
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

CARLOS HENRIQUE KAYSER

MINIMIZING CONTAINER-BASED APPLICATIONS SLA
VIOLATIONS ON EDGE COMPUTING ENVIRONMENTS

Porto Alegre
2022

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

MINIMIZING
CONTAINER-BASED
APPLICATIONS SLA

VIOLATIONS ON EDGE
COMPUTING ENVIRONMENTS

CARLOS HENRIQUE KAYSER

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Tiago Coelho Ferreto

Porto Alegre
2022

CARLOS HENRIQUE KAYSER

MINIMIZING CONTAINER-BASED APPLICATIONS
SLA VIOLATIONS ON EDGE COMPUTING

ENVIRONMENTS

This Master Thesis has been submitted in
partial fulfillment of the requirements for the
degree of Master in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on March 25th, 2022.

COMMITTEE MEMBERS:

Prof. Dr. Fernando Luís Dotti (PPGCC/PUCRS)

Prof. Dr. Juliano Araujo Wickboldt (PPGC/UFRGS)

Prof. Dr. Tiago Coelho Ferreto (PPGCC/PUCRS - Advisor)

Primeiramente, gostaria de agradecer toda a minha família, por todo apoio, carinho
e incentivo. Obrigado também pela paciência e compreensão nos momentos de minha
ausência.

Agradeço ao meu orientador, Tiago Ferreto, pelas oportunidades e principalmente
por toda a confiança e ensinamentos. Agradeço também aos demais professores do Pro-
grama de Pós-Graduação em Ciência da Computação, pela qualidade das disciplinas mesmo
em tempos atípicos.

Por fim, agradeço também a todos os meus novos amigos que conquistei durante
esse período, por toda ajuda e companheirismo.

ACKNOWLEDGMENTS

This work was supported by the PDTI Program, funded by Dell Computadores do
Brasil Ltda (Law 8.248 / 91). The author acknowledge the High-Performance Computing
Laboratory of the Pontifical Catholic University of Rio Grande do Sul (LAD-IDEIA/PUCRS,
Brazil) for providing support and technological resources, which have contributed to the
development of this project and to the results reported within this research.

MINIMIZANDO VIOLAÇÕES DE SLA DE APLICAÇÕES BASEADAS EM
CONTAINERS EM AMBIENTES DE COMPUTAÇÃO NA BORDA

RESUMO

O surgimento de aplicações com requisitos rígidos como baixa latência e priva-
cidade motivou a aproximação de recursos computacionais e usuários na borda da rede
devido às dificuldades do paradigma de computação em nuvem em suprir tais necessi-
dades. Nesse novo paradigma de computação distribuída, assim como em computação
em nuvem, as técnicas de virtualização baseadas em contêiner também são consideradas
para provisionamento de aplicações devido ao baixo consumo de recursos, rápido provisio-
namento e baixo espaço de armazenamento em comparação com máquinas virtuais (VM).
No entanto, a alta variabilidade da capacidade computacional e largura de banda dos nós
de borda impactam diretamente no tempo de provisionamento das aplicações em um am-
biente de computação de borda. Além disso, a localização dos usuários finais também é
um fator importante a ser considerado ao escalonar as aplicações, pois a distância entre
os usuários e os nós de borda afeta a latência da comunicação. Nesse contexto, este tra-
balho apresenta um novo algoritmo de escalonamento, chamado Latency and Provisioning
Time SLA Driven Scheduler (LPSLA), que coordena o provisionamento de aplicações em
infraestruturas de borda para minimizar as violações de Service Legel Agreements (SLA)
em termos de latência e tempo de provisionamento. O algoritmo proposto considera a la-
tência entre a localização dos usuários finais e os nós de borda e a capacidade dos nós de
borda em baixar aplicações baseadas em contêiners. Como resultado, a solução proposta
é capaz de minimizar as violações de SLA em todos os cenários avaliados.

Palavras-Chave: Computação na Borda, Aplicações Baseadas em Contêineres, Orques-
tração de Contêineres, Escalonamento de Contêineres.

MINIMIZING CONTAINER-BASED APPLICATIONS SLA VIOLATIONS ON
EDGE COMPUTING ENVIRONMENTS

ABSTRACT

The emergence of applications with strict requirements such as low latency and pri-
vacy motivated the approximation of computing resources and users at the network’s edge
due to the difficulties of the cloud computing paradigm in fulfilling such needs. In this new
distributed computing paradigm, like cloud computing, container-based virtualization tech-
niques are also considered for application provisioning due to low resource consumption,
fast provisioning, and low storage footprint compared to virtual machines (VM). However,
the high variability of the edge nodes’ computational capacity and bandwidth directly im-
pact the applications’ provisioning time in an edge computing environment. In addition, the
end-users location is also an important factor to consider when scheduling applications, as
the distance between end-users and edge nodes impacts communication latency. In this
context, this work presents a novel scheduling algorithm, called Latency and Provisioning
Time SLA Driven Scheduler (LPSLA), which coordinates application provisioning on edge
infrastructures to minimize latency and provisioning time Service Legel Agreements (SLA)
violations. It considers the latency between the end-users location and edge nodes and the
capacity of edge nodes in downloading the container-based applications. As a result, the
proposed solution is capable of minimizing the SLA violations in all evaluated scenarios.

Keywords: Edge Computing, Container-based Applications, Container Orchestration, Con-
tainer Scheduling.

LIST OF FIGURES

2.1 Edge computing architecture [8]. 15

2.2 Container-based virtualization and hypervisor [14]. 16

2.3 Container based on Ubuntu 15.04 image [14]. 17

2.4 Docker architecture [14]. 18

2.5 High-level view of the Kubernetes architecture [34]. 19

5.1 Ipê topology. 31

5.2 Final topology. 33

5.3 Latency CDFs for tight and loose SLA applications in all scenarios. 36

5.4 Application provisioning time CDFs for tight and loose SLA applications in
all scenarios. 38

5.5 Edge node resource utilization percentage. 39

LIST OF TABLES

3.1 Related work. 25

4.1 Summary of notations used in this work. 26

5.1 Edge node configurations. 32

5.2 Application requirements. 32

5.3 SLA scenarios. 33

5.4 Simulation parameters. 35

5.5 Experiment results in all scenarios. 35

LIST OF ALGORITHMS

4.1 LPSLA algorithm. 29

4.2 LPSLA Decrease Sorting (LPSLA-DS) algorithm. 29

CONTENTS

1 INTRODUCTION . 12

2 BACKGROUND AND MOTIVATION . 14

2.1 EDGE COMPUTING . 14

2.2 CONTAINER-BASED VIRTUALIZATION . 15

2.2.1 DOCKER . 17

2.3 PROVISIONING . 18

2.3.1 KUBERNETES . 18

2.4 FINAL REMARKS . 20

3 STATE OF THE ART . 22

3.1 APPLICATION SCHEDULING . 22

3.2 APPLICATION IMAGE DISTRIBUTION . 24

3.3 FINAL REMARKS . 24

4 HEURISTIC FOR CONTAINER-BASED APPLICATIONS SCHEDULING 26

4.1 SYSTEM MODEL . 26

4.2 PROPOSED HEURISTIC . 28

5 EVALUATION . 31

5.1 EXPERIMENTS DESCRIPTION . 31

5.2 SIMULATOR . 34

5.3 RESULTS . 34

5.3.1 LATENCY ANALYSIS . 35

5.3.2 PROVISIONING TIME ANALYSIS . 37

5.3.3 RESOURCE UTILIZATION ANALYSIS . 38

5.4 FINAL REMARKS . 39

6 CONCLUSIONS AND FUTURE WORK . 41

6.1 FUTURE WORK . 41

6.2 ACHIEVEMENTS . 42

12

1. INTRODUCTION

The cloud computing paradigm allows on-demand remote access to computational
resources such as servers, network, and storage hosted on data centers, sometimes ge-
ographically faraway over the Internet [26]. However, the emergence of applications such
as augmented reality, autonomous vehicles, smart home and smart city, with strict require-
ments such as low latency, bandwidth usage, and privacy motivated the approximation of
users and computational resources at the edge of the network, giving rise to a new paradigm
of distributed computing called edge computing [41, 36, 40, 37].

