PUCRS

ESCOLA POLITECNICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTAGCAO
DOUTORADO EM CIENCIA DA COMPUTACAO

LEONARDO REZENDE JURACY

A FRAMEWORK FOR FAST ARCHITECTURE
EXPLORATION OF CONVOLUTIONAL NEURAL
NETWORK ACCELERATORS

Porto Alegre
2022

POS-GRADUACAO - STRICTO SENSU

\,
>
ehnis
v '

~ —-—

» 8.6
A E?.

b o5
Epym®

Pontificia Universidade Catolica
do Rio Grande do Sul

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY
COMPUTER SCIENCE GRADUATE PROGRAM

A FRAMEWORK FOR FAST
ARCHITECTURE EXPLORATION
OF CONVOLUTIONAL NEURAL

NETWORK ACCELERATORS

LEONARDO REZENDE JURACY

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfilment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Fernando Gehm Moraes
Co-Advisor: Prof. Matheus Trevisan Moreira

Porto Alegre
2022

Ficha Catalografica

J95f Juracy, Leonardo Rezende

A framework for fast architecture exploration of convolutional neural
network accelerators / Leonardo Rezende Juracy. — 2022.

137 £

Tese (Doutorado) — Programa de Pos-Graduagao em Ciéncia da
Computagao, PUCRS.

Orientador: Prof. Dr. Fernando Gehm Moraes.
Coorientador: Prof. Dr. Matheus Trevisan Moreira.

1. Convolutional Neural Networks. 2. Convolution Hardware Accelerator. 3. System
Simulator. 4. PPA. 5. Design Space Exploration. I. Moraes, Fernando Gehm. I
Moreira, Matheus Trevisan. III. , . IV. Titulo.

Elaborada pelo Sistema de Geragao Automatica de Ficha Catalografica da PUCRS
com os dados fornecidos pelo(a) autor(a).
Bibliotecaria responsavel: Loiva Duarte Novak CRB-10/2079

LEONARDO REZENDE JURACY

A FRAMEWORK FOR FAST ARCHITECTURE
EXPLORATION OF CONVOLUTIONAL NEURAL
NETWORK ACCELERATORS

This Doctoral Thesis has been submitted in
partial fulfilment of the requirements for the
degree of Ph. D. in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on August 5™, 2022.

COMMITTEE MEMBERS:

Prof2. Cristina Meinhardt (PPGCC/UFSC)
Prof2. Fernanda Gusmao de Lima Kastensmidt (PGMICRO/UFRGS)
Prof. César Augusto Missio Marcon (PPGCC/PUCRS)
Prof. Matheus Trevisan Moreira (PUCRS- Co-Advisor)

Prof. Fernando Gehm Moraes (PPGCC/PUCRS - Advisor)

AGRADECIMENTOS

Gostaria de deixar aqui, meu muito obrigado a pessoas que contribuiram para o
desenvolvimento desta Tese.

Primeiramente, gostaria de agradecer e dedicar este trabalho aos meus pais, An-
chieta e Rejane. Pode parecer cliché, mas sem eles, nada disso seria possivel e essa Tese
nao existiria. Muito obrigado por tudo, amo vocés.

Gostaria de agradecer ao meu orientador Fernando Gehm Moraes, que aceitou me
orientar a partir da segunda metade do Doutorado. Obrigado pela paciéncia, pelas horas
gastas, e pelos ensinamentos. Se um dia eu tiver um cachorro, tenha certeza que ele tera
s6 um nome.

Ao Alexandre de Morais Amory, que estd comigo nessa minha jornada académica
ha 10 anos. Obrigado pelas orientagdes durante a bolsa de iniciagédo cientifica, trabalho de
conclusao de curso, mestrado, e doutorado. Muito obrigado por me orientar durante todos
esses anos.

Ao Matheus Trevisan Moreira, que também esta comigo desde o trabalho de con-
clusao de curso. Obrigado por todas as reunides remotas, por todas as discussdes que
levaram a esta Tese, e pelas conversas nao relacionadas sobre musica e afins. Deixo aqui
meu muito obrigado.

Agradeco aos professores do PPGCC pelas aulas durante a pos-graduacao. Tam-
bém gostaria de agradecer a secretaria do PPGCC por serem sempre atenciosos.

Queria também agradecer alguns amigos especificos que fiz durante essa jornada
académica. Ao Fochi e ao Caimi, pelos conselhos e conversas sobre futebol. Ao Korol,
pelas conversas sobre a vida académica e pelas trocas de artigos. Ao Walter Lau Neto, que
trabalhou comigo durante a bolsa de iniciagao cientifica, por ouvir as reclamacdes sobre o
andamento do Doutorado. Ao Felipe Kuentzer, que trabalhou comigo e me ajudou muito
durante o Mestrado. Ao Carlos Henrique, que me ajudou muito durante a graduacao e me
indicou para a bolsa de iniciacao cientifica no GAPH. Ao Wachter, que junto com o Amory,
foi uma das primeiras pessoas com quem trabalhei. Ao Sergio Johann, pelas conversas
sobre guitarra e eletrénica.

Gostaria de deixar meu obrigado a varias pessoas que conviveram comigo du-
rante meus anos de pesquisa, e que trabalharam comigo no GAPH e na DATACOM, e o
pessoal do GSE: Castilho, Madalozzo, Augusto Erichsen, Thiago Ménica, L. Heck, G. Heck,
Guilherme Medeiros, Guazzelli , Bortolon, Augusto Moraes, Felipe Lazzarotto, e Tanauan.
Foram muitas pessoas, e provavelmente esqueci de alguém, mas deixo minhas sinceras
desculpas e o0 meu muito obrigado a todos vocés.

Por fim, gostaria de agradecer a CAPES, que financiou todo esse trabalho.
Mais uma vez, muito obrigado a todos.

UM FRAMEWORK PARA EXPLORACAO RAPIDA DE ARQUITETURAS
DE ACELERADORES PARA REDES NEURAIS CONVOLUCIONAIS

RESUMO

Aprendizado de Maquina (ML, do inglés, Machine Learning) é uma subéarea da inteligéncia
artificial que compreende algoritmos para resolver problemas de classificagdo e reconhe-
cimento de padrdes. Uma das maneiras mais comuns de desenvolver ML atualmente é
usando Redes Neurais Artificiais, especificamente Redes Neurais Convolucionais (CNN, do
inglés, Convolutional Neural Networks). As GPUs tornaram-se as plataformas de referén-
cia para as fases de treinamento e inferéncia das CNNs devido a sua arquitetura adaptada
aos operadores da CNN. No entanto, as GPUs s&o arquiteturas que consomem muita ener-
gia. Um caminho para permitir a implementagcéo de CNNs em dispositivos com restrigdo de
energia € adotar aceleradores de hardware para a fase de inferéncia. No entanto, a litera-
tura apresenta lacunas em relagdo as analises e comparagdes desses aceleradores para
avaliar os compromissos Poténcia-Desempenho-Area (PPA, do inglés, Power-Performance-
Area). Normalmente, a literatura estima PPA a partir do nUmero de operacdes executadas
durante a fase de inferéncia, como o numero de MACs (do inglés, Multiplier-Accumulator),
0 que pode néo refletir o comportamento real do hardware. Assim, é necessario fornecer
estimativas de hardware precisas, permitindo a exploracao do espaco de projeto (DSE, do
inglés, Design Space Exploration) para implementar as CNNs de acordo com as restrigdes
de projeto. Esta Tese propde duas abordagens de DSE para CNNs. A primeira adota um
simulador de sistema com precisdo de ciclo de reldégio e usa uma linguagem de alto nivel
para descrever 0 hardware de forma abstrata. Essa primeira abordagem, usa o TensorFlow
como front-end para treinamento, enquanto o back-end gera estimativas de desempenho
por meio da sintese fisica de aceleradores de hardware. A segunda abordagem, é um DSE
rapido e preciso, usando um modelo analitico construido a partir dos resultados da sintese
fisica de aceleradores de hardware. O modelo analitico estima a &rea de silicio, desem-
penho, poténcia, energia e quantidade de acessos a memaoria. O erro médio do pior caso
observado comparando o modelo analitico com os dados obtidos da sintese fisica € inferior
a 8%. Embora a segunda abordagem permita obter resultados precisos e de forma rapida,
a primeira abordagem permite simular um sistema computacional completo, considerando
possiveis redundancias na modelagem de aceleradores. Esta Tese avanca o estado da arte,
apresentando métodos para gerar uma avaliagdo abrangente de PPA, integrando estruturas
de front-end (por exemplo, TensorFlow) a um fluxo de design de back-end.

Palavras-Chave: Redes Neurais Convolucionais, Acelerador de Hardware de Convolucao,
Simulador de sistema, PPA, Exploragao do Espaco de Projeto.

A FRAMEWORK FOR FAST ARCHITECTURE EXPLORATION OF
CONVOLUTIONAL NEURAL NETWORK ACCELERATORS

ABSTRACT

Machine Learning (ML) is a sub-area of artificial intelligence comprehending algorithms to
solve classification and pattern recognition problems. One of the most common ways to de-
liver ML nowadays is using Artificial Neural Networks, specifically Convolutional Neural Net-
works (CNN). GPUs became the reference platforms for both training and inference phases
of CNNs due to their tailored architecture to the CNN operators. However, GPUs are power-
hungry architectures. A path to enable the deployment of CNNs in energy-constrained de-
vices is by adopting hardware accelerators for the inference phase. However, the litera-
ture presents gaps regarding analyses and comparisons of these accelerators to evaluate
Power-Performance-Area (PPA) trade-offs. Typically, the literature estimates PPA from the
number of executed operations during the inference phase, such as the number of Multiplier-
Accumulators (MAC), which may not reflect the actual hardware behavior. Thus, it is nec-
essary to deliver accurate hardware estimations, enabling design space exploration (DSE)
to deploy CNNs according to the design constraints. This Thesis proposes two DSE ap-
proaches for CNNs. The former adopts a cycle-accurate system simulator and uses a high-
level language to describe the hardware abstractly. This first approach uses TensorFlow
as a front-end for training, while the back-end generates performance estimations through
physical synthesis of hardware accelerators. The second approach is a fast and accurate
DSE, using an analytical model fitted from the physical synthesis of hardware accelerators.
The analytic model estimates area, performance, power, energy, and memory accesses.
The observed worst-case average error comparing the analytical model to the data obtained
from the physical synthesis is smaller than 8%. Although the second approach generate ac-
curate results in a fast way, the first approach enables simulating a complete computational
system, considering a possible accelerators modeling redundancy. This Thesis advances
the state-of-the-art by offering methods to generate a comprehensive PPA evaluation, inte-
grating front-end frameworks (e.g., TensorFlow) to a back-end design flow.

Keywords: Convolutional Neural Networks, Convolution Hardware Accelerator, System Sim-
ulator, PPA, Design Space Exploration.

1.1
1.2

2.1
2.2

2.3

2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

214

2.15
2.16
217
2.18
219
2.20
2.21
2.22
2.23

2.24
2.25

LIST OF FIGURES

Example of a CNN and a Classification Application [CS231n, 2022]. 17
Thesis Structure. o e 22
Convolutional Neural Network general architecture [Alom et al., 2018].. 24
Example of a convolution operation: 32x32x3 IFMAP, 15x15x3 OFMAP, 3x3

filter size, strideequalto 2. 25
Proposed taxonomy for CNN hardware accelerators. This taxonomy is based

on [Moolchandanietal., 2021].. 26
NPU general architecture [Jiao etal.,2020]. 28
Sparsity-aware accelerator architecture [Hsiao et al., 2020]. 29
DianNao accelerator architecture [Chenetal.,2014]. 30
FPGA-based Accelerator architecture [Zhang et al., 2015]. 30
Accelerator overview and MAC detailed architecture [Spagnolo et al., 2020]. 31
Eyeriss general architecture [Chen etal., 2016b]. 31
Eyeriss v2 general architecture [Chenetal.,2019]. 32
SLCP and MLCP accelerator architectures [Tavakoli et al., 2020].......... 32
Multi-bit accelerator architecture [Tavakoli et al., 2020]. 33
Unified convolution and deconvolution accelerator architecture [Bai et al.,

2020 .t e e 33
Unified convolution and deconvolution accelerator architecture [Chen et al.,

2020 i 34
FlexFlow accelerator architecture [Lu et al., 2017]. 35
ShiDianNao accelerator architecture [Lu etal., 2017]. 35
ShiDianNao accelerator architecture [Das et al., 2020].................. 36
Swan general architecture [Liuetal.,,2020a].. 36
Swallow general architecture [Liu et al., 2020b]. 37
FDPU general architecture [Xiang etal.,2018]. 37
BitBlade general architecture [Ryu et al.,2022]. 38
Streaming-based Accelerator general architecture [Du et al., 2017]. 39
Column Streaming-based Accelerator general architecture [Lin and Arslan,

202 . o 39
IEAC 3D tile [Huang etal., 2021].o e 40

NVDLA flow diagram [NVIDIA, 2022a]..o oo 45

2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33

2.34
2.35
2.36

3.1

3.2
3.3
3.4
3.5

3.6

41

4.2

4.3

4.4

4.5
4.6
4.7
4.8

MLPAT Framework Architecture [Tang and Xie, 2018]..
MAESTRO Framework Architecture [Kwon et al., 2018a].
Timeloop Framework Diagram Flow [Parasharetal.,2019].
Accelergy Framework Diagram Flow [Wu etal.,2019].
DNN predictor high-level architecture [Zhao et al., 2020].
DNNExplorer Flow Diagram [Zhang et al., 2021]..
Gemmini general architecture [Genc etal., 2021].

DSE Method Based on Gaussian Process Regression Model [Ferianc et al.,
202 . e

SCALE-Sim simulator architecture [Samajdar et al.,2018].
STONNE simulator architecture [Mufioz-Martinez et al., 2020]............
SimuNN Simulator Architecture. [Cao etal., 2020].....................

Convolution Accelerator Hardware Metric Extraction Framework. Source:
[Juracy etal., 2021a].

TensorFlow Code Example. Source: [Juracy etal.,2021a]
Flow diagram of proposed quantization.
URSA Simulator Code Example. Source: [Juracy et al., 2021a]

Hardware accelerator architecture based on the NVDLA modules. Source:
[Juracy et al.,, 2021a)].o

Accuracy and Average Energy Trade-off [Juracy et al., 2021a].

Systolic 2D Array Accelerator Architecture. Source: [Juracy et al., 2021b] . .

Convolution 2D - memory accesses and processing flow. Source: [Juracy
etal, 2021D] . . .ot

1D Array Accelerator Architecture (buffers and arithmetic core). Source:
[Juracy etal.,, 20210].

Generic architecture and the modules required to build the convolutional
aCCelerators.

WS 2D accelerator and memory interfaces.,
WS accelerator Control FSM.
WS accelerator Fetch FSM.

Buffered WS 2D accelerator and memory interfaces. For this version, the
output buffer replacing the output memory control logic is what differentiates
this architecture fromthe WS..

46
47
47
48
48

50
51

62
64

68

71

75

4.9

410
4.11
412

4.13

414
415

5.1
5.2

5.3

5.4
5.5

5.6

6.1
6.2
6.3

6.4

6.5

IS 2D Array accelerator and memory interfaces. IS version has no double
buffer, and has a register bank to store all bias and weights values internally

inthe accelerator. 77
IS accelerator Control FSM. 78
IS accelerator Load FSM. 79

Buffered IS 2D Array accelerator and memory interfaces. For this version,
the output buffer replacing the output memory control logic is what differen-
tiates this architecture from the IS. Also, like IS, Buffered IS version has no
double buffer, and has a register bank to store all bias and weights values
internally in the accelerator. 79

OS 2D Array Accelerator and memory interfaces.OS has a double-buffer
scheme similar to WS, but instead, it has one for IFMAPs, and one for weights. 80

OS accelerator Control FSM. 81
OS accelerator Fetch FSM. e 82
Area-power results for 28nm as function of the frequency. 83
DSE results obtained with URSA for 28nm for 1D array and systolic 2D (note

that power is presented in uW). 85
Convolutional accelerators energy varying the memory type (SRAM or DRAM),
andtheaccesslatency.. 87
Convolutional accelerators performance (executiontime). 88

Performance for the convolutional accelerators, considering a 32x32x3 IFMAP,
15x15x16 OFMAP, stride=2, and a 2 clock cycle SRAM latency. The filled

area highlight the non-buffered approach. The values are normalized by the
worst value of each radaraxis. i 89

Performance for the convolutional accelerators, considering a 32x32x3 IFMAP,
15x15x16 OFMAP, stride=2, and a 5 clock cycle DRAM latency. The filled
area highlight the non-buffered approach. The values are normalized by the

worst value of eachradar axis. i 90
DSE physical synthesis flow for PPA extraction. 95
DSE analytic flow for PPA extraction. 96
Output buffer area results obtained from the physical synthesis flow, for the

three layers of CifarfO CNN. e 101
Output buffer power results obtained from the physical synthesis flow, for

the three layers of Cifar10 CNN, using a SRAM memory type. 102
Cifar1O CNN. . . . e 103

7.1

System Level DSE Flow.

2.1
2.2
2.3

3.1

3.2
3.3

5.1

5.2
5.3

6.1
6.2

6.3
6.4

6.5
6.6
6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14

B.1
B.2
B.3

LIST OF TABLES

Dedicated accelerators state-of-the-art summary. 41
Industrial CNN accelerators. e 44
DSE Frameworks and Simulators State-of-the-art Summary. 53

PPA results for NVDLA-based accelerator running a MNIST application.
Source: [Juracy etal., 2021a].t 63

Comparison of Estimated Energy of Netlist Simulation and URSA simulator. 64

Comparison of Netlist and URSA simulator. 65

PPA results for accelerators after physical synthesis (28nm@1.6GHz). The

leakage power for 1D is 0.02mW, while 2D has 0.04mW................ 83
Hardware Metrics for SRAM Memory. 88
Hardware Metrics for DRAM Memory. 90
MAC-based and physical synthesis flows results for the WS accelerator. ... 104
MAC-based and physical synthesis flows results for the buffered WS accel-

BrAlOr. . . e 104
MAC-based and physical synthesis flows results for the IS accelerator. 104
MAC-based and physical synthesis flows results for the buffered IS acceler-

L0, . o 105
MAC-based and physical synthesis flows results for the OS accelerator. ... 105
Cifar10 CNN area analyticresults. i, 106
Cifar10 CNN performance analytic results. SRAM access latency 2 clock

cycles, DRAM access latency 5 clockcycles. 107
Cifar10 CNN IFMAP read accessesresults. 108
Cifar10 CNN OFMAP read accessesresults. 108
Cifar10 CNN OFMAP write accessesresults.. 108
Cifar10 CNN power analyticresults. 108
Cifar10 CNN energy analyticresults. 109
Analytic and state-of-the-art result errors comparison................... 110
Analytic approach summary results. 110
Cifar10 CNN layer 0 analytic results for SRAM memory type. 132
Cifar10 CNN layer 1 analytic results for SRAM memory type. 133

Cifar10 CNN layer 2 analytic results for SRAM memory type. 134

B.4 Cifar10 CNN layer 0 analytic results for DRAM memory type. 135
B.5 Cifar10 CNN layer 1 analytic results for DRAM memory type. 136
B.6 Cifar10 CNN layer 2 analytic results for DRAM memory type. 137

LIST OF ACRONYMS

ANN — Artificial Neural Networks

ASIC — Application Specific Integrated Circuit
BOP — Bit Operations Performed

CNN — Convolutional Neural Networks
DDDG — Dynamic Data Dependence Graphs
DMA — Direct Memory Access

DSE — Design Space Exploration

DSL — Domain-Specific Language

DNN — Deep Convolutional Neural Networks
FC — Fully Connected

FG — Fine-grained

GOPS - Giga Operations Per Second

GPU — Graphic Process Unit

HBM — High Bandwidth Memory

HLS — High-Level Synthesis

IFMAP — Input Feature Map

IOT — Internet of Things

IS — Input Stationary

MAC — Multiplier-Accumulator

ML — Machine Learning

NLR — No Local Reuse

NPU — Neural Processing Unit

NVDLA — NVIDIA Deep Learning Accelerator
OFMAP — Output Feature Map

OS — Output Stationary

PE — Processing Element

PPA — Power, Performance, and Area

RELU — Rectified Linear Unit

RTL — Register Transfer Level

SDF — Standard Delay Format

SIMD - Single Instruction Multiple Data
SOC - System-on-Chip

TLM — Transaction-Level Modeling
TOPS — Tera Operations Per Second
TPU — Tensor Processing Unit

VCD - Value Change Dump

WS — Weight Stationary

1.1
1.2
1.3
1.4

2.1
2.2
2.21
2.2.2
2.3

2.3.1
2.3.2
2.3.3
2.4

3.1
3.2
3.3
3.4
3.5
3.5.1
3.5.2
3.5.3
3.6

4.1
4.1.1
4.1.2

CONTENTS

INTRODUCTION e e 17
THESIS STATEMENT e 20
OBJECTIVES . . . o 20
ORIGINAL CONTRIBUTIONS o 21
THESIS STRUCTURE 21
STATE OF THE ART e 23
BASIC CONCEPTS . ..o e 23
HARDWARE ACCELERATORS 25
DEDICATED ACCELERATORS 28
INDUSTRIAL ACCELERATORS e 41
HARDWARE DESIGN SPACE EXPLORATION FRAMEWORKS AND SIMULA-

TORS . 43
HARDWARE DESIGN SPACE EXPLORATION FRAMEWORKS 45
HARDWARE SIMULATORS e 51
FINAL REMARKS RELATED TO DSE FRAMEWORKS AND SIMULATORS ... 52
THESIS CONTRIBUTION FOR THE STATE-OF-THE-ART 54
HIGH-LEVEL MODELING FRAMEWORK FORDSE 56
TENSORFLOW CNN MODELING FRAMEWORK 57
SHIFT-BASED QUANTIZATION e 58
PPA EXTRACTION . .. e e 60
URSA SYSTEM SIMULATOR e 60
RESULT S . .. 62
PPA RESULTS . .. 62
ENERGY ESTIMATION COMPARISON RESULTS 64
SIMULATION TIME COMPARISON. e 65
FINAL REMARKS . . . e 65
MACHINE LEARNING HARDWARE ACCELERATOR DESIGN 67
ARRAY STYLE RTL IMPLEMENTATIONS i 67
SYSTOLIC 2D ACCELERATOR e 67

1D ACCELERATOR . . .o e 70

4.2

4.2.1
4.2.2
4.2.3
4.2.4

5.1
5.2
5.2.1

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.4
6.4.1
6.4.2

7.1
7.2

DATAFLOW IMPLEMENTATIONS 71

WEIGHT STATIONARY (WS) DATAFLOW. e 72
INPUT STATIONARY (IS) DATAFLOW e 75
OUTPUT STATIONARY (OS) DATAFLOW e 79
FINAL REMARKS 82
MACHINE LEARNING HARDWARE ACCELERATOR RESULTS 83
ARRAY STYLE RESULTS e 83
DATAFLOW TYPE RESULTS. e 86
FINAL REMARKS . . . e 91
DESIGN SPACE EXPLORATION FLOWS 92
DSE PHYSICAL SYNTHESIS FLOW e 93
MAC-BASED DSE FLOW 94
ANALYTIC DSE FLOW . .. e e e 94
PERFORMANCE ESTIMATION e 98
MEMORY ACCESSES ESTIMATION e 99
OUTPUT BUFFER AREA AND POWER ESTIMATION 100
RESULT S . .. 102
MAC-BASED DSE FLOW RESULTS e 103
ANALYTIC DSE FLOW RESULTS e 105
CONCLUSION AND FUTUREWORK 111
FUTURE WORK .. e e 113

SUMMARY OF THE PUBLICATIONS PRODUCED DURING THE THESIS. ... 115

REFERENCES 116

APPENDIX A — 2D Convolution Model in URSA 127

APPENDIXB-DSE Tables. 131

17

1. INTRODUCTION

Machine Learning (ML) is a sub-area of artificial intelligence that contains a class
of algorithms able to solve problems involving knowledge and "learning" characteristics from
determined patterns. This allows decision capability [Goodfellow et al., 2016] and has re-
emerged as a solution for problems of classification and pattern recognition. Many appli-
cations can use ML, such as computational vision, virtual reality [Facebook, 2022a], voice
assistants [Google, 2022b], chatbots [ServiceNow, 2022], and self-driving vehicles [Tesla,
2022].

One of the most common ways to deliver ML nowadays is by using Artificial Neural
Networks (ANN). ANNs are based on the human brain and perform data processing by
mimicking synapses using thousands of neurons interconnected in a network. The synapses
are composed of a data input sample plus a weight that works similar to a filter [Goodfellow
et al., 2016]. Incoming synapses of a neuron are added up, and are the input to an activation
function, which creates an output to be used in synapses of the next neurons [Haykin, 2009].

A common type of ANN is Convolutional Neural Networks (CNN). These networks
gained popularity because they enable efficient computation of computer vision tasks, which
became widespread in the last decade. CNNs have the advantage of having sparse con-
nections, in contrast to fully connected ANNs, where all neurons of one layer are connected
to all neurons of the next layer. This brings many computational benefits, such as less
memory storage for weights of synapses, and there is more reuse of weights read from
memory [Goodfellow et al., 2016]. Figure 1.1 illustrate a CNN and an classification applica-
tion.

RELU RELU RELU RELU RELU RELU
CONVl CONVlCONVl

v
-

¥

aifplane

AVIENORPRTEN <

'ship

IR R

i}

|

horse

WY

e
-
>
=
.
.
-
‘\

il

Figure 1.1: Example of a CNN and a Classification Application [CS231n, 2022].

18

A CNN contains four main layers:

1. convolutional layer (CONV in Figure 1.1), which is the CNN core and performs the
synapses by multiplying and accumulating weights and input feature maps;

2. activation function (RELU in Figure 1.1), a nonlinear transformation sent to the next
layer of neurons;

3. pooling layer (POOL in Figure 1.1), used to reduce the amount of data processed by
the CNN;

4. fully connected layer (FC in Figure 1.1), used in the classification result.

The deployment of CNNs applications is typically divided into two phases [Haykin,
2009]:

1. training, which is the phase where the value of weights of synapses are defined;

2. inference, uses the weights previously computed during the training phase to classify
or predict output values based on inputs. A well-trained CNN can correctly generate
such classifications or predictions for new inputs, not used in the training phase.

The success of CNNs led to the development of frameworks that help developers
to build their models by offering mechanisms required for training and inference. Examples
of frameworks include Caffe [Caffe, 2022], Pytorch [PyTorch, 2022] and TensorFlow [Tensor-
Flow, 2022]. These frameworks use a high-level approach to abstract the implementation
of functions, such as convolution, and aid in implementing CNN applications. Also, these
frameworks abstract the training phase by implementing functions like back-propagation al-
gorithms. Usually, ANNs are trained on GPUs due to their parallelism capability [Chen et al.,
2016b, Strom, 2015], reducing the time spent in training.

The inference is commonly executed in CPUs. However, CPU architectures, ei-
ther based on Harvard or Von Neumann models, drastically affect the performance of the
software executing inference of a CNN. For example, CPUs typically do not have multiply-
accumulate (MAC) instruction. This kind of operation is usually split in n sums and multi-
plications instructions, which means that for each instruction, a memory fetch is performed,
decreasing the performance. CNN applications like AlexNet [Krizhevsky et al., 2017] require
billions of operations to process a single input, resulting in poor CPU performance. Even
with optimized instruction set architectures, CPUs are inefficient in performance and energy.

Thus, GPUs became the reference platform for training and inference due to their

tailored architecture to the CNN operators. The main GPU drawback is its considerable en-
ergy consumption. Considering energy-constrained applications, such as Internet of Things

19

(loT), autonomous driving, and wearable devices, the adoption of specialized hardware for
computing inference became a trend in the inference phase.

CNN hardware accelerators are a suitable replacement for CPUs and GPUs for the
inference phase [Dally et al., 2020]. CNN accelerators can reduce power dissipation and/or
improve throughput [Chen et al., 2016b, Andri et al., 2017, Shivapakash et al., 2020]. Also,
consumer products are increasingly receiving these blocks [Hsiao et al., 2020, Spagnolo
et al., 2020, Hsiao and Chang, 2020]. Most of these accelerators are application-specific
and can focus only on one characteristic to optimize, such as power, performance, or area
[Tesla, 2019, Apple, 2022].

It is necessary to model the following components to implement a CNN hardware
accelerator:

1. input buffers, used to store the CNN values;

2. MAC array, the unit that processes the convolution operation. The MAC array can be a
matrix (2D architecture) or a vector (1D architecture);

3. activation function, such as Sigmoid, Rectified Linear Unit (ReLU), leaky ReLU [Keras,
2022];

4. output control logic, it is used to communicate with the accelerator and the output
memory.

Besides these components, the literature presents hardware accelerators using
different approaches to access the memory, called dataflows types. The most common
dataflow types are weight stationary (WS), input stationary (IS), and output stationary (OS).
The main difference between these architectures is how accelerators access data (input
feature map and weight tensors) and compute the output (output feature map tensor).

However, the literature presents gaps regarding analyses and comparisons of these
accelerators. Even with a representative number of accelerators using different implementa-
tions, there is a lack of works exploring the trade-offs between implementations. For exam-
ple, Eyeriss proposes a comparison between different accelerators but lacks performance
or area trade-offs evaluation [Chen et al., 2016b]. Also, some works compare accelerators
considering different technology nodes, resulting in an unfair analysis [Das et al., 2020].

Literature shows works focused on frameworks to analyze and perform design
space exploration (DSE) of CNN hardware accelerators. These works are based on analyt-
ical approaches to estimate the power, performance, and area (PPA) of these accelerators
[Heidorn et al., 2020, Zhao et al., 2020] to a given hardware constraint. System simulators
[Parashar et al., 2019, Mufoz-Martinez et al., 2020] are important tools for executing DSE.
These simulators are typically described in high-level abstraction languages, like Python and
C++, reducing the design time and providing PPA evaluation. However, both analytical and

20

simulator approaches present as drawbacks the PPA accuracy, typically estimated from the
number of executed operations, as MAC [Parashar et al., 2019, Wu et al., 2019]. Despite
the efforts to increase the abstraction level for accelerators using high-level synthesis (HLS)
[Giri et al., 2020, Venkatesan et al., 2019], this approach also has challenges related to
performance and power estimation, and performing DSE.

1.1 Thesis Statement

It is possible to execute fast and accurate design space exploration (DSE) for ma-
chine learning accelerators, considering different CNN architectures models using standard
frameworks. The DSE flow must be comprehensive in terms of power, performance, and
area (PPA) estimation. Providing PPA enables the designer to select the most relevant pa-
rameters (according to the literature) to design a hardware accelerator.

1.2 Objectives

The strategic objective of this Thesis is to propose a method to perform a fair design
space exploration in a fast and accurate way to enable the estimation related to the costs
of selecting hardware accelerator parameters. Hardware parameters include the number of
accelerators in parallel, accelerator type (1D, 2D), and dataflow (WS, IS, OS).

The following specific goals must be fulfilled to attain the strategic goal:

1. CNN framework integration (Chapter 3). Integration of a high-level framework (as
TensorFlow) with an accelerator library. The goal is to define how to integrate high-
level models with low-level data, obtained from the physical synthesis. To fulfill this
goal, third-party accelerators are used, being the focus of this goal the framework and
optimization related to the hardware cost, as data and weights quantization;

2. CNN hardware accelerator design (Chapter 4). Design of different CNN hardware
accelerators, including 1D and 2D arrays, and WS, IS, and OS dataflow types. The
goal is to build a library of accelerators to allow the extraction of PPA values;

3. Comparison method (Chapter 5). Propose an approach to compare different accel-
erators types. The goal is to define the method to compare the accelerators using the
same parameters, such as technology node, frequency, and memory type;

4. CNN hardware accelerator physical synthesis (Chapter 6). Definition and execution
of a physical synthesis flow for the hardware accelerator library. The goal is to have a
flow that enables to extract automatically accurate PPA;

21

5. PPA extraction method (Chapter 6): Define a method to extract PPA data, using
inputs from an CNN application. The goal is to characterize the accelerators using
actual switching activity to produce accurate power estimations.

6. DSE method (Chapters 3 and 6): Execute the DSE in the high-level framework. The
goal is to execute a fair DSE, in a fast and accurate way.

1.3 Original Contributions

We can state that this Thesis presents 4 original contributions in relation to the
state-of-the-art:

1. Adoption of TensorFlow as a front-end framework to perform DSE for CNN hardware
accelerators. The originality is to use data from the physical synthesis of the complete
hardware accelerators, not only from basic components (as MACs).

2. Alibrary of CNN hardware accelerators, considering different array styles and dataflow
types. The originality resides in detailing the hardware architecture, considering the
accelerator core, the control logic, and the memory interface.

3. A method to fairly compare different CNN hardware accelerators. This method makes it
possible to compare accelerators with different dataflows, considering the same char-
acteristics, such as the technology node, frequency, and memory type. It is worth
mentioning that the hardware accelerators use as input values extracted from Tensor-
Flow, resulting in accurate power estimations.

4. An analytical method to perform DSE. Using as reference the physical synthesis flow,
a set of equations integrated into TersorFlow enables to estimate area, performance
and power. The analytical model, integrated into TensorFlow, is the key to obtain a fast
and accurate DSE.

1.4 Thesis Structure

Figure 1.2 graphically presents how the text structure is organized. This Thesis
contains 7 Chapters:

» Chapter 2 presents the state-of-the-art regarding CNN hardware accelerators, system
simulators, and DSE frameworks. Also, this chapter present the contribution of this
Thesis compared to the literature;

22

Chap. 3

TensorFlow gl EE Ry System Simulator
(URSA)

v

- DSE with NVDLA
CNN model Quantization

Chap.
4/5 Pvhsi accelerator
\ > yhsical
Synthesis e model
N~ A
PPA logs
Chap. 6 v
Analytical < memory
| model and CNN CactlO model
PPA estimation

Figure 1.2: Thesis Structure.

» Chapter 3 presents the usage of the TensorFlow framework, and a quantization method
to reduce the memory requirements. A third-party accelerator (NVDLA) helps on defin-
ing the DSE flow by integrating the front-end (TensorFlow and URSA simulator) to the
back-end (physical synthesis);

» Chapter 4 details the RTL implementation of the hardware accelerators used to gener-
ate the main results of this Thesis;

» Chapter 5 presents the obtained results based on the hardware described in Chapter 4;
» Chapter 6 describes the DSE method and shows the obtained results;

» Chapter 7 shows the conclusion and directions for future works.

2.

23

STATE OF THE ART

This Chapter presents hardware solutions to accelerate Convolutional Neural Net-

works (CNNs), as well as the bottlenecks for CPU (performance) and GPU (power). This
Chapter describes dedicated and industrial solutions for the bottlenecks, and also works
focused on the analyses related to PPA through DSE. This Chapter is organized as follows:

2.1

Section 2.1: describes concepts required to understand the state-of-the-art works;

Section 2.2: presents descriptions and analyses of academic and industrial CNN hard-
ware accelerators;

Section 2.3: presents a description and analyses of DSE frameworks and simulators
for CNN hardware accelerators;

Section 2.4: details the contributions of this Thesis and its original contributions.

Basic Concepts

The CNN concept emerged to deal with problems of visual pattern recognition area

[Goodfellow et al., 2016]. For example, the first convolutional network, called LeNet [Al-
Jawfi, 2009], was developed to recognize handwritten numbers. Figure 2.1 illustrates a
general architecture of a CNN, which contains the followings components:

Convolution Layer: the core of the CNNs. It executes multiplications and sums of the
input values. The convolution uses filters, limiting these multiplications and sums to
matrix windows. The filters contain a set of weights, also called parameters. The
convolution also uses a variable called stride, which is the number of positions that the
filter slides over the input matrix;

Activation Function: a non-linear function used to help the classification process. This
function is applied at the end of a convolution. The most common activation functions
are hyperbolic, exponential, and Rectified Linear Unit (ReLU);

Pooling Layer: this layer has the property to reduce the amount of data to be pro-
cessed. Unlike the convolutional layer, the pooling layer does not have parameters but
is composed of an operation. The more classic operations are the Average Pooling
and the Max Pooling. Average Pooling executes an average calculation of the values
of a window, while Max Pooling gets the most significant value in a set of values limited
by a window;

24

» Fully Connected (FC)/Dense Layer: the FC Layer is used at the end of a CNN, where
all previously output layers are connected with each input for the FC. The output of this
layer provides the classification result.

Input Feature Maps Feature Maps Feature Maps Feature Maps
48x48 Gl A4x44 6 22x22 12:18x18 1245 9x9

Quiputs

Convolution Max-pooling Convolution Max-pcoling

Features extraction

Figure 2.1: Convolutional Neural Network general architecture [Alom et al., 2018].

A metric used to evaluate a CNN is the accuracy, a percentage value representing
the amount of data that was classified or recognized correctly. Moreover, the deep learn-
ing concept with the Deep Convolutional Neural networks (DNN) emerged together with the
CNN [Goodfellow et al., 2016]. It was observed that the increase in the number of con-
volution layers improved the accuracy metric. Thus, it is possible to solve more complex
problems, but at the cost of the increase in the network parameters and, consequently, in
memory usage.

