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RESUMO 

O ecologista pode intuitivamente pensar que as respostas aos distúrbios no nível da 

população aumentam para impactar as propriedades no nível da comunidade. No entanto, 

há evidências experimentais e empíricas que sugerem que grandes respostas a distúrbios 

no nível da população não necessariamente se traduzem em mudanças equivalentes no 

nível da comunidade. Investigamos se a composição da comunidade de serpentes e a 

abundância de espécies específicas mudam ao longo do tempo e se essa mudança pode 

ser explicada pelas condições ambientais, ao mesmo tempo, vemos se tanto a comunidade 

quanto a população têm respostas equivalentes a essas mudanças. Para tal, trabalhamos 

no mesmo ecossistema de dunas costeiras (<444 hectares) numa escala temporal, entre 

1998-2004 e 2020-2021. Nossos resultados mostram que a comunidade e quatro espécies 

de serpentes diminuíram ao longo do tempo. A redução na composição da comunidade 

ocorreu nos últimos períodos (2020-2021) quando comparado há 15 anos, com o último 

período de 2004. No nível comunitário, as variáveis ambientais explica pouca variações 

na composição, enquanto a variável de correlação temporal positiva atua como fator 

dominante, sugerindo que a redução na comunidade não pode ser explicada por modelos 

ambientais. Ao nível populacional, foi detectado um caso de diminuição na serpente 

Xenodon dorbignii e uma tendência negativa de diminuição de três espécies. Em geral, as 

variáveis ambientais foram positivamente correlacionadas com as abundâncias e não 

podem explicar o padrão de declínio nas serpentes. Nas dunas costeiras, tanto a 

comunidade como a população respondem da mesma forma. 

PALAVRAS-CHAVE: Dunas costeiras, correlação temporal, composicao da 

comunidade. 
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ABSTRACT  

Ecologist may intuitively think that responses to disturbances at the population level scale 

up to impact community-level properties. However, there is experimental and empirical 

evidence suggesting that large magnitude responses to disturbances observed at the 

population level do not necessarily translate into equivalent changes at the community 

level. We investigate if snake community composition and the abundance of specific-

species change across the time and if this change could be explain by environmental 

conditions, at the same time, we see if both community and population has equivalent 

responses, to those changes. To this, we work in a same local of coastal dunes ecosystem 

(<444 hectares) in a temporal scale, between 1998 – 2004 and 2020 -2021. Our results 

show that community and four species of snake decreased across time. The reduction of 

community composition was in the last periods (2020-2021) when was compared 15 years 

ago, with the las period of 2004. At community level, environmental variable explains a 

few variances of composition, whereas positive temporal correlation act as a dominant 

factor, suggesting that reduction on community cannot be explain by environmental 

models. At population level, we detected a confirm case of decreased in the snake 

Xenodon dorbignii and negative tendency on decreased of three species. Overall, 

environmental variables were positively correlated with the abundances, and cannot 

explain the decreased patron on snakes. In coastal sand dunes, both community and 

population responses in the same way. 

KEY WORDS: Sand dunes, temporal correlation, species responses, community 

composition. 
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PRESENTACIÓN 

Disminuciones en poblaciones de Squamata son difíciles de detectar, y estudios de larga 

data son considerados indispensables para entender tendencias y fluctuaciones 

poblacionales. Sin embargo, la mayoría de estudios son de corta duración, útiles para 

determinar el estado actual de las poblaciones pero no para documental variaciones en el 

tamaño y la salud [1]. Baja detectabilidad y densidad combinado combinadas con 

cuestiones taxonómicas complejas, comunidades muy diversas pero con limitaciones 

logísticas, se encuentran entre las primeras razones detrás de esto. En las dunas costeras 

de Brasil se encuentran comunidades de serpientes particularmente ricas en especies con 

altos niveles de endemicidad, pero se sabe poco sobre los mecanismos detrás de estos 

patrones [2–4]. Por otro lado, las áreas costeras de dunas experimentan altas tasas de 

disturbios naturales y antropogénicos [5]. Entro los problemas más serios de estos 

ambientes, se ha señalado la invasión de especies, el uso de tierras [6]. Debido al 

calentamiento global, se esperan eventos de enfriamiento extremo más frecuentes durante 

el clima invernal en latitudes medias y regiones subtropicales [7] y esto aparentemente 

está causando un aumento en la cobertura vegetal de las dunas costeras globales [8]. En 

este escenario, nosotros proponemos estudiar como comunidades de serpiente y algunas 

poblaciones responden a estos cambios ambientales. Nosotros nos preguntamos si 

respuestas a nivel de comunidad pueden ser generalizados al nivel poblacional. Para ello, 

estudiamos la variación en la composición de la comunidad y abundancia de especies 

específicas en un periodo continuo de años entre 1998 – 2004 y 2020-2021. Al mismo 

tiempo, evaluamos si posibles cambios en la comunidad y población pueden ser explicado 

por variables ambientales que caracterizan las dunas (i.e., aumento de áreas urbanas, 

velocidad de viento, crecimiento o disminución de vegetación de pastizales). Estas 

preguntas serán dirigidas en un único artículo, considerando dos secciones 1) cambios en 

la composición y su relación con variables ambientales y correlación temporal, 2) 

tendencias en la abundancia de especies específicas y su respuesta cambios ambientales.  
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Introduction 1 

Because both organismal populations and communities are logically connected due to the 2 

hierarchical ecological structure—communities are composed by species populations—, 3 

ecologist may intuitively think that responses to disturbances at the population level scale 4 

up to impact community-level properties. However, there is experimental and empirical 5 

evidence suggesting that large magnitude responses to disturbances observed at the 6 

population level do not necessarily translate into equivalent changes at the community 7 

level [1,2]. This is because community level properties, unlike specific-species ones, may 8 

still be maintained by extinction or decline compensatory mechanisms [3]. Consequently, 9 

it is widely accepted that community composition is a necessary response variable to 10 

estimate the impact of changes in ecosystems, natural or anthropogenic. At the same time, 11 

any given community could be temporally structured by induced temporal dependent 12 

mechanisms [3–5]. Thus, environmental and temporal dependence can jointly explain 13 

changes in community dynamics.  14 

 Coastal lands are particularly exposed to disturbances due to the influence of 15 

oceans and human activities, providing excellent natural experiments. The transition of 16 

the terrestrial-aquatic systems creates unique geomorphological and climatic conditions 17 

within these areas that may increase long and short-term disturbances. For example, tides, 18 

hurricanes, sea level fluctuations, and subduction zones. Simultaneously, while coastal 19 

areas account for only 20 % of all emerged land in the world, it harbors 41 % of the world 20 

population, placing more infrastructure and associated economic investment on the coast 21 

and therefore, increases human impact on coastal ecosystems [6]. 22 

 Coastal dunes are a good example, as they experience high rates of natural and 23 

anthropogenic disturbances[7]. Invasive plants (exotic or native) and land use have been 24 

identified among the most serious problems [8]. However, due to global warming, more 25 
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frequent extreme cooling events are expected during winter weather in mid-latitudes and 26 

subtropical regions [9] and this is apparently causing an increase of cover vegetation of 27 

global coastal dunes [10].  28 

 Within coastal dunes, snakes constitute key components of their vertebrate fauna 29 

due to their role as predators, sensitivity to abiotic and biotic changes (natural or 30 

anthropogenic), large variation in ecological and life history traits among sympatric 31 

species (e.g., adult body sizes, dietary habits, and reproductive biology), and 32 

poikilothermy and sensitivity to climatic variables [11,12] The Brazilian costal dunes 33 

harbors particularly species rich communities of snakes with high levels of endemicity, 34 

but little is understood about the mechanisms behind these patterns [13–15]. Thus, these 35 

snake assemblages of the Brazilian coastal dunes constitute excellent natural experiments 36 

to study community and specific-species responses to changes on environmental 37 

conditions over time.  38 

 Considering this context, we quantified environmental and climatic variables of a 39 

coastal dune ecosystem in subtropical Brazil together with community and population 40 

species measures of its snakes for a 9 years period. At the community level, we tested if: 41 

(i) snake composition changed and decreased across time periods, and (ii) these changes 42 

could be explained by environmental conditions and temporal dependence. We also 43 

evaluated if specific-species responses accompanied those at community level by testing 44 

if: (iii) species specific-abundances changed across time, and (iv) this changes could be 45 

explained by environmental variables.  46 

Materials and methods 47 

Study area 48 

We collected data in a locality within the sand-dunes of Magistério municipality 49 

(30°21’S, 50°17’W), state of Rio Grande do Sul, Brazil from 1998 to 2004 and 2020 -50 
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2021 (Fig 1). The study area is part of the southern Atlantic Ocean coast of Brazil and is 51 

about 1km from the shore and just a few meters above it. The climate is subtropical 52 

(Köppen 1936), with a mean temperature of 15.4 °C (minimum and maximum monthly 53 

average 12.2 and 18.3 °C, respectively). The area is subjected to intense solar radiation 54 

and strong wind action that originates mobile dunes interspersed with small depressions 55 

[16]. Vegetation cover is spread and scarce, predominating species are Andropogon 56 

arenarius, Hydrocotyle bonariensis, Panicum racemosum, P. sabulorum, and, Spartina 57 

iliate [17]. Depressions between the dunes accumulate organic material and are flooded 58 

during the period of greater rainfall, allowing the grow of hydrophytes species such as 59 

Juncus sp., and cyperaceous plants. The area is surrounded by two permanent lagoons 60 

(Cerquina and Rincão das Éguas). Human activities are part of the landscape, with urban 61 

areas, roads, and plantations of Pinus sp. The area is used by feral and domestic dogs, 62 

horses, and tourists. There is illegal sand extraction near the urban areas, although 63 

apparently occasional. 64 

Sampling design and field data collection 65 

We visited the same location to detect and capture snakes using a visual encounter survey 66 

technique [18]. We walked through the mobile sand dunes and their boundary with 67 

grasslands, pine plantations, urban areas, and temporal lagoons. Roberto Baptista de 68 

Oliveira (RBO) led and performed surveys from July 1998 to June 2004, while RBO and 69 

Marco Odicio-Iglesias shared responsibilities from October 2020 to December 2021. We 70 

sampled during day and night hours in the 1998–2004 period and only during the day in 71 

2020–2021 to avoid conflicts with locals caused by recent invasions of the dune areas. 72 

We identified each captured snake to the species level and recorded its mass, with a 73 

precision scale, snout-vent-length (SVL), and tail length (TL), both with a tape measure. 74 

We also sexed all specimens by everting their hemipenes. Immediately after recording 75 



 

4 
 

these variables, we released the specimen at its site of capture. We carried out surveys 76 

throughout the entire year. However, we maximized our sampling effort in the spring 77 

(September to November), which is the period of highest activity and, consequently, 78 

detection. 79 

Because we started surveys in June 1998, we defined six initial consecutive time 80 

periods of 12 months, each starting on June (winter) and finishing in May (autumn) of the 81 

next year. Hereafter, we refer to this time periods as periods 1 to 6 (Table 1). After May 82 

2004, sampling became more erratic due to constrains in resources. This eventually led 83 

to a 15 years gap (2005–2019) without sampling and delimitation of sampling periods of 84 

7 instead of 12 months (Table 1). As we started each period in winter, we considered this 85 

division to account for the intra-period variation of the community composition or species 86 

abundances, at the same time, we expected that if environmental variables have an effect 87 

on snakes, this could be naturally detected, because snakes failed to survive the following 88 

winter. 89 

During these nine sampling periods, we searched for snakes a total of 612 days, 90 

with the average number of sampling days per month within each period being 4.0–9.3 91 

days. We used each month as the sample unit, and we estimated sampling effort in 92 

numbers of days and accumulate minutes per month (Tables 1 and S1). 93 

Quantification of environmental conditions 94 

We used 14 variables that are a combination on environmental and land use and cover to 95 

quantitatively characterize the sampling area (Table 2). Herein, we used environmental 96 

variables (EN) as conditions and resources related to habitat, climate, and soil. These are 97 

important for establishment and survival of organisms and have been used as significant 98 

predictors of species diversity and ecosystem function [19,20]. Land used and cover are 99 

factors that play a meaningful effect in changing environmental conditions [21] and we 100 
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used a combination of urban increment and sand dunes reduction to summarize the effect 101 

of urbanization on the study area [22]. We obtained all variables for each month from 102 

1998–2004 and from 2020–2021, matching our sampling effort.  103 

 To quantify variables, we previously define the study area spatiality, as a polygon 104 

of 420 hectares, which represents the area where we started our study in 1998 to 2021 105 

(Fig 1). We delimited the area in the field by walking around with a Global Positioning 106 

System (GPS Garmin eTrex) using the track function to map the entire area. Then, we 107 

defined a polygon using Quantum Geographic System Information (QGIS) 3.16.11. 108 

 We obtained data for all variables using the Google Earth Engine cloud computing 109 

environment (hereafter, GEE), and the R software, which reduced computational efforts. 110 

Within GEE, we used two climatic global datasets to extract environmental records at 111 

5000 and 11000 m of resolution, respectively (available at the Earth Engine Data 112 

Catalogue). We used a collection of Landsat Images 5, 7, and 8 to compute specific 113 

indexes for climate, habitat, and urbanization with 30 m resolution, cloud cover > 30 %, 114 

and a cloud masking function for each image. Briefly, our procedure to calculate variables 115 

was: 1) to import the study area polygon to the cloud assets section in the GEE platform; 116 

2) to export the area into the GEE Code Editor application and define the desired period 117 

of time [23]; 3) to select the dataset image collection of interest and filter the study area, 118 

4) to select the variables of interest (e.g., "precipitation") and define a reference point for 119 

the extraction of the dataset into the area, 5) to export the results as a table to Google 120 

Drive. When we worked with Landsat Images collections, we used a specific extraction 121 

protocol designed by Ermida et al. (2020) [24] and built our specific code to perform a 122 

temporal analysis series using specific band images to compute specific variables. 123 

Additionally, we estimated urban land use and proportion of sand dunes and grassland 124 

for the study area and for each year. For this, we classified the study area in four landscape 125 
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classes: 1) sand dunes; 2) grasslands; 3) urban; and 4) pines. We later quantified the 126 

proportion of the total area (420 hectares) of each of these classes through time. For this, 127 

we developed a supervised classification using the package Classifier with the algorithm 128 

smileCart available in GEE using the following workflow: 1) to select Landsat Images 7 129 

and 8 and define a period of time, 2) to reduce the collection of images for each period of 130 

time, 3) to collect spatial data for each landscape class using the study area as the point 131 

of reference and training the classifier algorithm; 4) to run the classifier algorithm and 132 

map geometrically each landscape class into the study area; 5) to estimate the 133 

classification accuracy of the model by separating 70 % of our dataset, and perform a new 134 

classification test to estimate the Kappa index. We considered a Kappa index > 90 % of 135 

accuracy for each year, and 6) to transform the classified image into a vector file and 136 

export it in shape format. We used QGIS 3.16.11 version[25], to estimate area surface by 137 

each class in hectares.  138 

 We used historical monthly weather data from WorldClim [26] and downloaded 139 

the average minimum and maximum temperature (C°) at 2.5 minutes (~21 km2), the 140 

spatial resolution in GeoTiff (.tif) files format for 1998–2004. Then, we used a script in 141 

R to obtain the temperature dataset for study area. For 2020–2021, we obtained 142 

temperature data from Tramandai Climatic Station (~21 km away from the study area: -143 

30.01, -50.13). We downloaded data from the online platform of the Rio Grande do Sul 144 

National Institute of Meteorology, which has data available since 2000. Tramandai station 145 

has similar conditions to the study area because is part of the coastal dune ecosystem. The 146 

code to obtain the dataset of environmental variables is available in Appendix S1. 147 

 We performed the variance inflation factor (VIF) to detect multicollinearity 148 

among the 13 set of variables. We used VIF > 5 as a threshold to drop variables and 149 
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retained those that could provide better explanatory power based on the study system 150 

[27].  151 

Data analysis 152 

Quantification of community composition variation 153 

We estimated the level of dissimilarity composition between pairs of each snake species. 154 

First, we performed an optimal dissimilarity measure analysis using a classical 155 

multidimensional scaling (MDS) of our abundance matrix to visualize the distribution of 156 

abundances across a two-dimensional scale. We compared the six commonest abundance 157 

indexes used in ecology for this type of data. We used the cmdscale function to create a 158 

matrix distance with each of the six methods (“Bray Curtis”, “Euclidian”, “altGower”, 159 

“Manhattan”, “chisq”, “Camberra”). Based on these results, we selected the Bray Curtis 160 

index because it shows no pattern in the dispersion of the data (Fig. S1). To visualized 161 

patterns of community composition groups, we used non-metric multidimensional scaling 162 

(NMDS), an indirect gradient analysis, based on our Bray Curtis dissimilarity result. 163 

Previously, we made a comparation between NMDS and Principal Coordinates Analysis 164 

(PCoA), using the cor (Spearman Correlation) function, to evaluate the degree of 165 

correlation between those methods and our dissimilarity index. NMDS had a higher 166 

spearman correlation than PCoA (0.933 versus 0.811, respectively, Fig. S2). Accordingly, 167 

we used NMDS as an ordination method to visualize and test changes in community 168 

composition.  169 

Change probability in community composition 170 

To detect changes in community composition, we used the NMDS results, and a 171 

multivariate normal t-test analyzed with a Bayesian approach through a Markov chain 172 

Monte Carlo (MCM) as implemented in R and JAGS. We evaluated through progressive 173 

pairwise comparisons between temporal sampling periods: (i) the probability of change 174 
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of snake community composition by comparing the centroids of standard ellipses, and (ii) 175 

the probability of the composition directionality (i.e., decrease or increase) by using the 176 

area of the standard ellipses. For this, we used the model of community composition 177 

ordination analysis built by Zipkin et al. (2020) [28]. Briefly, we created a matrix in which 178 

we coded the pooled number of encounters per month per sampling period for each 179 

species. 180 

 Each comparison only considered species that were recorded within each sample. 181 

We compared groups of pairwise years as an ordered series relative to time (i.e., periods 182 

1 and 2, 2 and 3, so on). It is important to highlight that we have a 15 years gap without 183 

sampling (2005–20019) separating periods 7 and 8. We performed NMDs in a range of 1 184 

to 4 dimensions to look for a low stress value (0.09) and a good representation of 185 

ordination spaces [29]. To perform this analysis, we used the metaMDS function (with 186 

arguments k = 1 or 4, distance= “bray”, try=1000, trymax = 10000) and extracted the 187 

estimates for each visit. NMDS points closer in a phase space have more similar 188 

community composition than points further apart. We used the extracted values to run a 189 

multivariate normal t-test to evaluate if the mean and variance of the two-dimensional 190 

points for each visit differed between pairwise comparisons[28]. Then, we used the 191 

covariance matrix and centroid mean estimates to create standard ellipses for each period 192 

with the ellipse package in R[30]. 193 

Temporal correlation on community 194 

The temporal structure of our dataset was expected to produce temporal dependence 195 

processes in community composition. To account for it and test for potential mechanisms 196 

that induced temporal dependence by environmental control [4], we applied distance-197 

based Moran's eigenvector maps (dbMEM) for our irregular time series. We used 198 

temporal observations to compute a series of sine waves. Prior to it, we examined if our 199 
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response variables had a linear correlation with time coded as months. We considered the 200 

results (p < 0.001, R2 = 0.0519) as non-problematic due to the low predictive power of 201 

the linear model.   202 

We computed a distance matrix among time observations (as spatial coordinates) 203 

and determined a truncation threshold (thresh) considering irregular series. We used the 204 

length of the largest lag as the threshold value multiply by 4 on the diagonal of the 205 

distance matrix as recommended by [4]. Then, we computed a PCoA of the truncated 206 

distance matrix that describes which observations are considered neighbors and which 207 

are not. This produced the eigenvectors of the Gower-centered distance matrix that are 208 

the Moran's eigenvector maps forming matrix T (time). In our irregular time series, the 209 

first half of eigenvectors have positive eigenvalues and model positive temporal 210 

correlation. The second half have the negative eigenvalues as a negative temporal 211 

correlation. We used the function dbMEM with arguments (xyORdist = [distances matrix 212 

of dates], thresh = [16*4], MEM.autocor = "positive [or negative]). Then, we computed 213 

a redundance analysis (RDA) between the community composition data set and the 214 

estimated positive and negative dbMEM. We performed variance analysis (anova) to 215 

determine the importance of the temporal correlation model (positive and negative) over 216 

the response data (community composition) and R2 to measure size effect. We also 217 

computed Anova for each RDA axis to determine its contribution to community 218 

composition. Furthermore, we performed a forward selection by permutation of 219 

multivariate residuals only considering dbMEMs (temporal correlation variables) with 220 

p-values < 0.05. We used the significant variation of the dbMEMs axis in a linear 221 

regression model by stepwise selection using the aforementioned environmental variables 222 

as a pool to explain variables. We tested for normality for each regression model of 223 

residuals using the Shapiro test.  224 
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Community responses 225 

We linked the temporal correlation with environmental conditions to evaluate their 226 

influence on community composition pattern. As a first step, we performed a forward 227 

selection analysis of the seven environmental variables to select for statistically 228 

significant ones for the VP analysis. Then, we used the fitted values of the previously 229 

selected dbMEMs (p < 0.05) and the selected environmental variables in a variation 230 

partitioning analyses (VP). This way, we partitioned the variation of the response variable 231 

among two or more sets of explanatory variables using series of regressions. The adjusted 232 

R2 of the analyses are then combined to calculate the amount of variation explained by 233 

each explanatory variable and their shared variance [31]. We used VP analysis to 234 

discriminate the influence of environmental variables by considering each variable 235 

individually or in two classes (i.e., habitat and climate). When individual fractions of 236 

variance were obtained, we tested for significance (p < 0.05) using RDA and anova tests. 237 

We could not test for significance of join effects as they cannot be directly computed by 238 

canonical analysis.  239 

 To perform all statistical analysis in temporal correlation and community 240 

responses sections we used the adespatial [32], mvpart [33], packfor [34] the vegan[35] 241 

packages and the custom function R2.by.variable [4], in the R environment[36]. 242 

Quantify variation on specific-species abundances 243 

We study if the abundances of the most sampled species vary across periods in the study 244 

area. Specifically, we study if (i) individual species show a trend across periods (i.e., 245 

decreased or increased) and (ii) environmental variables are related to the changes and 246 

good predictors. We focused exclusively on the most sampled species to reduce the 247 

impact of small sample size. We started by testing the distribution model that better fit 248 

the data and found that the Poisson and Negative Binomial distributions were good 249 
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predictors. Whenever possible, we used the Negative Binomial distribution because the 250 

variance for each species was larger than mean. However, we used the Poisson 251 

distribution for some analyses because of their assumptions. Because we have different 252 

sampling efforts per month among periods, we modelled the number of days and 253 

accumulated minutes as predictive variables of number of counts in each month (92 254 

observations). For this, we used Generalized Additive Models (GAM) with a smooth 255 

function of predicted variable, modelling each predictive variable separately. To 256 

determine the best linear tendency relationship, we used the significance of smooth 257 

function (p < 0.05) and the highest R2 confront the two models. This relationship was 258 

then included into the models as offset variable, to indicate that some proportion of 259 

variances on counts are affected by the effort. 260 

To test trends on species abundance and to account for temporal correlation and 261 

heterogeneity (i.e., evident pattern among residuals versus fitted values), we first applied 262 

a generalised least squares (GLS) model without correlation structure so that we had a 263 

reference point. Then we used Generalized Lineal Mixed Model (GLMM) to reduce the 264 

temporal correlation and heterogeneity among our samples, using a random structure. In 265 

both models, we used count data as response variable and periods (1–9) as a predicted 266 

nominal variable. With the GLS, we assumed a non-parametric model, and with the 267 

GLMM model we used a negative binomial distribution. We submitted each GLMM 268 

fitted model to a validation process to confirm if it complies with underlying assumptions 269 

following the guidelines described in [27,37]: 1) to estimate the dispersion statistic of 270 

fixed effects, 2) to plot the Pearson residuals versus fitted values, using each covariate 271 

included in the model, 3) to fit a GAM on the residuals with the predicted variable and 272 

check for a non-linear pattern, a p< 0.05, and R2 > 1%, 4) to plot an auto-correlation 273 

function (ACF) panel of residuals versus samples to see the values of the ACF at different 274 
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time lags as an indicator of independence assumption of fit model, 5) to simulate 10000 275 

datasets for each model from each analysis to estimate the number of zeros simulated by 276 

the model and plot them against the observed number of zero, if the number of observed 277 

zeros is within the simulated variation, the model complies with the data.  278 

For each model, we used abundance of each species as a response variable and the 279 

time periods (1–9) as a nominal predictive variable plus the offset variable. Then we used 280 

GLMM to model temporal correlation with random structures, we test if combination of 281 

each observation (n=92), months and periods as a random effect reduce heterogeneity and 282 

the auto-correlation in our model. 283 

To test if environmental variables could explain the abundance of each evaluated 284 

species, we used GLMMs models. Here, in some cases we used a Poisson distribution, 285 

because of parameters number of model could not convergence, using a negative binomial 286 

distribution. We test the abundance responses to each species, at Habitat and Climate 287 

scales. To this, we grouped variables to represent habitat (sand, grassland, vegetation 288 

index [NDVI] and season), all these variables are nominals. Then, we grouped Climate 289 

variables (Temperature, Wind and Precipitation), as continuous variables. With each 290 

group (Habitat and Climate) we apply a model selection process. Significant variables 291 

were select to each model and build a general model (Habitat + Climate) and again apply 292 

the selection process of this variables with the abundance. All these variables were 293 

included into the model as a fixed effect plus a random structure (i.e., 1|season, 1|month), 294 

that we test during the model selection and validation process. 295 

The model selection was done following the guidelines in [39], this based on 296 

Diggle et al. (2002). We started with a general model without interactions, then we drop 297 

by one by individual variables with the least significant term (p > 0.05) and used AIC or 298 
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BIC to decide on the optimal model. During the process we used analysis of variance 299 

(ANOVA) to compare, AIC and p-values among the full model and reduce model. The R 300 

square were estimate as a “Marginal value” refers to fixed effect and “Conditional value” 301 

to all parameters (random and fixed effects).  302 

To perform these analysis we used the nlme [40], lme4 [41], mgcv [42], MASS 303 

[43], PiesewiseSEM [44] packages in the R environment.  304 

Results 305 

We founded 14 species of snakes across period 1 and 9 (Table 3, S2 Table), five of them 306 

present across all sampling years: Erythrolamprus poecilogyrus, Helicops infrataeniatus, 307 

Lygophis flavifrenatus, Philodryas patagoniensis, and Xenodon dorbignyi. In general, 308 

community composition across the nine time periods by each month and season show a 309 

negative trend (Fig. 2).  310 

 As a result of the multicollinearity analysis among the 13 environmental and land 311 

use and cover variables, we selected seven variables with pairwise Pearson’s correlations 312 

ranging from -0.49 to 0.64 and VIF > 5 (Table 4). The variables Urban areas, Sand dunes, 313 

NDVI index, and Grassland show directionality across periods of time (Fig. 3).  314 

Community composition variation across the time 315 

Overall, the results of the community composition ordination analysis show that snake 316 

composition varied across time periods (Fig. 4). Pairwise comparison of standards 317 

ellipses during the initial years show a dynamic community composition (Fig. 4a-c), and 318 

that is more evident between periods 4 and 3 (Fig. 5c). The probability of standard ellipses 319 

reduction from pairwise comparisons between periods 7 and 4 is null (Fig. 5d-f). 320 

Conversely, the probability of reduction between periods 7 and 8 is high and similar to 321 
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that detected for periods 4–3 (Fig. 5c, g). The pairwise comparison between periods 9–8 322 

also shows a probability of reduction of similar magnitude (Fig. 5h).  323 

Temporal dependence and environmental constraints 324 

We find a positive temporal correlation, with a model containing 34 MEMs, that is 325 

globally significant (R2= 0.22, p < 0.001). The first RDA axis is significant for the 326 

positive temporal correlation (p < 0.001). A negative correlation model was not 327 

significant (p > 0.05). Consequently, we concentrated on modelling the positive temporal 328 

correlation to compute RDA of the community composition dataset with estimated 329 

positive MEMs.  We selected nine MEMs by forward selection processes. These 330 

MEMs predict some unknown variation in the snake community composition across years 331 

(p < 0.05, Table 5). Except for one MEMs, they fluctuate considerably across the first 332 

block of time periods (1998–2004), conversely MEMs show a homogeneous composition 333 

during the last years (2020–2021) (Fig 5).  334 

 Based on these nine MEMs, the RDA model produce two significance axis that 335 

represent the positive correlation model relationship by all MEMs (p > 0.01, R2 = 0.18) 336 

for snake composition. The linear regression analysis showed that the first RDA axis is 337 

explained by Urban area, Grassland vegetation, Wind, and minimum temperature (R2 = 338 

0.41, p < 0.0001). Furthermore, the first three variables have a negative estimate, 339 

indicating a negative relationship with composition. The second axis is only explained by 340 

Grassland vegetation, but the size effect is low (R2 = 0.07, p < 0.004). 341 

Variation partitioning of environmental variables and positive temporal correlation 342 

We retained five environmental variables by forward selection: sand, NDVI, minimum 343 

temperature, wind, and evapotranspiration. Partitioning the variation of community 344 

composition with respect to these five environmental and the positive MEMs (derived 345 

from temporal correlations) variables explained 22.3 % of the global variation (Fig. 6a). 346 
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Both environmental and MEMs have a significant contribution (p < 0.001). The dominant 347 

explanatory factor are the MEMs components, with 12.3 % of the global variation (Fig. 348 

6a). The intersection of the contribution of the environmental and MEMs components is 349 

6.1% (Fig. 6a). The forward selection analysis assigned NDVI-season index and sand to 350 

Habitat and minimum temperature to Climate and discarded the other variables. Both 351 

Climate and Habitat have a small contribution when compared to the positive MEMs 352 

components (Fig. 6b), and only minimum temperature and the MEMs components had a 353 

significant partial contribution (p < 0.05, Fig. 6b). In summary, we find that positive 354 

MEMs representing positive temporal correlation explains a much larger significant 355 

contribution than environmental variables. 356 

Species-specific abundance trends 357 

Visually, Erythrolamprus poecilogyrus, Philodryas patagogoniensis, and Xenodon 358 

dorbignyi show a tendency of decreased abundance through time, while Lygophis 359 

flavifrenatus and Helicops infrataeniatus have a stable abundance (Fig 7). Overall, our 360 

GLMM models show that there is a tendency of abundance decrease in all species except 361 

Helicops infrataeniatus (Table 6). However, in Erythrolamprus the intercept is not 362 

significant and in Lygophis flavifrenatus and Philodryas patagoniensis the p-values of 363 

the periods and the intercept, respectively, are borderline. Furthermore, the R2 values are 364 

very low in L. flavifrenatus and P. patagoniensis but very high in Erythrolamprus. 365 

Periods of time as fixed effects show important sources of variation at each time step. The 366 

random structure composed by month and season explains an important portion of the 367 

variance in the abundances of these snakes (R2, Table 7). Additive random structures of 368 

month and season are predominant among these species, and an interaction structure of 369 

season:month is detected in E. poecilogyrus.  370 
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 Support for our results comes from the model validation. We used the random 371 

structure to reduce the correlation between periods and generated a visual representation 372 

of the residuals and sample units (i.e., months, n = 92). The auto-correlation reduces with 373 

each sampled unit. In all species, the first year always shows autocorrelation, but it 374 

decreases rapidly with each time step (S3 Fig). At the same time, we validated the 375 

predictive potential of each fitted model. The observed zeros in our dataset are always 376 

within the predicted variation (S4 Fig). 377 

Specific species Responses 378 

Xenodon dorbigny. Grassland, Wind, and Seasons are important variables to explain 379 

abundance variation. Abundance increases during the spring and autumn decreased in 380 

summer (S2 Appendix, Fig 7). The Incidence Rate Ratios (IRT) increases with all 381 

significant variables. 382 

Philodryas patagoniensis. Grassland and season are the variables that better explain the 383 

observed variation (S2 Appendix). The IRT is low when compared with X. dorbingy. 384 

Winter and sand predict the highest IRT, which can be interpretated as good predictive of 385 

abundances.  386 

Erythrolamprus poecilogyrus. Sand is the only predictive variable. Although the sand 387 

IRT is the highest when compared to all other IRTs among species, the confident interval 388 

(CI) is also the broadest (S2 Appendix). 389 

Helicops infrataeniatus. Only precipitation and temperature are potential predictors of 390 

abundance (S2 Appendix). 391 

Lygophis flavifrenatus. Wind and temperature that represent climatic variables were 392 

selected, but just Temperature was significant, in the final model. Wind could not be 393 
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removed from the final model. So that, temperature and wind are important variables to 394 

this species (S2 Appendix). 395 

Discussion 396 

Community and species-specific temporal dynamics 397 

We detect important changes in several environmental variables in the study area between 398 

1998 and 2021 (Fig. 3). These changes follow the trends reported for coastal dunes in 399 

Brazil [45] and worldwide [6]. Importantly, we detect an increase in the probability of 400 

reduction of community composition inferred from pairwise comparisons of periods (Fig. 401 

4). We also show that when community composition is grouped according to the 402 

components of the temporal positive correlation (MMEs), the enviromental variables 403 

urbanization, grassland vegetation, wind, and temperature explain a linear effect (R2 = 404 

0.41, p < 0.0001). Despite these results, when we separated the effect of enviromental 405 

variables from those of MEMs on community composition, the environmental variables 406 

have a small effect when compared to that of the MEMs (Fig. 6).  407 

The reduction of the snake community composition is accompanied by a negative 408 

abundance tendency of specific species, except for Helicops infrataeniatus (Table 6) that 409 

seems to have a stable tendency (Fig 7, Table 6). At the same time, we show that random 410 

structure composed by season and month represents an important source of individual 411 

variance within each period (Table 6), whereas the environmental model for each specific 412 

species reduces the random structure to the time periods. We interpret this result as 413 

indicative that the individual variance of each species at each time period combined with 414 

environmental variables are more important to explain abundance tendencies. 415 

Explaining changes in community composition and population by environmental 416 

conditions is complicated because one needs long-term studies to make inference about 417 

populations and fine-scale environmental data [46]. Furthermore, spatial auto-correlation 418 
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is a problem and analytical tools are need improving [47]. Thus, studies involving tropical 419 

and sub-tropical snake communities for comparisons with our results are limited. For 420 

example, within the Pampa biome, seasonal variation was described, with temperature 421 

considered a limiting factor whereas precipitation was uncorrelated with snake encounter 422 

rates [48]. The same study reported differential changes in abundance following a 423 

disturbance event caused by burning pasture, while one species (Philodryas agassizii) 424 

showed a decline in abundance, another increased it (Erythrolamprus poecilogyrus). A 425 

notable study in a Neotropical rainforest, documented a reduction of snake community 426 

composition and richness linked to the decrease of prey availability [28]. Mass mortality 427 

of amphibians—one of the most common prey items for snakes—caused by the infection 428 

with chytrid fungus Batrachochytrium dendrobatidis was accompanied by a general 429 

pattern of abundance decline in almost all snakes [28]. At community level, our data 430 

suggests that an increase of urban areas, and a decrease of grassland play a role in the 431 

observed changes in community composition. However, this effect is low when compared 432 

with the MEMs components, which explain a larger variance. Thus, we suggest that future 433 

studies should try to include both biotic interactions or at least indirect parameters, such 434 

as body condition as a proxy to variation in prey availability. This approach proved crucial 435 

to understand population dynamics in the snake Bothrops insularis. In this species, 436 

periods of food scarcity suggest a strong influence of climatic stochasticity and the 437 

dynamics of the movement of migratory birds [49]. In another example, males of tropical 438 

snake Opheodrys aestivus reduced body condition and population size also declined 439 

together with rainfall [50]. 440 

At population level, we detect a drop in abundance of Xenodon dorbigngy across 441 

periods. Whereas the environmental model indicates that summer has a negative effect 442 

on its abundance, the other variables show a positive relation (S2 Appendix). During 443 
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1998–2004, we recorded in the study area multiple egg-clutches of this species, which 444 

suggests that food availability is high [51]. During 2020–2021, we did not find egg-445 

clutches of X. dorbigngy and more importantly, we did not record gravid females close to 446 

oviposition during the reproductive season in November–December [51]. For Philodryas 447 

patagoniensis and Erythrolamprus poecilogyrus, we also detected a negative tendency 448 

across periods, but this result must be taken with caution because the intercept and the 449 

slope were not statistically significant, respectively. The environmental model indicate a 450 

negative tendency by season in P. patagoniensis, but not in E. poecilogyrus.  451 

Overall, these three species show a negative abundance tendency that 452 

accompanies a pattern of community composition reduction. However, the environmental 453 

variables that we used do not explain the negative pattern, except by reductions associated 454 

with summer in X. dorbigngy and all seasons in P. patagoniensis. This could indicate, as 455 

we saw at the community level, that environmental variables have a low power to explain 456 

changes of species abundance. For example, causes of the declines in snake populations 457 

of eight European species between 1990 and 2010 remain unknown, even though all of 458 

these species occur in areas subjected to increasing anthropogenic pressures [52]. In this 459 

study, five of the eight European species are characterized by small home ranges 460 

surrounded by urban areas. Furthermore, these five species have a preference for anurans 461 

as prey. This also mirrors our study system, where P. patagoniensis, although a trophic 462 

generalist, have a preference for anurans of the genus Leptodactylus [53] and E. 463 

poecilogyrus and X. dorbignyi are anuran specialists [54,55].  464 

Statistical analysis approaches and inference limitations 465 

Studying the responses of a community in a temporal scale framework possess serious 466 

analytical problems of auto-correlation measures and variance homogeneity (i.e., 467 

heterogeneity in the residuals). These are the most important assumptions of multivariate 468 
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and univariate classical statistical techniques [4,5,37]. Because our data consists on 469 

repeated measures in the same local area, heterogeneity and auto-correlation becomes the 470 

norm. In an attempt to infer change in community composition while trying to diminish 471 

the impact of heterogeneity and auto-correlation, we used an community composition 472 

ordination analysis as suggested by [28]. This is a Bayesian approach recommended when 473 

sample size for most species is low, as it takes into account the variable and imperfect 474 

species detection [56]. However, a comparable sampling design is needed to avoid 475 

spurious results. For this reason, we used pairwise comparisons between periods with the 476 

same number of unit samples (months in our case), while checking that sample effort (i.e., 477 

number of days and accumulate minutes) are also comparable. In fact, we our sampling 478 

effort during periods 8 and 9 is larger than that of period 7 (Table 1). This is particularly 479 

important because there is a 15 years sampling gap between period 7 and 8. Thus, we can 480 

argue that the inferred high probability of reduction in community composition between 481 

periods 7 and 8 is not an artifact of sampling effort.  482 

The 15 years sampling gap of our study opens an additional question. The 483 

probability of reduction of community composition inferred from our data during the first 484 

three years came to a halt in period 5 and remained until period 7 (Fig 4), with the 485 

reduction starting again when comparing period 8 with 7. Therefore, the inferred 486 

reductions could be cyclical, rather than linear. Unfortunately, our 15 years sampling gap 487 

does not allow to discern between these two scenarios. A complementary approach for 488 

future studies could investigate neutral process using simulations and test if ecological 489 

drift could better explain the ordination analysis and the percent of unknowledge variance 490 

inferred by us. Confronting neutral process and changing environmental conditions could 491 

be an interesting approach to overcome to partially mitigate the always limited amount of 492 

data when addressing community composition over time [57]. 493 
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 We studied specific species abundances by univariate methods and attempted to 494 

minimize autocorrelation using GLMM with random structure [58] [59]. However, 495 

despite the acceptable results of our model validation gave, incorporating random 496 

structure into GLMM does not directly model temporal correlation [58]. GAMM [60] is 497 

an alternative method to model it, but we cannot apply it because we have several nominal 498 

variables. Also, because we cannot incorporate imperfect detection in the GLMM, we 499 

could not studied the less abundant species. Perhaps hierarchical multi-species modelling 500 

[63] could allow for estimation of species-specific parameters (e.g., occurrence, 501 

abundance, and/or covariate effects) as well as community-level effects [64].  502 
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TABLES 726 

Table 1. Sampling organized by periods of time, sampling units per period (i.e., 727 

months), and sampling effort in number of total days and accumulated minutes per 728 

period with searches, with mean and standard deviations (SD) for each period in 729 

parentheses. 730 

Period Years Samples Days Minutes 

1 98–99 11 74 (6.7 ± 3.07) 13985 (1271.36 ± 787.72) 

2 99–00 12 88 (7.3 ± 3.11) 18605 (1550.42 ± 908.61) 

3 00–01 12 88 (7.3 ± 2.99) 26130 (2177.5 ± 1347.55) 

4 00–02 12 80 (6.7 ± 3.5) 23075 (1922.92 ± 962.63) 

5 02–03 12 111 (9.3 ± 2.18) 28135 (2344.58 ± 

1044.86) 

6 03–04 12 74 (6.2 ± 1.53) 11150 (929.17 ± 371.37) 

7 04 7 28 (4.0 ± 1.53) 5301 (757.29 ± 373.03) 

 05–19  Sampling Gap 

8 20–21 7 33 (4.7 ± 2.63) 9050 (1292.86 ± 724.29) 

9 21 7 36 (5.1 ± 1.57) 9667 (1381 ± 825.85) 

Total 9 92 612 145098 

 731 

  732 
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Table 2. Original 14 environmental variables used to characterized the study area. For 733 

each year, we coded season by month (in parentheses). Source refers to raster layer except 734 

for Tramandai meteorological station. 735 

Variable Units Source, spatial resolution 

Evapotranspiration kg m-2 s-1 

NASA/FLDAS/NOAH01/C/GL/M/V001, 

11132 m 

Soil moisture kg/m2 

Soil temperature K 

Near surface air temperature K 

wind speed m s-1 

Precipitation mm/day 

[UCSB-CHG/CHIRPS/DAILY], 5000 m 

[Landsat 5, 7, 8], 30 m 

Sand ha 

Urban ha 

Grassland ha 

Pinus ha 

Normalized Difference 

Vegetation Index 

[0.1–1] 

Minimum temperature C° WorldClim, ~21 km2 (98–04) |  

Tramandai Automatic Station (20–21), ~21 

km 
Maximum temperature C° 

Season Qualitative Spring [9, 10, 11], Summer (12, 1, 2),  

Autumn (3, 4, 5), Winter (6, 7, 8) 

 736 
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Table 3. Snake species found at the sampling area ordered by decreasing number of 738 

encounters (N). Average number and standard deviation (SD) of encounters per 739 

sampling period is in parentheses when N > 10. 740 

Species N Mean SD 

Xenodon dorbignyi 622 38.88 36.24 

Philodryas patagoniensis  507 31.69 18.66 

Erythrolamprus poecilogyru 312 19.50 13.17 

Helicops infrataeniatus  153 10.20 8.19 

Lygophis flavifrenatus 115 7.67 3.33 

Erythrolamprus jaegeri 59 4.54 3.53 

Erythrolamprus semiaureus  59 4.54 3.67 

Bothrops alternatus 21 2.10 1.52 

Boiruna maculata 6 - - 

Phalotris lemniscatus 5 - - 

Taeniophallus poecilopogon 3 - - 

Oxyrhopus rhombifer 2 - - 

Thamnodynastes sp  2 - - 

Philodryas aestiva 1 - - 

 741 
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Table 4. Selected environmental predictors, their variance inflation factor (VIF), and 743 

correlated variables according to pairwise Pearson’s correlations. 744 

Environmental 

predictors  

Nomenclatur

e 

Correlated variables VIF 

Evapotranspiration evap_tavg Soil temperature [0.74] 3.46 

NDVI by season ndvi_Season Pinus [0.80], Sand [-0.67] 1.66 

Urban Urban Sand[-0.93], Pinus [0.85] 2.17 

Precipitation precip Soil tempeture [0.87] 2.89 

Minimum 

temperature 

tmin Near surface air temperature [0.98], 

Maximum temperature [0.97], soil 

temperature [0.99] 

1.98 

Grassland Grassland Low positive [0.0-0.18] and negative [0.05-

0.5] correlation with all variables 

1.57 

Wind wind_f_tavg Low negative correlation with all variables 

[0.04-0.18] 

1.13 

 745 
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Table 5. The nine significant MEMs related to variation in snake community 747 

composition ordered by their decreasing statistical significant as determined by the p-748 

value. 749 

Variable R2 R2 adjust F p-value 

MEM9 0.055 4% 5.286 0.000 

MEM11 0.103 8% 4.724 0.000 

MEM10 0.130 10% 2.684 0.013 

MEM16 0.154 11% 2.493 0.021 

MEM30 0.178 13% 2.491 0.024 

MEM5 0.223 16% 2.425 0.024 

MEM2 0.245 17% 2.396 0.026 

MEM27 0.200 14% 2.413 0.030 

MEM1 0.264 18% 2.173 0.049 

 750 
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Table 6. Results of a fixed effects GLMM model on the abundance of five snake 752 

species. The intercept is an offset variable (log (Number of days)), and the R2 represent 753 

a pseudo-r obtained by bootstraps. D is the dispersion of residuals in the model, and Cor 754 

is the correlation between the Intercept and Period. 755 

Species Fixed effect Estimate 
Std. 

error 
z value Pr(>|z|) R2 D Cor 

Xenodon 

dorbignyi 
(Intercept) -5.12926 0.258 -19.909 0.000* 

19.89% 

1.10 0.557 

  Periods -0.10873 0.034 -3.166 0.002*     

Philodryas 

patagoniensis  
(Intercept) 0.11231 0.166 0.676 0.499* 

5.09% 

1.13 0.862 

  Periods -0.07792 0.034 -2.284 0.022*     

Lygophis 

flavifrenatus 
(Intercept) -1.5579 0.243 -6.400 0.000* 

0.33% 

1.59   

  Periods -0.03335 0.049 -0.677 0.498*     

Erythrolamprus 

poecilogyrus 
(Intercept) -0.09373 0.126 -0.745 0.456 

52.75% 

1.22 0.776 

  Periods -0.15438 0.027 -5.646 0.000*     

Helicops 

infrataeniatus  
(Intercept) -2.32709 0.480 -4.844 0.000* 

0.71% 

1.75 0.486 

  Periods 0.05932 0.051 1.160 0.246     

* p < 0.05 756 
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Table 7. Results of a random effects GLMM on the abundance of five snake 759 

species. The intercept is an offset variable (log (Number of days)), and the R2 represent 760 

a pseudo-r obtained by bootstraps. The intercept season:month represent the interaction 761 

between these variables. 762 

Species Random effect (Groups) Variance Std.Dev. R2 

 Intercep    

Xenodon dorbignyi month  0.1087 0.3298 40.02% 

 season  0.1045 0.3233   

         

Philodryas 

patagoniensis 
month  0.00332 0.0576 5.56% 

         

Lygophis flavifrenatus month  0.04266 0.2065 2.43% 
         
         

Erythrolamprus 

poecilogyrus 
season:month 0.0336 0.1833 57.15% 

         

Helicops infrataeniatus month 1.645 1.283 56.77% 
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FIGURES 765 

 766 

Fig 1. Study area. Comparative images Landsat of 2004 and 2020. 767 
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 768 

Fig 2. Variation of snake community abundance between periods (1–9) by month (A) and 769 

season (B). All graphs have the same scale values.   770 
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 771 

Figure 3. Variation of environmental variables through periods of time. See Table 4 for 772 

information on variables. All graphs have the same scale values in the time axis.  773 
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 775 

Fig 4. Probability of decrease in snake community composition across time periods (1–9). 776 
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 777 

Fig 5. Variation across time of statistically significant positive MEMs.778 
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 779 

Fig 6. Relative variation on snake community of different variables. (a) MEMs and environmental variables and (b) MEMs and Climate and 780 

Habitat variables. See main text for composition of each class of variables.  781 
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 782 

Fig 7. Snake species abundance across nine periods of time. 783 