Like cloud computing, application provisioning and management are needed in the
edge computing scenario, where container-based virtualization techniques are also used [36,
21]. According to Ismail et al. [19], Docker is a good candidate for enabling virtualization in
edge computing environments. In addition to being a much lighter and faster alternative
compared to virtual machines (VM), it has a shorter provisioning time. However, during the
deployment phase, as well as virtual machines, the Docker images must be transferred to
one or more servers at the edge, which can result in a long provisioning time depending on
the server and its bandwidth [1].

There are several challenges in edge computing, such as security, reliability, and
privacy [21]. However, one of the main challenges is resource allocation, as application
provisioning must take into account the heterogeneity of computational nodes and network
links, application requirements (i.e., low-latency, privacy), latency and bandwidth of network
links, and user location and mobility in order to provide a better quality-of-experience (QoE)
and quality-of-service (QoS) [33, 21, 25].

Nevertheless, popular container-based application provisioning platforms (e.g., Ku-
bernetes) overlook the heterogeneity of the nodes’ capacity during the scheduling process,
leading to a long provisioning time and stressing the nodes’ bandwidth in edge computing
scenarios. In addition, such platforms do not consider fundamental characteristics of an
edge scenario, such as the latency of applications in relation to their users (e.g., response
time) and application provisioning time.

In the context of this work, we understand that the application provisioning time, as
well as the latency in relation to its users, could be modeled as Service Level Agreements
(SLAs), as in cloud computing, where the cloud provider proposes to fulfill performance
guarantees, such as high availability.

Recent investigations extend the functionality of provisioning platforms to meet the
demands of edge computing environments by adopting location awareness to reduce end-
to-end latency [34, 35], or minimizing provisioning time (i.e., start-up latency) [17, 12, 23].
Some of them focus on the placement of Docker layers to provide a cache for the edge

13

servers [42], propose optimized registries [3], and improve the registry placement in the
infrastructure topology [11].

Despite previous research attempts, resource scheduling in edge computing still
presents challenges. Many edge computing workloads are short-lived applications (short
tasks) and/or low-latency sensitive applications – which can be impacted by long provision-
ing times and high latency [17]. In this way, scheduling policies should consider the applica-
tion provisioning time and communication latency between applications and their users (e.g.,
response time) so that the benefits of edge computing deployments are not undermined.

To tackle these problems, in this work, we propose a heuristic called Latency and
Provisioning Time SLA Driven Scheduler (LPSLA), which focuses on enforcing container-
based applications SLAs compliance in terms of provisioning time and latency during the
application placement phase. A variation of LPSLA is also proposed, called LPSLA-DS,
that focuses on meeting applications SLAs as well as preserving the most qualified edge
nodes for tighter SLA applications. Both variations are also validated through simulations
and compared with three strategies: 1) Kube-Scheduler [24], 2) Infrastructure-Aware [12],
and 3) Deployment Latency SLA Enforcement Scheduler (DLSLA) [23]. Results show that
the proposed solution overcomes the evaluated strategies on latency and provisioning time
SLAs in all scenarios evaluated.

The remaining of this work is organized as follows: In Chapter 2, we present the
main concepts related to the scope of this document. Based on such a discussion, Chapter 3
presents the works related to the scope of this work, Chapter 4 presents our proposed
algorithm called LPSLA, while Chapter 5 presents the evaluation methodology and results
based on simulations. Finally, Chapter 6 presents the final considerations of this study and
gives directions for future research.

14

2. BACKGROUND AND MOTIVATION

This section presents a theoretical background on edge computing, container-
based virtualization, and provisioning strategies, describing the main features of this dis-
tributed paradigm and its application provisioning challenges.

2.1 Edge Computing

Cloud computing is a model that allows on-demand access to computing resources
hosted in remote data centers over the Internet. In this context, the provider can quickly
provision computing resources in the pay-as-you-go model. That is, the users pay only
for the resources and time they use, enabling users to increase their need for computing
resources as needed. In this model, computing resources are centralized in large data
centers positioned in strategic places worldwide, with a good supply of electricity, cooling,
labor, and security.

According to the National Institute of Standards and Technology (NIST) [26], cloud
computing is a model that enables on-demand access to configurable computing resources
over the Internet, such as servers, services, and storage. It is defined by a set of essential
characteristics and different service models. Some of these features are: 1) it provides users
with the ability to provision computing resources as needed automatically and without human
intervention on the part of the provider; 2) access can be made by different devices through
the Internet; 3) computing resources need to meet the needs of their users on demand;
4) computing resources are scalable, to quickly meet user demands; and 5) there must be
transparent ways to assess the use of computing resources.

However, the long distance between end-users and data centers is insufficient to
provide low latency access to emerging applications, such as augmented reality. In addition,
with the popularity of smart devices, such as sensors and security cameras, bandwidth
utilization can end up being an issue when transferring data to be processed in the cloud.

Given these needs, a new distributed computing model has emerged called edge
computing, where the computing resources such as servers and storage services (edge
node) are placed closer to end-users and end-devices, such as Internet of Things (IoT)
(e.g., sensors, actuators, and cameras), as illustrated in Figure 2.1, where the north-south
communication interconnects the different layers (i.e., cloud computing, edge computing and
end-devices), while the east-west communication interconnects the nodes on similar layers.
The main objectives of this new paradigm are to provide lower latency for response time-
sensitive applications and reduce the required bandwidth used by processing data closer to

15

the data sources instead of sending and receiving information from remote data centers [8,
41, 40].

Unlike cloud computing, at the network’s edge the processing power is limited due
to the heterogeneity of the edge servers which can range from powerful computers to single
board computers (e.g., Raspberry Pi). In addition, the network infrastructure may not be as
stable, as servers can use from high-bandwidth links to wireless networks.

Figure 2.1: Edge computing architecture [8].

In the literature, there are different terms for edge computing, such as: cloudlets [38],
micro data-centers [2] or fog computing [7]. The existence of different terminologies can lead
to a misunderstanding of this paradigm. Despite the existence of small technological differ-
ences behind these terminologies, some works [6, 8] propose the use of the term edge
computing to embrace all these perspectives.

The edge computing paradigm allows the use of computing resources (edge nodes)
for processing as well as storage, just as it does in cloud computing through virtualization
techniques such as hypervisors or containers [36], allowing encapsulation of applications
and their dependencies.

2.2 Container-Based Virtualization

Container-based virtualization is a lighter alternative to resource virtualization com-
pared to hypervisor-based virtualization. In container-based virtualization, all virtual re-
sources (i.e., applications) share the same kernel and host operating system resources,

16

as illustrated in Figure 2.2b. As a result, containers can be started very quickly, and it is
possible to run hundreds of them on a physical host [4, 39, 27].

In comparison, virtualization based on a hypervisor, as shown in Figure 2.2a, en-
ables the virtualization of multiple isolated complete virtual machines (VM), each with its
own operating system, kernel, applications, and dependencies, resulting in excessive use of
computing resources by virtualization, therefore, in addition to having a much slower boot
process, hosts can provision just a limited number of VMs on a host [4, 39].

(a) Hypervisor-based virtualization. (b) Container-based virtualization.

Figure 2.2: Container-based virtualization and hypervisor [14].

Container isolation is usually accomplished through host operating system resources.
Considering the Linux operating system, resources such as network and file systems are
isolated through the use of namespaces, while resource management is performed through
cgroups [39]. The isolation of containers is considered inferior to hypervisor-based virtual-
ization [44, 9]; however, currently, there are already initiatives to tackle this problem1.

Several container-based virtualization technologies for Linux were created, such as
Linux VServer (2001), OpenVZ (2005), and Linux Containers (LXC) in 2008 [39]. Despite
that, the Docker platform was released in 2013, bringing an extended solution with a more
friendly interface and portable images, facilitating the creation and distribution of contain-
ers [27].

1https://katacontainers.io/

17

2.2.1 Docker

Docker is a platform composed of tools that allow developing, distributing, and
running applications and their dependencies encapsulated in light and isolated environments
called containers. A container is an executable instance of a Docker image [14].

In addition to a Docker container running faster and consuming less resource com-
pared with a virtual machine (VM) running on a hypervisor, the container images are portable
and has a low storage footprint since different images can share the same layers. For exam-
ple, images compiled from the same base image (e.g., alpine) can reuse the same base data
to provision multiple containers. This virtualization also has a fast deployment and teardown,
making it possible to scale quickly [19].

Creating an image usually originates from customizing a base image (e.g., Ubuntu,
Alpine, Debian) through a configuration file called Dockerfile. Each command or instruction
in the Dockerfile creates a layer above the chosen base image or the previous layer, and
each layer has a sha256 hash as a unique identifier, allowing several different images to
share identical layers [14].