As mentioned before, the convolution layer is the core of a CNN and is the main
target of the hardware accelerators. Figure 2.2 illustrates a convolution operation. Multipli-
cations are executed between the weights and the input feature map (IFMAP) values that
come from an RGB image and accumulate the generated partial value of each operation
to generate a complete convolution value. Also, a bias value is added to the sum of the
accumulated value, and it is applied to the activation function to generate the output feature
map (OFMAP).

Equation 2.1 formally describes the process to obtain one OFMAP result. The
convolution receives as inputs the IFMAP tensor (each map may also be called a channel)
and another tensor of filters. Then, each filter window is convolved with (and slid across) its
respective input channel forming a new set of feature maps. Next, a vector of bias is added
to the feature map, generating the final OFMAP tensor (O).

C—1 W—1 H-1
O[IIXIy] = BIAT+ > > > (KIS + IS, +] * WF[AK][L]) (2.1)
k=0 i=0 j=0

where: f, x and y are the current output channel, the horizontal and the vertical position,
respectively; C is the total number of input and filter channels, W and H corresponds to the

25

RGB IFMAP 3 FILTERS OFMAP
C B2s2a) r- (3x3x3) = e . (15x15x3)
I
1

C;

- L ..

WEF: Set of filters w(f,c)

Figure 2.2: Example of a convolution operation: 32x32x3 IFMAP, 15x15x3 OFMAP, 3x3 filter
size, stride equal to 2.

filter size; S is the stride, and O is the output, | the input, and WF the filter tensors and B the
bias vector.

The deployment of CNNs comprises two phases: training and inference [Haykin,
2009]. The training phase defines the weight values. The inference phase uses the weights
previously computed to classify or predict output values using unknown inputs, which results
in the accuracy. The advantages of CNNs regarding classification issues led to the devel-
opment of frameworks that help developers to build their models by offering mechanisms
required for training and inference. Examples of frameworks include Caffe [Caffe, 2022],
Pytorch [PyTorch, 2022] and TensorFlow [TensorFlow, 2022]. These frameworks provide
libraries to implement Machine Learning applications, including CNNs, which allow perform-
ing training and inference phases in a simplified approach based on high-level program
languages like Python. Also, these frameworks support the most common CNN functions,
such as convolution, max pooling, and ReLU [Keras, 2022].

2.2 Hardware Accelerators

This Section analyses dedicated (mostly academic proposals) and industrial CNN
hardware accelerators. For academic approaches, a taxonomy is proposed to classify the
accelerators. Figure 2.3 shows the proposed taxonomy, based on [Moolchandani et al.,
2021] and extended with other accelerator approaches found in the literature. The proposed
taxonomy comprises the following classes: (/) array style; (ii) convolution techniques; (iii)
accelerator goal; (iv) dataflow type; (v) word size; (vi) data format.

Array style is the array structure, which can be a vector (1D) or a matrix (2D),
systolic or not. Convolution techniques can be executed classically, with multiplications and

26

1D Systolic 1D 2D Systolic 2D
Standard Winograd
Convolution Convolution
v
Configurable
Small Area Low Power High Throughput A;é[:)l(i;(;;?ftiig n F; | o
Dataflow Type Word Size
Weight Stationary Input Stationary Output Stationary No Local Reuse Row Stationary Fine-Grained
8-bit 16-bit 32-bit
A 4
int fixed-point floating-point

Figure 2.3: Proposed taxonomy for CNN hardware accelerators. This taxonomy is based on
[Moolchandani et al., 2021].

accumulations, or using mathematical equivalences, like the Winograd algorithm [Park and
Chung, 2020]. The accelerator goal class comprises the focus of the accelerator, like small
area or low power. Word size is the input data length, and data format includes integer or
float-point values.

Dataflow regards the approach to load the values on the accelerator internal buffers.
The state-of-the-art review identified 6 dataflows types: Weight Stationary (WS), Input Sta-
tionary (IS), Output Stationary (OS), No Local Reuse (NLR), Row Stationary (RS), and Fine-
Grained (FG) [Moolchandani et al., 2021, Xiang et al., 2018].

» The WS dataflow stores the weights in an internal accelerator buffer, aiming their reuse.
Thus, each weight value is read once from the input memory, and the convolution is
performed using stationary values for weight with values read from memory for the
IFMAP window.

» The IS dataflow registers an IFMAP window in an internal accelerator buffer to provide
its reuse. The window size is equal to the filter size. Similar to WS, the IFMAP values
are read once, and the weight values are read from memory.

» The OS dataflow is based on registering the partial values generated on the convolu-
tion. The OS does not present buffers to store the inputs, and each convolution fetches
the IFMAPs and weight values in the memory.

27

* NLR is a dataflow that does not store input and outputs in internal buffers. Thus, each
convolution fetches the IFMAPs and weight values in the memory and stores the partial
outputs values in the memory.

* RS is a dataflow where the rows of the weight matrix are stored in a processing element
(PE). It is similar to the WS dataflow but regards the entire filter row.

* FG is a dataflow that divides the IFMAP and weight matrix into small matrices and
stores them into accelerator internal buffers. This dataflow is a mix of WS and IS
dataflow.

Some of the proposed taxonomy classes have few examples or can not be ap-
plied to this work. Thus, some exclusion criteria were used to define the work scope. The
first exclusion criterium was the publication year. We adopted a period from 2015 to 2022,
which can be considered relevant to show the proposed work’s originality. However, some
exceptions are considered due to the relevance or citation number, as Diannao [Chen et al.,
2014].

Also, some categories that have few representative works are excluded. For ex-
ample, accelerators that use methods such as Winograd [Park and Chung, 2020, Ahmad
and Pasha, 2020]. Similar occurs to the systolic 1D convolution array type, which has one
representative work from 2014 [Gokhale et al., 2014]. The same criterium is used for the
dataflow type, where FG has only one example.

The literature presents accelerators focused on networks with binary weights. This
kind of accelerator allows replacing complex elements such as float-point MACs with smaller
components composed of simple components such as AND gates, which reduce area and
power dissipation [Andri et al., 2017, Xian et al., 2020]. Although the claimed advantages
of binary architectures, they need to be trained regarding binary values [Courbariaux et al.,
2016], and frameworks such as TensorFlow do not support a native binary training. Thus,
binary networks are out of the work’s scope.

Another approach to design accelerators is HLS. Literature shows works focused
on using HLS to design accelerators or proposals that improve the HLS methods [Giri et al.,
2020, Venkatesan et al., 2019, Ye et al., 2021, Zacharopoulos et al., 2022, Gerogiannis
et al., 2022]. HLS has as an advantage the higher abstraction level to describe accelerators.
However, this approach has challenges related to performance and power estimation once
the goal of HLS is to generate an RTL description as output. Also, HLS can take a long
time to develop a high-performance architecture due to the many design choices at a higher
level, requiring more design time [Sohrabizadeh et al., 2021]. Thus, HLS also is out of the
scope of this work.

The proposed taxonomy is not applied to industrial accelerators. The goal of an-
alyzing industrial approaches is to show the relevance of the development and analysis of

28

hardware accelerators for CNN, showing the relevance of this Thesis. Also, industrial accel-
erators do not detail their designs, preventing comparing these accelerators to our proposal.

2.2.1 Dedicated Accelerators

1D Array Style

Jiao et al. [Jiao et al., 2020] propose a 1D array style programmable neural pro-
cessing unit (NPU) for data center scenarios, based on WS and IS dataflows. They improve
the convolution efficiency and deliver program flexibility by using a large SRAM in the de-
sign. Figure 2.4 show the NPU general architecture. It is composed of a local memory
(LM), a constant buffer (CB), a tensor engine (TE), a pooling engine, a memory-copy engine
(ME), and internal buffers (A-buffer and W-buffer). Multipliers and accumulators compose
the TE. CB is used to store values used in operations such as normalization and quanti-
zation. ME is used to copy data internally and perform matrix transposition. A command
processor controls the communication between the external world and the NPU. A-buffer
and W-buffer allow data reuse to reduce memory access. The NPU was fabricated in TSMC
12nm at 700MHz, and results show a throughput of 825 TOPS using an 8-bit integer data
format, with an area of 709mm?. Using ResNet50-v1 as a study case, the NPU reaches a
throughput of 78,563 images per second, with a power efficiency of 500 images per second
per watt.

\ PCled lkC | | JTAG
\
TE PE ME DMA cp
\
| Core Core

o@a

[SEQ | [18] ¢
rrrrr — - /
[e O =) ' ’@0068/@

|
== l'c ,/ Core@ Core
‘ : ! 1 2

Figure 2.4: NPU general architecture [Jiao et al., 2020].

Hsiao et al. [Hsiao et al., 2020] propose a 1D array configurable accelerator that
can execute some DNN operations, like convolution, supporting IS, WS, and OS dataflow
types. Figure 2.5 shows the proposed accelerator. The accelerator presents 16 parallel
PEs, composed of 8 adder tree multipliers and an adder tree to accumulate them. Thus,
it is possible to process in parallel 16 results of 8 input data from 8 input for a convolution
operation. A control block manages the operations, and an LPDDR3 DRAM is used as

29

external memory. The design was synthesized using TSMC 40nm and 28nm technologies,
both at 200MHz. The results in a 40nm technology achieved an energy efficiency of 527.8
giga operations per second (GOPS) per watt, while 28nm achieved 1055.7.

- TRAM B T
§iiEElE =

ki2)
kix3

Bias
Pooting - BN | ||

FRESE SR X EPU
| Main_control l

Figure 2.5: Sparsity-aware accelerator architecture [Hsiao et al., 2020].

In another work, Hsiao and Chang [Hsiao and Chang, 2020] extend the accelerator
proposed in [Hsiao et al., 2020] to reduce memory accesses and power dissipation. The Au-
thors added an extra bit to flag if the data is zero or not (two-symbol Huffman coding). Also,
it is proposed a gating scheme to reduce the switching power that disables the multipliers
when a value is zero. The results show a power dissipation of 101.16mW to process one
layer of VGG-16 and 89.82mW to process the fully-connected layer. These results mean a
decrease of about 25% and 18%, respectively, compared to the execution without exploiting
sparsity.

Chen et al. [Chen et al., 2014] propose a 1D array style accelerator focusing on
high throughput. The accelerator uses a fixed-point format with 6-bit for the integer and 10-
bit for the fractional parts. Figure 2.6 illustrates the accelerator architecture. The first two
stages (NFU-1 and NFU-2) operate as normal pipeline stages, and the third stage (NFU-
3) is activated after all additions from NFU-2. The accelerator is implemented using OS
dataflow, where NBout buffer is used as a circular buffer to store the partial sums and out-
put buffer. NFU-1 and NFU-2 are active every cycle for classifier and convolutional layers,
achieving 496 fixed-point operations. The architecture was synthesized using 65nm tech-
nology at 0.98GHz, using dual-port SRAM for the buffers. Results show that the accelerator
achieves 452 GOPS, with an area of 3.02mm? and 485mW power dissipation. Also, the
accelerator can be 117.87 times faster than a 128-bit 2GHz single instruction multiple data
(SIMD) processor, reducing the total energy by 21.08 times.

Zhang et al. [Zhang et al., 2015] propose an analytical method based on the
roofline model to find the best performance and lowest FPGA resource requirement for
an accelerator. The model has a quantitative analysis of throughput and required mem-
ory bandwidth as parameters. Figure 2.7 shows the FPGA-based accelerator, which is a
1D array style. It contains PEs, an on-chip buffer, a DDR3 DRAM external memory, and an

30

v
~> Control Processor (CP)

> Inst.
E Instructions

III‘ NFU 1 NFU-2

nBin I\ \ ‘ s‘.*ﬁ -

0

v

J

=

2
VNG <

. Inst. ’:"'
> E)t \

amm A\l
| VO R
O/ s
Bl %

. 58 B ’

Figure 2.6: DianNao accelerator architecture [Chen et al., 2014].

20ey3u] Alowa

AXI4 interconnection. A PE has multipliers followed by an adder tree with a 32-bit float-point
data format. The data are first stored in the on-chip buffers before being fed to PEs. The
accelerator is implemented based on OS dataflow, once partial output sums are reused to
reduce memory accesses. The Authors implemented a CNN accelerator on a VC707 FPGA
board that reached a peak performance of 61.62 GFLOPS at 100MHz.

off-chip
data

transfer
mgr

T=
I

oot == ===
—— - ' w—
T T

1

| 1

! 1

|

I |

1

| |

1

Input Buﬂ-:r Set0 :

Figure 2.7: FPGA-based Accelerator architecture [Zhang et al., 2015].

Spagnolo et al. [Spagnolo et al., 2020] present a reconfigurable convolution 1D
array style architecture designed to support different weights and feature maps at runtime,
controlled by a set of multiplexers. The accelerator is implemented using OS dataflow and
has four parallel modules, with eight multipliers, eight MACs, and an adder tree, as illustrated
in Figure 2.8. The accelerator was prototyped in a Xilinx Ultrascale XCZU9EG SoC, with an
8-bit integer data format. VGG-16 and VGG-S were used as case studies. Results show a
throughput of 350.4 GOPS and power dissipation of 145mW at 195MHz.

2D Array Style

Eyeriss hardware accelerator [Chen et al., 2016a, Chen et al., 2016b] focuses on
optimizing the energy efficiency of the system, including off-chip DRAM. Eyeriss also allows

31

20

M
ndon M. M,,
[(ADD) (ADD) (ADD) l
Set of
filters M tl i
[(ADD) My (ADD)
| Iy |
¥ :
(a) CEout M, l M, M, M, l M l M 1 M, l M l l >
I I I ¥ [) ¥ ¥
M'! N‘Iﬂ MH M 14 MH Ml(y Ml7
UL || oL || evuony || o (| v || ovon) || ewon || ooy || vy
(MAC) || MAC) || MAC) || (MAC) Ml M} iMl ﬁM} (MAC)
T = I T
M, My
(ADD) [~ (AD (ADD) (ADD)
MAC (MAC) (MAC) (MAC)
M N
ifinay AD — 1 val (ADD) (ADD)
ke (MAC) (MAC)

Figure 2.8: Accelerator overview and MAC detailed architecture [Spagnolo et al., 2020].

accelerating many CNN convolution operations. The Authors adopt a RS dataflow, with 168
PEs. Data compression and data gating are used to improve energy efficiency. Figure 2.9
shows the proposed architecture. First, the Eyeriss performs a logical mapping, which maps
all the 1D convolution operations. Next, Eyeriss performs a physical mapping, which maps
the logic mapping in the physical space. Eyeriss loads in each PE a row from the convolution
operation to perform the processing. The IFMAPs is loaded in a horizontal direction, while
the weights are loaded in a diagonal direction. Thus, it is possible to perform the multipli-
cation operation of the convolution, and the sum can be performed in the vertical direction.
Results show a throughput of 35 frames/s and 0.0029 DRAM access/MAC at 278mW for
AlexNet and a throughput of 0.7 frames/s and 0.0035 DRAM access/MAC at 236mW for
VGG-16.

Link Clock Core Clock — Configuration Bits

Accelerator

Top-LeveI Control Ccnflg Scan Chain

12x14

PE Array | Processing
Fiter Element
Ifmap @ Spad

RLC
B Control

I, RLC

Enc.

Figure 2.9: Eyeriss general architecture [Chen et al., 2016b].

In another work, the Authors propose Eyeriss v2, an accelerator targeting mobile
applications [Chen et al., 2019], also implemented using the RS dataflow. It is a DNN accel-
erator architecture for sparse DNNs. Also, the work introduces a flexible on-chip network,
called hierarchical mesh, that can adapt to allow data reuse and bandwidth requirements of
different data types. Figure 2.10 shows the mesh interconnection, global buffers, and the
PE clusters. Results show that Eyeriss v2 is 12.6 times faster and 2.5 times more energy-
efficient than the original Eyeriss using the MobileNet as a case study.

32

Top-Level Control & Configuration |

h
1 Psum SRAM Bank
1 || lact SRAM Bank

1 Psum SRAM Bank
1

1

k—-[GLB Cluster J-f Router |, [Router |~ GLB Cluster ||

PE Cluster PE Cluster

i || lact SRAM Bank
Psum SRAM Bank
1 || lact SRAM Bank

k—} - GLB Cluster - Router |.' [Router -[GLB Cluster Je{—| Psum SRAM Bank
PE Cluster 1" Cluster jof PE Cluster] | P
[GLB Cluster Router Router GLB Cluster [« weights psums
PE Cluster Cluster [*] Cluster PE Cluster
3 3
[GLB Cluster Router Router GLB Cluster [«

PE Cluster e Cluster | | Cluster PE Cluster

[—1—1 GLB Cluster Router Router GLB Cluster [«

PE Cluster || Cluster [| Cluster PE Cluster

[—1—LGLB Cluster Router Router GLB Cluster [«

PE Cluster Cluster [*] Cluster PE Cluster

Psum Router Psum Router

Psum Router Psum Router

Weight Router || lact Router

Weight Router lact Router

External Memory
External Memory

Weight Router lact Router

iacts
weights p:

e—r—
@
c
3
@
——

[GLB Cluster Router Router GLB Cluster [«
Cluster [| Cluster

e — Cee J Cre] e] [e]
e Router Router luster

Cluster [cluster

Figure 2.10: Eyeriss v2 general architecture [Chen et al., 2019].

Tavakoli et al. [Tavakoli et al., 2020] present two 2D array style targeting FPGA de-
vices. The first accelerator, Single-Layer Convolution Processor (SLCP), performs the con-
volution layer by layer. The second accelerator, Multi-Layer Convolution Processor (MLCP),
works processing more than one layer in parallel. Both accelerators combine WS and IS
dataflow to perform data reuse. Figure 2.11 show both architectures. Each processor unit
(PU) has a 3x3 MAC matrix. SCLP uses BRAM to store the data from external DRAM, while
MLCP does not have BRAMs. MLCP architecture is similar to SCLP once both have PUs,
accumulators, and max pooling modules. However, MLCP is arranged in a pipeline form to
allow parallelism. MLCP allows reducing the access to on-chip memory and memory band-
width. According to the results, MLCP accelerator achieves 12.9 GOPS, 2.6 times faster
than SLCP. The accelerators were prototyped on a Xilinx Zynq XC7Z020 chip at 200MHz.

................ » —" MLCP

| i RowBuffes 1 1
BRAM #1 i . i
Buffer #1

é ‘ ﬂ uffer i < o 2

] | g g
a| | I i 3 nput 24 |23
s BRAM #2 | ()| Bufferi2 a2 Buffer g7 |87
£ [! i S §> § £
2 ;] : ! E =il =&
s ‘ : ‘ 1 2 E Y g E

= : : i el 8 é

(L N L 4 =

Figure 2.11: SLCP and MLCP accelerator architectures [Tavakoli et al., 2020].

Shivapakash et al. [Shivapakash et al., 2020] propose a power-efficient multi-bit
2D array style accelerator, using a truncating technique for the partial sum results provided
by the previous layer of a neural network. Figure 2.12 shows the accelerator architecture.
The IFMAP scratchpad memory is implemented in a 4KB SRAM, and the filter scratchpad
memory is implemented using 11 32-bit registers. The PE array adopts a RS dataflow. The
PE array contains an 11x11 MAC matrix. The 2N bits multiplication output is truncating
to N bits based on the fixed point g-format. The proposed architecture is prototyped in a

33

KINTEX-7 KC705 FPGA, and results show that it is possible to preserve accuracy when
using 12-bit or more for the word length. Results are based on 8-bit to 20-bit word length.
The proposed truncation reduces the FPGA resources and presents a power reduction of
50% when compared to a 32-bit architecture.

| Central Control Unit |

PE Array (11x11)

PE

3 °

° .

PE (@@ PE
BD

DDR3
DRAM [}
MIG-7) | pits AXT
Master

Figure 2.12: Multi-bit accelerator architecture [Tavakoli et al., 2020].

Bai et al. [Bai et al., 2020] propose a scalable neural network 2D array architec-
ture for image segmentation. Image segmentation uses two operations: convolution and
deconvolution, and both of them use the same structure based on MACs. The Authors also
propose an optimization to reduce the memory accesses. Figure 2.13 shows the general
architecture, which adopts a WS dataflow. The line buffer is responsible for storing the data
from an external DDR memory. Features and weights are quantized for 8-bit. The process
engine array has a 3x3 multiplier array followed by an adder tree. Also, the process engine
array presents a shift register to control the features and perform the convolution strides.
The accelerator was implemented using Simulink and the HDL Coder tools, prototyped in a
Xilinx ZC706, and shows a throughput of 151.5 GOPS for convolution.

=

Line Buffer biiffes

DMA in

Process
Engine Array

«@

2 1

a - -

> F

M
(=]

§ 3

| Janq 40 |
DMA out

weight
buffer

Figure 2.13: Unified convolution and deconvolution accelerator architecture [Bai et al., 2020].

Udupa et al. [Udupa et al., 2020] propose an accelerator for 2D operations based
on a z-first storage architecture. The z-first architecture uses several 2D arrays to deliver
parallelism for convolution operations, followed by an adder tree and a reuse scheme based
on IS dataflow. The architecture is compared with a baseline implementation, which does not
perform data reuse, both with 8-bit 16x16 MACs. The architectures were synthesized using
Synopsys Design Compiler, using 10nm technology at 800MHz. The power estimation is
done using the Spyglass power estimation tool. The results show an improvement in power
dissipation of about 1.46 times for convolution operations and about 1.89 times for pooling
operations compared to the baseline implementation. Also, the throughput is improved by
four times. Memory access is reduced by 1.72 times.

34

Chen et al. [Chen et al., 2020] propose a dataflow that reuses data to perform stride
and uses a mathematical method to reduce memory access using a workload and storage
mapping scheme. The accelerator combines both WS and IS dataflow in its implementation.
Figure 2.14 shows the accelerator architecture. The 2D array style accelerator has 16x16
PEs, and each PE has a 16-bit fixed-point MAC and registers to store partial sums. It is
possible to configure the accelerator to support different convolutional layer dimensions. The
accelerator is synthesized in 65nm technology at 500MHz. It also uses a DRAM as external
memory and uses the Memory Compiler tool to generate the GBufs and PrimeTime tool for
power evaluation. Results are compared to Eyeriss [Chen et al., 2016a] using VGGNet-16
network and show that the proposed dataflow reduces 43.3% memory access than Eyeriss
without input compression, and 6.7% compared with input compression.

S——{ Weight GBuf | GRegs
FIFO — e
_ | pg
| 7 = 154""| _ PE group
_5 *ﬁﬂ !*: e :‘(’ i (pg*qg PES)
|
DRAM fedommy(5 | ||"EH01 |00
2 .
=) ||[pepa|(pee
By |
il - -
Controller

Figure 2.14: Unified convolution and deconvolution accelerator architecture [Chen et al.,
2020].

Lu et al. [Lu et al., 2017] propose a new 2D array style architecture called FlexFlow.
This architecture supports IS, OS, and WS dataflows. Figure 2.15 shows the accelerator
architecture, where each PE has a MAC, and the adders inside of each PE of the same
row are connected to build an adder tree. The PE architecture and its interconnection are
designed to allow multiple dataflow types. The accelerator has 16x16 16-bit fixed-point PEs,
an external DRAM memory, and was synthesized using 65nm technology at 1GHz. When
compared to Eyeriss [Chen et al., 2016a], the architecture presents an area reduction of 4
times and a reduction in memory access of 1.22 times.

Du et al. [Du et al., 2015] propose a 2D array accelerator to be used with sensors,
without external memory. The accelerator adopts the OS dataflow. Figure 2.16 shows the
accelerator architecture, with 8x8 PEs, each PE with a MAC. The input image comes from
the sensors, and the accelerator uses 16-bit fixed-point arithmetic. It was synthesized with
Synopsys Design Compiler and IC Compiler, using the TSMC 65nm. Results show that
it is possible to achieve 60 times more energy-efficient than the previous state-of-the-art
accelerators once it does not have external memory, plus the exploration of data access
patterns from the sensors. The results also show an improvement of about 50, 30, and

35

Neuron Buffer 1
5T ING20 ING3EN INEZEE Convolutional Unit

Input Neuron|Lines ‘/}oling Unit

19

PE PE PE PE
-

0,0 ([(0,0 [(02 [(03)]
= + ¥ 3 ¥ ALU —» ——
N
PE PE PE PE o i -
- -~ — — P -+
(1,0 7| (1,2) || (1,2) || (1,3) g ! @ e
Iy ¥ s 3 c < =
z S AU —% S
PE ||/ PE || PE || PE | ? j 5 gu
(2,0) (2,1) (2,2) (2,3) 3 = S =
- t i + i S5 AU —S— 8 ©
D - . [} N
PE PE PE PE 3 -
w

30731 [B[33"
+ ¥ 3 v

‘I_
l
S L

Control Signal Lines

Figure 2.15: FlexFlow accelerator architecture [Lu et al., 2017].

1.87 times in performance compared to Intel Xeon E7-8830 CPU, NVIDIA K20M GPU, and
DianNao accelerator [Du et al., 2015].

. ShiDianNao: IB:
; Decoder Inst.
| NBin: l
w O | UKo NFU:
39 m :
o : L
EE Bank #2Py-1 = Inpot E - .
NBOUtZ ‘E (Column) .
> Bank #0 O
: &)
- L
Bank #2Py-1 % :2‘;::)
[+4]

5 ..'SIE :k #0 (PXTPy
1 ~ Banl
L] — = Keinel

Bank #Py-1 o YT
Output

Figure 2.16: ShiDianNao accelerator architecture [Lu et al., 2017].

2D Systolic Array Style

Das et al. [Das et al., 2020] propose a 2D systolic array style accelerator focused
on improving energy efficiency and scalability. The accelerator contains vector units, pre-
sented in Figure 2.17, for increased power efficiency. It contains an external DDR memory,
a global buffer using SRAM, a support logic, and an array. The PE array has 4096 8-bit
fixed-point MACs and uses the OS dataflow type. The accelerator was synthesized using
10nm technology, and the results show an average power efficiency of 8.89 TOPS per watt.
The proposed accelerator has a better energy efficiency of 2.6 and 3.8 times compared with
Samsung NPU and Google Tensor Processing Unit (TPU). However, Samsung NPU and
Google TPU were implemented in different technologies, making the comparison unfair.

36

................

1" SEERREL L Sl 0 _gmi_§
- ot o . (: i - ;\ [A Y ’ " 2
oo Buftes :«: ~ { J‘L" 4 oS | s \‘ -"w}[w. .v’s‘l.;
' y 5] - s lgh | g | N

e .-Av.n e w_oa s

Figure 2.17: ShiDianNao accelerator architecture [Das et al., 2020].

Liu et al. [Liu et al., 2020a] propose a sparsity-aware 2D systolic array style archi-
tecture called Swan, using the WS dataflow. The architecture avoids storing zero values in
internal buffers, improving computation for accelerators with limited interconnect and band-
width resources. The architecture has a PE matrix, where each PE has a MAC and a systolic
dataflow to reuse inputs for interconnecting and bandwidth saving. Figure 2.18 illustrates the
Swan architecture. ABin and ABout store the feature maps and weights, while NPE module
allows moving weights and feature maps through the PE array for reuse. The accelerator
was synthesized with Synopsys Design Compiler, with 4096 16-bit fixed-point MACs, using
TSMC 65nm technology at 600MHz. Results show a throughput of 4915 GOPS and power
dissipation of 2.97W. Also, results show that Swan can achieve 1.5 to 2.1 times speedup
and 6.0 to 9.1 times higher energy efficiency than state-of-the-art accelerators. However, the
compared state-of-the-art accelerators were implemented in a different technology, making
the comparison unfair.

Figure 2.18: Swan general architecture [Liu et al., 2020a].

In another work, Liu et al. [Liu et al., 2020b] propose another 2D systolic array style
architecture. Similar to [Liu et al., 2020a], Swallow also avoids the zero values to achieve
high PE utilization. Figure 2.19 shows the Swallow architecture. Each PE has a MAC, and
NPE has the gating mechanisms to avoid zero values. LRF stores the recent read data to
reuse, and ZDet stores the convolution results if it is not zero. WB store the weights and
is used to implement a dataflow based on WS. It is possible to reuse values in more than
one convolution by shifting them to the neighbor PE. However, there is an underutilization
and decreased performance if the IFMAP edge size can not match the fixed PE array size.
The synthesis was performed with 65nm technology at 800MHz, and the results show a

37

peak performance of 614 GOPS, and power dissipation of 1.26W, resulting in an efficiency
of 487.3 GOPS per watt.

Lt NPE
——— T e Ml 1
L) |
ol WB i s PE PE -:-
(N By LRF [},|"»]
é IR . 5] pE | | PE |+
Q i-" ABIII |:r : l
TP I: : |
' b ABout [&——] > h
H | = PE | | PE I
“8 DMA ZDet ———

Figure 2.19: Swallow general architecture [Liu et al., 2020b].

Taoran Xiang et al. [Xiang et al., 2018] propose a dataflow called FG dataflow.
The Authors present a two-dimensional accelerator called FDPU, shown in Figure 2.20. The
FDPU processor consists of PEs, data buffers (Dbufs), instruction buffers (Cbufs), a micro-
controller unit (MicC), and a Direct Memory Access (DMA) controller. Dbufs and Cbufs are
implemented by using a scratchpad memory. MicC is used for controlling the execution of in-
structions on PEs. FDPU connects its components using a two-dimensional mesh network,
allowing to transfer data values through PEs. The Fine-Grained dataflow divides the IFMAP
and weight matrix into small matrices and stores them into Dbuf to execute the convolution.
According to the Authors, the number of memory accesses increases in the FD dataflow
compared to other dataflows, such as WS and IS. FDPU was implemented in 45nm technol-
ogy, and the area and power of a single FDPU tile measured are approximately 44.71mm?
and 3.27W. Results show that the performance of FDPU is improved over GPU (3.11 times
faster), and energy consumption of FDPU is reduced (8.52 times) when executing AlexNet.

e N\
Dataflow Processing Units

. J

Figure 2.20: FDPU general architecture [Xiang et al., 2018].

Sungju Ryu et al. [Ryu et al., 2022] propose an area and energy-efficient precision
scalable accelerator called BitBlade. The proposed accelerator allows performing sums with
different input sizes (2/4 bits). Figure 2.21 shows the accelerator architecture. Each PE

38

receives a group of values with the same bit size. This accelerator use shift operations to
adequate the data size through the PEs. Also, PE arrays are implemented using the WS
dataflow. A chip was implemented in 28nm CMOS technology, and results show that the
throughput and system-level energy efficiency were increased by up to 7.7 and 1.64 times
higher than state-of-art accelerators like [Jiao et al., 2020].

Global Controller PE PE Controller
2x2 | 2x2 | 2x2 2x2
Instr. Decoder, MUL | MUL [MUL MUL Bit-precision
CAS Ctrl #0 | # | #2 #15
: ¥y ¥ ¥ ¥ Signed/Unsigned
BIST 9 9
+
"[PE Aray #15
Global ‘ - :
Controller PE Array #0-... S
g2 |82
L 2R |2
o
n Global (€]
5 2 + ! Y
g 9 Buffer o
£ L« K]][]
(144KB «
SRAM) ¥]
Core ‘g‘s

Figure 2.21: BitBlade general architecture [Ryu et al., 2022].

Li Du et al. [Du et al., 2017] propose a streaming-based accelerator, illustrated
in Figure 2.22. COL BUFFER module is implemented to remap the buffer output to the
convolution unit (CU) engine input, composed of 16 PEs. A pre-fetch controller periodically
fetches the DMA controller parameters and updates the weights and bias values in the CU.
ACCU is the accumulation buffer, and BUFFER BANK stores the inputs and outputs. Also,
the proposed accelerator implements a max-pooling function in hardware, which improves
energy efficiency avoiding unnecessary data movement to CPU or GPU to process pooling.
In addition, the accelerator can compute the max-pooling function in parallel with convolution
by using a separate pooling unit, thus achieving throughput improvement. This accelerator
also provides a filter decomposition technique to support arbitrary convolution window size
with additional zero-padding values. A prototype accelerator was implemented in TSMC
65nm technology with a core size of 5mm?. The hardware precision is 16-bit fixed-point,
with WS dataflow, and the accelerator can support major CNNs and achieve 152 GOPS
peak throughput and 434 GOPS per watts energy efficiency at 350mW.

Weison Lin and Tughrul Arslan [Lin and Arslan, 2021] propose a column streaming-
based accelerator. The Authors propose a method where the weights are stationary in PEs
(such as WS), and the IFMAP is divided into columns to be processed in the convolution.
Figure 2.23 shows the general architecture and also illustrates the IFMAP column division.
The data can be transmitted through the PE array in a wavefront interconnection (PEs are

39

BUFFER BANK

L =l
Iy l Layer_input H [Layer_Output
Instruction %k E

DRAM Decoder COL BUFFER

| CU ENGINE ARRAY z ACCU BUFFER

. "'"‘:“" PSUM MAX POOL
L

Figure 2.22: Streaming-based Accelerator general architecture [Du et al., 2017].

connected diagonally). The results are generated comparing with the [Du et al., 2017], and
show that [Lin and Arslan, 2021] has a larger area and delay than [Du et al., 2017]. However,
[Du et al., 2017] eliminates the zero-padding overhead, and the number of cycles is close.
PPA results and setup are not addressed in this work.

S, p N
L 2)
Input !
features in > ! :
! -height
columns || [J-helg
PE module !
(Convolution :
— operations) 3
[}
. L]
Filters > °
- - J

Figure 2.23: Column Streaming-based Accelerator general architecture [Lin and Arslan,
2021].

Boming Huang et al. [Huang et al., 2021] propose an In-Execution Configuration
Accelerator (IECA) using the RS dataflow. The accelerator is implemented in two steps:
(/) 1D array to implement a row; (i) a tile with three rows, which configures a 2D systolic
array. The accelerator uses more than one tile, resulting in a 3D-tiled accelerator, as shown
in Figure 2.24. IECA uses a delay-chain structure to control when the inputs must be read.
A delay-chain structure enables data reuse based on the stride. The accelerator allows
diverse convolutional sizes. These delay-chain structures are composed of a register chain
that delays the data control signals. A chip was fabricated with UMC 55nm LP technology at
250MHz, using 16-bit fixed-point as precision. The area is 1.658mm X 1.659mm, with 168
PEs and 109kB on-chip SRAM, with power equal to 114.6mW. The delay-chain structures
account for 0.55% of the entire chip area, and the area efficiency of the IECA achieves 30.55
GOPS/mm? and 2.39% of the total power dissipation.

40

PE Tilez
| PE Tile 2 T
PE Tile 1 - Row 1
) !} Y / Tile-Row
Filter z PE1 PE2 |-+ PE3 [
o Input
Filter 2 PE Row 1 B Row 2
Filter 1 0 ¢ ¢ * -
PE1 PE2 »| PE3 |)
PE Row 2 Input
H H H & Row y
T T 9
PE1 »| PE2 »| PE3
PE Row y [

Figure 2.24: IEAC 3D tile [Huang et al., 2021].

Final Remarks Related do Dedicated Accelerators

This Section summarizes works related to dedicated accelerators. Table 2.1 shows
characteristics of the described accelerators, using as reference the taxonomy presented in
Figure 2.3. Each accelerator has a specific target like small area [Chen et al., 2014] or low
power [Hsiao and Chang, 2020]. Few works present accelerators capable of reconfiguring
themselves. Examples of reconfiguration include the word data size [Jiao et al., 2020], or
the dataflow type.

The analysis of the state-of-the-art reveals the difficulty of performing a PPA com-
parison. The Authors target ASIC and FPGA technologies. For ASIC design, there are dif-
ferent technology nodes, while FPGA design uses different families. We observed in some
works the Authors comparing their results with other technologies, making the comparison
unfair. One of our goals is to propose a DSE flow enabling to extract PPA data for different
technologies, easing the comparison with related works.

Table 2.1 also shows one of the contributions of this Thesis. The Thesis proposes
a set of accelerators covering the three first columns (small area, low power, high perfor-
mance), with 8 and 16-bit precision. Also, the accelerators are implemented using the WS,
IS, and OS dataflow, once these dataflow types are the most commonly adopted by the lit-
erature. We reviewed 12 works based on WS, 7 based on IS, and 8 based on OS, while 5
use RS and 1 FD.

Table 2.1: Dedicated accelerators state-of-the-art summary.

