualitatively assessed via 

animations and exploratory analysis, their final impact on classification was not. The same can 
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be said about the process of computing features, window sliding, and histogram-encoding. 

Thus, although conceptually justified, these are unexperimented choices.  

Our model architecture might not be best suited for the small-sized and poor-quality data, 

and could have been better optimized to deal with these characteristics. Weight decay, loss 

functions, and regularization steps were implemented, but additional modules and a reduced 

number of parameters could be experimented with.  

Finally, our analysis of hyperparameter optimization is limited, and could be improved by 

many aspects. As mentioned throughout section 5.1., correlation analysis and significance 

analysis using non-parametric tests such as Krustal-Wallis would be beneficial for investigating 

hyperparameters more precisely. Regardless, we acknowledge our limited input data, and 

obtaining more data would most certainly allow for more robust and insightful discussion. 

6.3 Future work 

To mitigate the challenges posed by small datasets, promising data augmentations techniques 

are available. Variants of the synthetic minority over-sampling techniques (SMOTE) applied to 

skeleton-based human action recognition saw an increasing interest (Iglesias et al., 2023; Xin 

et al., 2023).  The use of the Variational Autoencoder (VAE) architecture, for instance, have been 

explored for augmenting human motion sequences (Warchoł & Oszust, 2022). Self-occlusions 

are frequent in infant motion sequences and amount to a large portion of unusable signals 

outputted from pose estimation algorithms. It is interesting to explore algorithms for properly 

filling gaps resulting from occlusion, similar to interpolation, but specific to infants’ body 

topology, such as Generative Adversarial Networks (GANs) (Saleh et al., 2023; Zhao et al., 2021). 

Concerning architectural choices, different rationales might be followed. On one side, 

complex and innovative architectures such as Transformers and Attention-based modules 

should be experimented for their learning and generalization capabilities. On the other hand, 

the small-data nature of infant movement encourages and engineering of hand-made features 

able to capture GM patterns. While seemingly opposite, both ways should be led by an interest 

in the nature of general movements, and the design of either DNN architectures or quantitative 

translations of GM descriptions ask for more than just mere repetition. 
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APPENDIX A 

Table 35. Search strings specific to each queried database. 

Database Full search string 

Embase 

('ai':ab,ti,kw OR 'features':ab,ti,kw OR 'computer-based':ab,ti,kw OR 'video**':ab,ti,kw OR 
'sensor*':ab,ti,kw OR 'automat*':ab,ti,kw OR 'acceleromet*':ab,ti,kw OR 'inertial measurement 
unit':ab,ti,kw OR 'imu':ab,ti,kw OR 'motion analysis':ab,ti,kw OR 'instrumented':ab,ti,kw OR 
'deep*learning':ab,ti,kw OR 'machine*learning':ab,ti,kw) AND ('general movement* 
assessment':ab,ti,kw OR 'gma':ab,ti,kw OR 'spontaneous movement*':ab,ti,kw OR 'fidgety 
movement*':ab,ti,kw OR 'writhing movement*':ab,ti,kw) AND ('infant*':ab,ti,kw OR 
'newborn*':ab,ti,kw OR 'child*':ab,ti,kw OR 'preterm':ab,ti,kw OR 'neonate*':ab,ti,kw OR 
'neonatal':ab,ti,kw OR 'cerebral palsy':ab,ti,kw OR 'high-risk':ab,ti,kw) AND [2012-2023]/py 