As illustrated in Figure 2.3, the image’s layers are read-only (R/O). When a con-
tainer is provisioned from an image, a new layer is added on top of the others, called the
container layer, which allows writing. The versioning of images occurs through the use of
tags, allowing the creation of customized versions of the applications. If an image is created
that does not contain the image version, a tag latest is created. This tag represents the last
build performed without a specified version.

Figure 2.3: Container based on Ubuntu 15.04 image [14].

18

The Docker architecture, as illustrated in Figure 2.4, is composed of three main
components: Docker Client (Command Line Interface - CLI), Docker Daemon, and Docker
Registry. Container provisioning is performed via the Docker daemon, while the distribution
of images occurs via a public or private Docker registry, such as the Docker Hub2. The con-
tainer provisioning process by the Docker daemon consists of downloading the image from a
registry if it is not present locally. If there is already any layer of the desired image locally, the
Docker daemon downloads only the missing layers. Finally, it starts a new container based
on the image.

Figure 2.4: Docker architecture [14].

2.3 Provisioning

Several platforms have been developed to manage and provision containers, also
known as orchestrators. Among them, some possibilities are Docker Swarm [16] and Ku-
bernetes [24]. In this work, we will address only Kubernetes.

2.3.1 Kubernetes

Kubernetes is an open-source container orchestrator proposed by Google. Its first
version was released in 2015. This platform is based on a master-slave architecture model.
As illustrated in Figure 2.5, the master node is composed of a scheduler (Kube-scheduler)
that is responsible for provisioning strategies, in addition to API services (API Server), con-

2https://hub.docker.com

19

trollers (Controller Manager) and an Etcd key-value database3, while the primary responsi-
bility of the slave nodes is the execution of the containers [24].

Figure 2.5: High-level view of the Kubernetes architecture [34].

The smallest compute unit that can be provisioned in Kubernetes is called a pod.
A pod consists of a grouping of one or more containers with shared resources such as
network and storage, and definitions of how to run each container. Kubernetes’s default
pods provisioning mechanism, kube-scheduler, is responsible for selecting the nodes that
will run the pods through two main processes: filtering and ranking.

In the first process (filtering), it selects the eligible nodes based on predicate-based
policies. Some examples include:

1. PodFitsResources: This policy classifies the node as eligible if the node has enough
computational resources to allocate the pod requirements;

2. MatchNodeSelector: This policy classifies the nodes as eligible based on labels
across pod’s node selector and node’s labels;

3https://etcd.io/

20

3. NoDiskConflict: This policy classifies the node as eligible if the node can host the pod
based on the volumes that it request.

After the filtering process, the scheduler ranks the eligible nodes selected previ-
ously based on priorities-based policies. Some possibilities are:

1. SelectorSpreadPriority: Spreads pods among the nodes, considering pods that be-
long to the same service;

2. BalancedResourceAllocation: Favor nodes with balanced resource usage;

3. ImageLocalityPriority: Favors nodes that already have container images belonging
to the pod to be provisioned locally cached;

4. EqualPriority: Sets a weight equal to one for all nodes;

5. LeastRequestedPriority: Prioritize nodes based on amount of free computing re-
source;

6. MostRequestedPriority: Prioritize the nodes with the most requested resources.

In addition to enabling the operator to customize the provisioning process by choos-
ing policies, the Kube-scheduler also allows the cluster operator to customize the provision-
ing process by configuring priority policies with different weights, thus making it possible to
increase or decrease the relevance of a given policy4.

After the scheduling decision, the selected worker node starts downloading the
application Docker image. If any of the layers already exist locally in the node cache, they
are not downloaded again. By default, the worker downloads just three layers at a time,
the others, including other images from other applications, stay in a queue waiting to be
downloaded (download queue).

2.4 Final Remarks

Cloud computing has the ability to provide great computing power, being able to
meet the demand of complex and heavy applications. However, the distance between data
centers and their end-users and devices implies high latency due to long distances [40, 41].
As a result, the user experience of latency-sensitive applications ends up being degraded.
Furthermore, large amounts of data produced by users and end-devices can be processed
at the edge of the network, avoiding overloading the network infrastructure if sent to the
cloud [40, 36].

4https://kubernetes.io/docs/reference/scheduling/config/

21

There are several challenges in the process of provisioning containers in an edge
computing platform, such as minimizing application provisioning time due to distributed ar-
chitecture, edge servers limitations, and variations in terms of bandwidth and computational
capacity. In addition, the main advantage of edge computing over cloud computing is low la-
tency, so the latency between applications provisioned at the edge and their end-users must
also be taken into account. In this way, it is essential to choose which is the most suitable
edge server to host an application to minimize these problems [40].

In the cloud computing model, there are concerns regarding the reliability of the
services provided to its users, such as the availability of computing resources. For this
reason, agreements between cloud providers and their users can be made through a Service
Level Agreement (SLA) [29]. For example, an SLA can guarantee a user that access latency
to a given service provided by the cloud provider always happens within a range. So in this
work, we understand that SLAs can be applicable in the edge computing paradigm, providing
guarantees to users.

22

3. STATE OF THE ART

Some works address the application scheduling problem acting directly on the Ku-
bernetes orchestrator. These works extend modules of the Kube-Scheduler to provide new
strategies regarding the provisioning of applications to reduce the provisioning time [17, 12,
23], and network latency [34, 35]. In addition, we also found in the literature, works that
focus on reducing application provisioning time, from focusing on the placement of Docker
layers to provide a cache for the edge servers [42], improve the registry placement in the
infrastructure topology [11, 10], and even creating better registries for edge computing envi-
ronments [3]. We divided these works into two sections: 1) Application Scheduling, and 2)
Application Image Distribution.

3.1 Application Scheduling

Fu et al. [17] advocate that the Kube-scheduler should take into account the appli-
cation’s dependencies when provisioning it since the container provisioning time is related to
the download of the images. Thus, the authors propose two priorities-based policies to prior-
itize the nodes that already have some cache locally: 1) image-level cache and 2) layer-level
cache. The results obtained during the evaluation of the strategies showed improvements in
the provisioning time of up to 2.3 times in some scenarios and a reduction in the CPU and
storage utilization of the nodes.

Santos et al. [34] propose an extension to the Kube-Scheduler, called Network-
Aware Scheduler (NAS), allowing the provisioning of applications to be carried out consider-
ing the location of edge nodes, round trip time (RTT), and its bandwidth limitations to select
the most suitable edge server to host latency-sensitive applications based on its target loca-
tion. The results obtained with the proposed strategy reached an 80% reduction in terms of
network latency, respecting the bandwidth limitations of the network infrastructure. However,
the authors did not consider the need to download the application images by the node that
will perform the provisioning, which can end up causing service interruptions due to high
bandwidth usage.

Santos et al. [35] propose a Service Function Chain (SFC) controller to enhance
the placement of service chain in edge computing environments since Kube-Scheduler does
not consider bandwidth and latency limitations. The proposed solution is based on two
scheduling strategies: latency and location-aware, extending the Kubernetes scheduling
mechanism. For the former, the best candidate node is selected based on Dijkstra’s shortest
path algorithm concerning other applications in the service chain. The latter selects the best
candidate node based on minimizing end-to-end latency concerning the application target

23

location. Both policies take into account the available bandwidth capacity to choose the most
suitable node. The experiments performed showed an 18% reduction in terms of network
latency while the nodes’ bandwidth was conserved compared to the default behavior of
Kube-Scheduler.

Kaur et al. [20] argue that Kubernetes do not efficiently deal with interference be-
tween applications (i.e., multiple applications or workloads vying for shared resources on
the node where they are allocated), and challenges regarding energy minimization in edge
computing scenarios. To address this problem, the authors formulate the problem of task
scheduling using Integer Linear Programming (ILP) based on multiobjective optimization
problem. They also propose a scheduler strategy called Kubernetes-based energy and in-
terference driven scheduler (KEIDS) for container management on edge-cloud nodes, taking
into consideration the emission of carbon footprints, interference, and energy consumption.
Simulation-based results show improvements comparing to three baseline algorithms.

