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RESUMO  

Quando sistemas de tempo real são desenvolvidos para aplicações críticas, o tempo de execução 

é um requisito tão importante quanto o resultado computado. Por este motivo, o tempo máximo de 

execução de um sistema de tempo real deve obrigatoriamente ser determinado durante a fase de 

projeto. Estimar o tempo de execução de sistemas complexos impacta diretamente no tempo e nos 

custos da análise durante o desenvolvimento do sistema. Neste contexto, esta dissertação tem por 

objectivo avaliar a possibilidade do método MBPTA (do inglês: Measured-Based Probabilistic 

Timing Analysis) se basear na Teoria de Valores Extremos (EVT - Extreme Value Theory) para 

estimar o tempo de execução do pior caso probabilístico (pWCET - Probabilistic Worst-Case 

Execution Time) de uma aplicação em uma plataforma de hardware simulado.  

Para tanto, utilizou-se o processador MIPS rodando dois algoritmos como estudo-de-caso: 

Bubble Sort e Filtro FIR. Estes algoritmos têm o WCET estimado através do método de análise de 

tempo determinístico estático (Static Deterministic Timing Analysis – SDTA). Neste trabalho, o 

MBPTA é estimado através de duas técnicas distintas: Block Maxima (BM) e Peak Over Threshold 

(POT), as quais são combinadas com EVT para a estimação final do WCET. Os valores de WCET 

obtidos por MBPTA/BM e MBPTA/POT com EVT são comparados contra os valores de referência, 

obtidos através do método SDTA.  

Os resultados obtidos sugerem que a técnica BM fornece resultados confiáveis mais facilmente 

do que POT. Embora POT seja mais complexa, as análises sugerem que esta técnica possui mais 

precisão que BM, especialmente quando não são repetidos os valores de entrada da aplicação 

analisada.  

 

Palavras-chave: Worst-Case Execution Time (WCET); WCET Estimation; Measured-Based 

Probabilistic Timing Analysis (MBPTA); Extreme Value Theory (EVT); Block Maxima (BM); Peak 

Over Threshold (POT); Aplicação de tempo real; 

 

  



 

ABSTRACT 

Real Time systems developed for critical applications require a proper execution time as 

important as the correct computed outcome. Owing to this, the maximum execution time of a Real 

Time System shall be determined by design. Estimate the execution time of complex systems affects 

time and analysis cost directly during the system development. In this sense, this dissertation aims to 

assess the possibility of applying MBPTA (Measured-Based Probabilistic Timing Analysis) based on 

EVT (Extreme Value Theory) to estimate the pWCET (Probabilistic Worst-Case Execution Time) of 

a given application in a given hardware platform. 

With this purpose, this dissertation makes use of the MIPS processor executing two algorithms 

as case studies: Bubble Sort and FIR Filter. These algorithms have WCET estimated by SDTA (Static 

Deterministic Timing Analysis). This work applies MBPTA with two different approaches: Block 

Maxima (BM) and Peak Over Threshold (POT), which are combined with EVT to estimate the final 

WCET. Then it compares the obtained WCET values by MBPTA/BM and MBPTA/POT with EVT 

to reference values, obtained by the SDTA method. 

The obtained results suggest that the BM approach presents a reduced complexity 

implementation as compared to the POT approach. Nevertheless, besides the POT higher complexity, 

this approach is more accurate than the BM, especially when input data values are not repeated. 

 

Keywords: Worst-Case Execution Time (WCET); WCET Estimation; Measured-Based Probabilistic 

Timing Analysis (MBPTA); Extreme Value Theory (EVT); Block Maxima (BM); Peak Over 

Threshold (POT); Real-time application; 
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1 Introduction 

 

Developing computational systems requires predictability about the environment and system operation. 

For several applications, it is an imperative requirement to ensure execution accuracy and reliability. The 

occurrence of unpredictable delays in real-time systems used for aerospace, defense and automotive 

applications, for instance, might jeopardize the equipment integrity as well as human safety.  

Worst-Case Execution Time (WCET) is an important parameter to ensure accuracy under critical 

conditions. Knowing the WCET since the early stages of the design allows the system to act in acceptable time 

for all execution possibilities. There are several techniques to find a system WCET and those techniques 

require software and hardware to be known and likewise predictable. Software characteristics as iterations and 

conditional jumps impact execution time straightforwardly. Moreover, hardware characteristics as cache 

memory and shared resources like buses also affect WCET (CUCU-GROSJEAN et al., 2012). 

System complexity might jeopardize the process of finding the WCET. Predicting all execution cases in 

intricate systems increases the time and overall design cost. Several hardware components, such as cache 

memory, have random behavior, which varies the execution time for each execution case. 

Alternatively, it is possible to find the execution time probability for different executions cases and set 

a probability distribution of the system. It is possible to estimate the probabilistic Worst-Case Execution Time 

(pWCET) using that distribution and defining the worst scenario for some low enough probability. 

 GIL, Samuel Jimenez et al. (2017) show the open challenges regarding the pWCET definition. Having 

a more critical view on the state of the art of the current literature, this paper points out theoretical problems 

about Extreme Value Theory (EVT) application vulnerability, such as sample set representativeness and the 

software and hardware characteristics correlation with some minimal sample amount for correct analysis. 

 LIMA, George; BATE, Iain (2017) propose the Indirect Estimation in Statistical Time Analysis 

(IESTA) technique, alternatively to hardware randomization to compensate systems intrinsic uncertainties. 

This approach aims at trying to solve system uncertainty problems, nevertheless it disregards the pWCET 

definition technique uncertainties. 

When applying MBPTA with EVT to estimate pWCET, the inquiry is auspicious since there is a 

considerable lack of information about the efficiency and applicability of this estimation method for real time 

systems. Owing to this, this present-day work proposes a methodology to measure Extreme Value Theory 

efficiency to estimate pWCET for critical real-time systems. The objective is to discover and explore EVT 

limitations, also correlating EVT and system’s characteristics with the analysis of the computed results 

uncertainty. 

  



2 Objectives  

 

This work aims to propose a methodology to analyze the quality of pWCET estimates of hard real time 

systems, obtained according to EVT, and point out the process limitations this methodology might present. In 

order to do that, it is possible to define some specific goals as follows: 

▪ (1) Select algorithms for different applications, as Vector Ordering, Matrix Multiplication, Finite 

Impulse Response filter (FIR) and Image Processing algorithms, for instance; 

▪ (2) Assembly those algorithms for execution in MIPS architecture processor; 

▪ (3) Statically analyze each application assembly code to determine the Worst-Case Execution 

Time (WCET). This value is defined as the “reference value”; 

▪ (4) Apply a Measured-Based Probabilistic Timing Analysis (MBPTA) to those application codes. 

This process is to be realized under the use of different parameter values. It is possible to specify this 

process in activities as follows: 

▪ (4.1) Simulate every single code to obtain sets of execution time observations for each code. 

▪ (4.2) Reach the minimum acceptable observations number (as described later in 4.1.5.) 

▪ (4.3) Apply the Extreme Value Theory (EVT) in the sample sets according to the Block 

Maxima (BM) approach. 

▪ (4.4) Apply the EVT in the sample sets according to the Peak Over Threshold (POT) approach. 

▪ (5) Investigate how the input data affect outcome data and how these input values influence the 

outcome accuracy and reliability of the estimated WCET for both approaches (BM and POT). 

▪ (6) Analyze results from different scenarios considering the same algorithm but different amounts 

of data under analysis in order to verify whether and how the input data affects outcomes.  

▪ (7) Validate results and look for patterns or situations that incur invalid pWCET estimates. To do 

so, the statically determined WCET as obtained in step (3) is assumed as the “reference value”. 

 

  



3 Preliminaries 

 

This chapter grapples with Real Time Operating System (RTOS), Worst-Case Execution Time (WCET) 

and Probabilistic Worst Execution Time (pWCET) concepts. 

 

3.1 Real Time Systems 

For a Real Time Operating System (RTOS) the execution accuracy does not rely strictly on the logical 

results, since the execution time to reach the logical result is an essential parameter (VARGAS; GREEN, 

2015). Time restriction underlines the main difference between RTOS and general Operating System (OS). 

Time requirements are indispensable for some controlling sets. Owing to this, developing a real time 

system could be the best choice concerning control systems design. Costa (2010) affirms that real time systems 

work for several activities, such as control science experiments, medical images, industrial control process, 

robotics, aviation, and so forth. 

Hardware characteristics have an impact directly on the real time system execution. Moreover, choosing 

hardware components considering time restrictions is quite imperative. Reliable and fault-tolerant hardware 

avoid errors and allow the system to manage predictable errors. Furthermore, hardware speed must be 

accordingly suitable with the design time restrictions (SHAW, 2003). 

Real time system’s tasks have a time restriction parameter named deadline. This parameter bounds the 

maximum time to execute a task with no error. Disregarding the task deadline may cause system damage 

(BUTTAZZO, 2012). The lost deadline hazard varies for each system, and, due to this, the literature classifies 

RTOS in Soft and Hard RTOS. 

Disregarding deadline in Soft real time systems, which incurs failures, is proportional to a good system 

execution (OLIVEIRA; FRAGA; FARINES, 2000). By the way, to lose deadline in Soft RTOS implies soft 

hazards. 

