PUCRS

~ ESCOLA POLITECNICA)
PROGRAMA DE POS-GRADUAGAO EM ENGENHARIA ELETRICA
MESTRADO EM ENGENHARIA ELETRICA

GUILHERME ISAIAS DEBOM MACHADO

ANALYSIS OF THE EXTREME VALUE THEORY ON THE ESTIMATION OF
PROBABILISTIC WCET

Porto Alegre
2021

POS-GRADUAGCAO - STRICTO SENSU

Pontificia Universidade Catodlica
do Rio Grande do Sul

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO GRANDE DO SUL
ESCOLA POLITECNICA
PROGRAMA DE POS-GRADUACAO EM ENGENHARIA ELETRICA

GUILHERME ISAIAS DEBOM MACHADO

ANALYSIS OF THE EXTREME VALUE THEORY ON THE ESTIMATION OF
PROBABILISTIC WCET

Porto Alegre
2021

GUILHERME ISAIAS DEBOM MACHADO

ANALYSIS OF THE EXTREME VALUE THEORY ON THE ESTIMATION
OF PROBABILISTIC WCET

Dissertacdo apresentada como requisito para
a obtencédo do grau de Mestre pelo Programa
de Pds-Graduacdo em Engenharia Elétrica
da Escola Politécnica da Pontificia
Universidade Catdlica do Rio Grande do
Sul.

Area de concentracdo: Sinais, Sistemas e
Tecnologia da Informacao.

Linha de pesquisa: Sistemas de Computacéo,
Controle e Automacao.

Orientador: Prof. Dr. Fabian Luis Vargas

Porto Alegre
2021

Pontificia Liniversidade Catodlica do Rio Grande do Sul
ESCOLA POLITECNICA
PROGRAMA DE POS-GRADUACAD EM ENGENHARLA ELETRICA - PPGEE

ANALYSIS OF THE EXTREME VALUE THEORY ON THE
ESTIMATION OF PROBABILISTIC WCET

CANDIDATO: GUILHERME ISAIAS DEBOM MACHADO

Esta Dissertagdo de Mestrado foi julgada para obtengdo do titulo de
MESTRE EM ENGENHARIA ELETRICA e aprovada em sua forma final pelo
Programa de Pos-Graduacdo em Engenharnia Elétrica da Pontificia
Universidade Catolica do Rio Grande do Sul.

DR. FABIAN LUIS VARGAS - ORIENTADOR

BANCA EXAMINADORA

DR. JARBAS ARYEL NUNES DA STLVEIRA - PPGETI - UFC

DR. CESAR AUGUSTO MISSIO MARCON - PPGCC - PUCRS

PUC

Av. Ipiranga, 8881 - Predio 32 - Sala 507 | CEP 20&18-000 | Porto Alegre, RS - Brasil
Fone: {51) 3320-3540 | E-mail: engenharia.pg.eleticaifpucrs. br | wwow pucrs. boipolitecnica

AGRADECIMENTOS

Diante da conclusao deste grande desafio agradeco ao soberano Deus, por me preservar a vida
e me conceder o privilégio de realizar este trabalho, por sua fidelidade e pela graca de ter encontrado
muitas pessoas especiais.

Agradeco especialmente aos meus familiares, meu pai Teodoro, minha mae Nilda, meu irmao
Jonatas e minha cunhada Amanda, por serem incentivadores nesse grande desafio.

Ao professor e orientador Dr. Fabian Luis Vargas por me receber em seu grupo de pesquisa,
por viabilizar a realizagdo deste trabalho.

Ao professor Celso Maciel da Costa pelo privilégio de té-lo como mestre desde 0 meu ingresso
na graduacéo.

A todos os professores e colaboradores da PUCRS, meu muito obrigado por toda a ajuda e

colaboracéo.

RESUMO

Quando sistemas de tempo real sdo desenvolvidos para aplicages criticas, 0 tempo de execucao
é um requisito tdo importante quanto o resultado computado. Por este motivo, o tempo maximo de
execucdo de um sistema de tempo real deve obrigatoriamente ser determinado durante a fase de
projeto. Estimar o tempo de execucdo de sistemas complexos impacta diretamente no tempo e nos
custos da andlise durante o desenvolvimento do sistema. Neste contexto, esta dissertacdo tem por
objectivo avaliar a possibilidade do método MBPTA (do inglés: Measured-Based Probabilistic
Timing Analysis) se basear na Teoria de Valores Extremos (EVT - Extreme Value Theory) para
estimar o tempo de execucdo do pior caso probabilistico (PWCET - Probabilistic Worst-Case
Execution Time) de uma aplicagdo em uma plataforma de hardware simulado.

Para tanto, utilizou-se o processador MIPS rodando dois algoritmos como estudo-de-caso:
Bubble Sort e Filtro FIR. Estes algoritmos tém o WCET estimado através do método de andlise de
tempo deterministico estatico (Static Deterministic Timing Analysis — SDTA). Neste trabalho, o
MBPTA ¢é estimado através de duas técnicas distintas: Block Maxima (BM) e Peak Over Threshold
(POT), as quais sdo combinadas com EVT para a estimacéo final do WCET. Os valores de WCET
obtidos por MBPTA/BM e MBPTA/POT com EVT sdo comparados contra os valores de referéncia,
obtidos através do método SDTA.

Os resultados obtidos sugerem que a técnica BM fornece resultados confiaveis mais facilmente
do que POT. Embora POT seja mais complexa, as analises sugerem que esta técnica possui mais
precisdo que BM, especialmente quando ndo sdo repetidos os valores de entrada da aplicacdo

analisada.

Palavras-chave: Worst-Case Execution Time (WCET); WCET Estimation; Measured-Based
Probabilistic Timing Analysis (MBPTA); Extreme Value Theory (EVT); Block Maxima (BM); Peak
Over Threshold (POT); Aplicacdo de tempo real;

ABSTRACT

Real Time systems developed for critical applications require a proper execution time as
important as the correct computed outcome. Owing to this, the maximum execution time of a Real
Time System shall be determined by design. Estimate the execution time of complex systems affects
time and analysis cost directly during the system development. In this sense, this dissertation aims to
assess the possibility of applying MBPTA (Measured-Based Probabilistic Timing Analysis) based on
EVT (Extreme Value Theory) to estimate the pWCET (Probabilistic Worst-Case Execution Time) of
a given application in a given hardware platform.

With this purpose, this dissertation makes use of the MIPS processor executing two algorithms
as case studies: Bubble Sort and FIR Filter. These algorithms have WCET estimated by SDTA (Static
Deterministic Timing Analysis). This work applies MBPTA with two different approaches: Block
Maxima (BM) and Peak Over Threshold (POT), which are combined with EVT to estimate the final
WCET. Then it compares the obtained WCET values by MBPTA/BM and MBPTA/POT with EVT
to reference values, obtained by the SDTA method.

The obtained results suggest that the BM approach presents a reduced complexity
implementation as compared to the POT approach. Nevertheless, besides the POT higher complexity,

this approach is more accurate than the BM, especially when input data values are not repeated.

Keywords: Worst-Case Execution Time (WCET); WCET Estimation; Measured-Based Probabilistic
Timing Analysis (MBPTA); Extreme Value Theory (EVT); Block Maxima (BM); Peak Over
Threshold (POT); Real-time application;

List of Figures

Figure 1 - Example of a Measured Based Time Analysis. Reference: Wilhelm et al. (2008, p. 3)................ 19
Figure 2 - System Execution Time PDF. Reference: Kosmidis et al. (2014).......cccccvvveveiiiiieiieieeie e 20
Figure 3 - CDF and 1 — CDF. Reference: Kosmidis et al. (2014).cocuriiiieiereieieenese e 20
Figure 4 - pWCET estimative example (p = 10"%¢) . Reference: Kosmidis et al. (2014).cccocovvrvererrrennns 21
Figure 5 - Quantile-quantile graph example. Reference: G. Lima, D. Dias, and E. Barros. (2016)................ 26
Figure 6 - Illustration of unsafe values due to the implicit assumption fitting discrete and continuous
functions. Reference: Griffin @ Burns (2010).ccuciiiiiie ittt st 32
Figure 7 - An illustration of how to offset the Gumbel distribution to guarantee safe values. Reference:
GrIfFiN € BUIMS (2010). ...ttt b b ettt bbb r e e b ans 32
Figure 8 - Methodology steps. Reference: AULNOL.cooviiiiiiiii e s 36
Figure 9 - pWCET Process Analysis step. Reference: AULNOT.cooviiiiiiiiiee s 37
Figure 10 - Block Maxima approach flow. Reference: AUNOT.cccocv i 38
Figure 11 - Peak Over Threshold approach flow. Reference: Author. ..., 38
Figure 12 — Flow of Matlab functions to compute GEV DiStribution............cccceeeieiiiiiniininenneeeeeeees 40
Figure 13 - Flow of Matlab functions to compute GP DiStribution.cccccovveiiiiiiiiciiic e, 41
Figure 14 - Bubble Sort assembly code. Reference: AULNOT.ccoviiiiiiiiiiee s 43
Figure 15 - CFG of Bubble Sort assembled code. Reference: AUthOr.cccooieiiiiininiiee 44
Figure 16 - Maxima block histograms (X axis means execution time, Y axis means occurrences). Reference:
N1 1o PR 46
Figure 17 - Maxima block quantile-quantile plots. Reference: AUthOr..........c.cccccvviiiiiicice e, 48
Figure 18 - Histograms for different threshold values (X axis means time, Y axis means occurences).
LT 1= £=] 1o AN U 11 T OSSPSR 51
Figure 19 - Quantile-quantile plots for different threshold values. Reference: Author..........c.ccccooveveiviiienin, 52
Figure 20 - Assembled code of the FIR Filter. Reference: AUtNOT...........ccocooiieieieiiniice e 54
Figure 21 - CFG of FIR Filter code. Reference: AULNOL. ..o e 55
Figure 22 - Maxima blocks histograms for A (X axis means time, Y axis means occurences). Reference:
N1 o SR 58
Figure 23 - Maxima blocks histograms for B (X axis means time, Y axis means occurences). Reference:
N1 o PSS 59
Figure 24 - Maxima block quantile-quantile plots (A). FONt: AULNOT. ... 60
Figure 25 - Maxima block quantile-quantile plots (B). Reference: AUthOr ..o, 61
Figure 26 - Peak Over Threshold histograms for A (X axis means time, Y axis means occurences).
RETEIBNCE: AULNOL. ...ttt sttt st b et e e s e e st e be st e e be st et e et eneeneereans 65
Figure 27 - Peak Over Threshold histograms for B (X axis means time, Y axis means occurences).

L 1= £=] 0o A U 11 T) PSSR 65
Figure 28 - Quantile-quantile plots for different threshold values (A). Font: AUthor.cccocevveiciieiienn, 66
Figure 29 - Quantile-quantile plots for different threshold values (B). Font: AUthor.ccccoceviiciinne. 67
FIgure 30 - BUDBIE SOI CFG ...ttt sttt sa e et e e be s be e s e e beeaeesbestaebesbeeneerens 76
Figure 31 - The Dasic DIOCKS TIMES.c..oiviiiiiiiicie bbbt 77
Figure 32 - The number of executions for each block in the worst scenario. Reference: Author 79
Figure 33 - MBPTA and PUB methodologies. Reference: Kosmidis et al. (2014).........cccocvveviiiiiieicncennnne 81
Figure 34 - Simple Code Replication. Reference: Kosmidis et al. (2014).ccooeeiiviiininieneneneeeeee 82
Figure 35 - Code identification and replication. Reference: Kosmidis et al. (2014).ccccvoeviviiieicvieennns 82
Figure 36 - Nested If code replication. Reference: Kosmidis et al. (2014).cccooiiiiieiiniiieieeee e 84
Figure 37 - EPC interaction with standard MBPTA process. Reference: Ziccardi et al. (2015).........ccccoeee.ee. 86

Figure 38 - EPC steps applied on a simple program. Reference: Ziccardi et al. (2015).........cccccvviivicvrinnns 86

List of Tables

Table | - Comparison between WCET and PWCET ..o 24
Table 1l - Comparing SDTA to MBTA and SPTAtO MBPTA ..ot 24
Table 111 - advantages and drawbacks of EVT, PUB and EPC: ... 34
Table IV - Samples number (Ncurent) 0N analysis for WCET. Reference: AUthOr.........c.ccccovvvievevcicniceennn, 45
Table V - Different block sizes for Basic Blocks and Maxima Block. Reference: Author...........c.cccevvvvnnee. 46
Table VI - Gevfit function response for different maxima bIOCK SIZeS.ccccoveiiiiiiiiiie 47
Table VII - Difference between ECDF MBPTA (Block Maxima) and EVT distribution...............ccccceevenee. 48
Table VIII - Bubble Sort on Block Maxima approach.cccoceeiiiiiiiiisieecess e 49
Table IX - Threshold values and respective number of samples. Reference: Author. ... 51
Table X - Pareto parameter values for different thresholds............cccovvieiiiicic e 52
Table XI - Bubble Sort on Pick Over Threshold approach. ... 53
Table XII - Number of samples (Ncurrent) 0N analysis (A). Reference: Author. ..., 56
Table X111 - Number of samples on analysis (B). Reference: AUthOr. ... 57
Table X1V - Different block sizes for Basic Blocks and Maxima Block (A). Reference: Author. 57
Table XV - Different block sizes for Basic Blocks and Maxima Block (B). Reference: Author.................... 58
Table XVI - Gevfit function response for different maxima block Sizes (A)......cccoeoviiiniiiiinieiencieee 59
Table XVII - Gevfit function response for different maxima block sizes (B).......cccccovvvieviiiivc v ciese e, 60
Table XVIII - Differences between ECDF MBPTA(Block Maxima) and EVT distribution (A). 61
Table XI1X - Differences between ECDF MBPTA(Block Maxima) and EVT distribution (B).ccccco...... 62
Table XX - FIR Filter on Block Maxima approach, SCENAO A.........cccoveieiieieie et ste e sre st 62
Table XXI - FIR Filter on Block Maxima approach, SCenario B.ccccoviiriniieieinis e 63
Table XXII - Threshold values and number of samples for scenarios A and B. Font: Author. 64
Table XXIII - Pareto parameter values for different thresholds. ..o, 66

Table XXIV - Differences between ECDF MBPTA (Peak Over Threshold) and EVT distribution (A)......... 67
Table XXV - Differences between ECDF MBPTA (Peak Over Threshold) and EVT distribution (B). 67

Table XXVI - FIR Filter on Peak Over Threshold approach, Scenario A.cccoeoviiininenenencieeeee 68
Table XXVII - FIR Filter on Peak Over Threshold approach, scenario B.ccccoceiiiiininiiencicc 68
Table XXVIII — Comparing outcomes from BM and POT approaches.ccccceeveveiieneneenesieeiese e 70

Table XXIX - Static analysis for WCET. Reference: AULhOL.c.oooviiiiiiieie i 79

List of Abbreviations and Acronyms

ACET Average-Case Execution Time

AH Always-Hit

AM Always-Miss

BCET Best-Case Execution Time

BM Block Maxima

CDF Cumulative Distribution Function

CFG Control Flow Graph

CHMC Cache Hit/Miss Classification

CRPS Continuous Rank Probability Score

DM Direct-Mapped

DRAM Dynamic Random Access Memory

ECDF Empirical Cumulative Distribution Function
EPC Extended Path Coverage

ETP Execution Time Profile

EVT Extreme Value Theory

FA Fully-Associative

FIR Finite Impulse Response

FM First-Miss

GEV Generalized Extreme Value

GPD Generalized Pareto Distribution

ii.d. independent and identically distributed

IDE Integrated Development Environment

ILP Integer Linear Programming

IPET Implicit Path Enumeration Technique
MARS MIPS Assembler and Runtime Simulator
MBPTA Measured-Based Probabilistic Timing Analysis
MBTA Measured Based Timing Analysis

MIPS Microprocessor without Interlocked Pipelined Stages

0s Operating System

PDF
pET
POT
PUB
PUBaa
PUBam
pWCET
QQ-plot
r.v.
RTOS
SA
SDTA
SPTA
WCET

Probabilistic Distribution Function
probabilistic Execution Time

Peak Over Threshold

Path Upper-Bounding

Path Upper-Bounding Address Aging
Path Upper-Bounding Address Merging
probabilistic Worst-Case Execution Time
quantile-quantile graph

random variable

Real Time Operating System
Set-Associative

Static Deterministic Timing Analysis
Static Probabilistic Timing Analysis

Worst-Case Execution Time

1
2
3

Contents

INEFOTUCTION ..ttt b e bbb e bt e e e st e bt b e e bt sa b et e s et e e eneeneene 14
ODJECLIVES ...ttt b ettt a bbbt s b bt e et a bt bt b b ettt et neeneens 15
PIEIIMINAITES ...ttt ettt et et b e bbb e e et et e st e bt sb e e b e naen e s e s et eneeneas 16
3.1 REAITIME SYSIEMSeiiicteeiecte ettt ettt sttt e st e re e te s re e e et e s e et e s be e s e steeseensesreessebeessessesreensees 16
3.1.1 o T (oY Y DT o 1=T Ve 1= o Vol =TSRRI 16
3.2 The Worst Case EXeCUtion Time (WCET) ..ottt st 17
3.2.1 Static Deterministic TiMing Analysis (SDTA)cccciiiiie et e re e 17
3.2.2 Measured Based Timing Analysis (MBTA)ccccueiiireiiieeceeeeteeeieeesreeseeesre e sreeeseeeessaeeneeas 18
3.3 The Probabilistic Worst-Case Execution Time (PWCET)cccoverereneieininenereseseeeeeeeeeeeeiene 19
33.1 Static Probabilistic Timing ANalysis (SPTA)uuiie ittt e e e e e e s eareee s 21
3.3.2 Measurement-Based Probabilistic Timing Analysis (MBPTA)ccccoecieeeeeiiee e 23
K I o441 = <o) USSR 23
SEAEE-OT- AT ..ttt ettt h bbb bbbt a bt bbbt et ettt et eneens 25
4.1 EXtreme Value ThEOIY (EVT) .ottt s 25
41.1 Empirical Distribution Validation........c..eeiieiiiiiicie e 28
4.1.2 BIOCK MaXima (BIM)......eiiiiciiee ettt ettt e et e e et e e s e eaba e e e e abee e e ennbaeeeeenbaeeeennnens 28
4.1.3 Peak OVEr ThreShold (POT)...uii ettt ettt e eetee e e e ete e e e e bee e e e abaee e eeabaee e e nres 28
4.1.4 Differences between BM and POTcc.ciiiiiiiiiieniieeieeete ettt ettt sre e st e sareesaeeas 29
4.1.5 SINGIE Path WECET ...ttt st n e e mee e 29
O 0 111 - T <o o TSP 34
PropoSsed MEthOUOIOGYccuiiuieieiecececeeec ettt ettt st e st e e beeabesbeesaesbeeasebesreensaneas 34
5.1 SPECIHTICALION ...ttt sttt et et e st e et e e be et e s teere e teebe e b e beeaeenbenreennenrs 35
5.2 IMPIEMENTALION........ctiiieiectice ettt sttt et e b e s e et e be e e e teebeensesteeseentestnensesbeensanes 38
Validation & EVAIUBLION..........ccoiiiiiiiicc e 41
6.1 The SIMUIBIOr IMARS ..ottt 41
6.1.1 MARS CONSTIAINES ..eeiiiiiiiiiiiiiiiii et r e s 42
6.2 BUDDIE SOM CASE ...ttt ettt 43
6.2.1] = ol AN F= YAV USRS 44
6.2.2 MBPTA: ColleCting SAMPIES ..ceeiei et e e e e e s e e e e e e e s ebeae e e e e e e e e e nnrenanees 44
6.2.3 MBPTA: Block Maxima APProachueiiieiieei ittt e et e s e bae e e e sbree e e 45
6.2.4 MBPTA: Pick Over Threshold Approachooiiiiiiii i 51
6.3 Finite IMpulse RESPONSE FIlLEr CASEeivieieriereeeieseeeee ettt ettt a e re e eas 53
6.3.1] = ol AN F= YAV USSP 55

6.3.2 MBPTA: ColleCting SAMPIES ..ceeee ettt e e e e s e e e e e e e s b e ae e e e e e e e e s nnrenaeees 55

6.3.3 MBPTA: Block Maxima APProachueeeeeeeieecciiiieie e e ettt e e e e e ectaree e e e e e e e esnarre e e e e e e e e enrnraees 57
6.3.4 MBPTA: Pick Over Threshold APProacheeeieiiiiiiiiiiieiee et 64

GRS o o1 o =V o U 69

T CONCIUSTON ..ottt b et bt b s bbbttt e bt st e bt n b e 70
8 FUTUIE WWOTK ...ttt ettt ettt ettt b et n b 72
APPENDIX A - IPET Example: BUbDIE SOIt CaSEcc.uuiiieiiiiieeciiee ettt ettt e et e e st e e s e saaae e e e aaaeee s 76
APPENDIX B — EVT fOr Mmulti-path WECETccoccuiiiiiiiiie ittt sttt e st e e s stae e s ssatae e e ssnaeaessnnaeaesnsnneeeen 79
APPENDIX C — Path Upper-Bounding (PUB)........cueeciieiiieeiieeciee e steesteeesteeeteeeseteesteeesaseesnseeenaeesnsneennneas 80
8.1.1 Address Merging (PUBAM)ccuiiiiiieiiie et steeetee e s teesteeesate e s staeesaseestaeesaeesnsaeennseenns 81
8.1.2 Address AGING (PUBQQA) ..ccccuuiiiieiiie ettt ettt e ettt e st e e e aae e e s s ave e e s e aaeeeeenbaeeeeareeeeennnees 84
APPENDIX D — Extended Path CoVErage (EPC)ccccuieiecciiieecctee ettt e e e sava e e e et e e e e saaae e e ennaeaean 84

APPENDIX E — Matlab cOde @XaMPIES ...euviiiiiiiie ettt et e e st e e e sata e e e ssbaeeessnnaeeeennsneeen 87

1 Introduction

Developing computational systems requires predictability about the environment and system operation.
For several applications, it is an imperative requirement to ensure execution accuracy and reliability. The
occurrence of unpredictable delays in real-time systems used for aerospace, defense and automotive
applications, for instance, might jeopardize the equipment integrity as well as human safety.