Pubmed 

('AI'[Title/Abstract] OR 'features'[Title/Abstract] OR 'computer-based'[Title/Abstract] OR 
'video**'[Title/Abstract] OR 'sensor*'[Title/Abstract] OR 'automat*'[Title/Abstract] OR 
'acceleromet*'[Title/Abstract] OR 'inertial measurement unit'[Title/Abstract] OR 
'imu'[Title/Abstract] OR 'motion analysis'[Title/Abstract] OR 'instrumented'[Title/Abstract] OR 
'deep*learning'[Title/Abstract] OR 'machine*learning'[Title/Abstract]) AND ('general movement* 
assessment'[Title/Abstract] OR 'gma'[Title/Abstract] OR 'spontaneous 
movement*'[Title/Abstract] OR 'fidgety movement*'[Title/Abstract] OR 'writhing 
movement*'[Title/Abstract]) AND ('infant*'[Title/Abstract] OR 'newborn*'[Title/Abstract] OR 
'child*'[Title/Abstract] OR 'preterm'[Title/Abstract] OR 'neonate*'[Title/Abstract] OR 
'neonatal'[Title/Abstract] OR 'cerebral palsy'[Title/Abstract] OR 'high-risk'[Title/Abstract]) AND 
(2012:2023[pdat]) 

Scopus 

TITLE-ABS-KEY ( (_{ai}_OR_{features}_OR _{computer-based}_OR_{video**}_OR_{sensor*}_OR 
_{automat*}_OR_{acceleromet*}_OR_{inertial measurement unit}_OR_{imu}_OR_{motion 
analysis}_OR_{instrumented}_OR_{deep*learning}_OR_{machine*learning}_ )AND( _{general 
movement* assessment}_OR_{gma}_OR_{spontaneous movement*}_OR_{fidgety 
movement*}_OR_{writhing movement*}_ ) 
AND ( _{infant*}_OR_{newborn*}_  OR  _{child*}_  OR  _{preterm}_  OR  _{neonate*}_  OR  _{neona
tal}_  OR  _{cerebral palsy}_  OR  _{high-risk}_ ) )  AND  PUBYEAR  >  _2011_ 

Web of 
Science 

TS=(('ai' OR 'features' OR 'computer-based' OR 'video**' OR 'sensor*' OR 'automat*' OR 
'acceleromet*' OR 'inertial measurement unit' OR 'imu' OR 'motion analysis' OR 'instrumented' 
OR 'deep*learning' OR 'machine*learning') AND ('general movement* assessment' OR 'gma' OR 
'spontaneous movement*' OR 'fidgety movement*' OR 'writhing movement*') AND ('infant*' OR 
'newborn*' OR 'child*' OR 'preterm' OR 'neonate*' OR 'neonatal' OR 'cerebral palsy' OR 'high-
risk')) 

IEEE Xplore 

((("All Metadata":"ai" OR "All Metadata":"features" OR "All Metadata":"computer-based" OR "All 
Metadata":"video*" OR "All Metadata":"sensor*" OR "All Metadata":"automat*" OR "All 
Metadata":"acceleromet*" OR "All Metadata":"inertial measurement unit" OR "All 
Metadata":"imu" OR "All Metadata":"motion analysis" OR "All Metadata":"instrumented" OR "All 
Metadata":"deep*learning" OR "All Metadata":"machine*learning")) AND ("All 
Metadata":"general movement* assessment" OR "All Metadata":"gma" OR "All 
Metadata":"spontaneous movement" OR "All Metadata":"fidgety movement" OR "All 
Metadata":"writhing movement") AND ("All Metadata":"infant" OR "All Metadata":"newborn" OR 
"All Metadata":"child*" OR "All Metadata":"preterm" OR "All Metadata":"neonate" OR "All 
Metadata":"neonatal" OR "All Metadata":"cerebral palsy" OR "All Metadata":"high-risk")) 

ACM Digital 
Library 

"query": { AllField:(("AI" OR "features" OR "computer-based" OR "video**" OR "sensor*" OR 
"automat*" OR "acceleromet*" OR "inertial measurement unit" OR "imu" OR "motion analysis" 
OR "instrumented" OR "deep*learning" OR "machine*learning") AND ("general movement* 
assessment" OR "gma" OR "spontaneous movement*" OR "fidgety movement*" OR "writhing 
movement*") AND ("infant*" OR "newborn*" OR "child*" OR "preterm" OR "neonate*" OR 
"neonatal" OR "cerebral palsy" OR "high-risk")) } "filter": { E-Publication Date: (01/01/2012 TO 
12/31/2023) } 
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Table 36. Subjects, age at birth and monitoring, assessment type, and neurodevelopmental outcome of studies 
on the writhing period and both (*). 