On the other hand, loose deadlines in Hard RTOS may cause catastrophic damage. For some activities 

such as airplane control, for instance, Hard RTOS is imperative. In this scenario, an unpredicted fault may 

damage all equipment and crew. Furthermore, disregarding tasks deadline could affect the environment around 

the control system. The RTOS time restrictions are commensurable with regard to system complexity and 

sensitivity (OLIVEIRA; FRAGA; FARINES, 2000). 

However, Data Dependencies and History Dependencies may affect execution time. Bernat, Colin and 

Petters (2002) say that Data Dependencies are related not only to the algorithm under execution, but also refer 

to hardware architecture implementation, which may affect the division and multiplication execution time, for 

instance. History Dependencies refer to cache memory, pipeline and branch prediction algorithms that 

influence the code execution time. Furthermore, the clock difference between the processor and peripherals 

units might, for instance, deviate execution time for instructions as load and store.  

 

 

3.1.1  History Dependencies 



 

Abella et al. (2014) explain that cache memory loads content into fixed-size lines. Moreover, there are 

many different cache designs in current processors and in literature. Furthermore, regarding the most common 

cache architectures, it is possible to classify in Direct-Mapped (DM) caches, Fully-Associative (FA) caches 

and Set-Associative (SA) caches. 

In DM caches, each memory address content has only one possible location in cache. A mapping 

function chooses the location. In FM caches, any memory address content might be stored in any cache address. 

In this case, as soon as the cache loads a new data, the replacement function decides which location to replace. 

This cache might use several replacement policies.  

SA cache, contrariwise, incorporates both concepts. This method splits all memory and cache addresses 

in unlike sets. Each set-in memory is direct-mapped to some set-in cache, as in DM ones. Nevertheless, as in 

FM (First-Miss) cache, any memory address in a set might occupy any address on its mapped cache set. 

Moreover, SA applies both mapping and replacement functions. 

It is important to point that cache and its policies affect the execution time. Therefore, cache usage 

increases execution complexity and decreases execution predictability. In other words, a given algorithm 

executing in a given architecture, even computing the same logical result, might spent different times for 

executing when applying different cache techniques. 

 

3.2  The Worst-Case Execution Time (WCET) 

 

The program Worst-Case Execution Time (WCET) is the time upper bound to execute the program code 

in a specific processor. WCET is essential to real time system schedulability analysis and time warranty, 

especially on hard real time systems (STARKE, 2012). The instructions execution time is no longer constant 

though.  

Oliveira, Santos e Deschamps (2006) affirm that RTOS time analysis may consider other time 

parameters. The Best-Case Execution Time (BCET) is the lowest time to complete a task execution. On the 

other hand, the Average-Case Execution Time (ACET) is the average time to fulfill task execution. By the 

way, BCET and WCET are both upper and shorter time bounds for task execution.  

Current WCET analysis techniques are too pessimistic, once the result is the absolute execution time 

upper bound. Further complex cases require several simplifications. Bernat, Colin and Petters (2002) affirm 

that finding a WCET by measuring the test cases set may disregards the true worst-case. In industry, most 

engineers add a safety margin to the computed WCET aiming to compensate the reliability fault and the 

uncertainty problems that measured samples may cover in the worst-case.  

ABELLA et al. (2014) classify some methods to find WCET in Static Deterministic Timing Analysis 

(SDTA), Static Probabilistic Timing Analysis (SPTA) and Measurement-Based Probabilistic Timing Analysis 

(MBPTA).  

 

3.2.1 Static Deterministic Timing Analysis (SDTA) 



 

Static Deterministic Timing Analysis (SDTA) employs a detailed system model to derive a safe WCET 

upper bound (WILHELM et al.,2008). SDTA techniques demand a hardware structural knowledge. Cache 

analysis, for instance, requires a placement and replacement function expertise.  

ABELLA et al. (2014) classify SDTA methods in low-level analysis and high-level analysis. Low-level 

ones focus on processor architecture and high-level analysis determines the worst execution case, among all 

the possible paths in a program.  

1) Low-Level Analysis: Regarding cache in low-level analysis requires observing several characteristics 

that may affect WCET estimation. Considering the type of cache associativity behavior during execution is 

imperative. Theiling, Ferdinand e Wilhelm (2000) introduce the Cache Hit/Miss Classification (CHMC): 

• Always-Hit (AH): all fetched data results in a cache hit. 

• First-Miss (FM): It does not classify the first occurrence neither as hit nor as miss, though 

considering any other as hit. 

• Always-Miss (AM): all fetched data results in a cache miss. 

• Non-classified: it does not classify the occurrences as hit nor as miss. 

There are three techniques to define CHMC category, the Must analysis, the Persistence analysis and 

the May analysis. Those methods apply a static analysis based on abstract interpretation. Must analysis defines 

if cache is always keeping the same memory block at a given program point. Thenceforth, in this case, CHMC 

is always-hit. Persistence analysis identifies if cache evicted a memory block soon after being fetched. 

Consequently, in this case, CHMC is first-miss. May analysis detects if a memory block may be in cache at 

given program point.  If it does not, the CHMC is always-miss. On other hand, if those techniques could not 

classify the CHMCs, it is non-classified (ABELLA et al., 2014). 

2) High-Level Analysis: Implicit Path Enumeration Technique (IPET) is the most common high-level 

analysis technique. IPET solves the WCET calculation problem as an Integer Linear Programming (ILP) 

formulation, expressing, using a linear constraints set, the program structure and all the possible execution 

paths (WILHELM et al., 2008). This technique obtains an upper bound WCET, considering all the programs 

basic blocks and the subsequent function maximum summation: 

 ∑ 𝑇𝑖 ∗ 𝑓𝑖

𝑖∈𝐵𝑎𝑠𝑖𝑐𝐵𝑙𝑜𝑐𝑘𝑠

 

 

Ti is the timing information of the basic block i, constant in the ILP problem. Ti considers cache effect, 

CHCMs and cache and memory latencies. fi is the basic block execution number, variable in the ILP problem. 

The ILP solver provides a safe upper-bound function of all the possible execution times. See Appendix A for 

a detailed example of computing WCET applying IPET. 

 

3.2.2 Measured Based Timing Analysis (MBTA) 

 

According Wilhelm et al. (2008) Measured Based Timing Analysis (MBTA) simulates or executes basic 

blocks code in hardware. The basic blocks are tasks code or tasks code snippets and every simulation or 



execution time is measured. Vary input data allow to cover all the execution paths and discover the worst-case. 

MBTA defines the BCET as the shortest execution time measured while the WCET as the longest execution 

time measured one. Furthermore, every measure sample compounds an occurrence distribution, this 

distribution allows one to find a given execution time occurrence probability. 

Figure 1 depicts a MBTA example. The distribution displays the occurrence number of each time. The 

white distribution describes a single case samples occurrence, all samples considering the same input data. The 

dark distribution describes all cases occurrences, considering all samples. 

 

 

Figure 1  - Example of a Measured Based Time Analysis. Reference: Wilhelm et al. (2008, p. 3). 

 

The Static Analysis dismisses task execution or its simulation on hardware. Static Analysis regard all 

possible executions path in the task code. A Control Flow Graph (CFG) may describe those paths. After the 

code analysis, the method relates all iterations upper bounds with the proper basic block on CFG. Match 

execution time with iteration bounds for every basic block and calculate the worst execution time for every 

path in code is the way to find the WCET. 

The Static method defines every execution time bounds and ensures that the found WCET value will 

never exceed. This method allows a safe schedule analysis in hard RTOS. However, if a given task depends 

on some input data, the execution time could be eventually undeterminable. Furthermore, a higher analysis 

code complexity may incurs a significant increase on computational effort and designs costs, because execution 

paths increase exponentially as long as the conditional jumps in code increase (WILHELM et al.,2008). 

 

3.3  The Probabilistic Worst-Case Execution Time (pWCET) 

 

Gil et al. (2017) affirm that Static Analysis is unpractical for complex hardware components, although 

MBTA finds a WCET, the true worst-case execution time may be not found. The Probabilistic Worst-Case 

Execution Time intends to solve this MBTA problem. 

The probabilistic Execution Time (pET) is a Probabilistic Distribution Function (PDF), which describes 

the execution time probability to a given system. Figure 2 shows a Distribution pET example. In this example, 

there is a probability of 14% that the code executes in 1.0 ms, for instance. Figure 3 depicts a Cumulative 

Distribution Function (CDF), which is a cumulative sum of PDF function. In this regard, the “1 – CDF” is the 

Exceedance Probability, i.e., the probability that the WCET exceeds a given computed value. For example, in 



Figure 3 there is a probability of only 10% that the code executes up to 2 ms, or a probability of 90% that the 

code executes under  2.0 ms, for instance (CDF function). CDF function shows the probability of execution in 

less or equal a given time. In other words, according to Figure 3, 90% of all execution possibilities spent 2ms 

or less. On the other hand, the 1 - CDF function shows that 10% of all execution possibilities exceed 2ms. 

Using this distribution is imperative for computing execution time behavior.  

 

 

Figure 2  - System Execution Time PDF. Reference: Kosmidis et al. (2014). 

 

 

Figure 3  - CDF and 1 – CDF. Reference: Kosmidis et al. (2014). 

   

With pET is possible to find some probability p for a given time value t. Additionally, it is possible to 

find some time value for a given probability. Furthermore, it is possible to relate WCET information to pET 

distribution and to define the probabilistic Worst-Case Execution Time (pWCET). 

It is imperative compounds an empirical probability distribution with all measured execution times to 

find the pWCET. From this Empirical Distribution, it is possible to define an Empirical Cumulative 

Distribution Function (ECDF). EVT compares ECDF to an existing probability function. Figure 4 shows a 

pWCET estimate. In this case, the probability is p = 10-16 for a pWCET equal to 9.5 ms. Note that Figure 4 

depicts a tail amplification of the “1 – CDF” function presented in Figure 3. 

 



 

Figure 4 - pWCET estimative example (p = 10-16) . Reference: Kosmidis et al. (2014). 

 

The pWCET parameter is the worst-case execution time for a given probability threshold. Furthermore, 

pWCET researches fall into Static Method and Analytic Method (Davis, Burns and Griffin, 2017). 

 

3.3.1 Static Probabilistic Timing Analysis (SPTA) 

 

The Analytic Method, also called Static Probabilistic Timing Analysis (SPTA), is applicable when a 

system component or the environment affect the random behavior or time probability. For instance, a random 

cache replacement (ABELLA et al., 2014). Cucu-grosjean et al. (2012) explain that SPTA derives system 

model probabilities. Nevertheless, this method requires a considerable information amount about execution 

behavior, even reducing the required information about program and platform. 

SPTA method analyses software in structural level and instruction level and uses a hardware behavior 

model to estimate the worst-case time behavior in a pWCET distribution. This distribution may contain cases 

for all possible input data, software and hardware states and executions paths in code. Therefore, SPTA does 

not execute the real hardware and, due to that, it depends largely on the hardware model accuracy. Abella et. 

al. (2014) affirm that SPTA is not totally able to analyze multi-path programs and it is more pessimistic than 

the measure based method. 

SPTA may use random variables for probabilistic time behavior, expressed by the pair: <timing vector, 

probability vector>, also named Execution Time Profile (ETP). The timing vector enumerates all operation 

latencies while the probability vector lists the occurrence of associated probability.  Hence, for an operation 

Ai, ETP(Ai) = < 𝑡𝑖⃗⃗ , 𝑝𝑖⃗⃗  ⃗ > where  𝑡𝑖⃗⃗ = {𝑡𝑖
1, 𝑡𝑖

2, 𝑡𝑖
3, … , 𝑡𝑖

𝑁} and 𝑝𝑖⃗⃗  ⃗ = {𝑝𝑖
1, 𝑝𝑖

2, 𝑝𝑖
3, … , 𝑝𝑖

𝑁} , whereas ∑ 𝑝𝑖
𝑗𝑁𝑖

𝑗=1 = 1. 

SPTA always assumes that previous instructions executions do not influence the instruction ETP. So, 

assuming that the execution times probabilities for each instruction are independent, SPTA deploys the 

convolution (*) of probability distributions for each instruction execution time along the flow. The result is a 

probability distribution that describes the timing behavior of all execution path. In other words, if X and Y are 

random variables that describe instructions x and y execution time, the convolution 𝑍 = 𝑋 ∗ 𝑌 is: 

 



𝑃{𝑍 = 𝑧 } = ∑ 𝑃{𝑋 = 𝑘}𝑃{𝑌 = 𝑧 − 𝑘}
𝑘=+∞

𝑘=0
 

 

Abella et. al. (2014) show the forthcoming example: if an instruction x has 𝑡𝑥 = {1, 10} and 𝑝𝑥 =

{0.9, 0.1}, while the instruction y has 𝑡𝑦 = {2, 10} and 𝑝𝑦 = {0.5, 0.5} the convolution is: 

𝑍 = 𝐸𝑇𝑃(𝑋∗𝑌) =  𝑋 ∗ 𝑌 = (
1 10

0.9 0.1
) ∗ (

2 10
0.5 0.5

) 

= (
3     11 12     20

0.45 0.45 0.05 0.05
) = < {3,11,12,20}, {0.45,0.45,0.05,0.05} > 

 

  



 

3.3.2  Measurement-Based Probabilistic Timing Analysis (MBPTA) 

 

The Measurement-Based Probabilistic Timing Analysis (MBPTA) computes software execution time 

directly over hardware. For this purpose, the input data and vector may comprehend a relevant set of code 

execution paths and different software and hardware states that affect the time behavior (ABELLA et al., 2014). 

MBPTA, unlike SPTA, does not require a significant information about hardware behavior, as memory, 

bus and cache probability times, for instance. This method is more attractive for industry, since it finds 

execution time probabilities by collecting end-to-end run samples on target hardware. Cucu-grosjean et al. 

(2012) affirm that MBPTA estimates pWCET trough an observed execution times collection. However, 

literature does not specify the required amount of samples and whether there are inferences due to the amount. 

The EVT has been applied to MBPTA in order to provide the execution time probability that a program exceeds 

a given threshold, based on Complementary Cumulative Distribution Function (CCDF), or “1 – CDF”: the 

Exceedance Probability of the observed collection.   

Instead of taking the worst-case obtained and add a safe margin, this method employs the static analysis 

of EVT based observations to estimate the pWCET distribution. EVT requires that all execution time samples 

are described as independent and identically distributed (i.i.d.) random variables. In other words, all samples 

must represent the same r.v. behavior and, further, a collected sample outcome cannot influence other samples 

outcomes. However, i.i.d. observed execution times obtained on a given processor does not make that 

processor MBPTA compliant. MBPTA has its own conditions beyond those EVT requirements (CAZORLA 

et al., 2013).  

For MBPTA applicability all execution time variations sources in the system must be statically (i.i.d.) 

or probabilistic upper-bounded (CUCU-GROSJEAN et al., 2012). This is imperative to correctly compute 

latencies in analysis.  

Abella et. al. (2014) explain that having ETPs at the dynamic instructions level fulfills all MBPTA 

requirements. At cache level, every dynamic cache access must be defined by a hit and miss probability. 

However, MPBTA does not require an upper bound probability derivation for cache access, once MBPTA 

estimates pWCET based on observations and does not derive pWCET estimates by convolution like SPTA.  

 

3.4 Comparison 

All the methods previously mentioned may be applied to deal with the worst scenario of a given system, 

nevertheless, each procedure has advantages and constraints. Furthermore, even WCET and pWCET metrics 

have their distinguished characteristics.  

A WCET value represents the worst-case of the worst scenario that a given system may face, so this 

implies a high reliability and accuracy, whereas it requires the knowledge of every system singularity that may 

affect execution, increasing complexity, effort and costs to define the worst-case. In the meantime, the pWCET 

conciliate complexity and accuracy adding failures probabilities to analysis, since the probability models may 

be less intricate than the system’s model. Although the lower accuracy the pWCET is worth when the failure 

probability is known and minimum. Table I shows a brief comparison between WCET and pWCET metrics: 



  

Table I - Comparison between WCET and pWCET 

Metric 
Main characteristics 

Drawbacks Advantages 

WCET 
Requires too much data 

High effort and cost involved 

Accurate  

Reliable 

pWCET 
Estimation as outcome 

Accept failures (small probabilities) 

Build a model for prediction 

Less effort and cost involved 

 

Static Deterministic Timing Analysis (SDTA) compute WCET according to the previously provided 

system model and its characteristics, this procedure requires considerable effort and costs. On the other hand, 

Measured Based Timing Analysis (MBTA) compute WCET measuring the system execution, the worst 

measured scenario is regarded as WCET. Therefore, SDTA is more accurate than MBTA, however it may 

apply some margin offset for safety and it involves less cost and effort. 

Static Probabilistic Timing Analysis (SPTA) also requires a provided model of the system to compute 

its pWCET, but this procedure regards the probability from this model, so the accuracy depends on the model. 

Measurement-Based Probabilistic Timing Analysis (MBPTA), on the other hand, measures the system in order 

to compute its probability model. Based on the probability model, MBPTA defines the pWCET considering a 

desired probability threshold. 

Table II shows a brief comparison between the methods SDTA and MBTA, it also compares SPTA and 

MBPTA: 

Table II - Comparing SDTA to MBTA and SPTA to MBPTA 

Method 
Main characteristics 

Drawbacks Advantages 

WCET 
SDTA Intricate 

Accurate 

Reliable 

MBTA Uncertain coverage  Simpler 

pWCET 

SPTA 
Depends on the provided model 

accuracy 

Based on provided probability model of the 

system and its components 

MBPTA 

Depends on system execution 

measurements  

Unknown accuracy 

Based on empirical model of the system 

May estimate the execution for many 

probability thresholds  

 

Considering these different methods, this work aims to apply and investigate MBPTA efficiency 

exploring its vulnerabilities, since this is the most promising and challenging method currently. 

  



 

4  State of the Art 

 

This section presents the state-of-art approach to find WCET named: EVT. It is worthy to point that the 

proposed work is to analyze the performance of MBPTA with EVT because this technique has been applied 

in several scenarios involving extreme bounds presenting accurate and reliable outcomes. Also, it regards 

single path programs only, for applying EVT to compute multi-path WCET, see APPENDIX B – EVT for 

multi-path WCET. 

Further, this section presents a comparison among EVT and two different approaches to compute the 

worst-case: Path Upper-Bounding (PUB) and Extended Path Coverage (EPC). For more details about these 

methods see APPENDIX C – Path Upper-Bounding (PUB) and APPENDIX D – Extended Path Coverage 

(EPC). 

 

4.1 Extreme Value Theory (EVT) 

 

MBPTA technique delimits WCET upper bounds based on statistical analysis of execution times, which 

uses the EVT, a statistical theory developed to estimate uncommon events probabilities. Several fields apply 

EVT nowadays, such as engineering, financial, earth science and traffic predict. Hydrology also applies EVT 

to estimate an abnormal flooding event probability, for instance, defining the maximum flow rate which a 

given flow gate must support. Estimated pWCET is commonly associated to a desired probability threshold. 

Critical code executing on complex processors might apply this technique with a lower cost than in static 

methods (SILVA; ARCARO; OLIVEIRA, 2017). 

Lima and Bate (2017) define EVT in the following steps: (a) collect a desired random variable samples; 

(b) select the maximum samples in (a); (c) find an statistical model to fit the selected samples in (b); (d) validate 

the model and (e) determine an upper limit (probability threshold) based on the model found in (c) since that 

model was validated in (d). 

The literature presents two techniques that handle empirical samples to determine pWCET: Block 

Maxima (BM) and Peak Over Threshold (POT). The EVT initial objective is to collect the proper values that 

compound the distribution tail of the system behavior model and fit this model into a Generalized Extreme 

Value (GEV) distribution. After collecting samples, EVT selects the maximum values, grouping all samples 

into equal blocks size and uses the block maxima method to obtain a block maxima with the maximum values 

of all the blocks. This approach is known as the Block Maxima (BM). Alternatively, EVT may select maximum 

values, picking all the samples above a given threshold (CUCU-GROSJEAN et al., 2012). This approach is 

known as the Peak Over Threshold (POT). There are also two types of software codes that EVT can be applied: 

single path programs and multiple-path programs. The approaches BM and POT as well as the single- and 

multiple-path type programs will be described along with this section. 

G. Lima, D. Dias, and E. Barros. (2016) show a technique to visualize how much the EVT distribution 

fits on the ECDF. This technique is the quantile-quantile graphs (QQ-plot). It is, essentially speaking, a plot 



of the empirical quantile observed values against the target distribution quantiles. This graph shows a 

distribution quantiles in one axis, while it similarly shows the compared distribution quantiles in the other axis, 

so if those distributions are equal, the graph will show a straight line, like x = y. The Figure 5 shows a quantile-

quantile graph example, in which the x axis shows the model quantiles while the y axis shows the empirical 

quantiles. 

 

Figure 5 - Quantile-quantile graph example. Reference: G. Lima, D. Dias, and E. Barros. (2016). 

 

Some scenarios may require a higher samples number to analyze different block numbers or block sizes 

to fit the model. In this case, the only constraints are the spending time and the costs to collect all the measured 

execution time (LIMA; DIAS; BARROS, 2016). 

Silva, Arcaro and Oliveira (2017) describe EVT application on MBPTA as the fit of the collected 

samples with a known EVT distribution, this samples must be the hardware execution times, previously 

observed and gathered to this analysis. Furthermore, GEV may express these distributions behavior. However, 

even small variations on GEV parameters might result in significant pWCET variations, which turns the fitting 

process harder.  

Cucu-grosjean et al. (2012) bring a detailed work about EVT. In this work, a software was executed on 

a given processor and observed 1000 times. From the observations, 1000 execution time samples are collected. 

Regarding it, it is possible to model those samples with independent and identically distributed (i.i.d.) random 

variables, so it can find the program pWCET through an Empirical Cumulative Distribution Function (ECDF). 

The inverse ECDF tail shows the pWCET possible values, which allows estimating a pWCET for a defined 

probability threshold. However, this approach requires a good ECDF tail model similar to the system behavior, 

which would need a significant observations amount to fit the low probability model. In this example, the 

samples number is enough to describe the real system behavior, and the maximum confidence for 1000 

observations is p(execution time > WCETestimated) = 10-3. In other words, the probability of WCETestimated 

being larger than a given execution time sample is 0,999, whereas the probability of a execution time sample 

being larger than the WCETestimated is 1 – 0,999 = 10-3. 

EVT is a mathematical method to estimate the extreme values probability of known rare events. This 

technique results in the maximal (or minimal) distribution function values of n samples collected and modelled 



with random variables. The EVT method is similar to Central Limit Theory, but estimating the extremes 

instead of the average (EDGAR; BURNS, 2001).  

Cucu-grosjean et al. (2012) brings the following theorem: 

“Theorem 1: Let {𝑋1𝑋2, … , 𝑋𝑛} be a sequence of i.i.d. random variables and let 𝑀𝑛 =

𝑚𝑎𝑥{𝑋1𝑋2, … , 𝑋𝑛}. If 𝐹 is a non-degenerate distribution function and there is a sequence of pairs of real 

numbers (𝑎𝑛,  𝑏𝑛) such that 𝑎𝑛  ≥ 0 and lim
𝑛→∞

(
𝑀𝑛−𝑏𝑛

𝑎𝑛
≤ 𝑥) = 𝐹(𝑥), then 𝐹 belongs to either the Gumbel, the 

Frechet or the Weibull family”. 

This theorem provides the main EVT result. The distribution function F describes the common function 

of n random variables. In this case, random variables used to model program execution time. There are two 

main hypotheses required for this theorem: random variables are independent and identically distributed and 

the real numbers sequence (𝑎𝑛 ,  𝑏𝑛) must exist. 

To define pWCET is imperative to collect the system execution time samples. Gil et al. (2017) claim 

that the process objective is to analyze the extremes samples (maximum). There are two techniques to select 

the extremes samples, a block Maxima (BM) selection or just picking all the samples higher than a defined 

threshold, Peak-over-threshold (POT) technique.  

Cucu-grosjean et al. (2012) hold the view that the block maxima theoretical basis affirms that if some 

data fits a known CDF, then the block maxima of those data fits the same known CDF. 

The maximum values selection affects EVT outcomes directly as far as the total observations number. 

Regarding BM method, the block size might embarrass the distribution fitting. Cucu-grosjean et al. (2012) 

emphasize that the larger the block size, the better it is to fit the tail. However, the block size is directly 

correlated to the number of blocks, considering that the total samples number is constant. For instance, 1000 

samples may be divided into 10 blocks of 100 samples or into 100 blocks of 10 samples or even into 1 block 

of 1000 samples. The samples number in final block maxima is exactly suited to the same number of blocks. 

In other words, increasing the block size decreases the final block maxima.  

To apply EVT under BM approach, the maxima block must converge with one of three possible 

distributions: Gumbel, Weibull or Frechet. There are three parameter do describe those distributions: shape 

(), scale () and location ().  

The Generalized Extreme Value (GEV) comprehends those three distributions. Also, determining GEV 

parameters proves the real number sequence (𝑎𝑛,  𝑏𝑛) existence. Using GEV, the shape parameter value 

indicates which distribution to use. If ξ < 0 the distribution is Weibull, if ξ > 0 the distributions is Fréchet and 

ξ = 0 indicates the distribution Gumbel. Peak-Over-Threshold approach uses the Generalized Pareto 

Distribution (GPD) instead.  

Cucu-grosjean et al. (2012) define GEV Cumulative Distribution Function as follows: 

𝐹𝜉(𝑥) = {𝑒−(1+𝜉
𝑥−𝜇
𝜎

)
1
𝜉
, 𝜉 ≠ 0

𝑒−𝑒
− 

𝑥−𝜇
𝜎 , 𝜉 = 0

 

 

According to Gil et al. (2017), further to determine GEV parameters is imperative to select the 

appropriate CDF (Gumbel, Frechet or Weibul), using a goodness-of-fit test. However, some tests may be 



inappropriate for fitting extreme values. Edgar and Burns (2001) indicate that Gumbel distribution fits well the 

WCET estimation problem. 

 

4.1.1 Empirical Distribution Validation 

 

The theorem 1 requires that the random variables sequence must be independent and identically 

distributes (i.i.d.). Cucu-grosjean et al. (2012, 3) defines the Independence Random Variables concept as: 

“Two random variables X and Y are independent if they describe two events such that the occurrence 

of one event does not have any impact on the occurrence of the other event.” 

On other hand, the identically distributed Random Variables concept is (CUCU-GROSJEAN ET AL., 

2012, 3): 

“A sequence of random variables is identically distributed if all random variables have the same 

probability distribution.” 

Moreover, a random variables sequence meets the i.i.d. requirements when they are independent and 

have the same distribution function. For instance, a sequence of dice rolls, each roll as a random variable, is 

i.i.d. as the obtained outcomes of independent events and the r.v. describes the same event. 

 

4.1.2 Block Maxima (BM) 

 

Literature presents a technique that handles empirical samples to determine pWCET called Block 

Maxima (BM). Block Maxima technique allocates all the samples in basic blocks, whose the higher sample of 

each basic block defines a new block called maxima. The number of observations in the maxima block is equal 

to the number of basic blocks. However, literature suggests that the ideal sample number in each basic block 

must be enough to describe the program behavior properly (ABELLA et al., 2014). 

After filtering the maximum values from basic blocks and gathering them in the Maxima Block, this 

data is used to determine the distribution and its parameters values that better fits those maximum values, in 

order to compute pWCET. Moreover, the samples amount used on the analysis may affect the fitting 

characteristics (CUCU-GROSJEAN et al., 2012).  

Based on this assumption, this work aims to assess how the samples amount, especially the number of 

blocks and their sizes, can prejudice this method outcomes. Literature doesn’t inform if there is an optimal 

point neither a correlation between the size of the basic blocks and the Maxima Block that affects the computed 

pWCET. 

 

4.1.3 Peak Over Threshold (POT) 

 



Literature also presents the Peak Over Threshold (POT) technique to compute pWCET based on 

empirical samples. Peak Over Threshold technique, on other hand, is simpler than BM. Instead of splitting 

samples into blocks and filter the maximum value. It just selects all the samples over a given limit (threshold) 

value. The selected observations compose a set that feeds the MBPTA process. Therefore, this threshold value 

affects directly the samples number used under analysis and, hence, the outcome. Choosing a lower threshold, 

the most of samples either all samples may be regarded in MBPTA. On the other hand, choosing a higher 

threshold may force the process to regard a small number of samples, for instance.  

Therefore, this work also aims to assess how the number of samples affects the results obtained by POT. 

Literature doesn’t inform how to choose the best threshold value and the minimum number of samples required 

to compute the pWCET properly.  

 

4.1.4 Differences between BM and POT 

 

There are some open challenges and open concepts to applying both techniques to determine a program 

WCET. It is important to notice that several program characteristics, such as the number of paths, memory 

access inside loops and vector or matrix sizes, for instance, may influence the distribution function. As well as 

the relationship between the program behavior and the proper number of output observations that are produced 

by the program (CUCU-GROSJEAN et al., 2012). Both techniques handle empirical samples previously 

collected and both approaches may compute the pWCET based on GEV and, hence, based on Fréchet, Gumbel 

or Weibull distribution family, according to MBPTA process. 

The difference between BM and POT is basically the process to samples to feed the MBPTA process. 

POT picks all samples whose value is higher than a given threshold to analysis whereas BM divides all samples 

into basic blocks and then picks the highest value of each basic block to analysis. Although literature affirms 

that each basic block, on BM technique, must contain samples enough to describe the program behavior, there 

is a lack about how to validate the basic block before to pick the maximum value. Also, it is worthy to notice 

that BM is more complex than POT (CUCU-GROSJEAN et al., 2012). 

 

4.1.5 Single Path WCET 

 

Applying EVT may require some assumptions as independent executions times and identically 

distributed (i.i.d.). Furthermore, the program under analysis must run in isolation with no system calls. 

Although it is not a realistic scenario, this assumption must be guaranteed for the success of the current analysis 

method (CUCU-GROSJEAN et al., 2012).  

Regarding a fully deterministic system executing with identical start conditions, a single execution path 

has to yield a unique execution time. However, there are interference effects due to hardware features, such as 

Cache hit/miss and DRAM refresh cycles, and the impossibility of ensuring identical starting conditions every 



time an execution begins. There are no statistical guarantees for that execution time variability, though some 

approaches have been taken place, in the past, as for applying EVT to represent this nature of the variability 

(CUCU-GROSJEAN et al., 2012). 

Furthermore, if every jitter source is independent, the response times converge on average to a closed 

form distribution. According to Central Limit Theorem, this is the normal distribution due to the finite variance 

of the input distributions in most cases. On other hand, if independent random variables cannot represent jitter 

sources, those sources upper bound must be considered as constant (CUCU-GROSJEAN et al., 2012). 

 

A. Input Data Dependence 

 

Using a single-path with fixed data on a simple and known architecture is possible to compute exactly 

the execution times distribution when observing this path hardware behavior with static probabilistic model. 

This allows evaluating the EVT behavior and increasing the method confidence to apply to more complexes 

architectures.  

When performing a measurement-based analysis, it is imperative to provide a program input data suite 

to stress the system and to induce the worst-case behavior. The input data may affect the execution time, even 

when it does not affect the execution path. For instance, multiplying some numbers could spend more or less 

cycles than other numbers. Moreover, data structures contain pointers, which may refer to different memory 

addresses depending on the input values, hence it affects cache latencies and memory access pattern. 

Generally speaking, it is impossible to provide or even to statically define the worst-case data input at 

deployment time. Therefore, the platform design must have no effect from input data. Alternatively, there are 

approaches that force operations, such as divisions, to take a pessimistic safe assumption, which could be their 

upper-bound execution time. Paolieri et al. (2009) introduce the Worst-Case Mode, a technique that delays all 

resource requests until it detects their maximum execution time. This approach is transparent to execute 

programs when they are active and it may be configurable by software. There is a similar solution for data-

dependent memory access, in this case, accounting the input data effects through flags. For instance, if a given 

input data dependent memory operation executes once, there is no reason to use cache for this instruction.  

 

B. Platform Requirements 

 

The MBPTA, in EVT approach, provides a pWCET estimate for a given exceedance probability. This 

approach requires that all execution time variation resources in the system must have a probabilistic behavior 

that measurements on platform can detect the events that vary within the execution time (CUCU-GROSJEAN 

et al., 2012). 

A possible approach is to analyze all hardware resource with too high latency and randomize the timing 

behavior to upper bound when incurred pessimism is acceptable (CAZORLA et al., 2013). Applying this 

ensures that only random events might affect the execution time. Moreover, any detected frequencies of 

execution time shows probabilities with confidence level provided by EVT. Therefore, it is possible to use the 

observed system behavior at the test to predict the behavior during a given operation.  



In standard not-time randomized architecture the execution time frequencies detected in tests do not 

serve as actual probabilities. In other words, standard not-time randomized architecture cannot apply this 

approach because only not randomized events may affect execution time. Therefore, it may not ensure the 

execution times occurrence probability of the observed behavior in future (CAZORLA et al., 2013).  

 

C. Independent and Identically Distributed Observations  

 

It is necessary to ensure that each execution runs independently in order to hold i.i.d. properties. A 

feasible approach is to force the hardware state to always before a run starts. At path level, identical distribution 

requires the latencies to be chosen independently to compose the total execution time (CUCU-GROSJEAN et 

al., 2012). A probability must be associated to every path execution time possibilities. It is imperative that an 

execution observed timing performance does not influence other executions timing performances.  

 

D. Minimum number of observations 

 

Griffin e Burns (2010) affirm that the results could not bound execution time for every points when 

using Gumbel distribution function, or even any continuous function, when approximating a discrete function 

to an execution time value produced by a given program. Figure 6 illustrates this limitation to fitting discrete 

and continuous functions.  

In this case, the discrete function has values at 5, 10 and 15. The defined Gumbell function (continuous 

line) meets all the points when fitting with the discrete function. However, the uncovered points cannot be 

disregarded since MBPTA collects a finite number of execution time observations. The dashed line shows the 

possible values between the collected values. 



 

Figure 6 - Illustration of unsafe values due to the implicit assumption fitting discrete and continuous 

functions. Reference: Griffin e Burns (2010). 

 

A different solution proposing to solve this limitation is to add an offset to the continuous function in 

order to cover all the possible values in the unmeasured points. Figure 7 shows how the offset can cover all 

the possible values. 

 

Figure 7 - An illustration of how to offset the Gumbel distribution to guarantee safe values. Reference: 

Griffin e Burns (2010). 

 

To get a high confidence level in a distribution, it is required a sufficient observations number to produce 

an authentic execution time description of the program. Cucu-grosjean et al. (2012, 5) define it as follow: 



“For a given sequential program 𝑃 and an architecture 𝐴, 𝑛 is the minimum number of observations if 

there does not exist 𝑚 ∈ ℕ where 𝑚 > 𝑛 such that the Gumbel CDF obtained for 𝑛 observations is an upper 

bound for the WCET of 𝑃 and also exceeds the CDF obtained for 𝑚 observations.” 

Cucu-grosjean et al. (2012) obtain the minimum observations number contrasting the EVT tail 

projection deviation regarding a increasing executions number. The iterative process is described as follows: 

1) Run 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑁𝑑𝑒𝑙𝑡𝑎 times the program. 

2) Project, with EVT, a tail for  𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 executions and another for 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑁𝑑𝑒𝑙𝑡𝑎. 

3) If the two EVT distributions have a difference above a given threshold, it is necessary to repeat the 

step 2 considering 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +  𝑁𝑑𝑒𝑙𝑡𝑎  and making 𝑁𝑑𝑒𝑙𝑡𝑎 more runs. If the difference 

is below the threshold, it ends the process.   

Since 𝑁𝑑𝑒𝑙𝑡𝑎 is constant, the proportional effect on new runs reduce when increasing𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡, which 

ensures the convergence algorithm. However, a strict convergence for some local minima is not ensured. 

Changing the algorithm may compensate this, stopping the process after some consecutive iterations instead 

of stopping as soon as the difference between distributions is under the threshold. Cucu-grosjean et al. (2012) 

considered 5 consecutive executions below the threshold to be a sufficient one to deal.  

Bradley. (1968) defines a Continuous Rank Probability Score (CRPS), a metric to compare EVT 

distributions, or functions: 

𝐶𝑅𝑃𝑆 = ∑ [𝑓𝑥(𝑖) − 𝑓𝑦(𝑖)]2
+∞

𝑖=0
 

In this case, 𝑓𝑥 and 𝑓𝑦 represent a distribution functions that operate in the same value domain. The 

difference threshold depicts the significance level in hypothesis tests. Reducing the threshold value increases 

the confidence result, although this requires a higher observations number.  