Knob et al. [12] proposed a priority-based policy to the Kube-Scheduler in order to
let the scheduling process be aware of the server node bandwidth, node image download
queue (i.e., applications allocated to the server waiting to be downloaded), and an esti-
mate of the application provisioning time, called Infrastructure Aware (IA). This strategy was
designed to compose the Kube-Scheduler priority-based policies, that is, it is used by the
scheduler to prioritize eligible nodes based on a score. To calculate the nodes score, this
strategy estimates the provisioning time of a given application based on the node cache,
download queue and the node bandwidth rate. Results based on simulations present an
average of 52% reduction compared to the Kube-Scheduler.

Knob et al. [23] proposed a novel container scheduler called Deployment Latency
SLA Enforcement Scheduler (DLSLA) using the Non-dominated Sorting Genetic Algorithm
II (NSGA-II) to optimize the container allocation and reorder the node download queue in or-
der to deploy applications within a given time without violating the application provision time
SLA. Considering that different applications may have different provisioning time SLAs, this
strategy focuses in ordering the download queue of nodes, prioritizing applications with a
tight SLA value (i.e. changing the positions of applications in the download queue). Results
based on simulations point out that the proposed solution is almost 200% better in ensur-
ing the application SLA than the Kube-Scheduler since it does not consider the network
infrastructure during the scheduling.

In [32], Rossi et al. argue that Kubernetes is not suitable for orchestrating con-
tainers in a geographically distributed cloud computing environment. Therefore, the authors
propose a container scheduling strategy considering the network infrastructure, latency be-
tween application replicas and application provisioning time called Geo-distributed and Elas-
tic deployment of containers in Kubernetes (ge-kube). In addition, ge-kube also contains
a mechanism that scales the applications horizontally and/or vertically. Experiments per-

24

formed showed that the combination of scheduling and scalability strategies showed bene-
fits.

3.2 Application Image Distribution

Knob et al. [11] argues that well-positioned container registries on an edge com-
puting network topology can significantly improve the deployment process, mainly reducing
the container-based applications deployment latency (i.e., start-up time). They proposed a
registries placement solution based on a fluid communities algorithm to find the best registry
positioning in the infrastructure topology.

In order to optimize container provisioning time, Darrous et al. [10] propose two
algorithms for positioning container images on edge servers, namely k-Center-Based Place-
ment (KCBP) and KCBP-Without-Conflict (KCBP-WC). The strategy aims to reduce the max-
imum time of download images from any node at the edge, by allocating a set of layers in a
set of nodes. The KCBP-WC algorithm has the same principle but avoids performing simul-
taneous downloads from the same node. The results obtained through simulations showed
that the algorithms reduced the maximum recovery time of container images by 1.1x to 4x
compared to traditional provisioning methods such as: Best-fit and Random.

Smet et al. [42] argues that there is an increase in services with unknown demand
patterns at the edge of the network, and pre-deploying such services is not feasible. In order
to tackle this problem, the authors proposed a Docker layer placement method to make it
possible to provision the services within the desired response time.

Also, intending to speed up the image pulling from edge servers, Becker et al.
[3] proposed a peer-to-peer (P2P) based container image registry to reduce the start-up
of container-based applications (image pulling time) by edge servers rather than retrieve
container images from centralized registries, following the subsequent requirements: non-
intrusive deployment, reliable and fully decentralized, accelerated image distribution.

3.3 Final Remarks

Several works propose improvements in the deployment of applications based on
containers at the edge of the network, focusing on provisioning strategies and even improve-
ments in image repositories (i.e., registry). Table 3.1 presents the works related to the scope
of this work. We can observe that some focus on reducing application provisioning time or
avoiding provisioning time SLA violations while others the latency between the applications
and end-users. However, to the best of our knowledge, there are no works considering both
aspects, which make up the scope of this work.

25

Table 3.1: Related work.

Paper End-user
Latency

Provisioning
Time Primary Goal Architecture

[32] ✗ ✓ Reduce latency between application replicas Cloud Computing
[20] ✗ ✗ Reduce application interference and energy consumption Edge Computing
[17] ✗ ✓ Reduce application provisioning time Edge Computing
[34] ✗ ✗ Reduce application latency by location-awareness Edge Computing
[35] ✗ ✗ Optimize SFC scheduling considering latency Edge Computing
[12] ✗ ✓ Reduce application provisioning time Edge Computing
[23] ✗ ✓ Enforce application provisioning time SLA compliance Edge Computing

This work ✓ ✓ Minimize latency and provisioning time SLA violations Edge Computing

The next chapter presents the proposed algorithm to tackle the container-based ap-
plication scheduling problem in heterogeneous infrastructures as well as the system model
considered in our modeling.

26

4. HEURISTIC FOR CONTAINER-BASED APPLICATIONS
SCHEDULING

This chapter presents the proposed heuristic called Latency and Provisioning Time
SLA Driven Scheduler (LPSLA) focused on container-based application scheduling at the
edge computing infrastructures. Unlike most works found in the literature, our proposed
solution focuses on minimizing the application SLA violations in terms of latency in relation
to its end-users and provisioning time. This chapter initially presents our system model
formulation, followed by the proposed solution.

4.1 System Model

This section details the edge computing infrastructure and container-based appli-
cation problem addressed in this work. The notations used to describe our modeling are in
Table 4.1.

Table 4.1: Summary of notations used in this work.

Symbol Notation
N Set of edge nodes
L Set of network links
A Set of applications
β Application image registry node
ci CPU capacity of edge node Ni

mi Memory capacity of edge node Ni

zi CPU demand of edge node Ni

pi Memory demand of edge node Ni

µi Cache of edge node Ni

ηi Download queue of edge node Ni

lu Latency of network link Lu

bu Bandwidth of network link Lu

ξj CPU demand of application Aj

ρj Memory demand of application Aj

λj Set of layers that compose application Aj

ωj Position of the user of application Aj

νj Provisioning Time SLA of application Aj

τj Latency SLA of application Aj

freeResources(Ni) Function that returns the amount of resources available of edge node Ni

demand(Aj) Function that returns the demand of an application Aj

We consider an edge computing network infrastructure modeled as an undirected
graph G = (N ,L), where N is the set of heterogeneous edge nodes and L is the set of
network links connecting the nodes. We model an edge node Ni = {ci , mi , zi , pi ,µi , ηi},
where ci and mi represents the edge node CPU and memory capacity, and zi and pi the
edge node CPU and memory demand (i.e., resource usage). The set of application layers

27

that the edge nodeNi has in its local cache is denoted by µi , and ηi represents the order and
set of applications layers waiting to be downloaded by the edge node Ni , called download
queue since many applications requests can be made to an edge node.

In our formulation, each network link Lu = {lu, bu} are bidirectional and contains
two attributes. The first one, lu, represents the link latency, while the latter, bu, repre-
sents the link bandwidth capacity. The set of container-based applications to be provi-
sioned in the infrastructure G is represented by A = {A1,A2, ...,A|A|}. Each application
Aj = {ξj , ρj ,λj ,ω, νj , τj} contains a CPU and memory demand represented by ξj and ρj , re-
spectively. Furthermore, each application is considered as a single container, and they are
independent (i.e., monolithic application). The set of layers that compose the application
Aj is denoted by λj = {λj ,1,λj ,2, ...,λj ,|λj |}, and the node from which the user will access the
application by ω. Lastly, since each application could have a custom SLA, the νj represents
the application provisioning time SLA, and τj the application latency SLA. We can check if
the node Ni has a layer λj ,k in its cache through the matrix δ.

δi ,j ,k =

1 if layerλj ,k ∈ µi

0 otherwise.

ℵi ,j ,k =

1 if layerλj ,k ∈ ηi

0 otherwise.

When provisioning an application Aj to an edge node Ni , the set of layers λj are
transferred from the registry node β (i.e., image repository) to the edge node Ni . If Ni has
already a layer λj ,k locally in its cache (i.e., δi ,j ,k = 1), then layer λj ,k is not downloaded
from the registry. Otherwise, we transfer λj ,k ’s data, represented by sj ,k , from the registry.
However, if a layer λj ,k is already in the edge node’s download queue (i.e., ℵi ,j ,k = 1), we
disconsider the download of λj ,k . In this way, the application provisioning time of application
Aj in edge node Ni using images stored in registry β can be described by ζ according to
Equation 4.1, where wi represents the total time needed to empty the download queue ηi

(i.e. provision all applications).