Affiliated studies are grouped in different colors. Shared publicly available datasets are mentioned only by name. 
Study Population of infants Assessment type and 

evaluation 
Neurodevelop-
mental outcome 

Gravem et al., 
2012 

N: 10 preterm; Age(b): x = 27.1wGA; 
Age(m): x = 36.3wGA  

Prechtl; CS(6) / N(4) None 

Doroniewicz 
et al., 2020 

N: 36 full-term; Age(b): 38-42wGA; 
Age(m): 2nd/3rd day after birth 

Prechtl; PR(14) / N(17) 
(+5 undecided) 

None 

Fontana et 
al., 2021 

N: 68 high-risk; Age(b): x = 31.25wGA; 
Age(m): x = 42.1wPMA 

Prechtl; CS(8) / PR(17) 
/ N(43) 

None 

Garello et al., 
2021 

N: 68 (55 preterm, 13 full-term); 
Age(b): n/s; Age(m): 40wGA 

Prechtl; Ab(27) / N(28) 
(+13 n/s) 

BSID (n/s version) at 
2yrs 

Moro et al., 
2022 

N: 142 preterm; Age(b): x = 29wGA; 
Age(m): 40wGA 

Prechtl; Ab (n/s) / N 
(n/s) 

BSID (n/s version at 
2yrs + MRI at birth 

Hashimoto et 
al., 2022 

N: 100 infants; Age(b): 30-42wGA; 
Age(m): n/s 

Prechtl; PR(27) / N(73) None 

Tong et al., 
2022 

N: 30 newborns; Age(b): n/s; Age(m): 
n/s 

Prechtl; PR (n/s) / N 
(n/s) 

None 

Gong et al., 
2022 

Pmi-GMA dataset    

Jardine et al., 
2022 

N: 59 EP / ELBW; Age(b): x = 26.8wGA; 
Age(m): 28 and 32wPMA  

Prechtl; CS, PR, Ch(26) 
/ N(31) 

None 

Adde et al., 
2018(*) 

N: 27 high-risk; Age(b): x = 32wGA; 
Age(m): 3-5wPT and 10-15wPT 

Prechtl;  
3-5wPT: Ab(12) / N(15) 
10-15wPT: Ab(0) / 
N(27) 

None 

Gao et al., 
2019(*) 

N: 34 (21 typically developing (TD), 13 
perinatal stroke (PS)); Age(b): n/s 
Age(m): monthly from term to 6mCA 

Prechtl; TD(21) / 
PS(13) 

None 

Tsuji et al., 
2020(*) 

N: 19 (3 full-term, 16LBW, 2 n/s); 
Age(b): x = 32wGA Age(m): n/s 

Prechtl; CS(~5%) / 
PR(~11%) / N(~82%) 

None 

Reich et al., 
2021(*) 

N: 45 full-term; Age(b): x = 39wGA; 
Age(m): 28, 42, 56, 70, 84, 98, and 112 
days after birth 

Prechtl; FM+(54%) / 
FM-(46%) 

None 

 

 

Table 37. Subjects, age at birth and monitoring, assessment type, and neurodevelopmental outcome of studies 
on the fidgety period. 

Affiliated studies are grouped in different colors. Shared publicly available datasets are mentioned only by name. 
Study Population of infants Assessment 

type and 
evaluation 

Neurodevelopmental 
outcome 

Stahl et al., 
2012 

N: 82 infants; Age(b): n/s; 
Age(m): 10-18wPT 

N/S; CP(15) / No-
CP(67)  

N/S at 2 and 5yrs 

Adde et al., 
2013 

N: 55 (19 full/near-term, 33 risk-
profile); Age(b): n/s; Age(m): 
11wPT and 14wPT 

Prechtl; Ab(9) / 
N(43) (+3 n/s) 