 

E. EVT Step-by-step 

 

Cucu-grosjean et al. (2012) describe the steps to apply EVT in single-path programs in order to obtain 

a stable result: 

1) Collect observations: the author initially suggests a sample set with approximately 100 execution 

times observed. Afterwards, in each round the 𝑁𝑑𝑒𝑙𝑡𝑎 must be added as the previously described 

process. 

2) Grouping: This step may use a technique, as Block Maxima or Peak-Over-Threshold, to convert the 

measured frequency distribution into a suitable EVT distribution. 

3) Fitting: It uses the empirical distribution, 1 – ECDF actually, to estimate the GEV distribution, hence 

it defines the GEV parameters as the calculation previously described. 

4) Comparison: It compares, according to Continuous Rank Probability Score metric, the current round 

distribution to the previous round. 

5) Converge: If the difference between distributions does not reach a given threshold, as defined by 

CRPS metrics, the process starts a new round at step 1. Otherwise, to consider the distribution 



converged, it is necessary to collect more samples doing a few more rounds, the author suggests 5 

consecutive rounds in this step. 

6) Tail extension: this step defines the final GEV parameter values for probabilities under the threshold.  

 

4.2 Comparison 

The Extreme Value Theory is widely discussed in literature since it is applied in other science fields. 

On the other hand, the EVT success in other areas don’t ensure this theory covers time analysis with no 

vulnerabilities. Furthermore, EVT create a probability model to predict failures without inspecting or change 

the algorithm code. 

Path Upper-Bounding method changes the code in order to equal the size for all paths. This method 

ensures that a sample represents the WCET no matter the input values or the executed path. Since all paths are 

equal to the worst one, the MBPTA might focus on other uncertainties, as cache and buses delays, for instance. 

Although, PUB requires a detailed inspection to the code in order to edit it. 

Extended Path Coverage measures each basic block and, instead of creating a probability model for the 

whole program, it creates models for every basic block, which are computed into path’s model and, hence, the 

program’s model. Similar to PUB this method requires code inspection in order to all basic block 

independently. Table III shows the advantages and drawbacks of EVT, PUB and EPC: 

 

Table III - advantages and drawbacks of EVT, PUB and EPC: 

Method 
Main characteristics 

Drawbacks Advantages 

EVT 
Depends on input values  

May not execute the worst path 

Widely applied  

No code inspection 

PUB 
Detailed code inspection and edition 

Recently discussed in literature 

All paths are equal to the worst 

Focus on hardware variabilities 

EPC 
Detailed code inspection 

Recently discussed in literature 
Measure all basic blocks 

 

 

5 Proposed Methodology 

 

The proposed methodology in this work aims to assess pWCET estimates by Measured Based 

Probabilistic Timing Analysis (MBPTA), based on EVT. Path Upper-Bounding (PUB) and Extended Path 

Coverage (EPC) methods are not considered in this study because these approaches have been cited recently 

in Literature whereas EVT has been mentioned in several researches. Further, EVT has been applied in 

different scenarios involving extreme limits presenting accurate and reliable results.   

In this methodology the MBPTA process uses samples of execution time of a given program. These 

samples can be collected executing as well as simulating the program. According to EVT these samples might 

be filtered and gathered to form an empirical distribution which describes the algorithm behavior. Based on 



that, this methodology looks for limitations in the samples filtering techniques Block Maxima (BM) and Peak 

Over Threshold (POT) and also measure how much it affects the pWCET outcome. 

BM technique splits all samples in basic blocks. The sample with the maximum value of every basic 

block form the Block Maxima, which contains all considered data on EVT analysis. This methodology 

compares EVT analysis for a given algorithm applying different input parameters and number of samples. 

Executing BM approach, this methodology tries to define the best basic block size. As higher is the number of 

blocks, lower is the number of samples in these blocks, decreasing the block data quality and, maybe, 

decreasing outcome accuracy also. For this reason, this work aims to find an optimal block size for BM. 

POT filters all samples based on its threshold value to EVT analysis. The threshold is the key for this 

technique, since a too low threshold might select all samples with no criteria, whereas, a high threshold might 

filter just a few samples to be analyzed, which may affect the outcome as well. For this reason, this work aims 

to define an optimal threshold value for POT. 

Therefore, this methodology uses different observations numbers and different input parameters values 

in order to exercise and to point out the vulnerabilities that these EVT techniques may have. Exercising 

different cases with distinct numbers of samples, blocks and thresholds may draw a clear conclusion about the 

advantages and drawbacks of these techniques. 

Furthermore, this methodology consists of selecting a given algorithm, assemble the code to MIPS 

architecture, analyzing statically to obtain a WCET, and applying MBPTA to obtain a pWCET. In both 

analyses, the execution time is measured by executed instructions, as to avoid that hardware relate uncertainties 

affect the outcome. In other words, this may enhance only the applied techniques uncertainties. Owing to this, 

this work does not regard execution cycles. 

 

5.1 Specification 

 

This methodology may be summarized in four steps: 1) Context Definition, 2) WCET Definition, 

3) Sample Collection, and 4) pWCET Process Analysis, as depicted in Figure 8: 



 

Figure 8 - Methodology steps. Reference: Author. 

 

1 – Context Definition: It is the software and hardware selecting process. The chosen algorithm is so 

important as the chosen hardware platform. Once this algorithm is executed in the target hardware, both affect 

the execution time behavior and, hence, the later analysis. The number of paths, the existence of loops and the 

complexity are some algorithm’s characteristics that may be regarded in this deciding step. On the other hand, 

when choosing the hardware platform is opportune to consider the time uncertainty due to buses and used 

peripherals, cache memory usage, number of cores in processor, for example. 

2 – WCET Definition: It consists of analyzing the defined context and finding its absolute worst-case 

execution time. To achieve that, both statically analysis and measured-based analysis may be applied, the 

available tools and analysis complexity should be considered in the Context Definition. This step compute an 

absolute WCET value, it defines the “reference value” that will be used to validate and compare the pWCET 

determined by the BM and POT approaches thereafter. 

3 – Sample Collection: This step the collects execution time observations of the chosen context. Also, 

it defines the minimum samples number for the context analysis. This minimum number is computed through 

Continuous Rank Probability Score (CRPS), as described in 4.1.5. Further, the CRPS determine the smaller 

probability threshold for the pWCET in the end of the analysis. The collected samples may be filtered by BM 

and POT methods and, then, analyzed to calculate the pWCET. 

The literature does not explain whether the samples collecting process should control the used input 

values. Owing to this there are two alternatives, control the used input values and don’t repeat them, collecting 

only one sample for input, or don’t control the used values, repeating them and assuming the risk of do not 

execute the worst-case path. 



4 – pWCET Process Analysis: it defines the probability distribution that describe the pWCET. Besides 

that, this step also filters the collected samples according to BM or POT approaches and computes the pWCET 

according to EVT. Comparing the reference value obtained in step 2 with the calculated pWCET it is possible 

point how accurate and effective the MBPTA process is for the context. 

Figure 9 depicts this step, which applies the BM and POT techniques in the collected observations to 

estimate the pWCET. There are some input parameters exercised in this step. In this work the parameters are 

named N, M and L. N is the number of samples before the filtering processes BM and POT. M is the number 

of observations in the Maxima Block, it is equal to the number of basic blocks in which all the samples are 

allocated. This parameter refers to the Block Maxima approach only. L is the timing limit value that POT uses 

to filter values before the result computation. This limit number refers to Peak Over Threshold only. 

  

Figure 9 - pWCET Process Analysis step. Reference: Author. 

 

As mentioned above, the M parameter in BM approach defines the number of basic blocs and hence, the 

number of observations in the maxima block. Together, these basic blocks contain all the collected 

observations. However, separately, each basic block requires a sample number enough to describe the program 

behavior. In other words, changing the M parameter may demand more samples and, hence, change the N 

parameter too. Figure 10 shows the BM approach flow. This methodology applies different values for M and 

N. 



 

Figure 10 - Block Maxima approach flow. Reference: Author. 

 

The L parameter in POT approach defines the timing limit value for the observations in analysis. 

However, changing the L parameter changes the samples number under analysis too, which can affect the 

behavior’s depiction. This methodology exercises different values for L parameter. Figure 11 shows the POT 

approach flow.  

 

Figure 11 - Peak Over Threshold approach flow. Reference: Author. 

 

5.2 Implementation  



The execution context defined to for this methodology is basically executing the algorithms Bubble Sort 

and Finite Impulse Response filter (FIR) on MIPS processor. For this reason, it is required to assemble these 

codes for MIPS architecture processor and, hence, run on simulators such as Mars (MISSOURY STATE 

UNIVERSITY, 2017). This context regards only MIPS single core since it is more predictable and less 

complex than multi core architectures. 

The WCET computation step found the static WCET, manually. 

Every time an assembled code is simulated in Mars, for MIPS processor, its execution time is collected 

as a sample of execution time. Once it collects one sample per simulation, it is required to run the algorithm 

several times, since MBPTA requires a considerable number of samples. After that, the analysis filter all 

collected samples according to the techniques criteria.  