ζ(i , j) = wi +
|λj ,k |∑
k∈λj

sj ,k

γ(β,Ni)
· (1− sgn(δi ,j ,k + ℵi ,j ,k)) (4.1)

In short, we disregard a layer λj ,k if it is already in cache (δi ,j ,k = 1) or in the download
queue (ℵi ,j ,k = 1), through the signum function (sgn) which results in zero only if the sum
of δi ,j ,k and ℵi ,j ,k are equal to zero. We denote the bandwidth available for provisioning
an application Aj to an edge node Ni as γ(β,Ni). If no transfer between the container
registry β and Ni has been done yet, γ(β,Ni) gets the minimum bandwidth between the

28

links connecting Ni and β. Otherwise, we assume γ(β,Ni) as the last calculated bandwidth
between β and Ni .

The latency of an application Aj depends on which edge node Ni it will be provi-
sioned in relation to the user’s position ωj as in Equation 4.2, which considers the sum of all
network links latency lu between an edge node Ni and the edge node where the user of the
application is located ωj , represented by θ(i , j), as we consider users to access applications
through an edge node, such as a gateway. The set of links θ(i , j) is defined through the
Dijkstra shortest path algorithm [13], using as weight the link latencies lu.

Ω(i , j) =
∑

u ∈ θ(i ,j)

lu (4.2)

4.2 Proposed Heuristic

The main goal of the proposed heuristic is to reduce provisioning time and latency
SLA violations of container-based applications by estimating application provisioning time
considering the image layers present in the server’s cache and the queue of applications
waiting to be provisioned (i.e., edge node download queue). In the context of this work,
each application is scheduled individually (i.e., we run the heuristic once for each application)
according to the need for provisioning and in the order they are requested (i.e., the scheduler
is not aware of the next applications that will be requested in the future).

Algorithm 4.1 presents the proposed heuristic. Initially, we create a set S of eligible
edge nodes if Ni ∈ N has enough computing resources to provision an application Aj (line
4), following the same logic as Kube-Scheduler’s PodFitsResources [24]. Then, for each
edge node, we estimate provisioning time ζ(i , j) of application Aj to edge server Si (line 6),
as described in Equation 4.1, and we compute the network latency Ω(i , j) between Si and
the application user edge node location ωj (line 7), as described in Equation 4.2. Next, we
sort the set of edge nodes S ascending based on the sum of the number of SLA violations
ψ(Si ,Aj), according to Equation 4.3 (line 9).

ψ(Si ,Aj) = [Li > τj] + [Pi > νj] (4.3)

In addition, in order to select the most suitable edge node to deploy a given appli-
cation, for each edge node Si we calculate the edge node score according to a cost function
∆ presented in Equation 4.4, which considers the application provisioning time Pi and edge
node latency Li in relation to a particular application Aj . As variables Pi and Li have values
on different scales, we normalize them using Min-Max Normalization [18] (line 9). Finally, we
sort the set of edge nodes S ascending based on edge node score normalized and return
the first edge node S1 (line 10).

29

Algorithm 4.1 LPSLA algorithm.
1: function LPSLA(N , Aj)
2: P ← {}
3: L← {}
4: S ← {Ni | Ni ∈ N ∧ freeResources(Ni) ≥ demand(Aj)}
5: for each edge node Si ∈ S do
6: Pi ← ζ(i , j)
7: Li ← Ω(i , j)
8: end for
9: S ← Edge nodes ∈ S sorted by Eq. 4.3 (asc.) and Eq. 4.4 (asc.)

10: return S1

11: end function

∆(Pi , Li) = norm(Pi) + norm(Li) (4.4)

We understand that applications may have different SLA values. For example, a
highly latency-sensitive application (e.g., augmented reality) needs lower latency than other
applications (e.g., batch-based surveillance). In this way, it is possible to observe that Algo-
rithm 4.1 will choose the edge node Si with the lowest latency and provisioning time values
to deploy a given application Aj . However, depending on an application’s SLA values (νj and
τj), choosing the best edge node to provision it may not be necessary. In addition, by choos-
ing the best edge node without the need (that is, preferring the best edge node without the
need considering the SLA values of the application), it can jeopardize the SLA compliance
of other applications with a tight SLA.

To understand the impact of the sorting order of edge nodes, we propose a variation
of the Algorithm 4.1 called LPSLA-DS. As shown in the Algorithm 4.2, we just changed the
sorting function (line 9) to prioritize edge nodes that do not violate any SLAs (Eq. 4.3), but
have the highest score values (Eq. 4.4).

Algorithm 4.2 LPSLA Decrease Sorting (LPSLA-DS) algorithm.
1: function LPSLADECREASESORTING(N , Aj)
2: P ← {}
3: L← {}
4: S ← {Ni | Ni ∈ N ∧ freeResources(Ni) ≥ demand(Aj)}
5: for each edge node Si ∈ S do
6: Pi ← ζ(i , j)
7: Li ← Ω(i , j)
8: end for
9: S ← Edge nodes ∈ S sorted by Eq. 4.3 (asc.) and Eq. 4.4 (desc.)

10: return S1

11: end function

In conclusion, the container-based application scheduling in highly distributed and
heterogeneous environments needs to consider several factors so that the quality of service

30

and user experience are not compromised. In this chapter, we present our system model
and two scheduling algorithms: LPSLA and LPSLA-DS. In the next chapter, the evaluation
methodology used to evaluate the proposed solution is presented.

31

5. EVALUATION

This chapter presents the process and methodology used to evaluate the proposed
heuristic on container-based applications scheduling on an edge computing infrastructure.
The chapter initially presents the edge computing infrastructure considered, edge nodes, ap-
plications, and SLA values. It is also presented the simulator used to evaluate the strategies.
The remainder of the chapter presents and discusses the achieved results.

5.1 Experiments Description

We created the network topology used to evaluate the proposed heuristic based
on the Ipê Brazilian Research Network [31] topology. This topology contains 28 Points-
of-Presence (PoP) distributed by the country. In each PoP was created five edge nodes
of different capacities, according to Table 5.1, chosen based on a normal distribution, as
it presents a heterogeneous distribution, which is expected in edge infrastructure environ-
ments.

Figure 5.1: Ipê topology.

The edge nodes connection links bandwidth and latency have been configured
following a normal distribution, with values between 10Mb/s and 200Mb/s with an interval
of 10Mb/s (i.e., 10Mb/s, 20Mb/s, 30Mb/s, ..., 200Mb/s) and 10ms, 12ms, 14ms, 16ms of
latency, respectively.

32

Table 5.1: Edge node configurations.

Type CPU (# of Cores) Memory (GB) Disk (GB)
Small 2 2GB 32GB
Medium 4 4GB 64GB
Large 8 8GB 128GB

The fifty most popular Docker Hub [15] images and its layers were used to create
a set of applications that are deployed in the topology during the simulations to evaluate the
heuristics. Each application has been configured with one of the groups of requirements
presented in Table 5.2, following a normal distribution.

Table 5.2: Application requirements.

Millicores Memory
250 256MB
250 512MB
500 512MB
1000 1024MB

The sum of the images used has a total size of 8705.82 MB (an average of 174.11
MB per image). However, since several images share equal layers, a node would need to
download 6037.13 MB to have all applications (30% of similarity between images). Each
application is set up to be provisioned on the infrastructure at a specific time during the
simulation, called the scheduling time. In this way, we configured the scheduling time of
each application following a normal distribution with values between 0 and 1000 seconds.

In our simulations, we put the docker registry (i.e., docker images remote reposi-
tory) in the PoP of São Paulo due to the large amount of bandwidth in the region to prevent
the registry from being a bottleneck in the simulation and because it is the primary connec-
tion to cloud providers [30]. Figure 5.2 presents an illustration of the final topology used,
where the nodes in blue are network switches, the gray nodes are server nodes (i.e., worker
nodes), and the red node is the application image registry.

To simulate users requesting to access the applications, we configured in each
application a node that would refer to the abstraction of the user’s location; in this way, we
can calculate the latency between users and applications. In the context of this work, the
application needs to be provisioned close to the user’s position to avoid a huge network
latency and, consequently, SLA violations.

As different applications may have different priorities and requirements, for exam-
ple, health-oriented applications have higher priority over safety-oriented applications, two
types of SLA were considered, one with a loose value (i.e., a value easily reached) and

33

Figure 5.2: Final topology.

the other a tight value. In order to define the application SLA values, we compute the in-
frastructure topology capacity in terms of network latency and application provisioning time.
To understand the impact of the proportion of SLA values, three scenarios were evaluated
according to Table 5.3. In each scenario, the proportion of applications with loose and tight
SLAs values are varied (e.g., the first scenario consists of 50% of applications with the loose
and 50% with the tight SLA values).