41

Small Low High . . Tech/ Array
Work Area Power Performance Configurable Precision FPGA Style Dataflow
[Chen et al., 2014] yes no no no fixég:sgint 65nm 1D oS
[Zhang et al., 2015] yes no yes no 3?(;;” VC707 1D (o]
[Du et al., 2015] no no no no fix;g—_sgint 65nm 2D oS
[Chen et al., 2016a] no yes no no fixég:s:)tint 65nm SyiE)Iic RS
[Chen et al., 2016b] no yes no no fixég:sgint 65nm Syifc)ﬂic RS
Dataflow 16-bit
[Lu et al., 2017] no no no Type fixed-point 65nm 2D WS/1S/0S
[Du et al., 2017] no yes no no fix;c?:g:)tint 65nm SyiE)Iic WS
[Xiang et al., 2018] no no yes no fix;c?—-ggint 45nm Syialic FG
[Chen et al., 2019] no no no no fixe?j_—t;))lz)int 65nm Syiglic RS
. Word 8/16-bit
[Jiao et al., 2020] no no yes Size int 12nm 1D WS /IS
. Dataflow 16-bit
[Hsiao et al., 2020] no no no Type fixed-point 28nm / 40nm 1D WS /IS/0S
[Hsiao and Chang, 2020] no yes no no fix;(?:ggint 40nm 1D WS/IS/0S
[Spagnolo et al., 2020] no no no no fixe?j-?alfaint Zyng-U 9EG 1D oS
8-bits/
[Tavakoli et al., 2020] no no yes no max. Zyng XC7Z020 2D WS /IS
required value
8/20-bit
[Shivapakash et al., 2020] no yes no no fixed-point Kintex-7 KC705 2D RS
(g-ormat)
[Bai et al., 2020] o no no no ﬁxe%'zgim Xilinx ZC706 2D WS
[Udupa et al., 2020] no no no no Gt sar;te)gified) 10nm 2D IS
[Chen et al., 2020] no no no no fix;c?—-sgint 65nm 2D WS /IS
[Das et al., 2020] no yes no no fixe?j_zz)int 10nm Syiglic oS
[Liu et al., 2020a] no no no no fix;(?:s:)tint 65nm Syig)lic WS
[Liu et al., 2020b] no no no no fix;g—-sgint 65nm Syizlic WS
[Lin and Arslan, 2021] no no no no NA NA Syiglic WS
[Huang et al., 2021] yes no no no int/fil(g;igoint 55nm Syialic RS
Word 2/4-bit 2D
[Ryu et al., 2022] no yes no Size int 28nm Systolic WS
This thesis yes yes yes no fixsézf;)t:::itnt 28nm / 65nm ;)?sgl?c WS /IS/0S
2.2.2 Industrial Accelerators

This Section presents an overview of the current neural network accelerators in the
industry. Tesla developed an SoC to accelerate machine learning applications [Tesla, 2019].
The system contains 12 ARM CPUs, GPU, on-chip SRAM, ReLU and pooling dedicated
hardware, and a 96x96 MAC array. The MAC array produces a result for every clock cycle,

42

ensuring high throughput. The chip was fabricated using a 14nm technology node. The
Tesla Accelerator has 6 billion transistors, with an area of 260mm?2. According to Tesla, the
convolution accelerator array can reach a throughput of 72 TOPS at 2GHz. Experiments
show that, with a throughput of 35 GOPS, a GPU has an improvement of 14 times regarding
frames per second compared to a CPU. Results show that, also with a throughput of 35
GOPS, the Tesla accelerator has an increase in frames per second of 13 times compared
to the GPU, totalizing an increase in frames per second of 182 times compared to a CPU.
Besides all the improvements, the Tesla accelerator has an expensive hardware cost. How-
ever, this hardware is used in a real-time specific application, the autonomous Tesla car, and
needs a high throughput to process all data coming from the inputs.

Apple developed an SoC that targeted to mobile devices, called A13 Bionic [Apple,
2022]. The SoC presents four CPU cores, a GPU, and a matrix multiplication accelera-
tor. The SoC was fabricated using a 7nm technology with 8.5 billion transistors. According
to Apple, the A13 performance is higher than the other companies’ accelerators, such as
Snapdragon 855 from Qualcomm and the kirin 980 from Hauwei, reaching almost 50% of
improvement. According to Apple, the SoC was developed to reach low power and high per-
formance, with a throughput of 1 TOPS, and a power reduction of 30% compared to the past
version, the A12. The low power is achieved by disabling the neural engine once it is not
used in all applications. Compared to Tesla accelerator, Tesla demonstrated a throughput
72 times higher than the Apple hardware. However, Apple focuses on mobile applications
and does not require the same performance achieved by Tesla. Also, Apple focuses on low
power dissipation, a necessary parameter for mobile applications, constraining the design in
terms of area. Besides, mobile applications do not need real-time processing, consequently
not requiring high throughput.

Google TPU [Google, 2022a] is a custom-designed machine learning ASIC to ac-
celerate machine learning applications, such as network security and medical diagnoses.
TPU was developed to perform machine learning applications in the cloud. According to
Google, TPU is used in translating, photo manager, search assistant, and e-mail. Also, the
Google TPU has a fault-tolerant feature for training. TPU results show an improvement of
27 times accelerating the ResNet-50 neural network training compared to GPUs.

Microsoft designed the Brain Wave NPU [Microsoft, 2022] for real-time machine
learning applications, both in the cloud or edge. This approach uses an FPGA to accelerate
the neural network inference of applications, such as computer vision and natural language
processing, and is used combined with CPUs. Brain Wave NPU can reach low latency, high
throughput, high efficiency, and flexibility due to FPGA, according to Microsoft.

Amazon developed the Inferentia chip [Amazon, 2018] to perform neural network
inference. It is implemented to reach high throughput and low latency at a low cost. Inferentia
supports frameworks to implement neural networks, such as TensorFlow and PyTorch. Also,

43

Inferentia has a throughput of thousands of TOPS, and it is possible to use more than one
chip together to improve this throughput.

Intel proposes the Nervana Neural Network Processor-T (NNP-T) [Intel, 2022], an
accelerator for both training and inference. Nervana has two chip versions, one dedicated to
the training phase and the other one dedicated to the inference phase. Nervana uses High
Bandwidth Memory (HBM) interface to get better performance, with eight channels, using a
DDR channel interface combined with the LPDDR power-saving techniques. Nervana can
train complex neural networks with low time-to-train, dissipating between 10W and 75W.

Qualcomm Snapdragon [Qualcomm, 2019] is an accelerator focused on mobile
devices. It was developed to perform on-chip inference, reducing the latency when the
application is processed on the cloud. Snapdragon can be used to perform machine learning
tasks like image classification, object detection, face detection, and speech recognition.
Snapdragon can achieve a throughput of 7 TOPS and can process more than 140 inferences
per second on the Inception-v3 neural network.

Many companies build their accelerators, both for training and inference. Each
company has its accelerator, designed according to its constraints. For example, Tesla works
with autonomous cars and needs high throughput due to the amount of data that real-time
applications must process. Thus, it is necessary to relax constraints related to power and
area. On the other hand, Apple focuses on mobile applications that need less throughput
capacity than Tesla, having power dissipation as a critical design constraint.

The same occurs in other companies, such as Google and Microsoft, developing
accelerators targeting a specific application. Thus, it is possible to note that application-
specific accelerators are a market trend. Table 2.2 summarizes the industrial accelerators,
including other companies. This Table shows the relevance of the research and development
of hardware accelerators.

2.3 Hardware Design Space Exploration Frameworks and Simulators

This section describes works that generate PPA analyses focused on simulators of
CNNs and frameworks related to our proposal. Estimation frameworks can use a simulator
to estimate PPA based on the hardware behavior or use analytical methods to evaluate
PPA. The simulators are commonly implemented using high-level program languages, such
as Python and C++, and simulate the CNN accelerator faster than RTL approaches.

Specific-domain frameworks targeting commercial platforms like Vitis Al from Xilinx
[Xilinx, 2021] and TensorRT from NVIDIA [NVIDIA, 2022b] aid in model hardware for CNNs.
These frameworks model the CNN using frameworks such as TensorFlow, and using HLS,
convert the model to the hardware using custom IPs (Xilinx) or specific platforms (e.g., Jet-

Table 2.2: Industrial CNN accelerators.

Company Product Function
Amazon [Amazon, 2018] Inferentia Inference
Fujitsu [Fujitsu, 2018] Deep Learning Unit Inference
Alibaba [Alibaba, 2019] Hanguang 800 Inference

Huawei [Huawei, 2019] Ascend 910 Inference/Training
Tesla [Tesla, 2019] FSD Inference
Samsung [Samsung, 2019] Exynos Inference
Qualcomm [Qualcomm, 2019] Snapdragon Inference
Xilinx [Xilinx, 2018] xDNN Inference
Toshiba [Toshiba, 2019] Visconti 5 Inference
Google [Google, 2022a] TPU Training
Microsoft [Microsoft, 2022] Brain Wave NPU Inference
Facebook [Facebook, 2022b] Kings Canyon Inference
Apple [Apple, 2022] Bionic Inference
IBM [IBM, 2022] Watson Inference/Training

Western Digital [Digital, 2022]

Machine Learning Accelerator

Inference/Training

Intel [Intel, 2022] Nervana Inference/Training
NVIDIA [NVIDIA, 2022a] NVDLA Inference/Training
Mediatek [Mediatek, 2022] APU Inference
Renesas [Renesas, 2022] e-Al Inference
Texas Instruments [Texas, 2022] Sitara Inference
NXP [NXP, 2022] S32v234 MPU Inference
Cerebras [Cerebras, 2022] CS-1 Inference/Training

44

son). However, these frameworks use proprietary IPs, limiting the design space exploration.
Thus, specific-domain frameworks are out of this Thesis’s scope.

Similar occurs to the NVIDIA Deep Learning Accelerator (NVDLA) [NVIDIA, 2022a].
NVDLA is an open-source framework from NVIDIA to implement machine learning applica-
tions. The framework presents a full software ecosystem, which includes: (/) a complete
training infrastructure; (/i) a compiler to convert existing models to a form that is usable by
NVDLA software. Figure 2.25 shows the NVDLA framework flow. The NVDLA can read a
neural network from a front-end environment, such as Caffe, and map to the NVIDIA accel-
erator. PPA results for a 16nm technology show for a 32 MACs array area of 0.55um?, a
throughout of 3.6 frames per second, and an average power of 177mW. For a 2048 MACs
array, the results show an area of 3.3:m?, a throughout of 269 frames per second, and an
average power dissipation of 291mW.

45

Build

DL training _| | Parser | Compiler _| User-mode _| Kernel-mode N NVDLA
software Model Loadable | driver (UMD) foctl() driver (KMD) | Reg writes

Optimizer

Figure 2.25: NVDLA flow diagram [NVIDIA, 2022a].

NVDLA is open-source, allowing generating case studies to evaluate PPA. How-
ever, the framework is restricted only to NVIDIA accelerator architecture, making it hard to
compare with other accelerators. Also, to obtain PPA data, it is necessary to perform all
the implementation flow, which means more time spent on the project. The same occurs for
simulation once it is based on RTL simulation.

2.3.1 Hardware Design Space Exploration Frameworks

MLPAT [Tang and Xie, 2018] is a framework that allows the modeling of power, area,
and timing for machine learning accelerators. Figure 2.26 shows the framework architecture.

(Micro)Architecture Parameters
Freq, Vdd, Precision
#Array, Inter-Array Interconnection, On-chip Memory
#MAC per Array, Intra-Array Dataflow, Local Memory
Circuit Parameters
Logic: MAC, CMP, MUX,
Memory: DFF, SRAM, eDRAM
Ciri: PCle, MemCtrl, DMA
Technology Parameters
Tech Node, Device (HP, LSTP, LOP), Wire Type

!

. 1 Optimization ‘ Configure
L | Arch ’ Circuit H Tech J
g g Ie) T
=< 5
$¢% Chip —
§ 9 1 _Representation Power/Areal | pPaT
E % - : Timing | Result
o

Figure 2.26: MLPAT Framework Architecture [Tang and Xie, 2018].

MLPAT supports modeling components such as systolic arrays, on-chip memory,
and activation pipeline. Also, MLPAT supports different precision types, which allows validat-
ing the trade-off between accuracy and precision, and different dataflows, such as WS and
OS. As input, the MLPAT allows specifying the accelerator architecture, the circuit, and the
technology. The framework generates an optimized chip representation to report the results,
such as area, power, and performance. The results show an error below 10% when com-
pared with TPU-V1. The MLPAT does not perform simulation, but the Authors mention in the
paper that it is possible to combine MLPAT with simulation tools. Thus, it is also possible to

46

have dynamic power results. Even with area, timing, and power analyses, the power results
are inaccurate.

MAESTRO [Kwon et al., 2018a, Kwon et al., 2019] is a framework to describe and
analyze neural network hardware, which allows obtaining the hardware cost to implement a
target architecture. Figure 2.27 shows the framework architecture. It has a domain-specific
language (DSL) to describe the dataflow that allows specifying the number of PEs, memory
size, and NoC bandwidth parameters. The results generated by the framework are focused
on performance analyses. In recent work, MAESTRO was used to estimate tradeoffs be-
tween execution time and energy efficiency for CNN models, such as VGG and AlexNet.

s L S-S SHIP - S - SR - SIS SEEL L D = SR S (S, S h

= o8 Bl = Layer VGG1
| c|fc 5 |
I | o o L K« 64; |
N||IN||N
| L v L] S 3;]
| Neural Network Structure DNN Layer |
| IFMap Description |
sight Buffer Size

O ||I— Noc PE Connectivity ;

ol Bufter ™ pgum NoGC Bandwidth| |

(",; =L /OFMap PE 1

2y
EJI EI Accelerator Architecture Physncal :
Resources

= [LWZZ rinzw =2) ..l W Description |
| Ec”‘e 29 LayervGG1 | |
[we =" Z(I Wl »/Spatialls] K I
| |Loop Tiling + Tile Mapping| £ Iw*l Unm!ﬂ |
| Z5 5w Dataflow |
I Daiaﬂow Description |
e e o o o e e e e e e e e — e —— —
e e i o ows s oK s e
I Access Counts (L1/L.2) T

o Buffer Requirements

hoa 3' Buffer Analysis

= 5! [Max BW Requirement

:ﬁ S | - BW Requirement vs. Time

by 8I NoC Analysis

E : ‘ Roofline of dataflow porfommeo

Figure 2.27: MAESTRO Framework Architecture [Kwon et al., 2018a].

Timeloop [Parashar et al., 2019] is a design space exploration framework for CNNs.
It can emulate a set of accelerators, such as NVDLA [NVIDIA, 2022a]. Figure 2.28 shows
the Timellop framework flow diagram. Timeloop focuses on the convolution layer analyses.
Timeloop uses as input a workload description, such as input dimension and weight values,
a hardware architecture description, such as arithmetic modules, and hardware constraint.
Instead of using a cycle-accurate simulator, Timeloop uses data transfers deterministic be-
havior to perform analytic analyses. As energy models, Timeloop has memory, arithmetic
units, and wire/network models based on TSMC 16nm FinFET.

Accelergy [Wu et al., 2019] allows estimating the energy of accelerators without
a complete hardware description, using a library of basic components. Figure 2.29 shows
the framework flow. Accelergy uses a high-level architectural description to capture the cir-
cuit behavior characteristics, such as memory reads. The obtained results are compared to
post-layout results, showing an error of 5% in the energy estimation for the Eyeriss acceler-
ator. Even considering the number of memory reads, Accelergy does not consider relevant

47

MAPPER MODEL
Workload Spec > Mapspace
/ Construction
Arch Spec v _ :
/ Mapspace | MaPPing , Energy
Constraints | Tile :
[(1l ™| Analysis ' Perf
295] ' Area l
D Tech '
_ Model |
_Search

Figure 2.28: Timeloop Framework Diagram Flow [Parashar et al., 2019].

features of an accelerator. Accelergy considers whether the memory access pattern is ran-
dom or whether it reads the same address repetitively, but it does not take into account
dataflow types and data movement through the array. Besides, Accelergy does not provide
a simulation environment.

Acceler
User input gy_

Architecture save ERTO

description i save ERT1 Saved ERTs
— Ener
(YAML) = > (YAML)

L p*| referencetable | saveEerT2
H — :

Compound : (ERT) generator L
component H lll) : e
description ; 1 : ser inpui

(YAML) — Action
\/— : Primitive Energy |<4=— counts
Component calculator | : (YAML)

Library
Estimation Estimation Fnersy
plug-in 0 plug-in1 | estimations

User input (YAML

Figure 2.29: Accelergy Framework Diagram Flow [Wu et al., 2019].

Heidorn et al. [Heidorn et al., 2020] propose an analytical model that estimates
throughput and energy to a given hardware constraint. A DSE is proposed to determine
the accelerator architecture limits in terms of throughput, number of parallel operations,
and memory. The Authors propose an accelerator to evaluate the model with a tile-local
memory, a bus, and a coarse-grained reconfigurable array (CGRA). Each CGRA presents a
two-dimensional array of PEs, and the accelerator can have more than one CGRA to par-
allelize the processing. Compared to implementations that execute a CNN layer-by-layer
sequentially, results show that layer-parallel processing can reduce energy consumption by
3.6 times, hardware cost by 1.2 times, and increase throughput by 6.2 times for a MobileNet.

Zhao et al. [Zhao et al., 2020] propose an analytical performance predictor to es-
timate energy, throughput, and latency for ASIC and FPGA. Figure 2.30 shows a high-level
view of the framework. The predictor uses DNN models, hardware architecture, dataflows
types, and hardware cost regarding a technology node. The results are generated with

48

AlexNet and SkyNet CNN models, with Eyeriss, an FPGA implementation from [Hao et al.,
2019], and synthesized results of a proposed accelerator. They show that the error achieves
a minimum of 0.25% and a maximum of 17.66% for different CNN models, hardware archi-
tectures, and dataflow types.

= T . ,DNN The Proposed Models
e Models Energy
Resource Allocation
= Hggl#;-if;;e & Utilization Analysis .
Laten

- Data Reuse Analysis Y

B@-::: Dataflows
- Unit Communication [

@ Conts Analysis Throughput

Figure 2.30: DNN predictor high-level architecture [Zhao et al., 2020].

DNNEXxplorer [Zhang et al., 2021] is a framework for DSE of ML accelerators, pre-
sented in Figure 2.31. DNNEXxplorer supports machine learning frameworks (Caffe and Py-
Torch), besides three accelerator architectures (named paradigm in the Figure).

Benchmarking) M Improved AT
and exploration |[> deployment
M on HW

..................

i Architecture
! optimization ! 'm

: ' : Pert. !
Accelerator Modeting -~ |__FYaluation |]

- Architecture i Architecture | Googk
| 2 E paradigm modeling i exploration | % Translate
AR R \ 1
- J ~ = fm—— - P : % e ———
& le| & . « vl b e | B
i g’ 50_)_) g R Generic Al g_’ g_’ 5 B Generie 5
w|| & »n —> Accelerator —> [ZBAR- R AN Accelerator
|| & a A A 'Y
Paradigm 1 Paradigm 2 Paradigm 3

Figure 2.31: DNNExplorer Flow Diagram [Zhang et al., 2021].

The first architecture is based on a pipeline approach, where each stage process
a layer of the CNN application. The second architecture is based on a 2D array and can be
reconfigured for different layers. The Authors propose the last architecture, a hybrid of the
other two architectures. The architecture also supports WS and IS dataflows. The DNNEXx-
plorer flow works as follow: (/) inform the definition files for DNNExplorer, which include
information like layer type, quantization method, and technology (FPGA or ASIC); (i) archi-
tecture selection; (iii) an optimization step based on the definition files and architecture. This
framework adopts analytical models to estimate performance and hardware configuration.
Results show that the accelerators proposed by the Authors can increase the throughput
4.2 times (GOPS) compared to the pipeline architecture 2.0 times compared to the second
architecture.

49

Gemmini [Genc et al., 2021] is an open-source systolic array generator that allows
evaluating deep-learning architectures. Gemmini generates a custom ASIC accelerator for
matrix multiplication based on a systolic array architecture. Gemmini is compatible with
the RISC-V Rocket ecosystem [Asanovic et al., 2016]. Figure 2.32 shows the Gemmini
general architecture. The CPU component can be either an in-order CPU or an out-of-order
CPU. The neural network accelerator comprises a systolic array, allowing both OS and WS
dataflow types. A DMA component performs the memory operation and loads the data
(feature maps and weight values) to the scratchpad memory. The activation function, such
as RelU, are implemented in hardware. There is also a transposer component, which is
a small systolic array used to help in matrix multiplication. The accumulator stores partial
results, with a bit width larger than the systolic array. Results are validated using Intel 22nm
process technology and show speedups increase between 127 and 2,670 times compared
to high-performance CPUs using CNN such as AlexNet, MobileNet, and ResNet50.

CPU Gemmini
c RoCC Cmd Controller Transposer| | im2col
ore
ROCC PTW Dependency Mgmt oo
H DMA Engine L Spatial][]
L11+D Local TLB O Array][]
UL oo ddd]
Scratchpad
L2 (Rew] O
Bank 0 ReLU
;} oo] | [
. Bitshift SRAM
Pooling || Matrix Scalar
DRAM m Engine Multiplier

Figure 2.32: Gemmini general architecture [Genc et al., 2021].

Interstellar [Yang et al., 2020] is a DSE framework that uses Halide language
(https://halide-lang.org) to generate hardware and compare different accelerators, such as
different dataflows (WS, OS, RS) in 2D arrays and a MAC tree schemes. Halide is a DSL
for image processing applications and allows mapping a loop-based application into CPUs
or GPUs. As CNN applications are also loop-based, it is possible to extend Halide DSL
to generate hardware. Thus, the Authors propose a systematic approach to describe the
design space of DNN accelerators as schedules of loop transformations. The framework
also optimizes the memory hierarchy, and results show a 3.5, 2.7, and 4.2 times energy
improvement over Eyeriss accelerator using, VGG-16, GoogleNet, and MobileNet CNNs.

DeepOpt [Manasi and Sapatnekar, 2021] is a DSE framework to explore ASIC
implementation of systolic hardware accelerators for CNNs. The main goal of this DSE is
to reduce the number of memory accesses based on hardware characteristics like on-chip
SRAMs and the number of parallel PEs. The DeepOpt uses a search tree to schedule the
convolution process. Thus, it is possible to minimize the number of accesses from memory
by modeling memory access patterns (weight and output stationary) and pruning branches

https://halide-lang.org

50

from the search tree. Results show improvements of 50 times in the energy-delay product
for VGG-16 and 41 times for GoogleNet-v1.

Karbachevsky et al. [Karbachevsky et al., 2021] propose a method to estimate area
and power values based on the bit operations performed (BOP) metric [Baskin et al., 2021].
BOP is the number of bit operations required to perform the calculation, defined by the input
bit size, output bit size, number of inputs, and number of outputs. According to the authors,
BOP metric allows estimating the area and power required by accelerator hardware with high
accuracy in the early stages of the design process. Also, the method can show the trade-off
between the number PEs and the bottlenecks caused by the parameters quantization, such
as memory bandwidth or computational resources. Two WS dataflow 3x3 MAC arrays were
implemented, with multipliers from the Synopsys standard library, synthesized using TSMC
28nm technology at 800MHz. The arrays bit sizes are 4 and 6-bit, and the input dimension
has variable sizes of 4, 8, and 16. The output dimension has the same size as the input.
Results show that the BOPs achieves a linear relation for the area with an R? of 0.9752. The
paper does not present power results.

Ferianc et al. [Ferianc et al., 2021] propose a method to improve the performance
of DSE analyses. The method is based on a Gaussian process regression model param-
eterized by the features of the accelerator and the target CNN, such as filter, channel, and
data parallelism. Figure 2.33 illustrated the method. The method is capable of predicting the
hardware latency and energy. The method was evaluated using two implementations: (/) a
FPGA implementation using a Intel Arria GX 1150 board; (i/) an ASIC implementation using
a 28nm technology. The method was compared to machine learning-based methods to per-
form DSE (linear regression, Gradient tree boosting, and neural network). Results show a
reduction between 1.94 and 1.34 times in the prediction time.

Neural
network

Run

Accelerator

Figure 2.33: DSE Method Based on Gaussian Process Regression Model [Ferianc et al.,
2021].

Kernel,
Mean
function

Prediction

Measurements
(Latency, Energy)

Aladdin [Shao et al., 2014] is a pre-RTL power-performance accelerator modeling
framework. It estimates performance, power, and area. Aladdin infrastructure uses dynamic
data dependence graphs (DDDG) to represent accelerators. The DDDG is generated from a
C program and allows Aladdin to report the program dependencies and resource constraints.
Results show that Aladdin has an error of 0.9% for performance evaluation, 4.9% for power
evaluation, and 6.6% for area evaluation compared to RTL accelerators implementation.

51

2.3.2 Hardware Simulators

SCALE-Sim (Systolic CNN Accelerator Simulator) [Samajdar et al., 2018, Samajdar
et al., 2020] is a systolic array cycle-accurate simulator. Figure 2.34 illustrates the simulator
architecture. This simulator allows configuring micro-architectural features such as array
size, array aspect ratio, scratchpad memory size, and dataflow mapping strategy. Also, it is
possible to configure system integration parameters, such as memory bandwidth. SCALE-
Sim simulates convolutions and matrix multiplications, and models the compute unit as a
systolic array. Also, it allows simulation in a system context with CPU and DMA components.
The Authors show detailed experiments to understand the design space and tradeoff in
designing a systolic array-based CNN accelerator. A recent SCALE-Sim extension provides
an analytic model to find the best accelerator configuration based on parameters like DRAM
bandwidth.

L
Cycles,
* Bandwidth,
Utilization

etc.

. - -
Parameter |Value

Array Height |32

pp——

Array Midth !12

———]
IFMAP SRAM |1024

|
|
|
|
|
|
|
|
|
|
|
|
|

.F'.lte" SRAM 31024 | |
(OFRAM SRAM [128 | Simulation
Dataflow s |~ Summary
— |A(:ce"eralor IJ_ N
. | Interface 2 LAY
- l)

1 * SRAM R/W
gg:zzj | | DRAM RW
FCl.... | | : 7 :

I 5 | Cycle accurate
L I 2 traces
DNN Topol fi .
opology e SCALE-Sim

Figure 2.34: SCALE-Sim simulator architecture [Samajdar et al., 2018].

STONNE [Mufoz-Martinez et al., 2020] is a cycle-accurate architecture simulator
for CNNs which allows end-to-end evaluation. Figure 2.35 shows the high-level architecture
of STONNE framework. It is connected with Caffe framework [Caffe, 2022] to generate the
CNNs, and models the MAERI accelerator [Kwon et al., 2018b]. The results are focused
on performance and hardware utilization and show an average difference of 15% in total
executed cycles than the original MAERI results. To estimate area and energy, STONNE
uses the Accelergy energy estimation methodology [Wu et al., 2019], which considers basic
modules to calculate the energy values, such as adders.

SimuNN [Cao et al., 2020] is a neural network simulator that allows pre-RTL veri-
fication and fast prototyping. Figure 2.36 shows the SimuNN architecture. It is compatible
with TensorFlow, allowing using software application values to evaluate the hardware ac-
celerator. The results generated by SimuNN are based on a fixed accelerator proposed

52

Input Module Flexible DNN Accelerator Output Module

s p N\ p

Configuration
Unit

STONNE User| |

.fj: -J

[} {

= o i

Interface % = & H>
—/ w 9 o performance Energy

....... e\ % g_ £

o S Simulation | | &
WQS Vo =% Caffe AN o Engine §- -l~ Ej G
@Ie s@g'mg“"{: Framework 8 Prediction : Area

[

. J VAN J

Figure 2.35: STONNE simulator architecture [Munoz-Martinez et al., 2020].

by the Authors. The accelerator comprises a micro-controller, an instruction RAM, a DDR
controller, a weight buffer, a feature map buffer, a feeder controller, a collector unit, and 14
three-stage pipelines PEs with nine multipliers each. The Authors show latency and en-
ergy results based on Altera FPGAs and ASICs, although the ASIC technology node is not
mentioned.

1 [1 1 ——a .
Basic Functions Configuration 1 . | Hardware config. |
: [FMs Weigh .
conv Network config. eights Dataflow config.
Num. Form Select. Dataflow analyze Hardware constraints
pooling
= Clock-level tracing Lat. | |HW.Rsc.| | Mem. Acc.
Module-level Utlz. Opt. Hardware Perf. Expl.
Opt. Num. Form] [Multi-level Tracing Results] EOPL Dataﬂc?;‘:ffé Hardware j
: INFERENCE SIMULATOR ESTIMATOR

Figure 2.36: SimuNN Simulator Architecture. [Cao et al., 2020]

AccTLMSim [Kim et al., 2020] is a pre-RTL cycle-accurate CNN accelerator simu-
lator based on SystemC transaction-level modeling (TLM). The simulator allows maximizing
the throughput performance for a given on-chip SRAM size. An accelerator is proposed to
validate the simulator, composed of a MAC array of 12 units, a double buffer scheme to
enable memory read and MAC executions in parallel, and a DRAM controller. Each of the
hardware blocks is implemented as a SystemC module using sockets, and the accelera-
tor was also prototyped in a Xilinx Zyng FPGA using HLS. AccTLMSim is focused only on
performance, not power or area.

2.3.3 Final Remarks Related to DSE Frameworks and Simulators

Previous works present gaps in evaluating CNN’s accelerators. Table 2.3 summa-
rizes the reviewed works. The first column represents if the work has integration with high-
level modeling CNN frameworks, such as TensorFlow and Caffe. The second column shows

53

Table 2.3: DSE Frameworks and Simulators State-of-the-art Summary.

Work Integration with High-level Evaluation metrics PPA analyses
CNN frameworks Simulation based on basic components based on entire convolution
Aladdin [Shao et al., 2014] No No PPA No
MLPAT [Tang and Xie, 2018] No No PPA No
Maestro [Kwon et al., 2019] No No Performance No
Timeloop [Parashar et al., 2019] No No PPA No
Accelergy [Wu et al., 2019] No No Power No
[Heidorn et al., 2020] No No PPA No
[Zhao et al., 2020] No No Power No
Interstellar [Yang et al., 2020] No No PPA No
SCALE-Sim [Samajdar et al., 2020] No Yes Performance, Area No
STONNE [Mufioz-Martinez et al., 2020] Caffe Yes Performance No
SimuNN [Cao et al., 2020] TensorFlow Yes PPA No
AccTLMSim [Kim et al., 2020] No Yes Performance No
DNNExplorer [Zhang et al., 2021] Caffe, PyTorch No Performance No
Gemmini [Genc et al., 2021] No No Performance No
DeepOpt [Manasi and Sapatnekar, 2021] No No Performance, Power No
[Karbachevsky et al., 2021] No No Area No
[Ferianc et al., 2021] No No Performance, Power No
This Thesis TensorFlow Yes No Yes

if the work provides a simulation environment. The third and fourth columns are related to
the evaluated metrics. The third column presents metrics based on basic components, such
as MACs and register files. The fourth column shows the evaluated metrics regarding the
entire convolution.

MAESTRO does not allow the accelerator simulation, limiting the performance eval-
uation (e.g., throughput). SCALE-Sim does not provide power or energy results. MLPAT and
Timeloop provide PPA based on basic operations, such as adders and multipliers. Methods
relying on operations counting do not consider how these operators are interconnected (e.g.,
1D or 2D systolic arrays or adder trees), resulting in imprecise hardware metrics.

Works [Heidorn et al., 2020] and [Zhao et al., 2020] show analytical results for
power, performance, and area. Also, [Zhao et al., 2020] consider features like the dataflow
type, which can contribute to the power dissipation. However, both [Heidorn et al., 2020]
and [Zhao et al., 2020] do not support simulation neither integration with CNN frameworks.
Similar occurs to Aladdin, once it does not perform simulations. However, it can be integrated
into a simulation environment to consider the whole system performance, power, and area
analyses [Shao et al., 2016].

Works like Gemmini, Interstellar, DeepOpt, [Karbachevsky et al., 2021], and [Fe-
rianc et al., 2021], lacks on simulation capability and PPA analyses. Also, [Karbachevsky

54

et al., 2021] claim that the main effect of changing the circuit frequency is to reduce power
dissipation. However, it is not true, once logical synthesis with different frequencies as target
shows different area values.

STONNE and SimuNN are similar frameworks when compared to our proposal.
Both integrate a flow that starts with frameworks to model CNNs, and both provide the accel-
erator simulation. However, SimuNN uses a fixed 2D array style, not comparing it with other
styles like 1D. SimuNN has an energy estimation based on basic elements, not considering
data movement through the accelerator. STONNE does not address power estimation, but
the authors argue that it is possible to integrate STONNE with Accelergy (which only eval-
uates power). DNNExplorer also allows frameworks to model CNNs, but lacks simulation
and PPA analyses. SCALE-Sim and AccTLMSim lack integration with frameworks to model
CNNs.

2.4 Thesis Contribution for the State-of-the-Art

Considering the works analyzed before, some gaps were identified and summa-
rized below:

1. Proposals that allow estimating DSE for different types of accelerators and dataflows;
2. Works that perform complete PPA analyses, not only one metric;
3. A method to estimate PPA accurately;

4. An analytical tool based on the entire convolution mechanism that allows a fast and
accurate DSE;

5. A framework or environment that integrates these gaps.

State-of-art shows that few works are capable of estimating PPA metrics. The
works that estimate PPA are based only on basic components of an accelerator, which
can result in an inaccurate estimation. Few frameworks that allow PPA estimation execute
simulation. Thus, this Thesis aims to fill the gaps by providing:

1. A DSE that integrates a CNN modeling framework to perform DSE using data from
actual CNNs. The DSE starts with a framework to model CNNs (TensorFlow) and
configures hardware accelerators able of executing these CNNSs;

2. A simulation environment that uses the values extracted from TensorFlow (Chapter 3).
The simulation environment allows to model hardware accelerators with high-level pro-
gramming languages and performs fast simulations;

55

3. A physical synthesis flow that allows comparing different dataflow types (Chapters 4
and 5). The physical synthesis flow is the basis for the PPA. Similar to the simulation
environment, physical synthesis flow is integrated with TensorFlow to extract accurate
power values. Also, the synthesis flow allows performing a fair comparison with dif-
ferent kinds of accelerators, regarding the same technology and target frequency, for
example;

4. An analytical tool based on the entire convolution mechanism, allowing a fast and
accurate DSE (Chapter 6). This tool is based on a synthesis from a specific layer of a
CNN generated in TensorFlow, and estimates other layers based on this synthesis.

56

3. HIGH-LEVEL MODELING FRAMEWORK FOR DSE

This Chapter presents the first attempt to fill the five gaps identified in the state-
of-the-art [Juracy et al., 2021a], presented previously in Section 2.4, by using a high-level
modeling framework for DSE. This framework is used in the early design stages and allows
high-level validations, with three components:

1. The CNN framework, using the TensorFlow for training — Section 3.1, followed by a
quantization method used to reduce the memory requirements — Section 3.2;

2. The physical synthesis of the hardware accelerator for PPA extraction — Section 3.3;

3. The cycle-accurate system simulator, using the URSA simulator — Section 3.4.

Section 3.5 presents results regarding PPA extraction, comparing the netlist simu-
lation against the URSA simulator. Section 3.6 presents pros and cons on using a system
simulator to perform DSE for CNN hardware accelerators.

Figure 3.1 presents the proposed framework. TensorFlow models the CNN, re-
sponsible for training and inference phases, generating weight and input feature map values.
This work adopts an integer quantization to avoid floating-point operations and reduce the
memory requirements. The last action executed by TensorFlow is exporting a header file
with the weight and feature values used by the system simulator.

TensorFlow + Quantization Physical Synthesis

v

Quantization

'

Simulation

Figure 3.1: Convolution Accelerator Hardware Metric Extraction Framework. Source: [Ju-
racy et al., 2021a]

1 [1 1
1 11 1 : 1
1 " 1! 1 1
e De{lr;g | application.py | 1 ! Accelarator accelarator.cpp | 1 : accelarator.vhd Accelarator RTL| !
L e P Netrer vt Modelling vy Modelling | '
1 eural Network 11 1, 1
1 1! [1
1 1t l l X
\ ¢ Lo Dl .
1
| Training Step - Import Weights P! Accelarator :
h [' : Synthesis 1
1 [N [1
1 l [N l [l 1
1 ! [1
1 11! [1
! Weight vt Import PPA L ; !
: Extraction . : Information : | tech.h PPA Extraction :
1 [1 : 1
1 [[1
1 [[1
1 [[1
1 1! [1
1 [(- 1
1 [(- 1

The physical synthesis corresponds to the synthesis of the CNN accelerators. This
step generates the CNN accelerator layout, and a netlist with extracted parasitic capaci-
tances. The simulation of this netlist generates the switching activity, used to characterize
the accelerator power dissipation.

57

The cycle-accurate system simulator [Domingues, 2020] models the hardware ac-
celerator using high-level programming language, the CNN model generated by TensorFlow,
and the PPA reports generated by the physical synthesis. The simulator captures informa-
tion related to the CNN execution, presenting a summary of the accelerator performance,
area, and energy results.

3.1 TensorFlow CNN Modeling Framework

This Section describes the use of TensorFlow as a front-end to analyze hardware
accelerators. TensorFlow is used to:

1. Model the CNN and exploring its architecture;
2. Extract the weight values of the selected network;

3. Extract network output values to validate post-layout simulation.

Figure 3.2 shows an example of a TensorFlow code, which corresponds to the
application.py in Figure 3.1. The environment allows exploring CNN architectures and
their accuracy regarding the network depth, stride dimension, activation functions, and the
number of filters. Thus, it is possible to tune the CNN architecture based on an target
accuracy. The example in Figure 3.2 shows a CNN with four convolution layers with 16, 8,
3, and 1 filters, a fully connected layer, and strides with dimensions 2x2 and 1x1.