Worst-Case Execution Time (WCET) is an important parameter to ensure accuracy under critical
conditions. Knowing the WCET since the early stages of the design allows the system to act in acceptable time
for all execution possibilities. There are several techniques to find a system WCET and those techniques
require software and hardware to be known and likewise predictable. Software characteristics as iterations and
conditional jumps impact execution time straightforwardly. Moreover, hardware characteristics as cache
memory and shared resources like buses also affect WCET (CUCU-GROSJEAN et al., 2012).

System complexity might jeopardize the process of finding the WCET. Predicting all execution cases in
intricate systems increases the time and overall design cost. Several hardware components, such as cache
memory, have random behavior, which varies the execution time for each execution case.

Alternatively, it is possible to find the execution time probability for different executions cases and set
a probability distribution of the system. It is possible to estimate the probabilistic Worst-Case Execution Time
(pPWCET) using that distribution and defining the worst scenario for some low enough probability.

GIL, Samuel Jimenez et al. (2017) show the open challenges regarding the pWCET definition. Having
a more critical view on the state of the art of the current literature, this paper points out theoretical problems
about Extreme Value Theory (EVT) application vulnerability, such as sample set representativeness and the
software and hardware characteristics correlation with some minimal sample amount for correct analysis.

LIMA, George; BATE, lain (2017) propose the Indirect Estimation in Statistical Time Analysis
(IESTA) technique, alternatively to hardware randomization to compensate systems intrinsic uncertainties.
This approach aims at trying to solve system uncertainty problems, nevertheless it disregards the pWCET
definition technique uncertainties.

When applying MBPTA with EVT to estimate pWCET, the inquiry is auspicious since there is a
considerable lack of information about the efficiency and applicability of this estimation method for real time
systems. Owing to this, this present-day work proposes a methodology to measure Extreme Value Theory
efficiency to estimate pWCET for critical real-time systems. The objective is to discover and explore EVT
limitations, also correlating EVT and system’s characteristics with the analysis of the computed results

uncertainty.

2 Objectives

This work aims to propose a methodology to analyze the quality of pWCET estimates of hard real time
systems, obtained according to EVT, and point out the process limitations this methodology might present. In
order to do that, it is possible to define some specific goals as follows:

. (1) Select algorithms for different applications, as Vector Ordering, Matrix Multiplication, Finite
Impulse Response filter (FIR) and Image Processing algorithms, for instance;
. (2) Assembly those algorithms for execution in MIPS architecture processor;
" (3) Statically analyze each application assembly code to determine the Worst-Case Execution
Time (WCET). This value is defined as the “reference value”;
. (4) Apply a Measured-Based Probabilistic Timing Analysis (MBPTA) to those application codes.
This process is to be realized under the use of different parameter values. It is possible to specify this
process in activities as follows:

= (4.1) Simulate every single code to obtain sets of execution time observations for each code.

= (4.2) Reach the minimum acceptable observations number (as described later in 4.1.5.)

= (4.3) Apply the Extreme Value Theory (EVT) in the sample sets according to the Block

Maxima (BM) approach.

= (4.4) Apply the EVT in the sample sets according to the Peak Over Threshold (POT) approach.
. (5) Investigate how the input data affect outcome data and how these input values influence the
outcome accuracy and reliability of the estimated WCET for both approaches (BM and POT).
. (6) Analyze results from different scenarios considering the same algorithm but different amounts
of data under analysis in order to verify whether and how the input data affects outcomes.
. (7) Validate results and look for patterns or situations that incur invalid pWCET estimates. To do

S0, the statically determined WCET as obtained in step (3) is assumed as the “reference value”.

3 Preliminaries

This chapter grapples with Real Time Operating System (RTOS), Worst-Case Execution Time (WCET)
and Probabilistic Worst Execution Time (pWCET) concepts.

3.1 Real Time Systems

For a Real Time Operating System (RTOS) the execution accuracy does not rely strictly on the logical
results, since the execution time to reach the logical result is an essential parameter (VARGAS; GREEN,
2015). Time restriction underlines the main difference between RTOS and general Operating System (OS).

Time requirements are indispensable for some controlling sets. Owing to this, developing a real time
system could be the best choice concerning control systems design. Costa (2010) affirms that real time systems
work for several activities, such as control science experiments, medical images, industrial control process,
robotics, aviation, and so forth.

Hardware characteristics have an impact directly on the real time system execution. Moreover, choosing
hardware components considering time restrictions is quite imperative. Reliable and fault-tolerant hardware
avoid errors and allow the system to manage predictable errors. Furthermore, hardware speed must be
accordingly suitable with the design time restrictions (SHAW, 2003).

Real time system’s tasks have a time restriction parameter named deadline. This parameter bounds the
maximum time to execute a task with no error. Disregarding the task deadline may cause system damage
(BUTTAZZO, 2012). The lost deadline hazard varies for each system, and, due to this, the literature classifies
RTOS in Soft and Hard RTOS.

Disregarding deadline in Soft real time systems, which incurs failures, is proportional to a good system
execution (OLIVEIRA; FRAGA; FARINES, 2000). By the way, to lose deadline in Soft RTOS implies soft
hazards.

On the other hand, loose deadlines in Hard RTOS may cause catastrophic damage. For some activities
such as airplane control, for instance, Hard RTOS is imperative. In this scenario, an unpredicted fault may
damage all equipment and crew. Furthermore, disregarding tasks deadline could affect the environment around
the control system. The RTOS time restrictions are commensurable with regard to system complexity and
sensitivity (OLIVEIRA; FRAGA; FARINES, 2000).

However, Data Dependencies and History Dependencies may affect execution time. Bernat, Colin and
Petters (2002) say that Data Dependencies are related not only to the algorithm under execution, but also refer
to hardware architecture implementation, which may affect the division and multiplication execution time, for
instance. History Dependencies refer to cache memory, pipeline and branch prediction algorithms that
influence the code execution time. Furthermore, the clock difference between the processor and peripherals

units might, for instance, deviate execution time for instructions as load and store.

3.1.1 History Dependencies

Abella et al. (2014) explain that cache memory loads content into fixed-size lines. Moreover, there are
many different cache designs in current processors and in literature. Furthermore, regarding the most common
cache architectures, it is possible to classify in Direct-Mapped (DM) caches, Fully-Associative (FA) caches
and Set-Associative (SA) caches.

In DM caches, each memory address content has only one possible location in cache. A mapping
function chooses the location. In FM caches, any memory address content might be stored in any cache address.
In this case, as soon as the cache loads a new data, the replacement function decides which location to replace.
This cache might use several replacement policies.

SA cache, contrariwise, incorporates both concepts. This method splits all memory and cache addresses
in unlike sets. Each set-in memory is direct-mapped to some set-in cache, as in DM ones. Nevertheless, as in
FM (First-Miss) cache, any memory address in a set might occupy any address on its mapped cache set.
Moreover, SA applies both mapping and replacement functions.

It is important to point that cache and its policies affect the execution time. Therefore, cache usage
increases execution complexity and decreases execution predictability. In other words, a given algorithm
executing in a given architecture, even computing the same logical result, might spent different times for

executing when applying different cache techniques.

3.2 The Worst-Case Execution Time (WCET)

The program Worst-Case Execution Time (WCET) is the time upper bound to execute the program code
in a specific processor. WCET is essential to real time system schedulability analysis and time warranty,
especially on hard real time systems (STARKE, 2012). The instructions execution time is no longer constant
though.

Oliveira, Santos e Deschamps (2006) affirm that RTOS time analysis may consider other time
parameters. The Best-Case Execution Time (BCET) is the lowest time to complete a task execution. On the
other hand, the Average-Case Execution Time (ACET) is the average time to fulfill task execution. By the
way, BCET and WCET are both upper and shorter time bounds for task execution.

Current WCET analysis techniques are too pessimistic, once the result is the absolute execution time
upper bound. Further complex cases require several simplifications. Bernat, Colin and Petters (2002) affirm
that finding a WCET by measuring the test cases set may disregards the true worst-case. In industry, most
engineers add a safety margin to the computed WCET aiming to compensate the reliability fault and the
uncertainty problems that measured samples may cover in the worst-case.

ABELLA et al. (2014) classify some methods to find WCET in Static Deterministic Timing Analysis
(SDTA), Static Probabilistic Timing Analysis (SPTA) and Measurement-Based Probabilistic Timing Analysis
(MBPTA).

3.2.1 Static Deterministic Timing Analysis (SDTA)

Static Deterministic Timing Analysis (SDTA) employs a detailed system model to derive a safe WCET
upper bound (WILHELM et al.,2008). SDTA techniques demand a hardware structural knowledge. Cache
analysis, for instance, requires a placement and replacement function expertise.

ABELLA et al. (2014) classify SDTA methods in low-level analysis and high-level analysis. Low-level
ones focus on processor architecture and high-level analysis determines the worst execution case, among all
the possible paths in a program.

1) Low-Level Analysis: Regarding cache in low-level analysis requires observing several characteristics

that may affect WCET estimation. Considering the type of cache associativity behavior during execution is
imperative. Theiling, Ferdinand e Wilhelm (2000) introduce the Cache Hit/Miss Classification (CHMC):
+ Always-Hit (AH): all fetched data results in a cache hit.
+ First-Miss (FM): It does not classify the first occurrence neither as hit nor as miss, though
considering any other as hit.
+ Always-Miss (AM): all fetched data results in a cache miss.
» Non-classified: it does not classify the occurrences as hit nor as miss.

There are three techniques to define CHMC category, the Must analysis, the Persistence analysis and
the May analysis. Those methods apply a static analysis based on abstract interpretation. Must analysis defines
if cache is always keeping the same memory block at a given program point. Thenceforth, in this case, CHMC
is always-hit. Persistence analysis identifies if cache evicted a memory block soon after being fetched.
Consequently, in this case, CHMC is first-miss. May analysis detects if a memory block may be in cache at
given program point. If it does not, the CHMC is always-miss. On other hand, if those techniques could not
classify the CHMCs, it is non-classified (ABELLA et al., 2014).

2) High-Level Analysis: Implicit Path Enumeration Technique (IPET) is the most common high-level

analysis technique. IPET solves the WCET calculation problem as an Integer Linear Programming (ILP)
formulation, expressing, using a linear constraints set, the program structure and all the possible execution
paths (WILHELM et al., 2008). This technique obtains an upper bound WCET, considering all the programs

basic blocks and the subsequent function maximum summation:

Ti * fi

i€BasicBlocks

Ti is the timing information of the basic block i, constant in the ILP problem. Ti considers cache effect,
CHCMs and cache and memory latencies. fi is the basic block execution number, variable in the ILP problem.
The ILP solver provides a safe upper-bound function of all the possible execution times. See Appendix A for

a detailed example of computing WCET applying IPET.

3.2.2 Measured Based Timing Analysis (MBTA)

According Wilhelm et al. (2008) Measured Based Timing Analysis (MBTA) simulates or executes basic

blocks code in hardware. The basic blocks are tasks code or tasks code snippets and every simulation or

execution time is measured. Vary input data allow to cover all the execution paths and discover the worst-case.
MBTA defines the BCET as the shortest execution time measured while the WCET as the longest execution
time measured one. Furthermore, every measure sample compounds an occurrence distribution, this
distribution allows one to find a given execution time occurrence probability.

Figure 1 depicts a MBTA example. The distribution displays the occurrence number of each time. The
white distribution describes a single case samples occurrence, all samples considering the same input data. The

dark distribution describes all cases occurrences, considering all samples.

e

worst-case performance

worst-case guarantee

.

The actual WCET

distribution of times

Minimal must be found or | Maximal
timing BCET Observed upperbounded_| observed \cET fiing
9 execution execution g
bound time bound
i i
0 +—— measured execution times ———| time

possible execution times
timing predictability

Figure 1 - Example of a Measured Based Time Analysis. Reference: Wilhelm et al. (2008, p. 3).

The Static Analysis dismisses task execution or its simulation on hardware. Static Analysis regard all
possible executions path in the task code. A Control Flow Graph (CFG) may describe those paths. After the
code analysis, the method relates all iterations upper bounds with the proper basic block on CFG. Match
execution time with iteration bounds for every basic block and calculate the worst execution time for every
path in code is the way to find the WCET.

The Static method defines every execution time bounds and ensures that the found WCET value will
never exceed. This method allows a safe schedule analysis in hard RTOS. However, if a given task depends
on some input data, the execution time could be eventually undeterminable. Furthermore, a higher analysis
code complexity may incurs a significant increase on computational effort and designs costs, because execution

paths increase exponentially as long as the conditional jumps in code increase (WILHELM et al.,2008).

3.3 The Probabilistic Worst-Case Execution Time (pWCET)

Gil et al. (2017) affirm that Static Analysis is unpractical for complex hardware components, although
MBTA finds a WCET, the true worst-case execution time may be not found. The Probabilistic Worst-Case
Execution Time intends to solve this MBTA problem.

The probabilistic Execution Time (pET) is a Probabilistic Distribution Function (PDF), which describes
the execution time probability to a given system. Figure 2 shows a Distribution pET example. In this example,
there is a probability of 14% that the code executes in 1.0 ms, for instance. Figure 3 depicts a Cumulative
Distribution Function (CDF), which is a cumulative sum of PDF function. In this regard, the “1 — CDF” is the

Exceedance Probability, i.e., the probability that the WCET exceeds a given computed value. For example, in

Figure 3 there is a probability of only 10% that the code executes up to 2 ms, or a probability of 90% that the
code executes under 2.0 ms, for instance (CDF function). CDF function shows the probability of execution in
less or equal a given time. In other words, according to Figure 3, 90% of all execution possibilities spent 2ms
or less. On the other hand, the 1 - CDF function shows that 10% of all execution possibilities exceed 2ms.

Using this distribution is imperative for computing execution time behavior.

0,20 -
0,18 -
0,16 -
0,14 -

-

£012 |

§ 0,10 |

20,08 -

o
0,06 -
0,04 |
0,02 |
0,00

0 1 2 3 45 6 7 8 9 1011
ET (ms)

Figure 2 - System Execution Time PDF. Reference: Kosmidis et al. (2014).

1,0
09 -

0,8 S~ CDF
0,7

© 0,5 -
0,3

0,1
0,0 T T T T T

012 3 456 7 8 91011
ET (ms)

Figure 3 - CDF and 1 — CDF. Reference: Kosmidis et al. (2014).

With pET is possible to find some probability p for a given time value t. Additionally, it is possible to
find some time value for a given probability. Furthermore, it is possible to relate WCET information to pET
distribution and to define the probabilistic Worst-Case Execution Time (pWCET).

It is imperative compounds an empirical probability distribution with all measured execution times to
find the pWCET. From this Empirical Distribution, it is possible to define an Empirical Cumulative
Distribution Function (ECDF). EVT compares ECDF to an existing probability function. Figure 4 shows a
PWCET estimate. In this case, the probability is p = 10 for a pWCET equal to 9.5 ms. Note that Figure 4
depicts a tail amplification of the “1 — CDF” function presented in Figure 3.

1,0E+00 -
1,0E-02 -

EVT projection

Z 1,06-04 7‘\ (IL/CDF)

E 1,08-06 - actual

6.? 1,0€-08 measurements

Y 1,0E-10 (1-CDF)

5 1,0E-12 -

-§ 1,0E-14 / target probability

B10E16 Koo
1,0E-18 - PWCET estimate \E
1,0E-20 1 .

012 3 45 6 7 8 91011
PWCET (ms)

Figure 4 - pWCET estimative example (p = 10%6) . Reference: Kosmidis et al. (2014).

The pWCET parameter is the worst-case execution time for a given probability threshold. Furthermore,
PWCET researches fall into Static Method and Analytic Method (Davis, Burns and Griffin, 2017).

3.3.1 Static Probabilistic Timing Analysis (SPTA)

The Analytic Method, also called Static Probabilistic Timing Analysis (SPTA), is applicable when a
system component or the environment affect the random behavior or time probability. For instance, a random
cache replacement (ABELLA et al., 2014). Cucu-grosjean et al. (2012) explain that SPTA derives system
model probabilities. Nevertheless, this method requires a considerable information amount about execution
behavior, even reducing the required information about program and platform.

SPTA method analyses software in structural level and instruction level and uses a hardware behavior
model to estimate the worst-case time behavior in a pWCET distribution. This distribution may contain cases
for all possible input data, software and hardware states and executions paths in code. Therefore, SPTA does
not execute the real hardware and, due to that, it depends largely on the hardware model accuracy. Abella et.
al. (2014) affirm that SPTA is not totally able to analyze multi-path programs and it is more pessimistic than
the measure based method.

SPTA may use random variables for probabilistic time behavior, expressed by the pair: <timing vector,
probability vector>, also named Execution Time Profile (ETP). The timing vector enumerates all operation
latencies while the probability vector lists the occurrence of associated probability. Hence, for an operation
Ai, ETP(AI) = < £,; > where & = {t},t2,t}, ...t} } and p;, = {p},p?,p}, ... p}} , whereas ¥ p/ = 1.

SPTA always assumes that previous instructions executions do not influence the instruction ETP. So,
assuming that the execution times probabilities for each instruction are independent, SPTA deploys the
convolution (*) of probability distributions for each instruction execution time along the flow. The result is a
probability distribution that describes the timing behavior of all execution path. In other words, if X and Y are

random variables that describe instructions x and y execution time, the convolution Z = X * Y is:

P(Z=1z}= Z:OOP{X — kP =z k)

Abella et. al. (2014) show the forthcoming example: if an instruction x has t, = {1,10} and p, =
{0.9,0.1}, while the instruction y has t,, = {2,10} and p,, = {0.5,0.5} the convolution is:

Z=ETPuyy = X*Y = (0%9 32) * (0?5 3.%)

:(3 11 12 20

045 045 005 005) = < {3,11,12,20},{0.45,0.45,0.05,0.05} >

3.3.2 Measurement-Based Probabilistic Timing Analysis (MBPTA)

The Measurement-Based Probabilistic Timing Analysis (MBPTA) computes software execution time
directly over hardware. For this purpose, the input data and vector may comprehend a relevant set of code
execution paths and different software and hardware states that affect the time behavior (ABELLA etal., 2014).

MBPTA, unlike SPTA, does not require a significant information about hardware behavior, as memory,
bus and cache probability times, for instance. This method is more attractive for industry, since it finds
execution time probabilities by collecting end-to-end run samples on target hardware. Cucu-grosjean et al.
(2012) affirm that MBPTA estimates pWCET trough an observed execution times collection. However,
literature does not specify the required amount of samples and whether there are inferences due to the amount.
The EVT has been applied to MBPTA in order to provide the execution time probability that a program exceeds
a given threshold, based on Complementary Cumulative Distribution Function (CCDF), or “1 — CDF”: the
Exceedance Probability of the observed collection.

Instead of taking the worst-case obtained and add a safe margin, this method employs the static analysis
of EVT based observations to estimate the pWCET distribution. EVT requires that all execution time samples
are described as independent and identically distributed (i.i.d.) random variables. In other words, all samples
must represent the same r.v. behavior and, further, a collected sample outcome cannot influence other samples
outcomes. However, i.i.d. observed execution times obtained on a given processor does not make that
processor MBPTA compliant. MBPTA has its own conditions beyond those EVT requirements (CAZORLA
etal., 2013).

For MBPTA applicability all execution time variations sources in the system must be statically (i.i.d.)
or probabilistic upper-bounded (CUCU-GROSJEAN et al., 2012). This is imperative to correctly compute
latencies in analysis.

Abella et. al. (2014) explain that having ETPs at the dynamic instructions level fulfills all MBPTA
requirements. At cache level, every dynamic cache access must be defined by a hit and miss probability.
However, MPBTA does not require an upper bound probability derivation for cache access, once MBPTA
estimates pWCET based on observations and does not derive pWCET estimates by convolution like SPTA.

3.4 Comparison

All the methods previously mentioned may be applied to deal with the worst scenario of a given system,
nevertheless, each procedure has advantages and constraints. Furthermore, even WCET and pWCET metrics
have their distinguished characteristics.

A WCET value represents the worst-case of the worst scenario that a given system may face, so this
implies a high reliability and accuracy, whereas it requires the knowledge of every system singularity that may
affect execution, increasing complexity, effort and costs to define the worst-case. In the meantime, the pWCET
conciliate complexity and accuracy adding failures probabilities to analysis, since the probability models may
be less intricate than the system’s model. Although the lower accuracy the pWCET is worth when the failure

probability is known and minimum. Table | shows a brief comparison between WCET and pWCET metrics:

Table | - Comparison between WCET and pWCET

Metric Main characteristics
Drawbacks Advantages
WCET Rt_equires too much d_ata Accurate
High effort and cost involved Reliable
OWCET Estimatiop as outcome . Build a model for pr_ediction
Accept failures (small probabilities) Less effort and cost involved

Static Deterministic Timing Analysis (SDTA) compute WCET according to the previously provided
system model and its characteristics, this procedure requires considerable effort and costs. On the other hand,
Measured Based Timing Analysis (MBTA) compute WCET measuring the system execution, the worst
measured scenario is regarded as WCET. Therefore, SDTA is more accurate than MBTA, however it may
apply some margin offset for safety and it involves less cost and effort.

Static Probabilistic Timing Analysis (SPTA) also requires a provided model of the system to compute
its pWCET, but this procedure regards the probability from this model, so the accuracy depends on the model.
Measurement-Based Probabilistic Timing Analysis (MBPTA), on the other hand, measures the system in order
to compute its probability model. Based on the probability model, MBPTA defines the pWCET considering a
desired probability threshold.

Table 11 shows a brief comparison between the methods SDTA and MBTA, it also compares SPTA and
MBPTA:

Table Il - Comparing SDTA to MBTA and SPTA to MBPTA

Method Main characteristics
Drawbacks Advantages
. Accurate
WCET SDTA Intricate Reliable
MBTA | Uncertain coverage Simpler
SPTA Depends on the provided model Based on pr_ovided probability model of the
accuracy system and its components
pWCET Depends on system execution Based on empirical model of the system
MBPTA | measurements May estimate the execution for many
Unknown accuracy probability thresholds

Considering these different methods, this work aims to apply and investigate MBPTA efficiency

exploring its vulnerabilities, since this is the most promising and challenging method currently.

4 State of the Art

This section presents the state-of-art approach to find WCET named: EVT. It is worthy to point that the
proposed work is to analyze the performance of MBPTA with EVT because this technique has been applied
in several scenarios involving extreme bounds presenting accurate and reliable outcomes. Also, it regards
single path programs only, for applying EVT to compute multi-path WCET, see APPENDIX B — EVT for
multi-path WCET.

Further, this section presents a comparison among EVT and two different approaches to compute the
worst-case: Path Upper-Bounding (PUB) and Extended Path Coverage (EPC). For more details about these
methods see APPENDIX C — Path Upper-Bounding (PUB) and APPENDIX D — Extended Path Coverage
(EPC).

4.1 Extreme Value Theory (EVT)

MBPTA technique delimits WCET upper bounds based on statistical analysis of execution times, which
uses the EVT, a statistical theory developed to estimate uncommon events probabilities. Several fields apply
EVT nowadays, such as engineering, financial, earth science and traffic predict. Hydrology also applies EVT
to estimate an abnormal flooding event probability, for instance, defining the maximum flow rate which a
given flow gate must support. Estimated pWCET is commonly associated to a desired probability threshold.
Critical code executing on complex processors might apply this technique with a lower cost than in static
methods (SILVA; ARCARO; OLIVEIRA, 2017).

Lima and Bate (2017) define EVT in the following steps: (a) collect a desired random variable samples;
(b) select the maximum samples in (a); (¢) find an statistical model to fit the selected samples in (b); (d) validate
the model and (e) determine an upper limit (probability threshold) based on the model found in (c) since that
model was validated in (d).

The literature presents two techniques that handle empirical samples to determine pWCET: Block
Maxima (BM) and Peak Over Threshold (POT). The EVT initial objective is to collect the proper values that
compound the distribution tail of the system behavior model and fit this model into a Generalized Extreme
Value (GEV) distribution. After collecting samples, EVT selects the maximum values, grouping all samples
into equal blocks size and uses the block maxima method to obtain a block maxima with the maximum values
of all the blocks. This approach is known as the Block Maxima (BM). Alternatively, EVT may select maximum
values, picking all the samples above a given threshold (CUCU-GROSJEAN et al., 2012). This approach is
known as the Peak Over Threshold (POT). There are also two types of software codes that EVT can be applied:
single path programs and multiple-path programs. The approaches BM and POT as well as the single- and
multiple-path type programs will be described along with this section.

G. Lima, D. Dias, and E. Barros. (2016) show a technique to visualize how much the EVT distribution

fits on the ECDF. This technique is the quantile-quantile graphs (QQ-plot). It is, essentially speaking, a plot

of the empirical quantile observed values against the target distribution quantiles. This graph shows a
distribution quantiles in one axis, while it similarly shows the compared distribution quantiles in the other axis,
so if those distributions are equal, the graph will show a straight line, like x =y. The Figure 5 shows a quantile-
guantile graph example, in which the x axis shows the model quantiles while the y axis shows the empirical

guantiles.

Empirical Quantiles
2e+05 3e+05 4e+05 5e+05

2e+05 4e+05

Model Quantiles

Figure 5 - Quantile-quantile graph example. Reference: G. Lima, D. Dias, and E. Barros. (2016).

Some scenarios may require a higher samples number to analyze different block numbers or block sizes
to fit the model. In this case, the only constraints are the spending time and the costs to collect all the measured
execution time (LIMA; DIAS; BARROS, 2016).

Silva, Arcaro and Oliveira (2017) describe EVT application on MBPTA as the fit of the collected
samples with a known EVT distribution, this samples must be the hardware execution times, previously
observed and gathered to this analysis. Furthermore, GEV may express these distributions behavior. However,
even small variations on GEV parameters might result in significant pWCET variations, which turns the fitting
process harder.

Cucu-grosjean et al. (2012) bring a detailed work about EVT. In this work, a software was executed on
a given processor and observed 1000 times. From the observations, 1000 execution time samples are collected.
Regarding it, it is possible to model those samples with independent and identically distributed (i.i.d.) random
variables, so it can find the program pWCET through an Empirical Cumulative Distribution Function (ECDF).
The inverse ECDF tail shows the pWCET possible values, which allows estimating a pWCET for a defined
probability threshold. However, this approach requires a good ECDF tail model similar to the system behavior,
which would need a significant observations amount to fit the low probability model. In this example, the
samples number is enough to describe the real system behavior, and the maximum confidence for 1000
observations is p(execution time > WCETestimated) = 10, In other words, the probability of WCETestimated
being larger than a given execution time sample is 0,999, whereas the probability of a execution time sample
being larger than the WCETestimated is 1 — 0,999 = 103,

EVT is a mathematical method to estimate the extreme values probability of known rare events. This

technique results in the maximal (or minimal) distribution function values of n samples collected and modelled

with random variables. The EVT method is similar to Central Limit Theory, but estimating the extremes
instead of the average (EDGAR; BURNS, 2001).

Cucu-grosjean et al. (2012) brings the following theorem:

“Theorem 1: Let {X;X,,..,X,} be a sequence of i.id. random variables and let M, =

max{X;X,, ..., X,}. If F is a non-degenerate distribution function and there is a sequence of pairs of real

numbers (a,, b,) such that a,, > 0and lim (M"_b" < x) = F(x), then F belongs to either the Gumbel, the

n—oo an
Frechet or the Weibull family”.

This theorem provides the main EVT result. The distribution function F describes the common function
of n random variables. In this case, random variables used to model program execution time. There are two
main hypotheses required for this theorem: random variables are independent and identically distributed and
the real numbers sequence (a,, b,,) must exist.

To define pWCET is imperative to collect the system execution time samples. Gil et al. (2017) claim
that the process objective is to analyze the extremes samples (maximum). There are two techniques to select
the extremes samples, a block Maxima (BM) selection or just picking all the samples higher than a defined
threshold, Peak-over-threshold (POT) technique.

Cucu-grosjean et al. (2012) hold the view that the block maxima theoretical basis affirms that if some
data fits a known CDF, then the block maxima of those data fits the same known CDF.

The maximum values selection affects EVT outcomes directly as far as the total observations number.
Regarding BM method, the block size might embarrass the distribution fitting. Cucu-grosjean et al. (2012)
emphasize that the larger the block size, the better it is to fit the tail. However, the block size is directly
correlated to the number of blocks, considering that the total samples number is constant. For instance, 1000
samples may be divided into 10 blocks of 100 samples or into 100 blocks of 10 samples or even into 1 block
of 1000 samples. The samples number in final block maxima is exactly suited to the same number of blocks.
In other words, increasing the block size decreases the final block maxima.

To apply EVT under BM approach, the maxima block must converge with one of three possible
distributions: Gumbel, Weibull or Frechet. There are three parameter do describe those distributions: shape
(&), scale (o) and location ().

The Generalized Extreme Value (GEV) comprehends those three distributions. Also, determining GEV
parameters proves the real number sequence (a,, b,) existence. Using GEV, the shape parameter value
indicates which distribution to use. If £ < 0 the distribution is Weibull, if & > 0 the distributions is Fréchet and
& = 0 indicates the distribution Gumbel. Peak-Over-Threshold approach uses the Generalized Pareto
Distribution (GPD) instead.

Cucu-grosjean et al. (2012) define GEV Cumulative Distribution Function as follows:

1
_(1+§ﬂ)?
Feo={¢ 70

x—p

e ¢ 7, E=0

According to Gil et al. (2017), further to determine GEV parameters is imperative to select the

appropriate CDF (Gumbel, Frechet or Weibul), using a goodness-of-fit test. However, some tests may be

inappropriate for fitting extreme values. Edgar and Burns (2001) indicate that Gumbel distribution fits well the

WCET estimation problem.

4.1.1 Empirical Distribution Validation

The theorem 1 requires that the random variables sequence must be independent and identically
distributes (i.i.d.). Cucu-grosjean et al. (2012, 3) defines the Independence Random Variables concept as:

“Two random variables X and Y are independent if they describe two events such that the occurrence
of one event does not have any impact on the occurrence of the other event.”

On other hand, the identically distributed Random Variables concept is (CUCU-GROSJEAN ET AL.,
2012, 3):

“A sequence of random variables is identically distributed if all random variables have the same
probability distribution.”

Moreover, a random variables sequence meets the i.i.d. requirements when they are independent and
have the same distribution function. For instance, a sequence of dice rolls, each roll as a random variable, is

i.i.d. as the obtained outcomes of independent events and the r.v. describes the same event.

4.1.2 Block Maxima (BM)

Literature presents a technique that handles empirical samples to determine pWCET called Block
Maxima (BM). Block Maxima technique allocates all the samples in basic blocks, whose the higher sample of
each basic block defines a new block called maxima. The number of observations in the maxima block is equal
to the number of basic blocks. However, literature suggests that the ideal sample number in each basic block
must be enough to describe the program behavior properly (ABELLA et al., 2014).

After filtering the maximum values from basic blocks and gathering them in the Maxima Block, this
data is used to determine the distribution and its parameters values that better fits those maximum values, in
order to compute pWCET. Moreover, the samples amount used on the analysis may affect the fitting
characteristics (CUCU-GROSJEAN et al., 2012).

Based on this assumption, this work aims to assess how the samples amount, especially the number of
blocks and their sizes, can prejudice this method outcomes. Literature doesn’t inform if there is an optimal
point neither a correlation between the size of the basic blocks and the Maxima Block that affects the computed
PWCET.

4.1.3 Peak Over Threshold (POT)

Literature also presents the Peak Over Threshold (POT) technique to compute pWCET based on
empirical samples. Peak Over Threshold technique, on other hand, is simpler than BM. Instead of splitting
samples into blocks and filter the maximum value. It just selects all the samples over a given limit (threshold)
value. The selected observations compose a set that feeds the MBPTA process. Therefore, this threshold value
affects directly the samples humber used under analysis and, hence, the outcome. Choosing a lower threshold,
the most of samples either all samples may be regarded in MBPTA. On the other hand, choosing a higher

threshold may force the process to regard a small number of samples, for instance.

Therefore, this work also aims to assess how the number of samples affects the results obtained by POT.
Literature doesn’t inform how to choose the best threshold value and the minimum number of samples required

to compute the pWCET properly.

4.1.4 Differences between BM and POT

There are some open challenges and open concepts to applying both techniques to determine a program
WCET. It is important to notice that several program characteristics, such as the number of paths, memory
access inside loops and vector or matrix sizes, for instance, may influence the distribution function. As well as
the relationship between the program behavior and the proper number of output observations that are produced
by the program (CUCU-GROSJEAN et al., 2012). Both techniques handle empirical samples previously
collected and both approaches may compute the pWCET based on GEV and, hence, based on Fréchet, Gumbel
or Weibull distribution family, according to MBPTA process.

The difference between BM and POT is basically the process to samples to feed the MBPTA process.
POT picks all samples whose value is higher than a given threshold to analysis whereas BM divides all samples
into basic blocks and then picks the highest value of each basic block to analysis. Although literature affirms
that each basic block, on BM technique, must contain samples enough to describe the program behavior, there
is a lack about how to validate the basic block before to pick the maximum value. Also, it is worthy to notice
that BM is more complex than POT (CUCU-GROSJEAN et al., 2012).

4.1.5 Single Path WCET

Applying EVT may require some assumptions as independent executions times and identically
distributed (i.i.d.). Furthermore, the program under analysis must run in isolation with no system calls.
Although it is not a realistic scenario, this assumption must be guaranteed for the success of the current analysis
method (CUCU-GROSJEAN et al., 2012).

Regarding a fully deterministic system executing with identical start conditions, a single execution path
has to yield a unique execution time. However, there are interference effects due to hardware features, such as

Cache hit/miss and DRAM refresh cycles, and the impossibility of ensuring identical starting conditions every

time an execution begins. There are no statistical guarantees for that execution time variability, though some
approaches have been taken place, in the past, as for applying EVT to represent this nature of the variability
(CUCU-GROSJEAN et al., 2012).

Furthermore, if every jitter source is independent, the response times converge on average to a closed
form distribution. According to Central Limit Theorem, this is the normal distribution due to the finite variance
of the input distributions in most cases. On other hand, if independent random variables cannot represent jitter

sources, those sources upper bound must be considered as constant (CUCU-GROSJEAN et al., 2012).

A. Input Data Dependence

Using a single-path with fixed data on a simple and known architecture is possible to compute exactly
the execution times distribution when observing this path hardware behavior with static probabilistic model.
This allows evaluating the EVT behavior and increasing the method confidence to apply to more complexes
architectures.

When performing a measurement-based analysis, it is imperative to provide a program input data suite
to stress the system and to induce the worst-case behavior. The input data may affect the execution time, even
when it does not affect the execution path. For instance, multiplying some numbers could spend more or less
cycles than other numbers. Moreover, data structures contain pointers, which may refer to different memory
addresses depending on the input values, hence it affects cache latencies and memory access pattern.

Generally speaking, it is impossible to provide or even to statically define the worst-case data input at
deployment time. Therefore, the platform design must have no effect from input data. Alternatively, there are
approaches that force operations, such as divisions, to take a pessimistic safe assumption, which could be their
upper-bound execution time. Paolieri et al. (2009) introduce the Worst-Case Mode, a technique that delays all
resource requests until it detects their maximum execution time. This approach is transparent to execute
programs when they are active and it may be configurable by software. There is a similar solution for data-
dependent memory access, in this case, accounting the input data effects through flags. For instance, if a given

input data dependent memory operation executes once, there is no reason to use cache for this instruction.

B. Platform Requirements

The MBPTA, in EVT approach, provides a pWCET estimate for a given exceedance probability. This
approach requires that all execution time variation resources in the system must have a probabilistic behavior
that measurements on platform can detect the events that vary within the execution time (CUCU-GROSJEAN
etal., 2012).

A possible approach is to analyze all hardware resource with too high latency and randomize the timing
behavior to upper bound when incurred pessimism is acceptable (CAZORLA et al., 2013). Applying this
ensures that only random events might affect the execution time. Moreover, any detected frequencies of
execution time shows probabilities with confidence level provided by EVT. Therefore, it is possible to use the

observed system behavior at the test to predict the behavior during a given operation.

In standard not-time randomized architecture the execution time frequencies detected in tests do not
serve as actual probabilities. In other words, standard not-time randomized architecture cannot apply this
approach because only not randomized events may affect execution time. Therefore, it may not ensure the

execution times occurrence probability of the observed behavior in future (CAZORLA et al., 2013).

C. Independent and Identically Distributed Observations

It is necessary to ensure that each execution runs independently in order to hold i.i.d. properties. A
feasible approach is to force the hardware state to always before a run starts. At path level, identical distribution
requires the latencies to be chosen independently to compose the total execution time (CUCU-GROSJEAN et
al., 2012). A probability must be associated to every path execution time possibilities. It is imperative that an

execution observed timing performance does not influence other executions timing performances.

D. Minimum number of observations

Griffin e Burns (2010) affirm that the results could not bound execution time for every points when
using Gumbel distribution function, or even any continuous function, when approximating a discrete function
to an execution time value produced by a given program. Figure 6 illustrates this limitation to fitting discrete
and continuous functions.

In this case, the discrete function has values at 5, 10 and 15. The defined Gumbell function (continuous
line) meets all the points when fitting with the discrete function. However, the uncovered points cannot be
disregarded since MBPTA collects a finite number of execution time observations. The dashed line shows the

possible values between the collected values.

1.0

T T T
I Cumulative Gumbel
0.9 I Exceedance Probability -
| Actual Exccedance
' Exceedance Probability
0.8- N : Measured Data Point . n
% 0.7+ \ : -
(1] |
o
2 06l Wo! —
o ’ |
9 |
5 09 _ | i
2 \ |
o 04 A | —
>
L |
0.3+ : -
|
0.2 I _
|
1
0.1 ~_ ! .
— |
0.0 | | Y- - -
0 5 10 15 20

Time (Cycles)

Figure 6 - Illustration of unsafe values due to the implicit assumption fitting discrete and continuous
functions. Reference: Griffin e Burns (2010).

A different solution proposing to solve this limitation is to add an offset to the continuous function in
order to cover all the possible values in the unmeasured points. Figure 7 shows how the offset can cover all

the possible values.

1.0 T T
: Cumulative Gumbel
0.9+~ | Exceedance Probability -
| Actual Exccedance .
08 | “ Exceedance Probability i
: |) Measured Data Point .
= | \ Offset Data Point o
= 0.7 | \ -
= .
g | \
o 0.6~ | \ 7]
3 Lo
c 05- > I\ -
B N
@ hY
8 04+ _
>
W
0.3+ -
0.2+ -
»
01+ | 1
| - —
0.0 | |) -
0 5 10 15 20

Time (Cycles)

Figure 7 - An illustration of how to offset the Gumbel distribution to guarantee safe values. Reference:
Griffin e Burns (2010).

To get a high confidence level in a distribution, it is required a sufficient observations number to produce

an authentic execution time description of the program. Cucu-grosjean et al. (2012, 5) define it as follow:

“For a given sequential program P and an architecture A, n is the minimum number of observations if
there does not exist m € N where m > n such that the Gumbel CDF obtained for n observations is an upper
bound for the WCET of P and also exceeds the CDF obtained for m observations.”

Cucu-grosjean et al. (2012) obtain the minimum observations number contrasting the EVT tail
projection deviation regarding a increasing executions number. The iterative process is described as follows:

1) Run Noyrrent + Ngeiea times the program.

2) Project, with EVT, a tail for N_,;..n: €xecutions and another for N.yyrent + Naeita-

3) If the two EVT distributions have a difference above a given threshold, it is necessary to repeat the
step 2 considering Neyrrent = Newrrent + Ngeira @nd making Nggieq more runs. If the difference
is below the threshold, it ends the process.

Since Ny, jtq 1S coOnstant, the proportional effect on new runs reduce when increasingN,,,;rens, Which
ensures the convergence algorithm. However, a strict convergence for some local minima is not ensured.
Changing the algorithm may compensate this, stopping the process after some consecutive iterations instead
of stopping as soon as the difference between distributions is under the threshold. Cucu-grosjean et al. (2012)
considered 5 consecutive executions below the threshold to be a sufficient one to deal.

Bradley. (1968) defines a Continuous Rank Probability Score (CRPS), a metric to compare EVT

distributions, or functions:

CRPS = Z:[fx(i) — fy(H]?

In this case, fx and fy represent a distribution functions that operate in the same value domain. The
difference threshold depicts the significance level in hypothesis tests. Reducing the threshold value increases

the confidence result, although this requires a higher observations number.
E. EVT Step-by-step

Cucu-grosjean et al. (2012) describe the steps to apply EVT in single-path programs in order to obtain
a stable result:

1) Collect observations: the author initially suggests a sample set with approximately 100 execution
times observed. Afterwards, in each round the Ny.;;, Must be added as the previously described
process.

2) Grouping: This step may use a technique, as Block Maxima or Peak-Over-Threshold, to convert the
measured frequency distribution into a suitable EVT distribution.

3) Fitting: It uses the empirical distribution, 1 — ECDF actually, to estimate the GEV distribution, hence
it defines the GEV parameters as the calculation previously described.

4) Comparison: It compares, according to Continuous Rank Probability Score metric, the current round
distribution to the previous round.

5) Converge: If the difference between distributions does not reach a given threshold, as defined by

CRPS metrics, the process starts a new round at step 1. Otherwise, to consider the distribution

converged, it is necessary to collect more samples doing a few more rounds, the author suggests 5
consecutive rounds in this step.

6) Tail extension: this step defines the final GEV parameter values for probabilities under the threshold.

4.2 Comparison

The Extreme Value Theory is widely discussed in literature since it is applied in other science fields.
On the other hand, the EVT success in other areas don’t ensure this theory covers time analysis with no
vulnerabilities. Furthermore, EVT create a probability model to predict failures without inspecting or change
the algorithm code.

Path Upper-Bounding method changes the code in order to equal the size for all paths. This method
ensures that a sample represents the WCET no matter the input values or the executed path. Since all paths are
equal to the worst one, the MBPTA might focus on other uncertainties, as cache and buses delays, for instance.
Although, PUB requires a detailed inspection to the code in order to edit it.

Extended Path Coverage measures each basic block and, instead of creating a probability model for the
whole program, it creates models for every basic block, which are computed into path’s model and, hence, the
program’s model. Similar to PUB this method requires code inspection in order to all basic block

independently. Table 11l shows the advantages and drawbacks of EVT, PUB and EPC:

Table 111 - advantages and drawbacks of EVT, PUB and EPC:

Method Main characteristics
Drawbacks Advantages
EVT Depends on input values Widely applied _
May not execute the worst path No code inspection
PUB Detailed che inspegtio_n and edition All paths are equal to the worst
Recently discussed in literature Focus on hardware variabilities
EPC Detailed che Inspection Measure all basic blocks
Recently discussed in literature

5 Proposed Methodology

The proposed methodology in this work aims to assess pWCET estimates by Measured Based
Probabilistic Timing Analysis (MBPTA), based on EVT. Path Upper-Bounding (PUB) and Extended Path
Coverage (EPC) methods are not considered in this study because these approaches have been cited recently
in Literature whereas EVT has been mentioned in several researches. Further, EVT has been applied in
different scenarios involving extreme limits presenting accurate and reliable results.

In this methodology the MBPTA process uses samples of execution time of a given program. These
samples can be collected executing as well as simulating the program. According to EVT these samples might

be filtered and gathered to form an empirical distribution which describes the algorithm behavior. Based on

that, this methodology looks for limitations in the samples filtering techniques Block Maxima (BM) and Peak
Over Threshold (POT) and also measure how much it affects the pWCET outcome.

BM technique splits all samples in basic blocks. The sample with the maximum value of every basic
block form the Block Maxima, which contains all considered data on EVT analysis. This methodology
compares EVT analysis for a given algorithm applying different input parameters and number of samples.
Executing BM approach, this methodology tries to define the best basic block size. As higher is the number of
blocks, lower is the number of samples in these blocks, decreasing the block data quality and, maybe,
decreasing outcome accuracy also. For this reason, this work aims to find an optimal block size for BM.

POT filters all samples based on its threshold value to EVT analysis. The threshold is the key for this
technique, since a too low threshold might select all samples with no criteria, whereas, a high threshold might
filter just a few samples to be analyzed, which may affect the outcome as well. For this reason, this work aims
to define an optimal threshold value for POT.

Therefore, this methodology uses different observations numbers and different input parameters values
in order to exercise and to point out the vulnerabilities that these EVT techniques may have. Exercising
different cases with distinct numbers of samples, blocks and thresholds may draw a clear conclusion about the
advantages and drawbacks of these techniques.

Furthermore, this methodology consists of selecting a given algorithm, assemble the code to MIPS
architecture, analyzing statically to obtain a WCET, and applying MBPTA to obtain a pWCET. In both
analyses, the execution time is measured by executed instructions, as to avoid that hardware relate uncertainties
affect the outcome. In other words, this may enhance only the applied techniques uncertainties. Owing to this,
this work does not regard execution cycles.

5.1 Specification

This methodology may be summarized in four steps: 1) Context Definition, 2) WCET Definition,
3) Sample Collection, and 4) pWCET Process Analysis, as depicted in Figure 8:

Start

Define Context

Define WCET

Collect Samples

Analyze pWCET
process

End

Figure 8 - Methodology steps. Reference: Author.

1 — Context Definition: It is the software and hardware selecting process. The chosen algorithm is so
important as the chosen hardware platform. Once this algorithm is executed in the target hardware, both affect
the execution time behavior and, hence, the later analysis. The number of paths, the existence of loops and the
complexity are some algorithm’s characteristics that may be regarded in this deciding step. On the other hand,
when choosing the hardware platform is opportune to consider the time uncertainty due to buses and used

peripherals, cache memory usage, number of cores in processor, for example.

2 — WCET Definition: It consists of analyzing the defined context and finding its absolute worst-case
execution time. To achieve that, both statically analysis and measured-based analysis may be applied, the
available tools and analysis complexity should be considered in the Context Definition. This step compute an
absolute WCET value, it defines the “reference value” that will be used to validate and compare the pWCET

determined by the BM and POT approaches thereafter.

3 — Sample Collection: This step the collects execution time observations of the chosen context. Also,
it defines the minimum samples number for the context analysis. This minimum number is computed through
Continuous Rank Probability Score (CRPS), as described in 4.1.5. Further, the CRPS determine the smaller
probability threshold for the pWCET in the end of the analysis. The collected samples may be filtered by BM
and POT methods and, then, analyzed to calculate the pWCET.

The literature does not explain whether the samples collecting process should control the used input
values. Owing to this there are two alternatives, control the used input values and don’t repeat them, collecting
only one sample for input, or don’t control the used values, repeating them and assuming the risk of do not

execute the worst-case path.

4 — pWCET Process Analysis: it defines the probability distribution that describe the pWCET. Besides
that, this step also filters the collected samples according to BM or POT approaches and computes the pWCET
according to EVT. Comparing the reference value obtained in step 2 with the calculated pWCET it is possible

point how accurate and effective the MBPTA process is for the context.

Figure 9 depicts this step, which applies the BM and POT techniques in the collected observations to
estimate the pWCET. There are some input parameters exercised in this step. In this work the parameters are
named N, M and L. N is the number of samples before the filtering processes BM and POT. M is the number
of observations in the Maxima Block, it is equal to the number of basic blocks in which all the samples are
allocated. This parameter refers to the Block Maxima approach only. L is the timing limit value that POT uses

to filter values before the result computation. This limit number refers to Peak Over Threshold only.

Probabilty
Threshold P

MBPTA

Z 3\

Block Maxima: Peak Over Threshold:
Exercising N and M Exercising N and L

Reference

pWCET Comparison WCET

Conclusions

Figure 9 - pWCET Process Analysis step. Reference: Author.

As mentioned above, the M parameter in BM approach defines the number of basic blocs and hence, the
number of observations in the maxima block. Together, these basic blocks contain all the collected
observations. However, separately, each basic block requires a sample number enough to describe the program
behavior. In other words, changing the M parameter may demand more samples and, hence, change the N
parameter too. Figure 10 shows the BM approach flow. This methodology applies different values for M and
N.

Distribute N samples in M basic blocks

Pick each block maximum value to the Maxima Block

Create the Empirical Distribution (ECDF) for Maxima Block

Fit the ECDF with a GEV Family distribution

Find the pWCET using the chosen GEV distribution

Figure 10 - Block Maxima approach flow. Reference: Author.

The L parameter in POT approach defines the timing limit value for the observations in analysis.
However, changing the L parameter changes the samples number under analysis too, which can affect the
behavior’s depiction. This methodology exercises different values for L parameter. Figure 11 shows the POT

approach flow.

Start

Select samples whose values are equal or above L

Create the Empirical Distribution (ECDF) for POT

Fit the ECDF with a Paretto distribution

Find the pWCET using the chosen distribution

End

Figure 11 - Peak Over Threshold approach flow. Reference: Author.

5.2 Implementation

The execution context defined to for this methodology is basically executing the algorithms Bubble Sort
and Finite Impulse Response filter (FIR) on MIPS processor. For this reason, it is required to assemble these
codes for MIPS architecture processor and, hence, run on simulators such as Mars (MISSOURY STATE
UNIVERSITY, 2017). This context regards only MIPS single core since it is more predictable and less

complex than multi core architectures.
The WCET computation step found the static WCET, manually.

Every time an assembled code is simulated in Mars, for MIPS processor, its execution time is collected
as a sample of execution time. Once it collects one sample per simulation, it is required to run the algorithm
several times, since MBPTA requires a considerable number of samples. After that, the analysis filter all
collected samples according to the techniques criteria.

The N parameter might vary for each algorithm analysis, since different programs might require a
different number of samples. The M and L parameters values are specific for each approach, for this reason,
their values are defined separately for BM and POT.

Itis possible to compute all the EVT calculation by Matlab tool, as it has libraries and functions targeting
EVT calculation. To illustrate it, there are two examples of Matlab code in APPENDIX E — Matlab code

examples.

There is a function for the Empirical Cumulative Distribution Function (ECDF), called ecdf() , which
receives as parameter an array containing the samples for analysis. This function returns two arrays (X and y
axis) describing the ECDF of the provided data. It is worthy to point the BM and POT filtering process are

applied manually before the EVT computation on Matlab.

For computing the Generalized Extreme Value (GEV) distribution, in BM approach, the gevfit()
function receives the same parameter than ecdf(), the filtered data for EVT analysis. However, this function
finds the Generalized Extreme Value (GEV) distribution and its parameters that better fit to the empirical data.

Also, gevfit() returns the reference values for the parameters shape (&), scale (o) and location ().

Thereafter, it is possible to generate the Cumulative Distribution Function (CDF) using the gevcdf()
function. This function receives an array with the desired values of the x-axis and the computed GEV
parameters &, o e u. Then it returns the y-axis GEV values for the input x-axis range. The Figure 12 shows the

flow with the functions and data involved in this computation.

Filtered Samples

Empirical Distribution

GEV Parameters

GEV Distribution

Figure 12 — Flow of Matlab functions to compute GEV Distribution.

Besides that, it is possible to compare the GEV computed distribution to the empirical one, ECDF, and
also, it is possible to find extreme values uncovered by ECDF. Furthermore, once the GEV function is defined,
it is easy to identify the probability value (y axis) for extreme values (x axis). In other words, it can identify

when the function assumes the value equal to the desired probability threshold.

For computing the Grand Pareto (GP) distribution, in POT approach, Matlab provides gpfit and gpcdf
functions. The gpfit() function is similar to gevfit(), whereas gpcdf() function is similar to gevcdf() and
returns the y-axis values regarding the computed GP distribution. The Figure 13 shows the flow with the

functions and data involved in this computation.

Filtered Samples

Empirical Distribution

GPFIT()

GP Parameters

GPCDF()

GP Distribution

Figure 13 - Flow of Matlab functions to compute GP Distribution.

There examples of Matlab code are in APPENDIX E — Matlab code examples.

6 Validation & Evaluation

The difference among results obtained analyzing a given algorithm must evidence the proposed
methodology efficiency. Thereafter, it is possible to point out characteristics that may disturb the EVT results
for pWCET. The results validation regards the statically defined WCET. The result accuracy depends on the
difference between the obtained value and the reference one, statically computed (SDTA). Aiming to get
different results, it analyzes different scenarios considering different number of samples and different sample
filtering parameters. Therefore, the outcome accuracy may point how the number of samples and the filtering
process affect each scenario.

6.1 The Simulator MARS
The chosen simulator to this work is MARS (MIPS Assembler and Runtime Simulator), developed by

Missouri State University. MARS is a lightweight interactive development environment (IDE) for
programming in MIPS assembly language, intended for educational-level use with Patterson and Hennessy's
Computer Organization and Design. MARS was initially developed for teaching MIPS architecture aiming to
clarify and facilitate the understanding of this architecture by the simulation of the entire processor. It can be

used through its Integrated Development Environment (IDE) or even from command line. Also, MARS

simulates MIPS-32 instruction set, covering 155 basic instructions of the MIPS-32, approximately 370 pseudo-
instructions, the 17 syscall functions and more. Furthermore, its IDE provides program editing and assembling,
it also supports interactive debugging. It allows the user to easily set/remove execution breakpoints and to
inspect the execution, viewing and editing register and memory contents (MISSOURI STATE UNIVERSITY,
2020).

It is important to enhance that MARS simulates MIPS architecture according to Patterson and
Hennessy's descriptions, using the same registers and flags. It also contains a virtual cache memory with some
features as counting cache-miss and cache-hit occurrences. Similarly, it has a functional virtual memory for
program code and for data. Further, it allows the user to change register and memory values during the

execution.

Mars afford to use tools that explore the program behavior. The Instruction Counter tool provides the
total number of executed instructions during the whole program. It also displays the executed humber regarding
different instructions types. There are tools that scan cache memory and main memory access, which allows
setting different configurations and memory block sizes, and then it provides the access rates for each memory
block during simulation. The Branch Prediction tool is worthy to be pointed, also. Moreover, MARS contains

several functionalities and proper tools to learn and understand MIPS single core behavior.

6.1.1 MARS Constraints

Besides all functionalities, it is important to point some constraints in MARS. It disregards the time
spent to execute instructions, it only computes the next instruction to simulate and do not mind how much time
it takes to do that. Hence, there is no pipeline simulation and it is not possible to detect stalls when accessing
memory, for instance. Although it has memory tools to report access rates, it ignores completely buses delays

and asynchronous executions.

MARS has Delayed Branching functionality, which aims to reproduce processor behavior on branching.
However, this functionality forces the simulator to execute the next line after a branch instruction,

independently whether the branch will take or not.

6.2 Bubble Sort Case

The first analyzed context is an ordering vectors algorithm named Bubble Sort. This is a simple
algorithm, widely employed in literature. In this case, Bubble Sort must ordering an eight positions vector.

Each position may assume values among 0 to 8. The Figure 14 shows the analyzed assembly code:

1 .data
Z veo: .word 8, 7, 5,4, 4, 3, £, 1
3 wvecsz: .word 8
4
5 L text
£ mairn: la 5al0, wvec
ki lw 5al, vecsz
8 3 bubble
2
10 bubble: 11 5s0, 0
11 eloop: bge $s0, $al, end
1z 1i §s1, O
13 iloop: bge $s1, $al, endiloop
14 =11 §+1, §=0, 2
15 =11 5+, §=1, 2
16 add §tZ, §al, 5tZ
17 lw 53, 0(5t2)
1s lw 5+t4, 4(5t2)
19 blt $t4, $t3, swap
zZ0 addi 5=1, %=1, 1
Z1 3 iloop
B swap:
23 sw SE3, 4(5t2)
24 sw Std4, 0(5t2)
25 addi $5=1, §s1, 1
Z6é 3 iloop
27
28 endileooap:
zZ9 addi 5s0, 5s0, 1
30 3 eloop
31 end:
3z 1i §w0, 10
a3 syscall

Figure 14 - Bubble Sort assembly code. Reference: Author.

The assembled algorithm code has 10 basic blocks. It is important to enhance that jumps or branches
delimit every basic block, either for executing a branch instruction or being called for an instruction in other
block. Figure 15 shows the Control Flow Graph (CFG) of the assembled code of this algorithm. Assembling

the code may replace some instructions and change the instructions number in each basic block.

Figure 15 - CFG of Bubble Sort assembled code. Reference: Author.

6.2.1 Static Analysis

The worst-case statically computed regarded the assembled code, similarly to the CFG. It applied the
Implicit Path Enumeration Technique (IPET) due to this outcome reliability and accuracy. According to this
technique, the number of a block execution times is equal to the summation of all times the execution enters
this block and also equal to the summation of all times the execution get out this block. With this assumption,
it is possible to determine the maximum execution times for each block from the iterations blocks with known

upper bounds.

The IPET analysis for the Bubble Sort algorithm resulted in 826 executed instructions in the worst
scenario, since this work regards executed instructions as time unit, the WCET is 826. For a detailed IPET
computation for this program, read APPENDIX A - IPET Example: Bubble Sort Case.

6.2.2 MBPTA: Collecting Samples

This algorithm has two variables, the vector and the vector size, vec and vecsz in Figure 14 (line 2 and
3). In this example, vecsz has value 8 and vec has the values 8, 7, 6, 5, 4, 3, 2, and 1. During the analysis this
algorithm is executed several times regarding different values for vec, however the vector size is always the
same. Considering the vector size and all the values that each vector position can assume, it has 9 (or
43.046.721) different possible cases.

Every time the algorithm is executed, the time required to execute the code becomes a sample. During
the collecting step, every execution sample is unique, since the input value is unique. In other words, this step
never repeats the input vector values. Considering 10000 unique samples, it has a coverage of 0,0232% of all

possible scenarios.

Since it is infeasible to execute the algorithm 92 times, it is necessary to define the minimum but enough
number of samples. The numbers of observations regarded in this analysis follows the Continuous Rank
Probability Score (CRPS) explanation in 4.1.5. It basically creates distributions with different number of
samples and compare them. As more the number of samples used to compute these distributions, less is the
difference between them. To reach the minimum number of samples the difference should be less than the

desired probability threshold.

In this scenario the chosen value as desired probability threshold is 10, since it is small but reachable
also. The initial number of samples is N.,,;+en: = 3500, arbitrarily chosen. This choice must consider the time
and costs effort to collect samples. Starting CPRS with a high number of samples may induce an useless effort,
since the minimum number can be smaller. On the other hand, the chosen number for delta is Ng.;;q = 100,
arbitrarily chosen. This choice must regard the time and costs effort to compute and compare the CRPS
distributions, since small the delta number is, bigger is the number of computations and comparisons until the
desired threshold be reached. The following table shows the CRPS analysis, the computation regards the
equation CRPS = Y750 fx (i) — fy(i)]? according to 4.1.5.

Table 1V - Samples number (Ncurrent) On analysis for WCET. Reference: Author.

o] |
NDelta CRPS

1 3500 3600 1.35E-06
2 3600 3700 1.54E-08
3 3700 3800 2.45E-07
4 3800 3900 6.66E-08
5 3900 4000 8.06E-09
6 4000 4100 5.95E-12
7 4100 4200 9.92E-07
8 4200 4300 1.08E-10
9 4300 4400 1.41E-09
10 4400 4500 2.60E-07
11 4500 4600 6.27E-07

The last value above the desired threshold 10 occurred when Nyyren: = 3500, no one of the following
rounds computed differences exceeding the threshold. Therefore, it points an enough number of samples
starting from 3600 observations. Furthermore, it is possible to point these differences do not decrease linearly,
which is a good reason to execute a few more rounds after finding the minimum number of samples in order
to assure the Max difference still smaller than the threshold. Although CRPS indicates 3600 samples as a safe
number of samples for analyzing, this scenario regards 4500 observations, which means a safe number and
may provide more details than 3600 samples. The chosen number represents a coverage of 0,01045% of all

possible executions case for this algorithm.

6.2.3 MBPTA: Block Maxima Approach

Since the literature does not specifies the criteria for splitting samples in basic block, in this work it
divides samples in basic blocks according the order they were collected. For instance, regarding blocks with

100 samples, the first basic block would contain the 1 to 100" samples.

This Block Maxima analysis regards only 4500 samples and compares different basic blocks sizes, as
depicted in table below:

Table V - Different block sizes for Basic Blocks and Maxima Block. Reference: Author.

Size of basic Blocks 1 | 10| 15| 18 | 45 [50]90|100 |250 300|450 (4500
Number of Basic Blocks |4500|450(300|250({100(90(50| 4518|1510 | 1
Size of Maxima Block 4500(4501300(2501100|90|50(45118 (1510 | 1

The first scenario considered basic block as one sample size and, therefore, the maxima block contains
all 4500 collected samples. On the other hand, the last one regards 4500 basic blocks, which implies in only
one sample for Maxima block: the highest value sample.

The Maxima block must contain enough samples to represent the execution behavior properly, specially
the extreme values (CUCU-GROSJEAN et al., 2012). Regarding this, the next figure shows the histogram for
each maxima blocks considering the different sizes.

4500 Samples 450 Samples 300 Samples
1500 150 T T T - T
1000 100
500 a0
0 i} 0
770 780 790 800 810 820 90 795 800 g0 810 a15 820 801 803 805 807 809 811 813 815 817 819
280 Samples 100 Samples 90 Samples
G0 30 30
40 20 20
20 10 10
0 0 0
801 803 805 807 809 &811 813 815 817 519 805 810 315 805 a10 815 820
50 Sarnples 45 Sarmples 18 Samples
20 15 5}
10 4
10
i 2
i} 0 0
808 810 g12 a14 g16 818 820 a10 g12 a14 g16 a18 820 g12 a14 a16 a18 820
15 Samples 10 Samples 1 Samples
5} 5} 1
4 4
05
i |] :
0 0 | 0
814 815 g16 a7 g18 819 820 a16 817 18 819 820 815816817 818519520821 822823824

Figure 16 - Maxima block histograms (X axis means execution time, Y axis means occurrences). Reference:
Author.

By analyzing histograms, it is possible to realize how the maxima block representability decreases as

the samples number becomes lower. Under 90 samples, the histograms seem to be describing a completely

different algorithm than the one with more than 90 samples, since the number of repetitions is dramatically

reduced. Therefore, pWCET outcome analysis must count on this characteristic.

After split samples in basic blocks and pick their maximum values to compound the maxima block, it is
possible to apply EVT methodology. The Matlab function gevfit() receives an array containing the maxima
block samples. This function returns three parameters calculated according to Generalized Extreme Value
methodology, the parameters location, scale and shape. These parameter values for each maxima block size
are displayed in Table VII. The pWCET outcome analysis must count that in some cases gevfit returned

warning messages.

Table VI - Gevfit function response for different maxima block sizes.

Maxima Block Size | Location (u) | Scale (o) | Shape (§)
4500 791.488 8.211 -0.262
450 805.297 4.353 -0.193
300 807.309 3.903 -0.196
250 807.974 3.724 -0.188
100 811.163 2.985 -0.162

90 811.284 3.044 -0.174
50 813.091 3.078 -0.277
45 813.218 2571 -0.124

18* 817.395 2.910 -1.117

15* 817.812 2.706 -1.237

10* 819.070 1.182 -1.271
1 820 0 0

*Gevfit returned the message: Maximum likelihood estimation did not converge. Function evaluation limit
exceeded. Maximum likelihood converged to a boundary point of the parameter space. Confidence intervals
and standard errors cannot be computed reliably.

Computing EVT distribution requires only the parameter values, thereafter the computed distribution is
compared to the ECDF empirically defined. Figure 17 displays the quantile-quantile plots for all scenarios

with different maxima block sizes.

4500 Samples 450 Samples 300 Samples

1 1 e 1 +
05 / 05 05 /
O 04 0=
0 0.2 0.4 0.6 03 1 i} 0.z 0.4 0.6 03 1 i} 0z 0.4 06 0.8 1
280 Sarnples 100 Samples 90 Samples
1 s 1 + 1 +
0.5 + 0.5 T 05 .
T
Dt 0 bt ob
a 0.2 0.4 0.6 03 1 0 0.z 0.4 0.6 03 1 0 0z 0.4 06 0.8 1
80 Samples 45 Samples 18 Samples
1 =+ 1 + 1
+
=
0.5 0.5 05
ol ol 0 .
o 0.2 0.4 0.6 03 1 o 0.z 0.4 0.6 03 1 0 0z 0.4 06 0.8 1
15 Samples 10 Samples
1 + 1 +
0s . 0s + 7
+
o -
0 0 =
0 0.2 0.4 0.6 03 1 0 0.z 0.4 0.6 03 1

Figure 17 - Maxima block quantile-quantile plots. Reference: Author.

These QQ-plots represent the symmetry between EVT and ECDF distributions. The blue points are the
real comparison whereas the red line is computed to represent these points. When all points in the plot can be
described as X =Y, the distributions fitting is perfect. However, when the computed distribution does not
represent the empirical data properly, there is a bad fitting, which is evidenced by the asymmetry, when the
points are furthermost (X # Y). Keeping this in mind it is possible to analyze the QQ-plots and deduce the
fitting comparison gets worse when the Maxima Block has less samples. Also, it points a bad fitting for 18

samples or less samples whereas the other scenarios seem close from symmetry.

Based on the QQ-plots it is important to point out that 4500 samples scenarios is the most symmetric,
on the other hand, a good enough symmetry may be obtained with 100 samples, for example. Therefore, based
only in these plots it is possible to conclude that there is no need to consider so many samples for computing
the EVT distribution.

Like histograms, the quantile-quantile plots point that fitting the empirical (i.e., the MBPTA) and the
EVT distributions is harder as long as the number of samples in maxima block is lower. It is important to
enhance that it is not even possible to define a distribution for a unique value, as the one sample maxima block

case. These differences between distributions are also shown in the following table:

Table VII - Difference between ECDF MBPTA (Block Maxima) and EVT distribution.

Maxima Block Size Max Cor(nl\gg)r(l)son Average C(c;n;pe)?;ézc;n
4500 0.042 0% 0.019 0%
450 0.088 110% 0.035 84%
300 0.103 145% 0.041 116%
250 0.102 143% 0.041 116%

100 0.128 205% 0.053 179%
90 0.122 190% 0.053 179%
50 0.161 283% 0.05 163%
45 0.164 290% 0.062 226%
18 0.325 674% 0.103 442%
15 0.337 702% 0.12 532%
10 0.357 750% 0.163 758%

According to the table, the best fitting occurs for 4500 samples. In this scenario, 0.042 is the maximum
difference between the computed EVT distribution and the empirical data collected as samples, when
calculating the average difference, the outcome is less than a half of the maximum difference. Owing to this,
the 4500 samples scenario is regarded as reference values for comparison to all scenarios in the columns

Comparison (Max) and Comparison (Average).

Decreasing the number of samples in maxima block increases considerably the distributions differences.
For instance, the average difference for 100 samples is 179% higher than the difference for 4500 samples,
whereas the maximum difference value is 205% higher than the maximum for 4500. The 450 samples scenario,
when compared to the 4500 samples case, points out that decreasing the Maxima Block Size in 90%, the

difference between distributions increases 110%.

Finally, Table VIII shows the pWWCET outcome for each Maxima Block case. The probability threshold
value is 10 and the reference values for WCET, statically computed in 6.2.1, is 826 executed instructions:

Table VIII - Bubble Sort on Block Maxima approach.

Maxima Block Size | pWCET(10) |pW([:)gfl?£e\r}\(;‘(3:ET| Difference/WCET

4500 818 8 0.97%
450 822 4 0.48%
300 823 3 0.36%
250 823 3 0.36%
100 824 2 0.24%
90 824 2 0.24%
50 823 3 0.36%
45 826 0 0.00%
18 820 6 0.73%
15 820 6 0.73%
10 820 6 0.73%
1 820 6 0.73%

According to the pWCET results, the higher difference between the WCET and the outcome occurs for
Maxima Block size equal to 4500 samples. This difference decreases as long as the sample number decreases.
For 45 samples the difference is zero, the found pWCET value is equal to the reference WCET.

Considering the histograms (Figure 16) and the QQ-plots (Figure 17), the scenarios with 90 or less

samples do not satisfy the requirements described on literature for a reliable outcome. It is worthy to point that

gevfit function (Table VI) returned the following message for 18 or less samples: ‘Confidence intervals and

standard errors cannot be computed reliably’.

While scenarios when the Maxima Block has small size seem clearly unreliable, the scenarios with the
higher size of Maxima Block, 4500 samples, resulted in a pWCET of 818 executed instructions. It represents
the largest difference between the computed pWCET and the reference WCET. Besides that, this outcome
value means that there is a probability of 10 of the execution time exceeds 818, which seems accurate,
acceptable and trustable even though this pWCET does not cover 0,9685% of all possible values (from 818 to
826).

The 45 samples scenario outcome, on the other hand, has no difference to the reference. Although it
covers 100% of all possible values, it indicates that there is a probability of 10 of the execution time exceeds
826, which is not true. It is worthy to enhance that even when the outcome seems more accurate, the reliability

still been the most imperative requirement in the analysis.

Considering the outcome values and the Block Maxima analysis, it suggests that the best results, with
reliable outcomes and smaller differences, arise regarding 300 to 90 samples in analysis. In other words,
regarding 2% to 7% of the total samples in EVT analysis with Block Maxima (BM) approach increases the

outcome accuracy.

6.2.4 MBPTA: Pick Over Threshold Approach

Similarly to Basic Block Approach, this analysis with Pick Over Threshold regards 4500 samples
amount. However, instead of splitting samples and defining blocks sizes, this approach defines threshold
values to determine whether regards or not a given sample in analysis. Therefore, the number of samples under
analysis depends on the chosen threshold value. The following table shows the threshold values and the

analyzed samples amount for each case.

Table IX - Threshold values and respective number of samples. Reference: Author.

Threshold | 770|780 | 790 | 800 | 805 | 810 | 815 | 820

Samples |4500|4352|3350(1330(442 (167 | 22 | 5

This picking process select all samples whose value is equal or higher than the threshold. The first
threshold value, 770, picks all 4500 samples, since it is the minimum value in the collected samples. On the
other hand, the last threshold, 820, selects only five samples, once this is the maximum value collected on the

samples.

The following image shows the histogram of the analyzed samples for each scenario:

Threshold 770 Threshold 750

1500 1000

1000 - b
500

500 - b
1} 1}

770 7f/8 780 FBs 790 FBs 800 805 810 815 820 782 F8e 790 784 FBE BOZ 806 810 814 818
Threshald 800

Threshold 790

1000 1000

500 B 500

0 . . ! 1
750 795 800 805 810 815 820 801 803 805 807 B09 BN 813 B15 B17 819
Threshold 505 Threshold 810

. .

806 808 a10 812 814 a1b 818 820 10 81 g12 813 814 815 &6 BIF 818 819 820
Threshold 515 Threshold 520

B
i 2r
: .1 i ;

I I I I I I I I ! I ! I I
a16 41645 a7 417 a a1 G185 19 4195 &20 15 816 817 18 819 0620 621 822 823 O

Figure 18 - Histograms for different threshold values (X axis means time, Y axis means occurences).
Reference: Author.

As the Block Maxima approach, the Pick Over Threshold requires to converge values between the
collected samples and an EVT computed distribution. However, instead of computing a distribution from GEV
family, POT compute from Pareto Distribution family. Matlab provides gpfit() function for Pareto
distributions, which is similar to gevfit. This function returns two parameters: Scale and Shape. The following

table displays this parameter values for each case.

Table X - Pareto parameter values for different thresholds.

Threshold | Scale () | Shape (&)
770* 2.16510% | -2.6401
780* 1.58110° | -1.9289
790* 1.94410° | -2.3712
800* 1.866 103 | -2.2764
805* 1.67210° | -2.0399
810* 1.958 10° | -2.3885
815* 1.386 10° | -1.6907

*Gpfit returned the message: Maximum likelihood has converged to a boundary point of the parameter

space. Confidence intervals and standard errors cannot be computed reliably.

It is imperative to enhance that there is no good convergence for any scenario. Therefore, no one
outcome is reliable. Also, it is not possible to determine a distribution with only one value, as the 820-threshold

case. The following quantile-quantile plots confirm these bad convergences.

Threshold 770

Threshold 780

Tr e ir #4*
0&r 0sf +++
e
+ +
o . TN = S . .) o IESRSIY: £ = . . . s)
0 0.05 0.1 013 02 025 03 0.3 0.4 0 0.05 0.1 014 0z 0.25 0.3 035 0.4
Threshald 790 Threshald 800
1r i 1r +
+ +
+
0s5r ++ 0sf +
++ ‘/ﬁ—‘ﬁ
0 PR RN = A S S L L L | 0 L + L L L ! |
0 0.05 0.1 015 02 025 03 035 0.4 0 0.05 a1 015 02 0.25 03 035 0.4
Threshold 805 Threshold 810
1r + 1r +
+
nst 0sf +
+
+
i 4 i L L L L L | 0 L L+ + L L L L 1 1
0 0.0s 0.1 015 02 025 03 0.3 0.4 0 0.0s 01 015 0z 0.25 0.3 0.35 0.4
Threshold 515
1r + 1r
0s5F + 0sf
+
i 1 | 1 1 1 1 1) il 1 1 1 1 1 1 1 1 1)
0 0.0s 0.1 015 02 025 03 0.3 0.4 0 01 0z 03 0.4 05 06 07 03 09 1

Figure 19 - Quantile-quantile plots for different threshold values. Reference: Author.

The quantile-quantile plots proves the large difference between empirical distributions and Pareto’s. It
is important to point that a good fitting shows a straight line (X = Y) from 0 to 1. However, no one of plots
above not even reached 0.5 on the X axis. This lack of confidence is also evidenced on the outcomes, displayed

on the following table:

Table XI - Bubble Sort on Pick Over Threshold approach.

3 Difference
Threshold PWCET(10) IPWCET — WCET]
770 820 6
780 820 6
790 820 6
800 820 6
805 820 6
810 820 6
815 820 6

Unlike Block Maxima, the Peak Over Threshold analysis seems to be unreliable and useless according
to histograms, QQ-plots and the gevfit result. However, the evidenced lack of confidence and invalid outcome
may be caused, for example, by some unknown Matlab limitation, by some context characteristics as the
chosen algorithm complexity and even by the collecting samples methodology. So, it is important to investigate

and understand why POT doesn’t work properly in this context. Future works can consider this case.

6.3 Finite Impulse Response Filter Case

Other context regarded in this work is the FIR Filter, which is employed in digital filters. This algorithm
receives two parameters, N and K in Figure 20. The first is the number of samples and the second is the filter
order. The N variable may assume values from 1 to 64, whereas the K variable may assume only the even
values from 1 to 64. The figure below shows the analyzed assembly code, in this case N and K variables have

values 8 and 16 respectively:

1 .data

Z2 N: .word 3
3 E: .word 1&
4 HCALE: .word 3
5 BCALEZZ: .word 3
&

7 L text

g 1i $a0, Ox=1i001

2 =211 Sa0, %ald, 164
10 mowe Sal, 5Sal
11 addi $al, 5al, 008
12 mowve $aZ, 5Sal
12 addi $aZ, 5aZ, Oxle
14
15 1w $=0, W
16 lw $sl, K
17
18 sll1 %s0, %s0, 2
19 sub $sZ, §s0, 4
20 add %s0, $s0, §aZ
21 sll1 %s1, %=1, 2
22 add %a3, %al, §=1
23 addiu $t5, $zero, 0x7FFF
24 addiu $té, Szero, 0xB000
24
26 loop:
27 mult $zero, Szero
28
2% loopRe:
20 1lh 5t0, 0¢5ad)
31 1h $tl, 2({%al}
22 1lh $5tZ, 0(5al)
23 1lh 5t3, Z(5al)

33
34
33
36
37
28
3=
40
41
42
43
44
45
46
47
48
43
50
51
52
Sk
54
ik
56
a7
28
23
&0
6l
B8z
63
64
2]

1h 5€3, Z(5al)
madd $t0, 5$t2
msuk Ftl, 5t3

1h 5€0, 4(5a0)

1h 5tl1, &(5a0)

1h 5t2, 4(5all

1h 5t3, 6(5all
madd $+0, 5+2
msub $tl, 53
addiu $al, 5al, £
brne $al, $a3, loopRe

addiu a0, 5al, £

mflo 50

mfhi §wvl

sub $al, $%ab, $=1
sub %al, $%al, $=1
mult Szero, $zero
srl w0, §vD, 5
311 5t2, §vl, 5

or §+0, §SvO0, 5t2
slt $tZ, $t5, §v0
movn $v0, §t5, §t2
slt $tZ, $v0, 5té
movn v, 5té, 5t
sh S5v0, 0{5aZ)

loopIm:

lh 5t0, 0(5a0)
lh St1, Z(5a0)
lh StZ, D(5al)
lh 5t3, Z{(5al)

=12
=
(2=
a3
70
71
TE
73
74
75
76
7
78
=
20
81
B2
B3
54
83
ga
87
g8
g3
20
21
9z
33

madd $tl, $t2
madd S0, $+t3

1h 5€0, 4(5a0)

1h 5t1, &(5al)

1h $+2, 4(5al)

1h $+3, 6(5al)

madd 5t1, 5t2

madd $t0, 5t3

addiu 5al, 5al, &
brne $al, $a3, loopIm

addiu a0, 5al, £
wmflo Sw0

mfhi Swl

sub $al, $al0, $§=2
sub %al, %al, $=1
addiu $a2, a2, 4
srl w0, 5+v0, 5
311 5t2, 5wvwl, 5

or §+0, §+0, 5tZ2
slt $tZ, 5t5, §v0
mowvn w0, §t5, §tZ
slt $tZ, 5w0, 5té
mowvn 5v0, §t&, §tZ
bne $az, 5%=0, loop
sh $vw0, -Z{%aZ)
syscall

Figure 20 - Assembled code of the FIR Filter. Reference: Author.

The FIR Filter code has seven different basic blocks compounding the program. The following image

shows the Control Flow Graph of this algorithm.

loopRe_1

loopim_1

Figure 21 - CFG of FIR Filter code. Reference: Author.

6.3.1 Static Analysis

Similarly to the Bubble Sort Case, the static analysis applies IPET to the algorithm in order to compute
the WCET. The APPENDIX A - IPET Example: Bubble Sort Case presents a detailed example of this method
and all the involved computation. For FIR Filter case, IPET outcomes defines WCET as 59,223 (executed
instructions). This high WCET estimation number is consequence of the loop repetition, since both inner loops

upper bound is 1984 times.

6.3.2 MBPTA: Collecting Samples

This algorithm has two variables, N and K in Figure 20. The first is the number of samples and the
second is the filter order. The N variable may assume values from 1 to 64, whereas the K variable may assume
only the even values from 1 to 64 (32 different values). Considering the possible values each variable can

assume, there are 32x64 possible cases, which means 2048 different cases.

Since it is feasible to collect 2048 samples, it is possible to consider two scenarios: A and B. In the
scenario A, it collects one sample for each input possibility, which means that it analyzes 2048 samples at all.
The scenario B allows input values repetition and, hence, may regard a higher number of samples under

analysis.

Regarding unique samples, with no input value repetition, may affect the analysis, since the total of
2048 samples implies in less samples under analysis, shorter basic blocks and maxima block, which might not
be enough to apply EVT techniques properly. Notice that a sample is unique due to its input values, N and K,
and not due to its outcome. Therefore, the collection of unique samples may contain repeated outcome values,

although it has no samples with repeated input values.

Scenario A has 2048 unigue samples that means this scenario covers 100% of all possible cases. It might
be useful to evaluate whether EVT’s accuracy decreases when considering a shorter number of samples on
analysis. Regarding all samples outcomes, the highest observed result value is 59223, which is according to

the statically analysis result.

Scenario B has 5000 samples randomly collected with no control in input values. Thus, it might repeat
some input values, although it may not use all possible values. The highest observer result value is 57431,
below than the static worst-case result. Nevertheless, the total number of collected samples represents over
than 244% of the required number to cover all cases. It might be useful to observe EVT results comparing both

scenarios.

Since both scenarios have samples enough to cover all possible cases, it is not required to estimate the
minimal number of samples as explained in 4.1.5. However, it must be regarded to define a safe probability
threshold. The following table shows the CRPS analysis for scenario A, the computation regards the equation
CRPS = %/ %[fx(i) — fy(i)]? according to 4.1.5. It starts considering 1024 samples (Ngyyrent), adding 64

(Ngeita) in each round of comparison.

Table XII - Number of samples (Ncurent) ON analysis (A). Reference: Author.

Max Difference
I O e

1 1024 1088 1.93E-08
2 1088 1152 1.59E-08
3 1152 1216 1.30E-08
4 1216 1280 1.08E-08
5 1280 1344 9.04E-09
6 1344 1408 7.60E-09
7 1408 1472 6.45E-09
8 1472 1536 5.51E-09
<) 1536 1600 4.72E-09
10 1600 le64 4.07E-09
11 1664 1728 3.53E-09
12 1728 1792 3.08E-09
13 1792 1856 2.69E-09
14 1856 1920 2.37E-09
15 1920 1984 2.0SE-09
16 1984 2048 1.85E-09

The table shows that maximal difference decreases linearly throughout the analysis. The difference
stands consistently less than 1.10® when N,,,en:= 1280 samples and further. This value still the same even
when increasing N.;:, t0 128. The same CRPS analysis, for scenario B, is shown in the following table. It

starts with 3500 samples and adds 100 in each round.

Table XIII - Number of samples on analysis (B). Reference: Author.

Max Difference
Ee e —

1 3500 3500-3600 6.30E-07
2 3600 3600-3700 2.42E-07
3 3700 3700-3800 7.53E-11
4 3800 3800-3900 1.4SE-06
5 35900 3500 - 4000 1.71E-07
6 4000 4000-4100 1.47E-07
7 4100 4100 - 4200 2.56E-08
8 4200 4200-4300 8.47E-08
S 4300 4300 - 4400 2.28E-08
10 4400 4400 - 4500 4.00E-12
11 4500 4500 - 4600 5.95E-06
12 4600 4600-4700 5.88E-07
13 4700 4700 - 4300 5.02E-08
14 4800 4800 - 4900 1.12E-07
15 4900 4900 - 5000 2.82E-08

Unlike the scenario A, the maximal difference does not decrease linearly. Actually, Table XIII depicts
some values above 1.10° (3800 and 4500 samples). Although having almost 250% more samples than A, the
scenario B has a less reliable sample collection. Nevertheless, increasing the samples amount may facilitate
statistical analysis, but may affect reliability as side effect. In addition, it is important to enhance the difference
between these scenarios are the number of samples and the control of input values, which may incur the

reliability issue.

6.3.3 MBPTA: Block Maxima Approach
Since the literature do not specifies the criteria for splitting samples in basic block, in this work it divides
samples in basic blocks according the order they were collected. For instance, regarding blocks with 100

samples, the first basic block would contain the 1%t to 100" samples.

This Block Maxima analysis regards 2048 samples for scenario A (Table X1V) and 5000 samples for
scenario B (Table XV):

Table X1V - Different block sizes for Basic Blocks and Maxima Block (A). Reference: Author.

Size of basic Blocks 1 10 | 20 | 25 | 40 | 50 | 100|200 | 250 (500 | 1000 | 5000
Number of Basic Blocks [5000|500(250(200]125|100(50 | 25 | 20 | 10 5 1

Size of Maxima Block | 5000|500]250|200{125|100| 50 | 25 | 20| 10| 5 | 1 |

Table XV - Different block sizes for Basic Blocks and Maxima Block (B). Reference: Author.

Size of basic Blocks 1 2 4 8 |16 | 32| 64 |128|256(512
Number of Basic Blocks |2048(1024|512|256(128| 64 |32 |16 | 8 | 4
Size of Maxima Block 204810241512 |256(128| 64 |32 |16 8 | 4

Literature affirms that basic blocks must contain enough samples to represent the execution behavior
properly. Figure 22 and Figure 23 show histograms for maxima blocks with different sizes.

2048 Samples 1024 Samples 512 Samples
600 150

400 100

m
o
[N
w
EN
m
m

286 Samples

B4 Samples

32 Samples

g Samples

= MW

=]
[N]
w
N
4]
m

i}
(0. 643020407 59031 0065304 2 8007 A0 34000906440 1.001 31203255507 352431095253 45633
4 4
310 310

w10t

Figure 22 - Maxima blocks histograms for A (X axis means time, Y axis means occurences). Reference:
Author.

According to these histograms, the maxima block representability decrease as the samples number
becomes lower. From 128 samples to below, the histograms do not represent the execution behavior properly,
since it has less information. For this reason, the image disregard the histogram related to the maxima block
with four samples. These histograms characteristics likely affect the pWCET outcome.

5000 Samples 500 Samples 250 Samples
a0

2000 100
1000 ‘ a0
1} 0

B 3 4 5 4 g

o1 w0t x 10
200 Samples 125 Samples 100 Samples
40 40 40

20 - 20
0
. B 4.5 5 jaRe] 4.8 a a8

w10t w10t x 100
50 Sarmples 25 Samples 20 Samples

}
&

o
ra
[}
=
m
(]
[N
w

20

w
w
m
EN
N
m
m
m
m
D
m
N

:

=]
m
N

|

;
_F
a

0
4 45] 55 B 48 5 52 5.4 58 5.8 5 52 54 56 58
w10t w1t 1ot
10 Sarmnples 5 Samples 1 Samples
4 2 1
i JJJJL 0 i
53 54 55 56 57 58 545 55 555 6B ABS A7 575 5.7 486 A977 A9F ATV €37 A8V ABT ST 45F 435
4 4 4
w10 w10 w10

Figure 23 - Maxima blocks histograms for B (X axis means time, Y axis means occurences). Reference:
Author.

Similarly, to the histograms in last image, the maxima block representability decrease when regarding
less samples. On the other hand, unlike the scenario A, from 125 samples to below, the histograms do not
represent the execution behavior properly, since it has less information. These histograms characteristics likely
affect the pWCET outcome.

After that, it is possible to apply EVT methodology, using Matlab. The function gevfit() receives an
array containing the maxima block samples and returns three parameters calculated according to Generalized
Extreme Value methodology. These parameters are location, scale and shape and the following tables show
their values for each maxima block size regarding A and B. The pWCET outcome analysis must count that in

some cases gevfit returned warning messages.

Table XVI - Gevfit function response for different maxima block sizes (A).

Maxima Block Size | Location (u) | Scale (o) | Shape (&)
2048 8456.389 8003.180 0.33435
1024 8896.437 8246.997 0.31210
512 9793.856 8753.928 0.26727
256 11633.035 9818.336 0.18123
128 15444.609 12050.860 | 0.02751

64 25382.261 | 17986.367 | -0.44034
32 25861.017 17993.445 | -0.44201
16 26852.916 | 18023.875| -0.44890
8 29014.667 18195.410 | -0.48175
4* 39645.564 | 25626.445 | -1.30898

Table XVII - Gevfit function response for different maxima block sizes (B).

Maxima Block Size | Location () | Scale (o) | Shape (§)

5000 8279.365 7800.338 0.32319
500 37499.584 8320.073 | -0.36310
250 42833.202 6346.083 | -0.36504
200 44311.495 5853.875 | -0.37807
125 46611.243 5182.819 | -0.40576
100 48083.872 4746.951 | -0.44483
50 51181.760 3776.319 | -0.55532
25 53787.696 2282.692 | -0.55729
20 54270.530 2012.918 | -0.55511
10* 55844.692 1753.467 | -1.10538
5* 56553.402 1150.2383 | -1.31067
1* 57431 0 0

*Gevfit returned the message: Maximum likelihood estimation did not converge. Function evaluation limit
exceeded. Maximum likelihood has converged to a boundary point of the parameter space. Confidence
intervals and standard errors cannot be computed reliably.

Although EVT distribution requires only these parameters values on its definition, comparing the
defined distribution and the ECDF (empirically defined) might be useful to observe how these distributions

fit. Figure 24 and Figure 25 display the quantile-quantile plots for different maxima block sizes in A and B.

0.5

04

2045 Samples

1024 Samples

256 Samples

0s

128 Samples

04 0B

32 Samples

04

512 Samples

0z

0.4 06 0.8

B4 Samples

04

nz

04 06 na 1

8 Samples

Figure 24 - Maxima block quantile-quantile plots (A). Font: Author.

/

5000 Samples

]

04

//

200 Samp\es

a

/Mﬁ#
e

a0 Samples

10 Sarnples

////4/’/f/i
A+
0.4 0.6 08

0s

500 Samples

1
a5 /
D‘

125 Samples

o
4.,4&
1] 'H?*

4

a

1

05

25 Samples

/

o

05

02

5 Samples

+
T
+
2 0.4 06 (IR

Figure 25 - Maxima block quantile-quantile plots (B). Reference: Author.

250 Samples

M/,

nz

04 06 na 1
100 Samples

MMM

o
++ 1 . ‘ . ‘
a 0z 0.4 0b 0.8 1
20 Samples
M/M/ +j:
-

0z

0.4 06 0.8

Like histograms, the quantile-quantile plots point that when regarding a lower number of samples in

maxima block, the analysis is affected. In this case, it influences how the empirical and the EVT distributions

fit with small samples amount. It is important to enhance that it is not even possible to define a distribution for

a unique value, as the one sample maxima block case.

Besides the quantile-quantile plots, the maximal difference between distributions might be a useful and

indicating information. The following tables display the differences between these distributions:

Table XVIII - Differences between ECDF MBPTA(Block Maxima) and EVT distribution (A).

Maxima Block Size Max Cor(nl\gg)r(l)son Average C&”\jgg&i‘;n
2048 0.058 100% 0.031 100%
1024 0.056 97% 0.030 97%

512 0.053 91% 0.028 90%
256 0.050 86% 0.023 74%
128 0.041 71% 0.019 61%
64 0.072 124% 0.037 119%
32 0.080 138% 0.039 126%
16 0.096 166% 0.045 145%
8 0.131 226% 0.072 232%
0.304 524% 0.160 516%

Table XIX - Differences between ECDF MBPTA(Block Maxima) and EVT distribution (B).

. . Comparison Comparison
Maxima Block Size Max (Max) Average (Average)

5000 0.059 100% 0.031 100%
500 0.026 44% 0.007 23%
250 0.040 68% 0.012 39%
200 0.045 76% 0.013 42%
125 0.073 124% 0.022 71%
100 0.054 92% 0.024 77%

50 0.070 119% 0.026 84%

25 0.137 232% 0.046 148%

20 0.135 229% 0.068 219%
10 0.250 424% 0.124 400%
0.238 403% 0.110 355%

As guantile-quantile plots, this difference values also show the disparity due to different maxima block
sizes. Decreasing the number of samples in maxima block increases considerably the distributions differences.
Regarding A, the lowest difference is 0.041, which occurs when Maxima block has 128 samples collected from
128 basic blocks, each basic block have 16 samples. Comparing all maxima block sizes in this scenario, 128

seems ideal.

Besides that, differences in scenario B does not seems linear. Although, the lowest difference value is
0.026, when Maxima has 500 samples collected from 500 basic blocks, each basic block having 10 samples.
Since the lowest difference value is 0.041 in A, the lowest difference in B is considerably better. Furthermore,

the 250 samples case shows the difference value 0.040, which is lower than A also.

It is worthy to enhance that the better options according to Table XVI1I and Table XI1X are the following
Maxima block size: 128, 200 and 250 samples. That means the better options have the following basic blocks
size: 10, 16 and 20.

Finally, Table XX and Table XXI show the pWCET outcome for each maxima case. The probability
threshold value is 108 for A and 107 for B, the reference value, the statically defined WCET, is 59223 executed

instructions, as detailed in 6.3.1.

Table XX - FIR Filter on Block Maxima approach, scenario A.

Maxima Block Size | pWCET(107%) |pwggfl?|;e\r;\(;eCET| Difference/WCET
2048 225527 166304 280.81%
1024 210630 151407 255.66%
512 184534 125311 211.59%
256 146892 87669 148.03%
128 107117 47894 80.87%
64 64277 5054 8.53%
32 64647 5424 9.16%
16 65196 5973 10.09%
8 65429 6206 10.48%

| 4 | 59220 | 3 | 0.01% |

According to Table XX, as larger the maxima block, the worse the pWCET estimation is. The difference
between the pWCET(10®) and the static WCET is 166304 for 2048 samples. On the other hand, when Maxima
block has only 4 samples, the difference is 3. In addition, it is important to point that Gevfit function returned
an error message for the Maxima with 4 samples (Table XVI). Thus, the lowest outcome difference is 5054

and occurs for 64 samples.

The histogram comparison (Figure 22) shows that maxima block represents the algorithm execution
behavior when having 128 samples or more. Regarding this assumption, the best outcome difference is 47894,
for 128 samples. Table XVIIITable XX also shows that 128 samples have the best fitting between the EVT
defined and the empirical distributions, the maximal difference is 0.041 and the average difference is 0.019.
When comparing the 64 samples case, the maximal difference is 75.6% higher and the average difference is
94.7% higher than 128 samples case. Therefore, different analysis pointed the 128 samples case as more

reliable and assured. However, the EVT results pointed the 64 samples as more accurate.

Considering this cases, it is possible to deduce that the best samples amount in Maxima block for this
analysis is among 3% and 6% of the total collected samples.

The following table shows the EVT outcomes for scenario B:

Table XXI - FIR Filter on Block Maxima approach, scenario B.

Maxima Block Size | pWCET(10) |pwggfl?|;e\r}\(/:eCET| Difference/WCET
5000 209131 149908 253.12%
500 58547 676 1.14%
250 58820 403 0.68%
200 58658 565 0.95%
125 58608 615 1.04%
100 58261 962 1.62%
50 57837 1386 2.34%
25 57796 1427 2.41%
20 57819 1404 2.37%
10 57430 1793 3.03%
5 57430 1793 3.03%

1 - -

According to Table XXI, the worst outcome occurs for 5000 samples, when the difference between the
EVT distribution and the ECDF is 149908. Despite that, the best-obtained result value is 58547, which means

a difference of 676, for 500 samples. The difference worsens as the Maxima block has fewer samples.

The histograms analysis (Figure 23) depicts that maxima block represents the algorithm execution
behavior with 200 samples or more. Besides that, the Gevfit function returned an error message for 10, 5 and

1 sample (Table XVII), so its outcomes might be ignored.

The fitting analysis (Table XIX) also pointed the 500 samples case as the best one. The maximal
difference is 0.026 and the average difference is around 0.007. The 250 samples case is the second best.
However, when comparing it, the maximal difference is 53.8% higher and the average difference is 71.4%
higher than the 500 samples case. Thus, all analysis and the EVT outcomes point 500 samples case as more
reliable and accurate.

Regarding these cases, by deduction, the best samples amount in Maxima block for this analysis is
among 5% and 10% of the total collected samples.

6.3.4 MBPTA: Pick Over Threshold Approach

Like the Basic Block Approach, this Pick Over Threshold (POT) approach analyzes two scenarios: (A),
only unique samples, and (B), repeated samples. Notice that there is an input control when collecting samples
in A, for this cause it executes no input values twice. Besides that, A has 2048 samples and 100% of coverage.
In other hand, B has 5000 samples but there is no assurance of coverage since it might repeat some input

values.

POT selects samples based on a threshold value. The number of samples under analysis depends on the
chosen threshold value. Furthermore, it regards only samples that have values above the threshold value. The

collected samples values in A vary from 80 to 59223, in B the values vary from 80 to 57431.

The following table depicts the regarded thresholds in this approach. In addition, the image shows the
number of samples under analysis. In other words, the figure shows how many samples have values above the
given threshold:

Table XXII - Threshold values and number of samples for scenarios A and B. Font: Author.

Threshold 80 | 14500 | 29000 | 36250 | 43500 | 50750 | 54375 | 58000

Samples (A) | 2048 | 906 365 204 94 30 12 2

Samples (B) | 5000 | 2149 839 443 183 43 17 0

The lowest threshold (80) ensure the total coverage of samples for both cases, which means all samples
under analysis. Besides that, the highest threshold (58000) filters only two samples for A and no samples for
scenario B. Figure 26 displays the POT histograms for scenario A whereas Figure 27 shows the histograms for
scenario B.

According to Figure 26, the histograms from threshold 80 to threshold 50750 represent the same
executing behavior. In other hand, thresholds 54375 and 50000 clearly have no information to represent the

algorithm executions properly.

Threshald 80 Threshald 14500
1000 400 T T T T T

200

Threshaold 36250
a0 T T

in
w
w
in
N
N
in
m
m
in
o
D
in

4 45 a a6

Threshald 50750

|

i} 1}

42 4.4 46 48 i 52 54 56 58 5} i 51 52 A3 54 55 56 a7 58 A9 5}
w10’ x10*

Threshold 54375 Threshaold 55000

4 T T T T T T T 1 T

2 —. . A 0sr B

il il 1 1 1 1

545 55 555 5B 5kS 57 575 58 585 59 595 5.82 5.84 5.86 5.858 5.9 592 5.94

@ 4

w10 %10

Figure 26 - Peak Over Threshold histograms for A (X axis means time, Y axis means occurences).
Reference: Author.

Threshald 60
2000 T

Threshald 14500
500 T T T

1000

1 1.8 2 25 3 34 4 4.8 4 a8 B

4
10
Threshold 29000 Threshold 36250
200 T T T T T T 100 T T
100 - B a0 _ B
0 0
25 3 348 4 4.5) 5.5 g 358 4 45) 5.8 B
w10t w10t
Threshold 43500 Threshold 50750
a0 T T T T T T T 20 T T T T T T
h_-l (e e e |
0 0
42 4.4 4.6 4.8) 5.2 5.4 4.6 5.8 5.1 52 2.3 5.4 45 5.6 8.7 4.8
w10t w10t
Threshold 54375 Threshold 58000
10 T T T T T 1 T T T T T T T T T T
5.45 8.5 5.85 5.6 5.65 a7 5.75 1 2 3 4 g B 7 g 9 10
%10

Figure 27 - Peak Over Threshold histograms for B (X axis means time, Y axis means occurences).
Reference: Author.

According to Figure 27, histograms point that cases with threshold 43500 and higher might not be
reliable. Furthermore, the threshold 58000 case has no sample.

As the block maxima approach, the Pick Over Threshold requires converging values between the

collected samples and Pareto Distribution family. Instead of gevfit, Matlab afford gpfit() function for Pareto

distributions. This function find the proper Pareto distribution that best fits the given samples, also it returns

two parameter Scale and Shape. The table below displays this parameter values for each case for both

scenarios:

Table XXIII - Pareto parameter values for different thresholds.

Threshold Scenario A Scenario B

Scale (6) | Shape (&) Scale (o) Shape (&)
80 20907.891 -0.29750 20374.667 -0.30330
14500* 43819.635 -0.73930 43063.200 -0.74930
29000* 68855.758 -1.16270 66839.168 -1.16380
36250* 81848.796 -1.38200 85321.420 -1.48560
43500* 90660.376 -1.53080 | 100991.401 -1.75850
50750* 122908.724 -2.07540 104063.626 -1.81200
54375* 95431.500 -1.61140 99566.584 -1.73370

58000* | 113501.888 | -1.91650 - -

*Gpfit returned the message: Maximum likelihood has converged to a boundary point of the parameter
space. Confidence intervals and standard errors cannot be computed reliably.

It is important to enhance that there is only one good convergence, since the function returned error
message for every cases except the first. Therefore, these outcomes must not be reliable. Further, the quantile-
guantile plots (Figure 28 and Figure 29) confirm that. Regarding these images, there is a good fitting between
the defined Pareto distribution and the empirical only when regarding all samples, in threshold 80 case. It

happens for both scenarios A and B.

Threshold 50 Threshold 14500

| | | |) G | | | | | | |)
0.6 0.7 03 [IE] 1 i} 0.1 0.z 0.3 0.4 05 06 07 0.8 09 1
Threshold 36250

| | | |
0 0.1 0.2 0.3 0.4 05
Threshold 25000

1 1 1 1 1 D + J'.)lv L 1 1 L 1 1 1 1
0.6 0.7 03 09 1 0 0.1 0.z 0.3 0.4 0.5 06 07 0.8 09 1
Threshold 50750

L1 h 1 1 L
0 01 0.2 0.3 0.4 05
Threshold 43500

05 05
o L L L . L L L L | 0 L ¥ L . L L L |
0 0.1 0.2 0.3 0.4 05 0.6 0.7 03 09 1 0 0.1 0.2 0.3 0.4 05 06 07 0.8 0s9 1
Threshold 54375 Threshold 58000
1r 1r +
0sf /% 0sr /+
D + 1 1 1 1 L 1 1 1 1 1 D L 1 L 1 1 L 1 1 1 1
o 0.1 0.2 03 0.4 0s 06 0.7 HR] 09 1 u] 0.1 0z 0.3 04 05 0B o7 08 09 1

Figure 28 - Quantile-quantile plots for different threshold values (A). Font: Author.

Threshold 80 Threshald 14500

1 1 1 1 1 1
0 01 0z 03 04 045 06 07 08 09 1 0 0.1 02 03 0.4 05 0.6 07 08 0s 1
Threshald 23000 Threshald 36250

[—— 1 1 1 1 I 1 1 | 0 4t 1 1 1 1 1 1 1 1
o 01 0z 03 04 0s 0B o7 HR] 09 1 0 0.1 02 0.3 0.4 0s 06 o7 0.8 09 1
Threshald 43500 Threshald 50750
1r 1r f
sl / i iﬁﬁ
0 S Sl . . . \ . .) o P)
0 01 02 03 04 05 e 07 03 0s9 1 0 0.1 0z 0.3 0.4 05 0.6 07 0.3 Rz 1

Threshold 54375

o
m
M
e

1} 01 0z 03 04 05 s 07 0s 09 1

Figure 29 - Quantile-quantile plots for different threshold values (B). Font: Author.

As the quantile-quantile plots point, there are considerable differences between the empirical
distributions and those defined by Pareto family model. The following tables show the maximal and the

average difference for every case regarding scenarios A and B.

Table XXIV - Differences between ECDF MBPTA (Peak Over Threshold) and EVT distribution (A).

Threshold Max | COMPRISON [perage | Comparison

80 3.3E-02 100% 1.0E-02 100%
14500 6.5E-02 198% -7.0E-02 -687%
29000 1.1E-01 336% -1.0E-01 -1032%
36250 1.2E-01 354% -1.3E-01 -1302%
43500 9.6E-02 292% -1.9E-01 -1883%
50750 1.2E-01 360% -2.0E-01 -1957%
54375 1.3E-10 0% -3.5E-01 -3449%
58000 4.7E-09 0% -4.2E-01 -4173%

Table XXV - Differences between ECDF MBPTA (Peak Over Threshold) and EVT distribution (B).

Threshold Max Cor(nl\ﬁ Z;I)S(m Average C(?AT/E?;;;”

80 3.2E-02 100% 9.9E-03 100%
14500 7.5E-02 235% -7.4E-02 -755%
29000 1.1E-01 348% -1.1E-01 -1098%
36250 1.4E-01 438% -1.2E-01 -1176%
43500 1.2E-01 376% -1.5E-01 -1572%
50750 5.9E-02 185% -2.8E-01 -2855%
54375 6.3E-10 0% -3.5E-01 -3596%
58000 - - - -

Like the quantile-quantile plots, these differences values show the disparity due to different threshold
values. Decreasing the number of samples in analysis increases considerably the distributions differences. In
both scenarios, the threshold 80 seems the best case. It has a maximal difference around 0.03 and an average
difference around 0.01.

Considering these cases, it is possible to deduce that considering all samples is the best option for Peak
Over Threshold approach. Since the most reliable cases regards 100% of the total collected samples. Table
XXVI shows the EVT outcomes for scenario A, besides, Table XXVII depicts the EVT outcomes for
scenario B. The probability threshold value is 10 for A and 10 for B, the reference value, the statically
defined WCET, is 59223 executed instructions, as detailed in 6.3.1.

Table XXVI - FIR Filter on Peak Over Threshold approach, scenario A.

Threshold pWCET(10%) |prIIEf'fI('§ r—e\r;\(;eCEﬂ Difference/WCET

80 61273 2050 3.46%
14500 58912 311 0.53%
29000 59203 20 0.03%
36250 59218 5 0.01%
43500 59221 2 0.003%
50750 59222 1 0.002%
54375 59222 1 0.002%
58000 59222 1 0.002%

Table XXVII - FIR Filter on Peak Over Threshold approach, scenario B.

Threshold pWCET(109) |prIIEff‘|'e r_e\r}\(;?:ETl Difference/WCET

80 58915 308 0.52%
14500 57143 2080 3.51%
29000 57412 1811 3.06%
36250 57428 1795 3.03%
43500 57430 1793 3.03%
50750 57430 1793 3.03%
54375 57430 1793 3.03%
58000 - -

According to Table XXVI the threshold 80 case has the less accurate result and the outcomes value is
more accurate when analyzing fewer sample. Therefore, for scenario A the most reliable outcome according
other analysis is also the worst in accuracy according the results. It is important to enhance those samples in
A represents 100% of coverage of all possible results. It might affect mainly with higher thresholds. The
threshold 58000 case, for instance, has only two samples and one is the worst-case that is 59223. In addition,
it is worthy to point that 61273 is not accurate but it is safe for worst-case, since its largest than 100% of

possible values.

In scenario B, unlike A, the most accurate result is also the most reliable. The threshold 80 case has the
small difference between the outcome and the statically defined worst-case. Furthermore, other analysis also

pointed this case as most trustable.

It is important to enhance that 58915 is smaller than 59223. However, when considering every possible
cases, there is only one case largest than that value, which is the WCET 59223. Therefore, 58915 covers 2047
of 2048 cases, that means a hit probability of 99.951%. In other words, this result fails for 1 of 2048 cases, that
means a failing probability of 0.000488, which is slower than the probability threshold (10-%) regarded on

analysis.

6.4 Comparison

This section introduced two different contexts on which EVT is applied to estimate the pWCET, both
consider the same processor platform (MIPS) but different algorithms: Bubble Sort and Finite Impulse
Response (FIR) Filter. For both contexts the minimum number of samples is calculated according to CRPS
and two approaches for filtering samples are applied: BM and POT.

In Bubble Sort case, the analysis with BM approach presents reliable and accurate outcomes when
Maxima Block has 90 or more samples. Furthermore, the bests scenarios are respectively 90 and 100 samples,
which evidenced the difference between the pWCET and the reference value, only 0.24%. On the other hand,
analyzing with POT approach does not succeed in the same way. In this case, no scenario has reliable

outcomes, since Matlab can’t compute the distribution properly.

In FIR filter case, the analysis considers two scenarios when collecting samples: controlling input values

(scenario A) and no controlling input values (scenario B).

For scenario A, when applying BM, the reliable outcomes are obtained for Maxima Blocks with 128 or
more samples. However, these outcomes are significantly inaccurate, some of them estimate more than 250%
when compared to the reference WCET. The best reliable pWCET estimation is evidenced for Maxima Block
with 128 samples, nevertheless, this outcome is 80.87% higher than the reference value, which means this
approach is not so efficient in this case. When considering outcomes for POT approach, it also has several
unreliable scenarios which can’t be calculated by Matlab. However there is one reliable scenario, when the
threshold is 80. In this scenario the estimation is 3.46% higher than the reference WCET, which means that

POT may be better for this context or even when controlling the input data.

For scenario B, in BM approach, scenarios with Maxima Block with 200 or more samples generated
reliable outcome. Although the 5000 samples case estimates a pWCET 250% higher than the reference, the
other cases are considerable accurate. The best result is found for Maxima Block with 250 samples, in this
scenario the difference between the pWCET and the reference WCET is only 0.68%. For POT approach,
similarly to A, only the threshold 80 computed reliable outcomes, on the other hand, for B the result is even
more accurate. The difference between the calculated pWCET and the reference WCET in this scenario is only

0.52%. The following table show a comparison among the different analysis with BM and POT approaches:

Table XXVIII — Comparing outcomes from BM and POT approaches.

Block Maxima Peak Over Threshold
Bubble Sort gﬁ:;?lb (Ijel f?g:gr?geiss 0.24% No reliable outcomes
FIRFiler ()| oo e
FIRFiler (8| S oo O e el e

Based on this table it is possible to conclude that POT is considerably more intricate than BM, since
only two scenarios resulted in reliable information. On the other hand, BM seems simpler, and more accurate
than POT. Also, it is worthy to point that the input data control for collecting samples may prejudice BM
accuracy significantly whereas POT accuracy is lightly affected.

7 Conclusion

This work presented a methodology to analyze pWCET estimates of hard real time systems and pointed
out the process limitations related to that. With this purpose, it regarded two algorithms: Bubble Sort and FIR
Filter. Furthermore, this work used the MIPS architecture processor, single core, to assemble and run the
selected algorithms.

Firstly, this methodology statically computed the WCET of both algorithms. After that, it applied the
Measured Based Probabilistic Timing Analysis (MBPTA) approach to re-compute the WCET with different
parameter values. This methodology used MARS, a MIPS simulator, to collect MBPTA samples. At the end,

both outcomes, the one provided by statically computing and the one obtained by the MBPTA, were compared.

It is worth noting that the number of samples and their empirical distribution affect the probability
threshold. For this reason, the present work considered the probability according to CRPS calculation and not

the standard for avionic systems (107).

The methodology applied the Extreme Value Theory (EVT) in the sample sets following the Block
Maxima approach, comparing the outcomes by different input parameters. For the Bubble Sort analysis, the
most reliable and accurate outcomes have a Maxima block from 2% to 7% of the total samples. Presenting

only 0.24% of difference between the pWCET and the reference value.

On the other hand, for FIR Filter analysis controlling input data, Block Maxima computed only one
reliable but not accurate outcome, it differs 80.87% when compared to the reference. When the analysis does
not control the input data, the reliability and accuracy get better, the difference between the best outcome and
the reference value is 0.68%. Further, FIR Filter analysis indicated that from 3% to 10% of all samples, the

Maxima block provided the best outcomes.

This methodology also applied EVT following the Peak Over Threshold (POT) approach, diversifying
the input parameters. The outcomes in Bubble Sort pointed POT as irrelevant and unreliable, all cases had a
bad calculation and no case reached a safe fitting behavior. This work doesn’t investigate what causes this

problem, letting this topic as a future work.

Besides that, POT analysis depicted accurate and reliable outcome values for FIR Filter, especially when
collecting samples with no input control. This scenario pointed that, as more selected samples in analysis, more
reliable and accurate are the results, it computed a value with 0.52% of difference when compared to reference
value. In addition, when collecting unique samples, with input control, accuracy and reliability slightly

decreased, the best outcome had a difference of 3.46% between the reference value and the result.

Based on this work EVT is a useful and trustable technique to define pWCET. Block Maxima technique
seems easier and more reliable since both algorithms had proper outcome values. On the other hand, the large
number of samples required to feed a good Maxima Block is an important limitation to point. Further, this

work does not investigate whether sample ordering when creating basic blocks affect or not the result.

On the other hand, Peak Over Threshold seems more complex and limited than Block Maxima. This
technique presented no reliable outcome for Bubble Sort study-case, further, this work could not point what is
the cause. Therefore, it is an important problem to point as limitation. However, POT produced reliable and
accurate results for FIR Filter case, even for analysis controlling input data, when Block Maxima failed.

8 Future Work

As future work, the following topics can be addressed in order to extend and explore the proposed work,

they are:

o Investigate why Peak Over Threshold failed for Bubble Sort case. The following questions may
be a good start:
o Are there limitations in Matlab functions for EVT? How they could affect the analysis?
o Isthe CRPS computation applicable for all scenarios?
o Considering more samples can fix the problem?
o Apply this work methodology for different algorithms, e.g. Selection Sort, Merge Sort, and
heapsort, in order to assure whether the algorithm complexity affects EVT reliability. Also,
compare Block Maxima and Peak Over Threshold accuracy.

e Inspect whether the samples ordering affect or not Block Maxima technique.

References

ABELLA, Jaume et al. On the Comparison of Deterministic and Probabilistic WCET
Estimation Techniques. 2014 26th Euromicro Conference On Real-time Systems, Madrid,
Spain, v. 1, n. 26, p.266-275, jul. 2014. IEEE. DOI: 10.1109/ECRTS.2014.16

BERNAT, Guillem; COLIN, Antoine; PETTERS, Stefan M.. WCET analysis of probabilistic
hard real-time systems. 23rd leee Real-time Systems Symposium, 2002. Rtss 2002., Austin,
Texas, Usa, p.1-10, dez. 2002. IEEE Comput. Soc. DOI: 10.1109/REAL.2002.1181582

BRADLEY., James Vandiver. Distribution-free statistical tests. Englewood Cliffs, N.j:
Prentice-hall, 1968. 388 p.

BUTTAZZO, Giorgio C.. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Pisa: Kluwer Academic Publishers, 2011. 524 p.

CAZORLA, Francisco J. et al. PROARTIS: Probabilistically Analysable Real-Time
Systems. Acm Transactions On Embedded Computing Systems, New York, Ny, Usa, v. 12,
n. 2, p.1-26, 1 maio 2013. Association for Computing Machinery (ACM).
http://dx.doi.org/10.1145/2465787.2465796.

CAZORLA, Francisco J. et al. Upper-bounding Program Execution Time with Extreme Value
Theory. 13th International Workshop On Worst-case Execution Time Analysis (wcet
2013)., Germany, p.64-76, jul. 2013. DOI: 10.4230/0ASIcs.WCET.2013.64

COSTA, Celso Maciel da. Sistemas Operacionais — Programacao concorrente com Pthreads.
Porto Alegre: Edipucrs, 2010. 212 p.

CUCU-GROSIJEAN, Liliana et al. Measurement-Based Probabilistic Timing Analysis for
Multi-path Programs. 2012 24th Euromicro Conference On Real-time Systems, [s.l.], p.1-
11, jul. 2012. IEEE. DOI: 10.1109/ECRTS.2012.31

DAVIS, Robert I.; BURNS, Alan; GRIFFIN, David. On the Meaning of pWCET Distributions
and their use in Schedulability Analysis. Rtops - Real-time Scheduling Open Problems
Seminar. Dubrovnik, Crodcia, p. 1-4. 27 jun. 2017. Disponivel em:
<http://www.cister.isep.ipp.pt/rtsops2017/RTSOPS17_proceedings.pdf>. Acesso em: 04 nov.
2018.

EDGAR, S.; BURNS, A.. Statistical analysis of WCET for scheduling. Proceedings 22nd leee
Real-time Systems Symposium (rtss 2001) (cat. No.01pr1420), London, Uk, v. 22, n. 1,
p.215-224, dez. 2001. IEEE Comput. Soc. DOI: 10.1109/REAL.2001.990614

GIL, Samuel Jimenez et al. Open Challenges for Probabilistic Measurement-Based Worst-Case
Execution Time. leee Embedded Systems Letters, [s.l.], v. 9, n. 3, p.69-72, set. 2017. Institute
of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/les.2017.2712858.

GRIFFIN, David; BURNS, Alan. Realism in Statistical Analysis of Worst Case Execution
Times. 10th International Workshop On Worst-case Execution Time Analysis (wcet
2010), Dagstuhl, Germany, V. 15, n. 1, p.44-53, jul. 2010.
DOI: 10.4230/0ASIcs.WCET.2010.44

KOSMIDIS, Leonidas et al. PUB: Path Upper-Bounding for Measurement-Based Probabilistic
Timing Analysis. 2014 26th Euromicro Conference On Real-time Systems, Madrid, Spain,
p.1-12, jul. 2014. IEEE. http://dx.doi.org/10.1109/ecrts.2014.34.

LIMA, George; BATE, lain. Valid Application of EVT in Timing Analysis by Randomising
Execution Time Measurements. 2017 leee Real-time And Embedded Technology And
Applications Symposium (rtas), [s.l.], p.187-197, abr. 2017. IEEE.
http://dx.doi.org/10.1109/rtas.2017.17.

LIMA, George; DIAS, Dario; BARROS, Edna. Extreme Value Theory for Estimating Task
Execution Time Bounds: A Careful Look. 2016 28th Euromicro Conference On Real-time
Systems (ecrts), [s.1.], p.1-12, jul. 2016. IEEE. http://dx.doi.org/10.1109/ecrts.2016.20.

MISSOURI STATE UNIVERSITY (Missouri). Mars: MIPS Assembler and Runtime
Simulator. Disponivel em: <https://courses.missouristate.edu/KenVollmar/mars/>. Acesso em:
15 fev. 2020.

OLIVEIRA, B.; SANTOS, M. M.; DESCHAMPS, F. Célculo do tempo de execu¢do de
Cadigos no Pior Caso (WCET) em aplicacdes de tempo real: um estudo de caso. Revista
Eletrénica de Sistemas de Informagdo, v. 5 n. 1, p. 1-10, 2006. DOI:
https://doi.org/10.21529/RESI.2006.0501002

OLIVEIRA, Romulo Silva de; FRAGA, Joni da Silva; FARINES, Jean-marie. Sistemas de
Tempo Real. Florianopolis: Ufsc, 2000.

PAOLIERI, Marco et al. Hardware support for WCET analysis of hard real-time multicore
systems. Proceedings Of The 36th Annual International Symposium On Computer
Architecture - Isca "09, Austin, Tx, Usa, v. 36, n. 9, p.57-68, jun. 2009. ACM Press. DOI:
https://doi.org/10.1145/1555815.1555764

SHAW, Alan C.. Sistemas e Software de Tempo Real. S&o Paulo: Bookman, 2003.

SILVA, Karila Palma; ARCARO, Luis Fernando; OLIVEIRA, Romulo Silva de. On Using
GEV or Gumbel Models When Applying EVT for Probabilistic WCET Estimation. 2017 leee
Real-time Systems Symposium (rtss), [s.l.], p.220-230, dez. 2017. IEEE.
http://dx.doi.org/10.1109/rtss.2017.00028.

STARKE, Renan Augusto. UMA ABORDAGEM DE ESCALONAMENTO
HETEROGENEO PREEMPTIVO E NAO PREEMPTIVO PARA SISTEMAS DE
TEMPO REAL COM GARANTIA EM MULTIPROCESSADORES. 2012. 200 f.
Dissertacdo (Mestrado) - Curso de P6s-Graduacdo em Engenharia de Automacéo e Sistemas,

Universidade Federal de Santa Catarina, Floriandpolis, 2012.

THEILING, Henrik; FERDINAND, Christian; WILHELM, Reinhard. Fast and Precise WCET
Prediction by Separated Cache and Path Analyses. Real-time Systems, [s.l.], v. 18, n. 2/3,
p.157-179, abr. 2000. Springer Nature. http://dx.doi.org/10.1023/a:1008141130870.

VARGAS, Fabian; GREEN, Bruno. Preliminaries on a Hardware-Based Approach to Support
Mixed-Critical Workload Execution in Multicore Processors. In: SECOND
INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, CONTROL
AND NETWORKING, 2., 2015, Bangkok, Thailand. Second International Conference on
Advances In Computing, Control And Networking. Bangkok: IRED, 2015. p. 23 - 27. DOI :
10.15224/978-1-63248-073-6-05

WILHELM, Reinhard et al. The worst-case execution-time problem—aoverview of methods and
survey of tools. Tecs, [s.l.], v. 7, n. 3, p.1-53, 1 abr. 2008. Association for Computing
Machinery (ACM). http://dx.doi.org/10.1145/1347375.1347389.

ZICCARDI, Marco et al. EPC: Extended Path Coverage for Measurement-Based Probabilistic
Timing Analysis. 2015 leee Real-time Systems Symposium, San Antonio, Tx, Usa, v. 1, n. 1,
p.338-349, dez. 2015. IEEE. http://dx.doi.org/10.1109/rtss.2015.39.

APPENDIX A - IPET Example: Bubble Sort Case

This section aims to explain all steps on IPET computation for the item 6.2 Bubble Sort Case.

The following image shows the chosen algorithm’s CFG.

i—;{{
8

v
A J

Figure 30 - Buble Sort CFG

According to IPET technique, every basic block has two parameters, time (Ti) and number of
execution (Ni). To define the basic block WCET is required to multiply this block execution times (N;)
and its spent time for a unique execution (7;). The WCET is the maximum summation of the outcomes of
every block.

WCET = Z N; T,

i€BasicBlocks

WCET:NA*TA+NB*TB+N(:*TC
+Np *Tp + Ng xTg + Ng x Tp + Ng * T
+Ny * Ty + Ny xT; + Ny + Ty

All basic block times are known, since instruction number is regarded as time unit in this case. The

following figure shows the time for all blocks.

main A 5
bubble B 1
eloop C 2
eloopl D 1
iloop E 2
iloop_1 F 7
iloop_2 G 2
swap H 4
endiloop | 2
end J 2

Figure 31 - The basic blocks times.

Although the time for all blocks are known, the number of execution have to be computed. IPET define

some rules for this computation:

e The first block executes only once (Na = 1).
e The last block executes only once (N; = 1).
e The number of times the execution enters a given block is the same number that the execution

leaves the block.

Based on that it is possible the compute the block’s number. It regards the numbers of execution for
every block, as Na, and also the number of transitions among the blocks, as Nag. The IPET equations for this
CFG are described below:

Ny = Ngp

Np = Npp = Npc,

Nc = Npc + Ni¢ = N¢p + Ny,

Np = N¢p = Npg,

Ng = Npg + Nyg + Ngg = Ngp + Ng;,
Np = Ngp = Npg + Npy,

Ng = Npg = Ngg,

Ny = Npy = Nyg,

Ny = Ng; = Ny,

N] = NC]'

The first (N,) block and the last (N;) block are executed only once. Besides that, the outer loop blocks

(Np, N;) upper bound is 8 times whereas the inner loop (Ng) upper bound is 64.

NA = 1, NB = 1, ND = 8; NI = 81 NF = 64’
1 = NAB'
Np = 1= Npc,

N =1+ Nic = N¢p + Ngy,

8 = Ncp = Npg,

Ng = 8 + Nyg + Ngg = Ngp + Ngp,
64 = Ngp = Npg + Npy,

Ng = Npg = Ngg,

Ny = Npy = Ny,

8 = Ng; = Ny,

1= Ngj,

After that is possible to replace some variables values and simplify the equation:

Ny=1,
Ny =1,
N; =09,
Np =8,
Ng =72,
Np = 64,
N, =8,

N = Npg = Ngg,
Ny = Npy = Nyg,

The number of executions of the blocks Ng and Nw depends on how mess the vector values are.
Analyzing the bubble sort algorithm is possible to infer that the worst scenario has decreasing values in vector

(8,7,5,6, 4, 3,2 and 1, for example). In this worst-case, the algorithm swaps the values 28 times during

execution to order the vector. This implies Ny = 28 and, hence Ng = 36. The Figure 32 shows the number of

executions for all blocks in the worst-case:

Figure 32 - The number of executions for each block in the worst scenario. Reference: Author

The Table XXIX displays the IPET result and all found values throughout this static analysis
computation considering the worst-case. This analysis resulted in 826 executed instructions in the worst
scenario, since this work regards executed instructions as time unit, the WCET is 826.

Table XXIX - Static analysis for WCET. Reference: Author.

main A 5 1
bubble B 1 1
eloop C 2 9 18
eloopl D 1]]
iloop E 2 72 144
iloop_1 F 7 64 448
iloop_2 G 2 36 72
swap H 4 28 112
endiloop | 2 8 16
end J 2 1 2
Total 826

APPENDIX B — EVT for multi-path WCET

Regarding multiple-path program, the EVT application is direct, although there are three essential
conditions:

1) L.i.d. properties are requisite to the resultant distribution from multiple paths.

2) Each path requires a sufficient number of execution time samples.

3) The result refers to the observed paths set alone.

A. Independent and identically distributed observations

As in single-path programs, it is important to hold the i.i.d. property for multi-path programs, choosing
random inputs in the measurement runs and grouping them, or testing all inputs and choosing the outcomes
randomly when grouping. There is a necessary assumption in which it exists a direct and traceable correlation

among the taken path, the observation and the input data and state.

B. Minimum Observations Number

EVT does not regard different paths frequencies in the measured samples, since the worst-case path
dominates the outcome in block maxima approach. Otherwise, a minimum samples number of each path may
be a requirement to characterize the behavior adequately. Executing each input at least this minimum number

may ensure this property.

C. Path Coverage

The EVT result is reputable for observed paths only. Untested paths might not be related to the pWCET
estimates, since the execution time would not compound an identical distribution for those paths. This connects
the i.i.d. concept to the path coverage achieved by input data. Furthermore, in complex applications, the loops
and branches combinations increase considerably the number of possible paths during the program. For this
reason, it is possible to establish a warning on the EVT result, describing it as valid only for the observed paths
during execution (CUCU-GROSJEAN et al., 2012).

D. EVT Step-by-step for multi-path

The EVT application for multi-path program is very similar to single-path. There is only one difference
in the first step, during the observations collection (CUCU-GROSJEAN et al., 2012). Each path requires an
acceptable sample number to characterize its behavior. In other words, the number of paths multiplies the
sample number required. For instance, it may be viable to start with 100P executions, where P is the number

of paths. Moreover, it is possible to increase the additional number of observations in each round to P * NA.

APPENDIX C — Path Upper-Bounding (PUB)
The Path Upper-Bound (PUB) method extends MBPTA to upper bound for any path in the program

under analysis, even if the input vector does not induce the worst-case path. PUB extends the original program,
adding instructions in the different program paths. Therefore, the execution time of any path upper bounds the
worst-case execution time. However, it uses the extended program only for pWCET analysis time (KOSMIDIS
etal., 2014).

PUB estimates the probability of any program path upper bound. Figure 33 compares both MBPTA and
PUB flows, since the collection step until pWCET estimating. MBPTA provides a pWCET estimating only
for analyzed paths, as the analysis result may not upper-bound non-exercised paths. On the other hand, PUB
operates on the original code. It is possible to upper bound the program execution time exercising any path,
since the method adds instructions in every code branch. Moreover, Kosmidis et al. (2014) propose two PUB
techniques: Address Merging (PUBam) and Address Aging (PUBaa).

a) Current MBPTA
methodology

b) Proposed PUB
methodology

Original program Original program

Maodified program

4

MEBEPTA

User-provided

. MBPTA
input vectors

pWCET for the path
exercised with user-
provided IVs only

pWCET for all paths

]
]
I
1
] the original program
]

]

Figure 33 - MBPTA and PUB methodologies. Reference: Kosmidis et al. (2014).

<Onde esta a ref no texto desta figura?>

8.1.1 Address Merging (PUBam)

This methodology consists of performing the same data accesses regarding the same order in any path
of a given conditional branch. Figure 34 shows a conditional branch in which the first path accesses the
addresses @A, @B and @C, while the second accesses the addresses @D and @E. In this case, the PUBam
proposes to edit the code to ensure a safe worst-case for both paths. PUBam also maintains the relative order
of accesses. In other words, it respects the sequences @A, @B, @C and also @D, @E. Consequently, there
are two possibilities for this case: access <@A;@B;@C;@D;@E >, or <@D;@E;@A;@B;@C >, or
<@A;:@D;@B;@E;@C>, but not <@QA;@QE;@D;@C;@B>.

Original code H Extendedcode

if (.) then, if (..) then
(N | Ca
@ - @y
Q. | Qc
LG
| &
else | else
| €a
: @s
i Cc
@ L
@ : @
fi v fi

Figure 34 - Simple Code Replication. Reference: Kosmidis et al. (2014).

To optimize the solution replicating all access in all branches it is possible to avoid unnecessary access
replications. In order to do that, sequences or addresses replicated in both paths must be identified and not
copied. The figure 35 shows an example that illustrates how a given if-then-else can be optimized. In this code
there are three addresses sequences, @A,@C and @C, occurring both in then and else paths. Due to this, there

is no blank space for those address in the left side column.

Original code Extended code

if (..) then ,if (..) then
(Y
(8

= =]
[I

[
[

(& (e
=
=]
=

il

L]

o (&1
]

m
=
n

e M
el

1

ml (e &=
=

ooa

fi fi

Figure 35 - Code identification and replication. Reference: Kosmidis et al. (2014).

Kosmidis et al. (2014) also consider different instructions flows as switch, loop, nested if-then-else and

if-then (without else) constructs.

If-then: Regarding this construct as an if-then-else with an empty else branch, PUB simply adds
in the else branch the code in the then branch.

Switch: Switch constructs may have more than two branches. PUB replies the sequence access
as in if-then-else, however it does this for all branches.

Nested Conditionals: For nested conditional PUB, it may be applied recursively. Figure 36
shows an example of if-then-else and if-then nested. This figure shows the original code in the
first column, the inner conditional applying PUB in the second column and the final code in the
last column.

Loops: Access in any branch remains the same in loops, although data cache access may vary
crosswise iterations. For this reason, branch upper bounding is trustworthy even in this case. It
is noteworthy mentioning that PUB replicates access only for those that do not access the same
address in all branches in each iteration. The same occurs when accessing an array content, if
different branches access the same array in different positions, those accesses must be replicated
by PUB.

Infeasible paths, error codes: In several cases, there is no need to consider some branches in
PWCET computation. In other words, it is possible to reduce the PUB overhead. For that, the
user can instruct PUB, by annotations, to not consider instructions in some branches.
Operation modes: Software with different, and mutually exclusive, operations modes may be
upper bounded in every operation mode independently. The user might identify and indicate
every operation mode code to PUB and provide a path coverage for that mode instead of
covering all code paths. Switch constructs, for instance, have different modes for each case.
Function Calls: when a given branch calls a function, PUB replicates its cache effects to the
other branches. PUB may use a dummy function that access the same addresses in the same
order that function call does. Alternatively, it is possible to apply a technique named Address

Aging. However, if all branches call the same function, there is no need to replicate it.

Original code Extended code Extended code
(inner-most if) (outer-most if)

fi

1 1
if (.) then , 1f (..) then }if (.) then
\ B
: v G
: G
@, [@, ' €a
e, : e, 6,
else : elsze :815e
if (.) then, if () then! if (..) then
Q. : B l e
8, : A, : e,
else : else : else
| e. i e.
1 @, ! é,
£i : £i L fi
: A
@y \ @, T
@, i @, i Ca
1 1

fi fi

Figure 36 - Nested If code replication. Reference: Kosmidis et al. (2014).

8.1.2 Address Aging (PUBaa)

PUBam (Address Merging) is less efficient when each branch has different addresses sets to access,
since PUB copies every accessed address to all branches (KOSMIDIS et al., 2014). Considering a switch with
10 cases, for instance, if each branch access two different addresses, will result in an extended switch in which
all branches access 20 addresses.

To handle it, Kosmidis et al. (2014) propose the Address Aging technique (PUBaa). This method adds
addresses accessed nowhere else in the code, resulting in missing and fetching useless data, instead of copying
addresses on all the other branches. The access number PUBaa adds is the maximum number of any branches
access. Regarding the previous example, instead of copy all the addresses, it adds two unique addresses in each
branch. Therefore, every branch must have four addresses instead of 20. This still ensures the switch worst-
case, since there are at least two misses occurring in every case.

PUBaa is potentially more efficient for a higher number of branches. However, for high imbalance and
a low number of branches, PUBam is more efficient. PUBaa might be applied by using a data structure
(dummy) and a pointer (next) to ensure that the address is accessed once (dummy[next]). Although it is also
possible to implement PUBaa with hardware support, creating a special instruction that induces a cache miss,

causing some data eviction, accessing memory and bringing useless content to cache memory.

APPENDIX D — Extended Path Coverage (EPC)

Ziccardi et al. (2015) present the Extended Path Coverage (EPC). This technique enhances the MBPTA
process and results in a valid pWCET for the whole program, even without the worst-case inputs, either the
full path coverage. EPC regards only measurements on the original program code, unlike PUB. EPC derives
an execution times collection, which represents all the program paths just counting on basic block measurement
sets. Therefore, it requires a basic block full coverage.

In the MBPTA approach, the result is valid only for the paths covered and executions conditions for
observations collected. EPC, on the other hand, extends the observations set synthetically to get the equivalent
effect of full path coverage. EPC requires collecting executions time observations, sample set, for every
program basic blocks.

Basic block is a code snippet, the smallest unit of sequential code to execute. Measure basic blocks is
industrially viable since the executions probing overhead might be negligible by adopting trace tools or
advanced hardware debug interfaces.

It is possible to make probabilistic execution times for a basic block to be path-independent. EPC
increases, probabilistically, the probabilistic execution time to balance the benefits that basic blocks may take
in some cases. As a given traversal path leading to this block, due to history sensitivity of execution, for
instance.

Every basic block execution time that is probabilistically path-independent may construct a whole
program representative collection of execution times, even blocks that input vector do not exercise. The
execution time observations over basic blocks may not be combined to obtain unobserved path execution time.
By the way, path-independence is a mandatory requirement. Due to cache-level dependence and core-level
dependence effects, each observation corresponds only to the executed path during the run.

EPC copes these dependencies identifying unobserved paths’ probabilistic impact on the observed
execution times set and it generates an artificially extended set of execution times regarding the entire program.
MBPTA process might analyze this extended set to define the worst-case. The computed pWCET may be fully
trustworth, once it is regarded as upper bound, due to the extended measurements obtained by thoroughly
observing each possible path.

Figure 37 depicts the EPC and MBPTA processes interactions. The main EPC process steps are (a)
collecting execution time samples, (b) padding basic blocks and (c) construction of execution time. The
original observations and the synthetic execution times, which EPC generates, feed the MBPTA process and
allow it to compute a trustworthy pWCET for any exceedance probability. This pWCET relates to all paths in
the program and all possible addresses. Furthermore, MBPTA convergence criterion may require synthetic

measurements or observations.

[EPC .. |
RP, ﬂ fl> (Hsmrations ! > .
RE a i; G..scn:.ms! |:>

R, \ R 0 (o) O [2
feed
A
MBPTA Ifl>

=7 | process

M

e 0

PWCET

Figure 37 - EPC interaction with standard MBPTA process. Reference: Ziccardi et al. (2015).

Figure 38 shows the EPC steps applied on a simple program. This program consists of two cascading
conditional code. The first step collects execution time for individual basic blocks across the paths ¢0 and ¢2.
Afterwards, the second step augments the execution times collected for each basic block to turn them into path-

independent. The third step synthetically computes execution time values for all the non-observed paths ¢1
and 3.

Execution times |||I PR RN
of basic blocks, EETP *{bhy) ¢ - .
collected ¥ A . *.
on paths gg I || ||| Execution times P 4 e
and ¢, are “..]..L -'-'.'Jr-1 . EETEH(bh. | CONStruction v B Bbap)
made path-) \ ‘/ " for paths ‘e !
independent dn and da . -7
|||I| II_ II ™ () !__I
1 \ TR It
EETP*{bba EETP(¢) » “ /" ~ LFETP (o5
J/ \la # ~
’ '
|||I| I|II| I |J/n':,}| l'/;g? 1
EETP *{bbaa EETPF " bban) b e - r
Y g) ’
I L +
L s *
|||| % (b #
EETP b A

Figure 38 - EPC steps applied on a simple program. Reference: Ziccardi et al. (2015).

The first step is to collect execution times for the program. It is not required to exercise all the paths,
though it must cover every basic block (bbi) in the program. After extracting timing information for each basic
block, it is possible to generate an empirical execution time profile EETP(bbi), relating every basic block bbi.
The second step applies observations Obs(bbi, ¢) to all basic blocks and their respective EETP(bbi). Each
Obs(bbi, ¢) is made probabilistically path-independent, denoted Obs+(bbi, ¢), by adding a probabilistic
padding. Augmented observations induce augmented execution time profiles EETP+(bbi). These profiles are
independent of observed paths and over-approximates every basic block timing behavior on every path in the
program that passes through it. The last step combines path-independent profiles to define a synthetic execution
time profile EETP () for each non-observed path ¢. Building blocks in OBS (i) computation, regarding ¢i

as a program path, they are always valid upper bounds, since using probabilistically path-independent

EETP+(bbi) ensures it. Feeding a EETP (¢) complementary set to MBPTA enables it to obtain a valid pWCET
for all execution paths and for any exceedance probability. EPC application ends and gathers all the artificially
constructed execution times obtained under different cache placements, randomly generated, and providing
them to MBPTA.

APPENDIX E — Matlab code examples

The following code computes GEV for Block Maxima approach in Matlab, the filtering process
happens before this execution and is provided in a samples.csv file.

clc; close all; clear all;

importfile('samples.csv');

[f,X] = ecdf(data);
f2 =1-f;
paramEsts = gevfit(data);

paramEsts

location = paramEsts(3);
scale = paramEsts(2);

shape = paramEsts(1);

p = 1 - gevcdf(x,shape,scale,location);

plot(x,p,x,f2);
figure;
qqplot(p,f2);
xlim([0 1]);

ylim([0 1]);
% for a better analysis decrease x step
% This example uses a range between 2570 and 2580

X = (2570:0.002:2580);

p = 1 - gevcdf(x,shape,scale,location);

p2 = 10"-9;
figure;

plot(x,p,x,p2);

The following code computes GP for Block Maxima approach in Matlab, the filtering process happens
before this execution and is provided in a samples.csv file.

clc; close all; clear all;

importfile('samples.csv');

[f,X] = ecdf(data);
f2 =1-f;

paramEsts = gpfit(data);

scale = paramEsts(2);

shape = paramEsts(1);

p = 1 - gpcdf(x,shape,scale);
figure;

plot(x,p,x,f2);

figure;

plot(x,f2);

figure;

qqplot(p,f2);

% for a better analysis decrease x step

% This example uses a range between 923.64 and 924

% x = (923.64:0.002:924);

p = 1 - gpcdf(x,shape,scale);

p2 = 10"-9;

figure;

plot(x,p,x,p2);

e
ok e ke R

MARISTA

Pontificia Universidade Catdlica do Rio Grande do Sul
Pré-Reitoria de Graduagdo
Av. Ipiranga, 6681 - Prédio 1 - 32, andar
Porto Alegre - RS - Brasil
Fone: (51) 3320-3500 - Fax: (51) 3339-1564
E-mail: prograd@pucrs.br
Site: www.pucrs.br

