

ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

MESTRADO EM ENGENHARIA ELÉTRICA

GUILHERME ISAIAS DEBOM MACHADO

ANALYSIS OF THE EXTREME VALUE THEORY ON THE ESTIMATION OF

PROBABILISTIC WCET

Porto Alegre

2021

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL

ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

GUILHERME ISAIAS DEBOM MACHADO

ANALYSIS OF THE EXTREME VALUE THEORY ON THE ESTIMATION OF

PROBABILISTIC WCET

Porto Alegre

2021

GUILHERME ISAIAS DEBOM MACHADO

ANALYSIS OF THE EXTREME VALUE THEORY ON THE ESTIMATION

OF PROBABILISTIC WCET

Orientador: Prof. Dr. Fabian Luis Vargas

Porto Alegre

2021

Dissertação apresentada como requisito para

a obtenção do grau de Mestre pelo Programa

de Pós-Graduação em Engenharia Elétrica

da Escola Politécnica da Pontifícia

Universidade Católica do Rio Grande do

Sul.

Área de concentração: Sinais, Sistemas e

Tecnologia da Informação.

Linha de pesquisa: Sistemas de Computação,

Controle e Automação.

AGRADECIMENTOS

Diante da conclusão deste grande desafio agradeço ao soberano Deus, por me preservar a vida

e me conceder o privilégio de realizar este trabalho, por sua fidelidade e pela graça de ter encontrado

muitas pessoas especiais.

Agradeço especialmente aos meus familiares, meu pai Teodoro, minha mãe Nilda, meu irmão

Jonatas e minha cunhada Amanda, por serem incentivadores nesse grande desafio.

Ao professor e orientador Dr. Fabian Luis Vargas por me receber em seu grupo de pesquisa,

por viabilizar a realização deste trabalho.

Ao professor Celso Maciel da Costa pelo privilégio de tê-lo como mestre desde o meu ingresso

na graduação.

A todos os professores e colaboradores da PUCRS, meu muito obrigado por toda a ajuda e

colaboração.

RESUMO

Quando sistemas de tempo real são desenvolvidos para aplicações críticas, o tempo de execução

é um requisito tão importante quanto o resultado computado. Por este motivo, o tempo máximo de

execução de um sistema de tempo real deve obrigatoriamente ser determinado durante a fase de

projeto. Estimar o tempo de execução de sistemas complexos impacta diretamente no tempo e nos

custos da análise durante o desenvolvimento do sistema. Neste contexto, esta dissertação tem por

objectivo avaliar a possibilidade do método MBPTA (do inglês: Measured-Based Probabilistic

Timing Analysis) se basear na Teoria de Valores Extremos (EVT - Extreme Value Theory) para

estimar o tempo de execução do pior caso probabilístico (pWCET - Probabilistic Worst-Case

Execution Time) de uma aplicação em uma plataforma de hardware simulado.

Para tanto, utilizou-se o processador MIPS rodando dois algoritmos como estudo-de-caso:

Bubble Sort e Filtro FIR. Estes algoritmos têm o WCET estimado através do método de análise de

tempo determinístico estático (Static Deterministic Timing Analysis – SDTA). Neste trabalho, o

MBPTA é estimado através de duas técnicas distintas: Block Maxima (BM) e Peak Over Threshold

(POT), as quais são combinadas com EVT para a estimação final do WCET. Os valores de WCET

obtidos por MBPTA/BM e MBPTA/POT com EVT são comparados contra os valores de referência,

obtidos através do método SDTA.

Os resultados obtidos sugerem que a técnica BM fornece resultados confiáveis mais facilmente

do que POT. Embora POT seja mais complexa, as análises sugerem que esta técnica possui mais

precisão que BM, especialmente quando não são repetidos os valores de entrada da aplicação

analisada.

Palavras-chave: Worst-Case Execution Time (WCET); WCET Estimation; Measured-Based

Probabilistic Timing Analysis (MBPTA); Extreme Value Theory (EVT); Block Maxima (BM); Peak

Over Threshold (POT); Aplicação de tempo real;

ABSTRACT

Real Time systems developed for critical applications require a proper execution time as

important as the correct computed outcome. Owing to this, the maximum execution time of a Real

Time System shall be determined by design. Estimate the execution time of complex systems affects

time and analysis cost directly during the system development. In this sense, this dissertation aims to

assess the possibility of applying MBPTA (Measured-Based Probabilistic Timing Analysis) based on

EVT (Extreme Value Theory) to estimate the pWCET (Probabilistic Worst-Case Execution Time) of

a given application in a given hardware platform.

With this purpose, this dissertation makes use of the MIPS processor executing two algorithms

as case studies: Bubble Sort and FIR Filter. These algorithms have WCET estimated by SDTA (Static

Deterministic Timing Analysis). This work applies MBPTA with two different approaches: Block

Maxima (BM) and Peak Over Threshold (POT), which are combined with EVT to estimate the final

WCET. Then it compares the obtained WCET values by MBPTA/BM and MBPTA/POT with EVT

to reference values, obtained by the SDTA method.

The obtained results suggest that the BM approach presents a reduced complexity

implementation as compared to the POT approach. Nevertheless, besides the POT higher complexity,

this approach is more accurate than the BM, especially when input data values are not repeated.

Keywords: Worst-Case Execution Time (WCET); WCET Estimation; Measured-Based Probabilistic

Timing Analysis (MBPTA); Extreme Value Theory (EVT); Block Maxima (BM); Peak Over

Threshold (POT); Real-time application;

.

List of Figures

Figure 1 - Example of a Measured Based Time Analysis. Reference: Wilhelm et al. (2008, p. 3). 19

Figure 2 - System Execution Time PDF. Reference: Kosmidis et al. (2014). .. 20

Figure 3 - CDF and 1 – CDF. Reference: Kosmidis et al. (2014). ... 20

Figure 4 - pWCET estimative example (p = 10-16) . Reference: Kosmidis et al. (2014). 21

Figure 5 - Quantile-quantile graph example. Reference: G. Lima, D. Dias, and E. Barros. (2016). 26

Figure 6 - Illustration of unsafe values due to the implicit assumption fitting discrete and continuous

functions. Reference: Griffin e Burns (2010). ... 32

Figure 7 - An illustration of how to offset the Gumbel distribution to guarantee safe values. Reference:

Griffin e Burns (2010). .. 32

Figure 8 - Methodology steps. Reference: Author. ... 36

Figure 9 - pWCET Process Analysis step. Reference: Author. ... 37

Figure 10 - Block Maxima approach flow. Reference: Author. .. 38

Figure 11 - Peak Over Threshold approach flow. Reference: Author. .. 38

Figure 12 – Flow of Matlab functions to compute GEV Distribution. .. 40

Figure 13 - Flow of Matlab functions to compute GP Distribution. ... 41

Figure 14 - Bubble Sort assembly code. Reference: Author. .. 43

Figure 15 - CFG of Bubble Sort assembled code. Reference: Author. ... 44

Figure 16 - Maxima block histograms (X axis means execution time, Y axis means occurrences). Reference:

Author. ... 46

Figure 17 - Maxima block quantile-quantile plots. Reference: Author. .. 48

Figure 18 - Histograms for different threshold values (X axis means time, Y axis means occurences).

Reference: Author. .. 51

Figure 19 - Quantile-quantile plots for different threshold values. Reference: Author. 52

Figure 20 - Assembled code of the FIR Filter. Reference: Author.. 54

Figure 21 - CFG of FIR Filter code. Reference: Author. .. 55

Figure 22 - Maxima blocks histograms for A (X axis means time, Y axis means occurences). Reference:

Author. ... 58

Figure 23 - Maxima blocks histograms for B (X axis means time, Y axis means occurences). Reference:

Author. ... 59

Figure 24 - Maxima block quantile-quantile plots (A). Font: Author. .. 60

Figure 25 - Maxima block quantile-quantile plots (B). Reference: Author. .. 61

Figure 26 - Peak Over Threshold histograms for A (X axis means time, Y axis means occurences).

Reference: Author. .. 65

Figure 27 - Peak Over Threshold histograms for B (X axis means time, Y axis means occurences).

Reference: Author. .. 65

Figure 28 - Quantile-quantile plots for different threshold values (A). Font: Author. 66

Figure 29 - Quantile-quantile plots for different threshold values (B). Font: Author. 67

Figure 30 - Buble Sort CFG ... 76

Figure 31 - The basic blocks times. ... 77

Figure 32 - The number of executions for each block in the worst scenario. Reference: Author 79

Figure 33 - MBPTA and PUB methodologies. Reference: Kosmidis et al. (2014). .. 81

Figure 34 - Simple Code Replication. Reference: Kosmidis et al. (2014). ... 82

Figure 35 - Code identification and replication. Reference: Kosmidis et al. (2014). 82

Figure 36 - Nested If code replication. Reference: Kosmidis et al. (2014). .. 84

Figure 37 - EPC interaction with standard MBPTA process. Reference: Ziccardi et al. (2015). 86

Figure 38 - EPC steps applied on a simple program. Reference: Ziccardi et al. (2015). 86

List of Tables

Table I - Comparison between WCET and pWCET ... 24

Table II - Comparing SDTA to MBTA and SPTA to MBPTA ... 24

Table III - advantages and drawbacks of EVT, PUB and EPC: .. 34

Table IV - Samples number (Ncurrent) on analysis for WCET. Reference: Author. .. 45

Table V - Different block sizes for Basic Blocks and Maxima Block. Reference: Author. 46

Table VI - Gevfit function response for different maxima block sizes. .. 47

Table VII - Difference between ECDF MBPTA (Block Maxima) and EVT distribution. 48

Table VIII - Bubble Sort on Block Maxima approach. ... 49

Table IX - Threshold values and respective number of samples. Reference: Author. 51

Table X - Pareto parameter values for different thresholds. .. 52

Table XI - Bubble Sort on Pick Over Threshold approach. .. 53

Table XII - Number of samples (Ncurrent) on analysis (A). Reference: Author. ... 56

Table XIII - Number of samples on analysis (B). Reference: Author. .. 57

Table XIV - Different block sizes for Basic Blocks and Maxima Block (A). Reference: Author. 57

Table XV - Different block sizes for Basic Blocks and Maxima Block (B). Reference: Author. 58

Table XVI - Gevfit function response for different maxima block sizes (A). ... 59

Table XVII - Gevfit function response for different maxima block sizes (B). .. 60

Table XVIII - Differences between ECDF MBPTA(Block Maxima) and EVT distribution (A). 61

Table XIX - Differences between ECDF MBPTA(Block Maxima) and EVT distribution (B). 62

Table XX - FIR Filter on Block Maxima approach, scenario A.. 62

Table XXI - FIR Filter on Block Maxima approach, scenario B. ... 63

Table XXII - Threshold values and number of samples for scenarios A and B. Font: Author. 64

Table XXIII - Pareto parameter values for different thresholds. ... 66

Table XXIV - Differences between ECDF MBPTA (Peak Over Threshold) and EVT distribution (A). 67

Table XXV - Differences between ECDF MBPTA (Peak Over Threshold) and EVT distribution (B). 67

Table XXVI - FIR Filter on Peak Over Threshold approach, scenario A. ... 68

Table XXVII - FIR Filter on Peak Over Threshold approach, scenario B. .. 68

Table XXVIII – Comparing outcomes from BM and POT approaches. ... 70

Table XXIX - Static analysis for WCET. Reference: Author. .. 79

List of Abbreviations and Acronyms

ACET Average-Case Execution Time

AH Always-Hit

AM Always-Miss

BCET Best-Case Execution Time

BM Block Maxima

CDF Cumulative Distribution Function

CFG Control Flow Graph

CHMC Cache Hit/Miss Classification

CRPS Continuous Rank Probability Score

DM Direct-Mapped

DRAM Dynamic Random Access Memory

ECDF Empirical Cumulative Distribution Function

EPC Extended Path Coverage

ETP Execution Time Profile

EVT Extreme Value Theory

FA Fully-Associative

FIR Finite Impulse Response

FM First-Miss

GEV Generalized Extreme Value

GPD Generalized Pareto Distribution

i.i.d. independent and identically distributed

IDE Integrated Development Environment

ILP Integer Linear Programming

IPET Implicit Path Enumeration Technique

MARS MIPS Assembler and Runtime Simulator

MBPTA Measured-Based Probabilistic Timing Analysis

MBTA Measured Based Timing Analysis

MIPS Microprocessor without Interlocked Pipelined Stages

OS Operating System

PDF Probabilistic Distribution Function

pET probabilistic Execution Time

POT Peak Over Threshold

PUB Path Upper-Bounding

PUBaa Path Upper-Bounding Address Aging

PUBam Path Upper-Bounding Address Merging

pWCET probabilistic Worst-Case Execution Time

QQ-plot quantile-quantile graph

r.v. random variable

RTOS Real Time Operating System

SA Set-Associative

SDTA Static Deterministic Timing Analysis

SPTA Static Probabilistic Timing Analysis

WCET Worst-Case Execution Time

Contents

1 Introduction ... 14

2 Objectives .. 15

3 Preliminaries .. 16

3.1 Real Time Systems .. 16

3.1.1 History Dependencies .. 16

3.2 The Worst Case Execution Time (WCET) .. 17

3.2.1 Static Deterministic Timing Analysis (SDTA) .. 17

3.2.2 Measured Based Timing Analysis (MBTA) ... 18

3.3 The Probabilistic Worst-Case Execution Time (pWCET) .. 19

3.3.1 Static Probabilistic Timing Analysis (SPTA) .. 21

3.3.2 Measurement-Based Probabilistic Timing Analysis (MBPTA) ... 23

3.4 Comparison .. 23

4 State-of-Art .. 25

4.1 Extreme Value Theory (EVT) ... 25

4.1.1 Empirical Distribution Validation ... 28

4.1.2 Block Maxima (BM) .. 28

4.1.3 Peak Over Threshold (POT) .. 28

4.1.4 Differences between BM and POT .. 29

4.1.5 Single Path WCET ... 29

4.2 Comparison .. 34

5 Proposed Methodology .. 34

5.1 Specification .. 35

5.2 Implementation .. 38

6 Validation & Evaluation .. 41

6.1 The Simulator MARS .. 41

6.1.1 MARS Constraints .. 42

6.2 Bubble Sort Case ... 43

6.2.1 Static Analysis .. 44

6.2.2 MBPTA: Collecting Samples ... 44

6.2.3 MBPTA: Block Maxima Approach .. 45

6.2.4 MBPTA: Pick Over Threshold Approach .. 51

6.3 Finite Impulse Response Filter Case ... 53

6.3.1 Static Analysis .. 55

6.3.2 MBPTA: Collecting Samples ... 55

6.3.3 MBPTA: Block Maxima Approach .. 57

6.3.4 MBPTA: Pick Over Threshold Approach .. 64

6.4 Comparison .. 69

7 Conclusion ... 70

8 Future Work ... 72

APPENDIX A - IPET Example: Bubble Sort Case ... 76

APPENDIX B – EVT for multi-path WCET ... 79

APPENDIX C – Path Upper-Bounding (PUB) ... 80

8.1.1 Address Merging (PUBam) .. 81

8.1.2 Address Aging (PUBaa) .. 84

APPENDIX D – Extended Path Coverage (EPC) .. 84

APPENDIX E – Matlab code examples ... 87

1 Introduction

Developing computational systems requires predictability about the environment and system operation.

For several applications, it is an imperative requirement to ensure execution accuracy and reliability. The

occurrence of unpredictable delays in real-time systems used for aerospace, defense and automotive

applications, for instance, might jeopardize the equipment integrity as well as human safety.

Worst-Case Execution Time (WCET) is an important parameter to ensure accuracy under critical

conditions. Knowing the WCET since the early stages of the design allows the system to act in acceptable time

for all execution possibilities. There are several techniques to find a system WCET and those techniques

require software and hardware to be known and likewise predictable. Software characteristics as iterations and

conditional jumps impact execution time straightforwardly. Moreover, hardware characteristics as cache

memory and shared resources like buses also affect WCET (CUCU-GROSJEAN et al., 2012).

System complexity might jeopardize the process of finding the WCET. Predicting all execution cases in

intricate systems increases the time and overall design cost. Several hardware components, such as cache

memory, have random behavior, which varies the execution time for each execution case.

Alternatively, it is possible to find the execution time probability for different executions cases and set

a probability distribution of the system. It is possible to estimate the probabilistic Worst-Case Execution Time

(pWCET) using that distribution and defining the worst scenario for some low enough probability.

 GIL, Samuel Jimenez et al. (2017) show the open challenges regarding the pWCET definition. Having

a more critical view on the state of the art of the current literature, this paper points out theoretical problems

about Extreme Value Theory (EVT) application vulnerability, such as sample set representativeness and the

software and hardware characteristics correlation with some minimal sample amount for correct analysis.

 LIMA, George; BATE, Iain (2017) propose the Indirect Estimation in Statistical Time Analysis

(IESTA) technique, alternatively to hardware randomization to compensate systems intrinsic uncertainties.

This approach aims at trying to solve system uncertainty problems, nevertheless it disregards the pWCET

definition technique uncertainties.