European Classification 
System of CP at 2yrs 

Philippi et al., 
2014 

N: 67 (18 low, 49 high-risk); 
Age(b): m = 35wGA; Age(m): 
3mCA; 

Hadders-Algra; 
CP(10) / No-
CP(57)  

Bayley Scales of Infant 
Development-III at 2yrs 

Rahmati et al., 
2015 

N: 78 (64 healthy, 14 CP); 
Age(b): n/s Age(m): 10-18wPT 

N/S; CP(14) / No-
CP(64)  

N/s method at 2 and 5yrs 
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Study Population of infants Assessment 
type and 
evaluation 

Neurodevelopmental 
outcome 

Støen et al., 
2017 

N: 150 high-risk; Age(b): m = 
26.9wGA; Age(m): m = 52wPMA 

Prechtl; 
Ab(24.1%) / 
N(75.9%) 

None 

Orlandi et al., 
2018 

N: 127 preterm/LBW; Age(b): m 
= 27.7wGA; Age(m): 3-5mCA 

Hadders-Algra; 
Ab(29) / N(98)  

BSID-III motor composite 

Ihlen et al., 
2019 

N: 377 high-risk; Age(b): x = 
26.3wGA; Age(m): m = 12wCA 

Prechtl; 
Ab(31.9%) / 
N(68.1%) 

European Classification 
System of CP at 2yrs + MRI + 
cUS 

K. D. McCay et 
al., 2019 

MINI-RGBD dataset   

Raghuram et 
al., 2019 

N: 152 preterm/LBW; Age(b): m 
= 27.7wGA; Age(m): x = 
3.81wCA 

Hadders-Algra; 
Ab(32) / N(120) 

BSID-III motor composite 

Chambers et 
al., 2020 

Chambers dataset  Bayley Infant Neuro-
developmental Screener 

K. D. McCay et 
al., 2020 

MINI-RGBD dataset   

K. D. McCay et 
al., 2021 

MINI-RGBD dataset   

Nguyen-Thai et 
al., 2021 

N: 235 infants; Age(b): n/s; 
Age(m): 14-15wPT 

Prechtl; Ab(35) / 
N(200) 

None 

Wu, Xu, Wei, 
Kuang, et al., 
2021 

MINI-RGBD dataset   

D. Sakkos et 
al., 2021 

MINI-RGBD and RVI-25 dataset   

Zhu et al., 2021 MINI-RGBD dataset   
Wu, Xu, Wei, 
Chen, et al., 
2021 

N: 47 infants; Age(b): n/s; 
Age(m): 7-17w(n/s)  
+ MINI-RGBD dataset 

Prechtl; Ab(14) / 
N(33) 

None 

Groos, Adde, 
Stoen, et al., 
2022 

N: 557 high-risk; Age(b): x = 
35.3wGA; Age(m): x = 11.8wCA 

Prechtl; CP(84) / 
No-CP(473) 

Surveillance of CP in Europe 
decision tree 

Luo et al., 2022 N: 757 high-risk; Age(b): n/s 
Age(m): x = 55wGA; 

Prechtl; FM-(353) 
/ FM+(404) 

None 

K. D. McCay et 
al., 2022 

MINI-RGBD and RVI-38 dataset   

Raghuram et 
al., 2022 

N: 252 preterm/LBW; Age(b): m 
= 27wGA; Age(m): 3-5mCA 

Prechtl/Hadders-
Algra; Ab(41) / 
N(211) 

CP diagnosis via mixed 
methods 

Zhang, Ho, et 
al., 2022 

MINI-RGBD and RVI-38 dataset   

Zhang, Shum, 
et al., 2022 

MINI-RGBD and RVI-38 dataset   

Q. Wu et al., 
2023 

MINI-RGBD and RVI-38 dataset   

Ji et al., 2023 N: 109 preterm; Age(b): x = 
31.74wGA; Age(m): 18.84wCA 

Prechtl; Ab(46) / 
N(48) 

BSID-II 
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