The N parameter might vary for each algorithm analysis, since different programs might require a 

different number of samples. The M and L parameters values are specific for each approach, for this reason, 

their values are defined separately for BM and POT.  

It is possible to compute all the EVT calculation by Matlab tool, as it has libraries and functions targeting 

EVT calculation. To illustrate it, there are two examples of Matlab code in APPENDIX E – Matlab code 

examples. 

There is a function for the Empirical Cumulative Distribution Function (ECDF), called ecdf( ) , which 

receives as parameter an array containing the samples for analysis. This function returns two arrays (x and y 

axis) describing the ECDF of the provided data. It is worthy to point the BM and POT filtering process are 

applied manually before the EVT computation on Matlab. 

For computing the Generalized Extreme Value (GEV) distribution, in BM approach, the gevfit( ) 

function receives the same parameter than ecdf( ), the filtered data for EVT analysis. However, this function 

finds the Generalized Extreme Value (GEV) distribution and its parameters that better fit to the empirical data. 

Also, gevfit( ) returns the reference values for the parameters shape (), scale () and location ().  

Thereafter, it is possible to generate the Cumulative Distribution Function (CDF) using the gevcdf( ) 

function. This function receives an array with the desired values of the x-axis and the computed GEV 

parameters ,  e . Then it returns the y-axis GEV values for the input x-axis range. The Figure 12 shows the 

flow with the functions and data involved in this computation. 



 

Figure 12 – Flow of Matlab functions to compute GEV Distribution. 

 

Besides that, it is possible to compare the GEV computed distribution to the empirical one, ECDF, and 

also, it is possible to find extreme values uncovered by ECDF. Furthermore, once the GEV function is defined, 

it is easy to identify the probability value (y axis) for extreme values (x axis). In other words, it can identify 

when the function assumes the value equal to the desired probability threshold. 

For computing the Grand Pareto (GP) distribution, in POT approach, Matlab provides gpfit and gpcdf 

functions. The gpfit( ) function is similar to gevfit( ), whereas gpcdf( ) function is similar to gevcdf( ) and 

returns the y-axis values regarding the computed GP distribution. The Figure 13 shows the flow with the 

functions and data involved in this computation. 



 

Figure 13 - Flow of Matlab functions to compute GP Distribution. 

 

There examples of Matlab code are in APPENDIX E – Matlab code examples. 

 

6 Validation & Evaluation  

 

The difference among results obtained analyzing a given algorithm must evidence the proposed 

methodology efficiency. Thereafter, it is possible to point out characteristics that may disturb the EVT results 

for pWCET. The results validation regards the statically defined WCET. The result accuracy depends on the 

difference between the obtained value and the reference one, statically computed (SDTA). Aiming to get 

different results, it analyzes different scenarios considering different number of samples and different sample 

filtering parameters. Therefore, the outcome accuracy may point how the number of samples and the filtering 

process affect each scenario.  

 

6.1 The Simulator MARS 

The chosen simulator to this work is MARS (MIPS Assembler and Runtime Simulator), developed by 

Missouri State University. MARS is a lightweight interactive development environment (IDE) for 

programming in MIPS assembly language, intended for educational-level use with Patterson and Hennessy's 

Computer Organization and Design. MARS was initially developed for teaching MIPS architecture aiming to 

clarify and facilitate the understanding of this architecture by the simulation of the entire processor. It can be 

used through its Integrated Development Environment (IDE) or even from command line. Also, MARS 



simulates MIPS-32 instruction set, covering 155 basic instructions of the MIPS-32, approximately 370 pseudo-

instructions, the 17 syscall functions and more. Furthermore, its IDE provides program editing and assembling, 

it also supports interactive debugging. It allows the user to easily set/remove execution breakpoints and to 

inspect the execution, viewing and editing register and memory contents (MISSOURI STATE UNIVERSITY, 

2020). 

It is important to enhance that MARS simulates MIPS architecture according to Patterson and 

Hennessy's descriptions, using the same registers and flags. It also contains a virtual cache memory with some 

features as counting cache-miss and cache-hit occurrences. Similarly, it has a functional virtual memory for 

program code and for data. Further, it allows the user to change register and memory values during the 

execution.  

Mars afford to use tools that explore the program behavior. The Instruction Counter tool provides the 

total number of executed instructions during the whole program. It also displays the executed number regarding 

different instructions types. There are tools that scan cache memory and main memory access, which allows 

setting different configurations and memory block sizes, and then it provides the access rates for each memory 

block during simulation. The Branch Prediction tool is worthy to be pointed, also. Moreover, MARS contains 

several functionalities and proper tools to learn and understand MIPS single core behavior.  

 

6.1.1 MARS Constraints 

Besides all functionalities, it is important to point some constraints in MARS. It disregards the time 

spent to execute instructions, it only computes the next instruction to simulate and do not mind how much time 

it takes to do that. Hence, there is no pipeline simulation and it is not possible to detect stalls when accessing 

memory, for instance. Although it has memory tools to report access rates, it ignores completely buses delays 

and asynchronous executions.  

MARS has Delayed Branching functionality, which aims to reproduce processor behavior on branching. 

However, this functionality forces the simulator to execute the next line after a branch instruction, 

independently whether the branch will take or not. 

  



 

6.2 Bubble Sort Case 

The first analyzed context is an ordering vectors algorithm named Bubble Sort. This is a simple 

algorithm, widely employed in literature. In this case, Bubble Sort must ordering an eight positions vector. 

Each position may assume values among 0 to 8. The Figure 14 shows the analyzed assembly code: 

 

Figure 14 - Bubble Sort assembly code. Reference: Author. 

 

The assembled algorithm code has 10 basic blocks. It is important to enhance that jumps or branches 

delimit every basic block, either for executing a branch instruction or being called for an instruction in other 

block. Figure 15 shows the Control Flow Graph (CFG) of the assembled code of this algorithm. Assembling 

the code may replace some instructions and change the instructions number in each basic block. 



 

Figure 15 - CFG of Bubble Sort assembled code. Reference: Author. 

 

6.2.1 Static Analysis 

The worst-case statically computed regarded the assembled code, similarly to the CFG. It applied the 

Implicit Path Enumeration Technique (IPET) due to this outcome reliability and accuracy. According to this 

technique, the number of a block execution times is equal to the summation of all times the execution enters 

this block and also equal to the summation of all times the execution get out this block. With this assumption, 

it is possible to determine the maximum execution times for each block from the iterations blocks with known 

upper bounds.  

The IPET analysis for the Bubble Sort algorithm resulted in 826 executed instructions in the worst 

scenario, since this work regards executed instructions as time unit, the WCET is 826. For a detailed IPET 

computation for this program, read APPENDIX A - IPET Example: Bubble Sort Case. 

 

6.2.2 MBPTA: Collecting Samples 

This algorithm has two variables, the vector and the vector size, vec and vecsz in Figure 14 (line 2 and 

3). In this example, vecsz has value 8 and vec has the values 8, 7, 6, 5, 4, 3, 2, and 1. During the analysis this 

algorithm is executed several times regarding different values for vec, however the vector size is always the 

same. Considering the vector size and all the values that each vector position can assume, it has 98 (or 

43.046.721) different possible cases.  

Every time the algorithm is executed, the time required to execute the code becomes a sample. During 

the collecting step, every execution sample is unique, since the input value is unique. In other words, this step 

never repeats the input vector values. Considering 10000 unique samples, it has a coverage of 0,0232% of all 

possible scenarios. 



Since it is infeasible to execute the algorithm 98 times, it is necessary to define the minimum but enough 

number of samples. The numbers of observations regarded in this analysis follows the Continuous Rank 

Probability Score (CRPS) explanation in 4.1.5. It basically creates distributions with different number of 

samples and compare them. As more the number of samples used to compute these distributions, less is the 

difference between them. To reach the minimum number of samples the difference should be less than the 

desired probability threshold. 

In this scenario the chosen value as desired probability threshold is 10-6, since it is small but reachable 

also. The initial number of samples is 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 3500, arbitrarily chosen. This choice must consider the time 

and costs effort to collect samples. Starting CPRS with a high number of samples may induce an useless effort, 

since the minimum number can be smaller. On the other hand, the chosen number for delta is 𝑁𝑑𝑒𝑙𝑡𝑎 = 100, 

arbitrarily chosen. This choice must regard the time and costs effort to compute and compare the CRPS 

distributions, since small the delta number is, bigger is the number of computations and comparisons until the 

desired threshold be reached. The following table shows the CRPS analysis, the computation regards the 

equation 𝐶𝑅𝑃𝑆 = ∑ [𝑓𝑥(𝑖) − 𝑓𝑦(𝑖)]2+∞
𝑖=0  according to 4.1.5. 

Table IV - Samples number (Ncurrent) on analysis for WCET. Reference: Author.  

 

 

The last value above the desired threshold 10-6 occurred when 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 3500, no one of the following 

rounds computed differences exceeding the threshold. Therefore, it points an enough number of samples 

starting from 3600 observations. Furthermore, 𝑖t is possible to point these differences do not decrease linearly, 

which is a good reason to execute a few more rounds after finding the minimum number of samples in order 

to assure the Max difference still smaller than the threshold. Although CRPS indicates 3600 samples as a safe 

number of samples for analyzing, this scenario regards 4500 observations, which means a safe number and 

may provide more details than 3600 samples. The chosen number represents a coverage of 0,01045% of all 

possible executions case for this algorithm. 