When applying MBPTA with EVT to estimate pWCET, the inquiry is auspicious since there is a

considerable lack of information about the efficiency and applicability of this estimation method for real time

systems. Owing to this, this present-day work proposes a methodology to measure Extreme Value Theory

efficiency to estimate pWCET for critical real-time systems. The objective is to discover and explore EVT

limitations, also correlating EVT and system’s characteristics with the analysis of the computed results

uncertainty.

2 Objectives

This work aims to propose a methodology to analyze the quality of pWCET estimates of hard real time

systems, obtained according to EVT, and point out the process limitations this methodology might present. In

order to do that, it is possible to define some specific goals as follows:

▪ (1) Select algorithms for different applications, as Vector Ordering, Matrix Multiplication, Finite

Impulse Response filter (FIR) and Image Processing algorithms, for instance;

▪ (2) Assembly those algorithms for execution in MIPS architecture processor;

▪ (3) Statically analyze each application assembly code to determine the Worst-Case Execution

Time (WCET). This value is defined as the “reference value”;

▪ (4) Apply a Measured-Based Probabilistic Timing Analysis (MBPTA) to those application codes.

This process is to be realized under the use of different parameter values. It is possible to specify this

process in activities as follows:

▪ (4.1) Simulate every single code to obtain sets of execution time observations for each code.

▪ (4.2) Reach the minimum acceptable observations number (as described later in 4.1.5.)

▪ (4.3) Apply the Extreme Value Theory (EVT) in the sample sets according to the Block

Maxima (BM) approach.

▪ (4.4) Apply the EVT in the sample sets according to the Peak Over Threshold (POT) approach.

▪ (5) Investigate how the input data affect outcome data and how these input values influence the

outcome accuracy and reliability of the estimated WCET for both approaches (BM and POT).

▪ (6) Analyze results from different scenarios considering the same algorithm but different amounts

of data under analysis in order to verify whether and how the input data affects outcomes.

▪ (7) Validate results and look for patterns or situations that incur invalid pWCET estimates. To do

so, the statically determined WCET as obtained in step (3) is assumed as the “reference value”.

3 Preliminaries

This chapter grapples with Real Time Operating System (RTOS), Worst-Case Execution Time (WCET)

and Probabilistic Worst Execution Time (pWCET) concepts.

3.1 Real Time Systems

For a Real Time Operating System (RTOS) the execution accuracy does not rely strictly on the logical

results, since the execution time to reach the logical result is an essential parameter (VARGAS; GREEN,

2015). Time restriction underlines the main difference between RTOS and general Operating System (OS).

Time requirements are indispensable for some controlling sets. Owing to this, developing a real time

system could be the best choice concerning control systems design. Costa (2010) affirms that real time systems

work for several activities, such as control science experiments, medical images, industrial control process,

robotics, aviation, and so forth.

Hardware characteristics have an impact directly on the real time system execution. Moreover, choosing

hardware components considering time restrictions is quite imperative. Reliable and fault-tolerant hardware

avoid errors and allow the system to manage predictable errors. Furthermore, hardware speed must be

accordingly suitable with the design time restrictions (SHAW, 2003).

Real time system’s tasks have a time restriction parameter named deadline. This parameter bounds the

maximum time to execute a task with no error. Disregarding the task deadline may cause system damage

(BUTTAZZO, 2012). The lost deadline hazard varies for each system, and, due to this, the literature classifies

RTOS in Soft and Hard RTOS.

Disregarding deadline in Soft real time systems, which incurs failures, is proportional to a good system

execution (OLIVEIRA; FRAGA; FARINES, 2000). By the way, to lose deadline in Soft RTOS implies soft

hazards.

On the other hand, loose deadlines in Hard RTOS may cause catastrophic damage. For some activities

such as airplane control, for instance, Hard RTOS is imperative. In this scenario, an unpredicted fault may

damage all equipment and crew. Furthermore, disregarding tasks deadline could affect the environment around

the control system. The RTOS time restrictions are commensurable with regard to system complexity and

sensitivity (OLIVEIRA; FRAGA; FARINES, 2000).

However, Data Dependencies and History Dependencies may affect execution time. Bernat, Colin and

Petters (2002) say that Data Dependencies are related not only to the algorithm under execution, but also refer

to hardware architecture implementation, which may affect the division and multiplication execution time, for

instance. History Dependencies refer to cache memory, pipeline and branch prediction algorithms that

influence the code execution time. Furthermore, the clock difference between the processor and peripherals

units might, for instance, deviate execution time for instructions as load and store.

3.1.1 History Dependencies

Abella et al. (2014) explain that cache memory loads content into fixed-size lines. Moreover, there are

many different cache designs in current processors and in literature. Furthermore, regarding the most common

cache architectures, it is possible to classify in Direct-Mapped (DM) caches, Fully-Associative (FA) caches

and Set-Associative (SA) caches.

In DM caches, each memory address content has only one possible location in cache. A mapping

function chooses the location. In FM caches, any memory address content might be stored in any cache address.

In this case, as soon as the cache loads a new data, the replacement function decides which location to replace.

This cache might use several replacement policies.

SA cache, contrariwise, incorporates both concepts. This method splits all memory and cache addresses

in unlike sets. Each set-in memory is direct-mapped to some set-in cache, as in DM ones. Nevertheless, as in

FM (First-Miss) cache, any memory address in a set might occupy any address on its mapped cache set.

Moreover, SA applies both mapping and replacement functions.

It is important to point that cache and its policies affect the execution time. Therefore, cache usage

increases execution complexity and decreases execution predictability. In other words, a given algorithm

executing in a given architecture, even computing the same logical result, might spent different times for

executing when applying different cache techniques.

3.2 The Worst-Case Execution Time (WCET)

The program Worst-Case Execution Time (WCET) is the time upper bound to execute the program code

in a specific processor. WCET is essential to real time system schedulability analysis and time warranty,

especially on hard real time systems (STARKE, 2012). The instructions execution time is no longer constant

though.

Oliveira, Santos e Deschamps (2006) affirm that RTOS time analysis may consider other time

parameters. The Best-Case Execution Time (BCET) is the lowest time to complete a task execution. On the

other hand, the Average-Case Execution Time (ACET) is the average time to fulfill task execution. By the

way, BCET and WCET are both upper and shorter time bounds for task execution.

Current WCET analysis techniques are too pessimistic, once the result is the absolute execution time

upper bound. Further complex cases require several simplifications. Bernat, Colin and Petters (2002) affirm

that finding a WCET by measuring the test cases set may disregards the true worst-case. In industry, most

engineers add a safety margin to the computed WCET aiming to compensate the reliability fault and the

uncertainty problems that measured samples may cover in the worst-case.

ABELLA et al. (2014) classify some methods to find WCET in Static Deterministic Timing Analysis

(SDTA), Static Probabilistic Timing Analysis (SPTA) and Measurement-Based Probabilistic Timing Analysis

(MBPTA).

3.2.1 Static Deterministic Timing Analysis (SDTA)

Static Deterministic Timing Analysis (SDTA) employs a detailed system model to derive a safe WCET

upper bound (WILHELM et al.,2008). SDTA techniques demand a hardware structural knowledge. Cache

analysis, for instance, requires a placement and replacement function expertise.

ABELLA et al. (2014) classify SDTA methods in low-level analysis and high-level analysis. Low-level

ones focus on processor architecture and high-level analysis determines the worst execution case, among all

the possible paths in a program.

1) Low-Level Analysis: Regarding cache in low-level analysis requires observing several characteristics

that may affect WCET estimation. Considering the type of cache associativity behavior during execution is

imperative. Theiling, Ferdinand e Wilhelm (2000) introduce the Cache Hit/Miss Classification (CHMC):

• Always-Hit (AH): all fetched data results in a cache hit.

• First-Miss (FM): It does not classify the first occurrence neither as hit nor as miss, though

considering any other as hit.

• Always-Miss (AM): all fetched data results in a cache miss.

• Non-classified: it does not classify the occurrences as hit nor as miss.

There are three techniques to define CHMC category, the Must analysis, the Persistence analysis and

the May analysis. Those methods apply a static analysis based on abstract interpretation. Must analysis defines

if cache is always keeping the same memory block at a given program point. Thenceforth, in this case, CHMC

is always-hit. Persistence analysis identifies if cache evicted a memory block soon after being fetched.

Consequently, in this case, CHMC is first-miss. May analysis detects if a memory block may be in cache at

given program point. If it does not, the CHMC is always-miss. On other hand, if those techniques could not

classify the CHMCs, it is non-classified (ABELLA et al., 2014).

2) High-Level Analysis: Implicit Path Enumeration Technique (IPET) is the most common high-level

analysis technique. IPET solves the WCET calculation problem as an Integer Linear Programming (ILP)

formulation, expressing, using a linear constraints set, the program structure and all the possible execution

paths (WILHELM et al., 2008). This technique obtains an upper bound WCET, considering all the programs

basic blocks and the subsequent function maximum summation:

 ∑ 𝑇𝑖 ∗ 𝑓𝑖

𝑖∈𝐵𝑎𝑠𝑖𝑐𝐵𝑙𝑜𝑐𝑘𝑠

Ti is the timing information of the basic block i, constant in the ILP problem. Ti considers cache effect,

CHCMs and cache and memory latencies. fi is the basic block execution number, variable in the ILP problem.

The ILP solver provides a safe upper-bound function of all the possible execution times. See Appendix A for

a detailed example of computing WCET applying IPET.

3.2.2 Measured Based Timing Analysis (MBTA)

According Wilhelm et al. (2008) Measured Based Timing Analysis (MBTA) simulates or executes basic

blocks code in hardware. The basic blocks are tasks code or tasks code snippets and every simulation or

execution time is measured. Vary input data allow to cover all the execution paths and discover the worst-case.

MBTA defines the BCET as the shortest execution time measured while the WCET as the longest execution

time measured one. Furthermore, every measure sample compounds an occurrence distribution, this

distribution allows one to find a given execution time occurrence probability.

Figure 1 depicts a MBTA example. The distribution displays the occurrence number of each time. The

white distribution describes a single case samples occurrence, all samples considering the same input data. The

dark distribution describes all cases occurrences, considering all samples.

Figure 1 - Example of a Measured Based Time Analysis. Reference: Wilhelm et al. (2008, p. 3).

The Static Analysis dismisses task execution or its simulation on hardware. Static Analysis regard all

possible executions path in the task code. A Control Flow Graph (CFG) may describe those paths. After the

code analysis, the method relates all iterations upper bounds with the proper basic block on CFG. Match

execution time with iteration bounds for every basic block and calculate the worst execution time for every

path in code is the way to find the WCET.

The Static method defines every execution time bounds and ensures that the found WCET value will

never exceed. This method allows a safe schedule analysis in hard RTOS. However, if a given task depends

on some input data, the execution time could be eventually undeterminable. Furthermore, a higher analysis

code complexity may incurs a significant increase on computational effort and designs costs, because execution

paths increase exponentially as long as the conditional jumps in code increase (WILHELM et al.,2008).

3.3 The Probabilistic Worst-Case Execution Time (pWCET)

Gil et al. (2017) affirm that Static Analysis is unpractical for complex hardware components, although

MBTA finds a WCET, the true worst-case execution time may be not found. The Probabilistic Worst-Case

Execution Time intends to solve this MBTA problem.

The probabilistic Execution Time (pET) is a Probabilistic Distribution Function (PDF), which describes

the execution time probability to a given system. Figure 2 shows a Distribution pET example. In this example,

there is a probability of 14% that the code executes in 1.0 ms, for instance. Figure 3 depicts a Cumulative

Distribution Function (CDF), which is a cumulative sum of PDF function. In this regard, the “1 – CDF” is the

Exceedance Probability, i.e., the probability that the WCET exceeds a given computed value. For example, in

Figure 3 there is a probability of only 10% that the code executes up to 2 ms, or a probability of 90% that the

code executes under 2.0 ms, for instance (CDF function). CDF function shows the probability of execution in

less or equal a given time. In other words, according to Figure 3, 90% of all execution possibilities spent 2ms

or less. On the other hand, the 1 - CDF function shows that 10% of all execution possibilities exceed 2ms.

Using this distribution is imperative for computing execution time behavior.

Figure 2 - System Execution Time PDF. Reference: Kosmidis et al. (2014).

Figure 3 - CDF and 1 – CDF. Reference: Kosmidis et al. (2014).

With pET is possible to find some probability p for a given time value t. Additionally, it is possible to

find some time value for a given probability. Furthermore, it is possible to relate WCET information to pET

distribution and to define the probabilistic Worst-Case Execution Time (pWCET).

It is imperative compounds an empirical probability distribution with all measured execution times to

find the pWCET. From this Empirical Distribution, it is possible to define an Empirical Cumulative

Distribution Function (ECDF). EVT compares ECDF to an existing probability function. Figure 4 shows a

pWCET estimate. In this case, the probability is p = 10-16 for a pWCET equal to 9.5 ms. Note that Figure 4

depicts a tail amplification of the “1 – CDF” function presented in Figure 3.

Figure 4 - pWCET estimative example (p = 10-16) . Reference: Kosmidis et al. (2014).

The pWCET parameter is the worst-case execution time for a given probability threshold. Furthermore,

pWCET researches fall into Static Method and Analytic Method (Davis, Burns and Griffin, 2017).

3.3.1 Static Probabilistic Timing Analysis (SPTA)

The Analytic Method, also called Static Probabilistic Timing Analysis (SPTA), is applicable when a

system component or the environment affect the random behavior or time probability. For instance, a random

cache replacement (ABELLA et al., 2014). Cucu-grosjean et al. (2012) explain that SPTA derives system

model probabilities. Nevertheless, this method requires a considerable information amount about execution

behavior, even reducing the required information about program and platform.

SPTA method analyses software in structural level and instruction level and uses a hardware behavior

model to estimate the worst-case time behavior in a pWCET distribution. This distribution may contain cases

for all possible input data, software and hardware states and executions paths in code. Therefore, SPTA does

not execute the real hardware and, due to that, it depends largely on the hardware model accuracy. Abella et.

al. (2014) affirm that SPTA is not totally able to analyze multi-path programs and it is more pessimistic than

the measure based method.

SPTA may use random variables for probabilistic time behavior, expressed by the pair: <timing vector,

probability vector>, also named Execution Time Profile (ETP). The timing vector enumerates all operation

latencies while the probability vector lists the occurrence of associated probability. Hence, for an operation

Ai, ETP(Ai) = < 𝑡𝑖⃗⃗ , 𝑝𝑖⃗⃗ ⃗ > where 𝑡𝑖⃗⃗ = {𝑡𝑖
1, 𝑡𝑖

2, 𝑡𝑖
3, … , 𝑡𝑖

𝑁} and 𝑝𝑖⃗⃗ ⃗ = {𝑝𝑖
1, 𝑝𝑖

2, 𝑝𝑖
3, … , 𝑝𝑖

𝑁} , whereas ∑ 𝑝𝑖
𝑗𝑁𝑖

𝑗=1 = 1.

SPTA always assumes that previous instructions executions do not influence the instruction ETP. So,

assuming that the execution times probabilities for each instruction are independent, SPTA deploys the

convolution (*) of probability distributions for each instruction execution time along the flow. The result is a

probability distribution that describes the timing behavior of all execution path. In other words, if X and Y are

random variables that describe instructions x and y execution time, the convolution 𝑍 = 𝑋 ∗ 𝑌 is:

𝑃{𝑍 = 𝑧 } = ∑ 𝑃{𝑋 = 𝑘}𝑃{𝑌 = 𝑧 − 𝑘}
𝑘=+∞

𝑘=0

Abella et. al. (2014) show the forthcoming example: if an instruction x has 𝑡𝑥 = {1, 10} and 𝑝𝑥 =

{0.9, 0.1}, while the instruction y has 𝑡𝑦 = {2, 10} and 𝑝𝑦 = {0.5, 0.5} the convolution is:

𝑍 = 𝐸𝑇𝑃(𝑋∗𝑌) = 𝑋 ∗ 𝑌 = (
1 10

0.9 0.1
) ∗ (

2 10
0.5 0.5

)

= (
3 11 12 20

0.45 0.45 0.05 0.05
) = < {3,11,12,20}, {0.45,0.45,0.05,0.05} >

3.3.2 Measurement-Based Probabilistic Timing Analysis (MBPTA)

The Measurement-Based Probabilistic Timing Analysis (MBPTA) computes software execution time

directly over hardware. For this purpose, the input data and vector may comprehend a relevant set of code

execution paths and different software and hardware states that affect the time behavior (ABELLA et al., 2014).

MBPTA, unlike SPTA, does not require a significant information about hardware behavior, as memory,

bus and cache probability times, for instance. This method is more attractive for industry, since it finds

execution time probabilities by collecting end-to-end run samples on target hardware. Cucu-grosjean et al.

(2012) affirm that MBPTA estimates pWCET trough an observed execution times collection. However,

literature does not specify the required amount of samples and whether there are inferences due to the amount.

The EVT has been applied to MBPTA in order to provide the execution time probability that a program exceeds

a given threshold, based on Complementary Cumulative Distribution Function (CCDF), or “1 – CDF”: the

Exceedance Probability of the observed collection.

Instead of taking the worst-case obtained and add a safe margin, this method employs the static analysis

of EVT based observations to estimate the pWCET distribution. EVT requires that all execution time samples

are described as independent and identically distributed (i.i.d.) random variables. In other words, all samples

must represent the same r.v. behavior and, further, a collected sample outcome cannot influence other samples

outcomes. However, i.i.d. observed execution times obtained on a given processor does not make that

processor MBPTA compliant. MBPTA has its own conditions beyond those EVT requirements (CAZORLA

et al., 2013).

For MBPTA applicability all execution time variations sources in the system must be statically (i.i.d.)

or probabilistic upper-bounded (CUCU-GROSJEAN et al., 2012). This is imperative to correctly compute

latencies in analysis.

Abella et. al. (2014) explain that having ETPs at the dynamic instructions level fulfills all MBPTA

requirements. At cache level, every dynamic cache access must be defined by a hit and miss probability.

However, MPBTA does not require an upper bound probability derivation for cache access, once MBPTA

estimates pWCET based on observations and does not derive pWCET estimates by convolution like SPTA.

3.4 Comparison

All the methods previously mentioned may be applied to deal with the worst scenario of a given system,

nevertheless, each procedure has advantages and constraints. Furthermore, even WCET and pWCET metrics

have their distinguished characteristics.

A WCET value represents the worst-case of the worst scenario that a given system may face, so this

implies a high reliability and accuracy, whereas it requires the knowledge of every system singularity that may

affect execution, increasing complexity, effort and costs to define the worst-case. In the meantime, the pWCET

conciliate complexity and accuracy adding failures probabilities to analysis, since the probability models may

be less intricate than the system’s model. Although the lower accuracy the pWCET is worth when the failure

probability is known and minimum. Table I shows a brief comparison between WCET and pWCET metrics:

Table I - Comparison between WCET and pWCET

Metric
Main characteristics

Drawbacks Advantages

WCET
Requires too much data

High effort and cost involved

Accurate

Reliable

pWCET
Estimation as outcome

Accept failures (small probabilities)

Build a model for prediction

Less effort and cost involved

Static Deterministic Timing Analysis (SDTA) compute WCET according to the previously provided

system model and its characteristics, this procedure requires considerable effort and costs. On the other hand,

Measured Based Timing Analysis (MBTA) compute WCET measuring the system execution, the worst

measured scenario is regarded as WCET. Therefore, SDTA is more accurate than MBTA, however it may

apply some margin offset for safety and it involves less cost and effort.

Static Probabilistic Timing Analysis (SPTA) also requires a provided model of the system to compute

its pWCET, but this procedure regards the probability from this model, so the accuracy depends on the model.

Measurement-Based Probabilistic Timing Analysis (MBPTA), on the other hand, measures the system in order

to compute its probability model. Based on the probability model, MBPTA defines the pWCET considering a

desired probability threshold.

Table II shows a brief comparison between the methods SDTA and MBTA, it also compares SPTA and

MBPTA:

Table II - Comparing SDTA to MBTA and SPTA to MBPTA

Method
Main characteristics

Drawbacks Advantages

WCET
SDTA Intricate

Accurate

Reliable

MBTA Uncertain coverage Simpler

pWCET

SPTA
Depends on the provided model

accuracy

Based on provided probability model of the

system and its components

MBPTA

Depends on system execution

measurements

Unknown accuracy

Based on empirical model of the system

May estimate the execution for many

probability thresholds

Considering these different methods, this work aims to apply and investigate MBPTA efficiency

exploring its vulnerabilities, since this is the most promising and challenging method currently.

4 State of the Art

This section presents the state-of-art approach to find WCET named: EVT. It is worthy to point that the

proposed work is to analyze the performance of MBPTA with EVT because this technique has been applied

in several scenarios involving extreme bounds presenting accurate and reliable outcomes. Also, it regards

single path programs only, for applying EVT to compute multi-path WCET, see APPENDIX B – EVT for

multi-path WCET.

Further, this section presents a comparison among EVT and two different approaches to compute the

worst-case: Path Upper-Bounding (PUB) and Extended Path Coverage (EPC). For more details about these

methods see APPENDIX C – Path Upper-Bounding (PUB) and APPENDIX D – Extended Path Coverage

(EPC).

4.1 Extreme Value Theory (EVT)

MBPTA technique delimits WCET upper bounds based on statistical analysis of execution times, which

uses the EVT, a statistical theory developed to estimate uncommon events probabilities. Several fields apply

EVT nowadays, such as engineering, financial, earth science and traffic predict. Hydrology also applies EVT

to estimate an abnormal flooding event probability, for instance, defining the maximum flow rate which a

given flow gate must support. Estimated pWCET is commonly associated to a desired probability threshold.

Critical code executing on complex processors might apply this technique with a lower cost than in static

methods (SILVA; ARCARO; OLIVEIRA, 2017).

Lima and Bate (2017) define EVT in the following steps: (a) collect a desired random variable samples;

(b) select the maximum samples in (a); (c) find an statistical model to fit the selected samples in (b); (d) validate

the model and (e) determine an upper limit (probability threshold) based on the model found in (c) since that

model was validated in (d).

The literature presents two techniques that handle empirical samples to determine pWCET: Block

Maxima (BM) and Peak Over Threshold (POT). The EVT initial objective is to collect the proper values that

compound the distribution tail of the system behavior model and fit this model into a Generalized Extreme

Value (GEV) distribution. After collecting samples, EVT selects the maximum values, grouping all samples

into equal blocks size and uses the block maxima method to obtain a block maxima with the maximum values

of all the blocks. This approach is known as the Block Maxima (BM). Alternatively, EVT may select maximum

values, picking all the samples above a given threshold (CUCU-GROSJEAN et al., 2012). This approach is

known as the Peak Over Threshold (POT). There are also two types of software codes that EVT can be applied:

single path programs and multiple-path programs. The approaches BM and POT as well as the single- and

multiple-path type programs will be described along with this section.

G. Lima, D. Dias, and E. Barros. (2016) show a technique to visualize how much the EVT distribution

fits on the ECDF. This technique is the quantile-quantile graphs (QQ-plot). It is, essentially speaking, a plot

of the empirical quantile observed values against the target distribution quantiles. This graph shows a

distribution quantiles in one axis, while it similarly shows the compared distribution quantiles in the other axis,

so if those distributions are equal, the graph will show a straight line, like x = y. The Figure 5 shows a quantile-

quantile graph example, in which the x axis shows the model quantiles while the y axis shows the empirical

quantiles.

Figure 5 - Quantile-quantile graph example. Reference: G. Lima, D. Dias, and E. Barros. (2016).

Some scenarios may require a higher samples number to analyze different block numbers or block sizes

to fit the model. In this case, the only constraints are the spending time and the costs to collect all the measured

execution time (LIMA; DIAS; BARROS, 2016).

Silva, Arcaro and Oliveira (2017) describe EVT application on MBPTA as the fit of the collected

samples with a known EVT distribution, this samples must be the hardware execution times, previously

observed and gathered to this analysis. Furthermore, GEV may express these distributions behavior. However,

even small variations on GEV parameters might result in significant pWCET variations, which turns the fitting

process harder.

Cucu-grosjean et al. (2012) bring a detailed work about EVT. In this work, a software was executed on

a given processor and observed 1000 times. From the observations, 1000 execution time samples are collected.

Regarding it, it is possible to model those samples with independent and identically distributed (i.i.d.) random

variables, so it can find the program pWCET through an Empirical Cumulative Distribution Function (ECDF).

The inverse ECDF tail shows the pWCET possible values, which allows estimating a pWCET for a defined

probability threshold. However, this approach requires a good ECDF tail model similar to the system behavior,

which would need a significant observations amount to fit the low probability model. In this example, the

samples number is enough to describe the real system behavior, and the maximum confidence for 1000

observations is p(execution time > WCETestimated) = 10-3. In other words, the probability of WCETestimated

being larger than a given execution time sample is 0,999, whereas the probability of a execution time sample

being larger than the WCETestimated is 1 – 0,999 = 10-3.

EVT is a mathematical method to estimate the extreme values probability of known rare events. This

technique results in the maximal (or minimal) distribution function values of n samples collected and modelled

with random variables. The EVT method is similar to Central Limit Theory, but estimating the extremes

instead of the average (EDGAR; BURNS, 2001).

Cucu-grosjean et al. (2012) brings the following theorem:

“Theorem 1: Let {𝑋1𝑋2, … , 𝑋𝑛} be a sequence of i.i.d. random variables and let 𝑀𝑛 =

𝑚𝑎𝑥{𝑋1𝑋2, … , 𝑋𝑛}. If 𝐹 is a non-degenerate distribution function and there is a sequence of pairs of real

numbers (𝑎𝑛, 𝑏𝑛) such that 𝑎𝑛 ≥ 0 and lim
𝑛→∞

(
𝑀𝑛−𝑏𝑛

𝑎𝑛
≤ 𝑥) = 𝐹(𝑥), then 𝐹 belongs to either the Gumbel, the

Frechet or the Weibull family”.

This theorem provides the main EVT result. The distribution function F describes the common function

of n random variables. In this case, random variables used to model program execution time. There are two

main hypotheses required for this theorem: random variables are independent and identically distributed and

the real numbers sequence (𝑎𝑛 , 𝑏𝑛) must exist.

To define pWCET is imperative to collect the system execution time samples. Gil et al. (2017) claim

that the process objective is to analyze the extremes samples (maximum). There are two techniques to select

the extremes samples, a block Maxima (BM) selection or just picking all the samples higher than a defined

threshold, Peak-over-threshold (POT) technique.

Cucu-grosjean et al. (2012) hold the view that the block maxima theoretical basis affirms that if some

data fits a known CDF, then the block maxima of those data fits the same known CDF.

The maximum values selection affects EVT outcomes directly as far as the total observations number.

Regarding BM method, the block size might embarrass the distribution fitting. Cucu-grosjean et al. (2012)

emphasize that the larger the block size, the better it is to fit the tail. However, the block size is directly

correlated to the number of blocks, considering that the total samples number is constant. For instance, 1000

samples may be divided into 10 blocks of 100 samples or into 100 blocks of 10 samples or even into 1 block

of 1000 samples. The samples number in final block maxima is exactly suited to the same number of blocks.

In other words, increasing the block size decreases the final block maxima.

To apply EVT under BM approach, the maxima block must converge with one of three possible

distributions: Gumbel, Weibull or Frechet. There are three parameter do describe those distributions: shape

(), scale () and location ().

The Generalized Extreme Value (GEV) comprehends those three distributions. Also, determining GEV

parameters proves the real number sequence (𝑎𝑛, 𝑏𝑛) existence. Using GEV, the shape parameter value

indicates which distribution to use. If ξ < 0 the distribution is Weibull, if ξ > 0 the distributions is Fréchet and

ξ = 0 indicates the distribution Gumbel. Peak-Over-Threshold approach uses the Generalized Pareto

Distribution (GPD) instead.

Cucu-grosjean et al. (2012) define GEV Cumulative Distribution Function as follows:

𝐹𝜉(𝑥) = {𝑒−(1+𝜉
𝑥−𝜇
𝜎

)
1
𝜉
, 𝜉 ≠ 0

𝑒−𝑒
−

𝑥−𝜇
𝜎 , 𝜉 = 0

According to Gil et al. (2017), further to determine GEV parameters is imperative to select the

appropriate CDF (Gumbel, Frechet or Weibul), using a goodness-of-fit test. However, some tests may be

inappropriate for fitting extreme values. Edgar and Burns (2001) indicate that Gumbel distribution fits well the

WCET estimation problem.

4.1.1 Empirical Distribution Validation

The theorem 1 requires that the random variables sequence must be independent and identically

distributes (i.i.d.). Cucu-grosjean et al. (2012, 3) defines the Independence Random Variables concept as:

“Two random variables X and Y are independent if they describe two events such that the occurrence

of one event does not have any impact on the occurrence of the other event.”

On other hand, the identically distributed Random Variables concept is (CUCU-GROSJEAN ET AL.,

2012, 3):

“A sequence of random variables is identically distributed if all random variables have the same

probability distribution.”

Moreover, a random variables sequence meets the i.i.d. requirements when they are independent and

have the same distribution function. For instance, a sequence of dice rolls, each roll as a random variable, is

i.i.d. as the obtained outcomes of independent events and the r.v. describes the same event.

4.1.2 Block Maxima (BM)

Literature presents a technique that handles empirical samples to determine pWCET called Block

Maxima (BM). Block Maxima technique allocates all the samples in basic blocks, whose the higher sample of

each basic block defines a new block called maxima. The number of observations in the maxima block is equal

to the number of basic blocks. However, literature suggests that the ideal sample number in each basic block

must be enough to describe the program behavior properly (ABELLA et al., 2014).

After filtering the maximum values from basic blocks and gathering them in the Maxima Block, this

data is used to determine the distribution and its parameters values that better fits those maximum values, in

order to compute pWCET. Moreover, the samples amount used on the analysis may affect the fitting

characteristics (CUCU-GROSJEAN et al., 2012).

Based on this assumption, this work aims to assess how the samples amount, especially the number of

blocks and their sizes, can prejudice this method outcomes. Literature doesn’t inform if there is an optimal

point neither a correlation between the size of the basic blocks and the Maxima Block that affects the computed

pWCET.

4.1.3 Peak Over Threshold (POT)

Literature also presents the Peak Over Threshold (POT) technique to compute pWCET based on

empirical samples. Peak Over Threshold technique, on other hand, is simpler than BM. Instead of splitting

samples into blocks and filter the maximum value. It just selects all the samples over a given limit (threshold)

value. The selected observations compose a set that feeds the MBPTA process. Therefore, this threshold value

affects directly the samples number used under analysis and, hence, the outcome. Choosing a lower threshold,

the most of samples either all samples may be regarded in MBPTA. On the other hand, choosing a higher

threshold may force the process to regard a small number of samples, for instance.

Therefore, this work also aims to assess how the number of samples affects the results obtained by POT.

Literature doesn’t inform how to choose the best threshold value and the minimum number of samples required

to compute the pWCET properly.

4.1.4 Differences between BM and POT

There are some open challenges and open concepts to applying both techniques to determine a program

WCET. It is important to notice that several program characteristics, such as the number of paths, memory

access inside loops and vector or matrix sizes, for instance, may influence the distribution function. As well as

the relationship between the program behavior and the proper number of output observations that are produced

by the program (CUCU-GROSJEAN et al., 2012). Both techniques handle empirical samples previously

collected and both approaches may compute the pWCET based on GEV and, hence, based on Fréchet, Gumbel

or Weibull distribution family, according to MBPTA process.

The difference between BM and POT is basically the process to samples to feed the MBPTA process.

POT picks all samples whose value is higher than a given threshold to analysis whereas BM divides all samples

into basic blocks and then picks the highest value of each basic block to analysis. Although literature affirms

that each basic block, on BM technique, must contain samples enough to describe the program behavior, there

is a lack about how to validate the basic block before to pick the maximum value. Also, it is worthy to notice

that BM is more complex than POT (CUCU-GROSJEAN et al., 2012).

4.1.5 Single Path WCET

Applying EVT may require some assumptions as independent executions times and identically

distributed (i.i.d.). Furthermore, the program under analysis must run in isolation with no system calls.

Although it is not a realistic scenario, this assumption must be guaranteed for the success of the current analysis

method (CUCU-GROSJEAN et al., 2012).

Regarding a fully deterministic system executing with identical start conditions, a single execution path

has to yield a unique execution time. However, there are interference effects due to hardware features, such as

Cache hit/miss and DRAM refresh cycles, and the impossibility of ensuring identical starting conditions every

time an execution begins. There are no statistical guarantees for that execution time variability, though some

approaches have been taken place, in the past, as for applying EVT to represent this nature of the variability

(CUCU-GROSJEAN et al., 2012).

Furthermore, if every jitter source is independent, the response times converge on average to a closed

form distribution. According to Central Limit Theorem, this is the normal distribution due to the finite variance

of the input distributions in most cases. On other hand, if independent random variables cannot represent jitter

sources, those sources upper bound must be considered as constant (CUCU-GROSJEAN et al., 2012).

A. Input Data Dependence

Using a single-path with fixed data on a simple and known architecture is possible to compute exactly

the execution times distribution when observing this path hardware behavior with static probabilistic model.

This allows evaluating the EVT behavior and increasing the method confidence to apply to more complexes

architectures.

When performing a measurement-based analysis, it is imperative to provide a program input data suite

to stress the system and to induce the worst-case behavior. The input data may affect the execution time, even

when it does not affect the execution path. For instance, multiplying some numbers could spend more or less

cycles than other numbers. Moreover, data structures contain pointers, which may refer to different memory

addresses depending on the input values, hence it affects cache latencies and memory access pattern.

Generally speaking, it is impossible to provide or even to statically define the worst-case data input at

deployment time. Therefore, the platform design must have no effect from input data. Alternatively, there are

approaches that force operations, such as divisions, to take a pessimistic safe assumption, which could be their

upper-bound execution time. Paolieri et al. (2009) introduce the Worst-Case Mode, a technique that delays all

resource requests until it detects their maximum execution time. This approach is transparent to execute

programs when they are active and it may be configurable by software. There is a similar solution for data-

dependent memory access, in this case, accounting the input data effects through flags. For instance, if a given

input data dependent memory operation executes once, there is no reason to use cache for this instruction.

B. Platform Requirements

The MBPTA, in EVT approach, provides a pWCET estimate for a given exceedance probability. This

approach requires that all execution time variation resources in the system must have a probabilistic behavior

that measurements on platform can detect the events that vary within the execution time (CUCU-GROSJEAN

et al., 2012).

A possible approach is to analyze all hardware resource with too high latency and randomize the timing

behavior to upper bound when incurred pessimism is acceptable (CAZORLA et al., 2013). Applying this

ensures that only random events might affect the execution time. Moreover, any detected frequencies of

execution time shows probabilities with confidence level provided by EVT. Therefore, it is possible to use the

observed system behavior at the test to predict the behavior during a given operation.

In standard not-time randomized architecture the execution time frequencies detected in tests do not

serve as actual probabilities. In other words, standard not-time randomized architecture cannot apply this

approach because only not randomized events may affect execution time. Therefore, it may not ensure the

execution times occurrence probability of the observed behavior in future (CAZORLA et al., 2013).

C. Independent and Identically Distributed Observations

It is necessary to ensure that each execution runs independently in order to hold i.i.d. properties. A

feasible approach is to force the hardware state to always before a run starts. At path level, identical distribution

requires the latencies to be chosen independently to compose the total execution time (CUCU-GROSJEAN et

al., 2012). A probability must be associated to every path execution time possibilities. It is imperative that an

execution observed timing performance does not influence other executions timing performances.

D. Minimum number of observations

Griffin e Burns (2010) affirm that the results could not bound execution time for every points when

using Gumbel distribution function, or even any continuous function, when approximating a discrete function

to an execution time value produced by a given program. Figure 6 illustrates this limitation to fitting discrete

and continuous functions.

In this case, the discrete function has values at 5, 10 and 15. The defined Gumbell function (continuous

line) meets all the points when fitting with the discrete function. However, the uncovered points cannot be

disregarded since MBPTA collects a finite number of execution time observations. The dashed line shows the

possible values between the collected values.

Figure 6 - Illustration of unsafe values due to the implicit assumption fitting discrete and continuous

functions. Reference: Griffin e Burns (2010).

A different solution proposing to solve this limitation is to add an offset to the continuous function in

order to cover all the possible values in the unmeasured points. Figure 7 shows how the offset can cover all

the possible values.

Figure 7 - An illustration of how to offset the Gumbel distribution to guarantee safe values. Reference:

Griffin e Burns (2010).

To get a high confidence level in a distribution, it is required a sufficient observations number to produce

an authentic execution time description of the program. Cucu-grosjean et al. (2012, 5) define it as follow:

“For a given sequential program 𝑃 and an architecture 𝐴, 𝑛 is the minimum number of observations if

there does not exist 𝑚 ∈ ℕ where 𝑚 > 𝑛 such that the Gumbel CDF obtained for 𝑛 observations is an upper

bound for the WCET of 𝑃 and also exceeds the CDF obtained for 𝑚 observations.”

Cucu-grosjean et al. (2012) obtain the minimum observations number contrasting the EVT tail

projection deviation regarding a increasing executions number. The iterative process is described as follows:

1) Run 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑁𝑑𝑒𝑙𝑡𝑎 times the program.

2) Project, with EVT, a tail for 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 executions and another for 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑁𝑑𝑒𝑙𝑡𝑎.

3) If the two EVT distributions have a difference above a given threshold, it is necessary to repeat the

step 2 considering 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑁𝑑𝑒𝑙𝑡𝑎 and making 𝑁𝑑𝑒𝑙𝑡𝑎 more runs. If the difference

is below the threshold, it ends the process.

Since 𝑁𝑑𝑒𝑙𝑡𝑎 is constant, the proportional effect on new runs reduce when increasing𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡, which

ensures the convergence algorithm. However, a strict convergence for some local minima is not ensured.

Changing the algorithm may compensate this, stopping the process after some consecutive iterations instead

of stopping as soon as the difference between distributions is under the threshold. Cucu-grosjean et al. (2012)

considered 5 consecutive executions below the threshold to be a sufficient one to deal.

Bradley. (1968) defines a Continuous Rank Probability Score (CRPS), a metric to compare EVT

distributions, or functions:

𝐶𝑅𝑃𝑆 = ∑ [𝑓𝑥(𝑖) − 𝑓𝑦(𝑖)]2
+∞

𝑖=0

In this case, 𝑓𝑥 and 𝑓𝑦 represent a distribution functions that operate in the same value domain. The

difference threshold depicts the significance level in hypothesis tests. Reducing the threshold value increases

the confidence result, although this requires a higher observations number.

E. EVT Step-by-step

Cucu-grosjean et al. (2012) describe the steps to apply EVT in single-path programs in order to obtain

a stable result:

1) Collect observations: the author initially suggests a sample set with approximately 100 execution

times observed. Afterwards, in each round the 𝑁𝑑𝑒𝑙𝑡𝑎 must be added as the previously described

process.

2) Grouping: This step may use a technique, as Block Maxima or Peak-Over-Threshold, to convert the

measured frequency distribution into a suitable EVT distribution.

3) Fitting: It uses the empirical distribution, 1 – ECDF actually, to estimate the GEV distribution, hence

it defines the GEV parameters as the calculation previously described.

4) Comparison: It compares, according to Continuous Rank Probability Score metric, the current round

distribution to the previous round.

5) Converge: If the difference between distributions does not reach a given threshold, as defined by

CRPS metrics, the process starts a new round at step 1. Otherwise, to consider the distribution

converged, it is necessary to collect more samples doing a few more rounds, the author suggests 5

consecutive rounds in this step.

6) Tail extension: this step defines the final GEV parameter values for probabilities under the threshold.

4.2 Comparison

The Extreme Value Theory is widely discussed in literature since it is applied in other science fields.

On the other hand, the EVT success in other areas don’t ensure this theory covers time analysis with no

vulnerabilities. Furthermore, EVT create a probability model to predict failures without inspecting or change

the algorithm code.

Path Upper-Bounding method changes the code in order to equal the size for all paths. This method

ensures that a sample represents the WCET no matter the input values or the executed path. Since all paths are

equal to the worst one, the MBPTA might focus on other uncertainties, as cache and buses delays, for instance.

Although, PUB requires a detailed inspection to the code in order to edit it.

Extended Path Coverage measures each basic block and, instead of creating a probability model for the

whole program, it creates models for every basic block, which are computed into path’s model and, hence, the

program’s model. Similar to PUB this method requires code inspection in order to all basic block

independently. Table III shows the advantages and drawbacks of EVT, PUB and EPC:

Table III - advantages and drawbacks of EVT, PUB and EPC:

Method
Main characteristics

Drawbacks Advantages

EVT
Depends on input values

May not execute the worst path

Widely applied

No code inspection

PUB
Detailed code inspection and edition

Recently discussed in literature

All paths are equal to the worst

Focus on hardware variabilities

EPC
Detailed code inspection

Recently discussed in literature
Measure all basic blocks

5 Proposed Methodology

The proposed methodology in this work aims to assess pWCET estimates by Measured Based

Probabilistic Timing Analysis (MBPTA), based on EVT. Path Upper-Bounding (PUB) and Extended Path

Coverage (EPC) methods are not considered in this study because these approaches have been cited recently

in Literature whereas EVT has been mentioned in several researches. Further, EVT has been applied in

different scenarios involving extreme limits presenting accurate and reliable results.

In this methodology the MBPTA process uses samples of execution time of a given program. These

samples can be collected executing as well as simulating the program. According to EVT these samples might

be filtered and gathered to form an empirical distribution which describes the algorithm behavior. Based on

that, this methodology looks for limitations in the samples filtering techniques Block Maxima (BM) and Peak

Over Threshold (POT) and also measure how much it affects the pWCET outcome.

BM technique splits all samples in basic blocks. The sample with the maximum value of every basic

block form the Block Maxima, which contains all considered data on EVT analysis. This methodology

compares EVT analysis for a given algorithm applying different input parameters and number of samples.

Executing BM approach, this methodology tries to define the best basic block size. As higher is the number of

blocks, lower is the number of samples in these blocks, decreasing the block data quality and, maybe,

decreasing outcome accuracy also. For this reason, this work aims to find an optimal block size for BM.

POT filters all samples based on its threshold value to EVT analysis. The threshold is the key for this

technique, since a too low threshold might select all samples with no criteria, whereas, a high threshold might

filter just a few samples to be analyzed, which may affect the outcome as well. For this reason, this work aims

to define an optimal threshold value for POT.

Therefore, this methodology uses different observations numbers and different input parameters values

in order to exercise and to point out the vulnerabilities that these EVT techniques may have. Exercising

different cases with distinct numbers of samples, blocks and thresholds may draw a clear conclusion about the

advantages and drawbacks of these techniques.

Furthermore, this methodology consists of selecting a given algorithm, assemble the code to MIPS

architecture, analyzing statically to obtain a WCET, and applying MBPTA to obtain a pWCET. In both

analyses, the execution time is measured by executed instructions, as to avoid that hardware relate uncertainties

affect the outcome. In other words, this may enhance only the applied techniques uncertainties. Owing to this,

this work does not regard execution cycles.

5.1 Specification

This methodology may be summarized in four steps: 1) Context Definition, 2) WCET Definition,

3) Sample Collection, and 4) pWCET Process Analysis, as depicted in Figure 8:

Figure 8 - Methodology steps. Reference: Author.

1 – Context Definition: It is the software and hardware selecting process. The chosen algorithm is so

important as the chosen hardware platform. Once this algorithm is executed in the target hardware, both affect

the execution time behavior and, hence, the later analysis. The number of paths, the existence of loops and the

complexity are some algorithm’s characteristics that may be regarded in this deciding step. On the other hand,

when choosing the hardware platform is opportune to consider the time uncertainty due to buses and used

peripherals, cache memory usage, number of cores in processor, for example.

2 – WCET Definition: It consists of analyzing the defined context and finding its absolute worst-case

execution time. To achieve that, both statically analysis and measured-based analysis may be applied, the

available tools and analysis complexity should be considered in the Context Definition. This step compute an

absolute WCET value, it defines the “reference value” that will be used to validate and compare the pWCET

determined by the BM and POT approaches thereafter.

3 – Sample Collection: This step the collects execution time observations of the chosen context. Also,

it defines the minimum samples number for the context analysis. This minimum number is computed through

Continuous Rank Probability Score (CRPS), as described in 4.1.5. Further, the CRPS determine the smaller

probability threshold for the pWCET in the end of the analysis. The collected samples may be filtered by BM

and POT methods and, then, analyzed to calculate the pWCET.

The literature does not explain whether the samples collecting process should control the used input

values. Owing to this there are two alternatives, control the used input values and don’t repeat them, collecting

only one sample for input, or don’t control the used values, repeating them and assuming the risk of do not

execute the worst-case path.

4 – pWCET Process Analysis: it defines the probability distribution that describe the pWCET. Besides

that, this step also filters the collected samples according to BM or POT approaches and computes the pWCET

according to EVT. Comparing the reference value obtained in step 2 with the calculated pWCET it is possible

point how accurate and effective the MBPTA process is for the context.

Figure 9 depicts this step, which applies the BM and POT techniques in the collected observations to

estimate the pWCET. There are some input parameters exercised in this step. In this work the parameters are

named N, M and L. N is the number of samples before the filtering processes BM and POT. M is the number

of observations in the Maxima Block, it is equal to the number of basic blocks in which all the samples are

allocated. This parameter refers to the Block Maxima approach only. L is the timing limit value that POT uses

to filter values before the result computation. This limit number refers to Peak Over Threshold only.

Figure 9 - pWCET Process Analysis step. Reference: Author.

As mentioned above, the M parameter in BM approach defines the number of basic blocs and hence, the

number of observations in the maxima block. Together, these basic blocks contain all the collected

observations. However, separately, each basic block requires a sample number enough to describe the program

behavior. In other words, changing the M parameter may demand more samples and, hence, change the N

parameter too. Figure 10 shows the BM approach flow. This methodology applies different values for M and

N.

Figure 10 - Block Maxima approach flow. Reference: Author.

The L parameter in POT approach defines the timing limit value for the observations in analysis.

However, changing the L parameter changes the samples number under analysis too, which can affect the

behavior’s depiction. This methodology exercises different values for L parameter. Figure 11 shows the POT

approach flow.

Figure 11 - Peak Over Threshold approach flow. Reference: Author.

5.2 Implementation

The execution context defined to for this methodology is basically executing the algorithms Bubble Sort

and Finite Impulse Response filter (FIR) on MIPS processor. For this reason, it is required to assemble these

codes for MIPS architecture processor and, hence, run on simulators such as Mars (MISSOURY STATE

UNIVERSITY, 2017). This context regards only MIPS single core since it is more predictable and less

complex than multi core architectures.

The WCET computation step found the static WCET, manually.

Every time an assembled code is simulated in Mars, for MIPS processor, its execution time is collected

as a sample of execution time. Once it collects one sample per simulation, it is required to run the algorithm

several times, since MBPTA requires a considerable number of samples. After that, the analysis filter all

collected samples according to the techniques criteria.

The N parameter might vary for each algorithm analysis, since different programs might require a

different number of samples. The M and L parameters values are specific for each approach, for this reason,

their values are defined separately for BM and POT.

It is possible to compute all the EVT calculation by Matlab tool, as it has libraries and functions targeting

EVT calculation. To illustrate it, there are two examples of Matlab code in APPENDIX E – Matlab code

examples.

There is a function for the Empirical Cumulative Distribution Function (ECDF), called ecdf() , which

receives as parameter an array containing the samples for analysis. This function returns two arrays (x and y

axis) describing the ECDF of the provided data. It is worthy to point the BM and POT filtering process are

applied manually before the EVT computation on Matlab.

For computing the Generalized Extreme Value (GEV) distribution, in BM approach, the gevfit()

function receives the same parameter than ecdf(), the filtered data for EVT analysis. However, this function

finds the Generalized Extreme Value (GEV) distribution and its parameters that better fit to the empirical data.

Also, gevfit() returns the reference values for the parameters shape (), scale () and location ().

Thereafter, it is possible to generate the Cumulative Distribution Function (CDF) using the gevcdf()

function. This function receives an array with the desired values of the x-axis and the computed GEV

parameters ,  e . Then it returns the y-axis GEV values for the input x-axis range. The Figure 12 shows the

flow with the functions and data involved in this computation.

Figure 12 – Flow of Matlab functions to compute GEV Distribution.

Besides that, it is possible to compare the GEV computed distribution to the empirical one, ECDF, and

also, it is possible to find extreme values uncovered by ECDF. Furthermore, once the GEV function is defined,

it is easy to identify the probability value (y axis) for extreme values (x axis). In other words, it can identify

when the function assumes the value equal to the desired probability threshold.

For computing the Grand Pareto (GP) distribution, in POT approach, Matlab provides gpfit and gpcdf

functions. The gpfit() function is similar to gevfit(), whereas gpcdf() function is similar to gevcdf() and

returns the y-axis values regarding the computed GP distribution. The Figure 13 shows the flow with the

functions and data involved in this computation.

Figure 13 - Flow of Matlab functions to compute GP Distribution.

There examples of Matlab code are in APPENDIX E – Matlab code examples.

6 Validation & Evaluation

The difference among results obtained analyzing a given algorithm must evidence the proposed

methodology efficiency. Thereafter, it is possible to point out characteristics that may disturb the EVT results

for pWCET. The results validation regards the statically defined WCET. The result accuracy depends on the

difference between the obtained value and the reference one, statically computed (SDTA). Aiming to get

different results, it analyzes different scenarios considering different number of samples and different sample

filtering parameters. Therefore, the outcome accuracy may point how the number of samples and the filtering

process affect each scenario.

6.1 The Simulator MARS

The chosen simulator to this work is MARS (MIPS Assembler and Runtime Simulator), developed by

Missouri State University. MARS is a lightweight interactive development environment (IDE) for

programming in MIPS assembly language, intended for educational-level use with Patterson and Hennessy's

Computer Organization and Design. MARS was initially developed for teaching MIPS architecture aiming to

clarify and facilitate the understanding of this architecture by the simulation of the entire processor. It can be

used through its Integrated Development Environment (IDE) or even from command line. Also, MARS

simulates MIPS-32 instruction set, covering 155 basic instructions of the MIPS-32, approximately 370 pseudo-

instructions, the 17 syscall functions and more. Furthermore, its IDE provides program editing and assembling,

it also supports interactive debugging. It allows the user to easily set/remove execution breakpoints and to

inspect the execution, viewing and editing register and memory contents (MISSOURI STATE UNIVERSITY,

2020).

It is important to enhance that MARS simulates MIPS architecture according to Patterson and

Hennessy's descriptions, using the same registers and flags. It also contains a virtual cache memory with some

features as counting cache-miss and cache-hit occurrences. Similarly, it has a functional virtual memory for

program code and for data. Further, it allows the user to change register and memory values during the

execution.

Mars afford to use tools that explore the program behavior. The Instruction Counter tool provides the

total number of executed instructions during the whole program. It also displays the executed number regarding

different instructions types. There are tools that scan cache memory and main memory access, which allows

setting different configurations and memory block sizes, and then it provides the access rates for each memory

block during simulation. The Branch Prediction tool is worthy to be pointed, also. Moreover, MARS contains

several functionalities and proper tools to learn and understand MIPS single core behavior.

6.1.1 MARS Constraints

Besides all functionalities, it is important to point some constraints in MARS. It disregards the time

spent to execute instructions, it only computes the next instruction to simulate and do not mind how much time

it takes to do that. Hence, there is no pipeline simulation and it is not possible to detect stalls when accessing

memory, for instance. Although it has memory tools to report access rates, it ignores completely buses delays

and asynchronous executions.

MARS has Delayed Branching functionality, which aims to reproduce processor behavior on branching.

However, this functionality forces the simulator to execute the next line after a branch instruction,

independently whether the branch will take or not.

6.2 Bubble Sort Case

The first analyzed context is an ordering vectors algorithm named Bubble Sort. This is a simple

algorithm, widely employed in literature. In this case, Bubble Sort must ordering an eight positions vector.

Each position may assume values among 0 to 8. The Figure 14 shows the analyzed assembly code:

Figure 14 - Bubble Sort assembly code. Reference: Author.

The assembled algorithm code has 10 basic blocks. It is important to enhance that jumps or branches

delimit every basic block, either for executing a branch instruction or being called for an instruction in other

block. Figure 15 shows the Control Flow Graph (CFG) of the assembled code of this algorithm. Assembling

the code may replace some instructions and change the instructions number in each basic block.

Figure 15 - CFG of Bubble Sort assembled code. Reference: Author.

6.2.1 Static Analysis

The worst-case statically computed regarded the assembled code, similarly to the CFG. It applied the

Implicit Path Enumeration Technique (IPET) due to this outcome reliability and accuracy. According to this

technique, the number of a block execution times is equal to the summation of all times the execution enters

this block and also equal to the summation of all times the execution get out this block. With this assumption,

it is possible to determine the maximum execution times for each block from the iterations blocks with known

upper bounds.

The IPET analysis for the Bubble Sort algorithm resulted in 826 executed instructions in the worst

scenario, since this work regards executed instructions as time unit, the WCET is 826. For a detailed IPET

computation for this program, read APPENDIX A - IPET Example: Bubble Sort Case.

6.2.2 MBPTA: Collecting Samples

This algorithm has two variables, the vector and the vector size, vec and vecsz in Figure 14 (line 2 and

3). In this example, vecsz has value 8 and vec has the values 8, 7, 6, 5, 4, 3, 2, and 1. During the analysis this

algorithm is executed several times regarding different values for vec, however the vector size is always the

same. Considering the vector size and all the values that each vector position can assume, it has 98 (or

43.046.721) different possible cases.

Every time the algorithm is executed, the time required to execute the code becomes a sample. During

the collecting step, every execution sample is unique, since the input value is unique. In other words, this step

never repeats the input vector values. Considering 10000 unique samples, it has a coverage of 0,0232% of all

possible scenarios.

Since it is infeasible to execute the algorithm 98 times, it is necessary to define the minimum but enough

number of samples. The numbers of observations regarded in this analysis follows the Continuous Rank

Probability Score (CRPS) explanation in 4.1.5. It basically creates distributions with different number of

samples and compare them. As more the number of samples used to compute these distributions, less is the

difference between them. To reach the minimum number of samples the difference should be less than the

desired probability threshold.

In this scenario the chosen value as desired probability threshold is 10-6, since it is small but reachable

also. The initial number of samples is 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 3500, arbitrarily chosen. This choice must consider the time

and costs effort to collect samples. Starting CPRS with a high number of samples may induce an useless effort,

since the minimum number can be smaller. On the other hand, the chosen number for delta is 𝑁𝑑𝑒𝑙𝑡𝑎 = 100,

arbitrarily chosen. This choice must regard the time and costs effort to compute and compare the CRPS

distributions, since small the delta number is, bigger is the number of computations and comparisons until the

desired threshold be reached. The following table shows the CRPS analysis, the computation regards the

equation 𝐶𝑅𝑃𝑆 = ∑ [𝑓𝑥(𝑖) − 𝑓𝑦(𝑖)]2+∞
𝑖=0 according to 4.1.5.

Table IV - Samples number (Ncurrent) on analysis for WCET. Reference: Author.

The last value above the desired threshold 10-6 occurred when 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 3500, no one of the following

rounds computed differences exceeding the threshold. Therefore, it points an enough number of samples

starting from 3600 observations. Furthermore, 𝑖t is possible to point these differences do not decrease linearly,

which is a good reason to execute a few more rounds after finding the minimum number of samples in order

to assure the Max difference still smaller than the threshold. Although CRPS indicates 3600 samples as a safe

number of samples for analyzing, this scenario regards 4500 observations, which means a safe number and

may provide more details than 3600 samples. The chosen number represents a coverage of 0,01045% of all

possible executions case for this algorithm.

6.2.3 MBPTA: Block Maxima Approach

Since the literature does not specifies the criteria for splitting samples in basic block, in this work it

divides samples in basic blocks according the order they were collected. For instance, regarding blocks with

100 samples, the first basic block would contain the 1st to 100th samples.

This Block Maxima analysis regards only 4500 samples and compares different basic blocks sizes, as

depicted in table below:

Table V - Different block sizes for Basic Blocks and Maxima Block. Reference: Author.

Size of basic Blocks 1 10 15 18 45 50 90 100 250 300 450 4500

Number of Basic Blocks 4500 450 300 250 100 90 50 45 18 15 10 1

Size of Maxima Block 4500 450 300 250 100 90 50 45 18 15 10 1

The first scenario considered basic block as one sample size and, therefore, the maxima block contains

all 4500 collected samples. On the other hand, the last one regards 4500 basic blocks, which implies in only

one sample for Maxima block: the highest value sample.

The Maxima block must contain enough samples to represent the execution behavior properly, specially

the extreme values (CUCU-GROSJEAN et al., 2012). Regarding this, the next figure shows the histogram for

each maxima blocks considering the different sizes.

Figure 16 - Maxima block histograms (X axis means execution time, Y axis means occurrences). Reference:

Author.

By analyzing histograms, it is possible to realize how the maxima block representability decreases as

the samples number becomes lower. Under 90 samples, the histograms seem to be describing a completely

different algorithm than the one with more than 90 samples, since the number of repetitions is dramatically

reduced. Therefore, pWCET outcome analysis must count on this characteristic.

After split samples in basic blocks and pick their maximum values to compound the maxima block, it is

possible to apply EVT methodology. The Matlab function gevfit() receives an array containing the maxima

block samples. This function returns three parameters calculated according to Generalized Extreme Value

methodology, the parameters location, scale and shape. These parameter values for each maxima block size

are displayed in Table VII. The pWCET outcome analysis must count that in some cases gevfit returned

warning messages.

Table VI - Gevfit function response for different maxima block sizes.

Maxima Block Size Location () Scale () Shape ()

4500 791.488 8.211 -0.262

450 805.297 4.353 -0.193

300 807.309 3.903 -0.196

250 807.974 3.724 -0.188

100 811.163 2.985 -0.162

90 811.284 3.044 -0.174

50 813.091 3.078 -0.277

45 813.218 2.571 -0.124

18* 817.395 2.910 -1.117

15* 817.812 2.706 -1.237

10* 819.070 1.182 -1.271

1 820 0 0

*Gevfit returned the message: Maximum likelihood estimation did not converge. Function evaluation limit

exceeded. Maximum likelihood converged to a boundary point of the parameter space. Confidence intervals

and standard errors cannot be computed reliably.

Computing EVT distribution requires only the parameter values, thereafter the computed distribution is

compared to the ECDF empirically defined. Figure 17 displays the quantile-quantile plots for all scenarios

with different maxima block sizes.

Figure 17 - Maxima block quantile-quantile plots. Reference: Author.

These QQ-plots represent the symmetry between EVT and ECDF distributions. The blue points are the

real comparison whereas the red line is computed to represent these points. When all points in the plot can be

described as X = Y, the distributions fitting is perfect. However, when the computed distribution does not

represent the empirical data properly, there is a bad fitting, which is evidenced by the asymmetry, when the

points are furthermost (X ≠ Y). Keeping this in mind it is possible to analyze the QQ-plots and deduce the

fitting comparison gets worse when the Maxima Block has less samples. Also, it points a bad fitting for 18

samples or less samples whereas the other scenarios seem close from symmetry.

Based on the QQ-plots it is important to point out that 4500 samples scenarios is the most symmetric,

on the other hand, a good enough symmetry may be obtained with 100 samples, for example. Therefore, based

only in these plots it is possible to conclude that there is no need to consider so many samples for computing

the EVT distribution.

Like histograms, the quantile-quantile plots point that fitting the empirical (i.e., the MBPTA) and the

EVT distributions is harder as long as the number of samples in maxima block is lower. It is important to

enhance that it is not even possible to define a distribution for a unique value, as the one sample maxima block

case. These differences between distributions are also shown in the following table:

Table VII - Difference between ECDF MBPTA (Block Maxima) and EVT distribution.

Maxima Block Size Max
Comparison

(Max)
Average

Comparison

(Average)

4500 0.042 0% 0.019 0%

450 0.088 110% 0.035 84%

300 0.103 145% 0.041 116%

250 0.102 143% 0.041 116%

100 0.128 205% 0.053 179%

90 0.122 190% 0.053 179%

50 0.161 283% 0.05 163%

45 0.164 290% 0.062 226%

18 0.325 674% 0.103 442%

15 0.337 702% 0.12 532%

10 0.357 750% 0.163 758%

According to the table, the best fitting occurs for 4500 samples. In this scenario, 0.042 is the maximum

difference between the computed EVT distribution and the empirical data collected as samples, when

calculating the average difference, the outcome is less than a half of the maximum difference. Owing to this,

the 4500 samples scenario is regarded as reference values for comparison to all scenarios in the columns

Comparison (Max) and Comparison (Average).

Decreasing the number of samples in maxima block increases considerably the distributions differences.

For instance, the average difference for 100 samples is 179% higher than the difference for 4500 samples,

whereas the maximum difference value is 205% higher than the maximum for 4500. The 450 samples scenario,

when compared to the 4500 samples case, points out that decreasing the Maxima Block Size in 90%, the

difference between distributions increases 110%.

Finally, Table VIII shows the pWCET outcome for each Maxima Block case. The probability threshold

value is 10-6 and the reference values for WCET, statically computed in 6.2.1, is 826 executed instructions:

Table VIII - Bubble Sort on Block Maxima approach.

Maxima Block Size pWCET(10-6)
Difference

|pWCET – WCET|
Difference/WCET

4500 818 8 0.97%

450 822 4 0.48%

300 823 3 0.36%

250 823 3 0.36%

100 824 2 0.24%

90 824 2 0.24%

50 823 3 0.36%

45 826 0 0.00%

18 820 6 0.73%

15 820 6 0.73%

10 820 6 0.73%

1 820 6 0.73%

According to the pWCET results, the higher difference between the WCET and the outcome occurs for

Maxima Block size equal to 4500 samples. This difference decreases as long as the sample number decreases.

For 45 samples the difference is zero, the found pWCET value is equal to the reference WCET.

Considering the histograms (Figure 16) and the QQ-plots (Figure 17), the scenarios with 90 or less

samples do not satisfy the requirements described on literature for a reliable outcome. It is worthy to point that

gevfit function (Table VI) returned the following message for 18 or less samples: ‘Confidence intervals and

standard errors cannot be computed reliably’.

While scenarios when the Maxima Block has small size seem clearly unreliable, the scenarios with the

higher size of Maxima Block, 4500 samples, resulted in a pWCET of 818 executed instructions. It represents

the largest difference between the computed pWCET and the reference WCET. Besides that, this outcome

value means that there is a probability of 10-6 of the execution time exceeds 818, which seems accurate,

acceptable and trustable even though this pWCET does not cover 0,9685% of all possible values (from 818 to

826).

The 45 samples scenario outcome, on the other hand, has no difference to the reference. Although it

covers 100% of all possible values, it indicates that there is a probability of 10-6 of the execution time exceeds

826, which is not true. It is worthy to enhance that even when the outcome seems more accurate, the reliability

still been the most imperative requirement in the analysis.

Considering the outcome values and the Block Maxima analysis, it suggests that the best results, with

reliable outcomes and smaller differences, arise regarding 300 to 90 samples in analysis. In other words,

regarding 2% to 7% of the total samples in EVT analysis with Block Maxima (BM) approach increases the

outcome accuracy.

6.2.4 MBPTA: Pick Over Threshold Approach

Similarly to Basic Block Approach, this analysis with Pick Over Threshold regards 4500 samples

amount. However, instead of splitting samples and defining blocks sizes, this approach defines threshold

values to determine whether regards or not a given sample in analysis. Therefore, the number of samples under

analysis depends on the chosen threshold value. The following table shows the threshold values and the

analyzed samples amount for each case.

Table IX - Threshold values and respective number of samples. Reference: Author.

This picking process select all samples whose value is equal or higher than the threshold. The first

threshold value, 770, picks all 4500 samples, since it is the minimum value in the collected samples. On the

other hand, the last threshold, 820, selects only five samples, once this is the maximum value collected on the

samples.

The following image shows the histogram of the analyzed samples for each scenario:

Figure 18 - Histograms for different threshold values (X axis means time, Y axis means occurences).

Reference: Author.

As the Block Maxima approach, the Pick Over Threshold requires to converge values between the

collected samples and an EVT computed distribution. However, instead of computing a distribution from GEV

family, POT compute from Pareto Distribution family. Matlab provides gpfit() function for Pareto

distributions, which is similar to gevfit. This function returns two parameters: Scale and Shape. The following

table displays this parameter values for each case.

Table X - Pareto parameter values for different thresholds.

Threshold Scale () Shape ()

770* 2.165 10-3 -2.6401

780* 1.581 10-3 -1.9289

790* 1.944 10-3 -2.3712

800* 1.866 10-3 -2.2764

805* 1.672 10-3 -2.0399

810* 1.958 10-3 -2.3885

815* 1.386 10-3 -1.6907

*Gpfit returned the message: Maximum likelihood has converged to a boundary point of the parameter

space. Confidence intervals and standard errors cannot be computed reliably.

It is imperative to enhance that there is no good convergence for any scenario. Therefore, no one

outcome is reliable. Also, it is not possible to determine a distribution with only one value, as the 820-threshold

case. The following quantile-quantile plots confirm these bad convergences.

Figure 19 - Quantile-quantile plots for different threshold values. Reference: Author.

The quantile-quantile plots proves the large difference between empirical distributions and Pareto’s. It

is important to point that a good fitting shows a straight line (X = Y) from 0 to 1. However, no one of plots

above not even reached 0.5 on the X axis. This lack of confidence is also evidenced on the outcomes, displayed

on the following table:

Table XI - Bubble Sort on Pick Over Threshold approach.

Threshold pWCET(10-3)
Difference

|pWCET – WCET|

770 820 6

780 820 6

790 820 6

800 820 6

805 820 6

810 820 6

815 820 6

Unlike Block Maxima, the Peak Over Threshold analysis seems to be unreliable and useless according

to histograms, QQ-plots and the gevfit result. However, the evidenced lack of confidence and invalid outcome

may be caused, for example, by some unknown Matlab limitation, by some context characteristics as the

chosen algorithm complexity and even by the collecting samples methodology. So, it is important to investigate

and understand why POT doesn’t work properly in this context. Future works can consider this case.

6.3 Finite Impulse Response Filter Case

Other context regarded in this work is the FIR Filter, which is employed in digital filters. This algorithm

receives two parameters, N and K in Figure 20. The first is the number of samples and the second is the filter

order. The N variable may assume values from 1 to 64, whereas the K variable may assume only the even

values from 1 to 64. The figure below shows the analyzed assembly code, in this case N and K variables have

values 8 and 16 respectively:

Figure 20 - Assembled code of the FIR Filter. Reference: Author.

The FIR Filter code has seven different basic blocks compounding the program. The following image

shows the Control Flow Graph of this algorithm.

Figure 21 - CFG of FIR Filter code. Reference: Author.

6.3.1 Static Analysis

Similarly to the Bubble Sort Case, the static analysis applies IPET to the algorithm in order to compute

the WCET. The APPENDIX A - IPET Example: Bubble Sort Case presents a detailed example of this method

and all the involved computation. For FIR Filter case, IPET outcomes defines WCET as 59,223 (executed

instructions). This high WCET estimation number is consequence of the loop repetition, since both inner loops

upper bound is 1984 times.

6.3.2 MBPTA: Collecting Samples

This algorithm has two variables, N and K in Figure 20. The first is the number of samples and the

second is the filter order. The N variable may assume values from 1 to 64, whereas the K variable may assume

only the even values from 1 to 64 (32 different values). Considering the possible values each variable can

assume, there are 32x64 possible cases, which means 2048 different cases.

Since it is feasible to collect 2048 samples, it is possible to consider two scenarios: A and B. In the

scenario A, it collects one sample for each input possibility, which means that it analyzes 2048 samples at all.

The scenario B allows input values repetition and, hence, may regard a higher number of samples under

analysis.

Regarding unique samples, with no input value repetition, may affect the analysis, since the total of

2048 samples implies in less samples under analysis, shorter basic blocks and maxima block, which might not

be enough to apply EVT techniques properly. Notice that a sample is unique due to its input values, N and K,

and not due to its outcome. Therefore, the collection of unique samples may contain repeated outcome values,

although it has no samples with repeated input values.

Scenario A has 2048 unique samples that means this scenario covers 100% of all possible cases. It might

be useful to evaluate whether EVT’s accuracy decreases when considering a shorter number of samples on

analysis. Regarding all samples outcomes, the highest observed result value is 59223, which is according to

the statically analysis result.

Scenario B has 5000 samples randomly collected with no control in input values. Thus, it might repeat

some input values, although it may not use all possible values. The highest observer result value is 57431,

below than the static worst-case result. Nevertheless, the total number of collected samples represents over

than 244% of the required number to cover all cases. It might be useful to observe EVT results comparing both

scenarios.

Since both scenarios have samples enough to cover all possible cases, it is not required to estimate the

minimal number of samples as explained in 4.1.5. However, it must be regarded to define a safe probability

threshold. The following table shows the CRPS analysis for scenario A, the computation regards the equation

𝐶𝑅𝑃𝑆 = ∑ [𝑓𝑥(𝑖) − 𝑓𝑦(𝑖)]2+∞
𝑖=0 according to 4.1.5. It starts considering 1024 samples (𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡), adding 64

(𝑁𝑑𝑒𝑙𝑡𝑎) in each round of comparison.

Table XII - Number of samples (Ncurrent) on analysis (A). Reference: Author.

The table shows that maximal difference decreases linearly throughout the analysis. The difference

stands consistently less than 1.10-8 when 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡= 1280 samples and further. This value still the same even

when increasing 𝑁𝑑𝑒𝑙𝑡𝑎 to 128. The same CRPS analysis, for scenario B, is shown in the following table. It

starts with 3500 samples and adds 100 in each round.

Table XIII - Number of samples on analysis (B). Reference: Author.

Unlike the scenario A, the maximal difference does not decrease linearly. Actually, Table XIII depicts

some values above 1.10-6 (3800 and 4500 samples). Although having almost 250% more samples than A, the

scenario B has a less reliable sample collection. Nevertheless, increasing the samples amount may facilitate

statistical analysis, but may affect reliability as side effect. In addition, it is important to enhance the difference

between these scenarios are the number of samples and the control of input values, which may incur the

reliability issue.

6.3.3 MBPTA: Block Maxima Approach

Since the literature do not specifies the criteria for splitting samples in basic block, in this work it divides

samples in basic blocks according the order they were collected. For instance, regarding blocks with 100

samples, the first basic block would contain the 1st to 100th samples.

This Block Maxima analysis regards 2048 samples for scenario A (Table XIV) and 5000 samples for

scenario B (Table XV):

Table XIV - Different block sizes for Basic Blocks and Maxima Block (A). Reference: Author.

Size of basic Blocks 1 10 20 25 40 50 100 200 250 500 1000 5000

Number of Basic Blocks 5000 500 250 200 125 100 50 25 20 10 5 1

Size of Maxima Block 5000 500 250 200 125 100 50 25 20 10 5 1

Table XV - Different block sizes for Basic Blocks and Maxima Block (B). Reference: Author.

Size of basic Blocks 1 2 4 8 16 32 64 128 256 512

Number of Basic Blocks 2048 1024 512 256 128 64 32 16 8 4

Size of Maxima Block 2048 1024 512 256 128 64 32 16 8 4

Literature affirms that basic blocks must contain enough samples to represent the execution behavior

properly. Figure 22 and Figure 23 show histograms for maxima blocks with different sizes.

Figure 22 - Maxima blocks histograms for A (X axis means time, Y axis means occurences). Reference:

Author.

According to these histograms, the maxima block representability decrease as the samples number

becomes lower. From 128 samples to below, the histograms do not represent the execution behavior properly,

since it has less information. For this reason, the image disregard the histogram related to the maxima block

with four samples. These histograms characteristics likely affect the pWCET outcome.

Figure 23 - Maxima blocks histograms for B (X axis means time, Y axis means occurences). Reference:

Author.

Similarly, to the histograms in last image, the maxima block representability decrease when regarding

less samples. On the other hand, unlike the scenario A, from 125 samples to below, the histograms do not

represent the execution behavior properly, since it has less information. These histograms characteristics likely

affect the pWCET outcome.

After that, it is possible to apply EVT methodology, using Matlab. The function gevfit() receives an

array containing the maxima block samples and returns three parameters calculated according to Generalized

Extreme Value methodology. These parameters are location, scale and shape and the following tables show

their values for each maxima block size regarding A and B. The pWCET outcome analysis must count that in

some cases gevfit returned warning messages.

Table XVI - Gevfit function response for different maxima block sizes (A).

Maxima Block Size Location () Scale () Shape ()

2048 8456.389 8003.180 0.33435

1024 8896.437 8246.997 0.31210

512 9793.856 8753.928 0.26727

256 11633.035 9818.336 0.18123

128 15444.609 12050.860 0.02751

64 25382.261 17986.367 -0.44034

32 25861.017 17993.445 -0.44201

16 26852.916 18023.875 -0.44890

8 29014.667 18195.410 -0.48175

4* 39645.564 25626.445 -1.30898

Table XVII - Gevfit function response for different maxima block sizes (B).

Maxima Block Size Location () Scale () Shape ()

5000 8279.365 7800.338 0.32319

500 37499.584 8320.073 -0.36310

250 42833.202 6346.083 -0.36504

200 44311.495 5853.875 -0.37807

125 46611.243 5182.819 -0.40576

100 48083.872 4746.951 -0.44483

50 51181.760 3776.319 -0.55532

25 53787.696 2282.692 -0.55729

20 54270.530 2012.918 -0.55511

10* 55844.692 1753.467 -1.10538

5* 56553.402 1150.2383 -1.31067

1* 57431 0 0

*Gevfit returned the message: Maximum likelihood estimation did not converge. Function evaluation limit

exceeded. Maximum likelihood has converged to a boundary point of the parameter space. Confidence

intervals and standard errors cannot be computed reliably.

Although EVT distribution requires only these parameters values on its definition, comparing the

defined distribution and the ECDF (empirically defined) might be useful to observe how these distributions

fit. Figure 24 and Figure 25 display the quantile-quantile plots for different maxima block sizes in A and B.

Figure 24 - Maxima block quantile-quantile plots (A). Font: Author.

Figure 25 - Maxima block quantile-quantile plots (B). Reference: Author.

Like histograms, the quantile-quantile plots point that when regarding a lower number of samples in

maxima block, the analysis is affected. In this case, it influences how the empirical and the EVT distributions

fit with small samples amount. It is important to enhance that it is not even possible to define a distribution for

a unique value, as the one sample maxima block case.

Besides the quantile-quantile plots, the maximal difference between distributions might be a useful and

indicating information. The following tables display the differences between these distributions:

Table XVIII - Differences between ECDF MBPTA(Block Maxima) and EVT distribution (A).

Maxima Block Size Max
Comparison

(Max)
Average

Comparison

(Average)

2048 0.058 100% 0.031 100%

1024 0.056 97% 0.030 97%

512 0.053 91% 0.028 90%

256 0.050 86% 0.023 74%

128 0.041 71% 0.019 61%

64 0.072 124% 0.037 119%

32 0.080 138% 0.039 126%

16 0.096 166% 0.045 145%

8 0.131 226% 0.072 232%

4 0.304 524% 0.160 516%

Table XIX - Differences between ECDF MBPTA(Block Maxima) and EVT distribution (B).

Maxima Block Size Max
Comparison

(Max)
Average

Comparison

(Average)

5000 0.059 100% 0.031 100%

500 0.026 44% 0.007 23%

250 0.040 68% 0.012 39%

200 0.045 76% 0.013 42%

125 0.073 124% 0.022 71%

100 0.054 92% 0.024 77%

50 0.070 119% 0.026 84%

25 0.137 232% 0.046 148%

20 0.135 229% 0.068 219%

10 0.250 424% 0.124 400%

5 0.238 403% 0.110 355%

1 - - - -

As quantile-quantile plots, this difference values also show the disparity due to different maxima block

sizes. Decreasing the number of samples in maxima block increases considerably the distributions differences.

Regarding A, the lowest difference is 0.041, which occurs when Maxima block has 128 samples collected from

128 basic blocks, each basic block have 16 samples. Comparing all maxima block sizes in this scenario, 128

seems ideal.

Besides that, differences in scenario B does not seems linear. Although, the lowest difference value is

0.026, when Maxima has 500 samples collected from 500 basic blocks, each basic block having 10 samples.

Since the lowest difference value is 0.041 in A, the lowest difference in B is considerably better. Furthermore,

the 250 samples case shows the difference value 0.040, which is lower than A also.

It is worthy to enhance that the better options according to Table XVIII and Table XIX are the following

Maxima block size: 128, 200 and 250 samples. That means the better options have the following basic blocks

size: 10, 16 and 20.

Finally, Table XX and Table XXI show the pWCET outcome for each maxima case. The probability

threshold value is 10-8 for A and 10-6 for B, the reference value, the statically defined WCET, is 59223 executed

instructions, as detailed in 6.3.1.

Table XX - FIR Filter on Block Maxima approach, scenario A.

Maxima Block Size pWCET(10-8)
Difference

|pWCET – WCET|
Difference/WCET

2048 225527 166304 280.81%

1024 210630 151407 255.66%

512 184534 125311 211.59%

256 146892 87669 148.03%

128 107117 47894 80.87%

64 64277 5054 8.53%

32 64647 5424 9.16%

16 65196 5973 10.09%

8 65429 6206 10.48%

4 59220 3 0.01%

According to Table XX, as larger the maxima block, the worse the pWCET estimation is. The difference

between the pWCET(10-8) and the static WCET is 166304 for 2048 samples. On the other hand, when Maxima

block has only 4 samples, the difference is 3. In addition, it is important to point that Gevfit function returned

an error message for the Maxima with 4 samples (Table XVI). Thus, the lowest outcome difference is 5054

and occurs for 64 samples.

The histogram comparison (Figure 22) shows that maxima block represents the algorithm execution

behavior when having 128 samples or more. Regarding this assumption, the best outcome difference is 47894,

for 128 samples. Table XVIIITable XX also shows that 128 samples have the best fitting between the EVT

defined and the empirical distributions, the maximal difference is 0.041 and the average difference is 0.019.

When comparing the 64 samples case, the maximal difference is 75.6% higher and the average difference is

94.7% higher than 128 samples case. Therefore, different analysis pointed the 128 samples case as more

reliable and assured. However, the EVT results pointed the 64 samples as more accurate.

Considering this cases, it is possible to deduce that the best samples amount in Maxima block for this

analysis is among 3% and 6% of the total collected samples.

The following table shows the EVT outcomes for scenario B:

Table XXI - FIR Filter on Block Maxima approach, scenario B.

Maxima Block Size pWCET(10-6)
Difference

|pWCET – WCET|
Difference/WCET

5000 209131 149908 253.12%

500 58547 676 1.14%

250 58820 403 0.68%

200 58658 565 0.95%

125 58608 615 1.04%

100 58261 962 1.62%

50 57837 1386 2.34%

25 57796 1427 2.41%

20 57819 1404 2.37%

10 57430 1793 3.03%

5 57430 1793 3.03%

1 - -

According to Table XXI, the worst outcome occurs for 5000 samples, when the difference between the

EVT distribution and the ECDF is 149908. Despite that, the best-obtained result value is 58547, which means

a difference of 676, for 500 samples. The difference worsens as the Maxima block has fewer samples.

The histograms analysis (Figure 23) depicts that maxima block represents the algorithm execution

behavior with 200 samples or more. Besides that, the Gevfit function returned an error message for 10, 5 and

1 sample (Table XVII), so its outcomes might be ignored.

The fitting analysis (Table XIX) also pointed the 500 samples case as the best one. The maximal

difference is 0.026 and the average difference is around 0.007. The 250 samples case is the second best.

However, when comparing it, the maximal difference is 53.8% higher and the average difference is 71.4%

higher than the 500 samples case. Thus, all analysis and the EVT outcomes point 500 samples case as more

reliable and accurate.

Regarding these cases, by deduction, the best samples amount in Maxima block for this analysis is

among 5% and 10% of the total collected samples.

6.3.4 MBPTA: Pick Over Threshold Approach

Like the Basic Block Approach, this Pick Over Threshold (POT) approach analyzes two scenarios: (A),

only unique samples, and (B), repeated samples. Notice that there is an input control when collecting samples

in A, for this cause it executes no input values twice. Besides that, A has 2048 samples and 100% of coverage.

In other hand, B has 5000 samples but there is no assurance of coverage since it might repeat some input

values.

POT selects samples based on a threshold value. The number of samples under analysis depends on the

chosen threshold value. Furthermore, it regards only samples that have values above the threshold value. The

collected samples values in A vary from 80 to 59223, in B the values vary from 80 to 57431.

The following table depicts the regarded thresholds in this approach. In addition, the image shows the

number of samples under analysis. In other words, the figure shows how many samples have values above the

given threshold:

Table XXII - Threshold values and number of samples for scenarios A and B. Font: Author.

The lowest threshold (80) ensure the total coverage of samples for both cases, which means all samples

under analysis. Besides that, the highest threshold (58000) filters only two samples for A and no samples for

scenario B. Figure 26 displays the POT histograms for scenario A whereas Figure 27 shows the histograms for

scenario B.

According to Figure 26, the histograms from threshold 80 to threshold 50750 represent the same

executing behavior. In other hand, thresholds 54375 and 50000 clearly have no information to represent the

algorithm executions properly.

Figure 26 - Peak Over Threshold histograms for A (X axis means time, Y axis means occurences).

Reference: Author.

Figure 27 - Peak Over Threshold histograms for B (X axis means time, Y axis means occurences).

Reference: Author.

According to Figure 27, histograms point that cases with threshold 43500 and higher might not be

reliable. Furthermore, the threshold 58000 case has no sample.

As the block maxima approach, the Pick Over Threshold requires converging values between the

collected samples and Pareto Distribution family. Instead of gevfit, Matlab afford gpfit() function for Pareto

distributions. This function find the proper Pareto distribution that best fits the given samples, also it returns

two parameter Scale and Shape. The table below displays this parameter values for each case for both

scenarios:

Table XXIII - Pareto parameter values for different thresholds.

Threshold
Scenario A Scenario B

Scale () Shape () Scale () Shape ()

80 20907.891 -0.29750 20374.667 -0.30330

14500* 43819.635 -0.73930 43063.200 -0.74930

29000* 68855.758 -1.16270 66839.168 -1.16380

36250* 81848.796 -1.38200 85321.420 -1.48560

43500* 90660.376 -1.53080 100991.401 -1.75850

50750* 122908.724 -2.07540 104063.626 -1.81200

54375* 95431.500 -1.61140 99566.584 -1.73370

58000* 113501.888 -1.91650 - -

*Gpfit returned the message: Maximum likelihood has converged to a boundary point of the parameter

space. Confidence intervals and standard errors cannot be computed reliably.

It is important to enhance that there is only one good convergence, since the function returned error

message for every cases except the first. Therefore, these outcomes must not be reliable. Further, the quantile-

quantile plots (Figure 28 and Figure 29) confirm that. Regarding these images, there is a good fitting between

the defined Pareto distribution and the empirical only when regarding all samples, in threshold 80 case. It

happens for both scenarios A and B.

Figure 28 - Quantile-quantile plots for different threshold values (A). Font: Author.

Figure 29 - Quantile-quantile plots for different threshold values (B). Font: Author.

As the quantile-quantile plots point, there are considerable differences between the empirical

distributions and those defined by Pareto family model. The following tables show the maximal and the

average difference for every case regarding scenarios A and B.

Table XXIV - Differences between ECDF MBPTA (Peak Over Threshold) and EVT distribution (A).

Threshold Max
Comparison

(Max)
Average

Comparison

(Average)

80 3.3E-02 100% 1.0E-02 100%

14500 6.5E-02 198% -7.0E-02 -687%

29000 1.1E-01 336% -1.0E-01 -1032%

36250 1.2E-01 354% -1.3E-01 -1302%

43500 9.6E-02 292% -1.9E-01 -1883%

50750 1.2E-01 360% -2.0E-01 -1957%

54375 1.3E-10 0% -3.5E-01 -3449%

58000 4.7E-09 0% -4.2E-01 -4173%

Table XXV - Differences between ECDF MBPTA (Peak Over Threshold) and EVT distribution (B).

Threshold Max
Comparison

(Max)
Average

Comparison

(Average)

80 3.2E-02 100% 9.9E-03 100%

14500 7.5E-02 235% -7.4E-02 -755%

29000 1.1E-01 348% -1.1E-01 -1098%

36250 1.4E-01 438% -1.2E-01 -1176%

43500 1.2E-01 376% -1.5E-01 -1572%

50750 5.9E-02 185% -2.8E-01 -2855%

54375 6.3E-10 0% -3.5E-01 -3596%

58000 - - - -

Like the quantile-quantile plots, these differences values show the disparity due to different threshold

values. Decreasing the number of samples in analysis increases considerably the distributions differences. In

both scenarios, the threshold 80 seems the best case. It has a maximal difference around 0.03 and an average

difference around 0.01.

Considering these cases, it is possible to deduce that considering all samples is the best option for Peak

Over Threshold approach. Since the most reliable cases regards 100% of the total collected samples. Table

XXVI shows the EVT outcomes for scenario A, besides, Table XXVII depicts the EVT outcomes for

scenario B. The probability threshold value is 10-8 for A and 10-6 for B, the reference value, the statically

defined WCET, is 59223 executed instructions, as detailed in 6.3.1.

Table XXVI - FIR Filter on Peak Over Threshold approach, scenario A.

Threshold pWCET(10-8)
Difference

|pWCET – WCET|
Difference/WCET

80 61273 2050 3.46%

14500 58912 311 0.53%

29000 59203 20 0.03%

36250 59218 5 0.01%

43500 59221 2 0.003%

50750 59222 1 0.002%

54375 59222 1 0.002%

58000 59222 1 0.002%

Table XXVII - FIR Filter on Peak Over Threshold approach, scenario B.

Threshold pWCET(10-6)
Difference

|pWCET – WCET|
Difference/WCET

80 58915 308 0.52%

14500 57143 2080 3.51%

29000 57412 1811 3.06%

36250 57428 1795 3.03%

43500 57430 1793 3.03%

50750 57430 1793 3.03%

54375 57430 1793 3.03%

58000 - -

According to Table XXVI the threshold 80 case has the less accurate result and the outcomes value is

more accurate when analyzing fewer sample. Therefore, for scenario A the most reliable outcome according

other analysis is also the worst in accuracy according the results. It is important to enhance those samples in

A represents 100% of coverage of all possible results. It might affect mainly with higher thresholds. The

threshold 58000 case, for instance, has only two samples and one is the worst-case that is 59223. In addition,

it is worthy to point that 61273 is not accurate but it is safe for worst-case, since its largest than 100% of

possible values.

In scenario B, unlike A, the most accurate result is also the most reliable. The threshold 80 case has the

small difference between the outcome and the statically defined worst-case. Furthermore, other analysis also

pointed this case as most trustable.

It is important to enhance that 58915 is smaller than 59223. However, when considering every possible

cases, there is only one case largest than that value, which is the WCET 59223. Therefore, 58915 covers 2047

of 2048 cases, that means a hit probability of 99.951%. In other words, this result fails for 1 of 2048 cases, that

means a failing probability of 0.000488, which is slower than the probability threshold (10-3) regarded on

analysis.

6.4 Comparison

This section introduced two different contexts on which EVT is applied to estimate the pWCET, both

consider the same processor platform (MIPS) but different algorithms: Bubble Sort and Finite Impulse

Response (FIR) Filter. For both contexts the minimum number of samples is calculated according to CRPS

and two approaches for filtering samples are applied: BM and POT.

In Bubble Sort case, the analysis with BM approach presents reliable and accurate outcomes when

Maxima Block has 90 or more samples. Furthermore, the bests scenarios are respectively 90 and 100 samples,

which evidenced the difference between the pWCET and the reference value, only 0.24%. On the other hand,

analyzing with POT approach does not succeed in the same way. In this case, no scenario has reliable

outcomes, since Matlab can’t compute the distribution properly.

In FIR filter case, the analysis considers two scenarios when collecting samples: controlling input values

(scenario A) and no controlling input values (scenario B).

For scenario A, when applying BM, the reliable outcomes are obtained for Maxima Blocks with 128 or

more samples. However, these outcomes are significantly inaccurate, some of them estimate more than 250%

when compared to the reference WCET. The best reliable pWCET estimation is evidenced for Maxima Block

with 128 samples, nevertheless, this outcome is 80.87% higher than the reference value, which means this

approach is not so efficient in this case. When considering outcomes for POT approach, it also has several

unreliable scenarios which can’t be calculated by Matlab. However there is one reliable scenario, when the

threshold is 80. In this scenario the estimation is 3.46% higher than the reference WCET, which means that

POT may be better for this context or even when controlling the input data.

For scenario B, in BM approach, scenarios with Maxima Block with 200 or more samples generated

reliable outcome. Although the 5000 samples case estimates a pWCET 250% higher than the reference, the

other cases are considerable accurate. The best result is found for Maxima Block with 250 samples, in this

scenario the difference between the pWCET and the reference WCET is only 0.68%. For POT approach,

similarly to A, only the threshold 80 computed reliable outcomes, on the other hand, for B the result is even

more accurate. The difference between the calculated pWCET and the reference WCET in this scenario is only

0.52%. The following table show a comparison among the different analysis with BM and POT approaches:

Table XXVIII – Comparing outcomes from BM and POT approaches.

 Block Maxima Peak Over Threshold

Bubble Sort
Reliable outcomes

Small difference is 0.24%
No reliable outcomes

FIR Filter (A)
Few reliable outcomes

Small difference is 80.87%

Only one reliable outcome

Difference is 3.46%

FIR Filter (B)
Reliable outcomes

Small difference is 0.68%

Only one reliable outcome

Difference is 0.52%

Based on this table it is possible to conclude that POT is considerably more intricate than BM, since

only two scenarios resulted in reliable information. On the other hand, BM seems simpler, and more accurate

than POT. Also, it is worthy to point that the input data control for collecting samples may prejudice BM

accuracy significantly whereas POT accuracy is lightly affected.

7 Conclusion

This work presented a methodology to analyze pWCET estimates of hard real time systems and pointed

out the process limitations related to that. With this purpose, it regarded two algorithms: Bubble Sort and FIR

Filter. Furthermore, this work used the MIPS architecture processor, single core, to assemble and run the

selected algorithms.

Firstly, this methodology statically computed the WCET of both algorithms. After that, it applied the

Measured Based Probabilistic Timing Analysis (MBPTA) approach to re-compute the WCET with different

parameter values. This methodology used MARS, a MIPS simulator, to collect MBPTA samples. At the end,

both outcomes, the one provided by statically computing and the one obtained by the MBPTA, were compared.

It is worth noting that the number of samples and their empirical distribution affect the probability

threshold. For this reason, the present work considered the probability according to CRPS calculation and not

the standard for avionic systems (10-9).

The methodology applied the Extreme Value Theory (EVT) in the sample sets following the Block

Maxima approach, comparing the outcomes by different input parameters. For the Bubble Sort analysis, the

most reliable and accurate outcomes have a Maxima block from 2% to 7% of the total samples. Presenting

only 0.24% of difference between the pWCET and the reference value.

On the other hand, for FIR Filter analysis controlling input data, Block Maxima computed only one

reliable but not accurate outcome, it differs 80.87% when compared to the reference. When the analysis does

not control the input data, the reliability and accuracy get better, the difference between the best outcome and

the reference value is 0.68%. Further, FIR Filter analysis indicated that from 3% to 10% of all samples, the

Maxima block provided the best outcomes.

This methodology also applied EVT following the Peak Over Threshold (POT) approach, diversifying

the input parameters. The outcomes in Bubble Sort pointed POT as irrelevant and unreliable, all cases had a

bad calculation and no case reached a safe fitting behavior. This work doesn’t investigate what causes this

problem, letting this topic as a future work.

Besides that, POT analysis depicted accurate and reliable outcome values for FIR Filter, especially when

collecting samples with no input control. This scenario pointed that, as more selected samples in analysis, more

reliable and accurate are the results, it computed a value with 0.52% of difference when compared to reference

value. In addition, when collecting unique samples, with input control, accuracy and reliability slightly

decreased, the best outcome had a difference of 3.46% between the reference value and the result.

Based on this work EVT is a useful and trustable technique to define pWCET. Block Maxima technique

seems easier and more reliable since both algorithms had proper outcome values. On the other hand, the large

number of samples required to feed a good Maxima Block is an important limitation to point. Further, this

work does not investigate whether sample ordering when creating basic blocks affect or not the result.

On the other hand, Peak Over Threshold seems more complex and limited than Block Maxima. This

technique presented no reliable outcome for Bubble Sort study-case, further, this work could not point what is

the cause. Therefore, it is an important problem to point as limitation. However, POT produced reliable and

accurate results for FIR Filter case, even for analysis controlling input data, when Block Maxima failed.

8 Future Work

As future work, the following topics can be addressed in order to extend and explore the proposed work,

they are:

• Investigate why Peak Over Threshold failed for Bubble Sort case. The following questions may

be a good start:

o Are there limitations in Matlab functions for EVT? How they could affect the analysis?

o Is the CRPS computation applicable for all scenarios?

o Considering more samples can fix the problem?

• Apply this work methodology for different algorithms, e.g. Selection Sort, Merge Sort, and

heapsort, in order to assure whether the algorithm complexity affects EVT reliability. Also,

compare Block Maxima and Peak Over Threshold accuracy.

• Inspect whether the samples ordering affect or not Block Maxima technique.

References

ABELLA, Jaume et al. On the Comparison of Deterministic and Probabilistic WCET

Estimation Techniques. 2014 26th Euromicro Conference On Real-time Systems, Madrid,

Spain, v. 1, n. 26, p.266-275, jul. 2014. IEEE. DOI: 10.1109/ECRTS.2014.16

BERNAT, Guillem; COLIN, Antoine; PETTERS, Stefan M.. WCET analysis of probabilistic

hard real-time systems. 23rd Ieee Real-time Systems Symposium, 2002. Rtss 2002., Austin,

Texas, Usa, p.1-10, dez. 2002. IEEE Comput. Soc. DOI: 10.1109/REAL.2002.1181582

BRADLEY., James Vandiver. Distribution-free statistical tests. Englewood Cliffs, N.j:

Prentice-hall, 1968. 388 p.

BUTTAZZO, Giorgio C.. Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications. Pisa: Kluwer Academic Publishers, 2011. 524 p.

CAZORLA, Francisco J. et al. PROARTIS: Probabilistically Analysable Real-Time

Systems. Acm Transactions On Embedded Computing Systems, New York, Ny, Usa, v. 12,

n. 2, p.1-26, 1 maio 2013. Association for Computing Machinery (ACM).

http://dx.doi.org/10.1145/2465787.2465796.

CAZORLA, Francisco J. et al. Upper-bounding Program Execution Time with Extreme Value

Theory. 13th International Workshop On Worst-case Execution Time Analysis (wcet

2013)., Germany, p.64-76, jul. 2013. DOI: 10.4230/OASIcs.WCET.2013.64

COSTA, Celso Maciel da. Sistemas Operacionais – Programação concorrente com Pthreads.

Porto Alegre: Edipucrs, 2010. 212 p.

CUCU-GROSJEAN, Liliana et al. Measurement-Based Probabilistic Timing Analysis for

Multi-path Programs. 2012 24th Euromicro Conference On Real-time Systems, [s.l.], p.1-

11, jul. 2012. IEEE. DOI: 10.1109/ECRTS.2012.31

DAVIS, Robert I.; BURNS, Alan; GRIFFIN, David. On the Meaning of pWCET Distributions

and their use in Schedulability Analysis. Rtops - Real-time Scheduling Open Problems

Seminar. Dubrovnik, Croácia, p. 1-4. 27 jun. 2017. Disponível em:

<http://www.cister.isep.ipp.pt/rtsops2017/RTSOPS17_proceedings.pdf>. Acesso em: 04 nov.

2018.

EDGAR, S.; BURNS, A.. Statistical analysis of WCET for scheduling. Proceedings 22nd Ieee

Real-time Systems Symposium (rtss 2001) (cat. No.01pr1420), London, Uk, v. 22, n. 1,

p.215-224, dez. 2001. IEEE Comput. Soc. DOI: 10.1109/REAL.2001.990614

GIL, Samuel Jimenez et al. Open Challenges for Probabilistic Measurement-Based Worst-Case

Execution Time. Ieee Embedded Systems Letters, [s.l.], v. 9, n. 3, p.69-72, set. 2017. Institute

of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/les.2017.2712858.

GRIFFIN, David; BURNS, Alan. Realism in Statistical Analysis of Worst Case Execution

Times. 10th International Workshop On Worst-case Execution Time Analysis (wcet

2010), Dagstuhl, Germany, v. 15, n. 1, p.44-53, jul. 2010.

DOI: 10.4230/OASIcs.WCET.2010.44

KOSMIDIS, Leonidas et al. PUB: Path Upper-Bounding for Measurement-Based Probabilistic

Timing Analysis. 2014 26th Euromicro Conference On Real-time Systems, Madrid, Spain,

p.1-12, jul. 2014. IEEE. http://dx.doi.org/10.1109/ecrts.2014.34.

LIMA, George; BATE, Iain. Valid Application of EVT in Timing Analysis by Randomising

Execution Time Measurements. 2017 Ieee Real-time And Embedded Technology And

Applications Symposium (rtas), [s.l.], p.187-197, abr. 2017. IEEE.

http://dx.doi.org/10.1109/rtas.2017.17.

LIMA, George; DIAS, Dario; BARROS, Edna. Extreme Value Theory for Estimating Task

Execution Time Bounds: A Careful Look. 2016 28th Euromicro Conference On Real-time

Systems (ecrts), [s.l.], p.1-12, jul. 2016. IEEE. http://dx.doi.org/10.1109/ecrts.2016.20.

MISSOURI STATE UNIVERSITY (Missouri). Mars: MIPS Assembler and Runtime

Simulator. Disponível em: <https://courses.missouristate.edu/KenVollmar/mars/>. Acesso em:

15 fev. 2020.

OLIVEIRA, B.; SANTOS, M. M.; DESCHAMPS, F. Cálculo do tempo de execução de

Códigos no Pior Caso (WCET) em aplicações de tempo real: um estudo de caso. Revista

Eletrônica de Sistemas de Informação, v. 5, n. 1, p. 1-10, 2006. DOI:

https://doi.org/10.21529/RESI.2006.0501002

OLIVEIRA, Rômulo Silva de; FRAGA, Joni da Silva; FARINES, Jean-marie. Sistemas de

Tempo Real. Florianópolis: Ufsc, 2000.

PAOLIERI, Marco et al. Hardware support for WCET analysis of hard real-time multicore

systems. Proceedings Of The 36th Annual International Symposium On Computer

Architecture - Isca '09, Austin, Tx, Usa, v. 36, n. 9, p.57-68, jun. 2009. ACM Press. DOI:

https://doi.org/10.1145/1555815.1555764

SHAW, Alan C.. Sistemas e Software de Tempo Real. São Paulo: Bookman, 2003.

SILVA, Karila Palma; ARCARO, Luis Fernando; OLIVEIRA, Romulo Silva de. On Using

GEV or Gumbel Models When Applying EVT for Probabilistic WCET Estimation. 2017 Ieee

Real-time Systems Symposium (rtss), [s.l.], p.220-230, dez. 2017. IEEE.

http://dx.doi.org/10.1109/rtss.2017.00028.

STARKE, Renan Augusto. UMA ABORDAGEM DE ESCALONAMENTO

HETEROGÊNEO PREEMPTIVO E NÃO PREEMPTIVO PARA SISTEMAS DE

TEMPO REAL COM GARANTIA EM MULTIPROCESSADORES. 2012. 200 f.

Dissertação (Mestrado) - Curso de Pós-Graduação em Engenharia de Automação e Sistemas,

Universidade Federal de Santa Catarina, Florianópolis, 2012.

THEILING, Henrik; FERDINAND, Christian; WILHELM, Reinhard. Fast and Precise WCET

Prediction by Separated Cache and Path Analyses. Real-time Systems, [s.l.], v. 18, n. 2/3,

p.157-179, abr. 2000. Springer Nature. http://dx.doi.org/10.1023/a:1008141130870.

VARGAS, Fabian; GREEN, Bruno. Preliminaries on a Hardware-Based Approach to Support

Mixed-Critical Workload Execution in Multicore Processors. In: SECOND

INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, CONTROL

AND NETWORKING, 2., 2015, Bangkok, Thailand. Second International Conference on

Advances In Computing, Control And Networking. Bangkok: IRED, 2015. p. 23 - 27. DOI :

10.15224/978-1-63248-073-6-05

WILHELM, Reinhard et al. The worst-case execution-time problem—overview of methods and

survey of tools. Tecs, [s.l.], v. 7, n. 3, p.1-53, 1 abr. 2008. Association for Computing

Machinery (ACM). http://dx.doi.org/10.1145/1347375.1347389.

ZICCARDI, Marco et al. EPC: Extended Path Coverage for Measurement-Based Probabilistic

Timing Analysis. 2015 Ieee Real-time Systems Symposium, San Antonio, Tx, Usa, v. 1, n. 1,

p.338-349, dez. 2015. IEEE. http://dx.doi.org/10.1109/rtss.2015.39.

APPENDIX A - IPET Example: Bubble Sort Case

This section aims to explain all steps on IPET computation for the item 6.2 Bubble Sort Case.

The following image shows the chosen algorithm’s CFG.

Figure 30 - Buble Sort CFG

According to IPET technique, every basic block has two parameters, time (Ti) and number of

execution (Ni). To define the basic block WCET is required to multiply this block execution times (𝑁𝑖)

and its spent time for a unique execution (𝑇𝑖). The WCET is the maximum summation of the outcomes of

every block.

𝑊𝐶𝐸𝑇 = ∑ 𝑁𝑖 ∗ 𝑇𝑖

𝑖∈𝐵𝑎𝑠𝑖𝑐𝐵𝑙𝑜𝑐𝑘𝑠

𝑊𝐶𝐸𝑇 = 𝑁𝐴 ∗ 𝑇𝐴 + 𝑁𝐵 ∗ 𝑇𝐵 + 𝑁𝐶 ∗ 𝑇𝐶

+𝑁𝐷 ∗ 𝑇𝐷 + 𝑁𝐸 ∗ 𝑇𝐸 + 𝑁𝐹 ∗ 𝑇𝐹 + 𝑁𝐺 ∗ 𝑇𝐺

+𝑁𝐻 ∗ 𝑇𝐻 + 𝑁𝑖 ∗ 𝑇𝑖 + 𝑁𝐽 ∗ 𝑇𝐽

All basic block times are known, since instruction number is regarded as time unit in this case. The

following figure shows the time for all blocks.

Figure 31 - The basic blocks times.

Although the time for all blocks are known, the number of execution have to be computed. IPET define

some rules for this computation:

• The first block executes only once (NA = 1).

• The last block executes only once (NJ = 1).

• The number of times the execution enters a given block is the same number that the execution

leaves the block.

Based on that it is possible the compute the block’s number. It regards the numbers of execution for

every block, as NA, and also the number of transitions among the blocks, as NAB. The IPET equations for this

CFG are described below:

𝑁𝐴 = 𝑁𝐴𝐵

𝑁𝐵 = 𝑁𝐴𝐵 = 𝑁𝐵𝐶 ,

𝑁𝑐 = 𝑁𝐵𝐶 + 𝑁𝐼𝐶 = 𝑁𝐶𝐷 + 𝑁𝐶𝐽,

𝑁𝐷 = 𝑁𝐶𝐷 = 𝑁𝐷𝐸 ,

𝑁𝐸 = 𝑁𝐷𝐸 + 𝑁𝐻𝐸 + 𝑁𝐺𝐸 = 𝑁𝐸𝐹 + 𝑁𝐸𝐼 ,

𝑁𝐹 = 𝑁𝐸𝐹 = 𝑁𝐹𝐺 + 𝑁𝐹𝐻 ,

 𝑁𝐺 = 𝑁𝐹𝐺 = 𝑁𝐺𝐸 ,

𝑁𝐻 = 𝑁𝐹𝐻 = 𝑁𝐻𝐸 ,

𝑁𝐼 = 𝑁𝐸𝐼 = 𝑁𝐼𝐶 ,

𝑁𝐽 = 𝑁𝐶𝐽,

The first (𝑁𝐴) block and the last (𝑁𝐽) block are executed only once. Besides that, the outer loop blocks

(𝑁𝐷 , 𝑁𝐼) upper bound is 8 times whereas the inner loop (𝑁𝐹) upper bound is 64.

𝑁𝐴 = 1, 𝑁𝐵 = 1, 𝑁𝐷 = 8, 𝑁𝐼 = 8, 𝑁𝐹 = 64,

1 = 𝑁𝐴𝐵 ,

𝑁𝐵 = 1 = 𝑁𝐵𝐶 ,

𝑁𝑐 = 1 + 𝑁𝐼𝐶 = 𝑁𝐶𝐷 + 𝑁𝐶𝐽,

8 = 𝑁𝐶𝐷 = 𝑁𝐷𝐸 ,

𝑁𝐸 = 8 + 𝑁𝐻𝐸 + 𝑁𝐺𝐸 = 𝑁𝐸𝐹 + 𝑁𝐸𝐼 ,

64 = 𝑁𝐸𝐹 = 𝑁𝐹𝐺 + 𝑁𝐹𝐻 ,

𝑁𝐺 = 𝑁𝐹𝐺 = 𝑁𝐺𝐸 ,

𝑁𝐻 = 𝑁𝐹𝐻 = 𝑁𝐻𝐸 ,

8 = 𝑁𝐸𝐼 = 𝑁𝐼𝐶 ,

1 = 𝑁𝐶𝐽 ,

After that is possible to replace some variables values and simplify the equation:

𝑁𝐴 = 1,

𝑁𝐵 = 1,

𝑁𝐶 = 9,

𝑁𝐷 = 8,

𝑁𝐸 = 72,

𝑁𝐹 = 64,

 𝑁𝐼 = 8,

 𝑁𝐺 = 𝑁𝐹𝐺 = 𝑁𝐺𝐸 ,

𝑁𝐻 = 𝑁𝐹𝐻 = 𝑁𝐻𝐸 ,

The number of executions of the blocks NG and NH depends on how mess the vector values are.

Analyzing the bubble sort algorithm is possible to infer that the worst scenario has decreasing values in vector

(8, 7, 5, 6, 4, 3, 2 and 1, for example). In this worst-case, the algorithm swaps the values 28 times during

execution to order the vector. This implies NH = 28 and, hence NG = 36. The Figure 32 shows the number of

executions for all blocks in the worst-case:

Figure 32 - The number of executions for each block in the worst scenario. Reference: Author

The Table XXIX displays the IPET result and all found values throughout this static analysis

computation considering the worst-case. This analysis resulted in 826 executed instructions in the worst

scenario, since this work regards executed instructions as time unit, the WCET is 826.

Table XXIX - Static analysis for WCET. Reference: Author.

APPENDIX B – EVT for multi-path WCET

Regarding multiple-path program, the EVT application is direct, although there are three essential

conditions:

1) I.i.d. properties are requisite to the resultant distribution from multiple paths.

2) Each path requires a sufficient number of execution time samples.

3) The result refers to the observed paths set alone.

A. Independent and identically distributed observations

As in single-path programs, it is important to hold the i.i.d. property for multi-path programs, choosing

random inputs in the measurement runs and grouping them, or testing all inputs and choosing the outcomes

randomly when grouping. There is a necessary assumption in which it exists a direct and traceable correlation

among the taken path, the observation and the input data and state.

B. Minimum Observations Number

EVT does not regard different paths frequencies in the measured samples, since the worst-case path

dominates the outcome in block maxima approach. Otherwise, a minimum samples number of each path may

be a requirement to characterize the behavior adequately. Executing each input at least this minimum number

may ensure this property.

C. Path Coverage

The EVT result is reputable for observed paths only. Untested paths might not be related to the pWCET

estimates, since the execution time would not compound an identical distribution for those paths. This connects

the i.i.d. concept to the path coverage achieved by input data. Furthermore, in complex applications, the loops

and branches combinations increase considerably the number of possible paths during the program. For this

reason, it is possible to establish a warning on the EVT result, describing it as valid only for the observed paths

during execution (CUCU-GROSJEAN et al., 2012).

D. EVT Step-by-step for multi-path

The EVT application for multi-path program is very similar to single-path. There is only one difference

in the first step, during the observations collection (CUCU-GROSJEAN et al., 2012). Each path requires an

acceptable sample number to characterize its behavior. In other words, the number of paths multiplies the

sample number required. For instance, it may be viable to start with 100P executions, where P is the number

of paths. Moreover, it is possible to increase the additional number of observations in each round to P * N∆.

APPENDIX C – Path Upper-Bounding (PUB)

The Path Upper-Bound (PUB) method extends MBPTA to upper bound for any path in the program

under analysis, even if the input vector does not induce the worst-case path. PUB extends the original program,

adding instructions in the different program paths. Therefore, the execution time of any path upper bounds the

worst-case execution time. However, it uses the extended program only for pWCET analysis time (KOSMIDIS

et al., 2014).

PUB estimates the probability of any program path upper bound. Figure 33 compares both MBPTA and

PUB flows, since the collection step until pWCET estimating. MBPTA provides a pWCET estimating only

for analyzed paths, as the analysis result may not upper-bound non-exercised paths. On the other hand, PUB

operates on the original code. It is possible to upper bound the program execution time exercising any path,

since the method adds instructions in every code branch. Moreover, Kosmidis et al. (2014) propose two PUB

techniques: Address Merging (PUBam) and Address Aging (PUBaa).

Figure 33 - MBPTA and PUB methodologies. Reference: Kosmidis et al. (2014).

<Onde está a ref no texto desta figura?>

8.1.1 Address Merging (PUBam)

This methodology consists of performing the same data accesses regarding the same order in any path

of a given conditional branch. Figure 34 shows a conditional branch in which the first path accesses the

addresses @A, @B and @C, while the second accesses the addresses @D and @E. In this case, the PUBam

proposes to edit the code to ensure a safe worst-case for both paths. PUBam also maintains the relative order

of accesses. In other words, it respects the sequences @A, @B, @C and also @D, @E. Consequently, there

are two possibilities for this case: access <@A;@B;@C;@D;@E >, or <@D;@E;@A;@B;@C >, or

<@A;@D;@B;@E;@C>, but not <@A;@E;@D;@C;@B>.

Figure 34 - Simple Code Replication. Reference: Kosmidis et al. (2014).

To optimize the solution replicating all access in all branches it is possible to avoid unnecessary access

replications. In order to do that, sequences or addresses replicated in both paths must be identified and not

copied. The figure 35 shows an example that illustrates how a given if-then-else can be optimized. In this code

there are three addresses sequences, @A,@C and @C, occurring both in then and else paths. Due to this, there

is no blank space for those address in the left side column.

Figure 35 - Code identification and replication. Reference: Kosmidis et al. (2014).

Kosmidis et al. (2014) also consider different instructions flows as switch, loop, nested if-then-else and

if-then (without else) constructs.

• If-then: Regarding this construct as an if-then-else with an empty else branch, PUB simply adds

in the else branch the code in the then branch.

• Switch: Switch constructs may have more than two branches. PUB replies the sequence access

as in if-then-else, however it does this for all branches.

• Nested Conditionals: For nested conditional PUB, it may be applied recursively. Figure 36

shows an example of if-then-else and if-then nested. This figure shows the original code in the

first column, the inner conditional applying PUB in the second column and the final code in the

last column.

• Loops: Access in any branch remains the same in loops, although data cache access may vary

crosswise iterations. For this reason, branch upper bounding is trustworthy even in this case. It

is noteworthy mentioning that PUB replicates access only for those that do not access the same

address in all branches in each iteration. The same occurs when accessing an array content, if

different branches access the same array in different positions, those accesses must be replicated

by PUB.

• Infeasible paths, error codes: In several cases, there is no need to consider some branches in

pWCET computation. In other words, it is possible to reduce the PUB overhead. For that, the

user can instruct PUB, by annotations, to not consider instructions in some branches.

• Operation modes: Software with different, and mutually exclusive, operations modes may be

upper bounded in every operation mode independently. The user might identify and indicate

every operation mode code to PUB and provide a path coverage for that mode instead of

covering all code paths. Switch constructs, for instance, have different modes for each case.

• Function Calls: when a given branch calls a function, PUB replicates its cache effects to the

other branches. PUB may use a dummy function that access the same addresses in the same

order that function call does. Alternatively, it is possible to apply a technique named Address

Aging. However, if all branches call the same function, there is no need to replicate it.

Figure 36 - Nested If code replication. Reference: Kosmidis et al. (2014).

8.1.2 Address Aging (PUBaa)

PUBam (Address Merging) is less efficient when each branch has different addresses sets to access,

since PUB copies every accessed address to all branches (KOSMIDIS et al., 2014). Considering a switch with

10 cases, for instance, if each branch access two different addresses, will result in an extended switch in which

all branches access 20 addresses.

To handle it, Kosmidis et al. (2014) propose the Address Aging technique (PUBaa). This method adds

addresses accessed nowhere else in the code, resulting in missing and fetching useless data, instead of copying

addresses on all the other branches. The access number PUBaa adds is the maximum number of any branches

access. Regarding the previous example, instead of copy all the addresses, it adds two unique addresses in each

branch. Therefore, every branch must have four addresses instead of 20. This still ensures the switch worst-

case, since there are at least two misses occurring in every case.

PUBaa is potentially more efficient for a higher number of branches. However, for high imbalance and

a low number of branches, PUBam is more efficient. PUBaa might be applied by using a data structure

(dummy) and a pointer (next) to ensure that the address is accessed once (dummy[next]). Although it is also

possible to implement PUBaa with hardware support, creating a special instruction that induces a cache miss,

causing some data eviction, accessing memory and bringing useless content to cache memory.

APPENDIX D – Extended Path Coverage (EPC)

Ziccardi et al. (2015) present the Extended Path Coverage (EPC). This technique enhances the MBPTA

process and results in a valid pWCET for the whole program, even without the worst-case inputs, either the

full path coverage. EPC regards only measurements on the original program code, unlike PUB. EPC derives

an execution times collection, which represents all the program paths just counting on basic block measurement

sets. Therefore, it requires a basic block full coverage.

In the MBPTA approach, the result is valid only for the paths covered and executions conditions for

observations collected. EPC, on the other hand, extends the observations set synthetically to get the equivalent

effect of full path coverage. EPC requires collecting executions time observations, sample set, for every

program basic blocks.

Basic block is a code snippet, the smallest unit of sequential code to execute. Measure basic blocks is

industrially viable since the executions probing overhead might be negligible by adopting trace tools or

advanced hardware debug interfaces.

It is possible to make probabilistic execution times for a basic block to be path-independent. EPC

increases, probabilistically, the probabilistic execution time to balance the benefits that basic blocks may take

in some cases. As a given traversal path leading to this block, due to history sensitivity of execution, for

instance.

Every basic block execution time that is probabilistically path-independent may construct a whole

program representative collection of execution times, even blocks that input vector do not exercise. The

execution time observations over basic blocks may not be combined to obtain unobserved path execution time.

By the way, path-independence is a mandatory requirement. Due to cache-level dependence and core-level

dependence effects, each observation corresponds only to the executed path during the run.

EPC copes these dependencies identifying unobserved paths’ probabilistic impact on the observed

execution times set and it generates an artificially extended set of execution times regarding the entire program.

MBPTA process might analyze this extended set to define the worst-case. The computed pWCET may be fully

trustworth, once it is regarded as upper bound, due to the extended measurements obtained by thoroughly

observing each possible path.

Figure 37 depicts the EPC and MBPTA processes interactions. The main EPC process steps are (a)

collecting execution time samples, (b) padding basic blocks and (c) construction of execution time. The

original observations and the synthetic execution times, which EPC generates, feed the MBPTA process and

allow it to compute a trustworthy pWCET for any exceedance probability. This pWCET relates to all paths in

the program and all possible addresses. Furthermore, MBPTA convergence criterion may require synthetic

measurements or observations.

Figure 37 - EPC interaction with standard MBPTA process. Reference: Ziccardi et al. (2015).

Figure 38 shows the EPC steps applied on a simple program. This program consists of two cascading

conditional code. The first step collects execution time for individual basic blocks across the paths φ0 and φ2.

Afterwards, the second step augments the execution times collected for each basic block to turn them into path-

independent. The third step synthetically computes execution time values for all the non-observed paths φ1

and φ3.

Figure 38 - EPC steps applied on a simple program. Reference: Ziccardi et al. (2015).

The first step is to collect execution times for the program. It is not required to exercise all the paths,

though it must cover every basic block (bbi) in the program. After extracting timing information for each basic

block, it is possible to generate an empirical execution time profile EETP(bbi), relating every basic block bbi.

The second step applies observations Obs(bbi, φ) to all basic blocks and their respective EETP(bbi). Each

Obs(bbi, φ) is made probabilistically path-independent, denoted Obs+(bbi, φ), by adding a probabilistic

padding. Augmented observations induce augmented execution time profiles EETP+(bbi). These profiles are

independent of observed paths and over-approximates every basic block timing behavior on every path in the

program that passes through it. The last step combines path-independent profiles to define a synthetic execution

time profile 𝐸𝐸𝑇𝑃(𝜑) for each non-observed path φ. Building blocks in 𝑂𝐵𝑆(𝜑𝑖) computation, regarding φi

as a program path, they are always valid upper bounds, since using probabilistically path-independent

EETP+(bbi) ensures it. Feeding a 𝐸𝐸𝑇𝑃(𝜑) complementary set to MBPTA enables it to obtain a valid pWCET

for all execution paths and for any exceedance probability. EPC application ends and gathers all the artificially

constructed execution times obtained under different cache placements, randomly generated, and providing

them to MBPTA.

APPENDIX E – Matlab code examples

The following code computes GEV for Block Maxima approach in Matlab, the filtering process

happens before this execution and is provided in a samples.csv file.

clc; close all; clear all;

importfile('samples.csv');

[f,x] = ecdf(data);

f2 = 1-f;

paramEsts = gevfit(data);

paramEsts

location = paramEsts(3);

scale = paramEsts(2);

shape = paramEsts(1);

p = 1 - gevcdf(x,shape,scale,location);

plot(x,p,x,f2);

figure;

qqplot(p,f2);

xlim([0 1]);

ylim([0 1]);

% for a better analysis decrease x step

% This example uses a range between 2570 and 2580

x = (2570:0.002:2580);

p = 1 - gevcdf(x,shape,scale,location);

p2 = 10^-9;

figure;

plot(x,p,x,p2);

The following code computes GP for Block Maxima approach in Matlab, the filtering process happens

before this execution and is provided in a samples.csv file.

clc; close all; clear all;

importfile('samples.csv');

[f,x] = ecdf(data);

f2 = 1-f;

paramEsts = gpfit(data);

scale = paramEsts(2);

shape = paramEsts(1);

p = 1 - gpcdf(x,shape,scale);

figure;

plot(x,p,x,f2);

figure;

plot(x,f2);

figure;

qqplot(p,f2);

% for a better analysis decrease x step

% This example uses a range between 923.64 and 924

% x = (923.64:0.002:924);

p = 1 - gpcdf(x,shape,scale);

p2 = 10^-9;

figure;

plot(x,p,x,p2);