Clearup everything before running
keras.backend.clear_session()

Create model
model = keras.models.Sequential()

Add layers

model.add(keras.layers.Conv2D(16, (3,3), strides=(2, 2), activation='relu',
< input_shape=(28, 28, 1)))

model.add(keras.layers.Conv2D(8, (3,3), strides=(1, 1), activation='relu'))
model . add (keras.layers.Conv2D(3, (3,3), strides=(2, 2), activation='relu'))
model.add(keras.layers.Conv2D(1, (3,3), strides=(1, 1), activation='relu'))
model.add (keras.layers.Flatten())

model .add (keras.layers.Dense(10, activation='softmax'))

Build model and print summary

model.build(input_shape=featureShape)
model . summary ()

Figure 3.2: TensorFlow Code Example. Source: [Juracy et al., 20213a]

58

TensorFlow allows extracting the value of weights after reaching the target accuracy
in the training phase. After the training phase, a post-extraction quantization occurs. At the
end, a header with the weight and feature map values is generated to be imported by the
system simulator (tensorflow.h in Figure 3.1).

3.2 Shift-based Quantization

The quantization method is performed in python using the weights obtained in the
training step with TensorFlow. As the focus of this Thesis is the hardware implementation,
we are not concerned with improving or comparing the quantization method with others
quantization methods. Nonetheless, this analysis is included in future work.

The quantization goal is to optimize the hardware implementation and reduce mem-
ory requirements. Thus, the method converts 32-bit floating-point weights values from Ten-
sorFlow to 8-bit integers by multiplying the weight values by a power of two. Therefore it
is possible to avoid floating-point arithmetic in the accelerator, which reduces the area and
power dissipation. The 8-bit integers are chosen to reduce the hardware area cost. Also,
each OFMAP value is divided by the same power of two at the end of each convolution,
allowing connecting directly with new hardware and avoiding software interaction.

The quantization has two conditions. The first is if the layer to be processed is the
first (Layer 0). The first layer can use as input an RGB image, for example. These input
values are not quantized, needing to be multiplied by the power of two value. Thus, as
the layer to be processed is the first, the convolution together with the quantization process
follows Equation 3.1.

Ofmap|[f][x][y] = (Bias[f] ShiftValue?) +

C-1W—-1H-1 3-1)
>3 S (ifmaplK][S, + /I[S, +j] = ShiftValue) « Weights[f][k][/][/] = ShiftValue))
k=0 i=0 j=0

where: f, x and y are the current output channel, the horizontal and the vertical position
respectively; C is the total number of input and filter channels, W and H corresponds to the
filter size; S is the stride, and O is the output. Ofmap is the output, Ifmap the input, and
Weights the filter tensors and Bias the bias vector; ShiftValue is the value used quantiza-
tion, which is a power of two.

The OFMAP from first layer convolution is quantized, meaning that the IFMAP for
the next layer is already quantized. From the second layer to the last convolutional layer, the
quantization follows Equation 3.2.

59

Ofmap|[f][x][y] = (Bias[f] ShiftValue?) +

C—1W-1H-1 (32)
>S5S (ftmap k]S, + il[S, + /] + Weights[f[K][/][j] + ShiftValue))
i j=0

k=0 i=0 j=

—_

Figure 3.3 summarizes the quantization process. First, the values generated in
TensorFlow (IFMAP, bias, and weights) are extracted to apply the quantization. Bias and
weights are multiplied by the power of two value, while IFMAP is multiplied only if the convo-
lution operation is in the first layer, as shown in Equation 3.1.

At the end of the convolution, each OFMAP value has a magnitude of ShiftValue?.
A division by the power of two shift value is applied to change the magnitude for ShiftValue,
avoiding overflow and a new software intervention, as mentioned before. Thus, the other
IFMAPs from CNN layers do not need to be multiplied by the shift value, as shown in Equa-
tion 3.2. The convolution process finishes executing the fully-connected layer in software.

Multiply Bias for
ShiftValue”2

Multiply Weights for
ShiftValue

Yes I Muttiply lfmap for Shiftvalue

No

([Read Ofmap values from
previusly layer

Perform convolution |47

Divide Ofmap by ShiftValue

Performed
all layers?

[End operation

Figure 3.3: Flow diagram of proposed quantization.

60

3.3 PPA Extraction

The PPA extraction requires the CNN accelerator RTL description once the PPA
results are extracted after the physical synthesis. After generating the RTL description,
Cadence Genus and Innovus tools are used to execute the logical and physical synthesis.
The accelerator area includes gates and wires, and not only cell counting. The simulation
of the post-layout netlist generates the accelerator performance (operating frequency) and
the switching activity (value change dump file — VCD). The VCD file provides the inputs for
dynamic power estimation.

The post-layout simulation generates the switching activity for the power and energy
estimation. We adopted two methods to generate VCD files:

1. Method 1: Six VCD files were created from a post-layout simulation. Each VCD rep-
resents a simulation scenario that generates one pixel of a convolution output feature
map. Scenarios include a real convolution operation, two scenarios with random val-
ues, and three scenarios with constant input values (x*“AAAA", x“56555", x“FFFF"). The
simulation of these scenarios generates minimal, average, and maximum power dissi-
pation values for a convolution operation.

2. Method 2: VCD file generated using the CIFAR10 dataset as input for the post-layout
simulation. The CIFAR10 dataset contains RGB images, which ensure fewer zero
values than other datasets, like the MNIST, increasing the switching activity of the
accelerators.

Method 1 was a start point to extract power values from VCD files and uses syn-
thetic values to generate power values. With the advance of the Thesis, Method 1 evolved to
Method 2, which uses real CNN application values to generate VCD files, ensuring accurate
power values, once are based on real values.

The PPA metrics are exported to the system simulator in a header format (tech.h
in Figure 3.1). Section 6.1 details the physical synthesis flow.

3.4 URSA System Simulator

URSA [Domingues, 2020] is a C++ API for system-level modeling and simulation.
It provides a set of language-related assets that can be used to create system-level, cycle-
accurate hardware simulators, like SystemC. The URSA hardware components are modeled
as finite state machines (FSM), and its underlying simulation engine is based on discrete-
event simulation. A clock cycle in URSA corresponds to the activation of the transition func-
tion of the FSMs of the simulated system. This work uses the URSA to:

61

1. Model and simulate the CNN;
2. Model and simulate the accelerator;
3. Validate the CNN accuracy;

4. Generate PPA evaluation of the CNN.

Figure 3.4 shows how a CNN is modeled in URSA. One layer of a CNN is sim-
ulated in this example, composed of 16 filters with dimension 3x3, strides with dimension
2x2, and the IFMAP with dimension 28x28x1, same parameters of the first convolution
layer shown in Figure 3.2. The TBInit() function is responsible for performing the mem-
ory read, feeding the accelerator, and executing it. When the accelerator is done (signalized
by _array->GetEOP() == 1), the output value is stored in the TBStore() function, which is
also responsible for controlling the end of the simulation.

Appendix A details the TConv2dArray implementation in URSA. Note that the de-
signer needs to implement a low-level hardware behavior, requiring a second modeling ef-
fort. First, the CNN is modeled in TensorFlow for training, and next in URSA for PPA evalua-
tion.
void Testbench: :TBInit(){

if (_array->GetEOP() == 0 && _wait_eop == 0 && _end_of_layerl == 0) {

TConv2dArray(Layerl_Weights, Input,16,3,3,2,2,28,28,1);

}
}

void Testbench: :TBStore(){
if (_array->GetEOP() == 1) {
StoreOfmap(Layer2_Input,Layerl_Bias,&_end_of_layerl,1,16);
}

Figure 3.4: URSA Simulator Code Example. Source: [Juracy et al., 2021a]

The CNN application is simulated in URSA using the header files generated in
Section 3.1 (tensorflow.h), the technology reports generated in Section 3.3 (tech.h), and
the accelerator array (accelerator.cpp in Figure 3.1). Also, the simulator reports the CNN
energy and performance estimation when the simulation finishes, according to the number
of executed convolutions. Thus, the simulator performs analyses regarding the PPA val-
ues extracted from the physical synthesis, and the captured application information at the
simulation, resulting in a fast estimation.

62

3.5 Results

This Section shows results for PPA extraction (Section 3.5.1), energy estimation
(Section 3.5.2), and a comparison between netlist simulation and URSA regarding simulation
time (Section 3.5.3).

3.5.1 PPA Results

The hardware accelerator used to generate the results is the NVDLA [NVIDIA,
2022a]. As mentioned on Chapter 2, NVDLA is an open-source framework from NVIDIA
to implement machine learning applications, providing RTL codes. The NVDLA modules
are used for building the accelerator RTL description by configuring multipliers, adders, and
RelLU activation function units. Figure 3.5 illustrates an instance of the accelerator array.
The accelerator array parameters are a function of the CNN configuration generated in Ten-
sorFlow, considering the filter dimension (in this case, a 3x3 convolution).

20
w—{ SHIFT — ReLU ——» Ofmap

Figure 3.5: Hardware accelerator architecture based on the NVDLA modules. Source: [Ju-
racy et al., 2021a].

The accelerator, Figure 3.5, is an array of 3x3 multipliers (MULT), an accumulator,
and a ReLU module (ReLU). The SHIFT is a module used to perform the quantization, in
such a way to normalize the convolution result to 8 bits (as described in Section 3.2). The

63

accelerator inputs are shifted horizontally through the array, while the outputs of the multi-
pliers are shifted vertically until the accumulator. The accumulator output passes through
the SHIFT and sets the ReLU input, which produces a zero value if the input value is nega-
tive, else by-pass the value to the output. The system simulator models the accelerator in a
high-level abstraction description, using the same architecture.

Results use CNNs generated by TensorFlow to simulate the hardware. Three net-
works were generated using convolution operations, changing the network depth by 2, 3,
and 4 layers, with 4, 12, and 38 filters respectively, to make possible observe the effects in
area, accuracy, and energy with the increase of the convolution layers. All three CNNs were
trained based on the MNIST dataset using 3x3 filters with strides between 1x1 and 2x2,
RelLU as activation function, and a fully-connected layer with softmax activation function.
The training step was performed in TensorFlow for 5 epochs. The fully-connected layer is
not accelerated in hardware and is executed in software in the system simulator. The VCD
file extraction uses Method 1 proposed on Section 3.3.

Table 3.1 presents results for 28nm and 65nm technology nodes. The accuracy
was extracted using 100 inputs from MNIST dataset. The energy is estimated using Method
1 presented in Section 3.3. Results show that the quantization causes a small penalty in the
hardware accelerator’s accuracy compared to the TensorFlow results. Also, the Table shows
that accuracy increases together with the CNN depth, which is a expected result. On the
other side, the execution time and energy increase.

Table 3.1: PPA results for NVDLA-based accelerator running a MNIST application. Source:
[Juracy et al., 2021a].

Tech Freq. Area #Conv. #Conv. Accu. (%) Exec. Enegy (mJ)
" GHz Mua Layers Oper. TensorFlow ORCA Time(ms) Min. Avg. Max.

2 62,800 0.95 0.90 0.5 11 14 17

28nm 1.6 35,003 3 174,000 0.95 0.92 1.4 32 38 47
4 375,600 0.96 0.93 3.1 69 84 102

2 62,800 0.95 0.90 0.8 24 31 39
65nm 1.0 97,890 3 174,000 0.95 0.92 24 68 87 109
4 375,600 0.96 0.93 5.2 147 189 236

Figure 3.6 plots energy values on the x-axis and the CNN accuracy on the y-axis.
In this experiment, it is possible to note that it is necessary to spend approximately 40%
more energy in the 28nm technology node to increase 0.02% the accuracy. This increase is
more pronounced in the 65nm technology node, reaching approximately 60%. This result is
correlated with the cell libraries and technology nodes. We suggest extending this analysis
to other technology nodes, like 7nm and 10nm, and cell libraries. The result presented in
Figure 3.6 shows an advantage of the newer technology nodes: a smaller energy overhead
to increase the accuracy.

64

0,935
0,93
0,925
0,92
0,915
0,91

Accuracy (%)

0,905
0,9

0,895
0 50 100 150 200

Avg. Energy (m)J)

—@— 65nm 28nm

Figure 3.6: Accuracy and Average Energy Trade-off [Juracy et al., 2021a].

3.5.2 Energy Estimation Comparison Results

This Section brings a comparison between the energy estimation based on the
netlist simulation, and energy estimation using URSA. The physical synthesis setup in this
Section is the same from Section 3.5.3, also using a 3x3 accelerator and 28nm and 65nm
technologies. This experiment adopts the second estimation method presented in Sec-
tion 3.3 due to its accuracy, using one layer from a new CNN that is based in CIFAR10
dataset, and it is used both in simulation and VCD extraction. The netlist simulation input
is a 32x32x3 feature map, 16 3x3 filters, stride 2, which generates a 15x15x16 output. The
IFMAP, bias and weights are extracted as the same way that tensorflow.h in Figure 3.1, but
converted to a VHDL package format to be applied in the hardware simulation. The equiva-
lent netlist simulation setup is also used in URSA simulator. Table 3.2 presents the obtained
energy for both netlist and URSA.

Table 3.2: Comparison of Estimated Energy of Netlist Simulation and URSA simulator.

Energy (uJ)
Technology Netiist T URSA | [Error (%)]
65nm | 603.49 | 603.73 0.04
o8nm | 264.45 | 264.74 0.10

The energy values related to the netlist simulation were obtained from the power
estimated by industry-standard EDA (Cadence Voltus) multiplied by the simulation time, con-
sidering the simulation with 16 filters. The energy values related to the URSA simulation
consider the pre-characterized power obtained from the previous physical synthesis and the
number of clock cycles to execute a convolution. The energy estimation using URSA intro-
duced an average error compared to the netlist simulation equal to 0.07% (average value).

65

This energy estimation error is smaller than, e.g., results presented by Accelergy work [Wu
et al., 2019], which is 5%.

However, as Accelergy work, this result are related to one scenario, and other
accelerator configuration can result in different estimatives. Also, the obtained energy value
does not consider the access memory, which has in important impact in the total energy.

3.5.3 Simulation Time Comparison

This Section compares the time spent in a netlist simulator, and the time spent by
URSA. Table 3.3 presents the simulation time for both netlist and URSA.

Table 3.3: Comparison of Netlist and URSA simulator.

Simulation Time (sec)
Netlist | URSA | Speedup
65nm | 119.23 1.63 73.14
28nm | 128.19 1.67 78.64

Technology

The simulation time using URSA is 75 (average value) times faster than the netlist
simulation. Such results justify adopting the system simulator to execute a fast design space
exploration using physical synthesis data. It is worth mentioning that this experiment simu-
lated a small input feature map with a small number of filters. With the increase of the input
feature map size and the number of filters, the speed up using URSA compared to the netlist
simulation is expected to increase.

The adoption of the URSA system simulator enables faster simulations with an
accurate energy estimation, showing that accurate analyses need to regard the entire con-
volution accelerator, and not only fundamental components, as adders and multipliers.

3.6 Final Remarks

Works like [Wu et al., 2019] assume that every design evaluation involves a high-
level simulation at the architecture level, making the high-level modeling not considered an
extra overhead. Thus, to evaluate the hardware accelerators for a given CNN model, we
keep TensorFlow framework as a high-level frontend and the RTL description to generate
the PPA metrics. The system simulator, URSA, is recommended to simulate a complete
computational system.

Thus, lessons learned from a system-level simulator in the context of this Thesis
include the following pros and cons:

Pros on using a system simulator:

66

1. Cycle-accurate simulation;

2. Possibility to describe hardware modules in an abstract way (Appendix A);
3. Generate gold models for circuit verification;

4. Validate the CNN accuracy;

5. The object-oriented approach allows reusing the hardware description, making it easier
to build new hardware models;

6. Faster simulation compared to an RTL description;

7. URSA simulator enables entire system simulations once it contains microprocessors
and DMA modules.

Cons on using a system simulator:

1. The URSA abstract modeling is complex and may not reflect the actual behavior of the
hardware, even though it is cycle-accurate;

2. There is a redundancy of CNN network models: Python modeling for TensorFlow, C++
model for URSA, and VHDL/Verilog for the RTL models. Since the goal is to execute
DSE from the physical synthesis of the RTL model, the URSA modeling could become
unnecessary if we are not going to simulate the complete system (CNN network, pro-
cessor, DMA, and memories).

Another limitation of the flow presented in this Chapter is the use of NVDLA for
RTL modeling. Despite allowing an extensive parameterization of hardware parameters,
NVDLA modules have an important silicon area and limit the exploration of different dataflow
architectures.

This Chapter was a first step toward CNNs design space exploration. The Tensor-
Flow and the quantization method continue to be used in the present work. However, in the
following chapters (4 and 5), we present the design and evaluation of dedicated accelera-
tors to replace the NVDLA modules. Dedicated accelerators allow configuring array styles
(1D/2D) and dataflow architectures (WS, IS, and OS).

The flow for DSE presented in Figure 3.1 is simplified. Chapter 6 details differ-
ent DSE flows, using the PPA reports obtained by the dedicated accelerators directly by
TensorFlow.

67

4. MACHINE LEARNING HARDWARE ACCELERATOR DESIGN

This Chapter details the design of CNN hardware accelerators, at the RTL level,
with the goal to create a rich set of architectures enabling PPA evaluation considering differ-
ent design choices.

This Chapter contains two sections:

» Section 4.1: presents RTL implementations for array style comparison [Juracy et al.,
2021b]. The array style comparison between 1D and systolic 2D array enables to
assess trade-offs such as parallelism degree and performance;

» Section 4.2: presents the RTL design for WS, IS, and OS dataflows. It is worth men-
tioning that the external interface of the accelerators is the same, connecting them to
external memories. This feature enables the evaluation of the memory accesses on
the accelerator energy.

Chapter 5 evaluates these accelerators, using the same inputs, technology, and
target frequency.

41 Array Style RTL Implementations

Array style is the PEs organization regarding interconnection in an accelerator
[Moolchandani et al., 2021]. In the 1D architecture, PEs are connected sequentially, where
each PE has a maximum of two neighbors, with data transferred in a pipeline fashion. A
systolic 2D is similar but can have more than two neighbors, arranged as a matrix.

This section presents the design of two accelerator architectures. The first one
is a systolic 2D accelerator with two relevant features: memory accesses reduction with
high sustained throughput. The second one is a 1D array accelerator to reduce area and
power dissipation at the cost of reduced performance. Both accelerators adopt WS dataflow,
described in VHDL RTL, validated using the CIFAR10 dataset.

411 Systolic 2D Accelerator

Figure 4.1 illustrates the systolic 2D accelerator architecture, with its external inter-
faces and the input memory connection, which stores the bias value, weights, and IFMAP.
This memory is assumed pre-loaded before the convolution process, delivering 1 byte per
clock cycle. The arithmetic core contains a fixed 3x3 matrix with 3 multipliers, 6 MACs,
3 adders, and 12 registers. The accelerator presents a fetch FSM approach for the feature

68

reading (FB1/FB2), making it possible to read the memory values and execute the arithmetic
process in parallel.

External
Memory

address

data out

start conv, weig

ht_en, bias_en

|

Bias

address generation
Weight

address generation
Feature

address generation

Control FSM

&

currer
state

buffer address

8
v V

Feature

6 8-bit
values

Buffer1 J’
Feature

Buffer2

9 8-bit
values

—L>| Weight Buffer
9 8-bit weight values arithmetic core
I muLT | ReG |2 131 mac | Rea |2 13] mac |Rea [2] REG
> > >
I muLT | ReG |21 73] mac | reG [21 13 mac [Rea |2
H—> HEY)
A 4

PImuit|rea [2] 3 mac |Rea |23l mac |ReG |2, |REG Bias
—> —> — Reg

9 8-bit feature values “

REG

3 8-bit feature values current Valid
Control
1
v

SHIFT

RelLU
20

valid

v

pixel

Figure 4.1: Systolic 2D Array Accelerator Architecture. Source: [Juracy et al., 2021Db]

memory reading:

The initialization process occurs by loading the weight values (weight_en) and the
bias value (bias_en) in the weight_buffer and bias_reg buffers. Next, the activation of
the start_conv signal starts the convolution process. The convolution execution follows a
loop controlled by the “Control FSM”, until completing the IFMAP reading from the external
memory.

This architecture assumes 3x3 weight filters and stride equal to 2. For each convo-
lution, it would be necessary 9 memory accesses. Due to the stride value, it is possible to
reuse one column of the 3x3 windows, executing 6 memory readings instead of 9, resulting
in a 33% memory reading reduction. The proposed accelerator requires seven clock cycles
for data reading and buffering, with the convolution computation executed in parallel to the

» cycle 0: transfer the 6 values read from memory from FB1 to FB2, reuse 3 values
from FB2, and update FB1 addresses. Given the combinational implementations of the
arithmetic blocks (multipliers and adders) in the “arithmetic core”, these start computing
new values at the end of this cycle.

* cycles 1 to 6: read the IFMAP values from the input memory to FB1.

* cycle 5: at the end of the fifth cycle, the “Control FSM” activates signal en for all arith-
metic core registers, generating a new output value. This value goes through two
combinational blocks, SHIFT and ReLU.

69

* cycle 6: the “valid control” block activates the valid signal according to the convolution
being executed. This block controls the bubbles at the end of the generation of the
OFMARP line.

After convolution, the accelerator executes the activation function. We adopted
RelLU, but other nonlinear functions can be supported, like LeakyReLU and PReLU [Keras,
2022]. The memory of the next convolution layer receives the pixel output.

Systolic 2D Accelerator Data Flow

The data movement through the MACs has a wave-front approach to compute up
to 5 convolutions in parallel. Figure 4.2 shows the memory addresses related to the IFMAP
data at the top, considering an IFMAP with 9 columns and a stride equal to 2. Thus, there
are 4 convolutions per line, marked as conv(a) to conv(d). The next convolutions correspond
to conv(e) to conv(h). The weight values reading occurs before the convolution starting,
characterizing this approach as a weight stationary.

MEMORY ADDRESSES conv(a) conv(b) conv(c) conv(d)
0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
N# colums: 9 18 19 20 21 22 23 24 25 26
Stride: 2 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44

conv(e) conv(f) conv(g) conv(h)

ACCELERATOR MEMORY ACCESSES - note that the 1st column data is transferred to the 3rd column, reducing the memory accesses (red addresses)

0 2 1 4 5] 2 Ala 6 5 4 Alb 8 7 6 Alc
9 11 10 13 12 11 |A2a 15 14 13 |A2b
18 20 19 22 21 20 |A3a
start conv(a) start conv(b)/netxt conv(a) diagonal start conv(c)/netxt conv(a,b) diagonals start conv(d)/netxt conv(a, b, c) diagonals end of cov(a) --> A3a
18 9 8 Ald 20 9 18 22 21 20 |Ale 24 23 22 |Alf 26 25 24 |Alg
17 16 15 [A2c 27 18 17 |A2d 29 28 27 bubble 31 30 29 |A2e 33 32 31 |A2f
24 23 22 |A3b 26 25 24 |A3c 36 27 26 |A3d 38 37 36 bubble 40 39 38 |A3e

end of cov(b) --> A3b / start new line end of cov(c) --> A3c end of cov(d) --> A3d invalid data, due to the line change end of cov(e) --> A3e

Figure 4.2: Convolution 2D - memory accesses and processing flow. Source: [Juracy et al.,
2021b]

The bottom part of the figure has 10 steps. Each step corresponds to the memory
reading, and in parallel, the arithmetic operations execution. We use steps 1 to 5 to illustrate
a single convolution. At the end of the third step, the computation of the first line (addresses
0/1/2) is stored in a register (A1a). At the end of the fourth step, the result of the second line
(addresses 9/10/11) is added to A1a, stored in a register (A2a). At the end of the fifth step,
the result of the third line (addresses 18/19/20) is added to A2a, stored in a register (A3a).
The value of this register corresponds to the output of the first convolution.

All steps make 6 memory accesses. The first four steps read values that are not
used, corresponding to the filling of the matrix. Take, for example, step 5. In this step,
6 values are read from memory, corresponding to the addresses of the first 2 columns

70

(8/7/15/14/22/21). The third column is filled with data from the first column (once stride
is equal to 2, allowing to perform the reuse scheme), thus reducing memory access (red
numbers). Once the matrix is filled, 5 convolutions are processed simultaneously, one on
each matrix diagonal.

Note that there is a bubble step between lines (at step 9). This is due to the load of
the value in the last row column. The reading process ends in the last column that generates
a valid convolution.

41.2 1D Accelerator

The second implementation, the 1D array, has a straightforward architecture to
reduce area and consumption. Figure 4.3 illustrates the buffers and the arithmetic core of
the 1D array. This implementation has three PEs, each with a MAC and a register. The
initialization process is the same as the 2D architecture, with the weights and bias load. The
generation of a valid output comprises a loop repeated three times, requiring 6 clock cycles
at each interaction. The reading of three IFMAP values occurs in the first three clock cycles.
In the subsequent three clock cycles, MACs compute new values. At the end of the 6 cycles,
registers store values generated by each MAC (signal en). At the end of 3 iterations, the
MAC registers are reset (signal res), and the resulting addition is stored in SUM REG by
activating the load signal. The throughput is constant without generating bubbles at the end
of each line. Note that the systolic 2D requires 7 clock cycles per convolution, while the 1D
array 18 clock cycles.

Weight Buffer (9 8-bit values)

~—

3 8-bit weight values
' res, en -
% [31 MAC | REG |2 Bias
Re
FB i i
20
Feature q res, en res, load
Buffert |} © y MAC | REG |2 o + » | SUM
gt REG
3 8-bit |_’
values Tes on v
g MAC | REG |2 SHIFT
RelLU
pixel

Figure 4.3: 1D Array Accelerator Architecture (buffers and arithmetic core). Source: [Juracy
et al., 2021b]

71

4.2 Dataflow Implementations

The dataflow type refers to how the data to be processed is mapped in a given
accelerator array. The mapping determines how to load and generate the data into the array.
The dataflow is characterized by latency, throughput, and data reuse parameters.

The previous section described two accelerators focusing on the array style im-
plementation. However, these accelerators abstracted the memory interfaces. This section
describes the implementation of three 2D dataflows (WS, IS, and OS), considering a unified
interface with input and output memories. External memories play an important role in the
total accelerator energy, being mandatory to evaluate this cost.

Figure 4.4 details the 3 modules required to build the convolutional accelerators:
« INPUT memory, stores the IFMAP, filter weights, and bias values. It is a read only
memory;
« convolutional core, executes the convolution;

+ OFMAP memory stores the partial and complete convolution values.

clk rst start_conv
ifmap_add | CONVOLUTION ofmap_add
. id pixel_out
ifmap_vali
ot P INPUT pixel_in | OUTPUT
OUTPUT :
(BIAS\WEIGHT [ifmap_value || INPUT N/LEI\CAEOSF;Y MAC ([ACTIVATION (| ~J\ oo [|-ofmap_valid] memory
,FEATURE) BUFFER CONTROL ARRAY FUNCTION LOGIC ofmap we
ifmap_ce LOGIC
ofmap_ce
end_conv

Figure 4.4: Generic architecture and the modules required to build the convolutional accel-
erators.

The convolutional core contains:

* input buffer: reduces the number of input memory readings. According to the accelera-
tor type, this buffer may store, e.g., an input channel, a set of rows of the input channel,
or a set of weights;

* input memory access control logic: control the input memory access. It is implemented
using an FSM based on the dataflow type.

* MAC array: a matrix with multipliers, adders, and accumulators responsible for execut-
ing the convolution;

72

« activation function: a non-linear function applied to the OFMAP results. Examples
are sigmoid, RelLU, leaky RelLU [Keras, 2022]. This works adopts the ReLU function
(max (0, x)) due to its simpler hardware implementation;

» output control logic: control the OFMAP memory access. It can be implemented with
buffers to reduce memory access.

The following signals control the memory access:

* ifmap_add and ofmap_add: IFMAP and OFMAP memory address;

+ ifmap_valid and ofmap_valid: these signals are related to the memory latency. The
signal indicates when a data from memory is ready to be consumed;

+ ifmap_ce and ofmap_ce: memories chip enable, used to control the memory access;

» ifmap_value: data that come from IFMAP memory. ifmap_valid indicates when this
data is ready to be consumed;

* pixel_in: data that come from OFMAP memory. ofmap_valid indicates when this
data is ready to be consumed;

* pixel_out: data that is stored in the OFMAP memory. It is used to store partial sum
values generated in the convolution operation;

» start_conv: input signal used to start the convolution operation;

 end_conv: output signal that indicates the end of the entire convolution operation.

The unified memory interface makes it possible to implement different dataflows
with distinct protocols, allowing a fair comparison between the accelerators. This Thesis
covers the WS, IS, and OS dataflow, once they are the most common approaches in state-
of-the-art, as shown in Chapter 2.

All accelerators adopt a 3x3 MAC array, and the convolution stride equals 2. De-
spite being a design limitation, state-of-the-art CNNs adopt these values, such as VGG16
[Simonyan and Zisserman, 2014], ensuring that the proposed accelerators reflect real CNNs.

421 Weight Stationary (WS) Dataflow

Algorithm 1 presents the pseudo-code describing the WS hardware behavior. The
core of the algorithm comprises lines 3 to 9. Lines 3-4 fetch a filter set w(f, ¢) from memory,
storing it in the input buffer. The loop between lines 5-9 reads windows from the IFMAP,
executes the convolution, and produces a partial result. To obtain a convolution value in

73

the OFMAP memory (output memory), it is necessary F — 1 reads (for partial convolution
values), and F writes (line 8). This procedure implies a large number of memory accesses,
increasing the total energy consumption.

Algorithm 1: WS pseudo-code.
Input: C input channels, F output channels
Output: O
1 foreach f in F do
foreach c in C do
Read weight filter set w(f,c) from input memory
Store filter set in the input buffer // weight stationary
foreach /(i)(j) in IFMAP(c) do
Read a window /(f)(j) from IFMAP
p « convolution(/(i)(j), w(f, c))
O[fl[x]ly] < O[flIX]ly] + p
end
10 end
11 end

© 0o N o g s~ WD

Figure 4.5 shows the hardware architecture. The dashed blue square indicates
where the stationary values are stored. This accelerator version also uses the same double-
buffer scheme of the 2D accelerator (Section 4.1) to allow parallelizing of the convolution
process. Also, the wave-front approach presented in Section 4.1 is the same.

start conv

1
v
H H 1 2
Control FSM _L,' Weight Buffer | i | Output Address Generation |:“;;
en stationary values 9 8-bit weight values arithmetic core (MAC array)
| /]
ifmap_add - - -
< address generation MULT| ReG [2_I73 mac | Rea [2_13] mac [RreG |2
1 > ofmap_add
—__[Feature - i
address generation o, ap_ce
- | . > P P ofmap_we
Input | ifmap_value! MULT | REG |2 MAC | REG |2 MAC | REG |2 201t Output
Memory W4 i bias value ® Memory
i A 4
Tmap_ce MuLT| REG |2 3 mac | ReG [2l 3] mAc |REG |2 Bigs
Feature > —> —>| 2
Buffer1 J’
] Feature
ifmap_valid 6 8-bit Buffer2 8
— values 9 8-bit feature values 41
9 8-bit
values SHIFT
—>
Output ¥
3 8-bit feature values End of Memory . i

Convolution Access
j Control Control 9 ”
current
rant pixel_out
] RelLU >

Y—I: pixel_in

ofmap_valid

v
end_conv

Figure 4.5: WS 2D accelerator and memory interfaces.

To control each dataflow, a specific FSM is designed. Figure 4.6 shows the WS
Control FSM. The FSM works as follows:

1. WAIT START: the FSM waits the start_conv signal to rise;

74

2. READ BIAS: the accelerator reads a value from the IFMAP memory, and wait for the
ifmap_valid signal;

3. READ WEIGHT: after reading the bias value, the accelerator starts to read the weight
values, and wait for the valid signal to each value (9 in this case). This state corre-
sponds to the stationary values (line 3 and 4 in Algorithm 1);

4. START MAC: allow the MACs to start convolution of a given channel;

5. WAIT CONV: wait for the execution of the convolutions in a given channel. In WS,
N_CONVS is related to the partial values of an OFMAP, which are processed according
to the input channel size (loop at lines 5-9 in Algorithm 1). After executing N_CONVS,
a new bias value is read, which means a filter change in the convolution operation.
When the accelerator reads all filters, the convolution ends and returns to the WAIT

START state.
start_conv =="'0'
end_conv =="1"
start_conv =="1'
ifmap_valid =="1"
ifmap_valid =="1"
cont_conv == N_CONVS
cont_weight_valid < 9
read_bias =="0' cont_conv < N_CONVS
& cont_weight_valid == 9

read_weights =="'0'

start_mac =="'1'

Figure 4.6: WS accelerator Control FSM.

The Control FSM remains in the WAIT CONV state during the computation of a
given channel. The signal start_mac is the trigger to a second FSM, “fetch FSM”, responsi-
ble for computing the convolutions and fetching the IFMAP values.

The Fetch FSM, detailed in Figure 4.7, executes the core of Algorithm 1, i.e., the
loop between lines 5-9. After the rise of the start_mac signal, the accelerator starts to
fetch IFMAP values from memory. States FECTH IFMAP and CONT VALID read IFMAP
values, compute the partial convolution value, storing it in the OFMAP memory or a buffer.
Next, the state UPDATE_ADD generates a new IFMAP address up to the end of the channel
computation.

75

At the end of a channel computation it is necessary to read a new bias value or a
new set of weights (signals read_bias and read_weights). In this case, the Fetch FSM re-
turns to the IDLE state, releasing the Control FSM. Figure 4.7 also shows the reuse scheme
based on the stride. The Fetch FSM reads 6 IFMAP values for each convolution operation
instead of 9, which is the IFMAP window used in the convolutions.

start_mac =="'0'

read_bias =="1' start_mac =="'1'

read_weights =="1 ifmap_valid == 1"

UPDATE
ADD

cont_ifmap_valid == cont_ifmap_valid < 6

Figure 4.7: WS accelerator Fetch FSM.

The writing in the OFMAP memory (line 8 in Algorithm 1) has two approaches.
The first one, detailed in Figure 4.5, uses the OFMAP memory to store partial values of a
convolution generated by the MACs (line 7 in Algorithm 1). For example, a CNN with an RGB
image input (3 input channels) needs to perform 2 reads (one for R channel values and one
for G channel values). Also, three writes are necessary (one for R channel values, one for
G channel values, and the last for the final convolution value). This operation is represented
by the Output Memory Access Control module in Figure 4.5.

The second approach, detailed in Figure 4.8, uses an output buffer, reducing the
OFMAP memory accesses. It is similar to the first approach, but the OFMAP memory is not
used to store the partial values. Instead, an internal buffer with the OFMAP size stores partial
values. For example, a convolution of a 32x32x3 RGB image with a 3x3 filter and stride 2
generates a 15x15 OFMAP. Thus, the output buffer also has 15x15 positions. Therefore, it
is possible to eliminate the OFMAP memory reads and write only the final convolution value.
However, this solution increases the accelerator area and energy.

4.2.2 Input Stationary (IS) Dataflow

Algorithm 2 presents the pseudo-code describing the IS hardware behavior. The
core of the algorithm comprises lines 3 to 14. Lines 4-5 fetch an IFMAP window /(i)(j) from
memory, storing it in the input buffer. The loop between lines 7-12 reads filter sets from the
input buffer, executes the convolution, and produces a partial result.

start conv

Input
Memory

76

ofmap_add

ofmap_ce

ofmap_we |

pixel_out

— Y] .
: ' 1 2
T iComroI FSM 5 > Weight Buffer | Output Address Generation tﬁ;‘]
Bias en “stationary values 9 bitweight values ‘ arithmetic core (MAC array)
| ST |address generation
ccccc
ifmap_add Weight G o G on
< address generation MULT| ReG [2_I3 mac | rea |2 18] mac |RreG |2y REG
T —
™\ Feature
address generation — — —
ifmap_value: muLT| Rea L2113 mac | rea 12| 18] mac |rea |2 20-bit
Lyl 1 p bias value
'i v
ftmap,._ce - - - o -
— muLT|ReG [2| 3 mac |ReG |23 mac [ReG |2, [Rea| | | Bias
Feature > —>| | g
Buffer1 J’
| Feature
ifmap_valid| 6 8-bit Buffer2 8
T values 9 8-bit feature values %
9 8-bit y
values REG |- SHIFT
—>
3 8-bit feature values 1,
End of Output
Convolution Buffer
,,,,,, . 7] ot -
state

end_conv

—

Output
Memory

Figure 4.8: Buffered WS 2D accelerator and memory interfaces. For this version, the output
buffer replacing the output memory control logic is what differentiates this architecture from
the WS.

Algorithm 2: IS pseudo-code.

Input: C input channels, F output channels
Output: O

1

2
3
4
5
6
7
8

10
1
12
13
14
15 end

foreach /(i)(j) in IFMAP(c) do

Read a window /(i)(j) from IFMAP
Store window /(i)(j) in the input buffer // input stationary
foreach f in F do

end

end

foreach cw in C do
foreach w in w(f,cw) do

// stored in the input buffer

p < convolution(/(/)(j), w(f, c))
O[f](x]ly] - O[f][X]ly] + p
end
end

Read weights and bias, storing in the input buffer // IS optimization
foreach c in C do

Figure 4.9 shows the IS hardware architecture. The dashed blue square indicates
where the stationary values are stored (Feature Buffer). Unlike WS dataflow hardware, the
data move through the array in a pipeline fashion. The IS dataflow has a different approach
for reducing the input memory access. Differently from a standard IS, the implemented IS
stores weights and bias values in the input buffer (similar to a cache memory) to reduce the
memory accesses while introducing a penalty in the area (line 1 of Algorithm 2). We adopted
this approach once the data required for weights and bias is smaller than an IFMAP channel.
For example, considering a 32x32x3 convolution layer with 16 3x3x3 filters, the input (3072
values) is larger than the number of weights and bias (448 values).

77

bias buffer address
weight bute sdcress ‘
~ | ; ; !
T | Control FSM +’|“ All Bias and Weights Buffer | Output Address Generation
| --{Bias 9 8-bit weight values arithmetic core (MAC array)
| S] address generation
D I e
ifmap_add Weight - o -
< address generation MuLT| ReG |23 mac | rea |21 mac |rea |2
¥ > ofmap_add
(&~ [Feature >
address generation ofmap_ce
- o o o ofmap_we
Input | ifmap_vatue MuLT| ReG |21 T3 mac | Rea |2/ T3] mac |ReG |2 & Output
Memory l N S . (™ Memory
ifmap_ce 4 1.1 Lyl .| L] .
MULT| REG |.2 MAC | REG MAC | REG
—>| —>
ifmap_valid &
— Feature 9 8-bit feature values
Buffer
N
3 8-bit feature values End of ’\?:rlnp(;l
Convolution Accessy
Control Control
Siationary values ~ curen t
state pixel_out]
W] pixel_in
ofmap_valid

v
end_conv

Figure 4.9: IS 2D Array accelerator and memory interfaces. IS version has no double buffer,
and has a register bank to store all bias and weights values internally in the accelerator.

Figure 4.10 shows the Control FSM for the IS protocol. The protocol works as

follow:

. WAIT START: the FSM waits the start_conv to rise;

READ BIAS: the accelerator reads the bias values from the input memory and waits
for the mem_valid signal. The bias values are stored in the internal buffer;

READ WEIGHT: the accelerator reads the weight values and waits for the mem_valid
signal. The weight values are also stored in the internal buffer;

READ IFMAP: after reading all bias and weights values, the accelerator starts to read
the IFMAP values, and wait for mem_valid signal (9 values in this case). This state
corresponds to the read of the stationary values (lines 4 and 5 in Algorithm 2).

START MAC: allow the MACs to start convolution for a given filter channel;

WAIT CONV: wait for the convolutions to finish. In IS case, the partial values are
related to the filter channel and the OFMAP channel line (loop at lines 8-11 in Algo-
rithm 2). After executing N_CONVS, a new IFMAP window is read (loop at lines 3—14 in
Algorithm 2). The convolution ends when the accelerator reads all IFMAPs and returns
to the FSM initial state.

The Control FSM remains in the WAIT CONV state during the computation of a

given filter channel. The signal start_mac is the trigger to a second FSM, “load FSM”,

78

start_conv =="0'

end_conv =="1"

start_conv =="'1'

cont_bias valid == ALL_BIAS

read_ifmap == "0’ mem_valid == "1

cont_bias_valid < ALL_BIAS .
mem_valid =="1"

start_mac =="'1' cont_weight_valid < ALL_WEIGHTS

cont_ifmap_valid == 9 cont_ifmap_valid < 9

mem_valid == "1 cont_weight_valid == ALL_WEIGHTS

cont_conv == N_CONVS

Figure 4.10: IS accelerator Control FSM.

responsible for computing convolution and loading the weight values from the internal buffer.
Unlike WS accelerators, the accelerator performs convolution in parallel with the read of the
weights from the input buffer, which works similarly to a cache memory.

The Load FSM, detailed in Figure 4.11, executes the core of the Algorithm 2, i.e.,
the loop between lines 6—13. After the rise of the star_conv signal, the accelerator starts
to read the weight values from the buffer. Note that in IS is not necessary to wait for
the mem_valid signal, which improves both performance and energy consumption. At the
end of the filter channel computation, it is necessary to read a new IFMAP window (signal
read_ifmap). In this case, the Load FSM returns to the IDLE state, releasing the Control
FSM. Figure 4.11 also shows that IS reads 9 weight values per convolution.

The IS also has two versions, with and without output buffer. The IS OFMAP ac-
cess (line 9 of Algorithm 2) is the same as WS. However, the size of the output buffer is
different. Once IS generates a line of the OFMAP channels per time, the output buffer di-
mension is based on the width of the OFMAP and in the number of filters (output channels).
For example, a convolution of a 32x32x3 RGB image with a 3x3 filters, stride 2, 16 output
channels, generates 16 15x15 OFMAPSs. In this IS case, the output buffer has 16x15 posi-
tions. Both output buffers have similar sizes for small OFMAPSs, such as 15x15x16 OFMAPs
(WS: 15 x 15 and IS: 15 x 16). For a larger OFMAP size, there is a clear advantage for the
IS output buffer (e.g., 128x128x16: WS: 128 x 128, IS: 128 x 16). Figure 4.12 illustrates the
buffered version of IS.

79

start_mac =="'0'

start_mac =="1"
cont_weight_value < 9
UPDATE

read_ifmap =="1

ADD

cont_weight_value == 9

Figure 4.11: IS accelerator Load FSM.

start conv

bias buffer address
‘weight buffer address ‘
]
v | v v v
r
T | Control FSM - All Bias and Weights Buffer | Output Address Generation
|| jBias X en 9 Bbitwelght values arithmetic core (MAC array)
| ST |address generation
ccccc
ifmap_add Weight - -]
< address generation *ImuLt | ReG |2 13 Mac | rea |21 mac |Rea 2| REG
. > > ofmap_add
N ofmap_ce
Input | ifmap_value ?ImuLT| ReG |21 T3 mac | Rea [21 T3] mac |ReG |2 SRS Output
Memory + . . (™ Memory
s
fmap_ce \ 4 - - -
& “muLt| rea |21 3| mac | Rea |2l 3| mac |ReG |2, |REG 20bit
v ' —p bias value
ifmap_valid 8 —
— Feature 9 8-bit feature values 7
Buffer
REG | = SHIFT
N
3 8-bit feature values 2, 20
End of Output
" Convolution Buffer .
stationary values current j’ Control - pixel_out
state
T.

end_conv

Figure 4.12: Buffered IS 2D Array accelerator and memory interfaces. For this version, the
output buffer replacing the output memory control logic is what differentiates this architecture
from the IS. Also, like IS, Buffered IS version has no double buffer, and has a register bank
to store all bias and weights values internally in the accelerator.

4.2.3 Output Stationary (OS) Dataflow

Algorithm 3 shows the pseudo-code describing the OS hardware behavior. The
core of the algorithm comprises lines 4 to 9. Lines 5 and 6 fetch a IFMAP window /(/)(j) and
a filter set w(f, ¢) from memory. Lines 7 and 8 perform the convolution and accumulate the
partial result in the output buffer internal_p. Line 11 stores a complete convolution value.

Figure 4.13 shows the hardware architecture. The dashed blue square indicates
where the stationary values are stored. Like IS dataflow hardware, the data move through

80

Algorithm 3: OS pseudo-code.

Input: C input channels, F output channels
Output: O
1 foreach f in F do
foreach c in C do
internal_p < 0
foreach /(i)(j) in IFMAP(c) do
Read a window /(i)(j) from IFMAP Input Memory
Read a set of filters w(f)(c) from Input Memory
p < convolution(/(i)(j), w(f, c))
internal_p « internal_p + p
end

© oo N o oA WD

end
1 O[f][x][y] + internal_p // output stationary
12 end

e
o

the array in a pipeline fashion. OS is the dataflow that performs more memory access once
there is no buffer to reuse weights or IFMAPs, and each convolution requires memory ac-
cess. The stationary values, in this case, are the partial sums generated by the convolution.

The OS accelerator also executes computation and memory accesses in parallel,
enabled by a double buffer scheme. Please refer to “feature buffer 1”-“feature buffer 2” and
“weight buffer 17-“weight buffer 2” in Figure 4.13.

start conv

B
— T ‘ +>| Weight Buffert | i
T Control FSM Y Output Address Generation f -z 7
| Weight Buffer2 | 7
Bias e 9 8-bit weight vall arithmetic core (MAC arra
S T =
ifmap_add Weight - = -]
< address generation |‘*‘ MuLT| Re |2 131 mac | rec 213 mac | Rec |2, REG
> > ofmap_add
\ Feature p g
address generation — — — Z,::Z*:Z »
Input | itmap._value MuLT | ReG |21 13 mac | Rea |21 T3] mac | ReG |2 —* output
Memory . ——» P 20 Memory
i \ 4
it - - - o :
e o MULT | ReG | 2] 3] mac | Rea |2 3] mac |Rea |2, |Reg| i | Bias
—> —>] —>! Reg
ifmap_valid 8
— Feature Feature 9 8-bit feature values %
Buffert [~®| Buffer2
REG |= SHIFT
stationary value
End of 20
Convolution Output 2
Control Reg
cccccc t 5| ReLU pixel_out
state
I L

end_conv

Figure 4.13: OS 2D Array Accelerator and memory interfaces.OS has a double-buffer
scheme similar to WS, but instead, it has one for IFMAPs, and one for weights.

Figure 4.14 shows the OS Control FSM. The protocol works as follow:

1. WAIT START: the FSM waits the start_conv to rise;

2. READ BIAS: the accelerator reads a bias value from the IFMAP memory and wait the
mem_valid signal;

81

3. START MAC.: allow the MACs to start convolution for a given IFMAP and weight chan-
nel;

4. WAIT CONV: wait for the convolutions to finish. In OS case, the partial values are
related to the IFMAP and filter channels (loop at lines 1-10). After executing N_CONVS
(equal to the number of output channels), a new bias value is fetch from memory, and
the filter changes. When the accelerator generate all OFMAP values, the convolution
ends and returns to the FSM initial state.

start_conv =="'0'

end_conv =="1'
start_conv =="1'

mem_valid =="1'

cont_conv == N_CONVS

read_bias ==

start_mac =="1'

Figure 4.14: OS accelerator Control FSM.

The Control FSM remains in the WAIT CONV state during the computation of a
given OFMAP value. The start_mac is a trigger to the Fetch FSM, detailed in Figure 4.15,
responsible for computing the convolutions and fetch the IFMAP and weight values (using a
double-buffer scheme similar to the WS).

The Fetch FSM executes the core of the Algorithm 3, i.e., the loop between lines 2—
10. After the rise of the start_conv signal, the accelerator starts to read the IFMAP values
from memory. After reading all necessary IFMAP values (9 in this case), the accelerator
starts to read the weight values from memory (reading more 9 values), totalizing 18 memory
reads. Note that, like WS dataflow, each memory fetch waits for the mem_valid signal to
allow a new memory read, which reduces the throughput.

At the end of the OFMAP computation, it is necessary to read a new bias value
(signal read_bias). In this case, the Load FSM returns to the IDLE state, releasing the
Control FSM. OS dataflow has only one approach, once it always requires an output buffer
to store the partial values of the convolution (stationary values).

82

start_mac =="'0'

start_mac =="1"
read_bias =="'1'

mem_valid =="1"

UPDATE
ADD

cont_ifmap_valid < 9 cont_ifmap_valid == 9

mem_valid =="1'

cont_weight_valid == 9

cont_weight_valid < 9

Figure 4.15: OS accelerator Fetch FSM.

424 Final Remarks

This Chapter described an original Thesis contribution, corresponding to the design
of convolution hardware accelerators for CNNs, at the RTL level. This set of accelerators
is a start point for an open-source CNN accelerators benchmark, enabling designers to
compare different implementations. An open-source benchmark is also a gap observed in
the literature.

The implementations explored both the array type (1D and 2D) and the different
dataflow architectures, which differ by the data that is reused. Emphasis was given to the
memory interface, including a mechanism that allows parameterizing their latency to eval-
uate the performance and the energy consumed by the accelerator, in a fair way (same
technology, same target frequency, unified memory interface).

Next Chapter evaluates each accelerator, performing a quantitative performance
evaluation among them.

83

5. MACHINE LEARNING HARDWARE ACCELERATOR RESULTS

This Chapter evaluates the designed convolution hardware accelerators presented
in the previous Chapter. This Chapter is organized as follows:

» Section 5.1: evaluates and compares the array styles — 1D and 2D;

» Section 5.2: evaluates and compares the dataflow types — WS, IS, and OS.

5.1 Array Style Results

This section evaluates the 1D and 2D array styles (Section 4.1). The DSE uses
results obtained after physical synthesis, using the Cadence Genus tool for logic synthesis
and the Cadence Innovus tool for physical synthesis. The power dissipation estimation uses
as input a VCD file generated after the post-synthesis netlist simulation and the Cadence
Voltus tool. The simulated netlist is a 32x32x3 feature map, with 16 3x3 filters, stride 2, gen-
erating a 15x15x16 output, which represents one layer of a CNN trained using the CIFAR10
dataset (same CNN used in Chapter 3).

Table 5.1 presents results varying the accelerator architecture (2D/1D) for a 28nm
technology node. The select frequency is the one that results in a slack time equal to or
near zero. Figure 5.1 presents the physical synthesis for both accelerators as a function of
the frequency (0.25-1.6 GHz).

Table 5.1: PPA results for accelerators after physical synthesis (28nm@1.6GHz). The leak-
age power for 1D is 0.02mW, while 2D has 0.04mW.

Accelerator | Area — um? | Cell Count | Total Power — mW
Array 1D 3,654.70 2,964 3.26
Systolic 2D 7,190.91 5,922 5.36
0 T A S T AR 9

b
3000 b

L L L L L L L
02 04 06 08 1 12 14 16 02 0.4 06 08 1 1.2 1.4 16

Frequency (GHz) Frequency (GHz)

(a) Area of 1D array and systolic 2D (b) Power dissipation of 1D array and systolic 2D

Figure 5.1: Area-power results for 28nm as function of the frequency.

84

As expected, the power increases with the frequency. Note that the area rises for
frequencies higher than 1GHz, due to the synthesis tool effort to meet the target frequency,
mainly for the 1D array architecture. Results presented in Table 5.1 and Figure 5.1 are con-
sistent with the accelerator architectures since the 2D architecture has nine MACs (in fact 6
MACs, 3 adders, 3 multipliers), and the 1D has three MACs in the arithmetic core.

DSE

The DSE uses Table 5.1 results, by multiplying the physical synthesis results by the
total number of MACs to be used. We integrate the physical synthesis data to the URSA
simulator to execute the DSE. The DSE considers five parameters:

« Accelerator architecture: 1D array and Systolic 2D.

+ Parallelism: as presented in Chapter 2, accelerators can present an amount of MACs
greater than 200 ([Chen et al., 2020] use 256 MACs). Our accelerators have 9/3 MACs
(2D/1D), making it possible to parallelize these accelerators to process several chan-
nels simultaneously. The DSE explores from 1 to 16 accelerators in parallel, ranging
from 9/3 to 144/48 MACs (2D/1D).

» Power, area: design parameters obtained from the physical synthesis for different fre-
quencies.

» Performance: execution time to execute one 32x32x3 convolution, with 3x3 filters,
stride 2x2, and 16 channels. Performance in represented in milliseconds to demon-
strate the difference in performance and the benefits of using accelerators in parallel
with high frequencies.

Charts presented in Figure 5.2 summarize the results for 40 evaluated scenarios
(two accelerators architectures, four parallel configurations, and five operating frequencies).
The charts present the PPA for each scenario. From the charts, it is possible to observe, for
example:

« 1D array is, as expected, indicated for smaller area and power when compared to
2D systolic at the same frequency and number of filters, as shown in the scenario
highlighted in red in both charts from Figure 5.2 (16 parallel accelerators@1.6GHz).

* systolic 2D is, as expected, indicated for higher performance when compared to 1D
array (also shown in the scenario highlighted in red). Observe that the adoption of
16 accelerators for 2D systolic is only justified at frequencies higher than 1GHz. For
smaller frequencies, eight accelerators deliver similar performance, with smaller area
and power.

85

o
120000 —E— — T 800
power m—
110000 = Qg area T 1 700
100000 |- B performance w—]
Q90000 [l - 600
E —
S 80000 | . 2]
s 450 E
70000 [l o .
< F 8
80000 |l 2 | 400 =
€
% 50000 | S
g 30 €
@ 4000 R Qs e g @
= s < o 2 o
o 2 un d 2 2
o 30000 @ B g oo g e R gl R 200
© I
20000 |- - R ag - E - B g o
. 100
10000 BHE HEE B FM 5B F™ B el B ™ B B B
0 0
250M500M 1G 1.25G 1.6G,250M 500M 1G 1.25G 1.6G,250M 500M 1G 1.25G 1.6G 250M 500M 1G 1.25G 1.6G,
I L} L} L} 1
1 4 8 16
(A) Frequency and Accelerators’ number - Array 1D - 28 nm
120000 T T T T T T T T T T T T T T T
power m—
L4101 T area .
100000 | performance mw—m
R 47575 J OSSOSO
g —
B BO000 | >
3 £
(0]
F(0) = i} } P i rr
< 8
T e B @ - 3 g
& o S
% 50000 |- 8o 8 B s
?: green rectangles: similar power/performance, different area values o g ©
o 40000 |- [l T8 . 8
3 3 of € °
© 30000 |- Q... L8l B R
o & s 3 S g
8
20000 |- QB 8 Bp 8 8 -8
o < k3 o - ~ &
8. 83 3 |85 ed g e8 &
10000 o M2 WEPEwe IS HE P ENIER TSP B3R al BN allel «
Sl 2ol 2ol & SHef 58 PER PEE e SR RER M
0

250M 500M 1G 1.25G 1.6G, 250M 500M 1G 1.25G 1.6G, 250M 500M 1G 1.25G 1.6G,
I)

, 250M 500M 1G 1.25G 1.6G,
)) 1

1 4 8 16
(B) Frequency and Accelerators’ number - Systolic 2D - 28 nm

Figure 5.2: DSE results obtained with URSA for 28nm for 1D array and systolic 2D (note
that power is presented in pW).

» consider the 2D architecture, Figure 5.2(b), for a 6.4mW power budget (green rect-
angles). The candidate configurations are 1 acc@1.6GHz, 4 acc@500MHz, and 8
acc@250MHz (acc stands for accelerator). The power and performance data are sim-
ilar for these scenarios, but the area is much smaller using 1 accelerator. This chart
allows the user to select the optimum accelerator configuration according to its con-
straints.

+ others points can be observed through these charts. For example, still considering
2D architecture (Figure 5.2(b)). It is possible to note that it is preferable to use 1
acc@1GHz than 4 acc@250MHz, once it presents similar power and performance,
but 4 times smaller area. Similar behavior occurs with 4acc@1GHz compared to 8
acc@500MHz.

» comparing 1D with 2D architectures for a 3.2mW power budget:

— 1D, 4 acc@500MHz: 9,276,:m?, and 97.2ms;

86

— 2D, 4 acc@250MHz: 19,58.:m?, and 83.32ms.

In this case, the 1D array is the choice since, despite 15% lower performance (97.2
versus 82.32ms), it presents 50% smaller area (9,276 versus 19,58.m?).

The average energy consumption for the 1D array is 313uJ up to 1.25GHz, increas-
ing to 380uJ@1.6GHz. On the other hand, the systolic 2D presents an average energy
consumption equal to 261ud, regardless the frequency. Thus, the systolic 2D presents a
better energy efficiency than the 1D array due to its performance. Such result reveals that
one cannot consider only the number of arithmetic cores for decision making since a set of
blocks are common to both architectures, as the register files.

Although we used the URSA simulator to perform DSE (Figure 5.2), we concluded
that it is possible to perform DSE from physical design results by using an analytical ap-
proach. This method to perform DSE analytically, from a set of physical synthesis data, is
the starting point for developing DSE flows, described in Chapter 6.

5.2 Dataflow Type Results

This section presents PPA results considering different dataflow types (Section 4.2).
DSE is executed after physical synthesis. Cadence Genus and Innovus tools were used
for logic and physical synthesis, with 28nm technology and a frequency of 500MHz. The
logic synthesis uses clock-gating, added automatically by the tool, to reduce the accelera-
tor energy consumption. The power dissipation is obtained with a VCD file generated with
a post-synthesis netlist simulation and Cadence Voltus tool. The netlist simulation input is
the first CNN layer with a 32x32x3 IFMAP (from CIFAR10 dataset - same from Chapter 3),
16 3x3 filters, stride 2, generating a 15x15x16 output. All inputs adopt 8-bit quantization
and outputs 20 bits (quantization detailed at Chapter 3). The total energy is computed by
multiplying the average power by the number of clock cycles required to execute a complete
convolution.

The energy memory values were extracted from Cacti-1O tool [Jouppi et al., 2014]:

* SRAM. For a 28nm 4KB SRAM, Cacti-lO reports 260fJ/bit for reading and 180fJ/bit
for writing. For comparison purposes, the literature reports energy values between
67fJ/bit [Fujiwara et al., 2013] and 20fJ/bit [Haine et al., 2017] for 28nm SRAM. The
SRAM consumption is larger than the one reported in the literature for two reasons:
(/) we considered a 500MHz frequency, while the literature considers 200MHz; (ii) the
literature considers low-energy SRAM.

87

+ DRAM. For a 16 kB DRAM, 12pJ/bit for reading and 11.7pJ/bit for writing. The literature
shows values of 20pJ/bit [Son et al., 2013] and 15pJ/bit [Li et al., 2019] for DRAM.
Thus, the DRAM values are close to the ones reported in the literature.

Figure 5.3 evaluates the energy consumption to obtain a 15x15x16 OFMAP, ac-
cording to the memory type and its access latency (x-axis). The memory latency is controlled
by the ifmap_valid (Section 4.2). Increasing the IFMAP and OFMAP does not change the
behavior observed in these graphs. Accelerators that do not adopt output buffers have a
smaller energy consumption than accelerators using output buffers when using SRAM. This
result is because SRAM and buffers use the same static memory implementation, resulting
in a similar consumption. Thus, buffering brings no advantage when using SRAM memories.
The observed result is inverse when using DRAMs as external memories, with buffers acting
as cache memories. The buffered IS accelerator presents a significant energy reduction (IS
buf) compared to the other implementations. The OS accelerator is expensive in terms of
energy because it constantly fetches data from the input memory, regardless of the memory
type.

(a) Total Energy (nJ) - SRAM (b) Total Energy (nJ) - DRAM
2000 25000

gggsgs

Energy (nJ)

.
o 10000

600 —*
400 //‘ 5000
200

0 0

0 2 4 6 8 10 0 2 4 6 8 10
SRAM access latency (in clock cycles) DRAM access latency (in clock cycles)
—-WS WS buf —e-IS IS buf —0S ——WS WS buf ——IS IS buf —+—0S

Figure 5.3: Convolutional accelerators energy varying the memory type (SRAM or DRAM),
and the access latency.

Figure 5.4 evaluates the accelerators performance. The IS accelerators present
a performance that is slightly affected by the memory latency because the IFMAP is read
once, that is, input stationary. Also, the bufferization of weights and bias reduces the mem-
ory access, decreasing the memory impact on performance (line 1 of Algorithm 2 on Sec-
tion 4.2.2). The WS performance is affected by the memory latency because the number of
IFMAP readings is higher than the IS architecture. The OS architecture has a small buffer in
the output, requiring frequent IFMAP and weight readings, resulting in a heavy performance
penalty due to the memory latency.

Table 5.2 show the obtained results for the accelerators, considering an SRAM with
access latency of 2 clock cycles. It is possible to note a reduction in area whem compared
to the NVDLA approach on Chapter 3. As the NVDLA is an approach without buffer, it is
possible the compare with non-buffered WS, and OS approches, which has an average area

88

Table 5.2: Hardware Metrics for SRAM Memory.

WS WS buf IS IS buf (01
Energy Memory (nj) 178.42 153.02 4419 18.79 | 410.54
Energy Core (nJ) 163.63 617.16 619.28 | 1,001.79 537.37
Area (um?) 6,319 | 26,779 | 46,543 68,077 6,596
Performance (cycles) 225,078 | 225,078 | 135,450 | 135,450 | 595,093
Memory Writes 10,800 3,600 | 10,800 3,600 3,600
Memory Reads 78,256 | 71,056 14,398 7,198 | 194,735
Internal Buffer Size (bits) 80 4,580 3,584 8,384 28
Performance
2500000
g
S 2000000
3
-2 1500000
£
Q
2 1000000
.§ 500000 ws+ws_buf
& - |
0
0 2 4 6 8 10

SRAM/DRAM access latency (in clock cycles)

——WS WS buf ——IS IS buf —=0S

Figure 5.4: Convolutional accelerators performance (execution time).

of 6,457.91um?. The NDVLA approach present an area of 35,003um?, which means an
reduction of 5.42 times.

Figure 5.5 details the results in a radar format. Required buffer size (internal
buffers), area, and performance (cycles) are normalized by the worst result among acceler-
ators. The energy (memory and core) is normalized by the worst total energy, as well as the
memory accesses (reads and writes). Figure 5.5 shows that:

 the convolutional core (energy core) consumes the large parcel of the total energy
consumption for WS and IS dataflows. However, OS present similar values for core
and memory energy.

* buffering at the output effectively reduces memory writings (from 10,800 to 3,600).
The normalization masks these results due to the higher number of readings (71,056).
Buffering brings a slight reduction in the memory energy consumption at the cost of
larger area and core consumption (WS versus WS_buf and IS versus IS_buf).

89

* IS is 1.66 times faster than WS (225,078 and 135,450 clock cycles for WS and IS,
respectively). However, this performance increase is obtained by buffering all input
values, which generates an increase in the accelerator area.

» OS is penalized by the memory readings, resulting in the worst performance and high-
est memory and core energy consumption. Despite these disadvantages its presents
a small area footprint, similar to the WS.

oS Energy Memory

Memory Req 5

Cycles

Cycles

Memory Writes Memory Writes Memory Writes

Figure 5.5: Performance for the convolutional accelerators, considering a 32x32x3 IFMAP,
15x15x16 OFMAP, stride=2, and a 2 clock cycle SRAM latency. The filled area highlight the
non-buffered approach. The values are normalized by the worst value of each radar axis.

To summarize, when using SRAM as external memory, WS is the accelerator with
the smallest area and energy consumption, while IS presents the best performance.

Table 5.3 show the obtained results for the accelerators, considering an DRAM with
access latency of 5 clock cycles. Area, memory writes, and internal buffer size are the same
as the accelerator using SRAM (Table 5.2). The memory reads has an small difference due
the difference in memory latency. These differences are detailed in Chapter 6.

Figure 5.6 presents results when using DRAM as external memory, with a latency of
5 clock cycles. OS is omitted once it present the worst characteristics regarding performance
(see Figure 5.4) and memory access (see Figure 5.5), and its characteristics get worse with
the use of DRAM. Figure 5.6 shows that:

« The DRAM (energy memory) consumes the large parcel of the total energy consump-
tion for the most accelerator. Buffered IS has similar values for memory and core
energy. lts occurs once buffered IS has a big amount of register, once it use buffers for
all inputs and the partial values;

« the IS architecture is 2.5 times faster (403,102 and 175,269 clock cycles for WS and
IS, respectively), with an energy consumption up to 3.65 times smaller (8,543.22 and
2,337.87nd for WS and IS, respectively) than WS. Note that the use of buffers in the

90

inputs helps to decrease the memory latency impact on performance, but increase the

area,;

« WS still the accelerator with the smallest area. The WS is 7.37 times smaller (6,319.27
and 46,543.33 for WS and IS, respectively) than IS. The buffered WS is 2.54 (26,779.32
and 68,077.57 for WS and IS, respectively) than buffered IS;

+ Buffering the IS accelerator reduces its total energy in 1.49 times, improves the perfor-
mance in 1.13 times, with an increase of 1.46 times in area.

Table 5.3: Hardware Metrics for DRAM Memory.

WS Energy Memory

T

Memory Writes

Energy Memory

<&

Memory Writes

WS WS buf IS IS buf 0S
Energy Memory (nj) 8,5643.22 | 7,172.17 | 2,337.87 966.81 | 19,076.91
Energy Core (nJ) 257.96 | 1,040.93 755.41 | 1,110.25 912.03
Area (um?) 6,319 26,779 46,543 68,077 6,596
Performance (cycles) 438,105 | 438,102 | 175,269 | 155,019 | 1,179,253
Memory Writes 10,800 3,600 10,800 3,600 3,600
Memory Reads 78,208 71,008 13,723 6,523 194,720
Internal Buffer Size (bits) 80 4,580 3,584 8,384 28
no buf —e— r;)%gg: —

buffer IS

Figure 5.6: Performance for the convolutional accelerators, considering a 32x32x3 IFMAP,
15x15x16 OFMARP, stride=2, and a 5 clock cycle DRAM latency. The filled area highlight the

non-buffered approach. The values are normalized by the worst value of each radar axis.

To summarize, when using DRAM as external memory, buffered IS is the acceler-
ator to use for low power applications, once the use of internal buffers helps to reduce the
memory access, reducing the energy consumption. It is possible to reduce energy and im-
prove performance of the IS dataflow by using an output buffer at a significant area overhead
cost. Small area applications are suitable for WS dataflow.

91

5.2.1 Final Remarks

The proposed evaluation method allows to compare fairly the proposed accelerator
architectures (regarding same technology and target frequency, for example). Thus, it is
possible to analyze which accelerator is suitable for a specific application. The obtained

results also validate the proposed physical synthesis flow and the analytical DSE method,
both described in Chapter 6.

92

6. DESIGN SPACE EXPLORATION FLOWS

Chapter 3 presented a method for DSE using a system simulator, URSA, adopting
the accelerator proposed by NVIDIA, called NVDLA. Despite the advantages of using URSA
to model a complete computational system, it presented the following drawbacks related to
model CNNs:

1. Accelerator modeling close to the actual hardware (cycle-accurate), which can gener-
ate a redundant implementation;

2. An RTL implementation still required for extract PPA information. URSA does not allow
synthesis. Thus, RTL implementation is still required to get hardware implementeation
results such as area;

3. Some hardware aspects may be omitted by the high-level modeling. For example,
synchronization states can be omitted.

These drawbacks led us to Chapters 4 and 5, where we present different hardware
architectures at the RTL level, evaluating their performance after logical and physical syn-
thesis steps. Thus, this Chapter presents the flows used to carry out DSE for convolutional
neural networks (CNNs). This Chapter is organized as follows:

» Section 6.1: DSE using a physical synthesis flow, called synthesis flow;

» Section 6.2: DSE using only MAC-related physical synthesis data. We compare results
obtained with this flow with those obtained with the synthesis flow, and because it is a
method used in related works;

» Section 6.3: DSE using an analytic approach derived from the synthesis flow. This
analytic flow is an original contribution of this Thesis, as it allows fast and accurate
DSE for CNNs.

 Section 6.4: presents results related to the three DSE methods, as well as a compari-
son with DSE presented in the literature.

As in Chapter 3, we assume TensorFlow framework as front-end. TensorFlow is
adopted because it allows abstract modeling of CNNs, and has the necessary infrastructure
for their training. Once CNNs are modeled and trained, the DSE flows are used to choose
the accelerator that meets the designer’s constraints.

93

6.1 DSE Physical synthesis Flow

The DSE physical synthesis flow perform both logical and physical synthesis steps,
and uses IFMAP and weights data from real CNNs to obtain PPA results. The method
includes the following steps:

(i) describe the CNN at the TensorFlow framework, exporting the weights and IFMAP val-
ues in VHDL packages format to be used in the RTL and gate-level simulations;

(ii) execute the logical and physical synthesis steps of the accelerator being evaluated;

(iii) obtain PPA values after post-layout simulation considering the switching activity derived
from the CNN values.

Figure 6.1 details the physical synthesis flow for PPA extraction. The first step is
to model the CNN application in the TensorFlow framework to generate the VHDL packages
(tensorflow.vhd and gold.vhd files), used in the RTL and gate-level simulations. The ten-
sorflow.vhd package contains the weights and IFMAP values, while the gold.vhd package
contains the expected outputs. This step also generates the file parameters.txt, responsible
for configuring the RTL description. This step is generic, supporting different CNNs, such as
MNIST or CIFAR10.

The second step is the RTL simulation to verify the accelerator description behav-
ior. This step uses the tensorflow.vhd and gold.vhd to perform the RTL simulation and
verify if the accelerator behavior is correct. It is necessary to check if the simulation output
matches the expected values during the development of a new accelerator. Once validated
the accelerator description, it is possible to bypass this second step.

The third and fourth steps correspond to the physical synthesis. The third step
is the logical synthesis, which has as inputs the technology files (LIB and LEF files) and
constraints (as clock frequency or power), and as outputs the gate-level description (netlist)
and a constraint file the be used in the next step. The fourth step is the physical synthesis,
corresponding to the placement and routing procedures. This step generates a new netlist,
with annotated wire capacitances (netlist.v) and a set of reports.

The fifth step is the annotated gate-level simulation, also using the tensorflow.vhd
and gold.vhd files. This step may fail due to the applied constraints, as clock frequency
and input/output delays. In this case, the designer must modify the constraints used in the
third and fourth steps to obtain a netlist that simulates correctly. The output of this step is
the dump.vcd file, with the switching activity induced by the CNN IFMAP and weight values.
The last step uses the VCD file to estimate the accelerator power dissipation.

The execution of this flow produces an accurate PPA estimation for a given ac-

celerator architecture with actual CNN data. However, it is necessary to execute this flow
for each new set of weights and inputs. The reason is that different data sets present dif-

94

ferent switching activities, changing the power dissipation. Also, the hardware may show
differences due to the number of channels in a given layer or the IFMAP and OFMAP sizes,
changing the number of bits in counters or the buffers depth. It is worth noting that the accel-
erators descriptions are configurable according to the CNN parameters, such as IFMAP and
filter sizes, not requiring any designer intervention when the CNN features change. Thus,
we have an accurate PPA but requiring a significant processing time, which can take sev-
eral hours, once the logical and physical synthesis steps can take together about 10 (for a
non-buffered architecture) and 25 (for a buffered architecture) minutes for a 3x3 accelerator.
This value can increase for larger accelerator arrays.

6.2 MAC-based DSE Flow

The DSE physical synthesis flow described in the previously Section allows to ob-
tain accurate results. However, it can take several hours to be executed. This Section
describes a widely used DSE flow based on an estimate of the required number of MACs.
Several works in the literature use the MAC-based method to estimate area and power [Tang
and Xie, 2018, Parashar et al., 2019, Heidorn et al., 2020, Zhao et al., 2020, Cao et al.,
2020], reducing the time spent in physical synthesis.

This DSE flow uses the PPA values (in fact, only power and area) related to MACs
and registers extracted from the physical synthesis flow. The power and area are estimated
from the number of MACs required by the accelerators.

The PPA estimation accuracy of this flow is expected to be worse than the physical
synthesis flow, as it does not consider the effect related to the control circuitry (FSMs),
buffers, and accesses to the memory. We use this flow as a baseline, because it is a method
adopted in the literature to estimate the PPA of CNNs.

We propose two approaches for this flow. The first uses only the MAC data, while
the second considers the MAC input and outputs registers. The second approach is ex-
pected to reduce the PPA estimation error compared to the MAC-only method. The Results
section presents data for both approaches.

6.3 Analytic DSE Flow

As mentioned before, on one hand, a physical synthesis flow is accurate but can
take several hours to be executed. On the other hand, MAC-based DSE can generate
innacurate results because it ignores relevant parts of the circuitry. The proposed analytic
DSE flow estimates the PPA of CNN layers in a analytic way, by using results obtained from
the physical synthesis of one layer of a CNN application. Thus, it is possible to reduce
the PPA estimation time, corresponding to a trade-off between the physical synthesis and

95

application.|
Python ppiication-py
1) +
TensorFlow
- - (-
v
accelerator.vhd
_/—\
testbench.vhd
\/\
I Mentor
Modelsim
constraints.sdc
Iy Cadence
Genus
tech files
Cadence
V) Inovus
J
V) Mentor
Modelsim
Cadence
Vi) Voltus

Figure 6.1: DSE physical synthesis flow for PPA extraction.

MAC-based flows. This flow is faster than the physical synthesis flow because the synthesis
is executed once for each accelerator, and more accurate than the MAC-based flow, once
consider all the convolution, not only MACs. The analytic DSE flow is an original contribution

of this Thesis.

96

Figure 6.2 shows the analytic DSE flow. The TensorFlow + Quantization step and
the Physical synthesis described in the Figure are the same of Figure 3.1. The Analytic
Flow is a step that parses the PPA logs generated by the physical synthesis. The analystic
flow uses the file accelerator.txt as input, containing the hardware parameters, like input
size. After read the inputs, the Analytic Flow step get the PPA values from physical synthesis,
parser the reports to obtain the values for DSE, and report the results. The analytic flow also
uses the Cacti-10 tool [Jouppi et al., 2014] to estimate the energy related to the memory
accesses.

: Physical Synthesis~ ~ ~ ~ ~ ~ ~ ~ ~ "~ " I Analytic Flow (analyticpy) = |

I 1 1 1 |
I 1 1 1 |
I - 'y o |
I Define application.py | ' | |Accelerator RTL accelarator.vhd | 1 1! Accelerator accelerator.txt | |
i | Convolutional ' Modellin 1ot Features !
i | Neural Network o 9 o |
I 1 1 1 1 |
v L v L v |
1 . 1 ' 1 1 |
| | Training Step L i| Syntesis L Repors |
1

I P! i I
I] ! i 1 1 l |
I 1 : 1 1 |
! Weight ! . ! Parser PPA mem.cf !
! Extraction ! PPA Extraction to Information ’ !

1 1 |
I 1 1 1 |
L 15— IH .
I 1 1 1 |
: o 1 <) ') : PPA Analytic !
! Quantization tensorflow.vhd [ppa logs . Aé\::yosr?s <4+— CactlO :
1 1 ~————— [|

Figure 6.2: DSE analytic flow for PPA extraction.

The accelerator.txt file contains the hardware parameters described below. Each
parameter corresponds to a variable in the analytic model, represented in italic:

(a) Clock period (ns);

(b) Word size (bits);

(c) 2D dataflow type: WS, buffered WS, IS, buffered IS, or OS;

(d) Memory type: SRAM or DRAM. The memory type defines its latency - MemLat;
(e) IFMAP size: single integer value (we assume square IFMAPs) - IFMAP_D;

(f) Number of input channels: integer value - InChannels;
(g) Number of output channels: integer value - OutChannels;
(h) Filter size: single integer value (we assume square filters) - Filter_D;
(i) Stride: integer value.
For example, a designer may estimate the first layer of a systolic 2D WS acceler-
ator, entering the following parameters: a) clock period=2ns; b) 16-bit word size; ¢) WS; d)

SRAM memory type; e) IFMAP size=32 (cifar10); f) 3 input channels (RGB); g) 16 filters; h)
fiter size=3 (3x3 filters); i) stride=2.

The analytic flow produces as outputs:

97

» Power: power values for the accelerator, output buffer, and the sum of both (total
power), mW;

» Performance: number of clock cycles required to execute the layer convolution;

» Area: area values for the accelerator, output buffer, and the sum of both (total area),

pum?;

« Input buffer size: number of bits to store all CNN layer input values;
 Accelerator energy: total power x number of cycles x clock period, fJ;

* Memory accesses:

— Number of input memory reads (IFMAPs, weights and bias);

— Number of input memory writes (always zero, once the input memory acts as a
ROM);

— Number of output memory reads (partial sums values);

— Number of output memory writes (partial sums values, and OFMAPs);

» Memory read energy: total memory reads x energy per reading (estimated by Cacti-
10), nJ;

* Memory write energy: total memory writes x energy per writing (estimated by Cacti-
10), nJ;

+ Total energy: accelerator energy + memory read energy + memory write energy, nJ.

The behavior of each dataflow type provides the equations to estimate the number
of clock cycles (i.e., performance), the number of memory reads, and the number of memory
writes. This behavior comes from the RTL simulation, which gives the number of cycles and
memory accesses for each convolution, according to the FSMs controlling the hardware,
mapping the performance to the analytic model parameters. Accelerators that need output
buffer have the area and power values estimates using an interpolation method, with data
obtained after simulating at least three layers, using the physical synthesis flow (Section 6.1).

The OFMAP size is a function of the IFMAP size (IFMAP_D), filter size (Filter_D),
and the stride value. The analytic model computes OFMAP according to Equation 6.1.

(6.1)

OFMAP D = VFMAP_D — FILTER_D . 1J

Stride

For example: a 32 x 32 IFMAP, with 3 x 3 filters and stride=2 generates a 15 x 15
OFMAP. The Next Sections detail the methods and equations used to build the analytic flow.

98

6.3.1 Performance Estimation

Each accelerator has an equation to generate its performance in clock cycles. WS
and buffered WS have similar performance, represented by Equation 6.2. Weights and bias
are stationary, i.e., pre-loaded in a buffer.

CyclesWS = 6 x OFMAP_D? x InChannels x OutChannels x (1 + MemLat) (6.2)

Where:
« 6 constant': number of clock cycles to read 9 (3 x 3) IFMAP values. Due to the stride
value (equal to 2), each reading reuse one column, reducing memory accesses;

« OFMAP_D? x InChannels: number of convolutions to produce one output channel.
Remember that the IFMAP reading and the convolution occurs in parallel (pipeline
implementation);

» The process is repeated for all output channels (OutChannels);

» The constant value added to the memory latency (1 clock cycle) corresponds to the
address phase.

Equation 6.2 is responsible for most part of the required cycles to compute the
convolution of a given layer (>80%). The analytic flow also computes the time spent to read
the weights, and the number of ‘bubbles’ in the pipeline when it is necessary to return to the
first X coordinate, after OFMAP_D convolutions.

IS and buffered IS have similar performance, represented by Equation 6.3. In the
IS approach values read from the IFMAP are stationary, i.e., they are used to compute a
partial output value at each output channel.

Term1 = OutChannels x (1 + MemLat) + (Filter_D? x OutChannels x InChannels) x (1 + MemLat)
Term2 = Filter D? x OFMAP_D? x InChannels x (1 + MemLat)
Term3 = (9 x OFMAP_D? x InChannels x OutChannels)

CycleslS = Term1 + Term2 + Term3
(6.3)

Where:

» Term1: cycles to load bias and weights, and store in internal buffers. The number of
bias values is equal to the number of OutChannels;

» Term2: cycles to read Filter_D x Filter_D IFMAP values read from the memory;

'The current analytic model only considers 3x3 filters and stride=2.

99

» Term3: cycles to execute all convolutions of the layer.

Equation (6.3) represents most part of the cycles to compute the convolution of a
given layer (CycleslS >83% for IS and CyclesIS>90% for buffered IS). As in the previous
equation, the time spent with bubbles is also accounted by the proposed analytic flow.

The WS dataflow reads the IFMAP for each partial result (Equation 6.2). For the
IS dataflow, a partial reading of the IFMAP is performed (Term 2 of Equation 6.3), reusing
these values for all partial convolutions (Term 3 of Equation 6.3). This remark is consistent
with the results presented in Chapter 5, where the IS performance is better than the WS. On
the other hand, IS requires buffers to store input values, penalizing its area.

The OS dataflow does not have buffers for IFMAP and weight values. Thus, the
OS dataflow reads 18 values from the input memory to execute each convolution (9 weights
and 9 IFMAP values). Due to the pipeline implementation, the convolution occurs in parallel
to the memory reading. Equation 6.4 computes most of the required cycles to compute the
convolution in a given layer (>98%). The analytic flow considers the number of clock cycles
to write in the OFMAP memory and the bubbles in the pipeline. The number of memory
readings is the main difference concerning the WS dataflow (Equation 6.2), which is larger
in OS.

CyclesOS = 18 x OFMAP_D? x InChannels x OutChannels x (1 + MemLat) (6.4)

6.3.2 Memory Accesses Estimation

Each dataflow has a specific equation related to the number of memory readings.
Equation 6.5 presents the number of memory readings for WS and buffered WS.

Term1 = 6 x (OFMAP_D + 5) x InChannels x QOutChannels
Term2 = (Filter_D? + 1) x InChannels x OutChannels
Term3 = 6 x OFMAP_D? x InChannels x OutChannels
MemReadWS = Term1 + Term2 + Term3

Where:

« Term1: refers to “invalid” readings. At the end of each row, the WS accelerator ac-
cesses memory locations not used in the convolution. It would be possible to avoid
these readings at the cost of more control logic in the hardware. Our design choice
was to keep the hardware simple.

» Term2: number of reads to load weight and bias values;

100

» Term3: number of reads to load IFMAP values (core of Equation 6.2).

Equation 6.6 presents the number of memory readings for IS and buffered IS.

Term1 = OutChannels + ((Filter_D?) x InChannels x OutChannels)
Term2 = Filter_D? x OFMAP_D? x InChannels (6.6)
MemReadlS = Term1 + Term2

Where:
» Term1: number of reads to load bias and weight values;

» Term2: number of reads to load Filter_D x Filter_D IFMAP values from the memory.

Equation 6.7 presents the number of memory readings for the OS dataflow.

MemReadOS = 18 x OFMAP_D? x InChannels x OutChannels (6.7)

It is possible to observe the smaller number of memory accesses for the IS dataflow
(Equation 6.6) Term2 compared to the WS and OS dataflows (Equations 6.5 Term3 and 6.7).

Equation 6.8 computes the number of memory writings for a buffered accelerator
(WS and IS). The output buffer reduces the memory writes once partial results are stored
on it.

OfmapWrites (buffered acc.) = OFMAP_D? x OutChannels (6.8)

Equation 6.9 computes the number of memory writings for a non-buffered acceler-
ator (WS, IS, and OS). Non-buffered accelerators read and write partial sums in the output
memory.

OfmapWrites (non buffered acc.) = OFMAP_D? x OutChannels x InChannels (6.9)

6.3.3 Output Buffer Area and Power Estimation

The output buffer area and power are obtained from interpolation. The data source
for the interpolation are the results obtained from the physical synthesis flow for a three-layer
Cifar10 CNN (which is presented in Section 6.4). The variable NumBits is the number of bits
of each output buffer. Equation 6.10 computes the number of bits for the WS output buffer.
The WS output buffer has the size of one OFMAP channel (OFMAP_D?) multiplied by the
word size (16 bits).

101

NumBits = OFMAP_D? x 16 (6.10)

Equation 6.11 computes the number of bits for the IS output buffer. The IS dataflow
computes one line of results (OFMAP_D), for all output channels (OutChannel).

NumBits = OFMAP_D x OutChannel x 16 (6.11)

Figures 6.3a and 6.3b present in the x-axis the number of bits for each dataflow,
and in the y-axis the area. The Cifar10 CNN has three convolutional layers. The OFMAP
sizes for each layer are (Figure 6.5, page 103): L1: 15x15, 16 output channels; L2: 7x7, 32
output channels; L3: 3x3, 64 output channels. According to Equation 6.10 the size of the
WS output buffers decreases from layer 1 to layer 3 since the OFMAP size reduces. On the
other side, according to Equation 6.11 the size of the IS output buffers increases from layer
1 to 3 due to the increase in the number of output channels.

® WS output buffer area (um?) = 10.4'x + 493 ® IS output buffer area (un?) ~ 10.5% + 539

40000
L1 e 50000

L2

30000 40000

30000
20000
20000

10000 12 e
10000

WS output buffer area (pm?)
IS output buffer area (um?)

L3 o
0

500 1000 1500 2000 2500 3000 3500 3200 3400 3600 3800

Number of bits Number of bits

(a) buffered WS (b) buffered IS

Figure 6.3: Output buffer area results obtained from the physical synthesis flow, for the three
layers of Cifar10 CNN.

The interpolation of the area results are used to compute the output buffer area.
Equations 6.12 and 6.13 compute the output buffer area for WS and IS, respectively.

WSOutputBuffArea = (10.4 x NumBits) + 493 (6.12)

ISOutputBuffArea = (10.5 x NumBits) + 539 (6.13)

The same interpolation method is applied to obtain the power dissipation due to the
output buffers. However, each memory type has a interpolation equation, due to the latency
access. Figure 6.4a and Figure 6.4b present the power results for the three layers of Cifar10
CNN using a SRAM memory. The buffered WS reduces the power from layer L1 to L3 due
to the reduction in the OFMAP size. The buffered IS increases the power from layer L1 to
L3 due to the increase in the number of output channels.

102

® WS output buffer power (mW) 0.0792 + 3.05E-04x + 1.17E-08x"2 @ 1S output buffer power (mW) -5.4 + 3.46E-03x + -4.02E-07x"2
15 20
L1 e °
L2

L3

=)

o
o

L2 o

WS output buffer power (mW)
IS output buffer power (mW)

L3 o

0.0 0.0
500 1000 1500 2000 2500 3000 3500 3200 3400 3600 3800

Number of bits Number of bits

(a) buffered WS (b) buffered IS

Figure 6.4: Output buffer power results obtained from the physical synthesis flow, for the
three layers of Cifar10 CNN, using a SRAM memory type.

The interpolation of the power results is used to compute the output buffer power
dissipation. Equations 6.14 and 6.15 compute the output buffer power dissipation for WS
and IS using a SRAM, respectively. Equations 6.16 and 6.17 compute the output buffer
power dissipation for WS and IS using a DRAM, respectively.

SRAM_WSOutputBuffPower = 0.0792 + (0.000305 x NumBits) + (0.0000000117 x NumBits?)
(6.14)

SRAM_ISOutputBuffPower = —5.4 + (0.00346 x NumBits) + (—0.000000402 x NumBits?) (6.15)

DRAM_WSOutputBuffPower = 0.0794 + (0.000245 x NumBits) + (0.0000000109 x NumBits?)
(6.16)

DRAM_ISOutputBuffPower = —7.98 + (0.00484 x NumBits) + (—0.000000595 x NumBits?)
(6.17)

6.4 Results

This Section presents results obtained for the three DSE flows previously pre-
sented. As a case study, we adopt the CNN illustrated in Figure 6.5, implemented at Tensor-
Flow. This CNN contains three convolutional layers and a fully-connected layer. TensorFlow
executes the fully-connected layer, not accelerated in hardware. The number of filters per
layer is 16, 32, and 64. The CNN implemented in the TensorFlow uses the Cifar10 dataset
with a 32x32x3 (RGB) IFMAP.

After training, the obtained accuracy was 67%. The quantization method (Sec-
tion 3.2) was verified using two shift values: 4 and 8. For a shift value equal to 4, it is
possible to use 8-bit words at the inputs. However, this shift value reduces the accuracy to

103

44%. Using a shift value equal to 8 implies 16-bit words at the inputs. The obtained accuracy
with 16-bit words at the inputs was 66.98%, a value 0.02% smaller than the one obtained in
TensorFlow with float point values. For this reason, the hardware accelerators used in this
Section adopt 16-bit words at the inputs.

Input Matrix
(cifar10) Layer 0 Layer 1 Layer 2

W airplane
automobile
bird
cat

deer
dog
frog

horse
ship

truck
32x32x3 15x15x16 7x7x32 3x3x64 J 1x10
B[] :rce
. : CONV3x3 (stride 2)
[]:Fc

Figure 6.5: Cifar10 CNN.

Cadence Genus and Innovus tools were used for logic and physical synthesis, with
28nm technology and a frequency of 500MHz. The logic synthesis uses clock-gating to
reduce the accelerator energy consumption. The power dissipation uses the VCD file gen-
erated after a post physical synthesis simulation and the Cadence Voltus tool.

The netlist simulation inputs are the Cifar10 CNN layers (Figure 6.5) extracted from
TensorFlow (as showed in Figure 6.1). The first layer (Layer 0) uses the 32x32x3 IFMAP
(RGB image from CIFAR10 dataset), 16 3x3 filters, stride 2, generating a 15x15x16 output.
The Layer 1 uses a 15x15x16 IFMAP (OFMAP from Layer 0), 32 3x3 filters, stride 2, gener-
ating a 7x7x32 output. The last convolution layer (Layer 2) uses a 7x7x32 IFMAP (OFMAP
from Layer 1), 64 3x3 filters, stride 2, generating a 3x3x64 output. Thus, power values come
from a real dataset and not synthetic values. The total energy is computed by multiplying the
average power by the number of clock cycles required to execute a complete convolution.

The external memories modeling, SRAM and DRAM, adopts the Cacti-lIO tool
[Jouppi et al., 2014]. For a 28nm 64KB SRAM, Cacti-IO reports 0.01356ndJ for reading
operation and 0.01351nJ for writing operation. For a 64kB DRAM, 0.1633nJ for reading
operation and 0.1662nJ for writing operation.

6.4.1 MAC-based DSE Flow Results

This Section evaluates the MAC-based DSE flow, using the physical synthesis flow
as the reference. MAC-based estimation, routinely used in the literature [Tang and Xie,

104

2018, Parashar et al., 2019, Heidorn et al., 2020, Zhao et al., 2020, Cao et al., 2020], is the
first evaluated. This setup is built to demonstrate that executing power and area estimation
using only MACs or MACs plus registers does not produce accurate results.

Five tables present the results, one for each dataflow — Table 6.1 to Table 6.5. The
“9X9 MAC” and “9X9 reg MAC” columns contain results for the MAC-based flow. The next
column presents results for a given accelerator using the physical synthesis flow. The last
two columns show the error induced by the MAC-based flow. The error is the percentage of
a given result value against the physical synthesis flow.

Note that in the 5 tables the MAC-based flow results are the same, regardless of
the dataflow. The values are the same because the MAC-based flow only considers the
arithmetic core (i.e., the number of MACs) or this value plus input and output registers.
The MAC-based flow does not consider the control logic (FSMs), internal registers, internal
buffers, and logic to interconnect components.

Table 6.1: MAC-based and physical synthesis flows results for the WS accelerator.

WS 9x9 9x9 WS error error

MAC reg MAC 9x9 MAC (%) | 9x9 reg MAC (%)

area layer 0 (un?) | 7,214.67 | 9,468.41 | 14,563.97 50.46 34.99
area layer 1 (un?) | 7,214.67 | 9,468.41 | 15,037.57 52.02 37.03
area layer 2 (um?) | 7,214.67 | 9,468.41 | 15,002.49 51.91 36.89
power layer 0 (mW) 0.57 1.16 0.95 39.99 22.13
power layer 1 (mW) 0.57 1.16 0.87 34.35 33.59
power layer 2 (mW) 0.57 1.16 0.88 35.32 31.64

Table 6.2: MAC-based and physical synthesis flows results for the buffered WS accelerator.

9x9 9x9 re WS error error

Buffered WS MAC | MAC. | buf | 9x9 MAG (%) | 9x9 reg MAC (%)
area layer 0 (um?) | 7,214.67 | 9,468.41 | 13,399.05 46.16 29.34
area layer 1 (um?) | 7,214.67 | 9,468.41 | 13,777.02 47.63 31.27
area layer 2 (um?®) | 7,214.67 | 9,468.41 | 13,762.66 47.58 31.20
power layer 0 (mW) 0.57 1.16 0.98 42.25 17.53
power layer 1 (mW) 0.57 1.16 0.92 38.06 26.05
power layer 2 (mW) 0.57 1.16 0.90 37.20 27.81

Table 6.3: MAC-based and physical synthesis flows results for the IS accelerator.

IS 9x9 9x9 IS error error

MAC reg MAC 9x9 MAC (%) | 9x9 reg MAC (%)

area layer 0 (um?) | 7,214.67 | 9,468.41 | 15,425.33 53.23 38.62
area layer 1 (um?) | 7,214.67 | 9,468.41 | 15,702.45 54.05 39.70
area layer 2 (un?) | 7,214.67 | 9,468.41 | 15,696.24 54.04 39.68
power layer 0 (mW) 0.57 1.16 2.04 72.06 43.14
power layer 1 (mW) 0.57 1.16 1.92 70.31 39.58
power layer 2 (mW) 0.57 1.16 1.72 67.03 32.91

Area and power results are underestimated with the MAC-based flow. Area estima-
tion considering only the arithmetic core is roughly 50% of the area obtained with the physical

Buffered IS 9x9 9x9 IS error error

MAC reg MAC buf 9x9 MAC (%) | 9x9 reg MAC (%)

area layer 0 (um?) | 7,214.67 | 9,468.41 | 13,886.36 48.04 31.82
area layer 1 (unm?) | 7,214.67 | 9,468.41 | 14,156.94 49.04 33.12
area layer 2 (um?) | 7,214.67 | 9,468.41 | 14,162.16 49.06 33.14
power layer 0 (mW) 0.57 1.16 2.09 72.82 44.68
power layer 1 (mW) 0.57 1.16 1.90 70.09 39.14
power layer 2 (mW) 0.57 1.16 1.80 68.33 35.56

Table 6.5: MAC-based and physical synthesis flows results for the OS accelerator.

105

Table 6.4: MAC-based and physical synthesis flows results for the buffered IS accelerator.

os 9x9 9x9 oS error error

MAC reg MAC 9x9 MAC (%) | 9x9 reg MAC (%)

area layer 0 (um®) | 7,214.67 | 9,468.41 | 14,938.34 51.70 36.62
area layer 1 (um?) | 7,214.67 | 9,468.41 | 15,336.23 52.96 38.26
area layer 2 (un?) | 7,214.67 | 9,468.41 | 15,753.20 54.20 39.90
power layer 0 (mW) 0.57 1.16 1.02 44.28 13.39
power layer 1 (mW) 0.57 1.16 1.03 44.71 12.51
power layer 2 (mW) 0.57 1.16 0.87 34.98 32.33

synthesis flow. Area estimation with the input and output registers with the arithmetic core
results in errors between 30% and 40%. The power estimation error can vary from 12.51%
(OS reg MAC) to 72.86% (IS MAC). The main reason explaining the differences observed in
the power estimation is the switching activity. The MAC-based flow uses an average of the
switching activity of MACs and registers, fixing this value for the estimation. The physical
synthesis uses the switching activity of the whole circuit with actual data.

As mentioned before, Several works in the literature use the MAC-based method
to estimate area and power. We demonstrated from the above results that estimating area
and power using the number of arithmetic operators produces results far from the actual
hardware result. Thus, we claim that methods such as the one based on physical synthesis
or the analytic one, with results presented in the next section, provide reliable results, unlike
the method based on counting arithmetic operations.

6.4.2 Analytic DSE Flow Results

This Section evaluates the proposed analytic DSE flow, which estimates, as shown
below, the PPA values for CNN applications more fast and more accurate. The reference for
the analytic DSE flow is the physical synthesis flow for the Cifar10 CNN layer 0. Thus, the
analytic DSE flow should produce a small error when estimating layer 0 because the PPA of
this layer is the basis to generate the analytic model equations.

Tables 6.6 to 6.12 summarize the results. Appendix B presents the analytic DSE
flow results for all performance figures. Tables show results for area, performance, memory

106

accesses, power, and energy estimations. Each table presents one performance figure for
the five dataflows, considering the physical (synt. flow columns) and analytic (analytic)
flows. Column |error %| presents the absolute error - yellow, orange and red values repre-
sent absolute error below 5%, between 5% and 10%, and above 10%. Rows in the tables
represent the memory type (SRAM or DRAM) and the layers (LO, L1, and L2).

Area Estimation

Table 6.6 presents results for area estimation. Bold values in Table 6.6 at |er-
ror %| column corresponds to the comparison with the reference layer (LO). As expected,
dataflows without output buffer presented the same result for the synthesis and analytic
flows. Dataflows with output buffers presented a small error (below 1%) due to the interpo-
lation approach.

Table 6.6: Cifar10 CNN area analytic results.

AREA (:m?). Orange: error above 5% and below 10%

dataflow ws ws buf is is buf os

results | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % |

Lo 14,564 | 14,564 0.00 51,260 | 51,332 0.14 15,425 | 15,425 0.00 54,561 | 54,745 0.34 14,938 | 14,938 0.00

L1 15,038 | 14,564 3.15 22,405 | 22,046 1.60 15,702 | 15,425 1.76 52,165 | 52,057 0.21 15,336 | 14,938 2.59

L2 15,002 | 14,564 2.92 15,753 | 15,390 2.31 15,696 | 15,425 1.73 46,810 | 46,681 0.28 15,753 | 14,938 517

The area estimation for layers L1 and L2 stays below 4% for layers L1 and L2,
excepting OS L2, with an error of 5.17%. The reason for explaining the error is the increased
number of output channels compared to LO, which affects the control logic and counters. The
OS dataflow does not have buffers, requiring a more complex circuitry to manage memory
accesses.

It is worth highlighting that the IS implementations require an input buffer to store
weights and bias values, which increase the accelerator area. The area for these buffers is
not included in the area results since this buffer acts as a cache memory, requiring an exter-
nal memory. We adopted this approach because it is need memory compilers to generate
these buffers. The use of memory compilers is considered a future work. The IS for this CNN
needs 7,168, 74,240, and 295,936 bits for layers LO, L1, and 12, respectively. Thus, in terms
of total area, the IS dataflow is larger than the other ones, requiring further development to
reduce this area, as split the weights in small samples to allow reduce the output buffer size,
and not read and store all weight values in internal buffers.

The overall area estimation error stays below 6%, with an average of 1.85% (with

the minimal value equals to 0.14%, and the maximum value equals to 5.17%) and a standard
deviation of 1.51%.

107

Performance Estimation

Table 6.7 presents results for performance estimation, which uses Equations from
Section 6.3.1. The performance results consider different memory latencies, 2 clock cycles
for SRAM and 5 clock cycles for DRAM. The error observed in Table 6.7 occurs due to
synchronization states, not included in the Equations. These synchronization states occur
mainly at the end of a row, where buffers must be flushed to start a new one. Improvements
in the equations to include these synchronization states in the estimations are needed to
obtain smaller errors.

Table 6.7: Cifar10 CNN performance analytic results. SRAM access latency 2 clock cycles,
DRAM access latency 5 clock cycles.

PERFORMANCE (clock cycles). Orange: error above 5% and below 10%

dataflow ws ws buf is is buf os

results synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % |
SRAM - LO 236,888 236,592 0.12 236,887 236,592 0.12 142,875 | 140,529 1.64 136,125 | 126,129 7.34 605,942 591,264 242
SRAM - L1 642,152 647,680 0.86 642,151 647,680 0.86 291,364 | 313,072 7.45 278,134 | 266,032 4.35 | 1,407,206 | 1,359,616 3.38
SRAM - L2 766,152 804,864 5.05 766,151 804,864 5.05 244,980 | 267,744 9.29 235,494 | 232,032 1.47 | 1,036,742 999,936 3.55
DRAM - LO 449,915 451,584 0.37 449,911 451,584 0.37 182,694 | 170,898 6.46 155,694 | 145,698 6.42 | 1,190,102 | 1,175,328 1.24
DRAM - L1 | 1,218,251 | 1,245,184 2.21 | 1,218,247 | 1,245,184 221 363,202 | 373,248 2.77 313,222 | 301,120 3.86 | 2,763,878 | 2,716,096 1.73
DRAM - L2 | 1,448,331 | 1,572,864 8.60 | 1,448,327 | 1,572,864 8.60 335,586 | 349,440 4.13 298,758 | 295,296 1.16 | 2,035,910 | 1,998,720 1.83

The overall performance estimation error stays below 9%, with an average of 3.50%
(with the minimal value equals to 0.12%, and the maximum value equals to 9.29%) and a
standard deviation of 2.78%.

Memory Accesses Estimation

Table 6.8 presents results for IFMAP memory access, which is read-only. The error
is more significant in the IS dataflows in layers LO and L1. The reason is similar to the error
observed in the performance estimation, where there are synchronization states, mainly in
the exchange of rows. At the end of a row, there are invalid reads to avoid increasing the
complexity of the FSM. Thus, the memory CE (chip enable) is active for some clock cycles,
inducing these invalid reads. If the memory latency is small (2 cycles for SRAM), more
invalid reads may occur, while this effect is masked for higher latencies (5 cycles for DRAM).
For this reason, this error is higher in IS LO and IS L1 due to the larger IFMAP size.

The overall IFMAP reading estimation error stays below 10%, with an average of
1.22% (with the minimal value equals to 0.01%, and the maximum value equals to 9.38%)
and a standard deviation of 2.73%.

Tables 6.9 and 6.10 presents results for OFMAP memory access. The estimation
model for OFMAP memory presents a 0% error, which means the analytic model correctly
captured the OFMAP memory accesses. Note that the buffered (WS and IS buf) and OS
dataflow do not need to read partial values from the OFMAP. Only WS and IS dataflows
store partial values in the OFMAP, which need to be read to compute the final values.

Table 6.8: Cifar10 CNN IFMAP read accesses results.

108

Reads accesses: IFMAP. Orange: error above 5% and below 10%
dataflow ws ws buf is is buf os
results synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic ‘ | error % | | synt. flow | analytic ‘ | error % | | synt. flow | analytic | | error % |
SRAM - LO 71,056 | 71,056 0.00 71,056 | 71,056 0.00 7,198 6,523 9.38 7,198 6,523 9.38 194,735 | 194,704 0.02
SRAM - L1 192,544 | 192,544 0.00 192,544 | 192,544 0.00 12,480 | 11,696 6.28 12,480 | 11,696 6.28 452,255 | 452,192 0.01
SRAM - L2 229,440 | 229,440 0.00 229,440 | 229,440 0.00 21,376 | 21,088 1.35 21,376 | 21,088 1.35 333,119 | 332,992 0.04
DRAM - LO 71,008 | 71,056 0.07 71,008 | 71,056 0.07 6,523 6,523 0.00 6,523 | 6,523 0.00 | 194,720 | 194,704 0.01
DRAM - L1 192,032 | 192,544 0.27 192,032 | 192,544 0.27 11,696 11,696 0.00 11,696 11,696 0.00 452,224 | 452,192 0.01
DRAM - L2 227,392 | 229,440 0.90 227,392 | 229,440 0.90 21,088 | 21,088 0.00 21,088 | 21,088 0.00 333,056 | 332,992 0.02
Table 6.9: Cifar10 CNN OFMAP read accesses results.
Reads accesses: OFMAP. Orange: error above 5% and below 10%
dataflow ws ws buf is is buf os
results | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic ‘ | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % |
LO 7,200 7,200 0.00 0.00 0.00 0.00 7,200 7,200 0.00 0.00 0.00 0.00 0.00 0.00 0.00
L1 23,520 | 23,520 0.00 0.00 0.00 0.00 23,520 | 23,520 0.00 0.00 0.00 0.00 0.00 0.00 0.00
L2 17,856 | 17,856 0.00 0.00 0.00 0.00 17,856 | 17,856 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Table 6.10: Cifar10 CNN OFMAP write accesses results.
Writes accesses: OFMAP. Orange: error above 5% and below 10%
dataflow ws ws buf is is buf os
results | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic ‘ | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % |
Lo 10,800 | 10,800 0.00 3,600 3,600 0.00 10,800 | 10,800 0.00 3,600 3,600 0.00 3,600 3,600 0.00
L1 25,088 | 25,088 0.00 1,568 1,568 0.00 25,088 | 25,088 0.00 1,568 1,568 0.00 1,568 1,568 0.00
L2 18,432 | 18,432 0.00 576 576 0.00 18,432 | 18,432 0.00 576 576 0.00 576 576 0.00

Accelerator Power Estimation

Table 6.11 shows the results for power estimation. Note that this table only consid-
ers the accelerator power. Similar to the area estimation, the LO is the reference. WS, IS and
OS present an absolute error equal to 0% (bold values on Table 6.11), while the buffered
dataflows presented an error due to the interpolation approach.

Table 6.11: Cifar10 CNN power analytic results.

POWER (mW). Orange: error above 5% and below 10%, red: error above 10%
dataflow ws ws buf is is buf os

results | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % |
SRAM - LO 0.95 0.95 0.00 2.32 2.32 0.05 2.04 2.04 0.00 4.04 4.06 0.34 1.04 1.04 0.00
SRAM - L1 0.87 0.95 9.39 1.25 1.31 5.34 1.92 2.04 6.25 3.73 3.93 5.47 1.02 1.04 1.47
SRAM - L2 0.88 0.95 7.78 1.03 1.1 7.70 1.73 2.04 - 3.22 3.53 9.56 1.03 1.04 0.68
DRAM - LO 0.74 0.74 0.00 1.91 213 0.07 1.79 1.79 0.00 3.84 3.96 0.08 0.88 0.88 0.00
DRAM - L1 0.71 0.74 4.32 1.06 1.13 6.26 1.70 1.79 5.41 3.54 3.84 5.48 0.87 0.88 0.87
DRAM - L2 0.71 0.74 4.23 0.87 0.93 6.79 1.45 1.79 - 2.87 3.44 - 0.88 0.88 0.47

The power estimation has a higher error than the area and performance estimation.
Two reasons explain this mismatch:

» The power reference is layer LO, with its switching activity. The switching activity of
other layers is different, affecting the power estimation. The switching activity is a
function of the input data, not being possible to capture it in the analytic model.

» The buffered dataflows has an error induced by the interpolation method.

109

Despite the larger errors observed mainly when communicating with DRAM mem-
ory, the overall power estimation presents an average error of 7.00% (with the minimal value
equals to 0.05%, and the maximum value equals to 23.55%), and a standard deviation of
6.21%.

Total Energy Estimation

Table 6.12 presents results for the energy estimation, considering the accelerators
and the memory accesses. Memory accesses are responsible for most of the consumed
energy. According to [Chen et al., 2016b], the memory energy can spent 200 times more
energy than the accelerator array. In our experiments we observed in OS dataflow the
memory consuming 20 times more energy than the accelerator (Table 5.3). Thus, Table 6.8
is the reference for the expected error. Two situations occur:

» The IS dataflow presents a small energy error estimation because the number of
OFMAP accesses is higher than the IFMAP readings (where the estimation presents
errors), resulting in a small energy estimation error, below 3%.

» The IS buf dataflow makes more IFMAP readings (with an estimation error equal to
9.38%) than OFMAP writes. The result is a higher energy estimation error.

Table 6.12: Cifar10 CNN energy analytic results.

TOTAL ENERGY (nJ) - accellerator and memories. Orange: error above 5% and below 10%

dataflow ws ws buf is is buf os

results | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % | | synt. flow | analytic | | error % |
SRAM - LO 1,207 1,207 0.00 1,013 1,013 0.00 342 332 2.69 147 138 6.26 2,690 2,690 0.02
SRAM - L1 3,270 3,270 0.00 2,633 2,633 0.00 828 817 1.28 191 181 5165 6,155 6,155 0.01
SRAM - L2 3,603 3,603 0.00 3,120 3,120 0.00 782 778 0.49 298 295 1.29 4,526 4,524 0.04
DRAM - LO 14,569 | 14,577 0.05 12,196 | 12,204 0.07 4,037 4,037 0.00 1,665 1,664 0.00 32,401 32,398 0.01
DRAM - L1 39,376 | 39,460 0.21 31,624 | 31,708 0.26 9,923 9,924 0.00 2,172 2,172 0.00 74120 | 74,115 0.01
DRAM - L2 43,119 | 43,454 0.78 37,234 | 37,569 0.90 9,426 9,426 0.00 3,541 3,541 0.00 54,492 | 54,481 0.02

The overall energy estimation error stays below 7%, with an average of 0.66%
(with the minimal value equals to 0.12%, and the maximum value equals to 28.65%) and a
standard deviation of 1.54%.

Analytic Model Compared to the State-of-the-art

Table 6.13 compares the analytic model results with results available in the litera-
ture. Power and energy consider only the accelerator, not the memories. The Table presents
for each work the min/max/average error, when it is available. In this table:

* red values: average error is higher than the ones obtained with our analytic model;

* green values: average error is lower than the ones obtained with our analytic model.

110

Table 6.13: Analytic and state-of-the-art result errors comparison.

Aladdin MLPAT Accelergy STONNE
This Thesis
[Shao et al., 2014] | [Tang and Xie, 2018] | [Wu et al., 2019] | [Mufoz-Martinez et al., 2020]
error min | max | avg | min | max avg min | max | avg | min max avg min | max | avg
area 4.30 | 10.60 | 6.60 — — 5.00 — — — — — — | 0.14 | 517 | 1.85
performance | 0.20 | 2.60 | 0.90 — — — — — — | 11.00 | 19.00 15.00 | 0.12 | 9.29 | 3.50
acc
2.30 | 8.30 | 4.90 — — 10.00 — — — — — — | 0.05 | 23.55 | 7.00
power
acc
— — — — — — — — | 5.00 — — — | 0.12 | 28.65 | 8.11
energy

Few works in the literature present a comprehensive estimation as the method
proposed in this Thesis. MLPAT and Accerlergy present a limited evaluation of area and
energy. Stone evaluates only performance with higher errors compared to our method. Al-
addin presents the most complete evaluation compared to the other methods. However, the
proposed method has an area evaluation more accurate than Aladdin, while the evaluation
of the other metrics has errors of the same order.

As a conclusion, the proposed flow presents a more comprehensive evaluation of
more metrics with lower errors, and provides a large set of estimates for each dataflow, as
shown in Appendix B.

Analytic Model Final Remarks

The proposed analytic flow enabled an accurate PPA estimation. Table 6.14 sum-
marizes the results. Improvements may be done in the IFMAP memory readings estimations
and in the power interpolation approach.

Table 6.14: Analytic approach summary results.

Avg. Error (%) | Std. Dev. (%)

Area 1.85 1.51
Performance 3.50 2.78
IFMAP Read 1.22 2.73
OFMAP Read/Write 0.00 0.00
Acc. Power 7.00 6.21
Total Energy 0.66 4.34

Besides the PPA accuracy, the method is fast. Using the analytic approach, a DSE
analysis for a given CNN, like the one presented in the tables, took 0.025 seconds. Physical
synthesis of one accelerator take 45 minutes (Intel i9-7940X@3.10GHz, 28 cores, 64 GB
memory). Considering all layers, and channels, the same DSE obtained with the analytic
approach would take several hours to be performed with the physical synthesis flow.

111

7. CONCLUSION AND FUTURE WORK

This Thesis proposed the following statement: It is possible to execute fast and
accurate design space exploration (DSE) for machine learning accelerators, considering
different CNN architectures models using standard frameworks. The DSE flow must be
comprehensive in terms of power, performance, and area (PFPA) estimation. Providing PPA
enables the designer to select the most relevant parameters (according to the literature) to
design a hardware accelerator.

The first part of the statement is: It is possible to execute fast and accurate de-
sign space exploration (DSE) for machine learning accelerators, considering different CNN
architectures models using standard frameworks. We proposed two approaches for DSE.
The first adopts a system simulator (URSA), which is cycle-accurate and uses a high-level
language to describe the hardware abstractly. The second is a fast and accurate DSE, using
an analytic approach, which does not need the abstract model to estimate PPA.

This part of the statement fulfilled specific goals 1 and 6:

* CNN framework integration (Chapter 3): we adopted TensorFlow as a front-end to
implement a CNN application. A quantization method was validated in TensorFlow,
avoiding the use of float-point hardware and reducing the area and power of the accel-
erators.

» DSE method (Chapters 3 and 6): the first DSE method used TensorFlow and the URSA
system simulator. Its advantage is the abstract model, but, at the same time, this model
can be complex and does not reflect accurately an optimized hardware. The second
DSE method used only TensorFlow, coupled with physical synthesis results. Besides
the DSE results regarding PPA metrics, the second method is faster than a classic
physical synthesis flow. Also, errors presented by the second DSE method have the
same magnitude order as the literature. Still, they are more reliable once the obtained
results are based on an entire convolution, not only on basic components such as the
number of MACs. Also, the proposed DSE flows are more comprehensive compared
to the literature, once they deliver a complete PPA analyses with more architectural
parameters, compared to the literature, as showed in Table 6.14.

The second part of the statement is: The DSE flow must be comprehensive in
terms of power, performance, and area (PFA) estimation.. The proposed methods presented
a complete PPA analysis based on values of actual CNN applications.

This part of the statement fulfilled specific goals 2, 4 and 5:

* CNN hardware accelerator design (Chapter 4): we started using the open-source
NVDLA hardware modules to build accelerators. However, NVDLA showed impor-

112

tant silicon area costs and limited flexibility to explore different dataflows. Thus, a set
of accelerators were proposed, composing an accelerator library.

* CNN hardware accelerator physical synthesis (Chapter 6): we adopted a classic syn-
thesis flow using industrial tools (Cadence and Mentor), executing logic and physical
synthesis. This flow supports different technology nodes, such as 65nm and 28nm,
and generates accurate hardware estimations.

* PPA extraction method (Chapter 6): the accelerators’ simulation uses data (weights
and IFMAP) from TensorFlow, generating a switching activity corresponding to actual
CNNs. This method ensures accurate power (P) estimation. The post-synthesis sim-
ulation generates the performance (P) estimation, considering the effect of parasitic
capacitances. The physical synthesis gives the accelerator area (A).

Accelerators source code and synthesis scripts are available at the following GitHub
repository: https://github.com/leorezende93/acc_dse env.

The third part of the statement is: Providing PPA enables the designer to select the
most relevant parameters (according to the literature) to design a hardware accelerator. By
modeling the CNN application in TensorFlow, the designer may select the accelerator that
meets the design constraints.

This part of the statement fulfilled specific goal 3:

» Comparison method (Chapter 5): we showed it is possible to use the proposed meth-
ods to compare different accelerator types. This comparison can be performed us-
ing the physical synthesis flow or analytically. Thus, this Thesis presents a fast DSE
method, which is more comprehensive and more accurate when compared to the state-
of-the-art.

Also, this Thesis comprises all the steps of a hardware/software machine learning
application development, which are:

+ Software development: the use of TensorFlow to implement a CNN application;

» Hardware architecture design: define hardware architecture and behavior, as style and
dataflow;

» Hardware synthesis: define the hardware constraints, as clock frequency, and perform
the physical synthesis;

* PPA analyses: analyses the obtained results of power, performance, and area.

Thus, the comprised steps addressed in this Thesis allow software developers to
quickly estimate the hardware resources used by the CNN application without needing a
prototyping platform like FPGA or the manufactured chip.

https://github.com/leorezende93/acc_dse_env

113

To conclude, the above analysis demonstrated that it is possible to propose meth-
ods for fast, fair, and accurate design space exploration related to hardware accelerators
for CNNs. This Thesis advanced the state-of-the-art by offering techniques to generate a
comprehensive PPA evaluation, integrating front-end frameworks (such as TensorFlow) to a
hardware back-end design flow. The TensorFlow front-end generates the hardware back-
end data for simulation, while the back-end provides the analytical model to the front-end.

71 Future Work

It is possible to group future works into different research topics.

System Level DSE. Extend the use of system simulators to perform DSE regarding an
entire system composed by CPUs, DMA, and CNN accelerators.

As mentioned on Chapter 3, system simulators, such as URSA, help in estimating
PPA values of an entire system. This Thesis does not cover DSE regarding an entire sys-
tem. Thus, one of the future works is to extend the proposed frameworks to cover systems
composed of CPUs, DMA, and CNN accelerators, for example, as illustrated in Figure 7.1.
Also, it is possible to combine the system simulator with the analytic flow to improve the
accuracy of the PPA results, like clock cycles estimation.

Thus, we proposed the following future works:

* Integrate the DSE analytic flow with a system simulator to deliver accurate PPA results
with simulation results as convolution engine behavior. To make this integration, it is
possible to use simulators like Gem5 [Gem5, 2022], which allow the reuse of hardware
blocks, such as microprocessors, memories, and bus architectures.

» Software and hardware accelerators integration. Integrate the accelerator with micro-
processors, and develop APIs to access the accelerators.

Accelerator Design. Extend the set of accelerators and functions implemented in hardware.

» Implementation of other dataflow types: the literature shows other dataflows like Row
Stationary (RS), No Local Reuse (NRL), and Fine-Grained (FG) [Moolchandani et al.,
2021, Xiang et al., 2018]. The implementation of these dataflows allows to extend the
comparison proposed on Chapter 5, to analyze their trade-offs compared to Weight
Stationary (WS), Input Stationary (IS), and Output Stationary (OS);

» Implementation of larger accelerators arrangement: the 3x3 matrix used in this work is
an initial step for DSE. We can extend the analyzes for larger arrays as 16x16, like in

114

Chap. 3

| CNN model I'

.

Quantization

TensorFlow |«

application.py

Chap.
4/5

R

v

Pyhsical
Synthesis

é

PPA logs

\l__/

accelerator

model

Chap. 6

v

Analytical
model and CNN
PPA estimation

CactlO

memory
model

System
Simulator

SoC Model

é

Full SoC

DSE Report

\/\

Future Work

Figure 7.1: System Level DSE Flow.

[Udupa et al., 2020]. Larger arrays allow to improve the analysis of the array parallelism
and the array utilization in terms of array percentage;

* Integration of Imagenet dataset on DSE flow: thus, it is possible to simulate the ac-
celerators using more complex CNNs, like AlexNet and VGG16. Also, it is required
to implement hardware pooling functions, like max-pooling and average pooling, to
execute these CNNs.

* A benchmark approach to compare hardware accelerators: build an accelerator repos-
itory that allows project decisions regarding specific targets, such as low power, high
throughput, and small area.

Accelerator Optimization. Optimize the accelerator design using low power techniques,
pruning, quantization, and memory types.

115

 Application of low power techniques: evaluate, e.g., approximate computing [Arme-

niakos et al., 2022]. Also, other CNNs optimization techniques can be applied, like
pruning [Bavikadi et al., 2022], and different types of CNN, like the all-convolutional
neural networks [Benevenuti et al., 2021]. All-convolutional neural networks are candi-
dates to reduce hardware area, once they do not present a fully-connected layer, which
is the more expensive network component;

Explore the use of different memories in the same project. For example, build acceler-
ators that use both SRAM and DRAM. Also, explore memory hierarchies, like the use
of cache memories.

Accelerator Prototyping. Prototype the proposed accelerators in FPGAs, considering the
entire CNN.

7.2

» Analyzes and implementation of an entire CNN accelerated in hardware: this work

requires analyzing how to connect the output from a layer to the input of the next layer
of a CNN application using the hardware accelerators. These analyses include the use
of memories, buffers, and memory hierarchy to connect these layers;

FPGA prototyping of hardware accelerators: this work allows verification of the accel-
erators at a circuit level. Besides, prototyping and integrating the accelerators with
microprocessors to explore analyzes of an entire system.

Summary of the publications produced during the Thesis

The following papers related to the Thesis were published:

A TensorFlow and System Simulator Integration Approach to Estimate Hardware Met-
rics of Convolution Accelerators, L. R. Juracy, M. T. Moreira, A. M. Amory, and F. G.
Moraes: published in LASCAS 2021 (Qualis B4);

A High-level Modeling Framework for Estimating Hardware Metrics of CNN Accelera-
tors, L. R. Juracy, M. T. Moreira, A. M. Amory, A., A. F. Hampel, and F. G. Moraes:
published in TCASI 2021 (Qualis A1).

116

REFERENCES

[Ahmad and Pasha, 2020] Ahmad, A. and Pasha, M. A. (2020). FFConv: an FPGA-based
accelerator for fast convolution layers in convolutional neural networks. ACM Transactions
on Embedded Computing Systems, 19(2):1-24.

[Al-Jawfi, 2009] Al-Jawfi, R. (2009). Handwriting Arabic character recognition LeNet using
neural network. International Arab Journal of Information Technology, 6(3):304—-309.

[Alibaba, 2019] Alibaba (2019). Alibaba Hanguang 800. Source: https://techcrunch.com/
2019/09/24/alibaba-unveils-hanguang-800-an-ai-inference-chip-it-says-significantly-
increases-the-speed-of-machine-learning-tasks/, May 2022.

[Alom et al., 2018] Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin,
M. S., Van Esesn, B. C., Awwal, A. A. S., and Asari, V. K. (2018). The history began from
alexnet: A comprehensive survey on deep learning approaches. Computing Research
Repository, abs/1803.01164(1):1-39.

[Amazon, 2018] Amazon (2018). AWS Inferentia. Source: https://aws.amazon.com/about-
aws/whats-new/2018/11/announcing-amazon-inferentia-machine-learning-inference-
microchip/, May 2022.

[Andri et al., 2017] Andri, R., Cavigelli, L., Rossi, D., and Benini, L. (2017). YodaNN: An
architecture for ultralow power binary-weight CNN acceleration. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(1):48—-60.

[Apple, 2022] Apple (2022). iPhone 11. Source: https://www.apple.com/iphone-11/, May
2022.

[Armeniakos et al., 2022] Armeniakos, G., Zervakis, G., Soudris, D., and Henkel, J. (2022).
Hardware Approximate Techniques for Deep Neural Network Accelerators: A Survey.
ACM Computing Surveys, preprint:1-36.

[Asanovic et al., 2016] Asanovic, K., Avizienis, R., Bachrach, J., Beamer, S., Biancolin, D.,
Celio, C., Cook, H., Dabbelt, D., Hauser, J., Izraelevitz, A., et al. (2016). The rocket chip
generator. Technical report, University of California. 11p.

[Bai et al., 2020] Bai, L., Lyu, Y., and Huang, X. (2020). A unified hardware architecture
for convolutions and deconvolutions in CNN. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1-5.

[Baskin et al., 2021] Baskin, C., Liss, N., Schwartz, E., Zheltonozhskii, E., Giryes, R., Bron-
stein, A. M., and Mendelson, A. (2021). Uniq: Uniform noise injection for non-uniform
quantization of neural networks. ACM Transactions on Computer Systems, 37(1-4):1-15.

https://techcrunch.com/2019/09/24/alibaba-unveils-hanguang-800-an-ai-inference-chip-it-says-significantly-increases-the-speed-of-machine-learning-tasks/
https://techcrunch.com/2019/09/24/alibaba-unveils-hanguang-800-an-ai-inference-chip-it-says-significantly-increases-the-speed-of-machine-learning-tasks/
https://techcrunch.com/2019/09/24/alibaba-unveils-hanguang-800-an-ai-inference-chip-it-says-significantly-increases-the-speed-of-machine-learning-tasks/
https://aws.amazon.com/about-aws/whats-new/2018/11/announcing-amazon-inferentia-machine-learning-inference-microchip/
https://aws.amazon.com/about-aws/whats-new/2018/11/announcing-amazon-inferentia-machine-learning-inference-microchip/
https://aws.amazon.com/about-aws/whats-new/2018/11/announcing-amazon-inferentia-machine-learning-inference-microchip/
https://www.apple.com/iphone-11/

117

[Bavikadi et al., 2022] Bavikadi, S., Dhavlle, A., Ganguly, A., Haridass, A., Hendy, H.,
Merkel, C., Reddi, V. J., Sutradhar, P. R., Joseph, A., and Dinakarrao, S. M. P. (2022).
A Survey on Machine Learning Accelerators and Evolutionary Hardware Platforms. IEEE
Design & Test, 39(3):91-116.

[Benevenuti et al., 2021] Benevenuti, F., Kastensmidt, F. L., de Oliveira, A. B., Added, N.,
de Aguiar, V. A. P, Medina, N. H., and Guazzelli, M. A. (2021). Robust Convolutional
Neural Networks in SRAM-based FPGAs: a Case Study in Image Classification. Journal
of Integrated Circuits and Systems, 16(2):1-12.

[Caffe, 2022] Caffe (2022). Caffe. Source: https://caffe.berkeleyvision.org/, May 2022.

[Cao et al., 2020] Cao, S., Deng, W., Bao, Z., Xue, C., Xu, S., and Zhang, S. (2020).
SimuNN: A Pre-RTL Inference, Simulation and Evaluation Framework for Neural Net-
works. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
10(2):217-230.

[Cerebras, 2022] Cerebras (2022). Cerebras CS-1. Source: https://www.cerebras.net/
technology/, May 2022.

[Chen et al., 2014] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and Temam, O.
(2014). Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning. ACM SIGARCH Computer Architecture News, 42(1):269—-284.

[Chen et al., 2020] Chen, X., Han, Y., and Wang, Y. (2020). Communication Lower Bound in
Convolution Accelerators. In Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 529-541.

[Chen et al., 2016a] Chen, Y.-H., Emer, J., and Sze, V. (2016a). Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News, 44(3):367-379.

[Chen et al., 2016b] Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. (2016b). Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE
Journal of Solid-state Circuits, 52(1):127-138.

[Chen et al., 2019] Chen, Y.-H., Yang, T.-J., Emer, J., and Sze, V. (2019). Eyeriss v2: A
flexible accelerator for emerging deep neural networks on mobile devices. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 9(2):292—-308.

[Courbariaux et al., 2016] Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio,
Y. (2016). Binarized neural networks: Training deep neural networks with weights and ac-
tivations constrained to +1 or -1. Computing Research Repository, abs/1602.02830(1):1—
11.

https://caffe.berkeleyvision.org/
https://www.cerebras.net/technology/
https://www.cerebras.net/technology/

118

[CS231n, 2022] CS231n (2022). Convolutional Neural Networks (CNNs / ConvNets).
Source: https://cs231n.github.io/convolutional-networks/, May 2022.

[Dally et al., 2020] Dally, W. J., Turakhia, Y., and Han, S. (2020). Domain-specific hardware
accelerators. Communications of the ACM, 63(7):48-57.

[Das et al., 2020] Das, S., Roy, A., Chandrasekharan, K. K., Deshwal, A., and Lee, S.
(2020). A Systolic Dataflow Based Accelerator for CNNs. In Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1-5.

[Digital, 2022] Digital, W. (2022). Western Digital Machine Learning Accelerator.
Source: https://link.westerndigital.com/welcome/mcs-bulletin/mcs-bulletin-events/
machine-learning-accelerator.html?_ga=2.249821190.143199995.1570669759-
1671111829.1570669759, May 2022.

[Domingues, 2020] Domingues, A. R. P. (2020). ORCA: A Self-Adaptive, Multiprocessor
System-On-Chip Platform. Master’s thesis, PUCRS. 112p.

[Du et al., 2017] Du, L., Du, Y., Li, Y., Su, J., Kuan, Y.-C., Liu, C.-C., and Chang, M.-
C. F. (2017). A reconfigurable streaming deep convolutional neural network accelerator
for Internet of Things. [EEE Transactions on Circuits and Systems |: Regular Papers,
65(1):198-208.

[Du et al., 2015] Du, Z., Fasthuber, R., Chen, T., lenne, P, Li, L., Luo, T., Feng, X., Chen,
Y., and Temam, O. (2015). ShiDianNao: Shifting vision processing closer to the sensor.
In Proceedings of the ACM International Symposium on Computer Architecture (ISCA),
pages 92—104.

[Facebook, 2022a] Facebook (2022a). Facebook Horizon. Source: https://
www.oculus.com/horizon-worlds/, May 2022.

[Facebook, 2022b] Facebook (2022b). Facebook Kings Canyon. Source: https://
engineering.fb.com/data-center-engineering/accelerating-infrastructure/, May 2022.

[Ferianc et al., 2021] Ferianc, M., Fan, H., Manocha, D., Zhou, H., Liu, S., Niu, X., and Luk,
W. (2021). Improving Performance Estimation for Design Space Exploration for Convolu-
tional Neural Network Accelerators. MDPI Electronics, 10(4):1-14.

[Fujitsu, 2018] Fuijitsu (2018). Fujitsu Deep Learning Unit. Source: https://www.fujitsu.com/
global/Images/deep-learning-unit.pdf, May 2022.

[Fujiwara et al., 2013] Fujiwara, H., Yabuuchi, M., Morimoto, M., Tanaka, K., Tanaka, M.,
Maeda, N., Tsukamoto, Y., and Nii, K. (2013). A 20nm 0.6 V 2.1 yW/MHz 128kb SRAM
with no half select issue by interleave wordline and hierarchical bitline scheme. In Pro-
ceedings of the IEEE Symposium on VLSI Circuits (VLSI), pages 118-119.

https://cs231n.github.io/convolutional-networks/
https://link.westerndigital.com/welcome/mcs-bulletin/mcs-bulletin-events/machine-learning-accelerator.html?_ga=2.249821190.143199995.1570669759-1671111829.1570669759
https://link.westerndigital.com/welcome/mcs-bulletin/mcs-bulletin-events/machine-learning-accelerator.html?_ga=2.249821190.143199995.1570669759-1671111829.1570669759
https://link.westerndigital.com/welcome/mcs-bulletin/mcs-bulletin-events/machine-learning-accelerator.html?_ga=2.249821190.143199995.1570669759-1671111829.1570669759
https://www.oculus.com/horizon-worlds/
https://www.oculus.com/horizon-worlds/
https://engineering.fb.com/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/data-center-engineering/accelerating-infrastructure/
https://www.fujitsu.com/global/Images/deep-learning-unit.pdf
https://www.fujitsu.com/global/Images/deep-learning-unit.pdf

119

[Gemb5, 2022] Gem5 (2022). Gem5. Source: http://gemS.org/, May 2022.

[Genc et al., 2021] Genc, H., Kim, S., Amid, A., Haj-Ali, A., lyer, V., Prakash, P., Zhao, J.,
Grubb, D., Liew, H., Mao, H., et al. (2021). Gemmini: Enabling systematic deep-learning
architecture evaluation via full-stack integration. In Proceedings of the ACM/IEEE Design
Automation Conference (DAC), pages 769—-774.

[Gerogiannis et al., 2022] Gerogiannis, G., Birbas, M., Leftheriotis, A., Mylonas, E., Tzanis,
N., and Birbas, A. (2022). Deep Reinforcement Learning Acceleration for Real-Time Edge
Computing Mixed Integer Programming Problems. IEEE Access, 10(1):18526—18543.

[Giri et al., 2020] Giri, D., Chiu, K., Guglielmo, G. D., Mantovani, P., and Carloni, L. P. (2020).
ESP4ML: Platform-Based Design of Systems-on-Chip for Embedded Machine Learning.
In Proceedings of the IEEE Design, Automation Test in Europe Conference (DATE), pages
1049-1054.

[Gokhale et al., 2014] Gokhale, V., Jin, J., Dundar, A., Martini, B., and Culurciello, E. (2014).
A 240 g-ops/s mobile coprocessor for deep neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 682—
687.

[Goodfellow et al., 2016] Goodfellow, ., Bengio, Y., and Courville, A. (2016). Deep Learning.
MIT Press. 781p.

[Google, 2022a] Google (2022a). Cloud TPU. Source: https://cloud.google.com/tpu/, May
2022.

[Google, 2022b] Google (2022b). Google Assistant, your own personal Google. Source:
https://assistant.google.com, May 2022.

[Haine et al., 2017] Haine, T., Nguyen, Q.-K., Stas, F., Moreau, L., Flandre, D., and Bol, D.
(2017). An 80-MHz 0.4 V ULV SRAM macro in 28nm FDSOI achieving 28-fJ/bit access
energy with a ULP bitcell and on-chip adaptive back bias generation. In Proceedings of
the IEEE European Solid State Circuits Conference (ESSCIRC), pages 312-315.

[Hao et al., 2019] Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K., Hwu, W.-m.,
and Chen, D. (2019). FPGA/DNN Co-Design: An Efficient Design Methodology for loT
Intelligence on the Edge. In Proceedings of the ACM/IEEE Design Automation Conference
(DAC), pages 1-6.

[Haykin, 2009] Haykin, S. S. (2009). Neural networks and learning machines. Pearson
Education, third edition. 906p.

http://gem5.org/
https://cloud.google.com/tpu/
https://assistant.google.com

120

[Heidorn et al., 2020] Heidorn, C., Hannig, F., and Teich, J. (2020). Design space explo-
ration for layer-parallel execution of convolutional neural networks on CGRAs. In Pro-
ceedings of the ACM SIGBED/EDAA Software and Compilers for Embedded Systems
(SCOPES), pages 26—-31.

[Hsiao and Chang, 2020] Hsiao, S.-F. and Chang, H.-J. (2020). Sparsity-Aware Deep Learn-
ing Accelerator Design Supporting CNN and LSTM Operations. In Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1—4.

[Hsiao et al., 2020] Hsiao, S.-F., Chen, K.-C., Lin, C.-C., Chang, H.-J., and Tsai, B.-C.
(2020). Design of a Sparsity-Aware Reconfigurable Deep Learning Accelerator Support-
ing Various Types of Operations. IEEE Journal on Emerging and Selected Topics in Cir-
cuits and Systems, 10(3):376-387.

[Huang et al., 2021] Huang, B., Huan, Y., Chu, H., Xu, J., Liu, L., Zheng, L., and
Zou, Z. (2021). IECA: An In-Execution Configuration CNN Accelerator With 30.55
GOPS/mm? Area Efficiency. IEEE Transactions on Circuits and Systems I: Regular Pa-
pers, 68(11):4672—4685.

[Huawei, 2019] Huawei (2019). Huawei Ascend 910. Source: https://www.huawei.com/en/
press-events/news/2019/8/huawei-ascend-910-most-powerful-ai-processor, May 2022.

[IBM, 2022] IBM (2022). IBM Watson. Source: https://www.ibm.com/us-en/marketplace/
deep-learning-platform, May 2022.

[Intel, 2022] Intel (2022). Intel Nervana. Source: https://www.intel.com.br/content/www/br/
pt/analytics/artificial-intelligence/overview.html, May 2022.

[Jiao et al., 2020] Jiao, Y., Han, L., Jin, R., Su, Y.-J., Ho, C., Yin, L., Li, Y., Chen, L., Chen, Z.,
Liu, L., et al. (2020). 7.2 A 12nm Programmable Convolution-Efficient Neural-Processing-
Unit Chip Achieving 825TOPS. In Proceedings of the IEEE International Solid-State Cir-
cuits Conference (ISSCC), pages 136—140.

[Jouppi et al., 2014] Jouppi, N. P, Kahng, A. B., Muralimanohar, N., and Srinivas, V. (2014).
Cacti-10: Cacti with off-chip power-area-timing models. |IEEE Transactions on Very Large
Scale Integration Systems, 23(7):1254—1267.

[Juracy et al., 2021a] Juracy, L. R., Moreira, M. T., Amory, A. M., and Moraes, F. G. (2021a).
A TensorFlow and System Simulator Integration Approach to Estimate Hardware Metrics
of Convolution Accelerators. In Proceedings of the IEEE Latin America Symposium on
Circuits and System (LASCAS), pages 217-230.

[Juracy et al., 2021b] Juracy, L. R., Moreira, M. T., de Morais Amory, A., Hampel, A. F.,, and
Moraes, F. G. (2021b). A High-Level Modeling Framework for Estimating Hardware Metrics
of CNN Accelerators. IEEE Transactions on Circuits and Systems — I, 68(11):4783-4795.

https://www.huawei.com/en/press-events/news/2019/8/huawei-ascend-910-most-powerful-ai-processor
https://www.huawei.com/en/press-events/news/2019/8/huawei-ascend-910-most-powerful-ai-processor
https://www.ibm.com/us-en/marketplace/deep-learning-platform
https://www.ibm.com/us-en/marketplace/deep-learning-platform
https://www.intel.com.br/content/www/br/pt/analytics/artificial-intelligence/overview.html
https://www.intel.com.br/content/www/br/pt/analytics/artificial-intelligence/overview.html

121

[Karbachevsky et al., 2021] Karbachevsky, A., Baskin, C., Zheltonozhskii, E., Yermolin, Y.,
Gabbay, F., Bronstein, A. M., and Mendelson, A. (2021). Early-stage neural network
hardware performance analysis. MDPI Sustainability, 13(2):1-20.

[Keras, 2022] Keras (2022). Layer activation functions. Source: https://keras.io/api/layers/
activations/, May 2022.

[Kim et al., 2020] Kim, S., Wang, J., Seo, Y., Lee, S., Park, Y., Park, S., and Park, C. S.
(2020). Transaction-level Model Simulator for Communication-Limited Accelerators. Com-
puting Research Repository, abs/2007.14897(1):1-11.

[Krizhevsky et al., 2017] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet
classification with deep convolutional neural networks. Communications of the ACM,
60(6):84—90.

[Kwon et al., 2019] Kwon, H., Chatarasi, P., Pellauer, M., Parashar, A., Sarkar, V., and
Krishna, T. (2019). Understanding Reuse, Performance, and Hardware Cost of DNN
Dataflow: A Data-Centric Approach. In Proceedings of the IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 754—768.

[Kwon et al., 2018a] Kwon, H., Pellauer, M., and Krishna, T. (2018a). Maestro: An open-
source infrastructure for modeling dataflows within deep learning accelerators. Computing
Research Repository, abs/1805.02566(1):1-5.

[Kwon et al., 2018b] Kwon, H., Samajdar, A., and Krishna, T. (2018b). Maeri: Enabling
flexible dataflow mapping over dnn accelerators via reconfigurable interconnects. ACM
Special Interest Group on Programming Languages Notices, 53(2):461—-475.

[Li et al., 2019] Li, H., Bhargav, M., Whatmough, P. N., and Wong, H.-S. P. (2019). On-chip
memory technology design space explorations for mobile deep neural network acceler-
ators. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), pages
1-6.

[Lin and Arslan, 2021] Lin, W. and Arslan, T. (2021). A Column Streaming-Based Convo-
lution Engine and Mapping Algorithm for CNN-based Edge Al accelerators. In Proceed-
ings of the IEEE International Conference on Electronics, Circuits and Systems (ICECS),
pages 1-6.

[Liu et al., 2020a] Liu, B., Chen, X., Han, Y., Wang, Y., Li, J., Xu, H., and Li, X. (2020a).
Search-free Accelerator for Sparse Convolutional Neural Networks. In Proceedings of
the ACM/IEEE Asia and South Pacific Design Automation Conference (ASPDAC), pages
524-529.

https://keras.io/api/layers/activations/
https://keras.io/api/layers/activations/

122

[Liu et al., 2020b] Liu, B., Chen, X., Han, Y., and Xu, H. (2020b). Swallow: A Versatile
Accelerator for Sparse Neural Networks. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(12):4881—-4893.

[Luetal., 2017] Lu, W., Yan, G., Li, J., Gong, S., Han, Y., and Li, X. (2017). Flexflow: A flex-
ible dataflow accelerator architecture for convolutional neural networks. In Proceedings of
the IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 553-564.

[Manasi and Sapatnekar, 2021] Manasi, S. D. and Sapatnekar, S. S. (2021). DeepOpt: Op-
timized scheduling of CNN workloads for ASIC-based systolic deep learning accelerators.
In Proceedings of the ACM/IEEE Asia and South Pacific Design Automation Conference
(ASPDAC), pages 235-241.

[Mediatek, 2022] Mediatek (2022). Mediatek APU. Source: https://www.mediatek.com/
technology/artificial-intelligence, May 2022.

[Microsoft, 2022] Microsoft (2022). Project Brainwave. Source: https://www.microsoft.com/
en-us/research/project/project-brainwave/, May 2022.

[Moolchandani et al., 2021] Moolchandani, D., Kumar, A., and Sarangi, S. R. (2021). Accel-
erating CNN inference on ASICs: A survey. Journal of Systems Architecture, 113(1):1-26.

[Munoz-Martinez et al., 2020] Mufoz-Martinez, F., Abellan, J. L., Acacio, M. E., and Kr-
ishna, T. (2020). STONNE: A Detailed Architectural Simulator for Flexible Neural Network
Accelerators. Computing Research Repository, abs/2006.07137(1):1-8.

[NVIDIA, 2022a] NVIDIA (2022a). NVDLA. Source: http://nvdla.org/, May 2022.

[NVIDIA, 2022b] NVIDIA (2022b). TensorRT. Source: https://developer.nvidia.com/tensorrt,
May 2022.

[NXP, 2022] NXP (2022). NXP S32V234 MPU. Source: https://www.nxp.com/products/
processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/vision-processor-
for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234,
May 2022.

[Parashar et al., 2019] Parashar, A., Raina, P, Shao, Y. S., Chen, Y.-H., Ying, V. A,
Mukkara, A., Venkatesan, R., Khailany, B., Keckler, S. W., and Emer, J. (2019). Timeloop:
A Systematic Approach to DNN Accelerator Evaluation. In Proceedings of the IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS), pages
304-315.

[Park and Chung, 2020] Park, S.-S. and Chung, K.-S. (2020). CENNA: Cost-Effective Neu-
ral Network Accelerator. Electronics, 9(1):1—19.

https://www.mediatek.com/technology/artificial-intelligence
https://www.mediatek.com/technology/artificial-intelligence
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.microsoft.com/en-us/research/project/project-brainwave/
http://nvdla.org/
https://developer.nvidia.com/tensorrt
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234

123

[PyTorch, 2022] PyTorch (2022). PyTorch. Source: https://pytorch.org/, May 2022.

[Qualcomm, 2019] Qualcomm (2019). Qualcomm Snapdragon. Source: https://
developer.qualcomm.com/blog/accelerate-your-device-ai-qualcomme-artificial-
intelligence-ai-engine-snapdragon, May 2022.

[Renesas, 2022] Renesas (2022). Renesas e-Al. Source: https://www.renesas.com/jp/en/
solutions/key-technology/e-ai.html, May 2022.

[Ryu et al., 2022] Ryu, S., Kim, H., Yi, W., Kim, E., Kim, Y., Kim, T., and Kim, J.-J. (2022). Bit-
Blade: Energy-Efficient Variable Bit-Precision Hardware Accelerator for Quantized Neural
Networks. IEEE Journal of Solid-State Circuits, 1(1):1-11.

[Samajdar et al., 2020] Samajdar, A., Joseph, J. M., Zhu, Y., Whatmough, P., Mattina, M.,
and Krishna, T. (2020). A Systematic Methodology for Characterizing Scalability of DNN
Accelerators using SCALE-Sim. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 58—68.

[Samajdar et al., 2018] Samajdar, A., Zhu, Y., Whatmough, P., Mattina, M., and Krishna,
T. (2018). SCALE-sim: Systolic CNN accelerator. Computing Research Repository,
abs/1811.02883(1):1-11.

[Samsung, 2019] Samsung (2019). Samsung Exynos. Source: https://www.eetimes.com/
document.asp?doc_id=1334340, May 2022.

[ServiceNow, 2022] ServiceNow (2022). Enterprise Chatbot — Virtual Agent. Source:
https://assistant.google.com, May 2022.

[Shao et al., 2014] Shao, Y. S., Reagen, B., Wei, G.-Y., and Brooks, D. (2014). Aladdin: A
pre-rtl, power-performance accelerator simulator enabling large design space exploration
of customized architectures. In Proceedings of the ACM International Symposium on
Computer Architecture (ISCA), pages 97—108.

[Shao et al., 2016] Shao, Y. S., Xi, S. L., Srinivasan, V., Wei, G.-Y., and Brooks, D. (2016).
Co-designing accelerators and soc interfaces using gem5-aladdin. In Proceedings of the
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1—-12.

[Shivapakash et al., 2020] Shivapakash, S., Jain, H., Hellwich, O., and Gerfers, F. (2020).
A Power Efficient Multi-Bit Accelerator for Memory Prohibitive Deep Neural Networks.
In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1-5.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition. Computing Research Repository,
abs/1409.1556(1):1-14.

https://pytorch.org/
https://developer.qualcomm.com/blog/accelerate-your-device-ai-qualcomm-artificial-intelligence-ai-engine-snapdragon
https://developer.qualcomm.com/blog/accelerate-your-device-ai-qualcomm-artificial-intelligence-ai-engine-snapdragon
https://developer.qualcomm.com/blog/accelerate-your-device-ai-qualcomm-artificial-intelligence-ai-engine-snapdragon
https://www.renesas.com/jp/en/solutions/key-technology/e-ai.html
https://www.renesas.com/jp/en/solutions/key-technology/e-ai.html
https://www.eetimes.com/document.asp?doc_id=1334340
https://www.eetimes.com/document.asp?doc_id=1334340
https://assistant.google.com

124

[Sohrabizadeh et al., 2021] Sohrabizadeh, A., Bai, Y., Sun, Y., and Cong, J. (2021). En-
abling Automated FPGA Accelerator Optimization Using Graph Neural Networks. Com-
puting Research Repository, abs/2111.08848(1):1-12.

[Son et al., 2013] Son, Y. H., Seongil, O., Ro, Y., Lee, J. W., and Ahn, J. H. (2013). Reducing
memory access latency with asymmetric DRAM bank organizations. In Proceedings of
the ACM International Symposium on Computer Architecture (ISCA), pages 380-391.

[Spagnolo et al., 2020] Spagnolo, F., Perri, S., Frustaci, F., and Corsonello, P. (2020). Re-
configurable Convolution Architecture for Heterogeneous Systems-on-Chip. In Proceed-
ings of the IEEE Mediterranean Conference on Embedded Computing (MECQO), pages
1-5.

[Strom, 2015] Strom, N. (2015). Scalable distributed DNN training using commodity GPU
cloud computing. In Proceedings of the International Speech Communication Association
(ISCA), pages 1488—-1492.

[Tang and Xie, 2018] Tang, T. and Xie, Y. (2018). MlIpat: A power area timing modeling
framework for machine learning accelerators. In Proceedings of the IEEE International
Workshop on Domain Specific System Architecture (DOSSA), pages 1-3.

[Tavakoli et al., 2020] Tavakoli, M. R., Sayedi, S. M., and Khaleghi, M. J. (2020). A High
Throughput Hardware CNN Accelerator Using a Novel Multi-Layer Convolution Processor.
In Proceedings of the IEEE Iranian Conference on Electrical Engineering (ICEE), pages
1-6.

[TensorFlow, 2022] TensorFlow (2022). TensorFlow. Source: https://www.tensorflow.org/,
May 2022.

[Tesla, 2019] Tesla (2019). Autopilot and Full Self-Driving Capability. Source:
https://analyticsindiamag.com/under-the-hood-of-teslas-ai-chip-that-takes-the-
driverless-battle-to-nvidias-home-turf/, May 2022.

[Tesla, 2022] Tesla (2022). Autopilot. Source: https://www.tesla.com, May 2022.

[Texas, 2022] Texas (2022). Texas Instruments Sitara. Source: http://www.ti.com/tool/
SITARA-MACHINE-LEARNING, May 2022.

[Toshiba, 2019] Toshiba (2019). Toshiba Visconti 5. Source: https://toshiba.semicon-
storage.com/ap-en/company/news/news-topics/2019/01/automotive-20190107-1.html,
May 2022.

[Udupa et al., 2020] Udupa, P., Mahale, G., Chandrasekharan, K. K., and Lee, S. (2020).
Accelerating Depthwise Convolution and Pooling Operations on z-First Storage CNN Ar-
chitectures. In Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1-5.

https://www.tensorflow.org/
https://analyticsindiamag.com/under-the-hood-of-teslas-ai-chip-that-takes-the-driverless-battle-to-nvidias-home-turf/
https://analyticsindiamag.com/under-the-hood-of-teslas-ai-chip-that-takes-the-driverless-battle-to-nvidias-home-turf/
https://www.tesla.com
http://www.ti.com/tool/SITARA-MACHINE-LEARNING
http://www.ti.com/tool/SITARA-MACHINE-LEARNING
https://toshiba.semicon-storage.com/ap-en/company/news/news-topics/2019/01/automotive-20190107-1.html
https://toshiba.semicon-storage.com/ap-en/company/news/news-topics/2019/01/automotive-20190107-1.html

125

[Venkatesan et al., 2019] Venkatesan, R. et al. (2019). MAGNet: A Modular Accelerator
Generator for Neural Networks. In Proceedings of the IEEE International Conference on
Computer-Aided Design (ICCAD), pages 1-8.

[Wu et al., 2019] Wu, Y. N., Emer, J. S., and Sze, V. (2019). Accelergy: An architecture-
level energy estimation methodology for accelerator designs. In Proceedings of the IEEE
International Conference on Computer-Aided Design (ICCAD), pages 1-8.

[Xian et al., 2020] Xian, Z., Li, H., and Li, Y. (2020). Weight Isolation-Based Binarized Neural
Networks Accelerator. In Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), pages 1—4.

[Xiang et al., 2018] Xiang, T., Feng, Y., Ye, X., Tan, X., Li, W., Zhu, Y., Wu, M., Zhang, H.,
and Fan, D. (2018). Accelerating CNN algorithm with fine-grained dataflow architectures.
In Proceedings of the IEEE International Conference on Smart City (SmartCity), pages
243-251.

[Xilinx, 2018] Xilinx (2018). Xilinx XxDNN. Source: https://www.xilinx.com/support/
documentation/white_papers/wp504-accel-dnns.pdf, May 2022.

[Xilinx, 2021] Xilinx (2021). Vitis Al. Source: https://www.xilinx.com/products/design-tools/
vitis/vitis-ai.html, May 2022.

[Yang et al., 2020] Yang, X., Gao, M., Liu, Q., Setter, J., Pu, J., Nayak, A., Bell, S., Cao, K.,
Ha, H., Raina, P, et al. (2020). Interstellar: Using halide’s scheduling language to analyze
dnn accelerators. In Proceedings of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages 369-383.

[Ye et al., 2021] Ye, H., Hao, C., Jeong, H., Huang, J., and Chen, D. (2021). ScaleHLS:
Achieving Scalable High-Level Synthesis through MLIR. Computing Research Repository,
abs/2107.11673(1):1-15.

[Zacharopoulos et al., 2022] Zacharopoulos, G., Ejjeh, A., Jing, Y., Yang, E.-Y., Jia, T., Bru-
mar, l., Intan, J., Huzaifa, M., Adve, S., Adve, V., et al. (2022). Trireme: Exploring Hier-
archical Multi-Level Parallelism for Domain Specific Hardware Acceleration. Computing
Research Repository, abs/2201.08603(1):1-20.

[Zhang et al., 2015] Zhang, C., Li, P, Sun, G., Guan, Y., Xiao, B., and Cong, J. (2015).
Optimizing fpga-based accelerator design for deep convolutional neural networks. In Pro-
ceedings of the ACM/SIGDA International Symposium On Field-Programmable Gate Ar-
rays (FPGA), pages 161-170.

[Zhang et al., 2021] Zhang, X., Ye, H., and Chen, D. (2021). Being-ahead: Benchmarking
and Exploring Accelerators for Hardware-Efficient Al Deployment. Computing Research
Repository, abs/2104.02251(1):1-12.

https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html

126

[Zhao et al., 2020] Zhao, Y., Li, C., Wang, Y., Xu, P, Zhang, Y., and Lin, Y. (2020). DNN-
Chip Predictor: An Analytical Performance Predictor for DNN Accelerators with Various
Dataflows and Hardware Architectures. In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages 1593-1597.

APPENDIX A — 2D CONVOLUTION MODEL IN URSA

This Appendix details the conv2d implementation in URSA.

#include <sstream>
#include <iomanip>

#include <iostream>

//simulator API
#include <TConv2dAdrray.h>

TConv2dArray: : TConv2dArray(std: :string name,
//signals
int _a_buffer[][N],
int _b_buffer[][N]) : TimedModel(name) {

int x,y;

for (x = 0; x < N; x++){
for (y = 0; y < N; y++){
_PE[x][y] = new TPE(this->GetName() + ".PE" + to_string(x) + to_string(y),
X, ¥,
_start,_shift_acc,_shift_out);

_z_buffer[x][y] = 0;
_a_buffer[x] [y] 0;
_b_buffer[x] [y] 0;

for (x = 0; x < N; x++){
for (y = 1; y < N; y++){
_PE[x] [y]->SetTPEAInput (_PE[x] [y-1]->GetTPEAQutput());

for (x = 1; x < N3 x++){
for (y = 0; y < N; y++){
_PE[x] [y]->SetTPEBInput (_PE[x-1] [y]->GetTPEBOutput());
_PE[x] [y]->SetTPEZInput (_PE[x-1] [y]->GetTPEZOutput ()) ;

TConv2dArray: : “"TConv2dArray () {
}

void TConv2dArray: :Reset(0{

int x,y;

_systolic_array_state = Conv2dArrayState::INIT_ARRAY;
_cont_row = O3

_cont_column = 0;

for (x = 0; x < N; x++){
for (y = 05 y < N; y+0){
_PE[x][y]l->Reset();
_z_buffer[x] [yl = 0;

127

128

// Initialize matrizs
for (x = 0; x < N; x++){
for (y = 0; y < N; y++){
_a_buffer[x][y] = (xx2) + 5 + y;
_b_buffer[x][y] = (y+1) + x;

void TConv2dArray::InitArray(){

int x,y;

switch(_systolic_array_state){
case Conv2dArrayState::INIT_ARRAY:{
_start = 0;

for (x = 0; x < N; x++) {
_PE[x] [0]->SetAInputValue(_a_buffer[x] [_cont_column]);
_PE[x] [0]->ShiftTPEAInput();
_PE[0] [x]->SetBInputValue(_b_buffer[_cont_row] [x]);
_PE[0] [x] ->ShiftTPEBInput () ;

}

_cont_column = _cont_column + 1;

_cont_row = _cont_row + 1;

for (x = 0; x < N; x++){
for (y = 1; y < N; y++){
_PE[x] [y]->ShiftTPEAInput () ;

for (x = 1; x < N; x++){
for (y = 0; y < N; y++){
_PE[x] [y]->ShiftTPEBInput () ;

if (_cont_column <= N)
_systolic_array_state = Conv2dArrayState::START_MULT;

else {
_systolic_array_state = Conv2dArrayState::SHIFT_OUT;
_start = 0;
_cont_column = 0;
_cont_row = 0
_shift_acc = 1;
_shift_out = 0;

Ybreak;
default: break;

void TConv2dArray::StartMult(){
switch(_systolic_array_state){
case Conv2dArrayState::START_MULT:{
_start = 1;
_systolic_array_state = Conv2dArrayState::INIT_ARRAY;
} default: break;

129

void TConv2dArray::ShiftOut (){
int y;

switch(_systolic_array_state){
case Conv2dArrayState::SHIFT_0UT:{
_start = 0;
_shift_out = 1;

_shift_acc = 0;

if (_cont_row < N){

_shift_out = 1;

for (y = 0; y < N3 y++) {
_z_buffer[N-(_cont_row+1)][y]l = _PE[N-1] [y]->GetZOutputValue();

_cont_row++;

if (_cont_row == N)
_systolic_array_state = Conv2dArrayState::END_OP;
}Ybreak;
default: break;

void TConv2dArray: :EndOp(){

int x,y;

switch(_systolic_array_state){

case Conv2dArrayState::END_OP:{

printf("systolic_array: accumulator result!\n");

for (x = 0; x < N; x++){
for (y = 0; y < N; y++){

printf("%d ", _PE[x][y]->GetMACResult());

}
printf ("\n");

printf("systolic_array: shifted out result!\n");
for (x = 0; x < N; x++){
for (y = 0; y < N; y+:){
printf("%d ", _z_buffer[x][yl);
}
printf ("\n");

printf ("Done!\n");
while(1);

}Ybreak;

default: break;

std: :string TConv2dArray: :GetName() {

return ".systolic_array";

130

SimulationTime TConv2dArray::Run() {

int x,y;

this->End0p();
this->ShiftOut();
this->InitArray();
this->StartMult();

for (x = N-1; x >= 0; x--){

for (y = N-1; y >= 05 y--){
_PE[x] [y]->RunQ);

return 1;

131

APPENDIX B — DSE TABLES

This Appendix presents the complete set of results related to the DSE exploration,
for the physical synthesis and analytical flows. These Tables show the PPA information and
its breakdown regarding accelerator core and output buffer, the necessary buffer capacity
to store all input values, the number of memory reads, and the number of memory writes.
The column synt.flow corresponds to the physical synthesis flow (from Section 6.1), while
the analytic column is the results from the analytical flow (from Section 6.3). The column
|error| is the obtained error for each obtained value. The Tables are separated by memory
type (Tables B.1 to B.3 regard SRAM while Tables B.4 to B.6 regard DRAM), and each Table
presents the values for the five Accelerators described in Chapter 4.

132

29100

788855689

G¥66'689'C

20929

2829'/€El €028'97 1

68892

(A% 443

c02S’ I ve

100070

¥¥9.°210°'L

€592°210°}

2000070

666€°202' L

200¥°202" L

(ru)
ABiaua
1e101

00000

9G199'8Y

9199'8¥

00000

9199'8¥ 91998y

00000

L¥86°'GYL

Ly86°'GYL

00000

91998y

91998y

000000

/¥86'GY L

/¥86°GY L

(ru)
ABiaua
BTN
wels

66100

265€82°0v9°C

0v0L°0¥9'2

9,86

165788 G809'/6

2889y

£060°981

Lrye Gl

00000

6795°€96

67795°€96

000000

G061 +90°k

G061 +90'L

(ru)
ABisua
peal
weis

00000

009‘¢

0000'009°€

00000

0000°009°€ 0000°009°€

00000

0000°008°0+

0000°008°0+

00000

009°c

009°c

000000

008°0+

008°0+

SajUM
Aowaw
dewyo

00000

00000

00000

00000 00000

00000

0000°002°Z

0000°002°Z

00000

00000°0

002°L

002°L

speau
Aowaw
dewyo

00000

00000

00000

00000 00000

00000

00000

00000

00000

000000

SajUM
Aowaw
induy

66100

Y0L'V61

0000°SEL Y6+

9,86

0000°€25°9 00008612

9/.€'6

0000°€25°9

000086+

00000

9G50°+L

9G50°+L

000000

9G0°HL

9G0°HL

spea.
Aowaw
indui

geev'e

2€0°2EL°€19

096/'296'829

6620°L

LOSY'LES HIS | 00G2°L12 0SS

€891°0}

0088°'£28°+92

0000°59v‘+62

6v.1°0

SY2e'L06'LYS

06.1'£98°8%S

g6vel 0

9180'SkLvee

¥222'966 2

(ry)
ABiaua
9100

00000

8€0"}

08€0"}

28ee’0

8899650V 020y

00000

0'¢

00¥0'¢

0G0°0

ce851ee

yAR NS

000000

8616°0

8616°0

(mu)
1amod
ooe

00000

00000

82040

8899856° 1 Sv6' L

00000

00000

8/80°0

cg88ce’ L

ee’t

000000

(mu)
1amod
inq

00000

8€0’}

08€0" |

81000

0/60'¢ 6960

00000

00¥0'¢c

00¥0'¢c

00000

0./86°0

0/86°0

000000

8616°0

8616°0

(Mmu)
1amod
9100

geev'e

¥92° 165

0000°2¥6°'G09

€eve’L

0000'62}+92} | 0000°GZ}9EL

0cv9’L

0000°625°0¥ +

0000°5/8°2¥k

Svel'o

265°9¢ee

£88°9¢e

§g6vel0

265°9¢e2

888°9¢e

s9joAd
jo
Jaquinu

00000

00000

891°L 891

00000

89},

891

00000

000000

(sug)
Anoedeo
induy

00000

881€'8€6'V }

881€'8E6'V }

6.€€°0

919E'SYL'YS | 0¥20'+9S VS

00000

9/€€°Gey'S)

9/€€'Sev'GH

§06.°0

¥9v0'599°1G

Y1865 1S

000000

0896'€95 Y

0896'€95

(zw)
ease
|ejo}
208

00000

00000

43140

0000'658°0¥ | ¥299'v.9'0¥

00000

00000

00000

€0L0°L

0000'992'8€

0892'098°LE

000000

()
eale
Jsynq
indino

00000

881€'8€6'V |

881£'8€6'V |

00000

919€'988CL | 919€°988'EL

00000

9/€€'Gev'Sh

9/€€'Sev'Gh

00000

¥9v0'66€C}

¥9v0'66EC}

000000

0896'€9G '}

0896'€9G 'V}

()
eale
3102

AO\OV
laoai9|

onhjeue

MOJ} JuAs

(%)
|1ou13|

onhjeue Mo}} "WAs

AO\OV
lao419|

onAjeue

MO} “JUAs

AQ\DV
|[1o013|

onhjeue

MO}} “JuAs

(%)
|1o013|

onhjeue

Mo}} "WAs

s)nsai

SO

Jnq 901 SI

221|s SI

g sm

SM

moyjjerep

(weis) o 19he|

‘2dA) Alowew \YYS 104 synsal onhjeue o Joke] NND O LJelD :1'g a|qeL

133

€v10°0

1LSSS YS9

€8E¥'GG 19

6.vS'S

05¥8°08}

L9V 161

18L2°L

€€/2'/18

¥v58',28

610070

8/£0°€€9°2

8/86'2€9°C

81000

0899'692°€

G019'692°C

(Pu)
ABisua
1e101

00000

8c18v6l'1e

8¥6l'Ic

00000

8v6l'Ie

8v6l'Ie

00000

0LL1'6E€

0L11'6€€

000070

8v6lIc

8v6l'le

00000

0L11'6€€

0LLL'6E€E

(Pu)
ABiaua
M
welis

6€L0°0

9196¥6°LE}9

6€08'CE}9

1282’9

9€09'8G1

05€2'691

8//12

VG LLY

08.1'88%

00000

6266'019°2

6266'019°2

00000

65€6'626'C

65€6'626'C

(Pu)
JNJEIE]
peas
wels

00000

895°}

0000895}

00000

0000895}

0000895+

00000

0000'880°Ge

0000'880°G2

00000

895}

895°}

00000

880°Ge

880°Se

SajlIM
Aowaw
dewjo

00000

00000

00000

00000

00000

00000

0000°025°€2

0000°025°€2

00000

00000

0zs'‘ee

ozs'ee

speal
Aowsw
dewyo

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

SajlIM
Aowsw
indui

6€L0°0

261°2sy

0000°§52°2Sh

12829

0000°969°}

0000°08Y°2H

1282’9

0000'969°}

00000872+

00000

¥G261

¥vS26l

00000

¥vS26l

vS26l

speai
Aowsw
nduy

2996’ |

801" 182 LY}

08EL'LLS'6EY' L

28/80

G/65°055°9¥0°

0028'6E1°LE0° |

19668

00v8'2¥.'609

0088'81¥'65S

0sve'9

€2E¥'280°058

09% 021008

8/2€01

0v9¥'991°'G19

9186°085°2SS

(ry)
JNJEIE]
2109

997" 1

8€0°}

0€c0’t

cLIv'S

887/26€€6'C

00eL’e

0052’9

02

0026’

08€€°S

S.yLIGeLE }

et

298€'6

86¥6°0

€898°0

(Mmu)
Jamod
ooe

00000

00000

28040

8817.269¢€8' |

veg't

00000

00000

6500

2§y 1165eE0

192€0

000070

(M)
Jamod
inq

€991’ |

8€0’}

0€co’t

0lcoot

0,60

906' L

00529

0010

00c6’}

9Lve'L

0/86°0

€026'0

298€'6

8616°0

€898°0

(M)
1amod
3100

618€€

91965t

0000°902°L0%°}

LISEY

0000'2€0°'992

0000¥€}822

S0SY'L

0000'2L0°€+E

0000 +9€° 162

01980

089°2¥9

1S12h9

60980

089°L¥9

2SHer9

s9joho
jo
Jaquinu

00000

ove'vL

00000

ove'vL

Oovev.

00000

ove'vL

ovev.

00000

00000

(sug)
Anoedeo
indui

yv652

881E'8E6'V |

¥0E2 9€E‘GH

65020

919€°/50'2S

¥8G.'¥91'2S

8V9/'L

9/8€'Sey'GH

2lSP'e0L'GH

L209°L

¥9¥9'S¥0°'2e

9585 ¥0v'2e

gevi'e

0896'€9G'Y

¥¥.S LE0'GH

()
eale

|ejo}
-00e

00000

00000

v62y'0

0000°}2}'8E

2118°£,00°8E

00000

00000

00000

90220

0009'9¥9°8

0895'£29'8

00000

(qwr)
eale
J8ynq
indino

yv65°C

881€'8E6'V |

¥0EC 9EE‘GH

L6t

919€'988°€}

2LY6 9SG Yk

8V9/°I

9/8€'Sey'GH

2lSP'e0L'GH

gevLe

¥9v0'66€°C

9LLO'LLLE}

gevi'e

0896'€9G'

¥v.S'LE0'GH

(qwr)
eoE
2102

(%)
|1o419|

onAjeue

MoOJ} JUAs

(%)
|ao419|

onfjeue

MOJ} JuAs

(%)
|[10019|

onAjeue

Moy} "JUAs

(%)
laoaia|

onhjeue

MoJ} “Juhs

(%)
||10013]|

onhjeue

MOJ} Juhs

sjnsai

so

§nq oS sI

29J|s S|

jng sm

SM

mojjerep

(weis) | 19he|

‘2dA1 Alowew \NYYS 104 synsal onhjeue | Jake] NND O LJelD :2'g 8|qeL

134

£8€0°0

66.19€°¥2SY

6v11'925' Y

G88e’|

£€695'762

Ev1¥'862

398%°0

1e8L°LLL

€9/G718L

€€00°0

£000°02}'€

6968°641€

G200°0

169€'€09'C

16/2°€09'€

(Pu)
ABiaua
1e10}

00000

9618G8.°L

8G98.L°L

00000

8G8.L°L

8G98.L°L

00000

clyl'eve

(A48 74

00000

8G8.L°L

8G8.L°L

00000

(A48 74

[ZA 4874

(ru)
ABi1aua
am
wels

18€0°0

9108€G'GIS'Y

2092 LISy

€LVEL

8€96'38¢

2698'68¢

veL0

1001825

§GG00°2ES

00000

LieeLLL'E

LLCELLEE

00000

¥/G¥'€SE'E

Y.SY'EGEE

(ru)
ABi1aua
peas
wels

00000

9/8

0000929

00000

0000925

0000929

00000

0000°2EY'8+

0000°2EY'8H

00000

9.9

9.8

00000

zer'st

zer'sl

SajUM
Aowaw
dewyo

00000

00000

00000

00000

00000

00000

0000'958°Z}

0000'958°Z }

00000

00000

9G8°LI

9G8°LI

speal
Kowaw
dewyjo

00000

00000

00000

00000

00000

00000

000070

00000

00000

00000

SajUM
Aowaw
indui

18€0°0

266°CEE

000061 }'€€E

ELVEL

0000880°+2

0000'9.€°}2

€LVEL

0000880°+2

0000'9.€°}2

00000

ovv'ece

ovv'6ee

00000

ov¥'6ee

ovv'6ee

speal
Aowaw
indui

€368

895°€€6°£€0°}

0200°+88890°

avs6'L

€LVE'€29'618

0959'2€2'65.

G26E'92

0082 9E'GES

002¥'0.5€‘2h

seeclel

£268°069°'€68

0189°+06'68L

oleeel

2L28'65Y'¥9L

vy H'eE1'GL9

(ry)
ABiaua
9102

06290

8€0’}

0LED’t

6¥95°6

2€02.LE2€E9°E

Ovee'e

€/86'L}

00v0'c

06eL’t

9/69°L

L1929E0L L'

LE0"L

8v8L°L

86160

288’0

(Mmuw)
1omod
oo

00000

00000

98620

2e0e.Le5¢eY’ |

vev'L

00000

00000

00000

€0€0°0

clh19zg9geet 0

€210

000070

(Mmw)
Jamod

g

06290

8€0’}

oLeo’t

000S5'9}

0/60°C

8l

€/86'L1

00v0'2

06cL't

€81.'8

0860

9060

8v8.L°L

86760

288’0

(mu)
1amod
9102

2055

9€6'666

0000'2¥29€0°}

LoLv'L

0000°2€0'2€2

0000'v6Y'GE2

cc6e’6

0000°¥2'292

0000°086'¥2

6250°9

¥98'708

151992

8250°S

79808

251'99.

sajoho
jo
Jaquinu

00000

00000

9€6°G62

966562

00000

9€6°G62

966562

00000

00000

(sug)
Anoedeo
indup

92LL'S

881£'8E6'V}

¥902°€5L'S

§6/20

919¢€'189'9Y

962£°018'9Y

092t

9/€€°Ger'SH

96¥2'969'G

8.0€¢

¥9v9°68€'GH

¥902'€5L'G}

0gc6'e

0896'€9G'Y

¥98%°200°'G}

()
eale

|ejol
ao%e

00000

00000

86¥¥°0

0000°G6.2€

0091'8¥9°2€

00000

00000

00000

G200°0

0009066k

¥055°066°

000070

(g)
eale
J8ynq
indino

92LL'S

881€'8E6'V |

¥902'€5L'S 1

S/v6'L

919€'988'E}

9691291V 1

092/t

9/€€'Sey'SH

96v2'969'G 1

0cv9'e

¥9v0'66EE}

0959'29.°e}

0€26'e

0896'€9G'Y

¥98%'200°G}

()
eale
3102

(%)
|10449|

onhjeue

Moy} "Whs

(%)
|10449|

onhjeue

Moy} "Whs

(%)
|10449|

onhjeue

Moy} "Whs

(%)
|10449|

onhjeue

Moy} "Whs

(%)
[BL2EC]]

onhjeue

Moy} Juhs

synsal

so

Jnq 01s sI

221|s sI

jng sm

SMm

mojjerep

(weus) g Johe|

‘2dA} Alowew \NYYS 104 synsal onhjeue g Joke] NND O LJelD :e'g a|qeL

135

18000

L02Lv'86€CE

186002

21000

298799}

L20G¥99°L

G000°0

80/2°LE0'Y

0262'LE0'Y

1G90°0

2LEE V0T e

2E6E°961CH

8€G0°0

¥S9L'9L5¥)

8¥26'89SY' |

(Pu)
ABisus
1ej0}

00000

26.5'86S

26.5'869

00000

26/5'865

26/.5'865

00000

9/81°G6L}

9/8L°G6L}

00000

26.G'86S

¢6.G'86S

00000

9L8L°G6L}

9/8L°G6L}

(Pu)
ABisus
M
wels

28000

85298'86.'1E

LS/¥'108°LE

00000

862€'G90°}

862€'G90°}

00000

99ze v

99ze v

9/90°0

6v6L V09 1

9G56°96S ||

1900

£169°08L°CH

2G8'2LL Tt

(ru)
ABisus
peai
weJs

00000

009'¢

0000°009‘€

00000

0000°009°€

0000°009°€

00000

00000080}

00000080}

00000

009'¢

009'¢

00000

00801

008°01

sajm
Aowaw
dewjo

00000

00000

00000

00000

00000

00000

0000°002°L

0000°002°Z

00000

00000

002,

0022

speal
Aowaw
dewjo

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

EET
Aowaw
induy

28000

¥0L'v61

0000°02.v6}

00000

0000°€25'9

0000°€25'9

00000

0000°€25'9

0000°€259

9/90°0

950°}L

800}

9/90°0

950°'HL

800}

speal
Aowaw
indup

vive'L

G2S'e620€0° L

ZeIrEVeEr0’t

€L0v°€

8YLE VY LLS

0+59'020'865

L9GV°9

0210°16590€

09€0°€5.°228

€661°Cl

650825 +'€96

0881067858

0LZE0

gHBELL9EE

SYEL 1/8'VEE

(ry)
ABiaus
2102

00000

99/8°0

99/8°0

0080°0

6.96.€8°€

0Ly8'e

00000

V6Lt

0v6L"L

0000

99906

806"}

00000

532 7Al0)

534 7Al0)

(Mmw)
1amod
ooe

00000

00000

¥6€L°9

8899856'}

Ges’t

00000

00000

299€'0e

c€88ee’ |

oLt

00000

(Mmw)
1amod
inq

00000

99/8°0

99/8°0

00000

09002

900¢

00000

0v6.L"L

0v6L'L

00000

0¥08°0

0¥08°0

00000

EvvL0

Evv.L0

(Mmuw)
1amod
2100

viveL

82E'GLI)

0000°20+061F

€02y'9

00008695 ¥+

000076955+

/96¥°9

0000'868°0L}+

000076928+

612E°0

851GV

LL6'6YY

0LLE0

851GV

G661y

sajoho
jo
Jaquinu

00000

00000

891°L

891/,

00000

891/,

891,

00000

000000

(sng)
Ayoedeo
indui

00000

881E'8E6 v |

88VE'8E6 v |

6.€€°0

919€'GYL VS

020" +9S'¥S

00000

9./€€'Gey'SH

9./8€'Ger'SH

60710

¥9¥0°'2EE‘ 1S

718652 1S

000070

0896°€9S V|

0896°€9S V|

(zwr)
eale
|ejo}
ooe

00000

00000

[4%erdl0]

0000'658 0¥

¥299'v29°0¥

00000

00000

00000

80610

0000°€€6°2E

0892'098°2€

00000

()
eale
J8ynq
indino

00000

887€'8€6 71

887€'8€6 V|

00000

919€'988°€t

919€'988°C

00000

9/€€'G2¥'S 1

9/€€'G2y'S 1

00000

¥9v0°66€°C

¥9v0'66E°CH

000070

0896°€95 V|

0896'€9S' V1

(zwr)
eose
2109

(%)
|1o013|

onhjeue

MO}} “Juhs

(%)
|10113|

onhjeue

MO}} Juhs

(%)
|1o013|

onhjeue

Moy} "Julks

(%)
|10113|

onhjeue

Moy} "Juhks

(%)
|10113|

onhjeue

Moy} Juhs

sjnsal

SO

jnq a9y|s si

221|s sI

jng sm

SM

mojjeiep

(weup) o 19Ae]

‘adA} Alowew \yHQ@ 40} sinsaJ diAjeue Q Jakel NND 0LJelD :'g 91qeL

136

120070

L90¥9' VLY.L

8/88°6}}V.

€200°0

£0S0'eLi'e

1002212

S000°0

YEYS'€26'6

026Y'€26'6

8920

Gv12'80L'IE

LE8Y'¥29' I

seleo

1S1L'6SY'6E

28€0'9.£'6€

(pu)
ABisua
1e101

0000°0

96vv1.'09¢

Sv1L'09¢

0000°0

SvE.'092

Sv1.°09¢

00000

6LEV LLLY

BLEV LLL'Y

0000°0

S¥E,092

S¥1.'09¢

00000

6LEV LLLY

BLEV LLL'Y

(pu)
ABisua
M
wels

+200°0

S2SYS 158'EL

S1.L'9G8°CL

0000°0

061016}

061016}

00000

6L¥Y1GL'S

6LYY1SL'S

99920

GE609VY'IE

[AZAZA 1N

§.€2°0

¥95€°£82'SE

+LEL°802°GE

(pu)
ABiaua
peai
weis

00000

895}

0000'895"+

00000

0000°89S'}

0000°89S'k

00000

0000'880°52

000088062

00000

89S°I

895}

00000

880°S2

880°52

SajIM
Aowaw
dewjo

00000

00000

00000

00000

00000

00000

0000°025°€2

0000°025'€2

0000°0

00000

ozs'ee

0es'ee

speal
Aowaw
dewyjo

0000°0

0000°0

0000°0

00000

00000

00000

00000

00000

0000°0

00000

SajIM
Aowaw
indui

+200°0

261°2SY

0000222k

0000°0

0000°969°}}

0000°969°

00000

0000°969°} 1

0000°969°} 1

99920

rS526)

2026+

999¢°0

vvSeeH

2e0'26H

speal
Aowaw
indui

6980

¥G/'626°08€'2

0286'608'10¥'2

ol8y'y

25eee8L LGt

0266'255'L0} +

602€'8

02+6'909'699

0v08'69+'819

9098

£919'6¥1'90Y"

01+95'966'v62" -

0€29'9

2LSY'06.'926

6880'222'698

(ry)
ABiaua
3102

9%/8°0

99/80

0698°0

008¥'S

1916/62L°€

09€5°€

¥S0v'S

6L°1

020L'L

0008°L

06/6/.1280°}

€90°L

L91€Y

22240

SELL0

(Mw)
1emod
208

00000

00000

259¢€'9

887/269€8" |

lel't

00000

00000

208891

2S/¥11992€0

§8/2°0

00000

(Mw)
1omod

g

9%/8°0

99/8'0

0698°0

006801

09002

608°L

YS0v'S

0v6L’L

020L'L

198v'2

0¥08°0

S¥8.°0

L91€Y

22240

SELL0

(Mmu)
1amod
2102

882/’

9609122

0000'8/8'€9.°C

1€98°€

000002} +0€

0000222cLE

0992

0000°8¥2°€LE

0000202°€9¢€

Lhice

¥81°G¥e’ L

Lve'8le’t

80lce

v8I'sve’t

Ise'sie’t

sajoho
jo
Jaquinu

00000

ove'vL

00000

ove'vL

ovev.

00000

ove'vL

ovev.

00000

00000

(sng)
Ayoedes
indui

652

881€'8€6 V|

¥0€2°9€€'S |

6502°0

919€250'2S

¥8SL¥91'eS

8¥9/°L

9/£€'Gey'S 1

2ISY'20L'S)

1209

¥9v9'S¥0'2e

958G ¥0¥'ee

gevie

0896'€9S 'V}

Yv.S LE0'SH

()
eale
[e10}
Jooe

0000°0

0000°0

v62v'0

0000°+£1'8€

2118200°8€

00000

00000

00000

90220

0009'9%9°8

0895°£29°8

00000

()
eale
J8ynq
indino

652

881€'8€6 V1

¥0€2°9€€'S |

€LI6’L

919£'988'€}

2LY6'9SH YL

8¥9/°L

9/£€'G2y'S)

2ISY20L'S)

gev.Le

¥9v0'66E'C 1

9LL0°LLL'E)

gevi'e

0896'€9S 'V}

Yv.S LE0'SH

(zw)
eae
2102

(%)
l1oaa|

onAjeue

Moy} Juhks

(%)
|[10113|

onAjeue

Moj} Juhs

(%)
|1ou3|

onAjeue

Moy} WAs

(%)
l1oai3|

onAjeue

Moj} “Juhs

(%)
|1o013|

onAjeue

Moy} WAs

synsai

so

inq {2js st

201|S S|

nq sm

Sm

moyerep

(weup) | Jahe|

‘adA} Alowew Y@ 40} sinsaJ onAjeue | Jakel NND 0LJelD :G'g 9|qel

137

€610°0

eShy I8Y'vS

98€6' 16V 1S

S¥00°0

0098°0¥S'€

1669°075°€

G100°0

S.v9'Ser'6

6.05'S21'6

8868°0

92¥1'695°LE

Yoy e LE

09220

9LE0VSY'EY

6LIV'6LLEY

(Pu)
ABiaus
1e10}

00000

2/92..'G6

1211°G6

00000

12l1'S6

1211°96

00000

§G2/'$90°C

G52/ '¥90°C

00000

12/1'56

1211°96

00000

G52/ '¥90°C

§G2/'¥90°C

(Pu)
ABiaus
oM
wels

26100

S¥026'€8E' VS

62LEV6E' S

00000

LHLOPYY'E

LHLOPYY'E

00000

1G62°09€'9

1562°09€'9

9006°0

YHLE LY LE

OvEY LEL'LE

1GE8'0

¥SE1'88E°0Y

18G9'€50°0Y

(Pu)
ABiaus
peas
wels

00000

9/G

0000929

00000

0000'9/S

0000'92S

00000

0000°2EV'8

00002V

00000

9/9

9/G

00000

2er'8l

zev'st

SalIM
Aowsuw
dewjo

0000°0

00000

0000°0

00000

00000

00000

0000958~}

0000'998°Z}

0000°0

00000

9G8°/1

9G98°LI

speai
Aowaw
dewyo

0000°0

00000

00000

00000

0000°0

00000

00000

00000

00000

00000

SalUM
Aowaw
ndui

26100

266'2E€

0000'950°€€E

00000

0000'880°+2

0000'880°}+2

00000

00008802

00008802

9006°0

ov¥'6ee

26e'L2e

9006°0

0b¥'622

26g'L22

speal
Aowaw
ndui

1€82°2

2G6°L/0'2GL

0/£6'G20°C6L"}

8Gc/L'8L

956€°€22'910°}

00£9'+¥6°GS8

¥G9'8¢

009€°'668°929

02.8°0L2'L8Y

€2l6'G)

1992'G19'8GF" |

899122152}

LI6L'EL

2529'289°0L 't

LL91€GSVED’

[(y)]
ABiaus
9102

GG9v°0

99/8°0

120880

009t v1

6199G€6/2°€

0998'c

1€G8G°€2

V6Lt

02sy' |

0028'S

£€220906816°0

¥898°0

leéce'y

Evv.L'0

34 YA

(Mw)
1amod
oo

00000

00000

6L0v'Cch

2€02.LESEY' L

1.2’}

00000

00000

8LL2'L

chlozgoeeet o

GO

00000

(Mw)
Jamod
inq

SS9¥°0

99/8°0

£088°0

¥eee9e

0900°2

88G°L

L€95°€2

oveL't

0csy' |

29LL'9

0¥08°0

¥€G.°0

L6z y

514 7A0]

34 YA

(Mmw)
1amod
9102

1928'L

02.'866°k

0000'016°S€0°2

88G 1L

0000'962°562

000085862

€8cly

0000°0¥¥'6¥E

0000'985°S€€

18658

¥98°'2LS'}

L2e'8y'L

865'8

¥98'2LS'L

Lee'sry’t

sajoha
jo
Jaquinu

0000°0

00000

9€6'G62

9€6562

00000

9€6'G62

9€6°562

0000°0

00000

(sug)
Ayoedes
indui

LE6V'C

88¥E€'8E6'V |

000%°02€'SH

§6/2°0

919€°189'9¥

962€°018°9

09eL'}

9/£€°Gey'SH

96v2'969'G}

8L0€'2

¥9¥9°68€°S 1

¥902°€SL'GH

0€c6'e

0896°€95 v}

¥98Y°200°Gh

(zwr)
eose
|ejo}
208

0000°0

00000

86¥¥°0

0000°56.°2€

0091}'8¥9°2E

00000

00000

00000

§200°0

0009°066° -

¥055°066°

00000

()
eaJe
Jaynq
indino

Lg6v'e

881E'8E6'V |

000%°02€'S+

G/v6'L

919€'988°€

969129+ vk

09e/'L

9/€€°SeY'GH

9672'969°G

0cv9'e

¥9v0'66E€ 1

0959292°C}

0€26'c

0896'€95'v |

¥98¥°200°G

)
eale
2102

(%)
|lao419|

onfjeue

Mo} "Juhs

(%)
|l1o019|

onAjeue

Moy} "WAs

(%)
|ao419|

onfjeue

Mo}} "JuAs

(%)
|10419|

onhjeue

MO} “Juhs

(%)
|[10019|

onAjeue

Moy} "WAs

s)jnsal

SO

jnqg aoy|s si

Q2||s S|

jng sm

SM

mojjeyep

(weup) g 19Ae]

‘adA} Alowew \yHQ@ 40} sinsal diAjeue g Jakel NND 0LJelD :9°g 9|qeL

L

':....' &—A h‘
i/
" . N “;Qv»t"".

marista PUCRS

Pontificia Universidade Catdlica do Rio Grande do Sul
Pré-Reitoria de Graduagao
Av. Ipiranga, 6681 - Prédio 1 - 3%, andar
Porto Alegre - RS - Brasil
Fone: (51) 3320-3500 - Fax: (51) 3339-1564
E-mail: progradi@pucrs.br
Site: www.pucrs.br

	Introduction
	Thesis Statement
	Objectives
	Original Contributions
	Thesis Structure

	State of The Art
	Basic Concepts
	Hardware Accelerators
	Dedicated Accelerators
	Industrial Accelerators

	Hardware Design Space Exploration Frameworks and Simulators
	Hardware Design Space Exploration Frameworks
	Hardware Simulators
	Final Remarks Related to DSE Frameworks and Simulators

	Thesis Contribution for the State-of-the-Art

	High-level Modeling Framework for DSE
	TensorFlow CNN Modeling Framework
	Shift-based Quantization
	PPA Extraction
	URSA System Simulator
	Results
	PPA Results
	Energy Estimation Comparison Results
	Simulation Time Comparison

	Final Remarks

	Machine Learning Hardware Accelerator Design
	Array Style RTL Implementations
	Systolic 2D Accelerator
	1D Accelerator

	Dataflow Implementations
	Weight Stationary (WS) Dataflow
	Input Stationary (IS) Dataflow
	Output Stationary (OS) Dataflow
	Final Remarks

	Machine Learning Hardware Accelerator Results
	Array Style Results
	Dataflow Type Results
	Final Remarks

	Design Space Exploration Flows
	DSE Physical synthesis Flow
	MAC-based DSE Flow
	Analytic DSE Flow
	Performance Estimation
	Memory Accesses Estimation
	Output Buffer Area and Power Estimation

	Results
	MAC-based DSE Flow Results
	Analytic DSE Flow Results

	Conclusion and Future work
	Future Work
	Summary of the publications produced during the Thesis

	References
	Appendix A – 2D Convolution Model in URSA
	Appendix B – DSE Tables