Table 5.3: SLA scenarios.

SLA Values Scenario #1 Scenario #2 Scenario #3
Loose 50% 80% 20%
Tight 50% 20% 80%

In the context of this work, we are comparing our proposed solutions, LPSLA and
LPSLA-DS, with three heuristics presented next.

• Kube-Scheduler (KS) [24]: This is the default scheduling mechanism of Kubernetes.
It selects the most appropriate nodes based on priority-based and predicated-based
policies;

• Infrastructure-Aware (IA) [12]: This strategy extends the Kube-scheduler with a priority-
based policy that prioritizes nodes based on the layers of the images it has in cache
and the estimation of application provisioning time (considering the download queue);

34

• Deployment Latency SLA Enforcement Scheduler (DLSLA) [23]: It uses a NSGA-II
algorithm to optimize the container allocation and reorder the node download queue in
order to avoid provisioning time SLA violations;

5.2 Simulator

All experiments were executed in the Edge Computing Orchestration Simulator
(ECOS) presented in [22]. ECOS is written in Python and uses the Networkx library [28].
The simulator allows us to evaluate different scheduling strategies (e.g., Kube-Scheduler,
First-Fit, Best-Fit) in a customizable edge computing environment. Besides simulating the
container-based applications scheduling process, the simulator also simulates the applica-
tion image distribution from a registry to the edge nodes considering the network topology
(i.e., connection links and connection speed).

The simulator network implementation uses a fair sharing schedule policy based
on the max-min fairness algorithm proposed by Bertsekas et al. [5], which is based on the
equal sharing of network connection links between active sessions (i.e., network packet).
This approach enables a more realistic simulation due to the acceptable degree of approxi-
mation with real protocols (i.e., TCP) and simulating network bottlenecks when provisioning
containers in edge nodes.

Some of the main features of max-min fairness are: 1) network packets have equal
priority over the available network links bandwidth; 2) the network link bandwidth capacity
is split evenly among the network packets, and 3) network packets are always using the
maximum bandwidth possible based on the active network links [23].

About the Kube-Scheduler, we simplified the implementation based on the official
documentation; that is, policies more specific to the operation of Kubernetes in real sce-
narios such as VolumeBinding, VolumeZone, VolumeRestrictions, and among others were
not considered. Moreover, our implementation allows us to configure the scheduler in a
customized way and change the weight of each priority-based policy.

5.3 Results

In the evaluation, we consider an edge computing infrastructure composed of 140
heterogeneous server nodes and a workload composed of 889 applications, representing
80% of the nodes’ capacity. The simulations start with the infrastructure completely empty
(i.e., with no applications running) and end after all applications are provisioned. The SLAs
values were defined arbitrarily, for application provisioning time is 70s for the loose SLA and

35

15s for the tight SLA, while the SLA values for application network latency is 80ms for the
loose SLA and 20ms for the tight SLA, according to Table 5.4.

Table 5.4: Simulation parameters.

Parameter Value
Server Nodes 140

Number of Images 50
Number of Applications 889

Loose Latency SLA 80ms
Tight Latency SLA 20ms

Loose Provisioning Time SLA 70s
Tight Provisioning Time SLA 15s

The results obtained from the simulation of the three SLA scenarios for the ana-
lyzed heuristics are depicted in Table 5.5. Initially, we observe that the proposed strategies
significantly overcomes the other strategies on all evaluated metrics. The analysis of the
results is divided into three sections: 1) Latency Analysis; 2) Provisioning Time Analysis;
and 3) Resource Utilization Analysis.

Table 5.5: Experiment results in all scenarios.

Scenario Strategy
Number of SLA Violations

Latency Provisioning Time
Total Percentage Total Percentage

Scenario #1

Kube-Scheduler 503 57% 88 10%
Infrastructure-Aware 514 58% 84 9%

DLSLA 508 57% 68 8%
LPSLA 228 26% 47 5%

LPSLA-DS 203 23% 20 2%

Scenario #2

Kube-Scheduler 283 32% 45 5%
Infrastructure-Aware 285 32% 32 4%

DLSLA 279 31% 29 3%
LPSLA 92 10% 13 1%

LPSLA-DS 65 7% 14 2%

Scenario #3

Kube-Scheduler 721 81% 139 16%
Infrastructure-Aware 732 82% 131 15%

DLSLA 736 83% 98 11%
LPSLA 377 42% 92 10%

LPSLA-DS 377 42% 32 4%

5.3.1 Latency Analysis

The latency of an application comprises the aggregated delay of all links used to
communicate the node that hosts and the node on which user is connected in. As shown in

36

Table 5.5, our proposed solutions managed to decrease the number of latency SLA violations
in all evaluated scenarios significantly.

0 25 50 75 100 125
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(a) Scenario #1
Tight SLA Applications

0 25 50 75 100 125
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(b) Scenario #2
Tight SLA Applications

0 25 50 75 100 125
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(c) Scenario #3
Tight SLA Applications

0 25 50 75 100 125
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(d) Scenario #1
Loose SLA Applications

0 25 50 75 100 125
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(e) Scenario #2
Loose SLA Applications

0 25 50 75 100 125
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(f) Scenario #3
Loose SLA Applications

Kube-Scheduler Infrastructure-Aware DLSLA LPSLA LPSLA-DS

Figure 5.3: Latency CDFs for tight and loose SLA applications in all scenarios.

The Figure 5.3 presents the cumulative distribution function (CDF) of application
latencies of all evaluated scenarios. The vertical red lines mark SLA values. In general, high
latency SLA violation rates are an expected result for KS, IA, and DLSLA, since they do not
consider users’ latency when scheduling applications. In this way, all of them have similar
behavior. In addition, the number of violations increases in the third scenario because it is
the most difficult, as 80% of applications have a tight SLA of 20ms.

In the first scenario, the LPSLA-DS violates 23% of latency SLA while LPSLA 26%.
According to the CDF presented in the Figure 5.3a, the LPSLA-DS was able to provision 54%
of tight SLA applications with up 20ms of latency, while LPSLA 49% of applications justifying
the number of violations because in this scenario, 50% of applications have a latency SLA of
20ms. Regarding loose SLA applications, as shown in Figure 5.3d, both of them provisioned
all loose SLA applications with up to 80ms.

In the second scenario, 20% of applications have a tight latency SLA of 20ms, the
LPSLA violates 10% of the applications, because according to Figure 5.3e it provisioned

37

43% of applications with a loose SLA with up to 20ms, that is, possibly ended up using the
best nodes to provision applications with loose SLAs instead of tight SLAs, as shown in the
Figure 5.3b. On the other hand, LPSLA-DS provisioned 0% of applications with a loose SLA
with up to 20ms, keeping the best nodes for applications with tight SLA and violating only
7% of general applications.

In the third scenario, the most difficult one, 80% of applications have a tight latency
SLA of 20ms. According to the CDF presented in Figure 5.3f, the LPSLA provisioned 35%
loose SLA applications with up to 20ms, possibly wasting nodes suitable for tight SLA ap-
plications. Unlike LPSLA-DS, which provisioned 0% of loose SLA applications with up to
20ms, keeping the best nodes for tight SLA applications. However, both of them end up
violating 42% of applications, possibly due to overutilization of nodes or due to interference
from other objectives, such as provisioning time SLA.

Compared to Kube-Scheduler, the proposed heuristics, LPSLA-DS and LPSLA,
reduced the number of SLA violations by 56%, 72%, and 47%, respectively, in the three
evaluated scenarios. While LPSLA-DS showed a reduction of 10%, 29%, and 0% compared
to the LPSLA version in the three scenarios evaluated. The slight difference in the last
scenario is caused by the difficulty presented in the scenario, as 80% of applications have a
tight SLA. Furthermore, large amounts of latency SLA violations of the other heuristics are
because the KS, IA, DLSLA approaches are network latency agnostic.

5.3.2 Provisioning Time Analysis

The provisioning time values consist of the time taken to transfer a container-based
application from a registry to a given node, represented by the Equation 4.1. As shown
in Table 5.5, our proposed solution also managed to decrease the number of provisioning
time SLA violations in all evaluated scenarios significantly. Figure 5.4 presents the CDF of
application provisioning time on all evaluated scenarios.