 

6.2.3 MBPTA: Block Maxima Approach 



Since the literature does not specifies the criteria for splitting samples in basic block, in this work it 

divides samples in basic blocks according the order they were collected. For instance, regarding blocks with 

100 samples, the first basic block would contain the 1st to 100th samples.  

This Block Maxima analysis regards only 4500 samples and compares different basic blocks sizes, as 

depicted in table below: 

Table V - Different block sizes for Basic Blocks and Maxima Block. Reference: Author. 

Size of basic Blocks 1 10 15 18 45 50 90 100 250 300 450 4500 

Number of Basic Blocks 4500 450 300 250 100 90 50 45 18 15 10 1 

Size of Maxima Block 4500 450 300 250 100 90 50 45 18 15 10 1 

 

The first scenario considered basic block as one sample size and, therefore, the maxima block contains 

all 4500 collected samples. On the other hand, the last one regards 4500 basic blocks, which implies in only 

one sample for Maxima block: the highest value sample.  

The Maxima block must contain enough samples to represent the execution behavior properly, specially 

the extreme values (CUCU-GROSJEAN et al., 2012). Regarding this, the next figure shows the histogram for 

each maxima blocks considering the different sizes.  

 

Figure 16 - Maxima block histograms (X axis means execution time, Y axis means occurrences). Reference: 

Author. 

 

By analyzing histograms, it is possible to realize how the maxima block representability decreases as 

the samples number becomes lower. Under 90 samples, the histograms seem to be describing a completely 



different algorithm than the one with more than 90 samples, since the number of repetitions is dramatically 

reduced. Therefore, pWCET outcome analysis must count on this characteristic. 

After split samples in basic blocks and pick their maximum values to compound the maxima block, it is 

possible to apply EVT methodology. The Matlab function gevfit( ) receives an array containing the maxima 

block samples. This function returns three parameters calculated according to Generalized Extreme Value 

methodology, the parameters location, scale and shape. These parameter values for each maxima block size 

are displayed in Table VII. The pWCET outcome analysis must count that in some cases gevfit returned 

warning messages. 

Table VI - Gevfit function response for different maxima block sizes. 

Maxima Block Size Location () Scale () Shape () 

4500 791.488 8.211 -0.262 

450  805.297 4.353 -0.193 

300  807.309 3.903 -0.196 

250  807.974 3.724 -0.188 

100 811.163 2.985 -0.162 

90 811.284 3.044 -0.174 

50 813.091 3.078 -0.277 

45 813.218 2.571 -0.124 

18* 817.395 2.910 -1.117 

15* 817.812 2.706 -1.237 

10* 819.070 1.182 -1.271 

1 820 0 0 

*Gevfit returned the message: Maximum likelihood estimation did not converge. Function evaluation limit 

exceeded. Maximum likelihood converged to a boundary point of the parameter space. Confidence intervals 

and standard errors cannot be computed reliably. 

 

Computing EVT distribution requires only the parameter values, thereafter the computed distribution is 

compared to the ECDF empirically defined. Figure 17 displays the quantile-quantile plots for all scenarios 

with different maxima block sizes.  



 

Figure 17 - Maxima block quantile-quantile plots. Reference: Author. 

 

These QQ-plots represent the symmetry between EVT and ECDF distributions. The blue points are the 

real comparison whereas the red line is computed to represent these points. When all points in the plot can be 

described as X = Y, the distributions fitting is perfect. However, when the computed distribution does not 

represent the empirical data properly, there is a bad fitting, which is evidenced by the asymmetry, when the 

points are furthermost (X ≠ Y). Keeping this in mind it is possible to analyze the QQ-plots and deduce the 

fitting comparison gets worse when the Maxima Block has less samples. Also, it points a bad fitting for 18 

samples or less samples whereas the other scenarios seem close from symmetry.  

Based on the QQ-plots it is important to point out that 4500 samples scenarios is the most symmetric, 

on the other hand, a good enough symmetry may be obtained with 100 samples, for example. Therefore, based 

only in these plots it is possible to conclude that there is no need to consider so many samples for computing 

the EVT distribution. 

Like histograms, the quantile-quantile plots point that fitting the empirical (i.e., the MBPTA) and the 

EVT distributions is harder as long as the number of samples in maxima block is lower. It is important to 

enhance that it is not even possible to define a distribution for a unique value, as the one sample maxima block 

case. These differences between distributions are also shown in the following table: 

Table VII - Difference between ECDF MBPTA (Block Maxima) and EVT distribution. 

Maxima Block Size Max 
Comparison 

(Max) 
Average 

Comparison 

(Average) 

4500 0.042 0% 0.019 0% 

450 0.088 110% 0.035 84% 

300 0.103 145% 0.041 116% 

250 0.102 143% 0.041 116% 



100 0.128 205% 0.053 179% 

90 0.122 190% 0.053 179% 

50 0.161 283% 0.05 163% 

45 0.164 290% 0.062 226% 

18 0.325 674% 0.103 442% 

15 0.337 702% 0.12 532% 

10 0.357 750% 0.163 758% 

 

According to the table, the best fitting occurs for 4500 samples. In this scenario, 0.042 is the maximum 

difference between the computed EVT distribution and the empirical data collected as samples, when 

calculating the average difference, the outcome is less than a half of the maximum difference. Owing to this, 

the 4500 samples scenario is regarded as reference values for comparison to all scenarios in the columns 

Comparison (Max) and Comparison (Average).  

Decreasing the number of samples in maxima block increases considerably the distributions differences.  

For instance, the average difference for 100 samples is 179% higher than the difference for 4500 samples, 

whereas the maximum difference value is 205% higher than the maximum for 4500. The 450 samples scenario, 

when compared to the 4500 samples case, points out that decreasing the Maxima Block Size in 90%, the 

difference between distributions increases 110%.  

Finally, Table VIII shows the pWCET outcome for each Maxima Block case. The probability threshold 

value is 10-6 and the reference values for WCET, statically computed in 6.2.1, is 826 executed instructions: 

 

Table VIII - Bubble Sort on Block Maxima approach. 

Maxima Block Size pWCET(10-6) 
Difference 

|pWCET – WCET| 
Difference/WCET 

4500 818 8 0.97% 

450  822 4 0.48% 

300  823 3 0.36% 

250  823 3 0.36% 

100 824 2 0.24% 

90 824 2 0.24% 

50 823 3 0.36% 

45 826 0 0.00% 

18 820 6 0.73% 

15 820 6 0.73% 

10 820 6 0.73% 

1 820 6 0.73% 

 

According to the pWCET results, the higher difference between the WCET and the outcome occurs for 

Maxima Block size equal to 4500 samples. This difference decreases as long as the sample number decreases. 

For 45 samples the difference is zero, the found pWCET value is equal to the reference WCET.  

Considering the histograms (Figure 16) and the QQ-plots (Figure 17), the scenarios with 90 or less 

samples do not satisfy the requirements described on literature for a reliable outcome. It is worthy to point that 



gevfit function (Table VI) returned the following message for 18 or less samples: ‘Confidence intervals and 

standard errors cannot be computed reliably’.  

While scenarios when the Maxima Block has small size seem clearly unreliable, the scenarios with the 

higher size of Maxima Block, 4500 samples, resulted in a pWCET of 818 executed instructions. It represents 

the largest difference between the computed pWCET and the reference WCET. Besides that, this outcome 

value means that there is a probability of 10-6 of the execution time exceeds 818, which seems accurate, 

acceptable and trustable even though this pWCET does not cover 0,9685% of all possible values (from 818 to 

826). 

The 45 samples scenario outcome, on the other hand, has no difference to the reference. Although it 

covers 100% of all possible values, it indicates that there is a probability of 10-6 of the execution time exceeds 

826, which is not true. It is worthy to enhance that even when the outcome seems more accurate, the reliability 

still been the most imperative requirement in the analysis. 

Considering the outcome values and the Block Maxima analysis, it suggests that the best results, with 

reliable outcomes and smaller differences, arise regarding 300 to 90 samples in analysis. In other words, 

regarding 2% to 7% of the total samples in EVT analysis with Block Maxima (BM) approach increases the 

outcome accuracy.  



 

6.2.4 MBPTA: Pick Over Threshold Approach 

Similarly to Basic Block Approach, this analysis with Pick Over Threshold regards 4500 samples 

amount. However, instead of splitting samples and defining blocks sizes, this approach defines threshold 

values to determine whether regards or not a given sample in analysis. Therefore, the number of samples under 

analysis depends on the chosen threshold value. The following table shows the threshold values and the 

analyzed samples amount for each case. 

Table IX - Threshold values and respective number of samples. Reference: Author. 

 

 

This picking process select all samples whose value is equal or higher than the threshold. The first 

threshold value, 770, picks all 4500 samples, since it is the minimum value in the collected samples. On the 

other hand, the last threshold, 820, selects only five samples, once this is the maximum value collected on the 

samples. 

The following image shows the histogram of the analyzed samples for each scenario: 

 

 

Figure 18 - Histograms for different threshold values (X axis means time, Y axis means occurences). 

Reference: Author. 

 



As the Block Maxima approach, the Pick Over Threshold requires to converge values between the 

collected samples and an EVT computed distribution. However, instead of computing a distribution from GEV 

family, POT compute from Pareto Distribution family. