
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

LEONARDO REZENDE JURACY

A FRAMEWORK FOR FAST ARCHITECTURE
EXPLORATION OF CONVOLUTIONAL NEURAL

NETWORK ACCELERATORS

Porto Alegre
2022

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

A FRAMEWORK FOR FAST
ARCHITECTURE EXPLORATION
OF CONVOLUTIONAL NEURAL

NETWORK ACCELERATORS

LEONARDO REZENDE JURACY

Doctoral Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Fernando Gehm Moraes
Co-Advisor: Prof. Matheus Trevisan Moreira

Porto Alegre
2022

LEONARDO REZENDE JURACY

A FRAMEWORK FOR FAST ARCHITECTURE
EXPLORATION OF CONVOLUTIONAL NEURAL

NETWORK ACCELERATORS

This Doctoral Thesis has been submitted in
partial fulfillment of the requirements for the
degree of Ph. D. in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on August 5th, 2022.

COMMITTEE MEMBERS:

Profa. Cristina Meinhardt (PPGCC/UFSC)

Profa. Fernanda Gusmao de Lima Kastensmidt (PGMICRO/UFRGS)

Prof. César Augusto Missio Marcon (PPGCC/PUCRS)

Prof. Matheus Trevisan Moreira (PUCRS- Co-Advisor)

Prof. Fernando Gehm Moraes (PPGCC/PUCRS - Advisor)

AGRADECIMENTOS

Gostaria de deixar aqui, meu muito obrigado a pessoas que contribuíram para o
desenvolvimento desta Tese.

Primeiramente, gostaria de agradecer e dedicar este trabalho aos meus pais, An-
chieta e Rejane. Pode parecer clichê, mas sem eles, nada disso seria possível e essa Tese
não existiria. Muito obrigado por tudo, amo vocês.

Gostaria de agradecer ao meu orientador Fernando Gehm Moraes, que aceitou me
orientar a partir da segunda metade do Doutorado. Obrigado pela paciência, pelas horas
gastas, e pelos ensinamentos. Se um dia eu tiver um cachorro, tenha certeza que ele terá
só um nome.

Ao Alexandre de Morais Amory, que está comigo nessa minha jornada acadêmica
há 10 anos. Obrigado pelas orientações durante a bolsa de iniciação científica, trabalho de
conclusão de curso, mestrado, e doutorado. Muito obrigado por me orientar durante todos
esses anos.

Ao Matheus Trevisan Moreira, que também está comigo desde o trabalho de con-
clusão de curso. Obrigado por todas as reuniões remotas, por todas as discussões que
levaram a esta Tese, e pelas conversas não relacionadas sobre música e afins. Deixo aqui
meu muito obrigado.

Agradeço aos professores do PPGCC pelas aulas durante a pós-graduação. Tam-
bém gostaria de agradecer a secretaria do PPGCC por serem sempre atenciosos.

Queria também agradecer alguns amigos especificos que fiz durante essa jornada
acadêmica. Ao Fochi e ao Caimi, pelos conselhos e conversas sobre futebol. Ao Korol,
pelas conversas sobre a vida acadêmica e pelas trocas de artigos. Ao Walter Lau Neto, que
trabalhou comigo durante a bolsa de iniciação científica, por ouvir as reclamações sobre o
andamento do Doutorado. Ao Felipe Kuentzer, que trabalhou comigo e me ajudou muito
durante o Mestrado. Ao Carlos Henrique, que me ajudou muito durante a graduação e me
indicou para a bolsa de iniciação científica no GAPH. Ao Wachter, que junto com o Amory,
foi uma das primeiras pessoas com quem trabalhei. Ao Sergio Johann, pelas conversas
sobre guitarra e eletrônica.

Gostaria de deixar meu obrigado a várias pessoas que conviveram comigo du-
rante meus anos de pesquisa, e que trabalharam comigo no GAPH e na DATACOM, e o
pessoal do GSE: Castilho, Madalozzo, Augusto Erichsen, Thiago Mânica, L. Heck, G. Heck,
Guilherme Medeiros, Guazzelli , Bortolon, Augusto Moraes, Felipe Lazzarotto, e Tanauan.
Foram muitas pessoas, e provavelmente esqueci de alguém, mas deixo minhas sinceras
desculpas e o meu muito obrigado a todos vocês.

Por fim, gostaria de agradecer à CAPES, que financiou todo esse trabalho.

Mais uma vez, muito obrigado a todos.

UM FRAMEWORK PARA EXPLORAÇÃO RÁPIDA DE ARQUITETURAS
DE ACELERADORES PARA REDES NEURAIS CONVOLUCIONAIS

RESUMO

Aprendizado de Máquina (ML, do inglês, Machine Learning) é uma subárea da inteligência
artificial que compreende algoritmos para resolver problemas de classificação e reconhe-
cimento de padrões. Uma das maneiras mais comuns de desenvolver ML atualmente é
usando Redes Neurais Artificiais, especificamente Redes Neurais Convolucionais (CNN, do
inglês, Convolutional Neural Networks). As GPUs tornaram-se as plataformas de referên-
cia para as fases de treinamento e inferência das CNNs devido à sua arquitetura adaptada
aos operadores da CNN. No entanto, as GPUs são arquiteturas que consomem muita ener-
gia. Um caminho para permitir a implementação de CNNs em dispositivos com restrição de
energia é adotar aceleradores de hardware para a fase de inferência. No entanto, a litera-
tura apresenta lacunas em relação às análises e comparações desses aceleradores para
avaliar os compromissos Potência-Desempenho-Área (PPA, do inglês, Power-Performance-
Area). Normalmente, a literatura estima PPA a partir do número de operações executadas
durante a fase de inferência, como o número de MACs (do inglês, Multiplier-Accumulator),
o que pode não refletir o comportamento real do hardware. Assim, é necessário fornecer
estimativas de hardware precisas, permitindo a exploração do espaço de projeto (DSE, do
inglês, Design Space Exploration) para implementar as CNNs de acordo com as restrições
de projeto. Esta Tese propõe duas abordagens de DSE para CNNs. A primeira adota um
simulador de sistema com precisão de ciclo de relógio e usa uma linguagem de alto nível
para descrever o hardware de forma abstrata. Essa primeira abordagem, usa o TensorFlow
como front-end para treinamento, enquanto o back-end gera estimativas de desempenho
por meio da síntese física de aceleradores de hardware. A segunda abordagem, é um DSE
rápido e preciso, usando um modelo analítico construído a partir dos resultados da síntese
física de aceleradores de hardware. O modelo analítico estima a área de silício, desem-
penho, potência, energia e quantidade de acessos à memória. O erro médio do pior caso
observado comparando o modelo analítico com os dados obtidos da síntese física é inferior
a 8%. Embora a segunda abordagem permita obter resultados precisos e de forma rápida,
a primeira abordagem permite simular um sistema computacional completo, considerando
possíveis redundâncias na modelagem de aceleradores. Esta Tese avança o estado da arte,
apresentando métodos para gerar uma avaliação abrangente de PPA, integrando estruturas
de front-end (por exemplo, TensorFlow) a um fluxo de design de back-end.

Palavras-Chave: Redes Neurais Convolucionais, Acelerador de Hardware de Convolução,
Simulador de sistema, PPA, Exploração do Espaço de Projeto.

A FRAMEWORK FOR FAST ARCHITECTURE EXPLORATION OF
CONVOLUTIONAL NEURAL NETWORK ACCELERATORS

ABSTRACT

Machine Learning (ML) is a sub-area of artificial intelligence comprehending algorithms to
solve classification and pattern recognition problems. One of the most common ways to de-
liver ML nowadays is using Artificial Neural Networks, specifically Convolutional Neural Net-
works (CNN). GPUs became the reference platforms for both training and inference phases
of CNNs due to their tailored architecture to the CNN operators. However, GPUs are power-
hungry architectures. A path to enable the deployment of CNNs in energy-constrained de-
vices is by adopting hardware accelerators for the inference phase. However, the litera-
ture presents gaps regarding analyses and comparisons of these accelerators to evaluate
Power-Performance-Area (PPA) trade-offs. Typically, the literature estimates PPA from the
number of executed operations during the inference phase, such as the number of Multiplier-
Accumulators (MAC), which may not reflect the actual hardware behavior. Thus, it is nec-
essary to deliver accurate hardware estimations, enabling design space exploration (DSE)
to deploy CNNs according to the design constraints. This Thesis proposes two DSE ap-
proaches for CNNs. The former adopts a cycle-accurate system simulator and uses a high-
level language to describe the hardware abstractly. This first approach uses TensorFlow
as a front-end for training, while the back-end generates performance estimations through
physical synthesis of hardware accelerators. The second approach is a fast and accurate
DSE, using an analytical model fitted from the physical synthesis of hardware accelerators.
The analytic model estimates area, performance, power, energy, and memory accesses.
The observed worst-case average error comparing the analytical model to the data obtained
from the physical synthesis is smaller than 8%. Although the second approach generate ac-
curate results in a fast way, the first approach enables simulating a complete computational
system, considering a possible accelerators modeling redundancy. This Thesis advances
the state-of-the-art by offering methods to generate a comprehensive PPA evaluation, inte-
grating front-end frameworks (e.g., TensorFlow) to a back-end design flow.

Keywords: Convolutional Neural Networks, Convolution Hardware Accelerator, System Sim-
ulator, PPA, Design Space Exploration.

LIST OF FIGURES

1.1 Example of a CNN and a Classification Application [CS231n, 2022]. 17

1.2 Thesis Structure. 22

2.1 Convolutional Neural Network general architecture [Alom et al., 2018]. 24

2.2 Example of a convolution operation: 32x32x3 IFMAP, 15x15x3 OFMAP, 3x3
filter size, stride equal to 2. 25

2.3 Proposed taxonomy for CNN hardware accelerators. This taxonomy is based
on [Moolchandani et al., 2021]. 26

2.4 NPU general architecture [Jiao et al., 2020]. 28

2.5 Sparsity-aware accelerator architecture [Hsiao et al., 2020]. 29

2.6 DianNao accelerator architecture [Chen et al., 2014]. 30

2.7 FPGA-based Accelerator architecture [Zhang et al., 2015]. 30

2.8 Accelerator overview and MAC detailed architecture [Spagnolo et al., 2020]. 31

2.9 Eyeriss general architecture [Chen et al., 2016b]. 31

2.10 Eyeriss v2 general architecture [Chen et al., 2019]. 32

2.11 SLCP and MLCP accelerator architectures [Tavakoli et al., 2020]. 32

2.12 Multi-bit accelerator architecture [Tavakoli et al., 2020]. 33

2.13 Unified convolution and deconvolution accelerator architecture [Bai et al.,
2020]. 33

2.14 Unified convolution and deconvolution accelerator architecture [Chen et al.,
2020]. 34

2.15 FlexFlow accelerator architecture [Lu et al., 2017]. 35

2.16 ShiDianNao accelerator architecture [Lu et al., 2017]. 35

2.17 ShiDianNao accelerator architecture [Das et al., 2020]. 36

2.18 Swan general architecture [Liu et al., 2020a]. 36

2.19 Swallow general architecture [Liu et al., 2020b]. 37

2.20 FDPU general architecture [Xiang et al., 2018]. 37

2.21 BitBlade general architecture [Ryu et al., 2022]. 38

2.22 Streaming-based Accelerator general architecture [Du et al., 2017]. 39

2.23 Column Streaming-based Accelerator general architecture [Lin and Arslan,
2021]. 39

2.24 IEAC 3D tile [Huang et al., 2021]. 40

2.25 NVDLA flow diagram [NVIDIA, 2022a]. 45

2.26 MLPAT Framework Architecture [Tang and Xie, 2018]. 45

2.27 MAESTRO Framework Architecture [Kwon et al., 2018a]. 46

2.28 Timeloop Framework Diagram Flow [Parashar et al., 2019]. 47

2.29 Accelergy Framework Diagram Flow [Wu et al., 2019]. 47

2.30 DNN predictor high-level architecture [Zhao et al., 2020]. 48

2.31 DNNExplorer Flow Diagram [Zhang et al., 2021]. 48

2.32 Gemmini general architecture [Genc et al., 2021]. 49

2.33 DSE Method Based on Gaussian Process Regression Model [Ferianc et al.,
2021]. 50

2.34 SCALE-Sim simulator architecture [Samajdar et al., 2018]. 51

2.35 STONNE simulator architecture [Muñoz-Martínez et al., 2020]. 52

2.36 SimuNN Simulator Architecture. [Cao et al., 2020] . 52

3.1 Convolution Accelerator Hardware Metric Extraction Framework. Source:
[Juracy et al., 2021a] . 56

3.2 TensorFlow Code Example. Source: [Juracy et al., 2021a] 57

3.3 Flow diagram of proposed quantization. 59

3.4 URSA Simulator Code Example. Source: [Juracy et al., 2021a] 61

3.5 Hardware accelerator architecture based on the NVDLA modules. Source:
[Juracy et al., 2021a]. 62

3.6 Accuracy and Average Energy Trade-off [Juracy et al., 2021a]. 64

4.1 Systolic 2D Array Accelerator Architecture. Source: [Juracy et al., 2021b] . . 68

4.2 Convolution 2D - memory accesses and processing flow. Source: [Juracy
et al., 2021b] . 69

4.3 1D Array Accelerator Architecture (buffers and arithmetic core). Source:
[Juracy et al., 2021b] . 70

4.4 Generic architecture and the modules required to build the convolutional
accelerators. 71

4.5 WS 2D accelerator and memory interfaces. 73

4.6 WS accelerator Control FSM. 74

4.7 WS accelerator Fetch FSM. 75

4.8 Buffered WS 2D accelerator and memory interfaces. For this version, the
output buffer replacing the output memory control logic is what differentiates
this architecture from the WS. 76

4.9 IS 2D Array accelerator and memory interfaces. IS version has no double
buffer, and has a register bank to store all bias and weights values internally
in the accelerator. 77

4.10 IS accelerator Control FSM. 78

4.11 IS accelerator Load FSM. 79

4.12 Buffered IS 2D Array accelerator and memory interfaces. For this version,
the output buffer replacing the output memory control logic is what differen-
tiates this architecture from the IS. Also, like IS, Buffered IS version has no
double buffer, and has a register bank to store all bias and weights values
internally in the accelerator. 79

4.13 OS 2D Array Accelerator and memory interfaces.OS has a double-buffer
scheme similar to WS, but instead, it has one for IFMAPs, and one for weights. 80

4.14 OS accelerator Control FSM. 81

4.15 OS accelerator Fetch FSM. 82

5.1 Area-power results for 28nm as function of the frequency. 83

5.2 DSE results obtained with URSA for 28nm for 1D array and systolic 2D (note
that power is presented in µW). 85

5.3 Convolutional accelerators energy varying the memory type (SRAM or DRAM),
and the access latency. 87

5.4 Convolutional accelerators performance (execution time). 88

5.5 Performance for the convolutional accelerators, considering a 32x32x3 IFMAP,
15x15x16 OFMAP, stride=2, and a 2 clock cycle SRAM latency. The filled
area highlight the non-buffered approach. The values are normalized by the
worst value of each radar axis. 89

5.6 Performance for the convolutional accelerators, considering a 32x32x3 IFMAP,
15x15x16 OFMAP, stride=2, and a 5 clock cycle DRAM latency. The filled
area highlight the non-buffered approach. The values are normalized by the
worst value of each radar axis. 90

6.1 DSE physical synthesis flow for PPA extraction. 95

6.2 DSE analytic flow for PPA extraction. 96

6.3 Output buffer area results obtained from the physical synthesis flow, for the
three layers of Cifar10 CNN. 101

6.4 Output buffer power results obtained from the physical synthesis flow, for
the three layers of Cifar10 CNN, using a SRAM memory type. 102

6.5 Cifar10 CNN. 103

7.1 System Level DSE Flow. 114

LIST OF TABLES

2.1 Dedicated accelerators state-of-the-art summary. 41

2.2 Industrial CNN accelerators. 44

2.3 DSE Frameworks and Simulators State-of-the-art Summary. 53

3.1 PPA results for NVDLA-based accelerator running a MNIST application.
Source: [Juracy et al., 2021a]. 63

3.2 Comparison of Estimated Energy of Netlist Simulation and URSA simulator. 64

3.3 Comparison of Netlist and URSA simulator. 65

5.1 PPA results for accelerators after physical synthesis (28nm@1.6GHz). The
leakage power for 1D is 0.02mW , while 2D has 0.04mW 83

5.2 Hardware Metrics for SRAM Memory. 88

5.3 Hardware Metrics for DRAM Memory. 90

6.1 MAC-based and physical synthesis flows results for the WS accelerator. . . . 104

6.2 MAC-based and physical synthesis flows results for the buffered WS accel-
erator. 104

6.3 MAC-based and physical synthesis flows results for the IS accelerator. 104

6.4 MAC-based and physical synthesis flows results for the buffered IS acceler-
ator. 105

6.5 MAC-based and physical synthesis flows results for the OS accelerator. . . . 105

6.6 Cifar10 CNN area analytic results. 106

6.7 Cifar10 CNN performance analytic results. SRAM access latency 2 clock
cycles, DRAM access latency 5 clock cycles. 107

6.8 Cifar10 CNN IFMAP read accesses results. 108

6.9 Cifar10 CNN OFMAP read accesses results. 108

6.10 Cifar10 CNN OFMAP write accesses results. 108

6.11 Cifar10 CNN power analytic results. 108

6.12 Cifar10 CNN energy analytic results. 109

6.13 Analytic and state-of-the-art result errors comparison. 110

6.14 Analytic approach summary results. 110

B.1 Cifar10 CNN layer 0 analytic results for SRAM memory type. 132

B.2 Cifar10 CNN layer 1 analytic results for SRAM memory type. 133

B.3 Cifar10 CNN layer 2 analytic results for SRAM memory type. 134

B.4 Cifar10 CNN layer 0 analytic results for DRAM memory type. 135

B.5 Cifar10 CNN layer 1 analytic results for DRAM memory type. 136

B.6 Cifar10 CNN layer 2 analytic results for DRAM memory type. 137

LIST OF ACRONYMS

ANN – Artificial Neural Networks

ASIC – Application Specific Integrated Circuit

BOP – Bit Operations Performed

CNN – Convolutional Neural Networks

DDDG – Dynamic Data Dependence Graphs

DMA – Direct Memory Access

DSE – Design Space Exploration

DSL – Domain-Specific Language

DNN – Deep Convolutional Neural Networks

FC – Fully Connected

FG – Fine-grained

GOPS – Giga Operations Per Second

GPU – Graphic Process Unit

HBM – High Bandwidth Memory

HLS – High-Level Synthesis

IFMAP – Input Feature Map

IOT – Internet of Things

IS – Input Stationary

MAC – Multiplier-Accumulator

ML – Machine Learning

NLR – No Local Reuse

NPU – Neural Processing Unit

NVDLA – NVIDIA Deep Learning Accelerator

OFMAP – Output Feature Map

OS – Output Stationary

PE – Processing Element

PPA – Power, Performance, and Area

RELU – Rectified Linear Unit

RTL – Register Transfer Level

SDF – Standard Delay Format

SIMD – Single Instruction Multiple Data

SOC – System-on-Chip

TLM – Transaction-Level Modeling

TOPS – Tera Operations Per Second

TPU – Tensor Processing Unit

VCD – Value Change Dump

WS – Weight Stationary

CONTENTS

1 INTRODUCTION . 17

1.1 THESIS STATEMENT . 20

1.2 OBJECTIVES . 20

1.3 ORIGINAL CONTRIBUTIONS . 21

1.4 THESIS STRUCTURE . 21

2 STATE OF THE ART . 23

2.1 BASIC CONCEPTS . 23

2.2 HARDWARE ACCELERATORS . 25

2.2.1 DEDICATED ACCELERATORS . 28

2.2.2 INDUSTRIAL ACCELERATORS . 41

2.3 HARDWARE DESIGN SPACE EXPLORATION FRAMEWORKS AND SIMULA-
TORS . 43

2.3.1 HARDWARE DESIGN SPACE EXPLORATION FRAMEWORKS 45

2.3.2 HARDWARE SIMULATORS . 51

2.3.3 FINAL REMARKS RELATED TO DSE FRAMEWORKS AND SIMULATORS . . . 52

2.4 THESIS CONTRIBUTION FOR THE STATE-OF-THE-ART 54

3 HIGH-LEVEL MODELING FRAMEWORK FOR DSE . 56

3.1 TENSORFLOW CNN MODELING FRAMEWORK . 57

3.2 SHIFT-BASED QUANTIZATION . 58

3.3 PPA EXTRACTION . 60

3.4 URSA SYSTEM SIMULATOR . 60

3.5 RESULTS . 62

3.5.1 PPA RESULTS . 62

3.5.2 ENERGY ESTIMATION COMPARISON RESULTS . 64

3.5.3 SIMULATION TIME COMPARISON . 65

3.6 FINAL REMARKS . 65

4 MACHINE LEARNING HARDWARE ACCELERATOR DESIGN 67

4.1 ARRAY STYLE RTL IMPLEMENTATIONS . 67

4.1.1 SYSTOLIC 2D ACCELERATOR . 67

4.1.2 1D ACCELERATOR . 70

4.2 DATAFLOW IMPLEMENTATIONS . 71

4.2.1 WEIGHT STATIONARY (WS) DATAFLOW . 72

4.2.2 INPUT STATIONARY (IS) DATAFLOW . 75

4.2.3 OUTPUT STATIONARY (OS) DATAFLOW . 79

4.2.4 FINAL REMARKS . 82

5 MACHINE LEARNING HARDWARE ACCELERATOR RESULTS 83

5.1 ARRAY STYLE RESULTS . 83

5.2 DATAFLOW TYPE RESULTS . 86

5.2.1 FINAL REMARKS . 91

6 DESIGN SPACE EXPLORATION FLOWS . 92

6.1 DSE PHYSICAL SYNTHESIS FLOW . 93

6.2 MAC-BASED DSE FLOW . 94

6.3 ANALYTIC DSE FLOW . 94

6.3.1 PERFORMANCE ESTIMATION . 98

6.3.2 MEMORY ACCESSES ESTIMATION . 99

6.3.3 OUTPUT BUFFER AREA AND POWER ESTIMATION 100

6.4 RESULTS . 102

6.4.1 MAC-BASED DSE FLOW RESULTS . 103

6.4.2 ANALYTIC DSE FLOW RESULTS . 105

7 CONCLUSION AND FUTURE WORK . 111

7.1 FUTURE WORK . 113

7.2 SUMMARY OF THE PUBLICATIONS PRODUCED DURING THE THESIS 115

REFERENCES . 116

APPENDIX A – 2D Convolution Model in URSA . 127

APPENDIX B – DSE Tables . 131

17

1. INTRODUCTION

Machine Learning (ML) is a sub-area of artificial intelligence that contains a class
of algorithms able to solve problems involving knowledge and "learning" characteristics from
determined patterns. This allows decision capability [Goodfellow et al., 2016] and has re-
emerged as a solution for problems of classification and pattern recognition. Many appli-
cations can use ML, such as computational vision, virtual reality [Facebook, 2022a], voice
assistants [Google, 2022b], chatbots [ServiceNow, 2022], and self-driving vehicles [Tesla,
2022].

One of the most common ways to deliver ML nowadays is by using Artificial Neural
Networks (ANN). ANNs are based on the human brain and perform data processing by
mimicking synapses using thousands of neurons interconnected in a network. The synapses
are composed of a data input sample plus a weight that works similar to a filter [Goodfellow
et al., 2016]. Incoming synapses of a neuron are added up, and are the input to an activation
function, which creates an output to be used in synapses of the next neurons [Haykin, 2009].

A common type of ANN is Convolutional Neural Networks (CNN). These networks
gained popularity because they enable efficient computation of computer vision tasks, which
became widespread in the last decade. CNNs have the advantage of having sparse con-
nections, in contrast to fully connected ANNs, where all neurons of one layer are connected
to all neurons of the next layer. This brings many computational benefits, such as less
memory storage for weights of synapses, and there is more reuse of weights read from
memory [Goodfellow et al., 2016]. Figure 1.1 illustrate a CNN and an classification applica-
tion.

06/05/2022 19:16 CS231n Convolutional Neural Networks for Visual Recognition

https://cs231n.github.io/convolutional-networks/ 4/23

A ConvNet architecture is in the simplest case a list of Layers that transform the image
volume into an output volume (e.g. holding the class scores)
There are a few distinct types of Layers (e.g. CONV/FC/RELU/POOL are by far the most
popular)
Each Layer accepts an input 3D volume and transforms it to an output 3D volume
through a differentiable function
Each Layer may or may not have parameters (e.g. CONV/FC do, RELU/POOL don’t)
Each Layer may or may not have additional hyperparameters (e.g. CONV/FC/POOL do,
RELU doesn’t)

The activations of an example ConvNet architecture. The initial volume stores the raw image pixels (left)
and the last volume stores the class scores (right). Each volume of activations along the processing
path is shown as a column. Since it's difficult to visualize 3D volumes, we lay out each volume's slices in
rows. The last layer volume holds the scores for each class, but here we only visualize the sorted top 5
scores, and print the labels of each one. The full web-based demo is shown in the header of our website.
The architecture shown here is a tiny VGG Net, which we will discuss later.

We now describe the individual layers and the details of their hyperparameters and their
connectivities.

Convolutional Layer

The Conv layer is the core building block of a Convolutional Network that does most of the
computational heavy lifting.

Overview and intuition without brain stuff. Let’s first discuss what the CONV layer computes
without brain/neuron analogies. The CONV layer’s parameters consist of a set of learnable
filters. Every filter is small spatially (along width and height), but extends through the full depth
of the input volume. For example, a typical filter on a first layer of a ConvNet might have sizeBack to Top

Figure 1.1: Example of a CNN and a Classification Application [CS231n, 2022].

18

A CNN contains four main layers:

1. convolutional layer (CONV in Figure 1.1), which is the CNN core and performs the
synapses by multiplying and accumulating weights and input feature maps;

2. activation function (RELU in Figure 1.1), a nonlinear transformation sent to the next
layer of neurons;

3. pooling layer (POOL in Figure 1.1), used to reduce the amount of data processed by
the CNN;

4. fully connected layer (FC in Figure 1.1), used in the classification result.

The deployment of CNNs applications is typically divided into two phases [Haykin,
2009]:

1. training, which is the phase where the value of weights of synapses are defined;

2. inference, uses the weights previously computed during the training phase to classify
or predict output values based on inputs. A well-trained CNN can correctly generate
such classifications or predictions for new inputs, not used in the training phase.

The success of CNNs led to the development of frameworks that help developers
to build their models by offering mechanisms required for training and inference. Examples
of frameworks include Caffe [Caffe, 2022], Pytorch [PyTorch, 2022] and TensorFlow [Tensor-
Flow, 2022]. These frameworks use a high-level approach to abstract the implementation
of functions, such as convolution, and aid in implementing CNN applications. Also, these
frameworks abstract the training phase by implementing functions like back-propagation al-
gorithms. Usually, ANNs are trained on GPUs due to their parallelism capability [Chen et al.,
2016b, Strom, 2015], reducing the time spent in training.

The inference is commonly executed in CPUs. However, CPU architectures, ei-
ther based on Harvard or Von Neumann models, drastically affect the performance of the
software executing inference of a CNN. For example, CPUs typically do not have multiply-
accumulate (MAC) instruction. This kind of operation is usually split in n sums and multi-
plications instructions, which means that for each instruction, a memory fetch is performed,
decreasing the performance. CNN applications like AlexNet [Krizhevsky et al., 2017] require
billions of operations to process a single input, resulting in poor CPU performance. Even
with optimized instruction set architectures, CPUs are inefficient in performance and energy.

Thus, GPUs became the reference platform for training and inference due to their
tailored architecture to the CNN operators. The main GPU drawback is its considerable en-
ergy consumption. Considering energy-constrained applications, such as Internet of Things

19

(IoT), autonomous driving, and wearable devices, the adoption of specialized hardware for
computing inference became a trend in the inference phase.

CNN hardware accelerators are a suitable replacement for CPUs and GPUs for the
inference phase [Dally et al., 2020]. CNN accelerators can reduce power dissipation and/or
improve throughput [Chen et al., 2016b, Andri et al., 2017, Shivapakash et al., 2020]. Also,
consumer products are increasingly receiving these blocks [Hsiao et al., 2020, Spagnolo
et al., 2020, Hsiao and Chang, 2020]. Most of these accelerators are application-specific
and can focus only on one characteristic to optimize, such as power, performance, or area
[Tesla, 2019, Apple, 2022].

It is necessary to model the following components to implement a CNN hardware
accelerator:

1. input buffers, used to store the CNN values;

2. MAC array, the unit that processes the convolution operation. The MAC array can be a
matrix (2D architecture) or a vector (1D architecture);

3. activation function, such as Sigmoid, Rectified Linear Unit (ReLU), leaky ReLU [Keras,
2022];

4. output control logic, it is used to communicate with the accelerator and the output
memory.

Besides these components, the literature presents hardware accelerators using
different approaches to access the memory, called dataflows types. The most common
dataflow types are weight stationary (WS), input stationary (IS), and output stationary (OS).
The main difference between these architectures is how accelerators access data (input
feature map and weight tensors) and compute the output (output feature map tensor).

However, the literature presents gaps regarding analyses and comparisons of these
accelerators. Even with a representative number of accelerators using different implementa-
tions, there is a lack of works exploring the trade-offs between implementations. For exam-
ple, Eyeriss proposes a comparison between different accelerators but lacks performance
or area trade-offs evaluation [Chen et al., 2016b]. Also, some works compare accelerators
considering different technology nodes, resulting in an unfair analysis [Das et al., 2020].

Literature shows works focused on frameworks to analyze and perform design
space exploration (DSE) of CNN hardware accelerators. These works are based on analyt-
ical approaches to estimate the power, performance, and area (PPA) of these accelerators
[Heidorn et al., 2020, Zhao et al., 2020] to a given hardware constraint. System simulators
[Parashar et al., 2019, Muñoz-Martínez et al., 2020] are important tools for executing DSE.
These simulators are typically described in high-level abstraction languages, like Python and
C++, reducing the design time and providing PPA evaluation. However, both analytical and

20

simulator approaches present as drawbacks the PPA accuracy, typically estimated from the
number of executed operations, as MAC [Parashar et al., 2019, Wu et al., 2019]. Despite
the efforts to increase the abstraction level for accelerators using high-level synthesis (HLS)
[Giri et al., 2020, Venkatesan et al., 2019], this approach also has challenges related to
performance and power estimation, and performing DSE.

1.1 Thesis Statement

It is possible to execute fast and accurate design space exploration (DSE) for ma-
chine learning accelerators, considering different CNN architectures models using standard
frameworks. The DSE flow must be comprehensive in terms of power, performance, and
area (PPA) estimation. Providing PPA enables the designer to select the most relevant pa-
rameters (according to the literature) to design a hardware accelerator.

1.2 Objectives

The strategic objective of this Thesis is to propose a method to perform a fair design
space exploration in a fast and accurate way to enable the estimation related to the costs
of selecting hardware accelerator parameters. Hardware parameters include the number of
accelerators in parallel, accelerator type (1D, 2D), and dataflow (WS, IS, OS).

The following specific goals must be fulfilled to attain the strategic goal:

1. CNN framework integration (Chapter 3). Integration of a high-level framework (as
TensorFlow) with an accelerator library. The goal is to define how to integrate high-
level models with low-level data, obtained from the physical synthesis. To fulfill this
goal, third-party accelerators are used, being the focus of this goal the framework and
optimization related to the hardware cost, as data and weights quantization;

2. CNN hardware accelerator design (Chapter 4). Design of different CNN hardware
accelerators, including 1D and 2D arrays, and WS, IS, and OS dataflow types. The
goal is to build a library of accelerators to allow the extraction of PPA values;

3. Comparison method (Chapter 5). Propose an approach to compare different accel-
erators types. The goal is to define the method to compare the accelerators using the
same parameters, such as technology node, frequency, and memory type;

4. CNN hardware accelerator physical synthesis (Chapter 6). Definition and execution
of a physical synthesis flow for the hardware accelerator library. The goal is to have a
flow that enables to extract automatically accurate PPA;

21

5. PPA extraction method (Chapter 6): Define a method to extract PPA data, using
inputs from an CNN application. The goal is to characterize the accelerators using
actual switching activity to produce accurate power estimations.

6. DSE method (Chapters 3 and 6): Execute the DSE in the high-level framework. The
goal is to execute a fair DSE, in a fast and accurate way.

1.3 Original Contributions

We can state that this Thesis presents 4 original contributions in relation to the
state-of-the-art:

1. Adoption of TensorFlow as a front-end framework to perform DSE for CNN hardware
accelerators. The originality is to use data from the physical synthesis of the complete
hardware accelerators, not only from basic components (as MACs).

2. A library of CNN hardware accelerators, considering different array styles and dataflow
types. The originality resides in detailing the hardware architecture, considering the
accelerator core, the control logic, and the memory interface.

3. A method to fairly compare different CNN hardware accelerators. This method makes it
possible to compare accelerators with different dataflows, considering the same char-
acteristics, such as the technology node, frequency, and memory type. It is worth
mentioning that the hardware accelerators use as input values extracted from Tensor-
Flow, resulting in accurate power estimations.

4. An analytical method to perform DSE. Using as reference the physical synthesis flow,
a set of equations integrated into TersorFlow enables to estimate area, performance
and power. The analytical model, integrated into TensorFlow, is the key to obtain a fast
and accurate DSE.

1.4 Thesis Structure

Figure 1.2 graphically presents how the text structure is organized. This Thesis
contains 7 Chapters:

• Chapter 2 presents the state-of-the-art regarding CNN hardware accelerators, system
simulators, and DSE frameworks. Also, this chapter present the contribution of this
Thesis compared to the literature;

22

application.pyTensorFlow

Pyhsical
Synthesis

Quantization

PPA logs

Analytical
model and CNN
PPA estimation

memory
model

accelerator
model

CactIO

CNN model

Chap.
4/5

Chap. 3

Chap. 6

System Simulator
(URSA)

DSE with NVDLA

Figure 1.2: Thesis Structure.

• Chapter 3 presents the usage of the TensorFlow framework, and a quantization method
to reduce the memory requirements. A third-party accelerator (NVDLA) helps on defin-
ing the DSE flow by integrating the front-end (TensorFlow and URSA simulator) to the
back-end (physical synthesis);

• Chapter 4 details the RTL implementation of the hardware accelerators used to gener-
ate the main results of this Thesis;

• Chapter 5 presents the obtained results based on the hardware described in Chapter 4;

• Chapter 6 describes the DSE method and shows the obtained results;

• Chapter 7 shows the conclusion and directions for future works.

23

2. STATE OF THE ART

This Chapter presents hardware solutions to accelerate Convolutional Neural Net-
works (CNNs), as well as the bottlenecks for CPU (performance) and GPU (power). This
Chapter describes dedicated and industrial solutions for the bottlenecks, and also works
focused on the analyses related to PPA through DSE. This Chapter is organized as follows:

• Section 2.1: describes concepts required to understand the state-of-the-art works;

• Section 2.2: presents descriptions and analyses of academic and industrial CNN hard-
ware accelerators;

• Section 2.3: presents a description and analyses of DSE frameworks and simulators
for CNN hardware accelerators;

• Section 2.4: details the contributions of this Thesis and its original contributions.

2.1 Basic Concepts

The CNN concept emerged to deal with problems of visual pattern recognition area
[Goodfellow et al., 2016]. For example, the first convolutional network, called LeNet [Al-
Jawfi, 2009], was developed to recognize handwritten numbers. Figure 2.1 illustrates a
general architecture of a CNN, which contains the followings components:

• Convolution Layer: the core of the CNNs. It executes multiplications and sums of the
input values. The convolution uses filters, limiting these multiplications and sums to
matrix windows. The filters contain a set of weights, also called parameters. The
convolution also uses a variable called stride, which is the number of positions that the
filter slides over the input matrix;

• Activation Function: a non-linear function used to help the classification process. This
function is applied at the end of a convolution. The most common activation functions
are hyperbolic, exponential, and Rectified Linear Unit (ReLU);

• Pooling Layer: this layer has the property to reduce the amount of data to be pro-
cessed. Unlike the convolutional layer, the pooling layer does not have parameters but
is composed of an operation. The more classic operations are the Average Pooling
and the Max Pooling. Average Pooling executes an average calculation of the values
of a window, while Max Pooling gets the most significant value in a set of values limited
by a window;

24

• Fully Connected (FC)/Dense Layer: the FC Layer is used at the end of a CNN, where
all previously output layers are connected with each input for the FC. The output of this
layer provides the classification result.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

The step function format for exponential decay is:

 𝜂𝑡 = 𝜂0 𝛽⌊𝑡
𝜖⁄ ⌋ (10)

The common practice is to use a learning rate decay of 𝛽 = 0.1

to reduce the learning rate by a factor of 10 at each stage.

G. Weight decay

Weight decay is used for training deep learning models as a L2

regularization approach, which helps to prevent over fitting the

network and model generalization. L2 regularization for

ℱ(𝜃, 𝑥) can be define as:

 Ω = ‖𝜃‖2 (11)

 𝜀̂(ℱ(𝜃, 𝑥), 𝑦) = 𝜀(ℱ(𝜃, 𝑥), 𝑦) +
1

2
𝜆 Ω (12)

The gradient for the weight 𝜃 is:

𝜕

1

2
𝜆Ω

𝜕𝜃
= 𝜆 ∙ 𝜃 (13)

General practice is to use the value 𝜆 = 0.0004. A smaller 𝜆

will accelerate training.

Other necessary components for efficient training including

data preprocessing and augmentation, network initialization

approaches, batch normalization, activation functions,

regularization with dropout, and different optimization

approaches (as discussed in Section 4).

In the last few decades, many efficient approaches have been

proposed for better training of deep neural networks. Before

2006, attempts taken at training deep architectures failed: training

a deep supervised feed-forward neural network tended to yield

worse results (both in training and in test error) then shallow ones

(with 1 or 2 hidden layers). Hinton’s revolutionary work on

DBNs spearheaded a change in this in 2006 [50, 53].

Due to their composition, many layers of DNNs are more

capable at representing highly varying nonlinear functions

compared to shallow learning approaches [56, 57, and 58].

Moreover, DNNs are more efficient for learning because of the

combination of feature extraction and classification layers. The

following sections discuss in detail about different DL

approaches with necessary components.

III. CONVOLUTIONAL NEURAL NETWORKS (CNN)

A. CNN overview

This network structure was first proposed by Fukushima in

1988 [48]. It was not widely used however due to limits of

computation hardware for training the network. In the 1990s,

LeCun et al. applied a gradient-based learning algorithm to

CNNs and obtained successful results for the handwritten digit

classification problem [49]. After that, researchers further

improved CNNs and reported state-of-the-art results in many

recognition tasks. CNNs have several advantages over DNNs,

including being more similar to the human visual processing

system, being highly optimized in structure for processing 2D

and 3D images, and being effective at learning and extracting

abstractions of 2D features. The max pooling layer of CNNs is

effective in absorbing shape variations. Moreover, composed of

sparse connections with tied weights, CNNs have significantly

fewer parameters than a fully connected network of similar size.

Most of all, CNNs are trained with the gradient-based learning

algorithm, and suffer less from the diminishing gradient

problem. Given that the gradient-based algorithm trains the

whole network to minimize an error criterion directly, CNNs

can produce highly optimized weights.

Fig. 11. The overall architecture of the CNN includes an input layer, multiple alternating convolution and max-pooling layers, one fully-connected

layer and one classification layer.

Figure 2.1: Convolutional Neural Network general architecture [Alom et al., 2018].

A metric used to evaluate a CNN is the accuracy, a percentage value representing
the amount of data that was classified or recognized correctly. Moreover, the deep learn-
ing concept with the Deep Convolutional Neural networks (DNN) emerged together with the
CNN [Goodfellow et al., 2016]. It was observed that the increase in the number of con-
volution layers improved the accuracy metric. Thus, it is possible to solve more complex
problems, but at the cost of the increase in the network parameters and, consequently, in
memory usage.

As mentioned before, the convolution layer is the core of a CNN and is the main
target of the hardware accelerators. Figure 2.2 illustrates a convolution operation. Multipli-
cations are executed between the weights and the input feature map (IFMAP) values that
come from an RGB image and accumulate the generated partial value of each operation
to generate a complete convolution value. Also, a bias value is added to the sum of the
accumulated value, and it is applied to the activation function to generate the output feature
map (OFMAP).

Equation 2.1 formally describes the process to obtain one OFMAP result. The
convolution receives as inputs the IFMAP tensor (each map may also be called a channel)
and another tensor of filters. Then, each filter window is convolved with (and slid across) its
respective input channel forming a new set of feature maps. Next, a vector of bias is added
to the feature map, generating the final OFMAP tensor (O).

O[f][x][y] = B[f] +
C−1∑
k=0

W−1∑
i=0

H−1∑
j=0

(I[k][Sx + i][Sy + j] ∗WF[f][k][i][j]) (2.1)

where: f, x and y are the current output channel, the horizontal and the vertical position,
respectively; C is the total number of input and filter channels, W and H corresponds to the

25

+

+

+

RGB IFMAP
(32x32x3)

3 FILTERS
(3x3x3)

OFMAP
(15x15x3)

X

Bias
Adder

&
Activation
Function

C C F

F

x

y

H
W

WF: Set of filters w(f,c)

Figure 2.2: Example of a convolution operation: 32x32x3 IFMAP, 15x15x3 OFMAP, 3x3 filter
size, stride equal to 2.

filter size; S is the stride, and O is the output, I the input, and WF the filter tensors and B the
bias vector.

The deployment of CNNs comprises two phases: training and inference [Haykin,
2009]. The training phase defines the weight values. The inference phase uses the weights
previously computed to classify or predict output values using unknown inputs, which results
in the accuracy. The advantages of CNNs regarding classification issues led to the devel-
opment of frameworks that help developers to build their models by offering mechanisms
required for training and inference. Examples of frameworks include Caffe [Caffe, 2022],
Pytorch [PyTorch, 2022] and TensorFlow [TensorFlow, 2022]. These frameworks provide
libraries to implement Machine Learning applications, including CNNs, which allow perform-
ing training and inference phases in a simplified approach based on high-level program
languages like Python. Also, these frameworks support the most common CNN functions,
such as convolution, max pooling, and ReLU [Keras, 2022].

2.2 Hardware Accelerators

This Section analyses dedicated (mostly academic proposals) and industrial CNN
hardware accelerators. For academic approaches, a taxonomy is proposed to classify the
accelerators. Figure 2.3 shows the proposed taxonomy, based on [Moolchandani et al.,
2021] and extended with other accelerator approaches found in the literature. The proposed
taxonomy comprises the following classes: (i) array style; (ii) convolution techniques; (iii)
accelerator goal; (iv) dataflow type; (v) word size; (vi) data format.

Array style is the array structure, which can be a vector (1D) or a matrix (2D),
systolic or not. Convolution techniques can be executed classically, with multiplications and

26

1D 2DSystolic 1D Systolic 2D

Small Area Low Power High Throughput

Configurable

Application
Specific

Weight Stationary Input Stationary Output Stationary No Local Reuse Row Stationary

Dataflow Type Word Size

8-bit 16-bit 32-bit

int fixed-point floating-point

Standard
Convolution

Winograd
Convolution

Fine-Grained

Figure 2.3: Proposed taxonomy for CNN hardware accelerators. This taxonomy is based on
[Moolchandani et al., 2021].

accumulations, or using mathematical equivalences, like the Winograd algorithm [Park and
Chung, 2020]. The accelerator goal class comprises the focus of the accelerator, like small
area or low power. Word size is the input data length, and data format includes integer or
float-point values.

Dataflow regards the approach to load the values on the accelerator internal buffers.
The state-of-the-art review identified 6 dataflows types: Weight Stationary (WS), Input Sta-
tionary (IS), Output Stationary (OS), No Local Reuse (NLR), Row Stationary (RS), and Fine-
Grained (FG) [Moolchandani et al., 2021, Xiang et al., 2018].

• The WS dataflow stores the weights in an internal accelerator buffer, aiming their reuse.
Thus, each weight value is read once from the input memory, and the convolution is
performed using stationary values for weight with values read from memory for the
IFMAP window.

• The IS dataflow registers an IFMAP window in an internal accelerator buffer to provide
its reuse. The window size is equal to the filter size. Similar to WS, the IFMAP values
are read once, and the weight values are read from memory.

• The OS dataflow is based on registering the partial values generated on the convolu-
tion. The OS does not present buffers to store the inputs, and each convolution fetches
the IFMAPs and weight values in the memory.

27

• NLR is a dataflow that does not store input and outputs in internal buffers. Thus, each
convolution fetches the IFMAPs and weight values in the memory and stores the partial
outputs values in the memory.

• RS is a dataflow where the rows of the weight matrix are stored in a processing element
(PE). It is similar to the WS dataflow but regards the entire filter row.

• FG is a dataflow that divides the IFMAP and weight matrix into small matrices and
stores them into accelerator internal buffers. This dataflow is a mix of WS and IS
dataflow.

Some of the proposed taxonomy classes have few examples or can not be ap-
plied to this work. Thus, some exclusion criteria were used to define the work scope. The
first exclusion criterium was the publication year. We adopted a period from 2015 to 2022,
which can be considered relevant to show the proposed work’s originality. However, some
exceptions are considered due to the relevance or citation number, as Diannao [Chen et al.,
2014].

Also, some categories that have few representative works are excluded. For ex-
ample, accelerators that use methods such as Winograd [Park and Chung, 2020, Ahmad
and Pasha, 2020]. Similar occurs to the systolic 1D convolution array type, which has one
representative work from 2014 [Gokhale et al., 2014]. The same criterium is used for the
dataflow type, where FG has only one example.

The literature presents accelerators focused on networks with binary weights. This
kind of accelerator allows replacing complex elements such as float-point MACs with smaller
components composed of simple components such as AND gates, which reduce area and
power dissipation [Andri et al., 2017, Xian et al., 2020]. Although the claimed advantages
of binary architectures, they need to be trained regarding binary values [Courbariaux et al.,
2016], and frameworks such as TensorFlow do not support a native binary training. Thus,
binary networks are out of the work’s scope.

Another approach to design accelerators is HLS. Literature shows works focused
on using HLS to design accelerators or proposals that improve the HLS methods [Giri et al.,
2020, Venkatesan et al., 2019, Ye et al., 2021, Zacharopoulos et al., 2022, Gerogiannis
et al., 2022]. HLS has as an advantage the higher abstraction level to describe accelerators.
However, this approach has challenges related to performance and power estimation once
the goal of HLS is to generate an RTL description as output. Also, HLS can take a long
time to develop a high-performance architecture due to the many design choices at a higher
level, requiring more design time [Sohrabizadeh et al., 2021]. Thus, HLS also is out of the
scope of this work.

The proposed taxonomy is not applied to industrial accelerators. The goal of an-
alyzing industrial approaches is to show the relevance of the development and analysis of

28

hardware accelerators for CNN, showing the relevance of this Thesis. Also, industrial accel-
erators do not detail their designs, preventing comparing these accelerators to our proposal.

2.2.1 Dedicated Accelerators

1D Array Style

Jiao et al. [Jiao et al., 2020] propose a 1D array style programmable neural pro-
cessing unit (NPU) for data center scenarios, based on WS and IS dataflows. They improve
the convolution efficiency and deliver program flexibility by using a large SRAM in the de-
sign. Figure 2.4 show the NPU general architecture. It is composed of a local memory
(LM), a constant buffer (CB), a tensor engine (TE), a pooling engine, a memory-copy engine
(ME), and internal buffers (A-buffer and W-buffer). Multipliers and accumulators compose
the TE. CB is used to store values used in operations such as normalization and quanti-
zation. ME is used to copy data internally and perform matrix transposition. A command
processor controls the communication between the external world and the NPU. A-buffer
and W-buffer allow data reuse to reduce memory access. The NPU was fabricated in TSMC
12nm at 700MHz, and results show a throughput of 825 TOPS using an 8-bit integer data
format, with an area of 709mm2. Using ResNet50-v1 as a study case, the NPU reaches a
throughput of 78,563 images per second, with a power efficiency of 500 images per second
per watt.

Figure 2.4: NPU general architecture [Jiao et al., 2020].

Hsiao et al. [Hsiao et al., 2020] propose a 1D array configurable accelerator that
can execute some DNN operations, like convolution, supporting IS, WS, and OS dataflow
types. Figure 2.5 shows the proposed accelerator. The accelerator presents 16 parallel
PEs, composed of 8 adder tree multipliers and an adder tree to accumulate them. Thus,
it is possible to process in parallel 16 results of 8 input data from 8 input for a convolution
operation. A control block manages the operations, and an LPDDR3 DRAM is used as

29

external memory. The design was synthesized using TSMC 40nm and 28nm technologies,
both at 200MHz. The results in a 40nm technology achieved an energy efficiency of 527.8
giga operations per second (GOPS) per watt, while 28nm achieved 1055.7.

Figure 2.5: Sparsity-aware accelerator architecture [Hsiao et al., 2020].

In another work, Hsiao and Chang [Hsiao and Chang, 2020] extend the accelerator
proposed in [Hsiao et al., 2020] to reduce memory accesses and power dissipation. The Au-
thors added an extra bit to flag if the data is zero or not (two-symbol Huffman coding). Also,
it is proposed a gating scheme to reduce the switching power that disables the multipliers
when a value is zero. The results show a power dissipation of 101.16mW to process one
layer of VGG-16 and 89.82mW to process the fully-connected layer. These results mean a
decrease of about 25% and 18%, respectively, compared to the execution without exploiting
sparsity.

Chen et al. [Chen et al., 2014] propose a 1D array style accelerator focusing on
high throughput. The accelerator uses a fixed-point format with 6-bit for the integer and 10-
bit for the fractional parts. Figure 2.6 illustrates the accelerator architecture. The first two
stages (NFU-1 and NFU-2) operate as normal pipeline stages, and the third stage (NFU-
3) is activated after all additions from NFU-2. The accelerator is implemented using OS
dataflow, where NBout buffer is used as a circular buffer to store the partial sums and out-
put buffer. NFU-1 and NFU-2 are active every cycle for classifier and convolutional layers,
achieving 496 fixed-point operations. The architecture was synthesized using 65nm tech-
nology at 0.98GHz, using dual-port SRAM for the buffers. Results show that the accelerator
achieves 452 GOPS, with an area of 3.02mm2 and 485mW power dissipation. Also, the
accelerator can be 117.87 times faster than a 128-bit 2GHz single instruction multiple data
(SIMD) processor, reducing the total energy by 21.08 times.

Zhang et al. [Zhang et al., 2015] propose an analytical method based on the
roofline model to find the best performance and lowest FPGA resource requirement for
an accelerator. The model has a quantitative analysis of throughput and required mem-
ory bandwidth as parameters. Figure 2.7 shows the FPGA-based accelerator, which is a
1D array style. It contains PEs, an on-chip buffer, a DDR3 DRAM external memory, and an

30

Figure 2.6: DianNao accelerator architecture [Chen et al., 2014].

AXI4 interconnection. A PE has multipliers followed by an adder tree with a 32-bit float-point
data format. The data are first stored in the on-chip buffers before being fed to PEs. The
accelerator is implemented based on OS dataflow, once partial output sums are reused to
reduce memory accesses. The Authors implemented a CNN accelerator on a VC707 FPGA
board that reached a peak performance of 61.62 GFLOPS at 100MHz.

Figure 2.7: FPGA-based Accelerator architecture [Zhang et al., 2015].

Spagnolo et al. [Spagnolo et al., 2020] present a reconfigurable convolution 1D
array style architecture designed to support different weights and feature maps at runtime,
controlled by a set of multiplexers. The accelerator is implemented using OS dataflow and
has four parallel modules, with eight multipliers, eight MACs, and an adder tree, as illustrated
in Figure 2.8. The accelerator was prototyped in a Xilinx Ultrascale XCZU9EG SoC, with an
8-bit integer data format. VGG-16 and VGG-S were used as case studies. Results show a
throughput of 350.4 GOPS and power dissipation of 145mW at 195MHz.

2D Array Style

Eyeriss hardware accelerator [Chen et al., 2016a, Chen et al., 2016b] focuses on
optimizing the energy efficiency of the system, including off-chip DRAM. Eyeriss also allows

31

Figure 2.8: Accelerator overview and MAC detailed architecture [Spagnolo et al., 2020].

accelerating many CNN convolution operations. The Authors adopt a RS dataflow, with 168
PEs. Data compression and data gating are used to improve energy efficiency. Figure 2.9
shows the proposed architecture. First, the Eyeriss performs a logical mapping, which maps
all the 1D convolution operations. Next, Eyeriss performs a physical mapping, which maps
the logic mapping in the physical space. Eyeriss loads in each PE a row from the convolution
operation to perform the processing. The IFMAPs is loaded in a horizontal direction, while
the weights are loaded in a diagonal direction. Thus, it is possible to perform the multipli-
cation operation of the convolution, and the sum can be performed in the vertical direction.
Results show a throughput of 35 frames/s and 0.0029 DRAM access/MAC at 278mW for
AlexNet and a throughput of 0.7 frames/s and 0.0035 DRAM access/MAC at 236mW for
VGG-16.

Figure 2.9: Eyeriss general architecture [Chen et al., 2016b].

In another work, the Authors propose Eyeriss v2, an accelerator targeting mobile
applications [Chen et al., 2019], also implemented using the RS dataflow. It is a DNN accel-
erator architecture for sparse DNNs. Also, the work introduces a flexible on-chip network,
called hierarchical mesh, that can adapt to allow data reuse and bandwidth requirements of
different data types. Figure 2.10 shows the mesh interconnection, global buffers, and the
PE clusters. Results show that Eyeriss v2 is 12.6 times faster and 2.5 times more energy-
efficient than the original Eyeriss using the MobileNet as a case study.

32

Figure 2.10: Eyeriss v2 general architecture [Chen et al., 2019].

Tavakoli et al. [Tavakoli et al., 2020] present two 2D array style targeting FPGA de-
vices. The first accelerator, Single-Layer Convolution Processor (SLCP), performs the con-
volution layer by layer. The second accelerator, Multi-Layer Convolution Processor (MLCP),
works processing more than one layer in parallel. Both accelerators combine WS and IS
dataflow to perform data reuse. Figure 2.11 show both architectures. Each processor unit
(PU) has a 3x3 MAC matrix. SCLP uses BRAM to store the data from external DRAM, while
MLCP does not have BRAMs. MLCP architecture is similar to SCLP once both have PUs,
accumulators, and max pooling modules. However, MLCP is arranged in a pipeline form to
allow parallelism. MLCP allows reducing the access to on-chip memory and memory band-
width. According to the results, MLCP accelerator achieves 12.9 GOPS, 2.6 times faster
than SLCP. The accelerators were prototyped on a Xilinx Zynq XC7Z020 chip at 200MHz.

Figure 2.11: SLCP and MLCP accelerator architectures [Tavakoli et al., 2020].

Shivapakash et al. [Shivapakash et al., 2020] propose a power-efficient multi-bit
2D array style accelerator, using a truncating technique for the partial sum results provided
by the previous layer of a neural network. Figure 2.12 shows the accelerator architecture.
The IFMAP scratchpad memory is implemented in a 4KB SRAM, and the filter scratchpad
memory is implemented using 11 32-bit registers. The PE array adopts a RS dataflow. The
PE array contains an 11x11 MAC matrix. The 2N bits multiplication output is truncating
to N bits based on the fixed point q-format. The proposed architecture is prototyped in a

33

KINTEX-7 KC705 FPGA, and results show that it is possible to preserve accuracy when
using 12-bit or more for the word length. Results are based on 8-bit to 20-bit word length.
The proposed truncation reduces the FPGA resources and presents a power reduction of
50% when compared to a 32-bit architecture.

Figure 2.12: Multi-bit accelerator architecture [Tavakoli et al., 2020].

Bai et al. [Bai et al., 2020] propose a scalable neural network 2D array architec-
ture for image segmentation. Image segmentation uses two operations: convolution and
deconvolution, and both of them use the same structure based on MACs. The Authors also
propose an optimization to reduce the memory accesses. Figure 2.13 shows the general
architecture, which adopts a WS dataflow. The line buffer is responsible for storing the data
from an external DDR memory. Features and weights are quantized for 8-bit. The process
engine array has a 3x3 multiplier array followed by an adder tree. Also, the process engine
array presents a shift register to control the features and perform the convolution strides.
The accelerator was implemented using Simulink and the HDL Coder tools, prototyped in a
Xilinx ZC706, and shows a throughput of 151.5 GOPS for convolution.

Figure 2.13: Unified convolution and deconvolution accelerator architecture [Bai et al., 2020].

Udupa et al. [Udupa et al., 2020] propose an accelerator for 2D operations based
on a z-first storage architecture. The z-first architecture uses several 2D arrays to deliver
parallelism for convolution operations, followed by an adder tree and a reuse scheme based
on IS dataflow. The architecture is compared with a baseline implementation, which does not
perform data reuse, both with 8-bit 16x16 MACs. The architectures were synthesized using
Synopsys Design Compiler, using 10nm technology at 800MHz. The power estimation is
done using the Spyglass power estimation tool. The results show an improvement in power
dissipation of about 1.46 times for convolution operations and about 1.89 times for pooling
operations compared to the baseline implementation. Also, the throughput is improved by
four times. Memory access is reduced by 1.72 times.

34

Chen et al. [Chen et al., 2020] propose a dataflow that reuses data to perform stride
and uses a mathematical method to reduce memory access using a workload and storage
mapping scheme. The accelerator combines both WS and IS dataflow in its implementation.
Figure 2.14 shows the accelerator architecture. The 2D array style accelerator has 16×16
PEs, and each PE has a 16-bit fixed-point MAC and registers to store partial sums. It is
possible to configure the accelerator to support different convolutional layer dimensions. The
accelerator is synthesized in 65nm technology at 500MHz. It also uses a DRAM as external
memory and uses the Memory Compiler tool to generate the GBufs and PrimeTime tool for
power evaluation. Results are compared to Eyeriss [Chen et al., 2016a] using VGGNet-16
network and show that the proposed dataflow reduces 43.3% memory access than Eyeriss
without input compression, and 6.7% compared with input compression.

Figure 2.14: Unified convolution and deconvolution accelerator architecture [Chen et al.,
2020].

Lu et al. [Lu et al., 2017] propose a new 2D array style architecture called FlexFlow.
This architecture supports IS, OS, and WS dataflows. Figure 2.15 shows the accelerator
architecture, where each PE has a MAC, and the adders inside of each PE of the same
row are connected to build an adder tree. The PE architecture and its interconnection are
designed to allow multiple dataflow types. The accelerator has 16x16 16-bit fixed-point PEs,
an external DRAM memory, and was synthesized using 65nm technology at 1GHz. When
compared to Eyeriss [Chen et al., 2016a], the architecture presents an area reduction of 4
times and a reduction in memory access of 1.22 times.

Du et al. [Du et al., 2015] propose a 2D array accelerator to be used with sensors,
without external memory. The accelerator adopts the OS dataflow. Figure 2.16 shows the
accelerator architecture, with 8x8 PEs, each PE with a MAC. The input image comes from
the sensors, and the accelerator uses 16-bit fixed-point arithmetic. It was synthesized with
Synopsys Design Compiler and IC Compiler, using the TSMC 65nm. Results show that
it is possible to achieve 60 times more energy-efficient than the previous state-of-the-art
accelerators once it does not have external memory, plus the exploration of data access
patterns from the sensors. The results also show an improvement of about 50, 30, and

35

Figure 2.15: FlexFlow accelerator architecture [Lu et al., 2017].

1.87 times in performance compared to Intel Xeon E7-8830 CPU, NVIDIA K20M GPU, and
DianNao accelerator [Du et al., 2015].

Figure 2.16: ShiDianNao accelerator architecture [Lu et al., 2017].

2D Systolic Array Style

Das et al. [Das et al., 2020] propose a 2D systolic array style accelerator focused
on improving energy efficiency and scalability. The accelerator contains vector units, pre-
sented in Figure 2.17, for increased power efficiency. It contains an external DDR memory,
a global buffer using SRAM, a support logic, and an array. The PE array has 4096 8-bit
fixed-point MACs and uses the OS dataflow type. The accelerator was synthesized using
10nm technology, and the results show an average power efficiency of 8.89 TOPS per watt.
The proposed accelerator has a better energy efficiency of 2.6 and 3.8 times compared with
Samsung NPU and Google Tensor Processing Unit (TPU). However, Samsung NPU and
Google TPU were implemented in different technologies, making the comparison unfair.

36

Figure 2.17: ShiDianNao accelerator architecture [Das et al., 2020].

Liu et al. [Liu et al., 2020a] propose a sparsity-aware 2D systolic array style archi-
tecture called Swan, using the WS dataflow. The architecture avoids storing zero values in
internal buffers, improving computation for accelerators with limited interconnect and band-
width resources. The architecture has a PE matrix, where each PE has a MAC and a systolic
dataflow to reuse inputs for interconnecting and bandwidth saving. Figure 2.18 illustrates the
Swan architecture. ABin and ABout store the feature maps and weights, while NPE module
allows moving weights and feature maps through the PE array for reuse. The accelerator
was synthesized with Synopsys Design Compiler, with 4096 16-bit fixed-point MACs, using
TSMC 65nm technology at 600MHz. Results show a throughput of 4915 GOPS and power
dissipation of 2.97W. Also, results show that Swan can achieve 1.5 to 2.1 times speedup
and 6.0 to 9.1 times higher energy efficiency than state-of-the-art accelerators. However, the
compared state-of-the-art accelerators were implemented in a different technology, making
the comparison unfair.

Figure 2.18: Swan general architecture [Liu et al., 2020a].

In another work, Liu et al. [Liu et al., 2020b] propose another 2D systolic array style
architecture. Similar to [Liu et al., 2020a], Swallow also avoids the zero values to achieve
high PE utilization. Figure 2.19 shows the Swallow architecture. Each PE has a MAC, and
NPE has the gating mechanisms to avoid zero values. LRF stores the recent read data to
reuse, and ZDet stores the convolution results if it is not zero. WB store the weights and
is used to implement a dataflow based on WS. It is possible to reuse values in more than
one convolution by shifting them to the neighbor PE. However, there is an underutilization
and decreased performance if the IFMAP edge size can not match the fixed PE array size.
The synthesis was performed with 65nm technology at 800MHz, and the results show a

37

peak performance of 614 GOPS, and power dissipation of 1.26W, resulting in an efficiency
of 487.3 GOPS per watt.

Figure 2.19: Swallow general architecture [Liu et al., 2020b].

Taoran Xiang et al. [Xiang et al., 2018] propose a dataflow called FG dataflow.
The Authors present a two-dimensional accelerator called FDPU, shown in Figure 2.20. The
FDPU processor consists of PEs, data buffers (Dbufs), instruction buffers (Cbufs), a micro-
controller unit (MicC), and a Direct Memory Access (DMA) controller. Dbufs and Cbufs are
implemented by using a scratchpad memory. MicC is used for controlling the execution of in-
structions on PEs. FDPU connects its components using a two-dimensional mesh network,
allowing to transfer data values through PEs. The Fine-Grained dataflow divides the IFMAP
and weight matrix into small matrices and stores them into Dbuf to execute the convolution.
According to the Authors, the number of memory accesses increases in the FD dataflow
compared to other dataflows, such as WS and IS. FDPU was implemented in 45nm technol-
ogy, and the area and power of a single FDPU tile measured are approximately 44.71mm2

and 3.27W. Results show that the performance of FDPU is improved over GPU (3.11 times
faster), and energy consumption of FDPU is reduced (8.52 times) when executing AlexNet.

Figure 2.20: FDPU general architecture [Xiang et al., 2018].

Sungju Ryu et al. [Ryu et al., 2022] propose an area and energy-efficient precision
scalable accelerator called BitBlade. The proposed accelerator allows performing sums with
different input sizes (2/4 bits). Figure 2.21 shows the accelerator architecture. Each PE

38

receives a group of values with the same bit size. This accelerator use shift operations to
adequate the data size through the PEs. Also, PE arrays are implemented using the WS
dataflow. A chip was implemented in 28nm CMOS technology, and results show that the
throughput and system-level energy efficiency were increased by up to 7.7 and 1.64 times
higher than state-of-art accelerators like [Jiao et al., 2020].

Figure 2.21: BitBlade general architecture [Ryu et al., 2022].

Li Du et al. [Du et al., 2017] propose a streaming-based accelerator, illustrated
in Figure 2.22. COL BUFFER module is implemented to remap the buffer output to the
convolution unit (CU) engine input, composed of 16 PEs. A pre-fetch controller periodically
fetches the DMA controller parameters and updates the weights and bias values in the CU.
ACCU is the accumulation buffer, and BUFFER BANK stores the inputs and outputs. Also,
the proposed accelerator implements a max-pooling function in hardware, which improves
energy efficiency avoiding unnecessary data movement to CPU or GPU to process pooling.
In addition, the accelerator can compute the max-pooling function in parallel with convolution
by using a separate pooling unit, thus achieving throughput improvement. This accelerator
also provides a filter decomposition technique to support arbitrary convolution window size
with additional zero-padding values. A prototype accelerator was implemented in TSMC
65nm technology with a core size of 5mm2. The hardware precision is 16-bit fixed-point,
with WS dataflow, and the accelerator can support major CNNs and achieve 152 GOPS
peak throughput and 434 GOPS per watts energy efficiency at 350mW.

Weison Lin and Tughrul Arslan [Lin and Arslan, 2021] propose a column streaming-
based accelerator. The Authors propose a method where the weights are stationary in PEs
(such as WS), and the IFMAP is divided into columns to be processed in the convolution.
Figure 2.23 shows the general architecture and also illustrates the IFMAP column division.
The data can be transmitted through the PE array in a wavefront interconnection (PEs are

39

Figure 2.22: Streaming-based Accelerator general architecture [Du et al., 2017].

connected diagonally). The results are generated comparing with the [Du et al., 2017], and
show that [Lin and Arslan, 2021] has a larger area and delay than [Du et al., 2017]. However,
[Du et al., 2017] eliminates the zero-padding overhead, and the number of cycles is close.
PPA results and setup are not addressed in this work.

Input
features in
columns

Filters

PE module
(Convolution
operations)

j-height

Fig. 4. Schematic of convolution computation

Fig. 5 shows the PE array layout in the convolution engine.
The two input buses indicate the streaming input data loads
from memory, such as SRAM, into the PE array. The
connections, such as wire1, wire2, wire3, wire4, will be
programmed differently according to different filter sizes. Fig.
5. is an example of an input feature mapping with a 4 × 4
weight filter, so the PEs in the red squares are organized as
several 4-height columns. The input buses are not fixed to be
the first column and fifth column, and they will be changed
depending on the mapping model, according to the filter size.

When the filter size is between 3 to 5, the input feature
decomposed column height j equals 11. In Fig. 5, the first
column set of the input feature is the 0th data to the 20th data
of the input feature. The second column set of the input
feature will be 20th to 40th, and the nth set will be (𝑛 −
1) × 20 to 𝑛 × 20 (𝑛 ∈ ℕ+) . The nth set is separated into
two sub-column sets, which will be mapped to bus 1 and bus
2 simultaneously to the convolution engine. In the next cycle,
both sub-set of the nth set data will move to the right next
column diagonally while the (n+1)th column set will be
mapped to bus 1 and 2 to the convolution engine. The
following sets of the input features will be streaming to the
convolution engine. For easier to understand, Fig. 5 only
shows the progress view of the first four cycles with the first
data set and some data in the second set. When the first four
cycles are finished, data 0-22 has finished their convolution
operation by doing the inner product operation with the
preloaded weight values with a filter column.

Fig. 6 represents weight filters that should apply to the
input features for the inner-product operation. Fig. 6(a) is the
weight filter adopted by Fig. 5 as Fig. 7 shows that the first
column of the 4 × 4 filter in Fig. 6(a) preloads to the PEs
module and waits for the streaming in input features. A
column of the filter values will only be updated after a feature
layer is computed and streamed out. Then, the second column
of the filter will load into the PE module and wait for the
feature columns, which should apply the inner product with
it.

When it comes to the filter size between 6 to 11, the streaming
mapping method is different due to the filter's column
containing more data. The input feature decomposed column
height j of them are various, j = 16 to 11 respectively. Fig. 8
is an example of an input feature mapping with a 7 × 7 weight
filter, so the PEs in the red squares are organized as several
7-height columns. In Fig. 8, the first column set of the input
feature is the 0th data to the 14th data of the input feature. The
second column set of the input feature will be 15th to 29th, and
the nth set will be (𝑛 − 1) × 15 to 𝑛 × 15 − 1 (𝑛 ∈ ℕ+) .
The data 0 to 10 in the first set will load to bus 1, and the data
11-14 will load to bus 2. Except for the first set, in the nth set

0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

2

3

4

5

6

7

8

9

10

11

3

4

5

6

7

8

9

10

11

12

10

11

12

13

14

15

16

17

18

19

20

11

12

13

14

15

16

17

18

19

20

12

13

14

15

16

17

18

19

20

21

13

14

15

16

17

18

19

20

21

22

0

1

2

3

4

5

6

7

8

9

10

(10)

11

12

13

14

15

16

17

18

19

20

(20)

21

22

23

24

25

26

27

28

29

30

(30)

31

32

33

34

35

36

37

38

39

40

Input Bus 1 Input Bus 2

1st set2nd set

From SRAM:
Feature maps

pixels
wire1 wire2

wire1 wire2

wire3 wire4

wire3 wire4
 of inputs to both

buses
Fig. 5. Example of PE array and the data mapping in the convolution
engine (Using filter size 4 × 4 as the example at the 4th cycle)

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

aa

ab

ac

ad

ae

af

ag

ah

ai

aj

ak

al

am

an

ao

ap

aq

ar

as

at

au

av

aw
(a) (b)

Fig. 6. (a) a 4 x 4 filter example, (b) a 7 x 7 filter example

a

b

c

d

a

b

c

d

a

a

a

b

c

d

a

b

c

d

b

b

a

b

c

d

a

b

c

d

c

c

a

b

c

d

a

b

c

d

d

d

a

b

c

d

a

b

c

d

a

a

a

b

c

d

a

b

c

d

b

b

a

b

c

d

a

b

c

d

c

c

a

b

c

d

a

b

c

d

d

d

wire1 wire2wire3 wire4

wire1 wire2 wire3 wire4

Fig. 7. The preloaded filter columns of a 4 × 4 filter in the PE array

(𝑛 ∈ ℕ+), the data (𝑛 − 1) × 15 + 𝑖, {𝑖|0 ≤ 𝑖 ≤ 5 and 𝑖 ∈
ℕ0} is loaded to bus 1 and bus 2, and the data in the nth set is
one clock behind the (n-1)th set. Data loads into bus 1 and bus
2 will diagonally move to the next right column or left
column, respectively as the next column set from memory
such as SRAM will be mapped to the convolution engine by
bus 1, 2, and so on. The following sets of the input features
will continue to be streaming to the convolution engine. Fig.
9 shows that the first column of the 7 × 7 filter, shown in Fig.
6(b), preloads to the PEs module and waits for the streaming
in input features.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on March 07,2022 at 05:28:34 UTC from IEEE Xplore. Restrictions apply.

Figure 2.23: Column Streaming-based Accelerator general architecture [Lin and Arslan,
2021].

Boming Huang et al. [Huang et al., 2021] propose an In-Execution Configuration
Accelerator (IECA) using the RS dataflow. The accelerator is implemented in two steps:
(i) 1D array to implement a row; (ii) a tile with three rows, which configures a 2D systolic
array. The accelerator uses more than one tile, resulting in a 3D-tiled accelerator, as shown
in Figure 2.24. IECA uses a delay-chain structure to control when the inputs must be read.
A delay-chain structure enables data reuse based on the stride. The accelerator allows
diverse convolutional sizes. These delay-chain structures are composed of a register chain
that delays the data control signals. A chip was fabricated with UMC 55nm LP technology at
250MHz, using 16-bit fixed-point as precision. The area is 1.658mm X 1.659mm, with 168
PEs and 109kB on-chip SRAM, with power equal to 114.6mW. The delay-chain structures
account for 0.55% of the entire chip area, and the area efficiency of the IECA achieves 30.55
GOPS/mm2 and 2.39% of the total power dissipation.

40

HUANG et al.: IECA: IN-EXECUTION CONFIGURATION CNN ACCELERATOR 4675

Fig. 2. (a) The logically Xp × Y × Z PE array of the proposed accelerator, with each group of 8 horizontal PERs connecting to an IR buffer and each
PE tile connecting to an FR buffer. (b) Three different planes of 3D-tiled architecture and corresponding fan-out for each buffer. *Each PE accesses the PS
buffer individually through partial bits of buffer bit-width.

b) PE Tile (PET): Y PERs are grouped to form a PET,
which is assigned with connections to Y IR buffers, one
shared FR buffer and Y PS buffers. In this plane, one
FR is reused with multiple IRs and thus, Y ORs can be
computed in parallel.

c) PE Tile Row (PETR): Z PERs are grouped to form a
PETR, which is assigned with connections to one shared
IR buffer, Z FR buffers and one PS buffer. In this plane,
one IR is reused with multiple FRs and thus, Z OR
channels can be computed in parallel.

d) PE Tile Column (PETC): Y × Z PEs are grouped to
form a PETC, which is assigned with connections to Y
IR buffers, Z FR buffers and Y PS buffers. In this plane,
all PEs follow the unified control word and receive FR
and IR data within the same cycle.

In the 3D-tiled PE array, filter and ifmap reuse are endoge-
nously realized in intra- and inter-tile manners respectively.
As discussed in term definition, a PET shares the same FR
buffer and PETR shares the same IR buffer, so we can improve
the degree of data reuse through larger extension. Moreover,
the 3D-tiled extension offers an opportunity of trading off data
reuse rate and on-chip buffer size. The maximum fan-out of
an IR buffer is Xp × Z, while that number of an FR buffer is
only Y due to systolic input in PER. To enable more flexible
data and control flow, delay chains that consists of registers
are added to the interconnection network for FRs, IRs and
the control word. Similar to buffer sharing, the delay chains
can be shared across several dimensions. As a PETR shares
the same IR buffer, the IR delay chain can be shared among
all PEs of a PETR. The ifmap data are broadcast to Xp × Z
PEs through the chain. Similarly, FR delay chains are shared
by all intra-PER neighboring PEs across the Y PERs that are
in the same PET, while control delay chains are free from
inter-tile data independency and thus, shared by all intra-row
neighboring PEs. Therefore, the extension of PER does not
increase the number of control delay chains. In summary, there
are totally Y IR delay chains, Z × (Xp-1) FR delay chains

and (Xp-1) control delay chains present. The proposed IECA
eventually adopts a 3D array of 3 × 7 × 8. Corresponding
to such dimension setting, 2 control delay chains are required
for the array-scale control delivery, while 16 FR delay chains
and 7 IR delay chains are employed for the data delivery.

In the remainder of this section, we demonstrate the IECA
from the aspects of PE processing, memory subsystem, and
control scheme seperately. The PE processing focuses on
the processing of a row-wise convolution and how to tackle
data hazards in various layer configurations. The flat memory
subsystem provides the details of minimizing configuration
overhead through buffer sharing and in-execution self-write.
The control scheme gives the details of the control logic on
run-time reconfigurability and how in-execution scheduling
can be realized through the proposed Three Stage Control
Flow (TSCF).

A. Reconfigurable Systolic Processing of Per

In the proposed IECA, the PER is the smallest convolu-
tion unit that fundamentally determines the efficiency and
performance. There are two goals in designing the PER.
First, since parameters in different convolutional layers of
different CNN models vary, the PER should support diverse
layer configurations with high PE utilization rates. Second,
the PER should possess independent computing functions to
facilitate large-scale extension and paralleled control. To meet
the above requirements, inspired by systolic architecture and
row-stationary dataflow, we propose an in-execution config-
ured PER to handle the row-wise convolutions, in which the
behavior of computing unit is managed by a sequence of
control words flowing synchronously with the dataflow.

To fit the mainstream kernel size, 3 PEs are cascaded to
construct the PER. The feeding of FR weights is designed in
a systolic manner so that the throughput of an FR buffer and
latency of data feeding can be well balanced. As illustrated
in Fig. 3, FR data from the FR buffer stream along the
cascaded PEs while IR pixels from the IR buffer are broadcast

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on March 07,2022 at 05:27:51 UTC from IEEE Xplore. Restrictions apply.

Figure 2.24: IEAC 3D tile [Huang et al., 2021].

Final Remarks Related do Dedicated Accelerators

This Section summarizes works related to dedicated accelerators. Table 2.1 shows
characteristics of the described accelerators, using as reference the taxonomy presented in
Figure 2.3. Each accelerator has a specific target like small area [Chen et al., 2014] or low
power [Hsiao and Chang, 2020]. Few works present accelerators capable of reconfiguring
themselves. Examples of reconfiguration include the word data size [Jiao et al., 2020], or
the dataflow type.

The analysis of the state-of-the-art reveals the difficulty of performing a PPA com-
parison. The Authors target ASIC and FPGA technologies. For ASIC design, there are dif-
ferent technology nodes, while FPGA design uses different families. We observed in some
works the Authors comparing their results with other technologies, making the comparison
unfair. One of our goals is to propose a DSE flow enabling to extract PPA data for different
technologies, easing the comparison with related works.

Table 2.1 also shows one of the contributions of this Thesis. The Thesis proposes
a set of accelerators covering the three first columns (small area, low power, high perfor-
mance), with 8 and 16-bit precision. Also, the accelerators are implemented using the WS,
IS, and OS dataflow, once these dataflow types are the most commonly adopted by the lit-
erature. We reviewed 12 works based on WS, 7 based on IS, and 8 based on OS, while 5
use RS and 1 FD.

41

Table 2.1: Dedicated accelerators state-of-the-art summary.

Work Small
Area

Low
Power

High
Performance Configurable Precision Tech/

FPGA
Array
Style Dataflow

[Chen et al., 2014] yes no no no 16-bit
fixed-point 65nm 1D OS

[Zhang et al., 2015] yes no yes no 32-bit
float VC707 1D OS

[Du et al., 2015] no no no no 16-bit
fixed-point 65nm 2D OS

[Chen et al., 2016a] no yes no no 16-bit
fixed-point 65nm 2D

Systolic RS

[Chen et al., 2016b] no yes no no 16-bit
fixed-point 65nm 2D

Systolic RS

[Lu et al., 2017] no no no Dataflow
Type

16-bit
fixed-point 65nm 2D WS / IS / OS

[Du et al., 2017] no yes no no 16-bit
fixed-point 65nm 2D

Systolic WS

[Xiang et al., 2018] no no yes no 16-bit
fixed-point 45nm 2D

Systolic FG

[Chen et al., 2019] no no no no 8-bit
fixed-point 65nm 2D

Systolic RS

[Jiao et al., 2020] no no yes Word
Size

8/16-bit
int 12nm 1D WS / IS

[Hsiao et al., 2020] no no no Dataflow
Type

16-bit
fixed-point 28nm / 40nm 1D WS / IS / OS

[Hsiao and Chang, 2020] no yes no no 16-bit
fixed-point 40nm 1D WS / IS / OS

[Spagnolo et al., 2020] no no no no 8-bit
fixed-point Zynq-U 9EG 1D OS

[Tavakoli et al., 2020] no no yes no
8-bits/
max.

required value
Zynq XC7Z020 2D WS /IS

[Shivapakash et al., 2020] no yes no no
8/20-bit

fixed-point
(q-ormat)

Kintex-7 KC705 2D RS

[Bai et al., 2020] no no no no 8-bit
fixed-point Xilinx ZC706 2D WS

[Udupa et al., 2020] no no no no 8-bit
(not specified) 10nm 2D IS

[Chen et al., 2020] no no no no 16-bit
fixed-point 65nm 2D WS /IS

[Das et al., 2020] no yes no no 8-bit
fixed-point 10nm 2D

Systolic OS

[Liu et al., 2020a] no no no no 16-bit
fixed-point 65nm 2D

Systolic WS

[Liu et al., 2020b] no no no no 16-bit
fixed-point 65nm 2D

Systolic WS

[Lin and Arslan, 2021] no no no no NA NA 2D
Systolic WS

[Huang et al., 2021] yes no no no 16-bit
int/fixed-point 55nm 2D

Systolic RS

[Ryu et al., 2022] no yes no Word
Size

2/4-bit
int 28nm 2D

Systolic WS

This thesis yes yes yes no 8/16-bit
fixed-point 28nm / 65nm 1D / 2D

Systolic WS / IS / OS

2.2.2 Industrial Accelerators

This Section presents an overview of the current neural network accelerators in the
industry. Tesla developed an SoC to accelerate machine learning applications [Tesla, 2019].
The system contains 12 ARM CPUs, GPU, on-chip SRAM, ReLU and pooling dedicated
hardware, and a 96x96 MAC array. The MAC array produces a result for every clock cycle,

42

ensuring high throughput. The chip was fabricated using a 14nm technology node. The
Tesla Accelerator has 6 billion transistors, with an area of 260mm2. According to Tesla, the
convolution accelerator array can reach a throughput of 72 TOPS at 2GHz. Experiments
show that, with a throughput of 35 GOPS, a GPU has an improvement of 14 times regarding
frames per second compared to a CPU. Results show that, also with a throughput of 35
GOPS, the Tesla accelerator has an increase in frames per second of 13 times compared
to the GPU, totalizing an increase in frames per second of 182 times compared to a CPU.
Besides all the improvements, the Tesla accelerator has an expensive hardware cost. How-
ever, this hardware is used in a real-time specific application, the autonomous Tesla car, and
needs a high throughput to process all data coming from the inputs.

Apple developed an SoC that targeted to mobile devices, called A13 Bionic [Apple,
2022]. The SoC presents four CPU cores, a GPU, and a matrix multiplication accelera-
tor. The SoC was fabricated using a 7nm technology with 8.5 billion transistors. According
to Apple, the A13 performance is higher than the other companies’ accelerators, such as
Snapdragon 855 from Qualcomm and the kirin 980 from Hauwei, reaching almost 50% of
improvement. According to Apple, the SoC was developed to reach low power and high per-
formance, with a throughput of 1 TOPS, and a power reduction of 30% compared to the past
version, the A12. The low power is achieved by disabling the neural engine once it is not
used in all applications. Compared to Tesla accelerator, Tesla demonstrated a throughput
72 times higher than the Apple hardware. However, Apple focuses on mobile applications
and does not require the same performance achieved by Tesla. Also, Apple focuses on low
power dissipation, a necessary parameter for mobile applications, constraining the design in
terms of area. Besides, mobile applications do not need real-time processing, consequently
not requiring high throughput.

Google TPU [Google, 2022a] is a custom-designed machine learning ASIC to ac-
celerate machine learning applications, such as network security and medical diagnoses.
TPU was developed to perform machine learning applications in the cloud. According to
Google, TPU is used in translating, photo manager, search assistant, and e-mail. Also, the
Google TPU has a fault-tolerant feature for training. TPU results show an improvement of
27 times accelerating the ResNet-50 neural network training compared to GPUs.

Microsoft designed the Brain Wave NPU [Microsoft, 2022] for real-time machine
learning applications, both in the cloud or edge. This approach uses an FPGA to accelerate
the neural network inference of applications, such as computer vision and natural language
processing, and is used combined with CPUs. Brain Wave NPU can reach low latency, high
throughput, high efficiency, and flexibility due to FPGA, according to Microsoft.

Amazon developed the Inferentia chip [Amazon, 2018] to perform neural network
inference. It is implemented to reach high throughput and low latency at a low cost. Inferentia
supports frameworks to implement neural networks, such as TensorFlow and PyTorch. Also,

43

Inferentia has a throughput of thousands of TOPS, and it is possible to use more than one
chip together to improve this throughput.

Intel proposes the Nervana Neural Network Processor-T (NNP-T) [Intel, 2022], an
accelerator for both training and inference. Nervana has two chip versions, one dedicated to
the training phase and the other one dedicated to the inference phase. Nervana uses High
Bandwidth Memory (HBM) interface to get better performance, with eight channels, using a
DDR channel interface combined with the LPDDR power-saving techniques. Nervana can
train complex neural networks with low time-to-train, dissipating between 10W and 75W.

Qualcomm Snapdragon [Qualcomm, 2019] is an accelerator focused on mobile
devices. It was developed to perform on-chip inference, reducing the latency when the
application is processed on the cloud. Snapdragon can be used to perform machine learning
tasks like image classification, object detection, face detection, and speech recognition.
Snapdragon can achieve a throughput of 7 TOPS and can process more than 140 inferences
per second on the Inception-v3 neural network.

Many companies build their accelerators, both for training and inference. Each
company has its accelerator, designed according to its constraints. For example, Tesla works
with autonomous cars and needs high throughput due to the amount of data that real-time
applications must process. Thus, it is necessary to relax constraints related to power and
area. On the other hand, Apple focuses on mobile applications that need less throughput
capacity than Tesla, having power dissipation as a critical design constraint.

The same occurs in other companies, such as Google and Microsoft, developing
accelerators targeting a specific application. Thus, it is possible to note that application-
specific accelerators are a market trend. Table 2.2 summarizes the industrial accelerators,
including other companies. This Table shows the relevance of the research and development
of hardware accelerators.

2.3 Hardware Design Space Exploration Frameworks and Simulators

This section describes works that generate PPA analyses focused on simulators of
CNNs and frameworks related to our proposal. Estimation frameworks can use a simulator
to estimate PPA based on the hardware behavior or use analytical methods to evaluate
PPA. The simulators are commonly implemented using high-level program languages, such
as Python and C++, and simulate the CNN accelerator faster than RTL approaches.

Specific-domain frameworks targeting commercial platforms like Vitis AI from Xilinx
[Xilinx, 2021] and TensorRT from NVIDIA [NVIDIA, 2022b] aid in model hardware for CNNs.
These frameworks model the CNN using frameworks such as TensorFlow, and using HLS,
convert the model to the hardware using custom IPs (Xilinx) or specific platforms (e.g., Jet-

44

Table 2.2: Industrial CNN accelerators.

Company Product Function

Amazon [Amazon, 2018] Inferentia Inference

Fujitsu [Fujitsu, 2018] Deep Learning Unit Inference

Alibaba [Alibaba, 2019] Hanguang 800 Inference

Huawei [Huawei, 2019] Ascend 910 Inference/Training

Tesla [Tesla, 2019] FSD Inference

Samsung [Samsung, 2019] Exynos Inference

Qualcomm [Qualcomm, 2019] Snapdragon Inference

Xilinx [Xilinx, 2018] xDNN Inference

Toshiba [Toshiba, 2019] Visconti 5 Inference

Google [Google, 2022a] TPU Training

Microsoft [Microsoft, 2022] Brain Wave NPU Inference

Facebook [Facebook, 2022b] Kings Canyon Inference

Apple [Apple, 2022] Bionic Inference

IBM [IBM, 2022] Watson Inference/Training

Western Digital [Digital, 2022] Machine Learning Accelerator Inference/Training

Intel [Intel, 2022] Nervana Inference/Training

NVIDIA [NVIDIA, 2022a] NVDLA Inference/Training

Mediatek [Mediatek, 2022] APU Inference

Renesas [Renesas, 2022] e-AI Inference

Texas Instruments [Texas, 2022] Sitara Inference

NXP [NXP, 2022] S32V234 MPU Inference

Cerebras [Cerebras, 2022] CS-1 Inference/Training

son). However, these frameworks use proprietary IPs, limiting the design space exploration.
Thus, specific-domain frameworks are out of this Thesis’s scope.

Similar occurs to the NVIDIA Deep Learning Accelerator (NVDLA) [NVIDIA, 2022a].
NVDLA is an open-source framework from NVIDIA to implement machine learning applica-
tions. The framework presents a full software ecosystem, which includes: (i) a complete
training infrastructure; (ii) a compiler to convert existing models to a form that is usable by
NVDLA software. Figure 2.25 shows the NVDLA framework flow. The NVDLA can read a
neural network from a front-end environment, such as Caffe, and map to the NVIDIA accel-
erator. PPA results for a 16nm technology show for a 32 MACs array area of 0.55µm2, a
throughout of 3.6 frames per second, and an average power of 17mW. For a 2048 MACs
array, the results show an area of 3.3µm2, a throughout of 269 frames per second, and an
average power dissipation of 291mW .

45

DL training
software

Build

Parser Compiler

Optimizer

Model

User-mode
driver (UMD)

Kernel-mode
driver (KMD)

NVDLA
Loadable ioctl() Reg writes

Figure 2.25: NVDLA flow diagram [NVIDIA, 2022a].

NVDLA is open-source, allowing generating case studies to evaluate PPA. How-
ever, the framework is restricted only to NVIDIA accelerator architecture, making it hard to
compare with other accelerators. Also, to obtain PPA data, it is necessary to perform all
the implementation flow, which means more time spent on the project. The same occurs for
simulation once it is based on RTL simulation.

2.3.1 Hardware Design Space Exploration Frameworks

MLPAT [Tang and Xie, 2018] is a framework that allows the modeling of power, area,
and timing for machine learning accelerators. Figure 2.26 shows the framework architecture.

Figure 2.26: MLPAT Framework Architecture [Tang and Xie, 2018].

MLPAT supports modeling components such as systolic arrays, on-chip memory,
and activation pipeline. Also, MLPAT supports different precision types, which allows validat-
ing the trade-off between accuracy and precision, and different dataflows, such as WS and
OS. As input, the MLPAT allows specifying the accelerator architecture, the circuit, and the
technology. The framework generates an optimized chip representation to report the results,
such as area, power, and performance. The results show an error below 10% when com-
pared with TPU-V1. The MLPAT does not perform simulation, but the Authors mention in the
paper that it is possible to combine MLPAT with simulation tools. Thus, it is also possible to

46

have dynamic power results. Even with area, timing, and power analyses, the power results
are inaccurate.

MAESTRO [Kwon et al., 2018a, Kwon et al., 2019] is a framework to describe and
analyze neural network hardware, which allows obtaining the hardware cost to implement a
target architecture. Figure 2.27 shows the framework architecture. It has a domain-specific
language (DSL) to describe the dataflow that allows specifying the number of PEs, memory
size, and NoC bandwidth parameters. The results generated by the framework are focused
on performance analyses. In recent work, MAESTRO was used to estimate tradeoffs be-
tween execution time and energy efficiency for CNN models, such as VGG and AlexNet.

Figure 2.27: MAESTRO Framework Architecture [Kwon et al., 2018a].

Timeloop [Parashar et al., 2019] is a design space exploration framework for CNNs.
It can emulate a set of accelerators, such as NVDLA [NVIDIA, 2022a]. Figure 2.28 shows
the Timellop framework flow diagram. Timeloop focuses on the convolution layer analyses.
Timeloop uses as input a workload description, such as input dimension and weight values,
a hardware architecture description, such as arithmetic modules, and hardware constraint.
Instead of using a cycle-accurate simulator, Timeloop uses data transfers deterministic be-
havior to perform analytic analyses. As energy models, Timeloop has memory, arithmetic
units, and wire/network models based on TSMC 16nm FinFET.

Accelergy [Wu et al., 2019] allows estimating the energy of accelerators without
a complete hardware description, using a library of basic components. Figure 2.29 shows
the framework flow. Accelergy uses a high-level architectural description to capture the cir-
cuit behavior characteristics, such as memory reads. The obtained results are compared to
post-layout results, showing an error of 5% in the energy estimation for the Eyeriss acceler-
ator. Even considering the number of memory reads, Accelergy does not consider relevant

47

Fig. 2. Timeloop tool-flow.

reuse. Others fail to comprehend the complete size and scope

of the mapspace and/or obfuscate the separation between the

architecture design space and mapspace [19], [27]. Finally, re-

cent work on sophisticated compilers for DNN workloads [4],

[31] have built-in cost models, though the objective of those

models is simply to provide enough fidelity to guide the opti-

mizer rather than to provide accurate energy and performance

projections for architecture design-space exploration.

Timeloop provides a rich and general template that is capa-

ble of representing DNN accelerators in a large design space,

and it automatically constructs the complete mapspace for any

specified architecture. We show that popular dataflows such as

output-stationary or weight-stationary [6], [8] are but specific

instances of a larger set of constraints that can be imposed on

the mapspace, limiting the computation schedules and operand

reuse patterns that the architecture can exploit. For each work-

load, Timeloop automatically searches for optimal mappings

within these constraints, ultimately providing performance,

energy and area characterizations using a detailed architectural

cost model. Thus, it aims to serve as a super-set of many of

these prior approaches, and as a robust tool for rapid early-

stage design space exploration and competitive evaluation of

DNN accelerator architectures.

IV. TIMELOOP OVERVIEW

Timeloop’s operation consists of creating a mapspace for a

given workload on an architecture, exploring that mapspace to

find the optimal mapping, and reporting the performance and

energy metrics of that optimal mapping. Timeloop needs the

following inputs to generate a mapspace:

1) The shape and parameterization of a workload, e.g., the

dimensions of the input, output, and weight tensors used

in a DNN layer, and the set of operations needed to

compute the layer.

2) A specification of the architecture’s hardware organiza-

tion (arithmetic units, memories and networks).

3) The constraints that the architecture imposes on ways

in which the computation can be partitioned across the

hardware substrate and scheduled over time.

Once the mapspace is constructed, Timeloop evaluates the

performance and energy efficiency of a set of mappings within

the space. This evaluation does not rely on a cycle-accurate

simulator; instead, Timeloop exploits the fact that computation

and data-movement patterns in DNN computations are largely

1 for r=[0:R):
2 for s=[0:S):
3 for p=[0:P):
4 for q=[0:Q):
5 for c=[0:C):
6 for k=[0:K):
7 for n=[0:N):
8 Output[p][q][k][n] +=
9 Weight[r][s][k][c] * Input[p+r][q+s][c][n];

Fig. 3. Convolutional layer 7D loop nest.

deterministic, enabling it to compute throughput and access

counts analytically for an architecture. The model determines

the counts of various activities, including arithmetic opera-

tions, memory accesses and network transfers, including the

multi-casting of data from a producer to multiple consumers,

and forwarding of data between units. These access counts

are used to determine performance. Combined with the energy

cost per access from the energy model, they are also used to

determine the energy consumption of the workload.

Figure 2 shows an overview of Timeloop. The infrastructure

is split into two main components, the mapper and the model,

with a mapping serving as the interface between the two.

We describe the mapper in Section V along with the input

specifications used to configure Timeloop to represent different

architectures and workloads. In Section VI, we describe how

the model evaluates each mapping.

V. TIMELOOP INPUTS AND MAPPER

A. Workload Specification

Timeloop’s workload format is similar to the form of a

single DNN layer. To evaluate a complete network, one can

invoke Timeloop sequentially on each layer and accumulate

the results. Each layer has tremendous reuse opportunities, and

we leave exploration of cross-layer reuse to future work. In

this paper, we focus our evaluation efforts on convolutional

(CONV) layers shown in Figure 3. These layers can be

described as a 7D nested loop over weight tensor’s height

and width (R, S), output tensor’s height and width (P, Q),

number of input channels (C), number of output channels

(K), and number of inputs or batch size (N). Matrix-matrix

multiplications can be expressed as convolutions by setting R,

S, P and Q to 1, and matrix-vector multiplications can also

be expressed by setting R, S, P, Q and N to 1. Therefore,

Timeloop also supports fully-connected (FC) layers and re-

current neural network (RNN) layers since they are essentially

matrix-vector multiplications. CONV and FC layers account

for a majority of the computation in DNNs (e.g., 99.25% in

ResNet50 [17] inference on ImageNet). In general, Timeloop

can analyze any workload that can be described as a deep

loop nest with fixed base and bounds, with operand indexing

expressions that are a linear composition of loop indices and

body iterations that may be freely re-ordered.

From the nested loop in Figure 3, we see that loops

have constant base and bound. Convolution operand tensors

(i.e., weights and inputs) and result tensors (i.e., outputs) are

indexed using linear combinations of loop indices, and all loop

306

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on March 25,2022 at 21:45:10 UTC from IEEE Xplore. Restrictions apply.

Figure 2.28: Timeloop Framework Diagram Flow [Parashar et al., 2019].

features of an accelerator. Accelergy considers whether the memory access pattern is ran-
dom or whether it reads the same address repetitively, but it does not take into account
dataflow types and data movement through the array. Besides, Accelergy does not provide
a simulation environment.

Accelergy

User input

Action
counts

save ERT2

save ERT1

save ERT0

Energy
reference table
(ERT) generator

Estimation
plug-in 0

Energy
calculator

…

…

…

Primitive
Component

Library

Saved ERTs
(YAML)

Action
counts
(YAML)

Energy
estimations

(YAML)

User input

Architecture
description

(YAML)

User input

Estimation
plug-in 1

Compound
component
description

(YAML)

Figure 3: High-level block diagram of Accelergy framework.

which is a design-specific energy table, and (2) CACTI [15], which is

an open-source tool for general memory components (e.g., SRAMs).

Accelergy has two main parts: (1) the energy reference table (ERT)

generator and (2) the energy calculator. The ERT generator is re-

sponsible for parsing the architecture and compound component

descriptions and querying the appropriate estimation plug-ins to

generate energy estimates of the components in the design. The

generated energy estimates are saved in the form of ERTs, which

record the energy-per-action for different action types associated

with the primitive and compound components in the design (e.g.,

the action types and energy-per-action specified in Fig. 2 are ERT

entries for the specific register file). For each action, the related

ERT entry must have sufficient information to calculate the en-

ergy for any value of the arguments associated with the action (see

Section 3.3).

Automatic design exploration tools, such as Timeloop [16], re-

quire fast energy consumption evaluations. To enable the integra-

tion of Accelergywith such tools, the generated ERTs for a hardware

design are saved, so that they can be reused for action counts from

different workloads. This avoids re-parsing the design descriptions

and re-querying the component estimators.

The energy calculator is responsible for parsing the action counts

and the saved ERTs. The energy estimations of the components in

the design are generated by combining the related entries in the

action counts and the saved ERTs.

3 CONFIGURATION LANGUAGE

This section presents the detailed semantics of the configuration

language used by Accelergy.

3.1 Object-Oriented (OO) Approach

Designs often contain or share multiple components of the same

type and each component has different values for its attributes.

For example, SRAMs are present in most of the designs, but each

SRAM has different technology, depth, width, number of banks,

etc. To avoid enumerating every component’s attributes and asso-

ciated actions in the design, Accelergy uses an OO approach by

introducing the concept of a component class, which is similar to

a class in an OO language. A component class’ data members are

its hardware attributes, and its member functions are its actions.

The components that share the same set of hardware attributes and

actions are instances of their component class (e.g., an SRAM block

of depth 128 and an SRAM block of depth 512 both belong to the

same SRAM class). All the component instances derived from the

same class can (1) inherit or override the default hardware attribute

values specified by the class to distinguish between each other, and

(2) perform the same set of actions defined by the class. In this

way, with the description of the component classes, the component

instances can be succinctly described in terms of its component class

name and a set of hardware attribute values used to override the

defaults (if there are any).

3.2 Primitive Component

A primitive component is a component at the finest granularity. It

is an instance of a primitive component class. Example 1 shows

a description of a counter class. To describe primitive component

classes, the set of essential hardware attributes and actions are

needed. Primitive classes are listed in Accelergy’s primitive compo-

nent library as a YAML list. Since many accelerator designs share

the same set of primitive components (e.g., SRAM and adder), the

primitive component library can be shared across different designs

to avoid regeneration of such lists. The estimation plug-ins generate

ERTs for primitive components.

Example 1: a counter primitive component class

1 name: counter # c l a s s name

2 attributes: # d e f a u l t a t t r i b u t e s

3 technology: 65nm
4 datawidth: 16
5 actions: # l i s t o f a c t i o n s

6 - name: count
7 - name: idle

3.3 Compound Component

A compound component is defined as a high-level function unit

that consists of several primitive components or other high-level

function units, which we refer to as its sub-components. Describing

designs in terms of compound components simplifies runtime statis-

tics generation, produces succinct design description, and reduces

energy estimation errors caused by overlooking some primitive

components. However, since the accelerator design space is very di-

verse, it is hard to provide a fixed set of compound components that

can be used for all possible designs. To address the problem of diver-

sity in the design space, Accelergy allows user-defined compound

components.

Compound components are instances of compound component

classes, which are defined by the user in the compound component

description file as an input to Accelergy. As compound components

inherently involve lower-level components, to define a class of

compound components, the following needs to be specified: (1)

a set of attributes, (2) a set of sub-components, and (3) a set of

compound action names and definitions.

3.3.1 Smart buffer unit. In order to illustrate the semantics

clearly, we use the idea of a smart buffer unit as a compound com-

ponent example. The smart buffer unit has a storage structure that

is a simplified version of a proposed accelerator idiom, the buffet

collection [18], and address generators that supply addresses to the

storage structure.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on March 25,2022 at 21:51:43 UTC from IEEE Xplore. Restrictions apply.

Figure 2.29: Accelergy Framework Diagram Flow [Wu et al., 2019].

Heidorn et al. [Heidorn et al., 2020] propose an analytical model that estimates
throughput and energy to a given hardware constraint. A DSE is proposed to determine
the accelerator architecture limits in terms of throughput, number of parallel operations,
and memory. The Authors propose an accelerator to evaluate the model with a tile-local
memory, a bus, and a coarse-grained reconfigurable array (CGRA). Each CGRA presents a
two-dimensional array of PEs, and the accelerator can have more than one CGRA to par-
allelize the processing. Compared to implementations that execute a CNN layer-by-layer
sequentially, results show that layer-parallel processing can reduce energy consumption by
3.6 times, hardware cost by 1.2 times, and increase throughput by 6.2 times for a MobileNet.

Zhao et al. [Zhao et al., 2020] propose an analytical performance predictor to es-
timate energy, throughput, and latency for ASIC and FPGA. Figure 2.30 shows a high-level
view of the framework. The predictor uses DNN models, hardware architecture, dataflows
types, and hardware cost regarding a technology node. The results are generated with

48

AlexNet and SkyNet CNN models, with Eyeriss, an FPGA implementation from [Hao et al.,
2019], and synthesized results of a proposed accelerator. They show that the error achieves
a minimum of 0.25% and a maximum of 17.66% for different CNN models, hardware archi-
tectures, and dataflow types.

Fig. 2: A high-level view of the DNN-Chip Predictor.

3.2. The DNN-Chip Predictor
3.2.1. Overview
Fig. 2 shows a high-level view of the proposed DNN-Chip
Predictor, which accepts DNN models (e.g., number of
layers, layer structure, bit-precision, etc.), hardware architec-
tures (e.g., memory hierarchy, number of PEs, NoC design,
etc.), dataflows (e.g., row/weight/output stationary, loop
tiling/ordering factors, etc.), and technology-dependent unit
costs (e.g., unit energy/delay cost of a MAC operation and
memory accesses to various memory hierarchies), and then
outputs the estimated energy consumption, latency, and
throughput when executing the DNN in a target accelerator. It
thus can be used to (1) validate DNN accelerator techniques
prior to the time- and cost-consuming DNN ASIC/FPGA
accelerator implementation, and (2) perform time-efficient
design space exploration and optimization.
3.2.2. The Proposed Analytical Models
This subsection introduces the Predictor’s analytical models.

Energy Models. DNN accelerators’ energy cost include
both computational (Ecomp) and data movement (EDM) costs,
where Ecomp = NMAC × eMAC with NMAC denoting the
total number of MACs in the DNN. Similarly, the data move-
ment cost can be calculated by multiplying the unit energy
cost per access (eDMi,j

, j ∈ {I,O,W}) with the total num-
ber of accesses (NDMi,j

, j ∈ {I,O,W}) to the i-th memory
hierarchy (e.g., GB) using the j-th type of data (i.e., inputs (I),
outputs (O), and weights (W)):

EDM =
∑

i∈SMemory

∑
j∈{I,O,W}

NDMi,j
,×eDMi,j

(1)

where SMemory = {DRAM) GB,GB) NoC,NoC)

RF,RF) PE} for inputs/weights; and SMemory =
{DRAM ↔ GB,GB ↔ NoC,NoC ↔ RF,RF ↔
MAC} for outputs.

The key challenge is to obtain NDMi,j for various mem-
ory hierarchies and data types when using different DNN
models, hardware architectures, and dataflows. We are the first
to find that NDMi,j

can be calculated as the product of the j-th
data volume (Vrefi,j) involved in each refresh and the total
number of such refreshes (Nrefi,j) for the i-th memory:
NDMi,j = Nrefi,j × Vrefi,j (2)

To obtain Nrefi,j and Vrefi,j , we propose an intuitive
methodology: we first (1) choose a refresh location, which
can be straightforwardly decided once the dataflow is known,
in the nested for-loops (see Fig. 1) for a given data type; (2)

Nrefi,j is equal to the product of all the loop bounds in the
for-loops above the refresh location; and (3) Vrefi,j is equal
to the product of all the loop bounds in the for-loops below
the refresh location and associated with the particular type of
data. Once Nrefi,j and Vrefi,j are obtained, the energy can be
calculated as:
EDRAM =

∑
j∈{I,O,W}

NrefGB,j
× VrefGB,j

× eDMDRAM,j

(3)
EGB =

∑
j∈{I,O,W}

NrefRF,j
× VrefRF,j

× NPE

Mj
× eDMGB,j

(4)ENoC =
∑

j∈{I,O,W}

NrefRF,j refRF,j
×NPE × eDMNoC,j

(5)
ERF =

∑
j∈{I,O,W}

NMAC × eDMRF,j
(6)

where NPE is the number of active PEs and Mj is the number
of PEs that share the same data.

Latency Models. Similarly, the latency of DNN accelera-
tors can be formulated as:

L = Lsetup +max{LDRAM , LGB , Lcomp} (7)

where Lcomp, LDRAM , LGB , and Lsetup denote the latency
of computation in the PE array, accessing the DRAM from
the GB, accessing the GB from an RF in the PEs, and set-
ting up the first set of the weights and inputs, respectively.
Adopting N j

bit-bit precision for inputs/outputs/weights is N j
bit,

j ∈ {I,O,W}, we have:

Lcomp = NMAC × tcomp (8)

LDRAM = max
j∈{I,O,W}

NrefGB,j
×

VrefGB,j
×N j

bit

min{BW j
GB , BWDRAM}

(9)
LGB = max

j∈{I,O,W}
NrefRF,j

×
NrefRF,j

×N j
bit ×NPE

BW j
GB

(10)
Lsetup = max(L

′

DRAM , L
′

GB) (11)

L
′

DRAM = max
j∈{I,W}

VrefGB,j
×N j

bit

min{BWj,GB , BWDRAM}
(12)

L
′

GB = max
j∈{I,W}

NrefRF,j
×N j

bit

min{BWj,RF , BWj,GB}
(13)

where BW j
i is the memory bandwidth for the i-th memory

hierarchy for the data type j ∈ {I,O,W}.

4. EXPERIMENT RESULTS
We validate our proposed DNN-Chip Predictor by comparing
its predicted performance with actual chip measured ones
in [14], FPGA implementation results in [28], and synthesis
results based on a commercial CMOS technology, under the
same experiment settings (e.g., unit energy, clock frequency,
DNN model, architecture design and dataflow, etc).

Validation against Chip Measurements. For this set of
experiments, we compare our Predictor’s predicted perfor-
mance with Eyeriss’s chip measurement results using their

1595

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on March 25,2022 at 22:00:59 UTC from IEEE Xplore. Restrictions apply.

Figure 2.30: DNN predictor high-level architecture [Zhao et al., 2020].

DNNExplorer [Zhang et al., 2021] is a framework for DSE of ML accelerators, pre-
sented in Figure 2.31. DNNExplorer supports machine learning frameworks (Caffe and Py-
Torch), besides three accelerator architectures (named paradigm in the Figure).

extracted, such as layer type, layer configuration, computa-
tion andmemory demands, arithmetic intensity, quantization
scheme, etc. The targeted hardware specifications are also
entered to help setup resource budgets. For FPGA implemen-
tation, DNNExplorer captures three major resources as DSP,
BRAM, and external memory bandwidth.

During step 2, DNNExplorer adopts three accelerator mod-
els corresponding to two popular paradigms (paradigm 1: the
layer-based pipeline architecture [2, 26, 27] and paradigm
2: the generic reusable architecture [3, 28, 29]) and one pro-
posed hybrid paradigm (paradigm 3). This step aims to adopt
highly-accurate pre-built analytical models for hardware re-
source utilization and performance estimation. These models,
along with the step 1 outputs, are then passed to step 3 for
architecture optimization, benchmarking, and exploration.
In step 3, optimization is performed to generate config-

uration guidelines. For accelerator designs following par-
adigm 1 or 2, respective optimization procedures (Section
4.3) are activated to configure the accelerator and attempt to
achieve maximum performance given resource constraints.
DNNExplorer then starts accelerator benchmarking by eval-
uating the optimized accelerator using the targeted DNN
model. For designs following the proposed paradigm 3, both
layer-based pipeline architecture and generic reusable archi-
tecture are involved, creating more diverse configurations
for achieving better performance. However, it also creates
an enormous design space and is challenging to search for
the most suitable configuration. An architecture exploration
function is proposed to address these difficulties (Section 5).
This function contains a two-level automatic DSE engine fol-
lowing a divide-and-conquer strategy to determine task and
resource partitioning schemes for both pipeline and generic
architecture at the first level optimization and explore their
respective optimal configuration with given resources at the
second level optimization. Eventually, DNNExplorer can ef-
fectively benchmark customized accelerators and explore
novel architectures to deliver improved AI acceleration on
given hardware.

4 DNNEXPLORER FOR ACCELERATOR
BENCHMARKING

The first two paradigms shown in Figure 1 can be bench-
marked after respective architecture optimizations. We adopt
optimization strategies published in DNNBuilder [2], such
as the fine-grained pipeline and the column-based cache
scheme to ensure the pipeline architecture is fully optimized.
Regarding the generic architecture, we follow the optimiza-
tion designs from HybridDNN [3] to enable a hybrid CONV
processing engine (for spatial and Winograd CONV) and
multi-dataflow support covering input stationary (IS) and
weight stationary (WS). For the third paradigm, we need

Figure 1: DNNExplorer introduces an complete flow
for customized accelerator benchmarking and explo-
ration to deliver improved AI hardware deployment.

Figure 2: The layer-based pipeline architecture with
dedicated pipeline stages for major DNN layers domi-
nating computation and memory consumption.

one more step as architecture exploration by using the pro-
posed two-level DSE engine to deliver optimized hardware
configuration, which will be introduced in Section 5

4.1 Pipeline architecture overview
As shown in Figure 2, each stage is designed for accommodat-
ing major layers of the targeted DNN, such as CONV, Pooling
(POOL), and fully-connected (FC) layers. Other layers, such
as batch normalization (BN) and activation layers, are con-
catenated into the major ones and processed by the same
pipeline stage. During implementation, three types of re-
sources are required: the computation resources for building
computation engines (CEs), the on-chip memory for imple-
menting input and weight buffers, and the external memory
for keeping DNN parameters. Configurable parameters are
available in every stage, including channel parallelism factor
(𝐶𝑃𝐹), kernel parallelism factor (𝐾𝑃𝐹), the input data bit-
width (DW), the weight bit-width (WW), and the bit-width
for external memory access (MW). Among these parameters,

3

Figure 2.31: DNNExplorer Flow Diagram [Zhang et al., 2021].

The first architecture is based on a pipeline approach, where each stage process
a layer of the CNN application. The second architecture is based on a 2D array and can be
reconfigured for different layers. The Authors propose the last architecture, a hybrid of the
other two architectures. The architecture also supports WS and IS dataflows. The DNNEx-
plorer flow works as follow: (i) inform the definition files for DNNExplorer, which include
information like layer type, quantization method, and technology (FPGA or ASIC); (ii) archi-
tecture selection; (iii) an optimization step based on the definition files and architecture. This
framework adopts analytical models to estimate performance and hardware configuration.
Results show that the accelerators proposed by the Authors can increase the throughput
4.2 times (GOPS) compared to the pipeline architecture 2.0 times compared to the second
architecture.

49

Gemmini [Genc et al., 2021] is an open-source systolic array generator that allows
evaluating deep-learning architectures. Gemmini generates a custom ASIC accelerator for
matrix multiplication based on a systolic array architecture. Gemmini is compatible with
the RISC-V Rocket ecosystem [Asanovic et al., 2016]. Figure 2.32 shows the Gemmini
general architecture. The CPU component can be either an in-order CPU or an out-of-order
CPU. The neural network accelerator comprises a systolic array, allowing both OS and WS
dataflow types. A DMA component performs the memory operation and loads the data
(feature maps and weight values) to the scratchpad memory. The activation function, such
as ReLU, are implemented in hardware. There is also a transposer component, which is
a small systolic array used to help in matrix multiplication. The accumulator stores partial
results, with a bit width larger than the systolic array. Results are validated using Intel 22nm
process technology and show speedups increase between 127 and 2,670 times compared
to high-performance CPUs using CNN such as AlexNet, MobileNet, and ResNet50.

Gemmini: Enabling Systematic Deep-Learning Architecture
Evaluation via Full-Stack Integration

Hasan Genc*, Seah Kim*, Alon Amid*, Ameer Haj-Ali*, Vighnesh Iyer*, Pranav Prakash*, Jerry Zhao*, Daniel Grubb*,
Harrison Liew*, Howard Mao*, Albert Ou*, Colin Schmidt*, Samuel Steffl*, John Wright*, Ion Stoica*,

Jonathan Ragan-Kelley†, Krste Asanovic*, Borivoje Nikolic*, Yakun Sophia Shao*
*UC Berkeley, †MIT
hngenc@berkeley.edu

Abstract—DNN accelerators are often developed and evaluated in isola-
tion without considering the cross-stack, system-level effects in real-world
environments. This makes it difficult to appreciate the impact of System-
on-Chip (SoC) resource contention, OS overheads, and programming-
stack inefficiencies on overall performance/energy-efficiency. To address
this challenge, we present Gemmini, an open-source, full-stack DNN
accelerator generator. Gemmini generates a wide design-space of efficient
ASIC accelerators from a flexible architectural template, together with
flexible programming stacks and full SoCs with shared resources that
capture system-level effects. Gemmini-generated accelerators have also
been fabricated, delivering up to three orders-of-magnitude speedups
over high-performance CPUs on various DNN benchmarks. Gemmini is
open-sourced at https://github.com/ucb-bar/gemmini.

I. INTRODUCTION

Deep neural networks (DNNs) have gained major interest in recent
years in application domains ranging from computer vision, to ma-
chine translation, to robotic manipulation. However, running modern,
accurate DNNs with high performance and low energy consumption
is often challenging without dedicated accelerators which are difficult
and expensive to design. The demand for cheaper, high-productivity
hardware design has motivated a number of research efforts to
develop highly-parameterized and modular hardware generators for
DNN accelerators and other hardware building blocks [1]–[7]. While
the hardware generator efforts make it easier to instantiate a DNN
accelerator, they primarily focus on the design of the accelerator
component itself, rather than taking into consideration the system-
level parameters that determine the overall SoC and the full software
stack. Some industry perspectives have advocated for a more holistic
exploration of DNN accelerator development and deployment [8]–
[10]. However, existing DNN generators have little support for a full-
stack programming interface which provides both high and low-level
control of the accelerator, and little support for full SoC integration,
making it challenging to evaluate system-level implications.

In this work, we present Gemmini, an open-source, full-stack DNN
accelerator generator for DNN workloads, enabling end-to-end, full-
stack implementation and evaluation of custom hardware accelerator
systems for rapidly evolving DNN workloads. Gemmini’s hardware
template and parameterization allows users to tune the hardware
design options across a broad spectrum spanning performance, effi-
ciency, and extensibility. Unlike existing DNN accelerator generators
that focus on standalone accelerators, Gemmini also provides a
complete solution spanning both the hardware and software stack,
and a complete SoC integration that is compatible with the RISC-V
ecosystem. In addition, Gemmini implements a multi-level software
stack with an easy-to-use programming interface to support different
programming requirements, as well as tight integration with Linux-
capable SoCs which enable the execution of any arbitrary software.

Gemmini-generated accelerators have been successfully fabricated
in both TSMC 16nm FinFET and Intel 22nm FinFET Low Power
(22FFL) process technologies, demonstrating that they can be phys-

CPU

Core

L1 I+D

L2

DRAM

Gemmini

Controller

DMA Engine

Local TLB

Scratchpad
Bank 0…

Transposer

Spatial
Array

++++++
Accumulator

SRAM

Bank K

Bitshi

ReLU

Dependency Mgmt

RoCC Cmd

RoCC PTW

Matrix Scalar
Multiplier

Pooling
Engine

im2col

Fig. 1: Gemmini hardware architectural template overview.

ically realized. In addition, our evaluation shows that Gemmini-
generated accelerators deliver comparable performance to a state-
of-the-art, commercial DNN accelerator [11] with a similar set of
hardware configurations and achieve up to 2,670x speedup with
respect to a baseline CPU. Gemmini’s fully-integrated, full-stack flow
enables users to co-design the accelerator, application, and system
all at once, opening up new research opportunities for future DL
SoC integration. Specifically, in our Gemmini-enabled case studies,
we demonstrate how designers can use Gemmini to optimize virtual
address translation mechanisms for DNN accelerator workloads, and
to partition memory resources in a way that balances the different
compute requirements of different layer types within a DNN.

In summary, this work makes the following contributions:

1) We build Gemmini, an open-source, full-stack DNN accelerator
design infrastructure to enable systematic evaluation of deep-
learning architectures. Specifically, Gemmini provides a flexible
hardware template, a multi-layered software stack, and an
integrated SoC environment (Section III).

2) We perform rigorous evaluation of Gemmini-generated accel-
erators using FPGA-based performance measurement and com-
mercial ASIC synthesis flows for performance and efficiency
analysis. Our evaluation demonstrates that Gemmini-generated
accelerators deliver comparable performance compared to state-
of-the-art, commercial DNN accelerators (Section IV).

3) We demonstrate that the Gemmini infrastructure enables
system-accelerator co-design of SoCs running DNN workloads,
including the design of efficient virtual-address translation
schemes for DNN accelerators and the provisioning of memory
resources in a shared cache hierarchy (Section V).

II. BACKGROUND AND MOTIVATION

The demand for fast and efficient DNN execution from edge to
cloud has led to a significant effort in developing novel accelerator
instances that are specialized for different DNN algorithms and/or dif-
ferent deployment scenarios. This section discusses recent advances

Figure 2.32: Gemmini general architecture [Genc et al., 2021].

Interstellar [Yang et al., 2020] is a DSE framework that uses Halide language
(https://halide-lang.org) to generate hardware and compare different accelerators, such as
different dataflows (WS, OS, RS) in 2D arrays and a MAC tree schemes. Halide is a DSL
for image processing applications and allows mapping a loop-based application into CPUs
or GPUs. As CNN applications are also loop-based, it is possible to extend Halide DSL
to generate hardware. Thus, the Authors propose a systematic approach to describe the
design space of DNN accelerators as schedules of loop transformations. The framework
also optimizes the memory hierarchy, and results show a 3.5, 2.7, and 4.2 times energy
improvement over Eyeriss accelerator using, VGG-16, GoogleNet, and MobileNet CNNs.

DeepOpt [Manasi and Sapatnekar, 2021] is a DSE framework to explore ASIC
implementation of systolic hardware accelerators for CNNs. The main goal of this DSE is
to reduce the number of memory accesses based on hardware characteristics like on-chip
SRAMs and the number of parallel PEs. The DeepOpt uses a search tree to schedule the
convolution process. Thus, it is possible to minimize the number of accesses from memory
by modeling memory access patterns (weight and output stationary) and pruning branches

https://halide-lang.org

50

from the search tree. Results show improvements of 50 times in the energy-delay product
for VGG-16 and 41 times for GoogleNet-v1.

Karbachevsky et al. [Karbachevsky et al., 2021] propose a method to estimate area
and power values based on the bit operations performed (BOP) metric [Baskin et al., 2021].
BOP is the number of bit operations required to perform the calculation, defined by the input
bit size, output bit size, number of inputs, and number of outputs. According to the authors,
BOP metric allows estimating the area and power required by accelerator hardware with high
accuracy in the early stages of the design process. Also, the method can show the trade-off
between the number PEs and the bottlenecks caused by the parameters quantization, such
as memory bandwidth or computational resources. Two WS dataflow 3x3 MAC arrays were
implemented, with multipliers from the Synopsys standard library, synthesized using TSMC
28nm technology at 800MHz. The arrays bit sizes are 4 and 6-bit, and the input dimension
has variable sizes of 4, 8, and 16. The output dimension has the same size as the input.
Results show that the BOPs achieves a linear relation for the area with an R2 of 0.9752. The
paper does not present power results.

Ferianc et al. [Ferianc et al., 2021] propose a method to improve the performance
of DSE analyses. The method is based on a Gaussian process regression model param-
eterized by the features of the accelerator and the target CNN, such as filter, channel, and
data parallelism. Figure 2.33 illustrated the method. The method is capable of predicting the
hardware latency and energy. The method was evaluated using two implementations: (i) a
FPGA implementation using a Intel Arria GX 1150 board; (ii) an ASIC implementation using
a 28nm technology. The method was compared to machine learning-based methods to per-
form DSE (linear regression, Gradient tree boosting, and neural network). Results show a
reduction between 1.94 and 1.34 times in the prediction time.

Electronics 2021, 10, 520 6 of 14

model is more interpretable than an NN or an LR, where the corresponding uninterpretable
weights w need to be learned. Moreover, the Gaussian noise assumption can be interpreted
as an additive instrumentation error, while collecting measurements. Furthermore, if
used during DSE, the GP model can additionally provide an uncertainty estimate for its
predictions, which can more precisely guide the exploration and the exploitation of the
search space [23]. The overall system diagram, including all the necessary parts of the
prediction methodology, is presented in Figure 1. The dashed lines symbolise the fitting of
the GP, through providing hardware measurements, along with the characteristic NN and
hardware features, to the GP to obtain the θ∗, Y N , KN,N to be used during the evaluation.
During the evaluation, the features and the fitted GP model are then used for prediction.

For a training set of size N samples, the computational complexity of the training
scales in ∼O(N3) due to the unavoidable Cholesky factorisation, while the prediction is
∼O(N2), and the memory requirements are ∼O(NM + N2). Therefore, given a typical
number of collected real-world measurements (which is <1000) for different configurations
of the accelerator, the method is scalable to be used in practice.

Figure 1. Overview of the proposed prediction methodology based on a Gaussian process (GP).

In the next section, we present the CNN accelerator on which we used the proposed
method. We compare our approach with other estimators in predicting layer-wise latency
and network-wise latency and energy consumption.

4. Hardware Design

In this section, we detail the accelerator architecture, the performance for multiple
different CNN architectures of which we aim to estimate.

4.1. Accelerator’s Architecture

The hardware design of our accelerator is illustrated in Figure 2. The design consists
of a CNN engine, a central communication interconnect and an off-chip main memory.
The weights of the whole network are transferred and stored in the off-chip memory via a
central communication interconnect before the processing. The CNN engine is composed of
an input buffer, a weight buffer, a convolutional processing engine (PE) and other functional
modules including batch normalisation (BN) [24], shortcut (SC) [17], pooling (Pool) and
rectified linear unit (ReLU) activation. In order to fully utilise the extensive concurrency
exhibited in CNNs and improve the hardware efficiency, we support three types of fine-
grained parallelism in our CNN engine: filter parallelism (PF), channel parallelism (PC)
and vector parallelism (PV). The accelerator processes each layer in a CNN one-by-one, and
the intermediate results between layers are transferred and stored in the off-chip memory,
in case the output size is bigger than the available on-chip memory. To achieve higher
hardware performance, the accelerator is designed to support 8 bit operations.

Figure 2.33: DSE Method Based on Gaussian Process Regression Model [Ferianc et al.,
2021].

Aladdin [Shao et al., 2014] is a pre-RTL power-performance accelerator modeling
framework. It estimates performance, power, and area. Aladdin infrastructure uses dynamic
data dependence graphs (DDDG) to represent accelerators. The DDDG is generated from a
C program and allows Aladdin to report the program dependencies and resource constraints.
Results show that Aladdin has an error of 0.9% for performance evaluation, 4.9% for power
evaluation, and 6.6% for area evaluation compared to RTL accelerators implementation.

51

2.3.2 Hardware Simulators

SCALE-Sim (Systolic CNN Accelerator Simulator) [Samajdar et al., 2018, Samajdar
et al., 2020] is a systolic array cycle-accurate simulator. Figure 2.34 illustrates the simulator
architecture. This simulator allows configuring micro-architectural features such as array
size, array aspect ratio, scratchpad memory size, and dataflow mapping strategy. Also, it is
possible to configure system integration parameters, such as memory bandwidth. SCALE-
Sim simulates convolutions and matrix multiplications, and models the compute unit as a
systolic array. Also, it allows simulation in a system context with CPU and DMA components.
The Authors show detailed experiments to understand the design space and tradeoff in
designing a systolic array-based CNN accelerator. A recent SCALE-Sim extension provides
an analytic model to find the best accelerator configuration based on parameters like DRAM
bandwidth.

Figure 2.34: SCALE-Sim simulator architecture [Samajdar et al., 2018].

STONNE [Muñoz-Martínez et al., 2020] is a cycle-accurate architecture simulator
for CNNs which allows end-to-end evaluation. Figure 2.35 shows the high-level architecture
of STONNE framework. It is connected with Caffe framework [Caffe, 2022] to generate the
CNNs, and models the MAERI accelerator [Kwon et al., 2018b]. The results are focused
on performance and hardware utilization and show an average difference of 15% in total
executed cycles than the original MAERI results. To estimate area and energy, STONNE
uses the Accelergy energy estimation methodology [Wu et al., 2019], which considers basic
modules to calculate the energy values, such as adders.

SimuNN [Cao et al., 2020] is a neural network simulator that allows pre-RTL veri-
fication and fast prototyping. Figure 2.36 shows the SimuNN architecture. It is compatible
with TensorFlow, allowing using software application values to evaluate the hardware ac-
celerator. The results generated by SimuNN are based on a fixed accelerator proposed

52

Energy

Area

performance

PredictionO
u
tp

u
t

In
te

rf
ac

e

Simulation
Engine

Configuration
Unit

~$: ./stonne
 -R=3 -S=3
 -C=3 -K=4
 [...]

Flexible DNN AcceleratorInput Module Output Module

Caffe
Framework

STONNE User
Interface

Weights

Images

Model

Tile stonne
config

C
om

p
ile

r

S
TO

N
N

E
 A

PI

Fig. 2: High-level diagram of the STONNE framework.

model different architectures of flexible DNN accelerators, tile
configuration mappings and dataflows.

A. STONNE Organization

Figure 2 illustrates a high-level diagram of STONNE with
the three major components involved in the end-to-end sim-
ulation flow. First, the Input Module determines the layer
to be run, creates an instance of the simulator and loads the
parameters of the layer and the initial inputs and weights onto
the architecture. Once the architecture has been configured, the
Flexible DNN Accelerator module carries out the detailed
cycle-by-cycle simulation of the layer, collecting statistics
during the process. Once the simulator finishes, the Output
Module takes in the values of the counters collected by the
simulator and produces different files with the statistics of the
execution.

Next, we further describe the details of each module:
(1) Flexible DNN Accelerator: This constitutes the princi-

pal block of STONNE (see the central block in Figure 2),
and it is mainly composed of the modeled architecture of
the flexible DNN accelerator (Simulation Engine) to
simulate, whose details are further explained in Section III.
The accelerator is interfaced by means of the STONNE API
that allows users to create an instance of the simulator accord-
ing to a hardware configuration file, load the layer and tile
parameters, and load the weights and inputs onto the memory
of the simulator. Once all these parameters have been defined,
the Compiler generates all the control signals that configure
the architecture through the Configuration Unit. Then,
the simulator starts the execution and the results and statistics
being collected are reported through an output interface.

(2) Input Module: Due to the flexibility that the STONNE
API provides, the simulator can be fed easily using any of the
well-known DL frameworks already available. In this work,
we have modified the Caffe DL framework (see left block in
Figure 2) to connect it to the simulator so that it is able to
run an instance of the Simulation Engine (e.g., MAERI)
transparently to the user. This way, a Caffe user just needs to
select the typical .caffemodel file with the weights, choose the
inputs2 (e.g., a set of images) and briefly modify each layer

2Throughout this work, we use STONNE to characterize the inference
process of several contemporary DNN models aimed to image classification.

block defined in the .prototxt DNN model file to specify the
layers to be simulated, the path of the hardware configuration
file with the parameters of the architecture to simulate (e.g.,
the number of multipliers) and the tile configuration for every
layer. After Caffe is launched with those defined parameters,
it takes the control and creates an instance of STONNE. Then,
Caffe drives a layer-by-layer execution, sending the configu-
ration parameters for every layer, copying the weights and the
inputs of that layer onto the simulator memory, and copying
back the results after the simulator finishes and produces the
statistics file. This process is repeated for every layer until the
end of the execution, producing the final prediction for each
input (thus performing the whole inference process).

Furthermore, since Caffe requires a more complicated in-
stallation and use, apart from this mode of execution, we have
also enabled the STONNE User Interface that facilitates
the execution of STONNE. Through this mode, the user is
presented with a prompt to load any layer and tile parameters
onto a selected instance of the simulator and run it with
random weights and input values. This mode allows for
faster executions and hence facilitates faster prototyping and
debugging.

(3) Output module: Once a simulation for a certain layer
has been completed, this module is used for reporting sim-
ulation statistics such as performance, compute unit utiliza-
tion, number of accesses to SRAM, wires and FIFOs, etc.
Besides, this output module also reports the amount of energy
consumed and the on-chip area required by the simulated
architecture. Currently, we are extending the simulator to
provide such area and energy numbers. Moreover, since the
STONNE simulator is a back-end compute platform of Caffe,
it also outputs the result of the prediction when running a
certain DNN model for certain input data.

B. Flexible DNN Accelerator Architecture

As previously commented, STONNE emerges as the first
cycle-accurate simulation tool that enables exploration of the
design space of flexible accelerator architectures. In this sec-
tion, we explain the general flexible DNN inference accelerator
architecture that is implemented as baseline in STONNE and
whose high-level diagram is shown in Figure 3.

STONNE is equipped with all the major basic components
of any recently proposed next-generation DNN accelerator [4],

Figure 2.35: STONNE simulator architecture [Muñoz-Martínez et al., 2020].

by the Authors. The accelerator comprises a micro-controller, an instruction RAM, a DDR
controller, a weight buffer, a feature map buffer, a feeder controller, a collector unit, and 14
three-stage pipelines PEs with nine multipliers each. The Authors show latency and en-
ergy results based on Altera FPGAs and ASICs, although the ASIC technology node is not
mentioned.220 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 10, NO. 2, JUNE 2020

Fig. 4. The framework of SimuNN, which is divided into three main parts. The basic functions include basic operations in each layer of neural networks.
The configuration part includes the initial configuration setup of network models, hardware, and dataflow. The main function part includes function units for
inference, simulation and evaluation.

- Output channel parallelism. The calculation of different
output channels share the same group of IFMs as input.
The parallel processing of several output channels can
therefore efficiently reuse the data of IFMs and reduce
memory access.

III. FRAMEWORK OF SIMUNN

The framework of the proposed SimuNN is illustrated
in Fig.4, which can be divided into three parts, configura-
tion, basic functions and main functions including inference,
simulation and estimation.

A. Configuration

In the configuration part, necessary configure information
and inputs are given to SimuNN. The inputs include the pre-
trained weights and IFMs to be tested, while the configuration
information includes the basic settings of the neural network
model, the hardware architecture and the dataflow. Settings
of the network, such as the number of layers, layer types,
the number of input and output channels for each layer, the size
of input frames and filters, are all needed to be declared.
The dataflow organization method and resource constraints
of the target hardware architecture should also be configured
for the simulator and estimator of SimuNN.

B. Basic Functions

Basic functions of SimuNN include a variety of opera-
tions in commonly-used neural networks. In convolutional
layers, convolution operations in different kernel sizes and
multiple variations are supported, such as point-wise convo-
lution, depth-wise convolution, deformable convolution, etc.
Meanwhile, multiple pooling methods, activation functions,
non-linear functions and operations in fully-connected layers
are also included. All basic functions work in both floating-
point numbers and fixed-point numbers, and can be called
during the inference and simulation phase of SimuNN.

C. Inference

SimuNN covers basic operations of a wide range of
commonly-used neural networks, and is easy to be extended.
Therefore, the inference of state-of-the-art neural networks
can be performed. SimuNN provides both the single-precision
floating-point inference model and the fixed-point inference
model which can be flexibly configured. Through the inference
of SimuNN, the prediction accuracy of a neural network can
be tested and compared for different network models and data
precision, which helps both the design of network models and
quantization methods.

D. Simulator

The simulator of SimuNN provides multiple levels of
intermediate results during the inference phase, including
OFMs of hidden layers, data transferred between buffers and
computation modules, and cycle-level tracing of intermediate
data in the CA. The simulation is based on the configuration
of hardware, dataflow and network models, and can be used as
a reference to the RTL design of neural network accelerators.

E. Estimator

For a given hardware architecture, the estimator of SimuNN
evaluates the latency, hardware resource cost and energy
consumption under different processing modes. By the design
space exploration for all possible hardware configurations and
dataflow configurations, the estimator gives the optimal setting
of the hardware acceleration.

IV. INFERENCE AND SIMULATOR

In the computation process of CNNs, the dataflow organiza-
tion and its corresponding hardware architecture significantly
influence the hardware performance of accelerators, such
as processing latency, throughput and hardware utilization.
Therefore in this section, we focus on the influence of dataflow
organization to hardware structures, and summarize six basic

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on March 28,2022 at 19:14:41 UTC from IEEE Xplore. Restrictions apply.

Figure 2.36: SimuNN Simulator Architecture. [Cao et al., 2020]

AccTLMSim [Kim et al., 2020] is a pre-RTL cycle-accurate CNN accelerator simu-
lator based on SystemC transaction-level modeling (TLM). The simulator allows maximizing
the throughput performance for a given on-chip SRAM size. An accelerator is proposed to
validate the simulator, composed of a MAC array of 12 units, a double buffer scheme to
enable memory read and MAC executions in parallel, and a DRAM controller. Each of the
hardware blocks is implemented as a SystemC module using sockets, and the accelera-
tor was also prototyped in a Xilinx Zynq FPGA using HLS. AccTLMSim is focused only on
performance, not power or area.

2.3.3 Final Remarks Related to DSE Frameworks and Simulators

Previous works present gaps in evaluating CNN’s accelerators. Table 2.3 summa-
rizes the reviewed works. The first column represents if the work has integration with high-
level modeling CNN frameworks, such as TensorFlow and Caffe. The second column shows

53

Table 2.3: DSE Frameworks and Simulators State-of-the-art Summary.

Work
Integration with

CNN frameworks

High-level

Simulation

Evaluation metrics

based on basic components

PPA analyses

based on entire convolution

Aladdin [Shao et al., 2014] No No PPA No

MLPAT [Tang and Xie, 2018] No No PPA No

Maestro [Kwon et al., 2019] No No Performance No

Timeloop [Parashar et al., 2019] No No PPA No

Accelergy [Wu et al., 2019] No No Power No

[Heidorn et al., 2020] No No PPA No

[Zhao et al., 2020] No No Power No

Interstellar [Yang et al., 2020] No No PPA No

SCALE-Sim [Samajdar et al., 2020] No Yes Performance, Area No

STONNE [Muñoz-Martínez et al., 2020] Caffe Yes Performance No

SimuNN [Cao et al., 2020] TensorFlow Yes PPA No

AccTLMSim [Kim et al., 2020] No Yes Performance No

DNNExplorer [Zhang et al., 2021] Caffe, PyTorch No Performance No

Gemmini [Genc et al., 2021] No No Performance No

DeepOpt [Manasi and Sapatnekar, 2021] No No Performance, Power No

[Karbachevsky et al., 2021] No No Area No

[Ferianc et al., 2021] No No Performance, Power No

This Thesis TensorFlow Yes No Yes

if the work provides a simulation environment. The third and fourth columns are related to
the evaluated metrics. The third column presents metrics based on basic components, such
as MACs and register files. The fourth column shows the evaluated metrics regarding the
entire convolution.

MAESTRO does not allow the accelerator simulation, limiting the performance eval-
uation (e.g., throughput). SCALE-Sim does not provide power or energy results. MLPAT and
Timeloop provide PPA based on basic operations, such as adders and multipliers. Methods
relying on operations counting do not consider how these operators are interconnected (e.g.,
1D or 2D systolic arrays or adder trees), resulting in imprecise hardware metrics.

Works [Heidorn et al., 2020] and [Zhao et al., 2020] show analytical results for
power, performance, and area. Also, [Zhao et al., 2020] consider features like the dataflow
type, which can contribute to the power dissipation. However, both [Heidorn et al., 2020]
and [Zhao et al., 2020] do not support simulation neither integration with CNN frameworks.
Similar occurs to Aladdin, once it does not perform simulations. However, it can be integrated
into a simulation environment to consider the whole system performance, power, and area
analyses [Shao et al., 2016].

Works like Gemmini, Interstellar, DeepOpt, [Karbachevsky et al., 2021], and [Fe-
rianc et al., 2021], lacks on simulation capability and PPA analyses. Also, [Karbachevsky

54

et al., 2021] claim that the main effect of changing the circuit frequency is to reduce power
dissipation. However, it is not true, once logical synthesis with different frequencies as target
shows different area values.

STONNE and SimuNN are similar frameworks when compared to our proposal.
Both integrate a flow that starts with frameworks to model CNNs, and both provide the accel-
erator simulation. However, SimuNN uses a fixed 2D array style, not comparing it with other
styles like 1D. SimuNN has an energy estimation based on basic elements, not considering
data movement through the accelerator. STONNE does not address power estimation, but
the authors argue that it is possible to integrate STONNE with Accelergy (which only eval-
uates power). DNNExplorer also allows frameworks to model CNNs, but lacks simulation
and PPA analyses. SCALE-Sim and AccTLMSim lack integration with frameworks to model
CNNs.

2.4 Thesis Contribution for the State-of-the-Art

Considering the works analyzed before, some gaps were identified and summa-
rized below:

1. Proposals that allow estimating DSE for different types of accelerators and dataflows;

2. Works that perform complete PPA analyses, not only one metric;

3. A method to estimate PPA accurately;

4. An analytical tool based on the entire convolution mechanism that allows a fast and
accurate DSE;

5. A framework or environment that integrates these gaps.

State-of-art shows that few works are capable of estimating PPA metrics. The
works that estimate PPA are based only on basic components of an accelerator, which
can result in an inaccurate estimation. Few frameworks that allow PPA estimation execute
simulation. Thus, this Thesis aims to fill the gaps by providing:

1. A DSE that integrates a CNN modeling framework to perform DSE using data from
actual CNNs. The DSE starts with a framework to model CNNs (TensorFlow) and
configures hardware accelerators able of executing these CNNs;

2. A simulation environment that uses the values extracted from TensorFlow (Chapter 3).
The simulation environment allows to model hardware accelerators with high-level pro-
gramming languages and performs fast simulations;

55

3. A physical synthesis flow that allows comparing different dataflow types (Chapters 4
and 5). The physical synthesis flow is the basis for the PPA. Similar to the simulation
environment, physical synthesis flow is integrated with TensorFlow to extract accurate
power values. Also, the synthesis flow allows performing a fair comparison with dif-
ferent kinds of accelerators, regarding the same technology and target frequency, for
example;

4. An analytical tool based on the entire convolution mechanism, allowing a fast and
accurate DSE (Chapter 6). This tool is based on a synthesis from a specific layer of a
CNN generated in TensorFlow, and estimates other layers based on this synthesis.

56

3. HIGH-LEVEL MODELING FRAMEWORK FOR DSE

This Chapter presents the first attempt to fill the five gaps identified in the state-
of-the-art [Juracy et al., 2021a], presented previously in Section 2.4, by using a high-level
modeling framework for DSE. This framework is used in the early design stages and allows
high-level validations, with three components:

1. The CNN framework, using the TensorFlow for training – Section 3.1, followed by a
quantization method used to reduce the memory requirements – Section 3.2;

2. The physical synthesis of the hardware accelerator for PPA extraction – Section 3.3;

3. The cycle-accurate system simulator, using the URSA simulator – Section 3.4.

Section 3.5 presents results regarding PPA extraction, comparing the netlist simu-
lation against the URSA simulator. Section 3.6 presents pros and cons on using a system
simulator to perform DSE for CNN hardware accelerators.

Figure 3.1 presents the proposed framework. TensorFlow models the CNN, re-
sponsible for training and inference phases, generating weight and input feature map values.
This work adopts an integer quantization to avoid floating-point operations and reduce the
memory requirements. The last action executed by TensorFlow is exporting a header file
with the weight and feature values used by the system simulator.

Accelarator
Modelling

Import Weights

Import PPA
Information

Simulation

TensorFlow + Quantization System Simulator Physical Synthesis

Accelarator RTL
Modelling

Accelarator
Synthesis

PPA Extraction

Define
Convolutional

Neural Network

Training Step

Quantization

application.py

tensorflow.h

accelarator.cpp

ppa.txt

tech.h

accelarator.vhd

Weight
Extraction

Figure 3.1: Convolution Accelerator Hardware Metric Extraction Framework. Source: [Ju-
racy et al., 2021a]

The physical synthesis corresponds to the synthesis of the CNN accelerators. This
step generates the CNN accelerator layout, and a netlist with extracted parasitic capaci-
tances. The simulation of this netlist generates the switching activity, used to characterize
the accelerator power dissipation.

57

The cycle-accurate system simulator [Domingues, 2020] models the hardware ac-
celerator using high-level programming language, the CNN model generated by TensorFlow,
and the PPA reports generated by the physical synthesis. The simulator captures informa-
tion related to the CNN execution, presenting a summary of the accelerator performance,
area, and energy results.

3.1 TensorFlow CNN Modeling Framework

This Section describes the use of TensorFlow as a front-end to analyze hardware
accelerators. TensorFlow is used to:

1. Model the CNN and exploring its architecture;

2. Extract the weight values of the selected network;

3. Extract network output values to validate post-layout simulation.

Figure 3.2 shows an example of a TensorFlow code, which corresponds to the
application.py in Figure 3.1. The environment allows exploring CNN architectures and
their accuracy regarding the network depth, stride dimension, activation functions, and the
number of filters. Thus, it is possible to tune the CNN architecture based on an target
accuracy. The example in Figure 3.2 shows a CNN with four convolution layers with 16, 8,
3, and 1 filters, a fully connected layer, and strides with dimensions 2x2 and 1x1.

Clearup everything before running
keras.backend.clear_session()

Create model
model = keras.models.Sequential()

Add layers
model.add(keras.layers.Conv2D(16, (3,3), strides=(2, 2), activation='relu',

input_shape=(28, 28, 1)))↪→

model.add(keras.layers.Conv2D(8, (3,3), strides=(1, 1), activation='relu'))
model.add(keras.layers.Conv2D(3, (3,3), strides=(2, 2), activation='relu'))
model.add(keras.layers.Conv2D(1, (3,3), strides=(1, 1), activation='relu'))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(10, activation='softmax'))

Build model and print summary
model.build(input_shape=featureShape)
model.summary()

Figure 3.2: TensorFlow Code Example. Source: [Juracy et al., 2021a]

58

TensorFlow allows extracting the value of weights after reaching the target accuracy
in the training phase. After the training phase, a post-extraction quantization occurs. At the
end, a header with the weight and feature map values is generated to be imported by the
system simulator (tensorflow.h in Figure 3.1).

3.2 Shift-based Quantization

The quantization method is performed in python using the weights obtained in the
training step with TensorFlow. As the focus of this Thesis is the hardware implementation,
we are not concerned with improving or comparing the quantization method with others
quantization methods. Nonetheless, this analysis is included in future work.

The quantization goal is to optimize the hardware implementation and reduce mem-
ory requirements. Thus, the method converts 32-bit floating-point weights values from Ten-
sorFlow to 8-bit integers by multiplying the weight values by a power of two. Therefore it
is possible to avoid floating-point arithmetic in the accelerator, which reduces the area and
power dissipation. The 8-bit integers are chosen to reduce the hardware area cost. Also,
each OFMAP value is divided by the same power of two at the end of each convolution,
allowing connecting directly with new hardware and avoiding software interaction.

The quantization has two conditions. The first is if the layer to be processed is the
first (Layer 0). The first layer can use as input an RGB image, for example. These input
values are not quantized, needing to be multiplied by the power of two value. Thus, as
the layer to be processed is the first, the convolution together with the quantization process
follows Equation 3.1.

Ofmap[f][x][y] = (Bias[f] ∗ ShiftValue2) +
C−1∑
k=0

W−1∑
i=0

H−1∑
j=0

(Ifmap[k][Sx + i][Sy + j] ∗ ShiftValue) ∗Weights[f][k][i][j] ∗ ShiftValue))
(3.1)

where: f, x and y are the current output channel, the horizontal and the vertical position
respectively; C is the total number of input and filter channels, W and H corresponds to the
filter size; S is the stride, and O is the output. Ofmap is the output, Ifmap the input, and
Weights the filter tensors and Bias the bias vector; ShiftValue is the value used quantiza-
tion, which is a power of two.

The OFMAP from first layer convolution is quantized, meaning that the IFMAP for
the next layer is already quantized. From the second layer to the last convolutional layer, the
quantization follows Equation 3.2.

59

Ofmap[f][x][y] = (Bias[f] ∗ ShiftValue2) +
C−1∑
k=0

W−1∑
i=0

H−1∑
j=0

(Ifmap[k][Sx + i][Sy + j] ∗Weights[f][k][i][j] ∗ ShiftValue))
(3.2)

Figure 3.3 summarizes the quantization process. First, the values generated in
TensorFlow (IFMAP, bias, and weights) are extracted to apply the quantization. Bias and
weights are multiplied by the power of two value, while IFMAP is multiplied only if the convo-
lution operation is in the first layer, as shown in Equation 3.1.

At the end of the convolution, each OFMAP value has a magnitude of ShiftValue2.
A division by the power of two shift value is applied to change the magnitude for ShiftValue,
avoiding overflow and a new software intervention, as mentioned before. Thus, the other
IFMAPs from CNN layers do not need to be multiplied by the shift value, as shown in Equa-
tion 3.2. The convolution process finishes executing the fully-connected layer in software.

Multiply Bias for
ShiftValue^2

Multiply Weights for
ShiftValue

Layer == 0? Multiply Ifmap for ShiftValue

Read Ofmap values from
previusly layer

Perform convolution

Divide Ofmap by ShiftValue

Performed
all layers?

End operation

Yes

No

No

Yes

Figure 3.3: Flow diagram of proposed quantization.

60

3.3 PPA Extraction

The PPA extraction requires the CNN accelerator RTL description once the PPA
results are extracted after the physical synthesis. After generating the RTL description,
Cadence Genus and Innovus tools are used to execute the logical and physical synthesis.
The accelerator area includes gates and wires, and not only cell counting. The simulation
of the post-layout netlist generates the accelerator performance (operating frequency) and
the switching activity (value change dump file – VCD). The VCD file provides the inputs for
dynamic power estimation.

The post-layout simulation generates the switching activity for the power and energy
estimation. We adopted two methods to generate VCD files:

1. Method 1: Six VCD files were created from a post-layout simulation. Each VCD rep-
resents a simulation scenario that generates one pixel of a convolution output feature
map. Scenarios include a real convolution operation, two scenarios with random val-
ues, and three scenarios with constant input values (x“AAAA", x“5555", x“FFFF"). The
simulation of these scenarios generates minimal, average, and maximum power dissi-
pation values for a convolution operation.

2. Method 2: VCD file generated using the CIFAR10 dataset as input for the post-layout
simulation. The CIFAR10 dataset contains RGB images, which ensure fewer zero
values than other datasets, like the MNIST, increasing the switching activity of the
accelerators.

Method 1 was a start point to extract power values from VCD files and uses syn-
thetic values to generate power values. With the advance of the Thesis, Method 1 evolved to
Method 2, which uses real CNN application values to generate VCD files, ensuring accurate
power values, once are based on real values.

The PPA metrics are exported to the system simulator in a header format (tech.h
in Figure 3.1). Section 6.1 details the physical synthesis flow.

3.4 URSA System Simulator

URSA [Domingues, 2020] is a C++ API for system-level modeling and simulation.
It provides a set of language-related assets that can be used to create system-level, cycle-
accurate hardware simulators, like SystemC. The URSA hardware components are modeled
as finite state machines (FSM), and its underlying simulation engine is based on discrete-
event simulation. A clock cycle in URSA corresponds to the activation of the transition func-
tion of the FSMs of the simulated system. This work uses the URSA to:

61

1. Model and simulate the CNN;

2. Model and simulate the accelerator;

3. Validate the CNN accuracy;

4. Generate PPA evaluation of the CNN.

Figure 3.4 shows how a CNN is modeled in URSA. One layer of a CNN is sim-
ulated in this example, composed of 16 filters with dimension 3x3, strides with dimension
2x2, and the IFMAP with dimension 28x28x1, same parameters of the first convolution
layer shown in Figure 3.2. The TBInit() function is responsible for performing the mem-
ory read, feeding the accelerator, and executing it. When the accelerator is done (signalized
by _array->GetEOP() == 1), the output value is stored in the TBStore() function, which is
also responsible for controlling the end of the simulation.

Appendix A details the TConv2dArray implementation in URSA. Note that the de-
signer needs to implement a low-level hardware behavior, requiring a second modeling ef-
fort. First, the CNN is modeled in TensorFlow for training, and next in URSA for PPA evalua-
tion.

void Testbench::TBInit(){
if (_array->GetEOP() == 0 && _wait_eop == 0 && _end_of_layer1 == 0) {

TConv2dArray(Layer1_Weights,Input,16,3,3,2,2,28,28,1);
}

}

void Testbench::TBStore(){
if(_array->GetEOP() == 1) {

StoreOfmap(Layer2_Input,Layer1_Bias,&_end_of_layer1,1,16);
}

}

Figure 3.4: URSA Simulator Code Example. Source: [Juracy et al., 2021a]

The CNN application is simulated in URSA using the header files generated in
Section 3.1 (tensorflow.h), the technology reports generated in Section 3.3 (tech.h), and
the accelerator array (accelerator.cpp in Figure 3.1). Also, the simulator reports the CNN
energy and performance estimation when the simulation finishes, according to the number
of executed convolutions. Thus, the simulator performs analyses regarding the PPA val-
ues extracted from the physical synthesis, and the captured application information at the
simulation, resulting in a fast estimation.

62

3.5 Results

This Section shows results for PPA extraction (Section 3.5.1), energy estimation
(Section 3.5.2), and a comparison between netlist simulation and URSA regarding simulation
time (Section 3.5.3).

3.5.1 PPA Results

The hardware accelerator used to generate the results is the NVDLA [NVIDIA,
2022a]. As mentioned on Chapter 2, NVDLA is an open-source framework from NVIDIA
to implement machine learning applications, providing RTL codes. The NVDLA modules
are used for building the accelerator RTL description by configuring multipliers, adders, and
ReLU activation function units. Figure 3.5 illustrates an instance of the accelerator array.
The accelerator array parameters are a function of the CNN configuration generated in Ten-
sorFlow, considering the filter dimension (in this case, a 3x3 convolution).

MULT MULT MULT
R
E
G

R
E
G

R
E
G

REG REG REG

MULT MULT MULT
R
E
G

R
E
G

R
E
G

REG REG REG

MULT MULT MULT
R
E
G

R
E
G

R
E
G

REG REG REG

+

Ifmap

Weight

Ifmap

Weight

Ifmap

Weight

8

8

8

8

8

8

SHIFT ReLU Ofmap
20

Figure 3.5: Hardware accelerator architecture based on the NVDLA modules. Source: [Ju-
racy et al., 2021a].

The accelerator, Figure 3.5, is an array of 3x3 multipliers (MULT), an accumulator,
and a ReLU module (ReLU). The SHIFT is a module used to perform the quantization, in
such a way to normalize the convolution result to 8 bits (as described in Section 3.2). The

63

accelerator inputs are shifted horizontally through the array, while the outputs of the multi-
pliers are shifted vertically until the accumulator. The accumulator output passes through
the SHIFT and sets the ReLU input, which produces a zero value if the input value is nega-
tive, else by-pass the value to the output. The system simulator models the accelerator in a
high-level abstraction description, using the same architecture.

Results use CNNs generated by TensorFlow to simulate the hardware. Three net-
works were generated using convolution operations, changing the network depth by 2, 3,
and 4 layers, with 4, 12, and 38 filters respectively, to make possible observe the effects in
area, accuracy, and energy with the increase of the convolution layers. All three CNNs were
trained based on the MNIST dataset using 3x3 filters with strides between 1x1 and 2x2,
ReLU as activation function, and a fully-connected layer with softmax activation function.
The training step was performed in TensorFlow for 5 epochs. The fully-connected layer is
not accelerated in hardware and is executed in software in the system simulator. The VCD
file extraction uses Method 1 proposed on Section 3.3.

Table 3.1 presents results for 28nm and 65nm technology nodes. The accuracy
was extracted using 100 inputs from MNIST dataset. The energy is estimated using Method
1 presented in Section 3.3. Results show that the quantization causes a small penalty in the
hardware accelerator’s accuracy compared to the TensorFlow results. Also, the Table shows
that accuracy increases together with the CNN depth, which is a expected result. On the
other side, the execution time and energy increase.

Table 3.1: PPA results for NVDLA-based accelerator running a MNIST application. Source:
[Juracy et al., 2021a].

Tech. Freq. Area # Conv. # Conv. Accu. (%) Exec. Enegy (mJ)
GHz µm2 Layers Oper. TensorFlow ORCA Time (ms) Min. Avg. Max.

28nm 1.6 35,003
2 62,800 0.95 0.90 0.5 11 14 17
3 174,000 0.95 0.92 1.4 32 38 47
4 375,600 0.96 0.93 3.1 69 84 102

65nm 1.0 97,890
2 62,800 0.95 0.90 0.8 24 31 39
3 174,000 0.95 0.92 2.4 68 87 109
4 375,600 0.96 0.93 5.2 147 189 236

Figure 3.6 plots energy values on the x-axis and the CNN accuracy on the y-axis.
In this experiment, it is possible to note that it is necessary to spend approximately 40%
more energy in the 28nm technology node to increase 0.02% the accuracy. This increase is
more pronounced in the 65nm technology node, reaching approximately 60%. This result is
correlated with the cell libraries and technology nodes. We suggest extending this analysis
to other technology nodes, like 7nm and 10nm, and cell libraries. The result presented in
Figure 3.6 shows an advantage of the newer technology nodes: a smaller energy overhead
to increase the accuracy.

64

0,895

0,9

0,905

0,91

0,915

0,92

0,925

0,93

0,935

0 50 100 150 200

Ac
cu

ra
cy

 (%
)

Avg. Energy (mJ)

65nm 28nm

Figure 3.6: Accuracy and Average Energy Trade-off [Juracy et al., 2021a].

3.5.2 Energy Estimation Comparison Results

This Section brings a comparison between the energy estimation based on the
netlist simulation, and energy estimation using URSA. The physical synthesis setup in this
Section is the same from Section 3.5.3, also using a 3x3 accelerator and 28nm and 65nm
technologies. This experiment adopts the second estimation method presented in Sec-
tion 3.3 due to its accuracy, using one layer from a new CNN that is based in CIFAR10
dataset, and it is used both in simulation and VCD extraction. The netlist simulation input
is a 32x32x3 feature map, 16 3x3 filters, stride 2, which generates a 15x15x16 output. The
IFMAP, bias and weights are extracted as the same way that tensorflow.h in Figure 3.1, but
converted to a VHDL package format to be applied in the hardware simulation. The equiva-
lent netlist simulation setup is also used in URSA simulator. Table 3.2 presents the obtained
energy for both netlist and URSA.

Table 3.2: Comparison of Estimated Energy of Netlist Simulation and URSA simulator.

Technology Energy (µJ)
Netlist URSA |Error (%)|

65nm 603.49 603.73 0.04
28nm 264.45 264.74 0.10

The energy values related to the netlist simulation were obtained from the power
estimated by industry-standard EDA (Cadence Voltus) multiplied by the simulation time, con-
sidering the simulation with 16 filters. The energy values related to the URSA simulation
consider the pre-characterized power obtained from the previous physical synthesis and the
number of clock cycles to execute a convolution. The energy estimation using URSA intro-
duced an average error compared to the netlist simulation equal to 0.07% (average value).

65

This energy estimation error is smaller than, e.g., results presented by Accelergy work [Wu
et al., 2019], which is 5%.

However, as Accelergy work, this result are related to one scenario, and other
accelerator configuration can result in different estimatives. Also, the obtained energy value
does not consider the access memory, which has in important impact in the total energy.

3.5.3 Simulation Time Comparison

This Section compares the time spent in a netlist simulator, and the time spent by
URSA. Table 3.3 presents the simulation time for both netlist and URSA.

Table 3.3: Comparison of Netlist and URSA simulator.

Technology Simulation Time (sec)
Netlist URSA Speedup

65nm 119.23 1.63 73.14
28nm 128.19 1.67 78.64

The simulation time using URSA is 75 (average value) times faster than the netlist
simulation. Such results justify adopting the system simulator to execute a fast design space
exploration using physical synthesis data. It is worth mentioning that this experiment simu-
lated a small input feature map with a small number of filters. With the increase of the input
feature map size and the number of filters, the speed up using URSA compared to the netlist
simulation is expected to increase.

The adoption of the URSA system simulator enables faster simulations with an
accurate energy estimation, showing that accurate analyses need to regard the entire con-
volution accelerator, and not only fundamental components, as adders and multipliers.

3.6 Final Remarks

Works like [Wu et al., 2019] assume that every design evaluation involves a high-
level simulation at the architecture level, making the high-level modeling not considered an
extra overhead. Thus, to evaluate the hardware accelerators for a given CNN model, we
keep TensorFlow framework as a high-level frontend and the RTL description to generate
the PPA metrics. The system simulator, URSA, is recommended to simulate a complete
computational system.

Thus, lessons learned from a system-level simulator in the context of this Thesis
include the following pros and cons:

Pros on using a system simulator:

66

1. Cycle-accurate simulation;

2. Possibility to describe hardware modules in an abstract way (Appendix A);

3. Generate gold models for circuit verification;

4. Validate the CNN accuracy;

5. The object-oriented approach allows reusing the hardware description, making it easier
to build new hardware models;

6. Faster simulation compared to an RTL description;

7. URSA simulator enables entire system simulations once it contains microprocessors
and DMA modules.

Cons on using a system simulator:

1. The URSA abstract modeling is complex and may not reflect the actual behavior of the
hardware, even though it is cycle-accurate;

2. There is a redundancy of CNN network models: Python modeling for TensorFlow, C++
model for URSA, and VHDL/Verilog for the RTL models. Since the goal is to execute
DSE from the physical synthesis of the RTL model, the URSA modeling could become
unnecessary if we are not going to simulate the complete system (CNN network, pro-
cessor, DMA, and memories).

Another limitation of the flow presented in this Chapter is the use of NVDLA for
RTL modeling. Despite allowing an extensive parameterization of hardware parameters,
NVDLA modules have an important silicon area and limit the exploration of different dataflow
architectures.

This Chapter was a first step toward CNNs design space exploration. The Tensor-
Flow and the quantization method continue to be used in the present work. However, in the
following chapters (4 and 5), we present the design and evaluation of dedicated accelera-
tors to replace the NVDLA modules. Dedicated accelerators allow configuring array styles
(1D/2D) and dataflow architectures (WS, IS, and OS).

The flow for DSE presented in Figure 3.1 is simplified. Chapter 6 details differ-
ent DSE flows, using the PPA reports obtained by the dedicated accelerators directly by
TensorFlow.

67

4. MACHINE LEARNING HARDWARE ACCELERATOR DESIGN

This Chapter details the design of CNN hardware accelerators, at the RTL level,
with the goal to create a rich set of architectures enabling PPA evaluation considering differ-
ent design choices.

This Chapter contains two sections:

• Section 4.1: presents RTL implementations for array style comparison [Juracy et al.,
2021b]. The array style comparison between 1D and systolic 2D array enables to
assess trade-offs such as parallelism degree and performance;

• Section 4.2: presents the RTL design for WS, IS, and OS dataflows. It is worth men-
tioning that the external interface of the accelerators is the same, connecting them to
external memories. This feature enables the evaluation of the memory accesses on
the accelerator energy.

Chapter 5 evaluates these accelerators, using the same inputs, technology, and
target frequency.

4.1 Array Style RTL Implementations

Array style is the PEs organization regarding interconnection in an accelerator
[Moolchandani et al., 2021]. In the 1D architecture, PEs are connected sequentially, where
each PE has a maximum of two neighbors, with data transferred in a pipeline fashion. A
systolic 2D is similar but can have more than two neighbors, arranged as a matrix.

This section presents the design of two accelerator architectures. The first one
is a systolic 2D accelerator with two relevant features: memory accesses reduction with
high sustained throughput. The second one is a 1D array accelerator to reduce area and
power dissipation at the cost of reduced performance. Both accelerators adopt WS dataflow,
described in VHDL RTL, validated using the CIFAR10 dataset.

4.1.1 Systolic 2D Accelerator

Figure 4.1 illustrates the systolic 2D accelerator architecture, with its external inter-
faces and the input memory connection, which stores the bias value, weights, and IFMAP.
This memory is assumed pre-loaded before the convolution process, delivering 1 byte per
clock cycle. The arithmetic core contains a fixed 3x3 matrix with 3 multipliers, 6 MACs,
3 adders, and 12 registers. The accelerator presents a fetch FSM approach for the feature

68

reading (FB1/FB2), making it possible to read the memory values and execute the arithmetic
process in parallel.

Bias
Reg

Weight Buffer

MULT MAC MAC

MULT MAC MAC

MULT MAC MAC

REG

+REG

REG

Feature
Buffer2

9 8-bit
values

9 8-bit feature values
8

Feature
Buffer1

6 8-bit
values

REG

REG

REG

REG

REG

REG

pixel

SHIFT

ReLU

REG

3 8-bit feature values

9 8-bit weight values

20

20

20

20

20

20

20

20

20

20

20

REG

+
20

REG

External
Memory

8

data out
8

address

10

current
state

buffer address

valid

1

start conv, weight_en, bias_en

arithmetic core

Valid
Control

8

current
state

Bias
address generation

Weight
address generation

Feature
address generation

Control FSM

enen en

enen en

enen en en

en

en

en

Figure 4.1: Systolic 2D Array Accelerator Architecture. Source: [Juracy et al., 2021b]

The initialization process occurs by loading the weight values (weight_en) and the
bias value (bias_en) in the weight_buffer and bias_reg buffers. Next, the activation of
the start_conv signal starts the convolution process. The convolution execution follows a
loop controlled by the “Control FSM”, until completing the IFMAP reading from the external
memory.

This architecture assumes 3x3 weight filters and stride equal to 2. For each convo-
lution, it would be necessary 9 memory accesses. Due to the stride value, it is possible to
reuse one column of the 3x3 windows, executing 6 memory readings instead of 9, resulting
in a 33% memory reading reduction. The proposed accelerator requires seven clock cycles
for data reading and buffering, with the convolution computation executed in parallel to the
memory reading:

• cycle 0: transfer the 6 values read from memory from FB1 to FB2, reuse 3 values
from FB2, and update FB1 addresses. Given the combinational implementations of the
arithmetic blocks (multipliers and adders) in the “arithmetic core”, these start computing
new values at the end of this cycle.

• cycles 1 to 6: read the IFMAP values from the input memory to FB1.

• cycle 5: at the end of the fifth cycle, the “Control FSM” activates signal en for all arith-
metic core registers, generating a new output value. This value goes through two
combinational blocks, SHIFT and ReLU.

69

• cycle 6: the “valid control” block activates the valid signal according to the convolution
being executed. This block controls the bubbles at the end of the generation of the
OFMAP line.

After convolution, the accelerator executes the activation function. We adopted
ReLU, but other nonlinear functions can be supported, like LeakyReLU and PReLU [Keras,
2022]. The memory of the next convolution layer receives the pixel output.

Systolic 2D Accelerator Data Flow

The data movement through the MACs has a wave-front approach to compute up
to 5 convolutions in parallel. Figure 4.2 shows the memory addresses related to the IFMAP
data at the top, considering an IFMAP with 9 columns and a stride equal to 2. Thus, there
are 4 convolutions per line, marked as conv(a) to conv(d). The next convolutions correspond
to conv(e) to conv(h). The weight values reading occurs before the convolution starting,
characterizing this approach as a weight stationary.

MEMORY ADDRESSES conv(a) conv(b) conv(c) conv(d)

0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17

9 18 19 20 21 22 23 24 25 26
Stride: 2 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44

conv(e) conv(f) conv(g) conv(h)

ACCELERATOR MEMORY ACCESSES - note that the 1st column data is transferred to the 3rd column, reducing the memory accesses (red addresses)

0 2 1 4 3 2 A1a 6 5 4 A1b 8 7 6 A1c
9 11 10 13 12 11 A2a 15 14 13 A2b

18 20 19 22 21 20 A3a
start conv(a) start conv(b)/netxt conv(a) diagonal start conv(c)/netxt conv(a,b) diagonals start conv(d)/netxt conv(a,b,c) diagonals end of cov(a) --> A3a

18 9 8 A1d 20 19 18 22 21 20 A1e 24 23 22 A1f 26 25 24 A1g
17 16 15 A2c 27 18 17 A2d 29 28 27 bubble 31 30 29 A2e 33 32 31 A2f
24 23 22 A3b 26 25 24 A3c 36 27 26 A3d 38 37 36 bubble 40 39 38 A3e

end of cov(b) --> A3b / start new line end of cov(c) --> A3c end of cov(d) --> A3d invalid data, due to the line change end of cov(e) --> A3e

N# colums:

Step 1 Step 2 Step 3 Step 4 Step 5

Step 10Step 9Step 8Step 7Step 6

Figure 4.2: Convolution 2D - memory accesses and processing flow. Source: [Juracy et al.,
2021b]

The bottom part of the figure has 10 steps. Each step corresponds to the memory
reading, and in parallel, the arithmetic operations execution. We use steps 1 to 5 to illustrate
a single convolution. At the end of the third step, the computation of the first line (addresses
0/1/2) is stored in a register (A1a). At the end of the fourth step, the result of the second line
(addresses 9/10/11) is added to A1a, stored in a register (A2a). At the end of the fifth step,
the result of the third line (addresses 18/19/20) is added to A2a, stored in a register (A3a).
The value of this register corresponds to the output of the first convolution.

All steps make 6 memory accesses. The first four steps read values that are not
used, corresponding to the filling of the matrix. Take, for example, step 5. In this step,
6 values are read from memory, corresponding to the addresses of the first 2 columns

70

(8/7/15/14/22/21). The third column is filled with data from the first column (once stride
is equal to 2, allowing to perform the reuse scheme), thus reducing memory access (red
numbers). Once the matrix is filled, 5 convolutions are processed simultaneously, one on
each matrix diagonal.

Note that there is a bubble step between lines (at step 9). This is due to the load of
the value in the last row column. The reading process ends in the last column that generates
a valid convolution.

4.1.2 1D Accelerator

The second implementation, the 1D array, has a straightforward architecture to
reduce area and consumption. Figure 4.3 illustrates the buffers and the arithmetic core of
the 1D array. This implementation has three PEs, each with a MAC and a register. The
initialization process is the same as the 2D architecture, with the weights and bias load. The
generation of a valid output comprises a loop repeated three times, requiring 6 clock cycles
at each interaction. The reading of three IFMAP values occurs in the first three clock cycles.
In the subsequent three clock cycles, MACs compute new values. At the end of the 6 cycles,
registers store values generated by each MAC (signal en). At the end of 3 iterations, the
MAC registers are reset (signal res), and the resulting addition is stored in SUM REG by
activating the load signal. The throughput is constant without generating bubbles at the end
of each line. Note that the systolic 2D requires 7 clock cycles per convolution, while the 1D
array 18 clock cycles.

Bias
Reg

Weight Buffer (9 8-bit values)

MAC

MAC

MAC

REG

REG

pixel

SHIFT

ReLU

3 8-bit weight values

8

8

20

20

20

20 SUM
REG

res, en

res, en

res, load

8

FB

Feature
Buffer1

3 8-bit
values

+

20

REG
res, en

Figure 4.3: 1D Array Accelerator Architecture (buffers and arithmetic core). Source: [Juracy
et al., 2021b]

71

4.2 Dataflow Implementations

The dataflow type refers to how the data to be processed is mapped in a given
accelerator array. The mapping determines how to load and generate the data into the array.
The dataflow is characterized by latency, throughput, and data reuse parameters.

The previous section described two accelerators focusing on the array style im-
plementation. However, these accelerators abstracted the memory interfaces. This section
describes the implementation of three 2D dataflows (WS, IS, and OS), considering a unified
interface with input and output memories. External memories play an important role in the
total accelerator energy, being mandatory to evaluate this cost.

Figure 4.4 details the 3 modules required to build the convolutional accelerators:

• INPUT memory, stores the IFMAP, filter weights, and bias values. It is a read only
memory;

• convolutional core, executes the convolution;

• OFMAP memory stores the partial and complete convolution values.

ifmap_add

ifmap_value

ifmap_ce

INPUT
MEMORY

(BIAS,WEIGHT
,FEATURE)

ofmap_add

pixel_out

ofmap_we

ofmap_ce

pixel_in OUTPUT
FEATURE
MEMORY

clk rst start_conv

end_conv

ifmap_valid

ofmap_validINPUT
BUFFER

MAC
ARRAY

ACTIVATION
FUNCTION

OUTPUT
CONTROL

LOGIC

CONVOLUTION

INPUT
MEMORY
ACCESS

CONTROL
LOGIC

Figure 4.4: Generic architecture and the modules required to build the convolutional accel-
erators.

The convolutional core contains:

• input buffer: reduces the number of input memory readings. According to the accelera-
tor type, this buffer may store, e.g., an input channel, a set of rows of the input channel,
or a set of weights;

• input memory access control logic: control the input memory access. It is implemented
using an FSM based on the dataflow type.

• MAC array: a matrix with multipliers, adders, and accumulators responsible for execut-
ing the convolution;

72

• activation function: a non-linear function applied to the OFMAP results. Examples
are sigmoid, ReLU, leaky ReLU [Keras, 2022]. This works adopts the ReLU function
(max(0, x)) due to its simpler hardware implementation;

• output control logic: control the OFMAP memory access. It can be implemented with
buffers to reduce memory access.

The following signals control the memory access:

• ifmap_add and ofmap_add: IFMAP and OFMAP memory address;

• ifmap_valid and ofmap_valid: these signals are related to the memory latency. The
signal indicates when a data from memory is ready to be consumed;

• ifmap_ce and ofmap_ce: memories chip enable, used to control the memory access;

• ifmap_value: data that come from IFMAP memory. ifmap_valid indicates when this
data is ready to be consumed;

• pixel_in: data that come from OFMAP memory. ofmap_valid indicates when this
data is ready to be consumed;

• pixel_out: data that is stored in the OFMAP memory. It is used to store partial sum
values generated in the convolution operation;

• start_conv: input signal used to start the convolution operation;

• end_conv: output signal that indicates the end of the entire convolution operation.

The unified memory interface makes it possible to implement different dataflows
with distinct protocols, allowing a fair comparison between the accelerators. This Thesis
covers the WS, IS, and OS dataflow, once they are the most common approaches in state-
of-the-art, as shown in Chapter 2.

All accelerators adopt a 3x3 MAC array, and the convolution stride equals 2. De-
spite being a design limitation, state-of-the-art CNNs adopt these values, such as VGG16
[Simonyan and Zisserman, 2014], ensuring that the proposed accelerators reflect real CNNs.

4.2.1 Weight Stationary (WS) Dataflow

Algorithm 1 presents the pseudo-code describing the WS hardware behavior. The
core of the algorithm comprises lines 3 to 9. Lines 3-4 fetch a filter set w(f , c) from memory,
storing it in the input buffer. The loop between lines 5-9 reads windows from the IFMAP,
executes the convolution, and produces a partial result. To obtain a convolution value in

73

the OFMAP memory (output memory), it is necessary F − 1 reads (for partial convolution
values), and F writes (line 8). This procedure implies a large number of memory accesses,
increasing the total energy consumption.

Algorithm 1: WS pseudo-code.
Input: C input channels, F output channels
Output: O

1 foreach f in F do
2 foreach c in C do
3 Read weight filter set w(f,c) from input memory
4 Store filter set in the input buffer // weight stationary
5 foreach I(i)(j) in IFMAP(c) do
6 Read a window I(i)(j) from IFMAP
7 p← convolution(I(i)(j), w(f , c))
8 O[f][x][y]← O[f][x][y] + p
9 end

10 end
11 end

Figure 4.5 shows the hardware architecture. The dashed blue square indicates
where the stationary values are stored. This accelerator version also uses the same double-
buffer scheme of the 2D accelerator (Section 4.1) to allow parallelizing of the convolution
process. Also, the wave-front approach presented in Section 4.1 is the same.

Bias
Reg

Weight Buffer

MULT MAC MAC

MULT MAC MAC

MULT MAC MAC

REG

+REG

REG

Feature
Buffer2

9 8-bit
values

9 8-bit feature values
8

Feature
Buffer1

6 8-bit
values

REG

REG

REG

REG

REG

REG

SHIFT

REG

3 8-bit feature values

9 8-bit weight values

20

20

20

20

20

20

20

20

20

20

REG

+
20

REG

Input
Memory

16

ifmap_value
8

ifmap_add

10

current
state

end_conv

1

arithmetic core (MAC array)

End of
Convolution

Control

8

current
state

Bias
address generation

Weight
address generation

Feature
address generation

Control FSM

enen en

enen en

enen en en

en

en

en

Output
Memory

Output
Memory
Access
Control

pixel_out

pixel_in

20

Output Address Generation

ofmap_add

ofmap_ce
ofmap_we

ReLU

ifmap_ce

1

20

20

20

1
1

10

1

ofmap_valid

ifmap_valid

1

1

stationary values

start conv

20-bit
bias value

Figure 4.5: WS 2D accelerator and memory interfaces.

To control each dataflow, a specific FSM is designed. Figure 4.6 shows the WS
Control FSM. The FSM works as follows:

1. WAIT START: the FSM waits the start_conv signal to rise;

74

2. READ BIAS: the accelerator reads a value from the IFMAP memory, and wait for the
ifmap_valid signal;

3. READ WEIGHT: after reading the bias value, the accelerator starts to read the weight
values, and wait for the valid signal to each value (9 in this case). This state corre-
sponds to the stationary values (line 3 and 4 in Algorithm 1);

4. START MAC: allow the MACs to start convolution of a given channel;

5. WAIT CONV: wait for the execution of the convolutions in a given channel. In WS,
N_CONVS is related to the partial values of an OFMAP, which are processed according
to the input channel size (loop at lines 5–9 in Algorithm 1). After executing N_CONVS,
a new bias value is read, which means a filter change in the convolution operation.
When the accelerator reads all filters, the convolution ends and returns to the WAIT
START state.

WAIT
START

READ
BIAS

start_conv == '1'

start_conv == '0'

READ
WEIGHT

START
MAC

ifmap_valid == '1'

CONT
VALID

ifmap_valid == '1'

cont_weight_valid < 9

cont_weight_valid == 9WAIT
CONV

end_conv == '1'

cont_conv < N_CONVS

start_mac == '1'

cont_conv == N_CONVS

read_bias == '0'
&

read_weights == '0'

Figure 4.6: WS accelerator Control FSM.

The Control FSM remains in the WAIT CONV state during the computation of a
given channel. The signal start_mac is the trigger to a second FSM, “fetch FSM”, responsi-
ble for computing the convolutions and fetching the IFMAP values.

The Fetch FSM, detailed in Figure 4.7, executes the core of Algorithm 1, i.e., the
loop between lines 5–9. After the rise of the start_mac signal, the accelerator starts to
fetch IFMAP values from memory. States FECTH IFMAP and CONT VALID read IFMAP
values, compute the partial convolution value, storing it in the OFMAP memory or a buffer.
Next, the state UPDATE_ADD generates a new IFMAP address up to the end of the channel
computation.

75

At the end of a channel computation it is necessary to read a new bias value or a
new set of weights (signals read_bias and read_weights). In this case, the Fetch FSM re-
turns to the IDLE state, releasing the Control FSM. Figure 4.7 also shows the reuse scheme
based on the stride. The Fetch FSM reads 6 IFMAP values for each convolution operation
instead of 9, which is the IFMAP window used in the convolutions.

IDLE

UPDATE
ADD

start_mac == '1'

start_mac == '0'

FETCH
IFMAP CONT

VALID

ifmap_valid == '1'

cont_ifmap_valid < 6cont_ifmap_valid == 6

read_bias == '1'
|

read_weights == '1'

Figure 4.7: WS accelerator Fetch FSM.

The writing in the OFMAP memory (line 8 in Algorithm 1) has two approaches.
The first one, detailed in Figure 4.5, uses the OFMAP memory to store partial values of a
convolution generated by the MACs (line 7 in Algorithm 1). For example, a CNN with an RGB
image input (3 input channels) needs to perform 2 reads (one for R channel values and one
for G channel values). Also, three writes are necessary (one for R channel values, one for
G channel values, and the last for the final convolution value). This operation is represented
by the Output Memory Access Control module in Figure 4.5.

The second approach, detailed in Figure 4.8, uses an output buffer, reducing the
OFMAP memory accesses. It is similar to the first approach, but the OFMAP memory is not
used to store the partial values. Instead, an internal buffer with the OFMAP size stores partial
values. For example, a convolution of a 32x32x3 RGB image with a 3x3 filter and stride 2
generates a 15x15 OFMAP. Thus, the output buffer also has 15x15 positions. Therefore, it
is possible to eliminate the OFMAP memory reads and write only the final convolution value.
However, this solution increases the accelerator area and energy.

4.2.2 Input Stationary (IS) Dataflow

Algorithm 2 presents the pseudo-code describing the IS hardware behavior. The
core of the algorithm comprises lines 3 to 14. Lines 4-5 fetch an IFMAP window I(i)(j) from
memory, storing it in the input buffer. The loop between lines 7-12 reads filter sets from the
input buffer, executes the convolution, and produces a partial result.

76

Bias
Reg

Weight Buffer

MULT MAC MAC

MULT MAC MAC

MULT MAC MAC

REG

+REG

REG

Feature
Buffer2

9 8-bit
values

9 8-bit feature values
8

Feature
Buffer1

6 8-bit
values

REG

REG

REG

REG

REG

REG

SHIFT

REG

3 8-bit feature values

9 8-bit weight values

20

20

20

20

20

20

20

20

20

20

REG

+
20

REG

Input
Memory

16

ifmap_value
8

ifmap_add

10

current
state

start conv

arithmetic core (MAC array)

8

Bias
address generation

Weight
address generation

Feature
address generation

Control FSM

enen en

enen en

enen en en

en

en

en

Output
Memory

pixel_out

Output Address Generation

ofmap_add

ofmap_ce
ofmap_we

ReLU

ifmap_ce

36

1
1

10

ifmap_valid

1

1

Output
Buffer

end_conv

1

End of
Convolution

Controlcurrent
state

stationary values

20-bit
bias value

Figure 4.8: Buffered WS 2D accelerator and memory interfaces. For this version, the output
buffer replacing the output memory control logic is what differentiates this architecture from
the WS.

Algorithm 2: IS pseudo-code.
Input: C input channels, F output channels
Output: O

1 Read weights and bias, storing in the input buffer // IS optimization
2 foreach c in C do
3 foreach I(i)(j) in IFMAP(c) do
4 Read a window I(i)(j) from IFMAP
5 Store window I(i)(j) in the input buffer // input stationary
6 foreach f in F do
7 foreach cw in C do
8 foreach w in w(f,cw) do

// stored in the input buffer
9 p← convolution(I(i)(j), w(f , c))

10 O[f][x][y]← O[f][x][y] + p
11 end
12 end
13 end
14 end
15 end

Figure 4.9 shows the IS hardware architecture. The dashed blue square indicates
where the stationary values are stored (Feature Buffer). Unlike WS dataflow hardware, the
data move through the array in a pipeline fashion. The IS dataflow has a different approach
for reducing the input memory access. Differently from a standard IS, the implemented IS
stores weights and bias values in the input buffer (similar to a cache memory) to reduce the
memory accesses while introducing a penalty in the area (line 1 of Algorithm 2). We adopted
this approach once the data required for weights and bias is smaller than an IFMAP channel.
For example, considering a 32x32x3 convolution layer with 16 3x3x3 filters, the input (3072
values) is larger than the number of weights and bias (448 values).

77

All Bias and Weights Buffer

MULT MAC MAC

MULT MAC MAC

MULT MAC MAC

REG

+REG

REG

Feature
Buffer

9 8-bit feature values
8

REG

REG

REG

REG

REG

REG

SHIFT

REG

3 8-bit feature values

9 8-bit weight values

20

20

20

20

20

20

20

20

20

20

REG

+
20

REG

Input
Memory

8

ifmap_value
8

ifmap_add

10

current
state

end_conv

1

start conv

arithmetic core (MAC array)

End of
Convolution

Control

8

current
state

Bias
address generation

Weight
address generation

Feature
address generation

Control FSM

enen en

enen en

enen en en

en

en

en

Output
Memory

Output
Memory
Access
Control

pixel_out

pixel_in

20

Output Address Generation

ofmap_add

ofmap_ce
ofmap_we

ReLU

ifmap_ce

1

20

20

20

1
1

10

1

ofmap_valid

ifmap_valid

1

1

stationary values

20-bit
bias value

bias buffer address
weight buffer address

Figure 4.9: IS 2D Array accelerator and memory interfaces. IS version has no double buffer,
and has a register bank to store all bias and weights values internally in the accelerator.

Figure 4.10 shows the Control FSM for the IS protocol. The protocol works as
follow:

1. WAIT START: the FSM waits the start_conv to rise;

2. READ BIAS: the accelerator reads the bias values from the input memory and waits
for the mem_valid signal. The bias values are stored in the internal buffer;

3. READ WEIGHT: the accelerator reads the weight values and waits for the mem_valid

signal. The weight values are also stored in the internal buffer;

4. READ IFMAP: after reading all bias and weights values, the accelerator starts to read
the IFMAP values, and wait for mem_valid signal (9 values in this case). This state
corresponds to the read of the stationary values (lines 4 and 5 in Algorithm 2).

5. START MAC: allow the MACs to start convolution for a given filter channel;

6. WAIT CONV: wait for the convolutions to finish. In IS case, the partial values are
related to the filter channel and the OFMAP channel line (loop at lines 8–11 in Algo-
rithm 2). After executing N_CONVS, a new IFMAP window is read (loop at lines 3–14 in
Algorithm 2). The convolution ends when the accelerator reads all IFMAPs and returns
to the FSM initial state.

The Control FSM remains in the WAIT CONV state during the computation of a
given filter channel. The signal start_mac is the trigger to a second FSM, “load FSM”,

78

WAIT
START

READ
BIAS

start_conv == '1'

start_conv == '0'

CONT
BIAS

VALID

READ
IFMAP

mem_valid == '1'

READ
WEIGHT

cont_bias_valid == ALL_BIAS

cont_weight_valid < ALL_WEIGHTS

cont_weight_valid == ALL_WEIGHTS

WAIT
CONV

end_conv == '1'

start_mac == '1'

cont_bias_valid < ALL_BIAS

CONT
WEIGHT

VALID

mem_valid == '1'

CONT
IFMAP
VALID

START
MAC

mem_valid == '1'

cont_ifmap_valid < 9cont_ifmap_valid == 9

cont_conv == N_CONVS

read_ifmap == '0'

Figure 4.10: IS accelerator Control FSM.

responsible for computing convolution and loading the weight values from the internal buffer.
Unlike WS accelerators, the accelerator performs convolution in parallel with the read of the
weights from the input buffer, which works similarly to a cache memory.

The Load FSM, detailed in Figure 4.11, executes the core of the Algorithm 2, i.e.,
the loop between lines 6–13. After the rise of the star_conv signal, the accelerator starts
to read the weight values from the buffer. Note that in IS is not necessary to wait for
the mem_valid signal, which improves both performance and energy consumption. At the
end of the filter channel computation, it is necessary to read a new IFMAP window (signal
read_ifmap). In this case, the Load FSM returns to the IDLE state, releasing the Control
FSM. Figure 4.11 also shows that IS reads 9 weight values per convolution.

The IS also has two versions, with and without output buffer. The IS OFMAP ac-
cess (line 9 of Algorithm 2) is the same as WS. However, the size of the output buffer is
different. Once IS generates a line of the OFMAP channels per time, the output buffer di-
mension is based on the width of the OFMAP and in the number of filters (output channels).
For example, a convolution of a 32x32x3 RGB image with a 3x3 filters, stride 2, 16 output
channels, generates 16 15x15 OFMAPs. In this IS case, the output buffer has 16x15 posi-
tions. Both output buffers have similar sizes for small OFMAPs, such as 15x15x16 OFMAPs
(WS: 15× 15 and IS: 15× 16). For a larger OFMAP size, there is a clear advantage for the
IS output buffer (e.g., 128x128x16: WS: 128× 128, IS: 128× 16). Figure 4.12 illustrates the
buffered version of IS.

79

IDLE

UPDATE
ADD

start_mac == '1'

start_mac == '0'

READ
WEIGHT

cont_weight_value == 9

read_ifmap == '1'

cont_weight_value < 9

Figure 4.11: IS accelerator Load FSM.

MULT MAC MAC

MULT MAC MAC

MULT MAC MAC

REG

+REG

REG

Feature
Buffer

9 8-bit feature values
8

REG

REG

REG

REG

REG

REG

SHIFT

REG

3 8-bit feature values

20

20

20

20

20

20

20

20

20

20

REG

+
20

REG

Input
Memory

16

ifmap_value
8

ifmap_add

10

current
state

start conv

arithmetic core (MAC array)

8

Bias
address generation

Weight
address generation

Feature
address generation

Control FSM

enen en

enen en

enen en en

en

en

en

Output
Memory

pixel_out

Output Address Generation

ofmap_add

ofmap_ce
ofmap_we

ReLU

ifmap_ce

20

1
1

10

ifmap_valid

1

1

Output
Buffer

end_conv

1

End of
Convolution

Controlcurrent
state

All Bias and Weights Buffer

9 8-bit weight values

20-bit
bias value

stationary values

bias buffer address
weight buffer address

Figure 4.12: Buffered IS 2D Array accelerator and memory interfaces. For this version, the
output buffer replacing the output memory control logic is what differentiates this architecture
from the IS. Also, like IS, Buffered IS version has no double buffer, and has a register bank
to store all bias and weights values internally in the accelerator.

4.2.3 Output Stationary (OS) Dataflow

Algorithm 3 shows the pseudo-code describing the OS hardware behavior. The
core of the algorithm comprises lines 4 to 9. Lines 5 and 6 fetch a IFMAP window I(i)(j) and
a filter set w(f , c) from memory. Lines 7 and 8 perform the convolution and accumulate the
partial result in the output buffer internal_p. Line 11 stores a complete convolution value.

Figure 4.13 shows the hardware architecture. The dashed blue square indicates
where the stationary values are stored. Like IS dataflow hardware, the data move through

80

Algorithm 3: OS pseudo-code.
Input: C input channels, F output channels
Output: O

1 foreach f in F do
2 foreach c in C do
3 internal_p← 0
4 foreach I(i)(j) in IFMAP(c) do
5 Read a window I(i)(j) from IFMAP Input Memory
6 Read a set of filters w(f)(c) from Input Memory
7 p← convolution(I(i)(j), w(f , c))
8 internal_p← internal_p + p
9 end

10 end
11 O[f][x][y]← internal_p // output stationary
12 end

the array in a pipeline fashion. OS is the dataflow that performs more memory access once
there is no buffer to reuse weights or IFMAPs, and each convolution requires memory ac-
cess. The stationary values, in this case, are the partial sums generated by the convolution.

The OS accelerator also executes computation and memory accesses in parallel,
enabled by a double buffer scheme. Please refer to “feature buffer 1”-“feature buffer 2” and
“weight buffer 1”-“weight buffer 2” in Figure 4.13.

Bias
Reg

Weight Buffer2

MULT MAC MAC

MULT MAC MAC

MULT MAC MAC

REG

+REG

REG

Feature
Buffer2

9 8-bit feature values
8

REG

REG

REG

REG

REG

REG

SHIFT

REG

9 8-bit weight values

20

20

20

20

20

20

20

20

20

20

20

REG

+
20

REG

Input
Memory

16

ifmap_value
8

ifmap_add

10

current
state

end_conv

1

start conv

arithmetic core (MAC array)

End of
Convolution

Control

8

current
state

Bias
address generation

Weight
address generation

Feature
address generation

Control FSM

enen en

enen en

enen en en

en

en

en

Output
Memory

pixel_out

Output Address Generation

ofmap_add

ofmap_ce
ofmap_we

ReLU

ifmap_ce

20

1
1

10

ifmap_valid

1

1

stationary value

Output
Reg

Weight Buffer1

Feature
Buffer1

Figure 4.13: OS 2D Array Accelerator and memory interfaces.OS has a double-buffer
scheme similar to WS, but instead, it has one for IFMAPs, and one for weights.

Figure 4.14 shows the OS Control FSM. The protocol works as follow:

1. WAIT START: the FSM waits the start_conv to rise;

2. READ BIAS: the accelerator reads a bias value from the IFMAP memory and wait the
mem_valid signal;

81

3. START MAC: allow the MACs to start convolution for a given IFMAP and weight chan-
nel;

4. WAIT CONV: wait for the convolutions to finish. In OS case, the partial values are
related to the IFMAP and filter channels (loop at lines 1–10). After executing N_CONVS

(equal to the number of output channels), a new bias value is fetch from memory, and
the filter changes. When the accelerator generate all OFMAP values, the convolution
ends and returns to the FSM initial state.

WAIT
START

READ
BIAS

start_conv == '1'

start_conv == '0'

START
MAC

mem_valid == '1'

WAIT
CONV

end_conv == '1'

start_mac == '1'

cont_conv == N_CONVS

read_bias == '0'

Figure 4.14: OS accelerator Control FSM.

The Control FSM remains in the WAIT CONV state during the computation of a
given OFMAP value. The start_mac is a trigger to the Fetch FSM, detailed in Figure 4.15,
responsible for computing the convolutions and fetch the IFMAP and weight values (using a
double-buffer scheme similar to the WS).

The Fetch FSM executes the core of the Algorithm 3, i.e., the loop between lines 2–
10. After the rise of the start_conv signal, the accelerator starts to read the IFMAP values
from memory. After reading all necessary IFMAP values (9 in this case), the accelerator
starts to read the weight values from memory (reading more 9 values), totalizing 18 memory
reads. Note that, like WS dataflow, each memory fetch waits for the mem_valid signal to
allow a new memory read, which reduces the throughput.

At the end of the OFMAP computation, it is necessary to read a new bias value
(signal read_bias). In this case, the Load FSM returns to the IDLE state, releasing the
Control FSM. OS dataflow has only one approach, once it always requires an output buffer
to store the partial values of the convolution (stationary values).

82

IDLE

UPDATE
ADD

start_mac == '1'

start_mac == '0'

FETCH
IFMAP

CONT
IFMAP
VALID

mem_valid == '1'

cont_ifmap_valid < 9 cont_ifmap_valid == 9

read_bias == '1'

FETCH
WEIGHT

CONT
WEIGHT

VALID
cont_weight_valid == 9

cont_weight_valid < 9

mem_valid == '1'

Figure 4.15: OS accelerator Fetch FSM.

4.2.4 Final Remarks

This Chapter described an original Thesis contribution, corresponding to the design
of convolution hardware accelerators for CNNs, at the RTL level. This set of accelerators
is a start point for an open-source CNN accelerators benchmark, enabling designers to
compare different implementations. An open-source benchmark is also a gap observed in
the literature.

The implementations explored both the array type (1D and 2D) and the different
dataflow architectures, which differ by the data that is reused. Emphasis was given to the
memory interface, including a mechanism that allows parameterizing their latency to eval-
uate the performance and the energy consumed by the accelerator, in a fair way (same
technology, same target frequency, unified memory interface).

Next Chapter evaluates each accelerator, performing a quantitative performance
evaluation among them.

83

5. MACHINE LEARNING HARDWARE ACCELERATOR RESULTS

This Chapter evaluates the designed convolution hardware accelerators presented
in the previous Chapter. This Chapter is organized as follows:

• Section 5.1: evaluates and compares the array styles – 1D and 2D;

• Section 5.2: evaluates and compares the dataflow types – WS, IS, and OS.

5.1 Array Style Results

This section evaluates the 1D and 2D array styles (Section 4.1). The DSE uses
results obtained after physical synthesis, using the Cadence Genus tool for logic synthesis
and the Cadence Innovus tool for physical synthesis. The power dissipation estimation uses
as input a VCD file generated after the post-synthesis netlist simulation and the Cadence
Voltus tool. The simulated netlist is a 32x32x3 feature map, with 16 3x3 filters, stride 2, gen-
erating a 15x15x16 output, which represents one layer of a CNN trained using the CIFAR10
dataset (same CNN used in Chapter 3).

Table 5.1 presents results varying the accelerator architecture (2D/1D) for a 28nm
technology node. The select frequency is the one that results in a slack time equal to or
near zero. Figure 5.1 presents the physical synthesis for both accelerators as a function of
the frequency (0.25–1.6 GHz).

Table 5.1: PPA results for accelerators after physical synthesis (28nm@1.6GHz). The leak-
age power for 1D is 0.02mW , while 2D has 0.04mW .

Accelerator Area – µm2 Cell Count Total Power – mW
Array 1D 3,654.70 2,964 3.26

Systolic 2D 7,190.91 5,922 5.36

2000

3000

4000

5000

6000

7000

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A
re
a
 (
u
m
2
)

Frequency (GHz)

Array 2D
Array 1D

(a) Area of 1D array and systolic 2D

0

2

4

6

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
o
w
e
r
(m
W
)

Frequency (GHz)

Array 2D
Array 1D

(b) Power dissipation of 1D array and systolic 2D

Figure 5.1: Area-power results for 28nm as function of the frequency.

84

As expected, the power increases with the frequency. Note that the area rises for
frequencies higher than 1GHz, due to the synthesis tool effort to meet the target frequency,
mainly for the 1D array architecture. Results presented in Table 5.1 and Figure 5.1 are con-
sistent with the accelerator architectures since the 2D architecture has nine MACs (in fact 6
MACs, 3 adders, 3 multipliers), and the 1D has three MACs in the arithmetic core.

DSE

The DSE uses Table 5.1 results, by multiplying the physical synthesis results by the
total number of MACs to be used. We integrate the physical synthesis data to the URSA
simulator to execute the DSE. The DSE considers five parameters:

• Accelerator architecture: 1D array and Systolic 2D.

• Parallelism: as presented in Chapter 2, accelerators can present an amount of MACs
greater than 200 ([Chen et al., 2020] use 256 MACs). Our accelerators have 9/3 MACs
(2D/1D), making it possible to parallelize these accelerators to process several chan-
nels simultaneously. The DSE explores from 1 to 16 accelerators in parallel, ranging
from 9/3 to 144/48 MACs (2D/1D).

• Power, area: design parameters obtained from the physical synthesis for different fre-
quencies.

• Performance: execution time to execute one 32x32x3 convolution, with 3x3 filters,
stride 2x2, and 16 channels. Performance in represented in milliseconds to demon-
strate the difference in performance and the benefits of using accelerators in parallel
with high frequencies.

Charts presented in Figure 5.2 summarize the results for 40 evaluated scenarios
(two accelerators architectures, four parallel configurations, and five operating frequencies).
The charts present the PPA for each scenario. From the charts, it is possible to observe, for
example:

• 1D array is, as expected, indicated for smaller area and power when compared to
2D systolic at the same frequency and number of filters, as shown in the scenario
highlighted in red in both charts from Figure 5.2 (16 parallel accelerators@1.6GHz).

• systolic 2D is, as expected, indicated for higher performance when compared to 1D
array (also shown in the scenario highlighted in red). Observe that the adoption of
16 accelerators for 2D systolic is only justified at frequencies higher than 1GHz. For
smaller frequencies, eight accelerators deliver similar performance, with smaller area
and power.

85

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

250M 500M 1G 1.25G 1.6G 250M 500M 1G 1.25G 1.6G 250M 500M 1G 1.25G 1.6G 250M 500M 1G 1.25G 1.6G

0

100

200

300

400

500

600

700

800

1 4 8 16

P
o
w

e
r

(µ
W

)
-

A
re

a
 (

µ
m

2
)

P
e
rf

o
rm

a
n
c
e
 (

m
s
)

(A) Frequency and Accelerators’ number - Array 1D - 28 nm

power
area

performance

4
0
0

8
1
0

1
5
7
0

2
0
9
0

3
2
6
0

1
6
0
0

3
2
4
0

6
2
8
0

8
3
6
0

1
3
0
4
0

3
1
7
0

6
4
6
0 1
2
5
7
0

1
6
7
2
0

2
6
0
8
0

6
3
5
0 1
2
9
1
0

2
5
1
4
0 3

3
4
4
0

5
2
1
6
0

7
7
7
.6

3
8
8
.8

1
9
4
.4

1
5
5
.5

1
1
6
.6

1
9
4
.4

9
7
.2

4
8
.6

3
8
.9

2
9
.2

9
7
.2

4
8
.6

2
4
.3

1
9
.4

1
4
.6 4

8
.6

2
4
.3

1
2
.2

9
.7

7
.3

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

250M 500M 1G 1.25G 1.6G 250M 500M 1G 1.25G 1.6G 250M 500M 1G 1.25G 1.6G 250M 500M 1G 1.25G 1.6G

0

100

200

300

400

500

600

700

800

green rectangles: similar power/performance, different area values

1 4 8 16

P
o
w

e
r

(µ
W

)
-

A
re

a
 (

µ
m

2
)

P
e
rf

o
rm

a
n
c
e
 (

m
s
)

(B) Frequency and Accelerators’ number - Systolic 2D - 28 nm

power
area

performance

8
0

0

1
5

8
0

3
1

3
0

3
9

5
0

5
3

6
0

3
2

0
0

6
3

2
0 1
2

4
0

0

1
5

8
0

0

2
1

4
4

0

6
4

0
0 1
2

6
6

6

2
5

0
5

0

3
1

6
0

0

4
2

8
8

0

1
2

8
0

0

2
5

3
1

0

5
0

1
0

0

6
3

2
0

0

8
5

7
6

0

3
2

9
.2

8

1
6

4
.6

4

8
2

.3
2

6
5

.8
6

4
9

.3
9

8
2

.3
2

4
1

.1
6

2
0

.5
8

1
6

.4
6

1
2

.2
3

4
1

.1
6

2
0

.5
8

1
0

.2
9

8
.2

3

6
.1

7

2
0

.5
8

1
0

.2
9

5
.1

5

4
.1

2

3
.0

9

Figure 5.2: DSE results obtained with URSA for 28nm for 1D array and systolic 2D (note
that power is presented in µW).

• consider the 2D architecture, Figure 5.2(b), for a 6.4mW power budget (green rect-
angles). The candidate configurations are 1 acc@1.6GHz, 4 acc@500MHz, and 8
acc@250MHz (acc stands for accelerator). The power and performance data are sim-
ilar for these scenarios, but the area is much smaller using 1 accelerator. This chart
allows the user to select the optimum accelerator configuration according to its con-
straints.

• others points can be observed through these charts. For example, still considering
2D architecture (Figure 5.2(b)). It is possible to note that it is preferable to use 1
acc@1GHz than 4 acc@250MHz, once it presents similar power and performance,
but 4 times smaller area. Similar behavior occurs with 4acc@1GHz compared to 8
acc@500MHz.

• comparing 1D with 2D architectures for a 3.2mW power budget:

– 1D, 4 acc@500MHz: 9,276µm2, and 97.2ms;

86

– 2D, 4 acc@250MHz: 19,58µm2, and 83.32ms.

In this case, the 1D array is the choice since, despite 15% lower performance (97.2
versus 82.32ms), it presents 50% smaller area (9,276 versus 19,58µm2).

The average energy consumption for the 1D array is 313µJ up to 1.25GHz, increas-
ing to 380µJ@1.6GHz. On the other hand, the systolic 2D presents an average energy
consumption equal to 261µJ, regardless the frequency. Thus, the systolic 2D presents a
better energy efficiency than the 1D array due to its performance. Such result reveals that
one cannot consider only the number of arithmetic cores for decision making since a set of
blocks are common to both architectures, as the register files.

Although we used the URSA simulator to perform DSE (Figure 5.2), we concluded
that it is possible to perform DSE from physical design results by using an analytical ap-
proach. This method to perform DSE analytically, from a set of physical synthesis data, is
the starting point for developing DSE flows, described in Chapter 6.

5.2 Dataflow Type Results

This section presents PPA results considering different dataflow types (Section 4.2).
DSE is executed after physical synthesis. Cadence Genus and Innovus tools were used
for logic and physical synthesis, with 28nm technology and a frequency of 500MHz. The
logic synthesis uses clock-gating, added automatically by the tool, to reduce the accelera-
tor energy consumption. The power dissipation is obtained with a VCD file generated with
a post-synthesis netlist simulation and Cadence Voltus tool. The netlist simulation input is
the first CNN layer with a 32x32x3 IFMAP (from CIFAR10 dataset - same from Chapter 3),
16 3x3 filters, stride 2, generating a 15x15x16 output. All inputs adopt 8-bit quantization
and outputs 20 bits (quantization detailed at Chapter 3). The total energy is computed by
multiplying the average power by the number of clock cycles required to execute a complete
convolution.

The energy memory values were extracted from Cacti-IO tool [Jouppi et al., 2014]:

• SRAM. For a 28nm 4KB SRAM, Cacti-IO reports 260fJ/bit for reading and 180fJ/bit
for writing. For comparison purposes, the literature reports energy values between
67fJ/bit [Fujiwara et al., 2013] and 20fJ/bit [Haine et al., 2017] for 28nm SRAM. The
SRAM consumption is larger than the one reported in the literature for two reasons:
(i) we considered a 500MHz frequency, while the literature considers 200MHz; (ii) the
literature considers low-energy SRAM.

87

• DRAM. For a 16 kB DRAM, 12pJ/bit for reading and 11.7pJ/bit for writing. The literature
shows values of 20pJ/bit [Son et al., 2013] and 15pJ/bit [Li et al., 2019] for DRAM.
Thus, the DRAM values are close to the ones reported in the literature.

Figure 5.3 evaluates the energy consumption to obtain a 15x15x16 OFMAP, ac-
cording to the memory type and its access latency (x-axis). The memory latency is controlled
by the ifmap_valid (Section 4.2). Increasing the IFMAP and OFMAP does not change the
behavior observed in these graphs. Accelerators that do not adopt output buffers have a
smaller energy consumption than accelerators using output buffers when using SRAM. This
result is because SRAM and buffers use the same static memory implementation, resulting
in a similar consumption. Thus, buffering brings no advantage when using SRAM memories.
The observed result is inverse when using DRAMs as external memories, with buffers acting
as cache memories. The buffered IS accelerator presents a significant energy reduction (IS
buf) compared to the other implementations. The OS accelerator is expensive in terms of
energy because it constantly fetches data from the input memory, regardless of the memory
type.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 2 4 6 8 10

En
er

gy
 (n

J)

SRAM access latency (in clock cycles)

Total Energy (nJ) - SRAM

WS WS buf IS IS buf OS

0

500000

1000000

1500000

2000000

2500000

0 2 4 6 8 10

Pe
rf

om
an

ce
 in

 c
lo

ck
 c

yc
le

s

SRAM/DRAM access latency (in clock cycles)

Performance

WS WS buf IS IS buf OS

0

5000

10000

15000

20000

25000

0 2 4 6 8 10

En
er

gy
 (n

J)

DRAM access latency (in clock cycles)

Total Energy (nJ) - DRAM

WS WS buf IS IS buf OS

ws+ws_buf

(b)(a)

Figure 5.3: Convolutional accelerators energy varying the memory type (SRAM or DRAM),
and the access latency.

Figure 5.4 evaluates the accelerators performance. The IS accelerators present
a performance that is slightly affected by the memory latency because the IFMAP is read
once, that is, input stationary. Also, the bufferization of weights and bias reduces the mem-
ory access, decreasing the memory impact on performance (line 1 of Algorithm 2 on Sec-
tion 4.2.2). The WS performance is affected by the memory latency because the number of
IFMAP readings is higher than the IS architecture. The OS architecture has a small buffer in
the output, requiring frequent IFMAP and weight readings, resulting in a heavy performance
penalty due to the memory latency.

Table 5.2 show the obtained results for the accelerators, considering an SRAM with
access latency of 2 clock cycles. It is possible to note a reduction in area whem compared
to the NVDLA approach on Chapter 3 . As the NVDLA is an approach without buffer, it is
possible the compare with non-buffered WS, and OS approches, which has an average area

88

Table 5.2: Hardware Metrics for SRAM Memory.

WS WS buf IS IS buf OS
Energy Memory (nj) 178.42 153.02 44.19 18.79 410.54

Energy Core (nJ) 163.63 617.16 619.28 1,001.79 537.37
Area (µm2) 6,319 26,779 46,543 68,077 6,596

Performance (cycles) 225,078 225,078 135,450 135,450 595,093
Memory Writes 10,800 3,600 10,800 3,600 3,600
Memory Reads 78,256 71,056 14,398 7,198 194,735

Internal Buffer Size (bits) 80 4,580 3,584 8,384 28

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 2 4 6 8 10

En
er

gy
 (n

J)

SRAM access latency (in clock cycles)

Total Energy (nJ) - SRAM

WS WS buf IS IS buf OS

0

500000

1000000

1500000

2000000

2500000

0 2 4 6 8 10

Pe
rf

om
an

ce
 in

 c
lo

ck
 c

yc
le

s

SRAM/DRAM access latency (in clock cycles)

Performance

WS WS buf IS IS buf OS

0

5000

10000

15000

20000

25000

0 2 4 6 8 10

En
er

gy
 (n

J)

DRAM access latency (in clock cycles)

Total Energy (nJ) - DRAM

WS WS buf IS IS buf OS

ws+ws_buf

(b)(a)

Figure 5.4: Convolutional accelerators performance (execution time).

of 6,457.91µm2. The NDVLA approach present an area of 35,003µm2, which means an
reduction of 5.42 times.

Figure 5.5 details the results in a radar format. Required buffer size (internal
buffers), area, and performance (cycles) are normalized by the worst result among acceler-
ators. The energy (memory and core) is normalized by the worst total energy, as well as the
memory accesses (reads and writes). Figure 5.5 shows that:

• the convolutional core (energy core) consumes the large parcel of the total energy
consumption for WS and IS dataflows. However, OS present similar values for core
and memory energy.

• buffering at the output effectively reduces memory writings (from 10,800 to 3,600).
The normalization masks these results due to the higher number of readings (71,056).
Buffering brings a slight reduction in the memory energy consumption at the cost of
larger area and core consumption (WS versus WS_buf and IS versus IS_buf).

89

• IS is 1.66 times faster than WS (225,078 and 135,450 clock cycles for WS and IS,
respectively). However, this performance increase is obtained by buffering all input
values, which generates an increase in the accelerator area.

• OS is penalized by the memory readings, resulting in the worst performance and high-
est memory and core energy consumption. Despite these disadvantages its presents
a small area footprint, similar to the WS.

 0

 0.2

 0.4

 0.6

 0.8

 1

Area

Energy Core

Energy Memory

Internal Buffers

Memory Reads

Memory Writes

Cycles

WS

no buf
buffer

 0

 0.2

 0.4

 0.6

 0.8

 1

Area

Energy Core

Energy Memory

Internal Buffers

Memory Reads

Memory Writes

Cycles

IS

no buf
buffer

 0

 0.2

 0.4

 0.6

 0.8

 1

Area

Energy Core

Energy Memory

Internal Buffers

Memory Reads

Memory Writes

Cycles

OS

Figure 5.5: Performance for the convolutional accelerators, considering a 32x32x3 IFMAP,
15x15x16 OFMAP, stride=2, and a 2 clock cycle SRAM latency. The filled area highlight the
non-buffered approach. The values are normalized by the worst value of each radar axis.

To summarize, when using SRAM as external memory, WS is the accelerator with
the smallest area and energy consumption, while IS presents the best performance.

Table 5.3 show the obtained results for the accelerators, considering an DRAM with
access latency of 5 clock cycles. Area, memory writes, and internal buffer size are the same
as the accelerator using SRAM (Table 5.2). The memory reads has an small difference due
the difference in memory latency. These differences are detailed in Chapter 6.

Figure 5.6 presents results when using DRAM as external memory, with a latency of
5 clock cycles. OS is omitted once it present the worst characteristics regarding performance
(see Figure 5.4) and memory access (see Figure 5.5), and its characteristics get worse with
the use of DRAM. Figure 5.6 shows that:

• The DRAM (energy memory) consumes the large parcel of the total energy consump-
tion for the most accelerator. Buffered IS has similar values for memory and core
energy. Its occurs once buffered IS has a big amount of register, once it use buffers for
all inputs and the partial values;

• the IS architecture is 2.5 times faster (403,102 and 175,269 clock cycles for WS and
IS, respectively), with an energy consumption up to 3.65 times smaller (8,543.22 and
2,337.87nJ for WS and IS, respectively) than WS. Note that the use of buffers in the

90

inputs helps to decrease the memory latency impact on performance, but increase the
area;

• WS still the accelerator with the smallest area. The WS is 7.37 times smaller (6,319.27
and 46,543.33 for WS and IS, respectively) than IS. The buffered WS is 2.54 (26,779.32
and 68,077.57 for WS and IS, respectively) than buffered IS;

• Buffering the IS accelerator reduces its total energy in 1.49 times, improves the perfor-
mance in 1.13 times, with an increase of 1.46 times in area.

Table 5.3: Hardware Metrics for DRAM Memory.

WS WS buf IS IS buf OS
Energy Memory (nj) 8,543.22 7,172.17 2,337.87 966.81 19,076.91

Energy Core (nJ) 257.96 1,040.93 755.41 1,110.25 912.03
Area (µm2) 6,319 26,779 46,543 68,077 6,596

Performance (cycles) 438,105 438,102 175,269 155,019 1,179,253
Memory Writes 10,800 3,600 10,800 3,600 3,600
Memory Reads 78,208 71,008 13,723 6,523 194,720

Internal Buffer Size (bits) 80 4,580 3,584 8,384 28

 0

 0.2

 0.4

 0.6

 0.8

 1

Area

Energy Core

Energy Memory

Internal Buffers

Memory Reads

Memory Writes

Cycles

no buf
buffer

WS

 0

 0.2

 0.4

 0.6

 0.8

 1

Area

Energy Core

Energy Memory

Internal Buffers

Memory Reads

Memory Writes

Cycles

no buf
buffer

IS

Figure 5.6: Performance for the convolutional accelerators, considering a 32x32x3 IFMAP,
15x15x16 OFMAP, stride=2, and a 5 clock cycle DRAM latency. The filled area highlight the
non-buffered approach. The values are normalized by the worst value of each radar axis.

To summarize, when using DRAM as external memory, buffered IS is the acceler-
ator to use for low power applications, once the use of internal buffers helps to reduce the
memory access, reducing the energy consumption. It is possible to reduce energy and im-
prove performance of the IS dataflow by using an output buffer at a significant area overhead
cost. Small area applications are suitable for WS dataflow.

91

5.2.1 Final Remarks

The proposed evaluation method allows to compare fairly the proposed accelerator
architectures (regarding same technology and target frequency, for example). Thus, it is
possible to analyze which accelerator is suitable for a specific application. The obtained
results also validate the proposed physical synthesis flow and the analytical DSE method,
both described in Chapter 6.

92

6. DESIGN SPACE EXPLORATION FLOWS

Chapter 3 presented a method for DSE using a system simulator, URSA, adopting
the accelerator proposed by NVIDIA, called NVDLA. Despite the advantages of using URSA
to model a complete computational system, it presented the following drawbacks related to
model CNNs:

1. Accelerator modeling close to the actual hardware (cycle-accurate), which can gener-
ate a redundant implementation;

2. An RTL implementation still required for extract PPA information. URSA does not allow
synthesis. Thus, RTL implementation is still required to get hardware implementeation
results such as area;

3. Some hardware aspects may be omitted by the high-level modeling. For example,
synchronization states can be omitted.

These drawbacks led us to Chapters 4 and 5, where we present different hardware
architectures at the RTL level, evaluating their performance after logical and physical syn-
thesis steps. Thus, this Chapter presents the flows used to carry out DSE for convolutional
neural networks (CNNs). This Chapter is organized as follows:

• Section 6.1: DSE using a physical synthesis flow, called synthesis flow ;

• Section 6.2: DSE using only MAC-related physical synthesis data. We compare results
obtained with this flow with those obtained with the synthesis flow, and because it is a
method used in related works;

• Section 6.3: DSE using an analytic approach derived from the synthesis flow. This
analytic flow is an original contribution of this Thesis, as it allows fast and accurate
DSE for CNNs.

• Section 6.4: presents results related to the three DSE methods, as well as a compari-
son with DSE presented in the literature.

As in Chapter 3, we assume TensorFlow framework as front-end. TensorFlow is
adopted because it allows abstract modeling of CNNs, and has the necessary infrastructure
for their training. Once CNNs are modeled and trained, the DSE flows are used to choose
the accelerator that meets the designer’s constraints.

93

6.1 DSE Physical synthesis Flow

The DSE physical synthesis flow perform both logical and physical synthesis steps,
and uses IFMAP and weights data from real CNNs to obtain PPA results. The method
includes the following steps:

(i) describe the CNN at the TensorFlow framework, exporting the weights and IFMAP val-
ues in VHDL packages format to be used in the RTL and gate-level simulations;

(ii) execute the logical and physical synthesis steps of the accelerator being evaluated;

(iii) obtain PPA values after post-layout simulation considering the switching activity derived
from the CNN values.

Figure 6.1 details the physical synthesis flow for PPA extraction. The first step is
to model the CNN application in the TensorFlow framework to generate the VHDL packages
(tensorflow.vhd and gold.vhd files), used in the RTL and gate-level simulations. The ten-
sorflow.vhd package contains the weights and IFMAP values, while the gold.vhd package
contains the expected outputs. This step also generates the file parameters.txt, responsible
for configuring the RTL description. This step is generic, supporting different CNNs, such as
MNIST or CIFAR10.

The second step is the RTL simulation to verify the accelerator description behav-
ior. This step uses the tensorflow.vhd and gold.vhd to perform the RTL simulation and
verify if the accelerator behavior is correct. It is necessary to check if the simulation output
matches the expected values during the development of a new accelerator. Once validated
the accelerator description, it is possible to bypass this second step.

The third and fourth steps correspond to the physical synthesis. The third step
is the logical synthesis, which has as inputs the technology files (LIB and LEF files) and
constraints (as clock frequency or power), and as outputs the gate-level description (netlist)
and a constraint file the be used in the next step. The fourth step is the physical synthesis,
corresponding to the placement and routing procedures. This step generates a new netlist,
with annotated wire capacitances (netlist.v) and a set of reports.

The fifth step is the annotated gate-level simulation, also using the tensorflow.vhd
and gold.vhd files. This step may fail due to the applied constraints, as clock frequency
and input/output delays. In this case, the designer must modify the constraints used in the
third and fourth steps to obtain a netlist that simulates correctly. The output of this step is
the dump.vcd file, with the switching activity induced by the CNN IFMAP and weight values.
The last step uses the VCD file to estimate the accelerator power dissipation.

The execution of this flow produces an accurate PPA estimation for a given ac-
celerator architecture with actual CNN data. However, it is necessary to execute this flow
for each new set of weights and inputs. The reason is that different data sets present dif-

94

ferent switching activities, changing the power dissipation. Also, the hardware may show
differences due to the number of channels in a given layer or the IFMAP and OFMAP sizes,
changing the number of bits in counters or the buffers depth. It is worth noting that the accel-
erators descriptions are configurable according to the CNN parameters, such as IFMAP and
filter sizes, not requiring any designer intervention when the CNN features change. Thus,
we have an accurate PPA but requiring a significant processing time, which can take sev-
eral hours, once the logical and physical synthesis steps can take together about 10 (for a
non-buffered architecture) and 25 (for a buffered architecture) minutes for a 3x3 accelerator.
This value can increase for larger accelerator arrays.

6.2 MAC-based DSE Flow

The DSE physical synthesis flow described in the previously Section allows to ob-
tain accurate results. However, it can take several hours to be executed. This Section
describes a widely used DSE flow based on an estimate of the required number of MACs.
Several works in the literature use the MAC-based method to estimate area and power [Tang
and Xie, 2018, Parashar et al., 2019, Heidorn et al., 2020, Zhao et al., 2020, Cao et al.,
2020], reducing the time spent in physical synthesis.

This DSE flow uses the PPA values (in fact, only power and area) related to MACs
and registers extracted from the physical synthesis flow. The power and area are estimated
from the number of MACs required by the accelerators.

The PPA estimation accuracy of this flow is expected to be worse than the physical
synthesis flow, as it does not consider the effect related to the control circuitry (FSMs),
buffers, and accesses to the memory. We use this flow as a baseline, because it is a method
adopted in the literature to estimate the PPA of CNNs.

We propose two approaches for this flow. The first uses only the MAC data, while
the second considers the MAC input and outputs registers. The second approach is ex-
pected to reduce the PPA estimation error compared to the MAC-only method. The Results
section presents data for both approaches.

6.3 Analytic DSE Flow

As mentioned before, on one hand, a physical synthesis flow is accurate but can
take several hours to be executed. On the other hand, MAC-based DSE can generate
innacurate results because it ignores relevant parts of the circuitry. The proposed analytic
DSE flow estimates the PPA of CNN layers in a analytic way, by using results obtained from
the physical synthesis of one layer of a CNN application. Thus, it is possible to reduce
the PPA estimation time, corresponding to a trade-off between the physical synthesis and

95

output
=

gold

Generate
Application tensorflow.vhd

application.py

RTL
Simulation

testbench.vhd

No

Logical
Synthesis

yes

Physical
Synthesis

netlist.v

constraints.sdc

constraints.sdc

tech files

Netlist
Simulation

Power
Analysys

netlist.v

output
=

gold

report.txt

No

yes

Python
+

TensorFlow

Mentor
Modelsim

Cadence
Genus

Cadence
Inovus

Mentor
Modelsim

Cadence
Voltus

gold.vhd

reports.txt

dump.vcd

I)

II)

III)

IV)

V)

VI)

parameters.txt

accelerator.vhd

Figure 6.1: DSE physical synthesis flow for PPA extraction.

MAC-based flows. This flow is faster than the physical synthesis flow because the synthesis
is executed once for each accelerator, and more accurate than the MAC-based flow, once
consider all the convolution, not only MACs. The analytic DSE flow is an original contribution
of this Thesis.

96

Figure 6.2 shows the analytic DSE flow. The TensorFlow + Quantization step and
the Physical synthesis described in the Figure are the same of Figure 3.1. The Analytic
Flow is a step that parses the PPA logs generated by the physical synthesis. The analystic
flow uses the file accelerator.txt as input, containing the hardware parameters, like input
size. After read the inputs, the Analytic Flow step get the PPA values from physical synthesis,
parser the reports to obtain the values for DSE, and report the results. The analytic flow also
uses the Cacti-IO tool [Jouppi et al., 2014] to estimate the energy related to the memory
accesses.

Accelerator
Features

Get PPA
Reports

Parser PPA
Information

PPA Analytic
Analyses

Report

TensorFlow + Quantization Analytic Flow (analytic.py)Physical Synthesis

Accelerator RTL
Modelling

Accelerator
Synthesis

PPA Extraction

Define
Convolutional

Neural Network

Training Step

Quantization

application.py

tensorflow.vhd ppa logs

accelarator.vhd

Weight
Extraction

accelerator.txt

CactIO

mem.cfg

Figure 6.2: DSE analytic flow for PPA extraction.

The accelerator.txt file contains the hardware parameters described below. Each
parameter corresponds to a variable in the analytic model, represented in italic:
(a) Clock period (ns);

(b) Word size (bits);

(c) 2D dataflow type: WS, buffered WS, IS, buffered IS, or OS;

(d) Memory type: SRAM or DRAM. The memory type defines its latency - MemLat ;

(e) IFMAP size: single integer value (we assume square IFMAPs) - IFMAP_D;

(f) Number of input channels: integer value - InChannels;

(g) Number of output channels: integer value - OutChannels;

(h) Filter size: single integer value (we assume square filters) - Filter_D;

(i) Stride: integer value.

For example, a designer may estimate the first layer of a systolic 2D WS acceler-
ator, entering the following parameters: a) clock period=2ns; b) 16-bit word size; c) WS; d)
SRAM memory type; e) IFMAP size=32 (cifar10); f) 3 input channels (RGB); g) 16 filters; h)
fiter size=3 (3x3 filters); i) stride=2.

The analytic flow produces as outputs:

97

• Power: power values for the accelerator, output buffer, and the sum of both (total
power), mW ;

• Performance: number of clock cycles required to execute the layer convolution;

• Area: area values for the accelerator, output buffer, and the sum of both (total area),
µm2;

• Input buffer size: number of bits to store all CNN layer input values;

• Accelerator energy: total power × number of cycles × clock period, fJ;

• Memory accesses:

– Number of input memory reads (IFMAPs, weights and bias);

– Number of input memory writes (always zero, once the input memory acts as a
ROM);

– Number of output memory reads (partial sums values);

– Number of output memory writes (partial sums values, and OFMAPs);

• Memory read energy: total memory reads × energy per reading (estimated by Cacti-
IO), nJ;

• Memory write energy: total memory writes × energy per writing (estimated by Cacti-
IO), nJ;

• Total energy: accelerator energy + memory read energy + memory write energy, nJ.

The behavior of each dataflow type provides the equations to estimate the number
of clock cycles (i.e., performance), the number of memory reads, and the number of memory
writes. This behavior comes from the RTL simulation, which gives the number of cycles and
memory accesses for each convolution, according to the FSMs controlling the hardware,
mapping the performance to the analytic model parameters. Accelerators that need output
buffer have the area and power values estimates using an interpolation method, with data
obtained after simulating at least three layers, using the physical synthesis flow (Section 6.1).

The OFMAP size is a function of the IFMAP size (IFMAP_D), filter size (Filter_D),
and the stride value. The analytic model computes OFMAP according to Equation 6.1.

OFMAP_D =
⌊

IFMAP_D − FILTER_D
Stride

+ 1
⌋

(6.1)

For example: a 32 × 32 IFMAP, with 3 × 3 filters and stride=2 generates a 15 × 15
OFMAP. The Next Sections detail the methods and equations used to build the analytic flow.

98

6.3.1 Performance Estimation

Each accelerator has an equation to generate its performance in clock cycles. WS
and buffered WS have similar performance, represented by Equation 6.2. Weights and bias
are stationary, i.e., pre-loaded in a buffer.

CyclesWS = 6×OFMAP_D2 × InChannels ×OutChannels × (1 + MemLat) (6.2)

Where:

• 6 constant1: number of clock cycles to read 9 (3 × 3) IFMAP values. Due to the stride
value (equal to 2), each reading reuse one column, reducing memory accesses;

• OFMAP_D2 × InChannels: number of convolutions to produce one output channel.
Remember that the IFMAP reading and the convolution occurs in parallel (pipeline
implementation);

• The process is repeated for all output channels (OutChannels);

• The constant value added to the memory latency (1 clock cycle) corresponds to the
address phase.

Equation 6.2 is responsible for most part of the required cycles to compute the
convolution of a given layer (>80%). The analytic flow also computes the time spent to read
the weights, and the number of ‘bubbles’ in the pipeline when it is necessary to return to the
first X coordinate, after OFMAP_D convolutions.

IS and buffered IS have similar performance, represented by Equation 6.3. In the
IS approach values read from the IFMAP are stationary, i.e., they are used to compute a
partial output value at each output channel.

Term1 = OutChannels × (1 + MemLat) + (Filter_D2 ×OutChannels × InChannels)× (1 + MemLat)

Term2 = Filter_D2 ×OFMAP_D2 × InChannels × (1 + MemLat)

Term3 = (9×OFMAP_D2 × InChannels ×OutChannels)

CyclesIS = Term1 + Term2 + Term3
(6.3)

Where:

• Term1: cycles to load bias and weights, and store in internal buffers. The number of
bias values is equal to the number of OutChannels;

• Term2: cycles to read Filter_D × Filter_D IFMAP values read from the memory;
1The current analytic model only considers 3×3 filters and stride=2.

99

• Term3: cycles to execute all convolutions of the layer.

Equation (6.3) represents most part of the cycles to compute the convolution of a
given layer (CyclesIS >83% for IS and CyclesIS>90% for buffered IS). As in the previous
equation, the time spent with bubbles is also accounted by the proposed analytic flow.

The WS dataflow reads the IFMAP for each partial result (Equation 6.2). For the
IS dataflow, a partial reading of the IFMAP is performed (Term 2 of Equation 6.3), reusing
these values for all partial convolutions (Term 3 of Equation 6.3). This remark is consistent
with the results presented in Chapter 5, where the IS performance is better than the WS. On
the other hand, IS requires buffers to store input values, penalizing its area.

The OS dataflow does not have buffers for IFMAP and weight values. Thus, the
OS dataflow reads 18 values from the input memory to execute each convolution (9 weights
and 9 IFMAP values). Due to the pipeline implementation, the convolution occurs in parallel
to the memory reading. Equation 6.4 computes most of the required cycles to compute the
convolution in a given layer (>98%). The analytic flow considers the number of clock cycles
to write in the OFMAP memory and the bubbles in the pipeline. The number of memory
readings is the main difference concerning the WS dataflow (Equation 6.2), which is larger
in OS.

CyclesOS = 18×OFMAP_D2 × InChannels ×OutChannels × (1 + MemLat) (6.4)

6.3.2 Memory Accesses Estimation

Each dataflow has a specific equation related to the number of memory readings.
Equation 6.5 presents the number of memory readings for WS and buffered WS.

Term1 = 6× (OFMAP_D + 5)× InChannels ×OutChannels

Term2 = (Filter_D2 + 1)× InChannels ×OutChannels

Term3 = 6×OFMAP_D2 × InChannels ×OutChannels

MemReadWS = Term1 + Term2 + Term3

(6.5)

Where:

• Term1: refers to “invalid” readings. At the end of each row, the WS accelerator ac-
cesses memory locations not used in the convolution. It would be possible to avoid
these readings at the cost of more control logic in the hardware. Our design choice
was to keep the hardware simple.

• Term2: number of reads to load weight and bias values;

100

• Term3: number of reads to load IFMAP values (core of Equation 6.2).

Equation 6.6 presents the number of memory readings for IS and buffered IS.

Term1 = OutChannels + ((Filter_D2)× InChannels ×OutChannels)

Term2 = Filter_D2 ×OFMAP_D2 × InChannels

MemReadIS = Term1 + Term2

(6.6)

Where:

• Term1: number of reads to load bias and weight values;

• Term2: number of reads to load Filter_D × Filter_D IFMAP values from the memory.

Equation 6.7 presents the number of memory readings for the OS dataflow.

MemReadOS = 18×OFMAP_D2 × InChannels ×OutChannels (6.7)

It is possible to observe the smaller number of memory accesses for the IS dataflow
(Equation 6.6) Term2 compared to the WS and OS dataflows (Equations 6.5 Term3 and 6.7).

Equation 6.8 computes the number of memory writings for a buffered accelerator
(WS and IS). The output buffer reduces the memory writes once partial results are stored
on it.

OfmapWrites (buffered acc.) = OFMAP_D2 ×OutChannels (6.8)

Equation 6.9 computes the number of memory writings for a non-buffered acceler-
ator (WS, IS, and OS). Non-buffered accelerators read and write partial sums in the output
memory.

OfmapWrites (non buffered acc.) = OFMAP_D2 ×OutChannels × InChannels (6.9)

6.3.3 Output Buffer Area and Power Estimation

The output buffer area and power are obtained from interpolation. The data source
for the interpolation are the results obtained from the physical synthesis flow for a three-layer
Cifar10 CNN (which is presented in Section 6.4). The variable NumBits is the number of bits
of each output buffer. Equation 6.10 computes the number of bits for the WS output buffer.
The WS output buffer has the size of one OFMAP channel (OFMAP_D2) multiplied by the
word size (16 bits).

101

NumBits = OFMAP_D2 × 16 (6.10)

Equation 6.11 computes the number of bits for the IS output buffer. The IS dataflow
computes one line of results (OFMAP_D), for all output channels (OutChannel).

NumBits = OFMAP_D ×OutChannel × 16 (6.11)

Figures 6.3a and 6.3b present in the x-axis the number of bits for each dataflow,
and in the y-axis the area. The Cifar10 CNN has three convolutional layers. The OFMAP
sizes for each layer are (Figure 6.5, page 103): L1: 15x15, 16 output channels; L2: 7x7, 32
output channels; L3: 3x3, 64 output channels. According to Equation 6.10 the size of the
WS output buffers decreases from layer 1 to layer 3 since the OFMAP size reduces. On the
other side, according to Equation 6.11 the size of the IS output buffers increases from layer
1 to 3 due to the increase in the number of output channels.

(a) buffered WS (b) buffered IS

Figure 6.3: Output buffer area results obtained from the physical synthesis flow, for the three
layers of Cifar10 CNN.

The interpolation of the area results are used to compute the output buffer area.
Equations 6.12 and 6.13 compute the output buffer area for WS and IS, respectively.

WSOutputBuffArea = (10.4× NumBits) + 493 (6.12)

ISOutputBuffArea = (10.5× NumBits) + 539 (6.13)

The same interpolation method is applied to obtain the power dissipation due to the
output buffers. However, each memory type has a interpolation equation, due to the latency
access. Figure 6.4a and Figure 6.4b present the power results for the three layers of Cifar10
CNN using a SRAM memory. The buffered WS reduces the power from layer L1 to L3 due
to the reduction in the OFMAP size. The buffered IS increases the power from layer L1 to
L3 due to the increase in the number of output channels.

102

(a) buffered WS (b) buffered IS

Figure 6.4: Output buffer power results obtained from the physical synthesis flow, for the
three layers of Cifar10 CNN, using a SRAM memory type.

The interpolation of the power results is used to compute the output buffer power
dissipation. Equations 6.14 and 6.15 compute the output buffer power dissipation for WS
and IS using a SRAM, respectively. Equations 6.16 and 6.17 compute the output buffer
power dissipation for WS and IS using a DRAM, respectively.

SRAM_WSOutputBuffPower = 0.0792 + (0.000305× NumBits) + (0.0000000117× NumBits2)
(6.14)

SRAM_ISOutputBuffPower = −5.4 + (0.00346× NumBits) + (−0.000000402× NumBits2) (6.15)

DRAM_WSOutputBuffPower = 0.0794 + (0.000245× NumBits) + (0.0000000109× NumBits2)
(6.16)

DRAM_ISOutputBuffPower = −7.98 + (0.00484× NumBits) + (−0.000000595× NumBits2)
(6.17)

6.4 Results

This Section presents results obtained for the three DSE flows previously pre-
sented. As a case study, we adopt the CNN illustrated in Figure 6.5, implemented at Tensor-
Flow. This CNN contains three convolutional layers and a fully-connected layer. TensorFlow
executes the fully-connected layer, not accelerated in hardware. The number of filters per
layer is 16, 32, and 64. The CNN implemented in the TensorFlow uses the Cifar10 dataset
with a 32x32x3 (RGB) IFMAP.

After training, the obtained accuracy was 67%. The quantization method (Sec-
tion 3.2) was verified using two shift values: 4 and 8. For a shift value equal to 4, it is
possible to use 8-bit words at the inputs. However, this shift value reduces the accuracy to

103

44%. Using a shift value equal to 8 implies 16-bit words at the inputs. The obtained accuracy
with 16-bit words at the inputs was 66.98%, a value 0.02% smaller than the one obtained in
TensorFlow with float point values. For this reason, the hardware accelerators used in this
Section adopt 16-bit words at the inputs.

airplane
automobile

bird
cat

deer
dog
frog

horse
ship
truck

: RGB

: CONV3x3 (stride 2)

: FC

32x32x3 15x15x16 7x7x32 3x3x64 1x10

Input Matrix
 (cifar10) Layer 0 Layer 1 Layer 2

Figure 6.5: Cifar10 CNN.

Cadence Genus and Innovus tools were used for logic and physical synthesis, with
28nm technology and a frequency of 500MHz. The logic synthesis uses clock-gating to
reduce the accelerator energy consumption. The power dissipation uses the VCD file gen-
erated after a post physical synthesis simulation and the Cadence Voltus tool.

The netlist simulation inputs are the Cifar10 CNN layers (Figure 6.5) extracted from
TensorFlow (as showed in Figure 6.1). The first layer (Layer 0) uses the 32x32x3 IFMAP
(RGB image from CIFAR10 dataset), 16 3x3 filters, stride 2, generating a 15x15x16 output.
The Layer 1 uses a 15x15x16 IFMAP (OFMAP from Layer 0), 32 3x3 filters, stride 2, gener-
ating a 7x7x32 output. The last convolution layer (Layer 2) uses a 7x7x32 IFMAP (OFMAP
from Layer 1), 64 3x3 filters, stride 2, generating a 3x3x64 output. Thus, power values come
from a real dataset and not synthetic values. The total energy is computed by multiplying the
average power by the number of clock cycles required to execute a complete convolution.

The external memories modeling, SRAM and DRAM, adopts the Cacti-IO tool
[Jouppi et al., 2014]. For a 28nm 64KB SRAM, Cacti-IO reports 0.01356nJ for reading
operation and 0.01351nJ for writing operation. For a 64kB DRAM, 0.1633nJ for reading
operation and 0.1662nJ for writing operation.

6.4.1 MAC-based DSE Flow Results

This Section evaluates the MAC-based DSE flow, using the physical synthesis flow
as the reference. MAC-based estimation, routinely used in the literature [Tang and Xie,

104

2018, Parashar et al., 2019, Heidorn et al., 2020, Zhao et al., 2020, Cao et al., 2020], is the
first evaluated. This setup is built to demonstrate that executing power and area estimation
using only MACs or MACs plus registers does not produce accurate results.

Five tables present the results, one for each dataflow – Table 6.1 to Table 6.5. The
“9X9 MAC” and “9X9 reg MAC” columns contain results for the MAC-based flow. The next
column presents results for a given accelerator using the physical synthesis flow. The last
two columns show the error induced by the MAC-based flow. The error is the percentage of
a given result value against the physical synthesis flow.

Note that in the 5 tables the MAC-based flow results are the same, regardless of
the dataflow. The values are the same because the MAC-based flow only considers the
arithmetic core (i.e., the number of MACs) or this value plus input and output registers.
The MAC-based flow does not consider the control logic (FSMs), internal registers, internal
buffers, and logic to interconnect components.

Table 6.1: MAC-based and physical synthesis flows results for the WS accelerator.

WS 9x9
MAC

9x9
reg MAC WS error

9x9 MAC (%)
error

9x9 reg MAC (%)
area layer 0 (µm2) 7,214.67 9,468.41 14,563.97 50.46 34.99
area layer 1 (µm2) 7,214.67 9,468.41 15,037.57 52.02 37.03
area layer 2 (µm2) 7,214.67 9,468.41 15,002.49 51.91 36.89

power layer 0 (mW) 0.57 1.16 0.95 39.99 22.13
power layer 1 (mW) 0.57 1.16 0.87 34.35 33.59
power layer 2 (mW) 0.57 1.16 0.88 35.32 31.64

Table 6.2: MAC-based and physical synthesis flows results for the buffered WS accelerator.

Buffered WS 9x9
MAC

9x9 reg
MAC

WS
buf

error
9x9 MAC (%)

error
9x9 reg MAC (%)

area layer 0 (µm2) 7,214.67 9,468.41 13,399.05 46.16 29.34
area layer 1 (µm2) 7,214.67 9,468.41 13,777.02 47.63 31.27
area layer 2 (µm2) 7,214.67 9,468.41 13,762.66 47.58 31.20

power layer 0 (mW) 0.57 1.16 0.98 42.25 17.53
power layer 1 (mW) 0.57 1.16 0.92 38.06 26.05
power layer 2 (mW) 0.57 1.16 0.90 37.20 27.81

Table 6.3: MAC-based and physical synthesis flows results for the IS accelerator.

IS 9x9
MAC

9x9
reg MAC IS error

9x9 MAC (%)
error

9x9 reg MAC (%)
area layer 0 (µm2) 7,214.67 9,468.41 15,425.33 53.23 38.62
area layer 1 (µm2) 7,214.67 9,468.41 15,702.45 54.05 39.70
area layer 2 (µm2) 7,214.67 9,468.41 15,696.24 54.04 39.68

power layer 0 (mW) 0.57 1.16 2.04 72.06 43.14
power layer 1 (mW) 0.57 1.16 1.92 70.31 39.58
power layer 2 (mW) 0.57 1.16 1.72 67.03 32.91

Area and power results are underestimated with the MAC-based flow. Area estima-
tion considering only the arithmetic core is roughly 50% of the area obtained with the physical

105

Table 6.4: MAC-based and physical synthesis flows results for the buffered IS accelerator.

Buffered IS 9x9
MAC

9x9
reg MAC

IS
buf

error
9x9 MAC (%)

error
9x9 reg MAC (%)

area layer 0 (µm2) 7,214.67 9,468.41 13,886.36 48.04 31.82
area layer 1 (µm2) 7,214.67 9,468.41 14,156.94 49.04 33.12
area layer 2 (µm2) 7,214.67 9,468.41 14,162.16 49.06 33.14

power layer 0 (mW) 0.57 1.16 2.09 72.82 44.68
power layer 1 (mW) 0.57 1.16 1.90 70.09 39.14
power layer 2 (mW) 0.57 1.16 1.80 68.33 35.56

Table 6.5: MAC-based and physical synthesis flows results for the OS accelerator.

OS 9x9
MAC

9x9
reg MAC OS error

9x9 MAC (%)
error

9x9 reg MAC (%)
area layer 0 (µm2) 7,214.67 9,468.41 14,938.34 51.70 36.62
area layer 1 (µm2) 7,214.67 9,468.41 15,336.23 52.96 38.26
area layer 2 (µm2) 7,214.67 9,468.41 15,753.20 54.20 39.90

power layer 0 (mW) 0.57 1.16 1.02 44.28 13.39
power layer 1 (mW) 0.57 1.16 1.03 44.71 12.51
power layer 2 (mW) 0.57 1.16 0.87 34.98 32.33

synthesis flow. Area estimation with the input and output registers with the arithmetic core
results in errors between 30% and 40%. The power estimation error can vary from 12.51%
(OS reg MAC) to 72.86% (IS MAC). The main reason explaining the differences observed in
the power estimation is the switching activity. The MAC-based flow uses an average of the
switching activity of MACs and registers, fixing this value for the estimation. The physical
synthesis uses the switching activity of the whole circuit with actual data.

As mentioned before, Several works in the literature use the MAC-based method
to estimate area and power. We demonstrated from the above results that estimating area
and power using the number of arithmetic operators produces results far from the actual
hardware result. Thus, we claim that methods such as the one based on physical synthesis
or the analytic one, with results presented in the next section, provide reliable results, unlike
the method based on counting arithmetic operations.

6.4.2 Analytic DSE Flow Results

This Section evaluates the proposed analytic DSE flow, which estimates, as shown
below, the PPA values for CNN applications more fast and more accurate. The reference for
the analytic DSE flow is the physical synthesis flow for the Cifar10 CNN layer 0. Thus, the
analytic DSE flow should produce a small error when estimating layer 0 because the PPA of
this layer is the basis to generate the analytic model equations.

Tables 6.6 to 6.12 summarize the results. Appendix B presents the analytic DSE
flow results for all performance figures. Tables show results for area, performance, memory

106

accesses, power, and energy estimations. Each table presents one performance figure for
the five dataflows, considering the physical (synt. flow columns) and analytic (analytic)
flows. Column |error %| presents the absolute error - yellow, orange and red values repre-
sent absolute error below 5%, between 5% and 10%, and above 10%. Rows in the tables
represent the memory type (SRAM or DRAM) and the layers (L0, L1, and L2).

Area Estimation

Table 6.6 presents results for area estimation. Bold values in Table 6.6 at |er-
ror %| column corresponds to the comparison with the reference layer (L0). As expected,
dataflows without output buffer presented the same result for the synthesis and analytic
flows. Dataflows with output buffers presented a small error (below 1%) due to the interpo-
lation approach.

Table 6.6: Cifar10 CNN area analytic results.

AREA (µm2). Orange: error above 5% and below 10%

dataflow ws ws buf is is buf os

results synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % |

L0 14,564 14,564 0.00 51,260 51,332 0.14 15,425 15,425 0.00 54,561 54,745 0.34 14,938 14,938 0.00

L1 15,038 14,564 3.15 22,405 22,046 1.60 15,702 15,425 1.76 52,165 52,057 0.21 15,336 14,938 2.59

L2 15,002 14,564 2.92 15,753 15,390 2.31 15,696 15,425 1.73 46,810 46,681 0.28 15,753 14,938 5.17

The area estimation for layers L1 and L2 stays below 4% for layers L1 and L2,
excepting OS L2, with an error of 5.17%. The reason for explaining the error is the increased
number of output channels compared to L0, which affects the control logic and counters. The
OS dataflow does not have buffers, requiring a more complex circuitry to manage memory
accesses.

It is worth highlighting that the IS implementations require an input buffer to store
weights and bias values, which increase the accelerator area. The area for these buffers is
not included in the area results since this buffer acts as a cache memory, requiring an exter-
nal memory. We adopted this approach because it is need memory compilers to generate
these buffers. The use of memory compilers is considered a future work. The IS for this CNN
needs 7,168, 74,240, and 295,936 bits for layers L0, L1, and l2, respectively. Thus, in terms
of total area, the IS dataflow is larger than the other ones, requiring further development to
reduce this area, as split the weights in small samples to allow reduce the output buffer size,
and not read and store all weight values in internal buffers.

The overall area estimation error stays below 6%, with an average of 1.85% (with
the minimal value equals to 0.14%, and the maximum value equals to 5.17%) and a standard
deviation of 1.51%.

107

Performance Estimation

Table 6.7 presents results for performance estimation, which uses Equations from
Section 6.3.1. The performance results consider different memory latencies, 2 clock cycles
for SRAM and 5 clock cycles for DRAM. The error observed in Table 6.7 occurs due to
synchronization states, not included in the Equations. These synchronization states occur
mainly at the end of a row, where buffers must be flushed to start a new one. Improvements
in the equations to include these synchronization states in the estimations are needed to
obtain smaller errors.

Table 6.7: Cifar10 CNN performance analytic results. SRAM access latency 2 clock cycles,
DRAM access latency 5 clock cycles.

PERFORMANCE (clock cycles). Orange: error above 5% and below 10%

dataflow ws ws buf is is buf os

results synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % |

SRAM - L0 236,888 236,592 0.12 236,887 236,592 0.12 142,875 140,529 1.64 136,125 126,129 7.34 605,942 591,264 2.42

SRAM - L1 642,152 647,680 0.86 642,151 647,680 0.86 291,364 313,072 7.45 278,134 266,032 4.35 1,407,206 1,359,616 3.38

SRAM - L2 766,152 804,864 5.05 766,151 804,864 5.05 244,980 267,744 9.29 235,494 232,032 1.47 1,036,742 999,936 3.55

DRAM - L0 449,915 451,584 0.37 449,911 451,584 0.37 182,694 170,898 6.46 155,694 145,698 6.42 1,190,102 1,175,328 1.24

DRAM - L1 1,218,251 1,245,184 2.21 1,218,247 1,245,184 2.21 363,202 373,248 2.77 313,222 301,120 3.86 2,763,878 2,716,096 1.73

DRAM - L2 1,448,331 1,572,864 8.60 1,448,327 1,572,864 8.60 335,586 349,440 4.13 298,758 295,296 1.16 2,035,910 1,998,720 1.83

The overall performance estimation error stays below 9%, with an average of 3.50%
(with the minimal value equals to 0.12%, and the maximum value equals to 9.29%) and a
standard deviation of 2.78%.

Memory Accesses Estimation

Table 6.8 presents results for IFMAP memory access, which is read-only. The error
is more significant in the IS dataflows in layers L0 and L1. The reason is similar to the error
observed in the performance estimation, where there are synchronization states, mainly in
the exchange of rows. At the end of a row, there are invalid reads to avoid increasing the
complexity of the FSM. Thus, the memory CE (chip enable) is active for some clock cycles,
inducing these invalid reads. If the memory latency is small (2 cycles for SRAM), more
invalid reads may occur, while this effect is masked for higher latencies (5 cycles for DRAM).
For this reason, this error is higher in IS L0 and IS L1 due to the larger IFMAP size.

The overall IFMAP reading estimation error stays below 10%, with an average of
1.22% (with the minimal value equals to 0.01%, and the maximum value equals to 9.38%)
and a standard deviation of 2.73%.

Tables 6.9 and 6.10 presents results for OFMAP memory access. The estimation
model for OFMAP memory presents a 0% error, which means the analytic model correctly
captured the OFMAP memory accesses. Note that the buffered (WS and IS buf) and OS
dataflow do not need to read partial values from the OFMAP. Only WS and IS dataflows
store partial values in the OFMAP, which need to be read to compute the final values.

108

Table 6.8: Cifar10 CNN IFMAP read accesses results.
Reads accesses: IFMAP. Orange: error above 5% and below 10%

dataflow ws ws buf is is buf os

results synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % |

SRAM - L0 71,056 71,056 0.00 71,056 71,056 0.00 7,198 6,523 9.38 7,198 6,523 9.38 194,735 194,704 0.02

SRAM - L1 192,544 192,544 0.00 192,544 192,544 0.00 12,480 11,696 6.28 12,480 11,696 6.28 452,255 452,192 0.01

SRAM - L2 229,440 229,440 0.00 229,440 229,440 0.00 21,376 21,088 1.35 21,376 21,088 1.35 333,119 332,992 0.04

DRAM - L0 71,008 71,056 0.07 71,008 71,056 0.07 6,523 6,523 0.00 6,523 6,523 0.00 194,720 194,704 0.01

DRAM - L1 192,032 192,544 0.27 192,032 192,544 0.27 11,696 11,696 0.00 11,696 11,696 0.00 452,224 452,192 0.01

DRAM - L2 227,392 229,440 0.90 227,392 229,440 0.90 21,088 21,088 0.00 21,088 21,088 0.00 333,056 332,992 0.02

Table 6.9: Cifar10 CNN OFMAP read accesses results.
Reads accesses: OFMAP. Orange: error above 5% and below 10%

dataflow ws ws buf is is buf os

results synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % |

L0 7,200 7,200 0.00 0.00 0.00 0.00 7,200 7,200 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L1 23,520 23,520 0.00 0.00 0.00 0.00 23,520 23,520 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L2 17,856 17,856 0.00 0.00 0.00 0.00 17,856 17,856 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.10: Cifar10 CNN OFMAP write accesses results.
Writes accesses: OFMAP. Orange: error above 5% and below 10%

dataflow ws ws buf is is buf os

results synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % |

L0 10,800 10,800 0.00 3,600 3,600 0.00 10,800 10,800 0.00 3,600 3,600 0.00 3,600 3,600 0.00

L1 25,088 25,088 0.00 1,568 1,568 0.00 25,088 25,088 0.00 1,568 1,568 0.00 1,568 1,568 0.00

L2 18,432 18,432 0.00 576 576 0.00 18,432 18,432 0.00 576 576 0.00 576 576 0.00

Accelerator Power Estimation

Table 6.11 shows the results for power estimation. Note that this table only consid-
ers the accelerator power. Similar to the area estimation, the L0 is the reference. WS, IS and
OS present an absolute error equal to 0% (bold values on Table 6.11), while the buffered
dataflows presented an error due to the interpolation approach.

Table 6.11: Cifar10 CNN power analytic results.
POWER (mW). Orange: error above 5% and below 10%, red: error above 10%

dataflow ws ws buf is is buf os

results synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % |

SRAM - L0 0.95 0.95 0.00 2.32 2.32 0.05 2.04 2.04 0.00 4.04 4.06 0.34 1.04 1.04 0.00

SRAM - L1 0.87 0.95 9.39 1.25 1.31 5.34 1.92 2.04 6.25 3.73 3.93 5.47 1.02 1.04 1.47

SRAM - L2 0.88 0.95 7.78 1.03 1.11 7.70 1.73 2.04 17.99 3.22 3.53 9.56 1.03 1.04 0.68

DRAM - L0 0.74 0.74 0.00 1.91 2.13 0.07 1.79 1.79 0.00 3.84 3.96 0.08 0.88 0.88 0.00

DRAM - L1 0.71 0.74 4.32 1.06 1.13 6.26 1.70 1.79 5.41 3.54 3.84 5.48 0.87 0.88 0.87

DRAM - L2 0.71 0.74 4.23 0.87 0.93 6.79 1.45 1.79 23.55 2.87 3.44 14.46 0.88 0.88 0.47

The power estimation has a higher error than the area and performance estimation.
Two reasons explain this mismatch:

• The power reference is layer L0, with its switching activity. The switching activity of
other layers is different, affecting the power estimation. The switching activity is a
function of the input data, not being possible to capture it in the analytic model.

• The buffered dataflows has an error induced by the interpolation method.

109

Despite the larger errors observed mainly when communicating with DRAM mem-
ory, the overall power estimation presents an average error of 7.00% (with the minimal value
equals to 0.05%, and the maximum value equals to 23.55%), and a standard deviation of
6.21%.

Total Energy Estimation

Table 6.12 presents results for the energy estimation, considering the accelerators
and the memory accesses. Memory accesses are responsible for most of the consumed
energy. According to [Chen et al., 2016b], the memory energy can spent 200 times more
energy than the accelerator array. In our experiments we observed in OS dataflow the
memory consuming 20 times more energy than the accelerator (Table 5.3). Thus, Table 6.8
is the reference for the expected error. Two situations occur:

• The IS dataflow presents a small energy error estimation because the number of
OFMAP accesses is higher than the IFMAP readings (where the estimation presents
errors), resulting in a small energy estimation error, below 3%.

• The IS buf dataflow makes more IFMAP readings (with an estimation error equal to
9.38%) than OFMAP writes. The result is a higher energy estimation error.

Table 6.12: Cifar10 CNN energy analytic results.
TOTAL ENERGY (nJ) - accellerator and memories. Orange: error above 5% and below 10%

dataflow ws ws buf is is buf os

results synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % | synt. flow analytic | error % |

SRAM - L0 1,207 1,207 0.00 1,013 1,013 0.00 342 332 2.69 147 138 6.26 2,690 2,690 0.02

SRAM - L1 3,270 3,270 0.00 2,633 2,633 0.00 828 817 1.28 191 181 5.55 6,155 6,155 0.01

SRAM - L2 3,603 3,603 0.00 3,120 3,120 0.00 782 778 0.49 298 295 1.29 4,526 4,524 0.04

DRAM - L0 14,569 14,577 0.05 12,196 12,204 0.07 4,037 4,037 0.00 1,665 1,664 0.00 32,401 32,398 0.01

DRAM - L1 39,376 39,460 0.21 31,624 31,708 0.26 9,923 9,924 0.00 2,172 2,172 0.00 74,120 74,115 0.01

DRAM - L2 43,119 43,454 0.78 37,234 37,569 0.90 9,426 9,426 0.00 3,541 3,541 0.00 54,492 54,481 0.02

The overall energy estimation error stays below 7%, with an average of 0.66%
(with the minimal value equals to 0.12%, and the maximum value equals to 28.65%) and a
standard deviation of 1.54%.

Analytic Model Compared to the State-of-the-art

Table 6.13 compares the analytic model results with results available in the litera-
ture. Power and energy consider only the accelerator, not the memories. The Table presents
for each work the min/max/average error, when it is available. In this table:

• red values: average error is higher than the ones obtained with our analytic model;

• green values: average error is lower than the ones obtained with our analytic model.

110

Table 6.13: Analytic and state-of-the-art result errors comparison.

Aladdin

[Shao et al., 2014]

MLPAT

[Tang and Xie, 2018]

Accelergy

[Wu et al., 2019]

STONNE

[Muñoz-Martínez et al., 2020]
This Thesis

error min max avg min max avg min max avg min max avg min max avg

area 4.30 10.60 6.60 — — 5.00 — — — — — — 0.14 5.17 1.85

performance 0.20 2.60 0.90 — — — — — — 11.00 19.00 15.00 0.12 9.29 3.50

acc

power
2.30 8.30 4.90 — — 10.00 — — — — — — 0.05 23.55 7.00

acc

energy
— — — — — — — — 5.00 — — — 0.12 28.65 8.11

Few works in the literature present a comprehensive estimation as the method
proposed in this Thesis. MLPAT and Accerlergy present a limited evaluation of area and
energy. Stone evaluates only performance with higher errors compared to our method. Al-
addin presents the most complete evaluation compared to the other methods. However, the
proposed method has an area evaluation more accurate than Aladdin, while the evaluation
of the other metrics has errors of the same order.

As a conclusion, the proposed flow presents a more comprehensive evaluation of
more metrics with lower errors, and provides a large set of estimates for each dataflow, as
shown in Appendix B.

Analytic Model Final Remarks

The proposed analytic flow enabled an accurate PPA estimation. Table 6.14 sum-
marizes the results. Improvements may be done in the IFMAP memory readings estimations
and in the power interpolation approach.

Table 6.14: Analytic approach summary results.

Avg. Error (%) Std. Dev. (%)
Area 1.85 1.51

Performance 3.50 2.78
IFMAP Read 1.22 2.73

OFMAP Read/Write 0.00 0.00
Acc. Power 7.00 6.21

Total Energy 0.66 4.34

Besides the PPA accuracy, the method is fast. Using the analytic approach, a DSE
analysis for a given CNN, like the one presented in the tables, took 0.025 seconds. Physical
synthesis of one accelerator take 45 minutes (Intel i9-7940X@3.10GHz, 28 cores, 64 GB
memory). Considering all layers, and channels, the same DSE obtained with the analytic
approach would take several hours to be performed with the physical synthesis flow.

111

7. CONCLUSION AND FUTURE WORK

This Thesis proposed the following statement: It is possible to execute fast and
accurate design space exploration (DSE) for machine learning accelerators, considering
different CNN architectures models using standard frameworks. The DSE flow must be
comprehensive in terms of power, performance, and area (PPA) estimation. Providing PPA
enables the designer to select the most relevant parameters (according to the literature) to
design a hardware accelerator.

The first part of the statement is: It is possible to execute fast and accurate de-
sign space exploration (DSE) for machine learning accelerators, considering different CNN
architectures models using standard frameworks. We proposed two approaches for DSE.
The first adopts a system simulator (URSA), which is cycle-accurate and uses a high-level
language to describe the hardware abstractly. The second is a fast and accurate DSE, using
an analytic approach, which does not need the abstract model to estimate PPA.

This part of the statement fulfilled specific goals 1 and 6:

• CNN framework integration (Chapter 3): we adopted TensorFlow as a front-end to
implement a CNN application. A quantization method was validated in TensorFlow,
avoiding the use of float-point hardware and reducing the area and power of the accel-
erators.

• DSE method (Chapters 3 and 6): the first DSE method used TensorFlow and the URSA
system simulator. Its advantage is the abstract model, but, at the same time, this model
can be complex and does not reflect accurately an optimized hardware. The second
DSE method used only TensorFlow, coupled with physical synthesis results. Besides
the DSE results regarding PPA metrics, the second method is faster than a classic
physical synthesis flow. Also, errors presented by the second DSE method have the
same magnitude order as the literature. Still, they are more reliable once the obtained
results are based on an entire convolution, not only on basic components such as the
number of MACs. Also, the proposed DSE flows are more comprehensive compared
to the literature, once they deliver a complete PPA analyses with more architectural
parameters, compared to the literature, as showed in Table 6.14.

The second part of the statement is: The DSE flow must be comprehensive in
terms of power, performance, and area (PPA) estimation.. The proposed methods presented
a complete PPA analysis based on values of actual CNN applications.

This part of the statement fulfilled specific goals 2, 4 and 5:

• CNN hardware accelerator design (Chapter 4): we started using the open-source
NVDLA hardware modules to build accelerators. However, NVDLA showed impor-

112

tant silicon area costs and limited flexibility to explore different dataflows. Thus, a set
of accelerators were proposed, composing an accelerator library.

• CNN hardware accelerator physical synthesis (Chapter 6): we adopted a classic syn-
thesis flow using industrial tools (Cadence and Mentor), executing logic and physical
synthesis. This flow supports different technology nodes, such as 65nm and 28nm,
and generates accurate hardware estimations.

• PPA extraction method (Chapter 6): the accelerators’ simulation uses data (weights
and IFMAP) from TensorFlow, generating a switching activity corresponding to actual
CNNs. This method ensures accurate power (P) estimation. The post-synthesis sim-
ulation generates the performance (P) estimation, considering the effect of parasitic
capacitances. The physical synthesis gives the accelerator area (A).

Accelerators source code and synthesis scripts are available at the following GitHub
repository: https://github.com/leorezende93/acc_dse_env.

The third part of the statement is: Providing PPA enables the designer to select the
most relevant parameters (according to the literature) to design a hardware accelerator. By
modeling the CNN application in TensorFlow, the designer may select the accelerator that
meets the design constraints.

This part of the statement fulfilled specific goal 3:

• Comparison method (Chapter 5): we showed it is possible to use the proposed meth-
ods to compare different accelerator types. This comparison can be performed us-
ing the physical synthesis flow or analytically. Thus, this Thesis presents a fast DSE
method, which is more comprehensive and more accurate when compared to the state-
of-the-art.

Also, this Thesis comprises all the steps of a hardware/software machine learning
application development, which are:

• Software development: the use of TensorFlow to implement a CNN application;

• Hardware architecture design: define hardware architecture and behavior, as style and
dataflow;

• Hardware synthesis: define the hardware constraints, as clock frequency, and perform
the physical synthesis;

• PPA analyses: analyses the obtained results of power, performance, and area.

Thus, the comprised steps addressed in this Thesis allow software developers to
quickly estimate the hardware resources used by the CNN application without needing a
prototyping platform like FPGA or the manufactured chip.

https://github.com/leorezende93/acc_dse_env

113

To conclude, the above analysis demonstrated that it is possible to propose meth-
ods for fast, fair, and accurate design space exploration related to hardware accelerators
for CNNs. This Thesis advanced the state-of-the-art by offering techniques to generate a
comprehensive PPA evaluation, integrating front-end frameworks (such as TensorFlow) to a
hardware back-end design flow. The TensorFlow front-end generates the hardware back-
end data for simulation, while the back-end provides the analytical model to the front-end.

7.1 Future Work

It is possible to group future works into different research topics.

System Level DSE. Extend the use of system simulators to perform DSE regarding an
entire system composed by CPUs, DMA, and CNN accelerators.

As mentioned on Chapter 3, system simulators, such as URSA, help in estimating
PPA values of an entire system. This Thesis does not cover DSE regarding an entire sys-
tem. Thus, one of the future works is to extend the proposed frameworks to cover systems
composed of CPUs, DMA, and CNN accelerators, for example, as illustrated in Figure 7.1.
Also, it is possible to combine the system simulator with the analytic flow to improve the
accuracy of the PPA results, like clock cycles estimation.

Thus, we proposed the following future works:

• Integrate the DSE analytic flow with a system simulator to deliver accurate PPA results
with simulation results as convolution engine behavior. To make this integration, it is
possible to use simulators like Gem5 [Gem5, 2022], which allow the reuse of hardware
blocks, such as microprocessors, memories, and bus architectures.

• Software and hardware accelerators integration. Integrate the accelerator with micro-
processors, and develop APIs to access the accelerators.

Accelerator Design. Extend the set of accelerators and functions implemented in hardware.

• Implementation of other dataflow types: the literature shows other dataflows like Row
Stationary (RS), No Local Reuse (NRL), and Fine-Grained (FG) [Moolchandani et al.,
2021, Xiang et al., 2018]. The implementation of these dataflows allows to extend the
comparison proposed on Chapter 5, to analyze their trade-offs compared to Weight
Stationary (WS), Input Stationary (IS), and Output Stationary (OS);

• Implementation of larger accelerators arrangement: the 3x3 matrix used in this work is
an initial step for DSE. We can extend the analyzes for larger arrays as 16x16, like in

114

application.pyTensorFlow

Pyhsical
Synthesis

Quantization

PPA logs

System
Simulator

Analytical
model and CNN
PPA estimation

memory
model

accelerator
model

SoC Model

Full SoC
DSE Report

CactIO

CNN model

Future Work

Chap.
4/5

Chap. 3

Chap. 6

Figure 7.1: System Level DSE Flow.

[Udupa et al., 2020]. Larger arrays allow to improve the analysis of the array parallelism
and the array utilization in terms of array percentage;

• Integration of Imagenet dataset on DSE flow: thus, it is possible to simulate the ac-
celerators using more complex CNNs, like AlexNet and VGG16. Also, it is required
to implement hardware pooling functions, like max-pooling and average pooling, to
execute these CNNs.

• A benchmark approach to compare hardware accelerators: build an accelerator repos-
itory that allows project decisions regarding specific targets, such as low power, high
throughput, and small area.

Accelerator Optimization. Optimize the accelerator design using low power techniques,
pruning, quantization, and memory types.

115

• Application of low power techniques: evaluate, e.g., approximate computing [Arme-
niakos et al., 2022]. Also, other CNNs optimization techniques can be applied, like
pruning [Bavikadi et al., 2022], and different types of CNN, like the all-convolutional
neural networks [Benevenuti et al., 2021]. All-convolutional neural networks are candi-
dates to reduce hardware area, once they do not present a fully-connected layer, which
is the more expensive network component;

• Explore the use of different memories in the same project. For example, build acceler-
ators that use both SRAM and DRAM. Also, explore memory hierarchies, like the use
of cache memories.

Accelerator Prototyping. Prototype the proposed accelerators in FPGAs, considering the
entire CNN.

• Analyzes and implementation of an entire CNN accelerated in hardware: this work
requires analyzing how to connect the output from a layer to the input of the next layer
of a CNN application using the hardware accelerators. These analyses include the use
of memories, buffers, and memory hierarchy to connect these layers;

• FPGA prototyping of hardware accelerators: this work allows verification of the accel-
erators at a circuit level. Besides, prototyping and integrating the accelerators with
microprocessors to explore analyzes of an entire system.

7.2 Summary of the publications produced during the Thesis

The following papers related to the Thesis were published:

• A TensorFlow and System Simulator Integration Approach to Estimate Hardware Met-
rics of Convolution Accelerators, L. R. Juracy, M. T. Moreira, A. M. Amory, and F. G.
Moraes: published in LASCAS 2021 (Qualis B4);

• A High-level Modeling Framework for Estimating Hardware Metrics of CNN Accelera-
tors, L. R. Juracy, M. T. Moreira, A. M. Amory, A., A. F. Hampel, and F. G. Moraes:
published in TCASI 2021 (Qualis A1).

116

REFERENCES

[Ahmad and Pasha, 2020] Ahmad, A. and Pasha, M. A. (2020). FFConv: an FPGA-based
accelerator for fast convolution layers in convolutional neural networks. ACM Transactions
on Embedded Computing Systems, 19(2):1–24.

[Al-Jawfi, 2009] Al-Jawfi, R. (2009). Handwriting Arabic character recognition LeNet using
neural network. International Arab Journal of Information Technology, 6(3):304–309.

[Alibaba, 2019] Alibaba (2019). Alibaba Hanguang 800. Source: https://techcrunch.com/
2019/09/24/alibaba-unveils-hanguang-800-an-ai-inference-chip-it-says-significantly-
increases-the-speed-of-machine-learning-tasks/, May 2022.

[Alom et al., 2018] Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin,
M. S., Van Esesn, B. C., Awwal, A. A. S., and Asari, V. K. (2018). The history began from
alexnet: A comprehensive survey on deep learning approaches. Computing Research
Repository, abs/1803.01164(1):1–39.

[Amazon, 2018] Amazon (2018). AWS Inferentia. Source: https://aws.amazon.com/about-
aws/whats-new/2018/11/announcing-amazon-inferentia-machine-learning-inference-
microchip/, May 2022.

[Andri et al., 2017] Andri, R., Cavigelli, L., Rossi, D., and Benini, L. (2017). YodaNN: An
architecture for ultralow power binary-weight CNN acceleration. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(1):48–60.

[Apple, 2022] Apple (2022). iPhone 11. Source: https://www.apple.com/iphone-11/, May
2022.

[Armeniakos et al., 2022] Armeniakos, G., Zervakis, G., Soudris, D., and Henkel, J. (2022).
Hardware Approximate Techniques for Deep Neural Network Accelerators: A Survey.
ACM Computing Surveys, preprint :1–36.

[Asanovic et al., 2016] Asanovic, K., Avizienis, R., Bachrach, J., Beamer, S., Biancolin, D.,
Celio, C., Cook, H., Dabbelt, D., Hauser, J., Izraelevitz, A., et al. (2016). The rocket chip
generator. Technical report, University of California. 11p.

[Bai et al., 2020] Bai, L., Lyu, Y., and Huang, X. (2020). A unified hardware architecture
for convolutions and deconvolutions in CNN. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5.

[Baskin et al., 2021] Baskin, C., Liss, N., Schwartz, E., Zheltonozhskii, E., Giryes, R., Bron-
stein, A. M., and Mendelson, A. (2021). Uniq: Uniform noise injection for non-uniform
quantization of neural networks. ACM Transactions on Computer Systems, 37(1-4):1–15.

https://techcrunch.com/2019/09/24/alibaba-unveils-hanguang-800-an-ai-inference-chip-it-says-significantly-increases-the-speed-of-machine-learning-tasks/
https://techcrunch.com/2019/09/24/alibaba-unveils-hanguang-800-an-ai-inference-chip-it-says-significantly-increases-the-speed-of-machine-learning-tasks/
https://techcrunch.com/2019/09/24/alibaba-unveils-hanguang-800-an-ai-inference-chip-it-says-significantly-increases-the-speed-of-machine-learning-tasks/
https://aws.amazon.com/about-aws/whats-new/2018/11/announcing-amazon-inferentia-machine-learning-inference-microchip/
https://aws.amazon.com/about-aws/whats-new/2018/11/announcing-amazon-inferentia-machine-learning-inference-microchip/
https://aws.amazon.com/about-aws/whats-new/2018/11/announcing-amazon-inferentia-machine-learning-inference-microchip/
https://www.apple.com/iphone-11/

117

[Bavikadi et al., 2022] Bavikadi, S., Dhavlle, A., Ganguly, A., Haridass, A., Hendy, H.,
Merkel, C., Reddi, V. J., Sutradhar, P. R., Joseph, A., and Dinakarrao, S. M. P. (2022).
A Survey on Machine Learning Accelerators and Evolutionary Hardware Platforms. IEEE
Design & Test, 39(3):91–116.

[Benevenuti et al., 2021] Benevenuti, F., Kastensmidt, F. L., de Oliveira, Á. B., Added, N.,
de Aguiar, V. Â. P., Medina, N. H., and Guazzelli, M. A. (2021). Robust Convolutional
Neural Networks in SRAM-based FPGAs: a Case Study in Image Classification. Journal
of Integrated Circuits and Systems, 16(2):1–12.

[Caffe, 2022] Caffe (2022). Caffe. Source: https://caffe.berkeleyvision.org/, May 2022.

[Cao et al., 2020] Cao, S., Deng, W., Bao, Z., Xue, C., Xu, S., and Zhang, S. (2020).
SimuNN: A Pre-RTL Inference, Simulation and Evaluation Framework for Neural Net-
works. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
10(2):217–230.

[Cerebras, 2022] Cerebras (2022). Cerebras CS-1. Source: https://www.cerebras.net/
technology/, May 2022.

[Chen et al., 2014] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and Temam, O.
(2014). Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning. ACM SIGARCH Computer Architecture News, 42(1):269–284.

[Chen et al., 2020] Chen, X., Han, Y., and Wang, Y. (2020). Communication Lower Bound in
Convolution Accelerators. In Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 529–541.

[Chen et al., 2016a] Chen, Y.-H., Emer, J., and Sze, V. (2016a). Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH
Computer Architecture News, 44(3):367–379.

[Chen et al., 2016b] Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. (2016b). Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE
Journal of Solid-state Circuits, 52(1):127–138.

[Chen et al., 2019] Chen, Y.-H., Yang, T.-J., Emer, J., and Sze, V. (2019). Eyeriss v2: A
flexible accelerator for emerging deep neural networks on mobile devices. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 9(2):292–308.

[Courbariaux et al., 2016] Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio,
Y. (2016). Binarized neural networks: Training deep neural networks with weights and ac-
tivations constrained to +1 or -1. Computing Research Repository, abs/1602.02830(1):1–
11.

https://caffe.berkeleyvision.org/
https://www.cerebras.net/technology/
https://www.cerebras.net/technology/

118

[CS231n, 2022] CS231n (2022). Convolutional Neural Networks (CNNs / ConvNets).
Source: https://cs231n.github.io/convolutional-networks/, May 2022.

[Dally et al., 2020] Dally, W. J., Turakhia, Y., and Han, S. (2020). Domain-specific hardware
accelerators. Communications of the ACM, 63(7):48–57.

[Das et al., 2020] Das, S., Roy, A., Chandrasekharan, K. K., Deshwal, A., and Lee, S.
(2020). A Systolic Dataflow Based Accelerator for CNNs. In Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–5.

[Digital, 2022] Digital, W. (2022). Western Digital Machine Learning Accelerator.
Source: https://link.westerndigital.com/welcome/mcs-bulletin/mcs-bulletin-events/
machine-learning-accelerator.html?_ga=2.249821190.143199995.1570669759-
1671111829.1570669759, May 2022.

[Domingues, 2020] Domingues, A. R. P. (2020). ORCA: A Self-Adaptive, Multiprocessor
System-On-Chip Platform. Master’s thesis, PUCRS. 112p.

[Du et al., 2017] Du, L., Du, Y., Li, Y., Su, J., Kuan, Y.-C., Liu, C.-C., and Chang, M.-
C. F. (2017). A reconfigurable streaming deep convolutional neural network accelerator
for Internet of Things. IEEE Transactions on Circuits and Systems I: Regular Papers,
65(1):198–208.

[Du et al., 2015] Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T., Feng, X., Chen,
Y., and Temam, O. (2015). ShiDianNao: Shifting vision processing closer to the sensor.
In Proceedings of the ACM International Symposium on Computer Architecture (ISCA),
pages 92–104.

[Facebook, 2022a] Facebook (2022a). Facebook Horizon. Source: https://
www.oculus.com/horizon-worlds/, May 2022.

[Facebook, 2022b] Facebook (2022b). Facebook Kings Canyon. Source: https://
engineering.fb.com/data-center-engineering/accelerating-infrastructure/, May 2022.

[Ferianc et al., 2021] Ferianc, M., Fan, H., Manocha, D., Zhou, H., Liu, S., Niu, X., and Luk,
W. (2021). Improving Performance Estimation for Design Space Exploration for Convolu-
tional Neural Network Accelerators. MDPI Electronics, 10(4):1–14.

[Fujitsu, 2018] Fujitsu (2018). Fujitsu Deep Learning Unit. Source: https://www.fujitsu.com/
global/Images/deep-learning-unit.pdf, May 2022.

[Fujiwara et al., 2013] Fujiwara, H., Yabuuchi, M., Morimoto, M., Tanaka, K., Tanaka, M.,
Maeda, N., Tsukamoto, Y., and Nii, K. (2013). A 20nm 0.6 V 2.1 µW/MHz 128kb SRAM
with no half select issue by interleave wordline and hierarchical bitline scheme. In Pro-
ceedings of the IEEE Symposium on VLSI Circuits (VLSI), pages 118–119.

https://cs231n.github.io/convolutional-networks/
https://link.westerndigital.com/welcome/mcs-bulletin/mcs-bulletin-events/machine-learning-accelerator.html?_ga=2.249821190.143199995.1570669759-1671111829.1570669759
https://link.westerndigital.com/welcome/mcs-bulletin/mcs-bulletin-events/machine-learning-accelerator.html?_ga=2.249821190.143199995.1570669759-1671111829.1570669759
https://link.westerndigital.com/welcome/mcs-bulletin/mcs-bulletin-events/machine-learning-accelerator.html?_ga=2.249821190.143199995.1570669759-1671111829.1570669759
https://www.oculus.com/horizon-worlds/
https://www.oculus.com/horizon-worlds/
https://engineering.fb.com/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/data-center-engineering/accelerating-infrastructure/
https://www.fujitsu.com/global/Images/deep-learning-unit.pdf
https://www.fujitsu.com/global/Images/deep-learning-unit.pdf

119

[Gem5, 2022] Gem5 (2022). Gem5. Source: http://gem5.org/, May 2022.

[Genc et al., 2021] Genc, H., Kim, S., Amid, A., Haj-Ali, A., Iyer, V., Prakash, P., Zhao, J.,
Grubb, D., Liew, H., Mao, H., et al. (2021). Gemmini: Enabling systematic deep-learning
architecture evaluation via full-stack integration. In Proceedings of the ACM/IEEE Design
Automation Conference (DAC), pages 769–774.

[Gerogiannis et al., 2022] Gerogiannis, G., Birbas, M., Leftheriotis, A., Mylonas, E., Tzanis,
N., and Birbas, A. (2022). Deep Reinforcement Learning Acceleration for Real-Time Edge
Computing Mixed Integer Programming Problems. IEEE Access, 10(1):18526–18543.

[Giri et al., 2020] Giri, D., Chiu, K., Guglielmo, G. D., Mantovani, P., and Carloni, L. P. (2020).
ESP4ML: Platform-Based Design of Systems-on-Chip for Embedded Machine Learning.
In Proceedings of the IEEE Design, Automation Test in Europe Conference (DATE), pages
1049–1054.

[Gokhale et al., 2014] Gokhale, V., Jin, J., Dundar, A., Martini, B., and Culurciello, E. (2014).
A 240 g-ops/s mobile coprocessor for deep neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 682–
687.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning.
MIT Press. 781p.

[Google, 2022a] Google (2022a). Cloud TPU. Source: https://cloud.google.com/tpu/, May
2022.

[Google, 2022b] Google (2022b). Google Assistant, your own personal Google. Source:
https://assistant.google.com, May 2022.

[Haine et al., 2017] Haine, T., Nguyen, Q.-K., Stas, F., Moreau, L., Flandre, D., and Bol, D.
(2017). An 80-MHz 0.4 V ULV SRAM macro in 28nm FDSOI achieving 28-fJ/bit access
energy with a ULP bitcell and on-chip adaptive back bias generation. In Proceedings of
the IEEE European Solid State Circuits Conference (ESSCIRC), pages 312–315.

[Hao et al., 2019] Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K., Hwu, W.-m.,
and Chen, D. (2019). FPGA/DNN Co-Design: An Efficient Design Methodology for IoT
Intelligence on the Edge. In Proceedings of the ACM/IEEE Design Automation Conference
(DAC), pages 1–6.

[Haykin, 2009] Haykin, S. S. (2009). Neural networks and learning machines. Pearson
Education, third edition. 906p.

http://gem5.org/
https://cloud.google.com/tpu/
https://assistant.google.com

120

[Heidorn et al., 2020] Heidorn, C., Hannig, F., and Teich, J. (2020). Design space explo-
ration for layer-parallel execution of convolutional neural networks on CGRAs. In Pro-
ceedings of the ACM SIGBED/EDAA Software and Compilers for Embedded Systems
(SCOPES), pages 26–31.

[Hsiao and Chang, 2020] Hsiao, S.-F. and Chang, H.-J. (2020). Sparsity-Aware Deep Learn-
ing Accelerator Design Supporting CNN and LSTM Operations. In Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–4.

[Hsiao et al., 2020] Hsiao, S.-F., Chen, K.-C., Lin, C.-C., Chang, H.-J., and Tsai, B.-C.
(2020). Design of a Sparsity-Aware Reconfigurable Deep Learning Accelerator Support-
ing Various Types of Operations. IEEE Journal on Emerging and Selected Topics in Cir-
cuits and Systems, 10(3):376–387.

[Huang et al., 2021] Huang, B., Huan, Y., Chu, H., Xu, J., Liu, L., Zheng, L., and
Zou, Z. (2021). IECA: An In-Execution Configuration CNN Accelerator With 30.55
GOPS/mm2 Area Efficiency. IEEE Transactions on Circuits and Systems I: Regular Pa-
pers, 68(11):4672–4685.

[Huawei, 2019] Huawei (2019). Huawei Ascend 910. Source: https://www.huawei.com/en/
press-events/news/2019/8/huawei-ascend-910-most-powerful-ai-processor, May 2022.

[IBM, 2022] IBM (2022). IBM Watson. Source: https://www.ibm.com/us-en/marketplace/
deep-learning-platform, May 2022.

[Intel, 2022] Intel (2022). Intel Nervana. Source: https://www.intel.com.br/content/www/br/
pt/analytics/artificial-intelligence/overview.html, May 2022.

[Jiao et al., 2020] Jiao, Y., Han, L., Jin, R., Su, Y.-J., Ho, C., Yin, L., Li, Y., Chen, L., Chen, Z.,
Liu, L., et al. (2020). 7.2 A 12nm Programmable Convolution-Efficient Neural-Processing-
Unit Chip Achieving 825TOPS. In Proceedings of the IEEE International Solid-State Cir-
cuits Conference (ISSCC), pages 136–140.

[Jouppi et al., 2014] Jouppi, N. P., Kahng, A. B., Muralimanohar, N., and Srinivas, V. (2014).
Cacti-IO: Cacti with off-chip power-area-timing models. IEEE Transactions on Very Large
Scale Integration Systems, 23(7):1254–1267.

[Juracy et al., 2021a] Juracy, L. R., Moreira, M. T., Amory, A. M., and Moraes, F. G. (2021a).
A TensorFlow and System Simulator Integration Approach to Estimate Hardware Metrics
of Convolution Accelerators. In Proceedings of the IEEE Latin America Symposium on
Circuits and System (LASCAS), pages 217–230.

[Juracy et al., 2021b] Juracy, L. R., Moreira, M. T., de Morais Amory, A., Hampel, A. F., and
Moraes, F. G. (2021b). A High-Level Modeling Framework for Estimating Hardware Metrics
of CNN Accelerators. IEEE Transactions on Circuits and Systems – I, 68(11):4783–4795.

https://www.huawei.com/en/press-events/news/2019/8/huawei-ascend-910-most-powerful-ai-processor
https://www.huawei.com/en/press-events/news/2019/8/huawei-ascend-910-most-powerful-ai-processor
https://www.ibm.com/us-en/marketplace/deep-learning-platform
https://www.ibm.com/us-en/marketplace/deep-learning-platform
https://www.intel.com.br/content/www/br/pt/analytics/artificial-intelligence/overview.html
https://www.intel.com.br/content/www/br/pt/analytics/artificial-intelligence/overview.html

121

[Karbachevsky et al., 2021] Karbachevsky, A., Baskin, C., Zheltonozhskii, E., Yermolin, Y.,
Gabbay, F., Bronstein, A. M., and Mendelson, A. (2021). Early-stage neural network
hardware performance analysis. MDPI Sustainability, 13(2):1–20.

[Keras, 2022] Keras (2022). Layer activation functions. Source: https://keras.io/api/layers/
activations/, May 2022.

[Kim et al., 2020] Kim, S., Wang, J., Seo, Y., Lee, S., Park, Y., Park, S., and Park, C. S.
(2020). Transaction-level Model Simulator for Communication-Limited Accelerators. Com-
puting Research Repository, abs/2007.14897(1):1–11.

[Krizhevsky et al., 2017] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet
classification with deep convolutional neural networks. Communications of the ACM,
60(6):84–90.

[Kwon et al., 2019] Kwon, H., Chatarasi, P., Pellauer, M., Parashar, A., Sarkar, V., and
Krishna, T. (2019). Understanding Reuse, Performance, and Hardware Cost of DNN
Dataflow: A Data-Centric Approach. In Proceedings of the IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 754–768.

[Kwon et al., 2018a] Kwon, H., Pellauer, M., and Krishna, T. (2018a). Maestro: An open-
source infrastructure for modeling dataflows within deep learning accelerators. Computing
Research Repository, abs/1805.02566(1):1–5.

[Kwon et al., 2018b] Kwon, H., Samajdar, A., and Krishna, T. (2018b). Maeri: Enabling
flexible dataflow mapping over dnn accelerators via reconfigurable interconnects. ACM
Special Interest Group on Programming Languages Notices, 53(2):461–475.

[Li et al., 2019] Li, H., Bhargav, M., Whatmough, P. N., and Wong, H.-S. P. (2019). On-chip
memory technology design space explorations for mobile deep neural network acceler-
ators. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), pages
1–6.

[Lin and Arslan, 2021] Lin, W. and Arslan, T. (2021). A Column Streaming-Based Convo-
lution Engine and Mapping Algorithm for CNN-based Edge AI accelerators. In Proceed-
ings of the IEEE International Conference on Electronics, Circuits and Systems (ICECS),
pages 1–6.

[Liu et al., 2020a] Liu, B., Chen, X., Han, Y., Wang, Y., Li, J., Xu, H., and Li, X. (2020a).
Search-free Accelerator for Sparse Convolutional Neural Networks. In Proceedings of
the ACM/IEEE Asia and South Pacific Design Automation Conference (ASPDAC), pages
524–529.

https://keras.io/api/layers/activations/
https://keras.io/api/layers/activations/

122

[Liu et al., 2020b] Liu, B., Chen, X., Han, Y., and Xu, H. (2020b). Swallow: A Versatile
Accelerator for Sparse Neural Networks. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(12):4881–4893.

[Lu et al., 2017] Lu, W., Yan, G., Li, J., Gong, S., Han, Y., and Li, X. (2017). Flexflow: A flex-
ible dataflow accelerator architecture for convolutional neural networks. In Proceedings of
the IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 553–564.

[Manasi and Sapatnekar, 2021] Manasi, S. D. and Sapatnekar, S. S. (2021). DeepOpt: Op-
timized scheduling of CNN workloads for ASIC-based systolic deep learning accelerators.
In Proceedings of the ACM/IEEE Asia and South Pacific Design Automation Conference
(ASPDAC), pages 235–241.

[Mediatek, 2022] Mediatek (2022). Mediatek APU. Source: https://www.mediatek.com/
technology/artificial-intelligence, May 2022.

[Microsoft, 2022] Microsoft (2022). Project Brainwave. Source: https://www.microsoft.com/
en-us/research/project/project-brainwave/, May 2022.

[Moolchandani et al., 2021] Moolchandani, D., Kumar, A., and Sarangi, S. R. (2021). Accel-
erating CNN inference on ASICs: A survey. Journal of Systems Architecture, 113(1):1–26.

[Muñoz-Martínez et al., 2020] Muñoz-Martínez, F., Abellán, J. L., Acacio, M. E., and Kr-
ishna, T. (2020). STONNE: A Detailed Architectural Simulator for Flexible Neural Network
Accelerators. Computing Research Repository, abs/2006.07137(1):1–8.

[NVIDIA, 2022a] NVIDIA (2022a). NVDLA. Source: http://nvdla.org/, May 2022.

[NVIDIA, 2022b] NVIDIA (2022b). TensorRT. Source: https://developer.nvidia.com/tensorrt,
May 2022.

[NXP, 2022] NXP (2022). NXP S32V234 MPU. Source: https://www.nxp.com/products/
processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/vision-processor-
for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234,
May 2022.

[Parashar et al., 2019] Parashar, A., Raina, P., Shao, Y. S., Chen, Y.-H., Ying, V. A.,
Mukkara, A., Venkatesan, R., Khailany, B., Keckler, S. W., and Emer, J. (2019). Timeloop:
A Systematic Approach to DNN Accelerator Evaluation. In Proceedings of the IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS), pages
304–315.

[Park and Chung, 2020] Park, S.-S. and Chung, K.-S. (2020). CENNA: Cost-Effective Neu-
ral Network Accelerator. Electronics, 9(1):1–19.

https://www.mediatek.com/technology/artificial-intelligence
https://www.mediatek.com/technology/artificial-intelligence
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.microsoft.com/en-us/research/project/project-brainwave/
http://nvdla.org/
https://developer.nvidia.com/tensorrt
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234

123

[PyTorch, 2022] PyTorch (2022). PyTorch. Source: https://pytorch.org/, May 2022.

[Qualcomm, 2019] Qualcomm (2019). Qualcomm Snapdragon. Source: https://
developer.qualcomm.com/blog/accelerate-your-device-ai-qualcomm-artificial-
intelligence-ai-engine-snapdragon, May 2022.

[Renesas, 2022] Renesas (2022). Renesas e-AI. Source: https://www.renesas.com/jp/en/
solutions/key-technology/e-ai.html, May 2022.

[Ryu et al., 2022] Ryu, S., Kim, H., Yi, W., Kim, E., Kim, Y., Kim, T., and Kim, J.-J. (2022). Bit-
Blade: Energy-Efficient Variable Bit-Precision Hardware Accelerator for Quantized Neural
Networks. IEEE Journal of Solid-State Circuits, 1(1):1–11.

[Samajdar et al., 2020] Samajdar, A., Joseph, J. M., Zhu, Y., Whatmough, P., Mattina, M.,
and Krishna, T. (2020). A Systematic Methodology for Characterizing Scalability of DNN
Accelerators using SCALE-Sim. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 58–68.

[Samajdar et al., 2018] Samajdar, A., Zhu, Y., Whatmough, P., Mattina, M., and Krishna,
T. (2018). SCALE-sim: Systolic CNN accelerator. Computing Research Repository,
abs/1811.02883(1):1–11.

[Samsung, 2019] Samsung (2019). Samsung Exynos. Source: https://www.eetimes.com/
document.asp?doc_id=1334340, May 2022.

[ServiceNow, 2022] ServiceNow (2022). Enterprise Chatbot – Virtual Agent. Source:
https://assistant.google.com, May 2022.

[Shao et al., 2014] Shao, Y. S., Reagen, B., Wei, G.-Y., and Brooks, D. (2014). Aladdin: A
pre-rtl, power-performance accelerator simulator enabling large design space exploration
of customized architectures. In Proceedings of the ACM International Symposium on
Computer Architecture (ISCA), pages 97–108.

[Shao et al., 2016] Shao, Y. S., Xi, S. L., Srinivasan, V., Wei, G.-Y., and Brooks, D. (2016).
Co-designing accelerators and soc interfaces using gem5-aladdin. In Proceedings of the
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–12.

[Shivapakash et al., 2020] Shivapakash, S., Jain, H., Hellwich, O., and Gerfers, F. (2020).
A Power Efficient Multi-Bit Accelerator for Memory Prohibitive Deep Neural Networks.
In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–5.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition. Computing Research Repository,
abs/1409.1556(1):1–14.

https://pytorch.org/
https://developer.qualcomm.com/blog/accelerate-your-device-ai-qualcomm-artificial-intelligence-ai-engine-snapdragon
https://developer.qualcomm.com/blog/accelerate-your-device-ai-qualcomm-artificial-intelligence-ai-engine-snapdragon
https://developer.qualcomm.com/blog/accelerate-your-device-ai-qualcomm-artificial-intelligence-ai-engine-snapdragon
https://www.renesas.com/jp/en/solutions/key-technology/e-ai.html
https://www.renesas.com/jp/en/solutions/key-technology/e-ai.html
https://www.eetimes.com/document.asp?doc_id=1334340
https://www.eetimes.com/document.asp?doc_id=1334340
https://assistant.google.com

124

[Sohrabizadeh et al., 2021] Sohrabizadeh, A., Bai, Y., Sun, Y., and Cong, J. (2021). En-
abling Automated FPGA Accelerator Optimization Using Graph Neural Networks. Com-
puting Research Repository, abs/2111.08848(1):1–12.

[Son et al., 2013] Son, Y. H., Seongil, O., Ro, Y., Lee, J. W., and Ahn, J. H. (2013). Reducing
memory access latency with asymmetric DRAM bank organizations. In Proceedings of
the ACM International Symposium on Computer Architecture (ISCA), pages 380–391.

[Spagnolo et al., 2020] Spagnolo, F., Perri, S., Frustaci, F., and Corsonello, P. (2020). Re-
configurable Convolution Architecture for Heterogeneous Systems-on-Chip. In Proceed-
ings of the IEEE Mediterranean Conference on Embedded Computing (MECO), pages
1–5.

[Strom, 2015] Strom, N. (2015). Scalable distributed DNN training using commodity GPU
cloud computing. In Proceedings of the International Speech Communication Association
(ISCA), pages 1488–1492.

[Tang and Xie, 2018] Tang, T. and Xie, Y. (2018). Mlpat: A power area timing modeling
framework for machine learning accelerators. In Proceedings of the IEEE International
Workshop on Domain Specific System Architecture (DOSSA), pages 1–3.

[Tavakoli et al., 2020] Tavakoli, M. R., Sayedi, S. M., and Khaleghi, M. J. (2020). A High
Throughput Hardware CNN Accelerator Using a Novel Multi-Layer Convolution Processor.
In Proceedings of the IEEE Iranian Conference on Electrical Engineering (ICEE), pages
1–6.

[TensorFlow, 2022] TensorFlow (2022). TensorFlow. Source: https://www.tensorflow.org/,
May 2022.

[Tesla, 2019] Tesla (2019). Autopilot and Full Self-Driving Capability. Source:
https://analyticsindiamag.com/under-the-hood-of-teslas-ai-chip-that-takes-the-
driverless-battle-to-nvidias-home-turf/, May 2022.

[Tesla, 2022] Tesla (2022). Autopilot. Source: https://www.tesla.com, May 2022.

[Texas, 2022] Texas (2022). Texas Instruments Sitara. Source: http://www.ti.com/tool/
SITARA-MACHINE-LEARNING, May 2022.

[Toshiba, 2019] Toshiba (2019). Toshiba Visconti 5. Source: https://toshiba.semicon-
storage.com/ap-en/company/news/news-topics/2019/01/automotive-20190107-1.html,
May 2022.

[Udupa et al., 2020] Udupa, P., Mahale, G., Chandrasekharan, K. K., and Lee, S. (2020).
Accelerating Depthwise Convolution and Pooling Operations on z-First Storage CNN Ar-
chitectures. In Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1–5.

https://www.tensorflow.org/
https://analyticsindiamag.com/under-the-hood-of-teslas-ai-chip-that-takes-the-driverless-battle-to-nvidias-home-turf/
https://analyticsindiamag.com/under-the-hood-of-teslas-ai-chip-that-takes-the-driverless-battle-to-nvidias-home-turf/
https://www.tesla.com
http://www.ti.com/tool/SITARA-MACHINE-LEARNING
http://www.ti.com/tool/SITARA-MACHINE-LEARNING
https://toshiba.semicon-storage.com/ap-en/company/news/news-topics/2019/01/automotive-20190107-1.html
https://toshiba.semicon-storage.com/ap-en/company/news/news-topics/2019/01/automotive-20190107-1.html

125

[Venkatesan et al., 2019] Venkatesan, R. et al. (2019). MAGNet: A Modular Accelerator
Generator for Neural Networks. In Proceedings of the IEEE International Conference on
Computer-Aided Design (ICCAD), pages 1–8.

[Wu et al., 2019] Wu, Y. N., Emer, J. S., and Sze, V. (2019). Accelergy: An architecture-
level energy estimation methodology for accelerator designs. In Proceedings of the IEEE
International Conference on Computer-Aided Design (ICCAD), pages 1–8.

[Xian et al., 2020] Xian, Z., Li, H., and Li, Y. (2020). Weight Isolation-Based Binarized Neural
Networks Accelerator. In Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), pages 1–4.

[Xiang et al., 2018] Xiang, T., Feng, Y., Ye, X., Tan, X., Li, W., Zhu, Y., Wu, M., Zhang, H.,
and Fan, D. (2018). Accelerating CNN algorithm with fine-grained dataflow architectures.
In Proceedings of the IEEE International Conference on Smart City (SmartCity), pages
243–251.

[Xilinx, 2018] Xilinx (2018). Xilinx xDNN. Source: https://www.xilinx.com/support/
documentation/white_papers/wp504-accel-dnns.pdf, May 2022.

[Xilinx, 2021] Xilinx (2021). Vitis AI. Source: https://www.xilinx.com/products/design-tools/
vitis/vitis-ai.html, May 2022.

[Yang et al., 2020] Yang, X., Gao, M., Liu, Q., Setter, J., Pu, J., Nayak, A., Bell, S., Cao, K.,
Ha, H., Raina, P., et al. (2020). Interstellar: Using halide’s scheduling language to analyze
dnn accelerators. In Proceedings of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages 369–383.

[Ye et al., 2021] Ye, H., Hao, C., Jeong, H., Huang, J., and Chen, D. (2021). ScaleHLS:
Achieving Scalable High-Level Synthesis through MLIR. Computing Research Repository,
abs/2107.11673(1):1–15.

[Zacharopoulos et al., 2022] Zacharopoulos, G., Ejjeh, A., Jing, Y., Yang, E.-Y., Jia, T., Bru-
mar, I., Intan, J., Huzaifa, M., Adve, S., Adve, V., et al. (2022). Trireme: Exploring Hier-
archical Multi-Level Parallelism for Domain Specific Hardware Acceleration. Computing
Research Repository, abs/2201.08603(1):1–20.

[Zhang et al., 2015] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., and Cong, J. (2015).
Optimizing fpga-based accelerator design for deep convolutional neural networks. In Pro-
ceedings of the ACM/SIGDA International Symposium On Field-Programmable Gate Ar-
rays (FPGA), pages 161–170.

[Zhang et al., 2021] Zhang, X., Ye, H., and Chen, D. (2021). Being-ahead: Benchmarking
and Exploring Accelerators for Hardware-Efficient AI Deployment. Computing Research
Repository, abs/2104.02251(1):1–12.

https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html

126

[Zhao et al., 2020] Zhao, Y., Li, C., Wang, Y., Xu, P., Zhang, Y., and Lin, Y. (2020). DNN-
Chip Predictor: An Analytical Performance Predictor for DNN Accelerators with Various
Dataflows and Hardware Architectures. In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages 1593–1597.

127

APPENDIX A – 2D CONVOLUTION MODEL IN URSA

This Appendix details the conv2d implementation in URSA.

#include <sstream>
#include <iomanip>
#include <iostream>

//simulator API
#include <TConv2dArray.h>

TConv2dArray::TConv2dArray(std::string name,
//signals
int _a_buffer[][N],
int _b_buffer[][N]) : TimedModel(name) {

int x,y;

for (x = 0; x < N; x++){
for (y = 0; y < N; y++){

_PE[x][y] = new TPE(this->GetName() + ".PE" + to_string(x) + to_string(y),
x, y,
_start,_shift_acc,_shift_out);

_z_buffer[x][y] = 0;
_a_buffer[x][y] = 0;
_b_buffer[x][y] = 0;

}
}

for (x = 0; x < N; x++){
for (y = 1; y < N; y++){

_PE[x][y]->SetTPEAInput(_PE[x][y-1]->GetTPEAOutput());
}

}

for (x = 1; x < N; x++){
for (y = 0; y < N; y++){

_PE[x][y]->SetTPEBInput(_PE[x-1][y]->GetTPEBOutput());
_PE[x][y]->SetTPEZInput(_PE[x-1][y]->GetTPEZOutput());

}
}

}

TConv2dArray::~TConv2dArray(){
}

void TConv2dArray::Reset(){
int x,y;

_systolic_array_state = Conv2dArrayState::INIT_ARRAY;
_cont_row = 0;
_cont_column = 0;

for (x = 0; x < N; x++){
for (y = 0; y < N; y++){

_PE[x][y]->Reset();
_z_buffer[x][y] = 0;

}

128

}

// Initialize matrixs
for (x = 0; x < N; x++){

for (y = 0; y < N; y++){
_a_buffer[x][y] = (x*2) + 5 + y;
_b_buffer[x][y] = (y+1) + x;

}
}

}

void TConv2dArray::InitArray(){
int x,y;

switch(_systolic_array_state){
case Conv2dArrayState::INIT_ARRAY:{

_start = 0;

for (x = 0; x < N; x++) {
_PE[x][0]->SetAInputValue(_a_buffer[x][_cont_column]);
_PE[x][0]->ShiftTPEAInput();
_PE[0][x]->SetBInputValue(_b_buffer[_cont_row][x]);
_PE[0][x]->ShiftTPEBInput();

}
_cont_column = _cont_column + 1;
_cont_row = _cont_row + 1;

for (x = 0; x < N; x++){
for (y = 1; y < N; y++){

_PE[x][y]->ShiftTPEAInput();
}

}

for (x = 1; x < N; x++){
for (y = 0; y < N; y++){

_PE[x][y]->ShiftTPEBInput();
}

}

if (_cont_column <= N)
_systolic_array_state = Conv2dArrayState::START_MULT;

else {
_systolic_array_state = Conv2dArrayState::SHIFT_OUT;
_start = 0;
_cont_column = 0;
_cont_row = 0;
_shift_acc = 1;
_shift_out = 0;

}
}break;
default: break;

}
}

void TConv2dArray::StartMult(){
switch(_systolic_array_state){

case Conv2dArrayState::START_MULT:{
_start = 1;
_systolic_array_state = Conv2dArrayState::INIT_ARRAY;

} default: break;

129

}
}

void TConv2dArray::ShiftOut(){
int y;

switch(_systolic_array_state){
case Conv2dArrayState::SHIFT_OUT:{

_start = 0;
_shift_out = 1;
_shift_acc = 0;

if (_cont_row < N){
_shift_out = 1;

for (y = 0; y < N; y++) {
_z_buffer[N-(_cont_row+1)][y] = _PE[N-1][y]->GetZOutputValue();

}
}

_cont_row++;

if (_cont_row == N)
_systolic_array_state = Conv2dArrayState::END_OP;

}break;
default: break;

}
}

void TConv2dArray::EndOp(){
int x,y;

switch(_systolic_array_state){
case Conv2dArrayState::END_OP:{
printf("systolic_array: accumulator result!\n");
for (x = 0; x < N; x++){

for (y = 0; y < N; y++){
printf("%d ", _PE[x][y]->GetMACResult());

}
printf("\n");

}

printf("systolic_array: shifted out result!\n");
for (x = 0; x < N; x++){

for (y = 0; y < N; y++){
printf("%d ", _z_buffer[x][y]);

}
printf("\n");

}

printf("Done!\n");
while(1);

}break;
default: break;

}
}

std::string TConv2dArray::GetName() {
return ".systolic_array";

}

130

SimulationTime TConv2dArray::Run() {
int x,y;

this->EndOp();
this->ShiftOut();
this->InitArray();
this->StartMult();

for (x = N-1; x >= 0; x--){
for (y = N-1; y >= 0; y--){

_PE[x][y]->Run();
}

}

return 1;
}

131

APPENDIX B – DSE TABLES

This Appendix presents the complete set of results related to the DSE exploration,
for the physical synthesis and analytical flows. These Tables show the PPA information and
its breakdown regarding accelerator core and output buffer, the necessary buffer capacity
to store all input values, the number of memory reads, and the number of memory writes.
The column synt.flow corresponds to the physical synthesis flow (from Section 6.1), while
the analytic column is the results from the analytical flow (from Section 6.3). The column
|error| is the obtained error for each obtained value. The Tables are separated by memory
type (Tables B.1 to B.3 regard SRAM while Tables B.4 to B.6 regard DRAM), and each Table
presents the values for the five Accelerators described in Chapter 4.

132

Ta
bl

e
B

.1
:

C
ifa

r1
0

C
N

N
la

ye
r0

an
al

yt
ic

re
su

lts
fo

rS
R

A
M

m
em

or
y

ty
pe

.

la
ye

r
0

(s
ra

m
)

da
ta

flo
w

w
s

w
s

bu
f

is
sl

ic
e

is
sl

ic
e

bu
f

os

re
su

lts
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
co

re
ar

ea
(µ

m
2
)

14
,5

63
.9

68
0

14
,5

63
.9

68
0

0.
00

00
0

13
,3

99
.0

46
4

13
,3

99
.0

46
4

0.
00

00
15

,4
25

.3
37

6
15

,4
25

.3
37

6
0.

00
00

13
,8

86
.3

61
6

13
,8

86
.3

61
6

0.
00

00
14

,9
38

.3
48

8
14

,9
38

.3
48

8
0.

00
00

ou
tp

ut
bu

ff
er

ar
ea

(µ
m

2
)

0
0

0.
00

00
0

37
,8

60
.7

68
0

38
,2

66
.0

00
0

1.
07

03
0.

00
00

0.
00

00
0.

00
00

40
,6

74
.6

62
4

40
,8

59
.0

00
0

0.
45

32
0.

00
00

0
0.

00
00

ac
c

to
ta

l
ar

ea
(µ

m
2
)

14
,5

63
.9

68
0

14
,5

63
.9

68
0

0.
00

00
0

51
,2

59
.8

14
4

51
,6

65
.0

46
4

0.
79

05
15

,4
25

.3
37

6
15

,4
25

.3
37

6
0.

00
00

54
,5

61
.0

24
0

54
,7

45
.3

61
6

0.
33

79
14

,9
38

.3
48

8
14

,9
38

.3
48

8
0.

00
00

in
pu

t
ca

pa
ci

ty
(B

its
)

0
0

0.
00

00
0

0
0

0.
00

00
71

68
7,

16
8

0.
00

00
71

68
7,

16
8

0.
00

00
0

0
0.

00
00

nu
m

be
r

of
cy

cl
es

23
6,

88
8

23
6,

59
2

0.
12

49
5

23
6,

88
7

23
6,

59
2

0.
12

45
14

2,
87

5.
00

00
14

0,
52

9.
00

00
1.

64
20

13
6,

12
5.

00
00

12
6,

12
9.

00
00

7.
34

33
60

5,
94

2.
00

00
59

1,
26

4
2.

42
23

co
re

po
w

er
(m

W
)

0.
94

98
0.

94
98

0.
00

00
0

0.
98

70
0.

98
70

0.
00

00
2.

04
00

2.
04

00
0.

00
00

2.
09

69
2.

09
70

0.
00

48
1.

03
80

1.
03

8
0.

00
00

bu
f

po
w

er
(m

W
)

0
0

0.
00

00
0

1.
33

1.
32

88
32

0.
08

78
0.

00
00

0
0.

00
00

1.
94

5
1.

95
86

68
8

0.
70

28
0.

00
00

0
0.

00
00

ac
c

po
w

er
(m

W
)

0.
94

98
0.

94
98

0.
00

00
0

2.
31

7
2.

31
58

32
0.

05
04

2.
04

00
2.

04
0.

00
00

4.
04

20
4.

05
56

68
8

0.
33

82
1.

03
80

1.
03

8
0.

00
00

co
re

en
er

gy
(f

J)
22

4,
99

6.
22

24
22

4,
71

5.
08

16
0.

12
49

5
54

8,
86

7.
17

90
54

7,
90

7.
32

45
0.

17
49

29
1,

46
5.

00
00

26
1,

82
7.

88
00

10
.1

68
3

55
0,

21
7.

25
00

51
1,

53
7.

45
01

7.
02

99
62

8,
96

7.
79

60
61

3,
73

2.
03

2
2.

42
23

in
pu

t
m

em
or

y
re

ad
s

71
,0

56
71

,0
56

0.
00

00
0

71
,0

56
71

,0
56

0.
00

00
7,

19
8.

00
00

6,
52

3.
00

00
9.

37
76

7,
19

8.
00

00
6,

52
3.

00
00

9.
37

76
19

4,
73

5.
00

00
19

4,
70

4
0.

01
59

in
pu

t
m

em
or

y
w

ri
te

s
0

0
0.

00
00

0
0

0
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0

0.
00

00

of
m

ap
m

em
or

y
re

ad
s

7,
20

0
7,

20
0

0.
00

00
0

0
0

0.
00

00
7,

20
0.

00
00

7,
20

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0
0.

00
00

of
m

ap
m

em
or

y
w

ri
te

s
10

,8
00

10
,8

00
0.

00
00

0
3,

60
0

3,
60

0
0.

00
00

10
,8

00
.0

00
0

10
,8

00
.0

00
0

0.
00

00
3,

60
0.

00
00

3,
60

0.
00

00
0.

00
00

3,
60

0.
00

00
3,

60
0

0.
00

00

sr
am

re
ad

en
er

gy
(n

J)

1,
06

1.
19

05
1,

06
1.

19
05

0.
00

00
0

96
3.

55
49

96
3.

55
49

0.
00

00
19

5.
24

41
18

6.
09

07
4.

68
82

97
.6

08
5

88
.4

55
1

9.
37

76
2,

64
0.

70
40

2,
64

0.
28

35
92

0.
01

59

sr
am

w
ri

te
en

er
gy

(n
J)

14
5.

98
47

14
5.

98
47

0.
00

00
0

48
.6

61
6

48
.6

61
6

0.
00

00
14

5.
98

47
14

5.
98

47
0.

00
00

48
.6

61
6

48
.6

61
6

0.
00

00
48

.6
61

6
48

.6
61

56
0.

00
00

to
ta

l
en

er
gy

(n
J)

1,
20

7.
40

02
1,

20
7.

39
99

0.
00

00
2

1,
01

2.
76

53
1,

01
2.

76
44

0.
00

01
34

1.
52

02
33

2.
33

72
2.

68
89

14
6.

82
03

13
7.

62
82

6.
26

07
2,

68
9.

99
45

2,
68

9.
55

88
84

0.
01

62

133

Ta
bl

e
B

.2
:

C
ifa

r1
0

C
N

N
la

ye
r1

an
al

yt
ic

re
su

lts
fo

rS
R

A
M

m
em

or
y

ty
pe

.

la
ye

r
1

(s
ra

m
)

da
ta

flo
w

w
s

w
s

bu
f

is
sl

ic
e

is
sl

ic
e

bu
f

os

re
su

lts
sy

nt
.fl

ow
an

al
yt

ic
||e

rr
or

||
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
co

re
ar

ea
(µ

m
2
)

15
,0

37
.5

74
4

14
,5

63
.9

68
0

3.
14

95
13

,7
77

.0
17

6
13

,3
99

.0
46

4
2.

74
35

15
,7

02
.4

51
2

15
,4

25
.3

37
6

1.
76

48
14

,1
56

.9
47

2
13

,8
86

.3
61

6
1.

91
13

15
,3

36
.2

30
4

14
,9

38
.3

48
8

2.
59

44

ou
tp

ut
bu

ff
er

ar
ea

(µ
m

2
)

0
0

0.
00

00
8,

62
7.

56
80

8,
64

6.
60

00
0.

22
06

0.
00

00
0.

00
00

0.
00

00
38

,0
07

.8
11

2
38

,1
71

.0
00

0
0.

42
94

0.
00

00
0

0.
00

00

ac
c.

to
ta

l
ar

ea
(µ

m
2
)

15
,0

37
.5

74
4

14
,5

63
.9

68
0

3.
14

95
22

,4
04

.5
85

6
22

,0
45

.6
46

4
1.

60
21

15
,7

02
.4

51
2

15
,4

25
.3

37
6

1.
76

48
52

,1
64

.7
58

4
52

,0
57

.3
61

6
0.

20
59

15
,3

36
.2

30
4

14
,9

38
.3

48
8

2.
59

44

in
pu

t
ca

pa
ci

ty
(B

its
)

0
0

0.
00

00
0

0
0.

00
00

74
24

0
74

,2
40

0.
00

00
74

24
0

74
,2

40
0.

00
00

0
74

,2
40

0.
00

00

nu
m

be
r

of
cy

cl
es

64
2,

15
2

64
7,

68
0

0.
86

09
64

2,
15

1
64

7,
68

0
0.

86
10

29
1,

36
4.

00
00

31
3,

07
2.

00
00

7.
45

05
27

8,
13

4.
00

00
26

6,
03

2.
00

00
4.

35
11

1,
40

7,
20

6.
00

00
1,

35
9,

61
6

3.
38

19

co
re

po
w

er
(m

W
)

0.
86

83
0.

94
98

9.
38

62
0.

92
03

0.
98

70
7.

24
76

1.
92

00
2.

04
00

6.
25

00
1.

90
6

2.
09

70
10

.0
21

0
1.

02
30

1.
03

8
1.

46
63

bu
f

po
w

er
(m

W
)

0
0

0.
00

00
0.

32
57

0.
32

55
11

47
52

0.
05

79
0.

00
00

0
0.

00
00

1.
82

4
1.

83
69

27
48

8
0.

70
87

0.
00

00
0

0.
00

00

ac
c

po
w

er
(m

W
)

0.
86

83
0.

94
98

9.
38

62
1.

24
6

1.
31

25
11

47
5

5.
33

80
1.

92
00

2.
04

6.
25

00
3.

73
00

3.
93

39
27

48
8

5.
46

72
1.

02
30

1.
03

8
1.

46
63

co
re

en
er

gy
(f

J)
55

7,
58

0.
58

16
61

5,
16

6.
46

40
10

.3
27

8
80

0,
12

0.
14

60
85

0,
08

7.
43

23
6.

24
50

55
9,

41
8.

88
00

60
9,

74
7.

84
00

8.
99

67
1,

03
7,

43
9.

82
00

1,
04

6,
55

0.
59

75
0.

87
82

1,
43

9,
57

1.
73

80
1,

41
1,

28
1.

40
8

1.
96

52

in
pu

t
m

em
or

y
re

ad
s

19
2,

54
4

19
2,

54
4

0.
00

00
19

2,
54

4
19

2,
54

4
0.

00
00

12
,4

80
.0

00
0

11
,6

96
.0

00
0

6.
28

21
12

,4
80

.0
00

0
11

,6
96

.0
00

0
6.

28
21

45
2,

25
5.

00
00

45
2,

19
2

0.
01

39

in
pu

t
m

em
or

y
w

ri
te

s
0

0
0.

00
00

0
0

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0
0.

00
00

of
m

ap
m

em
or

y
re

ad
s

23
,5

20
23

,5
20

0.
00

00
0

0
0.

00
00

23
,5

20
.0

00
0

23
,5

20
.0

00
0

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0

0.
00

00

of
m

ap
m

em
or

y
w

ri
te

s
25

,0
88

25
,0

88
0.

00
00

1,
56

8
1,

56
8

0.
00

00
25

,0
88

.0
00

0
25

,0
88

.0
00

0
0.

00
00

1,
56

8.
00

00
1,

56
8.

00
00

0.
00

00
1,

56
8.

00
00

1,
56

8
0.

00
00

sr
am

re
ad

en
er

gy
(n

J)

2,
92

9.
93

59
2,

92
9.

93
59

0.
00

00
2,

61
0.

99
29

2,
61

0.
99

29
0.

00
00

48
8.

17
80

47
7.

54
66

2.
17

78
16

9.
23

50
15

8.
60

36
6.

28
21

6,
13

2.
80

39
6,

13
1.

94
96

16
0.

01
39

sr
am

w
ri

te
en

er
gy

(n
J)

33
9.

11
70

33
9.

11
70

0.
00

00
21

.1
94

8
21

.1
94

8
0.

00
00

33
9.

11
70

33
9.

11
70

0.
00

00
21

.1
94

8
21

.1
94

8
0.

00
00

21
.1

94
8

21
.1

94
81

28
0.

00
00

to
ta

l
en

er
gy

(n
J)

3,
26

9.
61

05
3,

26
9.

66
80

0.
00

18
2,

63
2.

98
78

2,
63

3.
03

78
0.

00
19

82
7.

85
44

81
7.

27
33

1.
27

81
19

1.
46

73
18

0.
84

50
5.

54
79

6,
15

5.
43

83
6,

15
4.

55
57

1
0.

01
43

134

Ta
bl

e
B

.3
:

C
ifa

r1
0

C
N

N
la

ye
r2

an
al

yt
ic

re
su

lts
fo

rS
R

A
M

m
em

or
y

ty
pe

.

la
ye

r
2

(s
ra

m
)

da
ta

flo
w

w
s

w
s

bu
f

is
sl

ic
e

is
sl

ic
e

bu
f

os

re
su

lts
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
co

re
ar

ea
(µ

m
2
)

15
,0

02
.4

86
4

14
,5

63
.9

68
0

2.
92

30
13

,7
62

.6
56

0
13

,3
99

.0
46

4
2.

64
20

15
,6

96
.2

49
6

15
,4

25
.3

37
6

1.
72

60
14

,1
62

.1
69

6
13

,8
86

.3
61

6
1.

94
75

15
,7

53
.2

06
4

14
,9

38
.3

48
8

5.
17

26

ou
tp

ut
bu

ff
er

ar
ea

(µ
m

2
)

0
0

0.
00

00
1,

99
0.

55
04

1,
99

0.
60

00
0.

00
25

0.
00

00
0.

00
00

0.
00

00
32

,6
48

.1
60

0
32

,7
95

.0
00

0
0.

44
98

0.
00

00
0

0.
00

00

ac
c

to
ta

l
ar

ea
(µ

m
2
)

15
,0

02
.4

86
4

14
,5

63
.9

68
0

2.
92

30
15

,7
53

.2
06

4
15

,3
89

.6
46

4
2.

30
78

15
,6

96
.2

49
6

15
,4

25
.3

37
6

1.
72

60
46

,8
10

.3
29

6
46

,6
81

.3
61

6
0.

27
55

15
,7

53
.2

06
4

14
,9

38
.3

48
8

5.
17

26

in
pu

t
ca

pa
ci

ty
(B

its
)

0
0

0.
00

00
0

0
0.

00
00

29
59

36
29

5,
93

6
0.

00
00

29
59

36
29

5,
93

6
0.

00
00

0
0

0.
00

00

nu
m

be
r

of
cy

cl
es

76
6,

15
2

80
4,

86
4

5.
05

28
76

6,
15

1
80

4,
86

4
5.

05
29

24
4,

98
0.

00
00

26
7,

74
4.

00
00

9.
29

22
23

5,
49

4.
00

00
23

2,
03

2.
00

00
1.

47
01

1,
03

6,
74

2.
00

00
99

9,
93

6
3.

55
02

co
re

po
w

er
(m

W
)

0.
88

12
0.

94
98

7.
78

48
0.

90
76

0.
98

70
8.

74
83

1.
72

90
2.

04
00

17
.9

87
3

1.
8

2.
09

70
16

.5
00

0
1.

03
10

1.
03

8
0.

67
90

bu
f

po
w

er
(m

W
)

0
0

0.
00

00
0.

12
34

0.
12

33
62

61
12

0.
03

03
0.

00
00

0.
00

00
0.

00
00

1.
42

4
1.

43
53

72
03

2
0.

79
86

0.
00

00
0

0.
00

00

ac
c

po
w

er
(m

W
)

0.
88

12
0.

94
98

7.
78

48
1.

03
1

1.
11

03
62

61
1

7.
69

76
1.

72
90

2.
04

00
17

.9
87

3
3.

22
40

3.
53

23
72

03
2

9.
56

49
1.

03
10

1.
03

8
0.

67
90

co
re

en
er

gy
(f

J)
67

5,
13

3.
14

24
76

4,
45

9.
82

72
13

.2
31

0
78

9,
90

1.
68

10
89

3,
69

0.
89

27
13

.1
39

5
42

,3
57

0.
42

00
53

5,
36

1.
28

00
26

.3
92

5
75

9,
23

2.
65

60
81

9,
62

3.
34

73
7.

95
42

1,
06

8,
88

1.
00

20
1,

03
7,

93
3.

56
8

2.
89

53

in
pu

t
m

em
or

y
re

ad
s

22
9,

44
0

22
9,

44
0

0.
00

00
22

9,
44

0
22

9,
44

0
0.

00
00

21
,3

76
.0

00
0

21
,0

88
.0

00
0

1.
34

73
21

,3
76

.0
00

0
21

,0
88

.0
00

0
1.

34
73

33
3,

11
9.

00
00

33
2,

99
2

0.
03

81

in
pu

t
m

em
or

y
w

ri
te

s
0

0
0.

00
00

0
0

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0
0.

00
00

of
m

ap
m

em
or

y
re

ad
s

17
,8

56
17

,8
56

0.
00

00
0

0
0.

00
00

17
,8

56
.0

00
0

17
,8

56
.0

00
0

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0

0.
00

00

of
m

ap
m

em
or

y
w

ri
te

s
18

,4
32

18
,4

32
0.

00
00

57
6

57
6

0.
00

00
18

,4
32

.0
00

0
18

,4
32

.0
00

0
0.

00
00

57
6.

00
00

57
6.

00
00

0.
00

00
57

6.
00

00
57

6
0.

00
00

sr
am

re
ad

en
er

gy
(n

J)

3,
35

3.
45

74
3,

35
3.

45
74

0.
00

00
3,

11
1.

32
11

3,
11

1.
32

11
0.

00
00

53
2.

00
55

52
8.

10
01

0.
73

41
28

9.
86

92
28

5.
96

38
1.

34
73

4,
51

7.
26

02
4,

51
5.

53
80

16
0.

03
81

sr
am

w
ri

te
en

er
gy

(n
J)

24
9.

14
72

24
9.

14
72

0.
00

00
7.

78
58

7.
78

58
0.

00
00

24
9.

14
72

24
9.

14
72

0.
00

00
7.

78
58

7.
78

58
0.

00
00

7.
78

58
7.

78
58

49
6

0.
00

00

to
ta

l
en

er
gy

(n
J)

3,
60

3.
27

97
3,

60
3.

36
91

0.
00

25
3,

11
9.

89
69

3,
12

0.
00

07
0.

00
33

78
1.

57
63

77
7.

78
27

0.
48

54
29

8.
41

43
29

4.
56

93
1.

28
85

4,
52

6.
11

49
45

24
.3

61
79

9
0.

03
87

135

Ta
bl

e
B

.4
:

C
ifa

r1
0

C
N

N
la

ye
r0

an
al

yt
ic

re
su

lts
fo

rD
R

A
M

m
em

or
y

ty
pe

.

la
ye

r
0

(d
ra

m
)

da
ta

flo
w

w
s

w
s

bu
f

is
sl

ic
e

is
sl

ic
e

bu
f

os

re
su

lts
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
co

re
ar

ea
(µ

m
2
)

14
,5

63
.9

68
0

14
,5

63
.9

68
0

0.
00

00
13

,3
99

.0
46

4
13

,3
99

.0
46

4
0.

00
00

15
,4

25
.3

37
6

15
,4

25
.3

37
6

0.
00

00
13

,8
86

.3
61

6
13

,8
86

.3
61

6
0.

00
00

14
,9

38
.3

48
8

14
,9

38
.3

48
8

0.
00

00

ou
tp

ut
bu

ff
er

ar
ea

(µ
m

2
)

0
0

0.
00

00
37

,8
60

.7
68

0
37

,9
33

.0
00

0
0.

19
08

0.
00

00
0.

00
00

0.
00

00
40

,6
74

.6
62

4
40

,8
59

.0
00

0
0.

45
32

0.
00

00
0

0.
00

00

ac
c

to
ta

l
ar

ea
(µ

m
2
)

14
,5

63
.9

68
0

14
,5

63
.9

68
0

0.
00

00
51

,2
59

.8
14

4
51

,3
32

.0
46

4
0.

14
09

15
,4

25
.3

37
6

15
,4

25
.3

37
6

0.
00

00
54

,5
61

.0
24

0
54

,7
45

.3
61

6
0.

33
79

14
,9

38
.3

48
8

14
,9

38
.3

48
8

0.
00

00

in
pu

t
ca

pa
ci

ty
(B

its
)

0
0

0.
00

00
0

0
0

0.
00

00
71

68
71

68
0.

00
00

71
68

7,
16

8
0.

00
00

0
0

0.
00

00

nu
m

be
r

of
cy

cl
es

44
9,

91
5

45
1,

58
4

0.
37

10
44

9,
91

1
45

1,
58

4
0.

37
19

18
2,

69
4.

00
00

17
0,

89
8.

00
00

6.
45

67
15

5,
69

4.
00

00
14

,5
69

8.
00

00
6.

42
03

1,
19

0,
10

2.
00

00
1,

17
5,

32
8

1.
24

14

co
re

po
w

er
(m

W
)

0.
74

43
0.

74
43

0.
00

00
0.

80
40

0.
80

40
0.

00
00

1.
79

40
1.

79
40

0.
00

00
2.

00
6

2.
00

60
0.

00
00

0.
87

66
0.

87
66

0.
00

00

bu
f

po
w

er
(m

W
)

0
0

0.
00

00
1.

10
4

1.
32

88
32

20
.3

65
2

0.
00

00
0

0.
00

00
1.

83
5

1.
95

86
68

8
6.

73
94

0.
00

00
0

0.
00

00

ac
c

po
w

er
(m

W
)

0.
74

43
0.

74
43

0.
00

00
1.

90
8

1.
90

66
64

0.
07

00
1.

79
40

1.
79

4
0.

00
00

3.
84

10
3.

83
79

67
9

0.
08

00
0.

87
66

0.
87

66
0.

00
00

co
re

en
er

gy
(f

J)
33

4,
87

1.
73

45
33

6,
11

3.
97

12
0.

37
10

85
8,

43
0.

18
80

96
3,

15
2.

80
59

12
.1

99
3

32
7,

75
3.

03
60

30
6,

59
1.

01
20

6.
45

67
59

8,
02

0.
65

40
57

7,
64

4.
31

48
3.

40
73

1,
04

3,
24

3.
41

32
1,

03
0,

29
2.

52
5

1.
24

14

in
pu

t
m

em
or

y
re

ad
s

71
,0

08
71

,0
56

0.
06

76
71

,0
08

71
,0

56
0.

06
76

6,
52

3.
00

00
6,

52
3.

00
00

0.
00

00
6,

52
3.

00
00

6,
52

3.
00

00
0.

00
00

19
4,

72
0.

00
00

19
4,

70
4

0.
00

82

in
pu

t
m

em
or

y
w

ri
te

s
0

0
0.

00
00

0
0

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0
0.

00
00

of
m

ap
m

em
or

y
re

ad
s

7,
20

0
7,

20
0

0.
00

00
0

0
0.

00
00

7,
20

0.
00

00
7,

20
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0

0.
00

00

of
m

ap
m

em
or

y
w

ri
te

s
10

,8
00

10
,8

00
0.

00
00

3,
60

0
3,

60
0

0.
00

00
10

,8
00

.0
00

0
10

,8
00

.0
00

0
0.

00
00

3,
60

0.
00

00
3,

60
0.

00
00

0.
00

00
3,

60
0.

00
00

3,
60

0
0.

00
00

sr
am

re
ad

en
er

gy
(n

J)

12
,7

72
.8

52
4

12
,7

80
.6

91
7

0.
06

14
11

,5
96

.9
55

6
11

,6
04

.7
94

9
0.

06
76

2,
24

1.
22

66
2,

24
1.

22
66

0.
00

00
1,

06
5.

32
98

1,
06

5.
32

98
0.

00
00

31
,8

01
.4

75
7

31
,7

98
.8

62
58

0.
00

82

sr
am

w
ri

te
en

er
gy

(n
J)

1,
79

5.
73

76
1,

79
5.

73
76

0.
00

00
59

8.
57

92
59

8.
57

92
0.

00
00

1,
79

5.
73

76
1,

79
5.

73
76

0.
00

00
59

8.
57

92
59

8.
57

92
0.

00
00

59
8.

57
92

59
8.

57
92

0.
00

00

to
ta

l
en

er
gy

(n
J)

1,
45

68
.9

24
8

1,
45

76
.7

65
4

0.
05

38
12

,1
96

.3
93

2
12

,2
04

.3
37

2
0.

06
51

4,
03

7.
29

20
4,

03
7.

27
08

0.
00

05
1,

66
4.

50
71

1,
66

4.
48

67
0.

00
12

32
,4

01
.0

98
1

32
,3

98
.4

72
07

0.
00

81

136

Ta
bl

e
B

.5
:

C
ifa

r1
0

C
N

N
la

ye
r1

an
al

yt
ic

re
su

lts
fo

rD
R

A
M

m
em

or
y

ty
pe

.

la
ye

r
1

(d
ra

m
)

da
ta

flo
w

w
s

w
s

bu
f

is
sl

ic
e

is
sl

ic
e

bu
f

os

re
su

lts
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
co

re
ar

ea
(µ

m
2
)

15
,0

37
.5

74
4

14
,5

63
.9

68
0

3.
14

95
13

,7
77

.0
17

6
13

,3
99

.0
46

4
2.

74
35

15
,7

02
.4

51
2

15
,4

25
.3

37
6

1.
76

48
14

,1
56

.9
47

2
13

,8
86

.3
61

6
1.

91
13

15
,3

36
.2

30
4

14
,9

38
.3

48
8

2.
59

44

ou
tp

ut
bu

ff
er

ar
ea

(µ
m

2
)

0
0

0.
00

00
8,

62
7.

56
80

8,
64

6.
60

00
0.

22
06

0.
00

00
0.

00
00

0.
00

00
38

,0
07

.8
11

2
38

,1
71

.0
00

0
0.

42
94

0.
00

00
0

0.
00

00

ac
c

to
ta

l
ar

ea
(µ

m
2
)

15
,0

37
.5

74
4

14
,5

63
.9

68
0

3.
14

95
22

,4
04

.5
85

6
22

,0
45

.6
46

4
1.

60
21

15
,7

02
.4

51
2

15
,4

25
.3

37
6

1.
76

48
52

,1
64

.7
58

4
52

,0
57

.3
61

6
0.

20
59

15
,3

36
.2

30
4

14
,9

38
.3

48
8

2.
59

44

in
pu

t
ca

pa
ci

ty
(B

its
)

0
0

0.
00

00
0

0
0.

00
00

74
24

0
74

,2
40

0.
00

00
74

24
0

74
,2

40
0.

00
00

0
74

,2
40

0.
00

00

nu
m

be
r

of
cy

cl
es

1,
21

8,
25

1
1,

24
5,

18
4

2.
21

08
1,

21
8,

24
7

1,
24

5,
18

4
2.

21
11

36
3,

20
2.

00
00

37
3,

24
8.

00
00

2.
76

60
31

3,
22

2.
00

00
30

1,
12

0.
00

00
3.

86
37

2,
76

3,
87

8.
00

00
2,

71
6,

09
6

1.
72

88

co
re

po
w

er
(m

W
)

0.
71

35
0.

74
43

4.
31

67
0.

78
45

0.
80

40
2.

48
57

1.
70

20
1.

79
40

5.
40

54
1.

80
9

2.
00

60
10

.8
90

0
0.

86
90

0.
87

66
0.

87
46

bu
f

po
w

er
(m

W
)

0
0

0.
00

00
0.

27
85

0.
32

55
11

47
52

16
.8

80
2

0.
00

00
0

0.
00

00
1.

72
7

1.
83

69
27

48
8

6.
36

52
0.

00
00

0
0.

00
00

ac
c

po
w

er
(m

W
)

0.
71

35
0.

74
43

4.
31

67
1.

06
3

1.
08

21
79

75
04

1.
80

00
1.

70
20

1.
79

4
5.

40
54

3.
53

60
3.

72
97

51
67

5.
48

00
0.

86
90

0.
87

66
0.

87
46

co
re

en
er

gy
(f

J)
86

9,
22

2.
08

85
92

6,
79

0.
45

12
6.

62
30

1,
29

4,
99

6.
56

10
1,

40
6,

44
9.

61
67

8.
60

64
61

8,
16

9.
80

40
66

9,
60

6.
91

20
8.

32
09

1,
10

7,
55

2.
99

20
1,

15
7,

18
2.

32
52

4.
48

10
2,

40
1,

80
9.

98
20

2,
38

0,
92

9.
75

4
0.

86
94

in
pu

t
m

em
or

y
re

ad
s

19
2,

03
2

19
2,

54
4

0.
26

66
19

2,
03

2
19

2,
54

4
0.

26
66

11
,6

96
.0

00
0

11
,6

96
.0

00
0

0.
00

00
11

,6
96

.0
00

0
11

,6
96

.0
00

0
0.

00
00

45
2,

22
4.

00
00

45
2,

19
2

0.
00

71

in
pu

t
m

em
or

y
w

ri
te

s
0

0
0.

00
00

0
0

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0
0.

00
00

of
m

ap
m

em
or

y
re

ad
s

23
,5

20
23

,5
20

0.
00

00
0

0
0.

00
00

23
,5

20
.0

00
0

23
,5

20
.0

00
0

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0

0.
00

00

of
m

ap
m

em
or

y
w

ri
te

s
25

,0
88

25
,0

88
0.

00
00

1,
56

8
1,

56
8

0.
00

00
25

,0
88

.0
00

0
25

,0
88

.0
00

0
0.

00
00

1,
56

8.
00

00
1,

56
8.

00
00

0.
00

00
1,

56
8.

00
00

1,
56

8
0.

00
00

sr
am

re
ad

en
er

gy
(n

J)

35
,2

03
.7

37
1

35
,2

87
.3

56
4

0.
23

75
31

,3
62

.4
74

2
31

,4
46

.0
93

5
0.

26
66

5,
75

1.
44

19
5,

75
1.

44
19

0.
00

00
1,

91
0.

17
90

1,
91

0.
17

90
0.

00
00

73
,8

56
.7

71
5

73
,8

51
.5

45
25

0.
00

71

sr
am

w
ri

te
en

er
gy

(n
J)

4,
17

1.
43

19
4,

17
1.

43
19

0.
00

00
26

0.
71

45
26

0.
71

45
0.

00
00

4,
17

1.
43

19
4,

17
1.

43
19

0.
00

00
26

0.
71

45
26

0.
71

45
0.

00
00

26
0.

71
45

26
0.

71
44

96
0.

00
00

to
ta

l
en

er
gy

(n
J)

39
,3

76
.0

38
2

39
,4

59
.7

15
1

0.
21

25
31

,6
24

.4
83

7
31

,7
08

.2
14

5
0.

26
48

9,
92

3.
49

20
9,

92
3.

54
34

0.
00

05
2,

17
2.

00
11

2,
17

2.
05

07
0.

00
23

74
,1

19
.8

87
8

74
,1

14
.6

40
67

0.
00

71

137

Ta
bl

e
B

.6
:

C
ifa

r1
0

C
N

N
la

ye
r2

an
al

yt
ic

re
su

lts
fo

rD
R

A
M

m
em

or
y

ty
pe

.

la
ye

r
2

(d
ra

m
)

da
ta

flo
w

w
s

w
s

bu
f

is
sl

ic
e

is
sl

ic
e

bu
f

os

re
su

lts
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
sy

nt
.fl

ow
an

al
yt

ic
|e

rr
or

|
(%

)
co

re
ar

ea
(µ

m
2
)

15
,0

02
.4

86
4

14
,5

63
.9

68
0

2.
92

30
13

,7
62

.6
56

0
13

39
9.

04
64

2.
64

20
15

,6
96

.2
49

6
15

,4
25

.3
37

6
1.

72
60

14
,1

62
.1

69
6

13
,8

86
.3

61
6

1.
94

75
15

,3
20

.4
00

0
14

,9
38

.3
48

8
2.

49
37

ou
tp

ut
bu

ff
er

ar
ea

(µ
m

2
)

0
0

0.
00

00
1,

99
0.

55
04

1,
99

0.
60

00
0.

00
25

0.
00

00
0.

00
00

0.
00

00
32

,6
48

.1
60

0
32

,7
95

.0
00

0
0.

44
98

0.
00

00
0

0.
00

00

ac
c

to
ta

l
ar

ea
(µ

m
2
)

15
,0

02
.4

86
4

14
,5

63
.9

68
0

2.
92

30
15

,7
53

.2
06

4
15

,3
89

.6
46

4
2.

30
78

15
,6

96
.2

49
6

15
,4

25
.3

37
6

1.
72

60
46

,8
10

.3
29

6
46

,6
81

.3
61

6
0.

27
55

15
,3

20
.4

00
0

14
,9

38
.3

48
8

2.
49

37

in
pu

t
ca

pa
ci

ty
(B

its
)

0
0

0.
00

00
0

0
0.

00
00

29
5,

93
6

29
5,

93
6

0.
00

00
29

59
36

29
5,

93
6

0.
00

00
0

0
0.

00
00

nu
m

be
r

of
cy

cl
es

1,
44

8,
33

1
1,

57
2,

86
4

8.
59

84
1,

44
8,

32
7

1,
57

2,
86

4
8.

59
87

33
5,

58
6.

00
00

34
9,

44
0.

00
00

4.
12

83
29

8,
75

8.
00

00
29

5,
29

6.
00

00
1.

15
88

2,
03

5,
91

0.
00

00
1,

99
8,

72
0

1.
82

67

co
re

po
w

er
(m

W
)

0.
71

41
0.

74
43

4.
22

91
0.

75
34

0.
80

40
6.

71
62

1.
45

20
1.

79
40

23
.5

53
7

1.
58

8
2.

00
60

26
.3

22
4

0.
88

07
0.

87
66

0.
46

55

bu
f

po
w

er
(m

W
)

0
0

0.
00

00
0.

11
5

0.
12

33
62

61
12

7.
27

18
0.

00
00

0
0.

00
00

1.
27

7
1.

43
53

72
03

2
12

.4
01

9
0.

00
00

0
0.

00
00

ac
c

po
w

er
(m

W
)

0.
71

41
0.

74
43

4.
22

91
0.

86
84

0.
91

89
06

02
23

5.
82

00
1.

45
20

1.
79

4
23

.5
53

7
2.

86
50

3.
27

93
55

51
9

14
.4

60
0

0.
88

07
0.

87
66

0.
46

55

co
re

en
er

gy
(f

J)
1,

03
4,

25
3.

16
71

1,
17

0,
68

2.
67

52
13

.1
91

1
1,

25
7,

72
7.

16
68

1,
45

8,
61

5.
26

61
15

.9
72

3
48

7,
27

0.
87

20
62

6,
89

5.
36

00
28

.6
54

4
85

5,
94

1.
67

00
1,

01
6,

22
3.

39
56

18
.7

25
8

1,
79

3,
02

5.
93

70
1,

75
2,

07
7.

95
2

2.
28

37

in
pu

t
m

em
or

y
re

ad
s

22
7,

39
2

22
9,

44
0

0.
90

06
22

7,
39

2
22

9,
44

0
0.

90
06

21
,0

88
.0

00
0

21
,0

88
.0

00
0

0.
00

00
21

,0
88

.0
00

0
21

,0
88

.0
00

0
0.

00
00

33
3,

05
6.

00
00

33
2,

99
2

0.
01

92

in
pu

t
m

em
or

y
w

ri
te

s
0

0
0.

00
00

0
0

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0
0.

00
00

of
m

ap
m

em
or

y
re

ad
s

17
,8

56
17

,8
56

0.
00

00
0

0
0.

00
00

17
,8

56
.0

00
0

17
,8

56
.0

00
0

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0

0.
00

00

of
m

ap
m

em
or

y
w

ri
te

s
18

,4
32

18
,4

32
0.

00
00

57
6

57
6

0.
00

00
18

,4
32

.0
00

0
18

,4
32

.0
00

0
0.

00
00

57
6.

00
00

57
6.

00
00

0.
00

00
57

6.
00

00
57

6
0.

00
00

sr
am

re
ad

en
er

gy
(n

J)

40
,0

53
.6

58
1

40
,3

88
.1

35
4

0.
83

51
37

,1
37

.4
34

0
37

,4
71

.9
11

4
0.

90
06

6,
36

0.
29

51
6,

36
0.

29
51

0.
00

00
3,

44
4.

07
11

3,
44

4.
07

11
0.

00
00

54
,3

94
.3

72
9

54
,3

83
.9

20
45

0.
01

92

sr
am

w
ri

te
en

er
gy

(n
J)

3,
06

4.
72

55
3,

06
4.

72
55

0.
00

00
95

.7
72

7
95

.7
72

7
0.

00
00

3,
06

4.
72

55
3,

06
4.

72
55

0.
00

00
95

.7
72

7
95

.7
72

7
0.

00
00

95
.7

72
7

95
.7

72
67

2
0.

00
00

to
ta

l
en

er
gy

(n
J)

43
,1

19
.4

17
9

43
,4

54
.0

31
6

0.
77

60
37

,2
34

.4
64

4
37

,5
69

.1
42

6
0.

89
88

9,
42

5.
50

79
9,

42
5.

64
75

0.
00

15
3,

54
0.

69
97

3,
54

0.
86

00
0.

00
45

54
,4

91
.9

38
6

54
,4

81
.4

45
2

0.
01

93

	Introduction
	Thesis Statement
	Objectives
	Original Contributions
	Thesis Structure

	State of The Art
	Basic Concepts
	Hardware Accelerators
	Dedicated Accelerators
	Industrial Accelerators

	Hardware Design Space Exploration Frameworks and Simulators
	Hardware Design Space Exploration Frameworks
	Hardware Simulators
	Final Remarks Related to DSE Frameworks and Simulators

	Thesis Contribution for the State-of-the-Art

	High-level Modeling Framework for DSE
	TensorFlow CNN Modeling Framework
	Shift-based Quantization
	PPA Extraction
	URSA System Simulator
	Results
	PPA Results
	Energy Estimation Comparison Results
	Simulation Time Comparison

	Final Remarks

	Machine Learning Hardware Accelerator Design
	Array Style RTL Implementations
	Systolic 2D Accelerator
	1D Accelerator

	Dataflow Implementations
	Weight Stationary (WS) Dataflow
	Input Stationary (IS) Dataflow
	Output Stationary (OS) Dataflow
	Final Remarks

	Machine Learning Hardware Accelerator Results
	Array Style Results
	Dataflow Type Results
	Final Remarks

	Design Space Exploration Flows
	DSE Physical synthesis Flow
	MAC-based DSE Flow
	Analytic DSE Flow
	Performance Estimation
	Memory Accesses Estimation
	Output Buffer Area and Power Estimation

	Results
	MAC-based DSE Flow Results
	Analytic DSE Flow Results

	Conclusion and Future work
	Future Work
	Summary of the publications produced during the Thesis

	References
	Appendix A – 2D Convolution Model in URSA
	Appendix B – DSE Tables