In the first scenario, as shown in the Figure 5.4a, about 80%, 81%, 85%, 95%
and 89% of tight SLA applications were provisioned within 15 seconds for the strategies
KS, IA, DLSLA, LPSLA-DS and LPSLA, respectively. With the KS, IA, DLSLA, LPSLA-DS,
and LPSLA reaching the maximum time of 83, 68, 48, 85, and 47 seconds, respectively.
Considering only loose SLA applications, as shown in Figure 5.4d, all approaches were able
to provision applications within 70 seconds.

The provisioning time values presented by the KS, IA, and DLSLA heuristics are
caused by the impact of other policies as these may end up not prioritizing the fastest node
for provisioning. In addition, the latter focuses on optimizing the node download queue,
sorting it to reduce the number of provisioning time SLA violations while avoiding making a
high number of changes to it.

38

0 20 40 60 80
Provisioning Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(a) Scenario #1
Tight SLA Applications

0 20 40 60 80
Provisioning Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(b) Scenario #2
Tight SLA Applications

0 20 40 60 80
Provisioning Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(c) Scenario #3
Tight SLA Applications

0 20 40 60
Provisioning Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(d) Scenario #1
Loose SLA Applications

0 20 40 60 80
Provisioning Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(e) Scenario #2
Loose SLA Applications

0 20 40 60 80
Provisioning Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

 (%
)

(f) Scenario #3
Loose SLA Applications

Kube-Scheduler Infrastructure-Aware DLSLA LPSLA LPSLA-DS

Figure 5.4: Application provisioning time CDFs for tight and loose SLA applications in all
scenarios.

Despite the highest provisioning time value being from the LPSLA-DS heuristic,
according to Table 5.5, this heuristic reduced the total violations by 77%, 68%, and 76%
compared to the worst heuristic (KS) in the first, second and third scenario, respectively. It
happens because LPSLA-DS prefers the nodes with the highest provisioning time as long as
it does not violate any SLA. However, suppose no node can provision the application without
violating any SLA. In that case, this heuristic ends up preferring to allocate it to the worst
nodes since the SLA would have been violated anyway.

5.3.3 Resource Utilization Analysis

The resource utilization analysis goal is to understand the behavior of the evalu-
ated heuristics in allocating container-based applications. This analysis makes it possible
to determine how distributed the applications are in the infrastructure topology. The values
presented below are the highest values between CPU and memory of the nodes, as we

39

understand that it is possible to use 100% of a resource (e.g., CPU), making it impossible to
provision more applications while the other resource is available (e.g., memory).

0 20 40 60 80 100
Node Utilization Percentage

max(cpu, memory)

0

10

20

30

40

50

Fr
eq

ue
nc

y

(a) Scenario #1

0 20 40 60 80 100
Node Utilization Percentage

max(cpu, memory)

0

10

20

30

40

50

Fr
eq

ue
nc

y

(b) Scenario #2

0 20 40 60 80 100
Node Utilization Percentage

max(cpu, memory)

0

10

20

30

40

50

Fr
eq

ue
nc

y

(c) Scenario #3

Kube-Scheduler Infrastructure-Aware DLSLA LPSLA LPSLA-DS

Figure 5.5: Edge node resource utilization percentage.

It is possible to observe that KS and IA distributed the applications among the
nodes since the frequency of use of the nodes is higher between 50% and 90% in all eval-
uated scenarios. It happens because these strategies have internal policies that tend to
spread applications across nodes. In comparison, DLSLA, LPSLA-DS, and LPSLA tend to
centralize the applications on specific nodes due to the high frequency of little-used nodes
and the high frequency of heavily used nodes.

The centralization of applications in a set of nodes caused by the heuristics DLSLA,
LPSLA, and LPSLA-DS, occurs due to the prioritization of nodes with faster network links
and or image layers already in the nodes’ cache. It happens because nodes that already
have some layers or even entire images locally can provide a particular application faster,
justifying the best results obtained concerning the provisioning time.

5.4 Final Remarks

Based on the experiment results, it is possible to verify that the proposed heuristics
effectively minimizes the applications provisioning time SLA violations while also avoiding
network latency SLA violations in an edge computing scenario. In order to achieve these
results, the proposed heuristics were designed to prioritize nodes that can provision appli-
cations without causing SLA violations based on an estimated application provisioning time
(considering the cache and application queue waiting to be installed on the nodes) and net-
work latency between the user of the application and nodes. Consequently, the proposed
heuristics centralize the applications in a set of nodes.

40

It is worth mentioning that the results of the evaluated heuristics presented in this
work, IA and DLSLA, may vary from those presented in its original papers [12, 23] since the
evaluation scenario changed and no optimization or sensitivity analysis of the parameters
was performed, which could have positive impacts on its results.

41

6. CONCLUSIONS AND FUTURE WORK

Finding the most suitable edge node to deploy a given application in a totally het-
erogeneous scenario like edge computing is a variant of the Application Scheduling Prob-
lem [43]. In addition to the heterogeneity of edge nodes, several characteristics must be
considered during the application scheduling so that the edge computing benefits are not af-
fected. That is, for example, the network latency between the edge and the user for latency-
sensitive applications such as augmented reality.

Previous investigations proposed various strategies to improve the application sched-
ule at the network’s edge, through improvements to the Kubernetes scheduler, Kubernetes-
based schedulers, as well as improvements in the distribution of images at the edge of
the network through the placement of registries in the infrastructure or improvements in the
Docker image repositories. However, to the best of our knowledge, none of them consid-
ered the application provisioning time and the network latency concerning the users of such
applications.

This work presents a new container-based application scheduler which focus on
enforcing the application latency and provisioning time SLA compliance called LPSLA. This
heuristic prioritizes nodes by estimating the application provisioning time considering the
nodes’ cache, the application queue waiting to be downloaded by the node (download
queue) and the node’s bandwidth. In addition, the network latency between possible nodes
and the application user is also considered. We also proposed a variation of the heuristic
called LPSLA-DS, that prioritizes nodes that have the highest values of latency and provi-
sioning time as long as they do not violate application SLAs.

The proposed solutions, LPSLA and LPSLA-DS, were evaluated in a simulated
edge computing scenario with different application SLA values. We also evaluated and
compared the proposed solutions with Kube-Scheduler [24], Infrastructure Aware [12] and
DLSLA [23]. Simulation-based results indicate that the proposed solution overcomes these
strategies on latency and provisioning time SLAs across all scenarios.

6.1 Future work

In this work, we consider only one user per application; however, more than one
user could need to access a particular application in real scenarios. In this way, as future
work, we indent to schedule applications based on the location of these multiple users to
make the applications available within limits provided by the SLA, whether provisioning the
application close to all its users or even replicating the application in other regions.

42

We did not consider migrating the services already provisioned, which is also a
possibility for future works in order to balance the use of resources, for example. Further-
more, strategies that prioritize one of the objectives over another could also be formulated
in future works.

In addition to implementing the proposed strategy in the Kubernetes scheduler in
order to evaluate the behavior of the algorithms in real scenarios, as future work, the pro-
posed solution could also be evaluated in other edge network infrastructures with different
characteristics, such as the position of one or more registries, different applications, edge
node capabilities and connection links.

6.2 Achievements

In addition to the contributions mentioned above, during our research period we
participated in other studies in relation to container-based applications provisioning in the
context of edge computing and resource management on cloud computing. These publica-
tions are listed next:

• Improving Container Deployment in Edge Computing Using the Infrastructure
Aware Scheduling Algorithm
Luis Knob, Carlos Kayser, Tiago Ferreto
IEEE Symposium on Computers and Communications (ISCC), 2021.

• Enforcing deployment latency SLA in edge infrastructures through multi-objective
genetic scheduler
Luis Knob, Carlos Kayser, Paulo Souza, Tiago Ferreto
IEEE/ACM International Conference on Utility and Cloud Computing (UCC), 2021.

• Predicting and Avoiding SLA Violations of Containerized Applications using Ma-
chine Learning and Elasticity
Paulo Souza, Miguel Neves, Carlos Kayser, Felipe Rubin, Conrado Boeira, João Mor-
eira, Bernardo Bordin, Tiago Ferreto
International Conference on Cloud Computing and Services Science (CLOSER), 2022.

43

REFERENCES

[1] Ahmed, A.; Pierre, G. “Docker container deployment in fog computing infrastructures”.
In: IEEE International Conference on Edge Computing (EDGE), 2018, pp. 1–8.

[2] Bahl, V. “Emergence of micro datacenter (cloudlets/edges) for mobile computing”,
Microsoft Devices & Networking Summit, vol. 5, 2015, pp. 2–1.

[3] Becker, S.; Schmidt, F.; Kao, O. “Edgepier: P2p-based container image distribution
in edge computing environments”. In: IEEE International Conference on Performance,
Computing and Communications (IPCCC), 2021, pp. 1–8.

[4] Bernstein, D. “Containers and cloud: From lxc to docker to kubernetes”, IEEE Cloud
Computing, vol. 1–3, 2014, pp. 81–84.

[5] Bertsekas, D. P.; Gallager, R. G.; Humblet, P. “Data networks (2nd Edition)”. Prentice-
Hall International New Jersey, 1992, 556p.

[6] Bilal, K.; Khalid, O.; Erbad, A.; Khan, S. U. “Potentials, trends, and prospects in edge
technologies: Fog, cloudlet, mobile edge, and micro data centers”, Computer Networks,
vol. 130, 2018, pp. 94–120.

[7] Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. “Fog computing and its role in the internet
of things”. In: Workshop on Mobile Cloud Computing (MCC), 2012, pp. 13–16.

[8] Byers, C.; Zahavi, R.; Zao, J. K. “The edge computing advantage”, Technical Report,
Industrial Internet Consortium, Needham, MA, USA, 2019, 11p.

[9] Celesti, A.; Mulfari, D.; Fazio, M.; Villari, M.; Puliafito, A. “Exploring container
virtualization in iot clouds”. In: IEEE International Conference on Smart Computing
(SMARTCOMP), 2016, pp. 1–6.

[10] Darrous, J.; Lambert, T.; Ibrahim, S. “On the importance of container image placement
for service provisioning in the edge”. In: International Conference on Computer
Communication and Networks (ICCCN), 2019, pp. 1–9.

[11] Dias Knob, L. A.; Faticanti, F.; Ferreto, T.; Siracusa, D. “Community-based placement
of registries to speed up application deployment on edge computing”. In: IEEE
International Conference on Cloud Engineering (IC2E), 2021, pp. 147–153.

[12] Dias Knob, L. A.; Kayser, C. H.; Ferreto, T. “Improving container deployment in edge
computing using the infrastructure aware scheduling algorithm”. In: IEEE Symposium
on Computers and Communications (ISCC), 2021, pp. 1–6.

44

[13] Dijkstra, E. W.; et al.. “A note on two problems in connexion with graphs”, Numerische
mathematik, vol. 1–1, 1959, pp. 269–271.

[14] Docker. “Docker documentation”. Source: https://docs.docker.com/, December 2021.

[15] Docker. “Docker Hub”. Source: https://hub.docker.com/, December 2021.

[16] Docker. “Docker Swarm”. Source: https://docs.docker.com/engine/swarm/, December
2021.

[17] Fu, S.; Mittal, R.; Zhang, L.; Ratnasamy, S. “Fast and efficient container startup at
the edge via dependency scheduling”. In: USENIX Workshop on Hot Topics in Edge
Computing (HotEdge), 2020, pp. 1–7.

[18] Han, J.; Kamber, M.; Pei, J. “Data Mining: Concepts and Techniques (3rd Edition)”.
Morgan Kaufmann Publishers Inc., 2011, 696p.

[19] Ismail, B. I.; Goortani, E. M.; Ab Karim, M. B.; Tat, W. M.; Setapa, S.; Luke, J. Y.; Hoe,
O. H. “Evaluation of docker as edge computing platform”. In: IEEE Conference on Open
Systems (ICOS), 2015, pp. 130–135.

[20] Kaur, K.; Garg, S.; Kaddoum, G.; Ahmed, S. H.; Atiquzzaman, M. “Keids: Kubernetes-
based energy and interference driven scheduler for industrial iot in edge-cloud
ecosystem”, IEEE Internet of Things Journal, vol. 7–5, 2019, pp. 4228–4237.

[21] Khan, W. Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. “Edge computing: A survey”,
Future Generation Computer Systems, vol. 97, 2019, pp. 219–235.

[22] Knob, L. A. D. “Improving container deployment latency in distributed edge
infrastructures”, Ph.D. Thesis, Programa de Pós-Graduação em Ciência da
Computação - PUCRS, 2021, 122p.

[23] Knob, L. A. D.; Kayser, C. H.; de Souza, P. S. S.; Ferreto, T. “Enforcing deployment
latency sla in edge infrastructures through multi-objective genetic scheduler”. In:
IEEE/ACM International Conference on Utility and Cloud Computing (UCC), 2021, pp.
1–9.

[24] Kubernetes. “Kubernetes Website”. Source: https://kubernetes.io/, December 2021.

[25] Luo, Q.; Hu, S.; Li, C.; Li, G.; Shi, W. “Resource scheduling in edge computing: A
survey”, IEEE Communications Surveys & Tutorials, vol. 23–4, 2021, pp. 2131–2165.

[26] Mell, P.; Grance, T.; et al.. “The NIST definition of cloud computing”, NIST Special
Publication, vol. 800, 2011, pp. 1–3.

[27] Mouat, A. “Using Docker: Developing and Deploying Software with Containers”.
O’Reilly Media, Inc., 2015, 350p.

45

[28] NetworkX. “Networkx Website”. Source: https://networkx.org/, December 2021.

[29] Patel, P.; Ranabahu, A. H.; Sheth, A. P. “Service level agreement in cloud computing”,
Technical Report, Wright State University, Dayton, OH, USA, 2009, 11p.

[30] RNP. “Ix.br”. Source: https://ix.br/particip/sp, December 2021.

[31] RNP. “Rede ipê”. Source: https://www.rnp.br/sistema-rnp/rede-ipe, December 2021.

[32] Rossi, F.; Cardellini, V.; Presti, F. L.; Nardelli, M. “Geo-distributed efficient deployment of
containers with kubernetes”, Computer Communications, vol. 159, 2020, pp. 161–174.

[33] Santos, J.; Wauters, T.; Volckaert, B.; De Turck, F. “Resource provisioning for iot
application services in smart cities”. In: International Conference on Network and
Service Management (CNSM), 2017, pp. 1–9.

[34] Santos, J.; Wauters, T.; Volckaert, B.; De Turck, F. “Towards network-aware resource
provisioning in kubernetes for fog computing applications”. In: IEEE Conference on
Network Softwarization (NetSoft), 2019, pp. 351–359.

[35] Santos, J.; Wauters, T.; Volckaert, B.; De Turck, F. “Towards delay-aware container-
based service function chaining in fog computing”. In: IEEE/IFIP Network Operations
and Management Symposium (NOMS), 2020, pp. 1–9.

[36] Satyanarayanan, M. “The emergence of edge computing”, Computer, vol. 50–1, 2017,
pp. 30–39.

[37] Satyanarayanan, M. “How we created edge computing”, Nature Electronics, vol. 2–1,
2019, pp. 42–42.

[38] Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. “The case for vm-based cloudlets
in mobile computing”, IEEE Pervasive Computing, vol. 8–4, 2009, pp. 14–23.

[39] Senthil Kumaran, S. “Practical LXC and LXD: linux containers for virtualization and
orchestration”. Springer, 2017, 180p.

[40] Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. “Edge computing: Vision and challenges”,
IEEE Internet of Things Journal, vol. 3–5, 2016, pp. 637–646.

[41] Shi, W.; Dustdar, S. “The promise of edge computing”, Computer, vol. 49–5, 2016, pp.
78–81.

[42] Smet, P.; Dhoedt, B.; Simoens, P. “Docker layer placement for on-demand provisioning
of services on edge clouds”, IEEE Transactions on Network and Service Management,
vol. 15–3, 2018, pp. 1161–1174.

46

[43] Topcuoglu, H.; Hariri, S.; Wu, M.-Y. “Performance-effective and low-complexity
task scheduling for heterogeneous computing”, IEEE Transactions on Parallel and
Distributed Systems, vol. 13–3, 2002, pp. 260–274.

[44] Xavier, M. G.; Neves, M. V.; Rossi, F. D.; Ferreto, T. C.; Lange, T.; De
Rose, C. A. F. “Performance evaluation of container-based virtualization for high
performance computing environments”. In: Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP), 2013, pp. 233–240.

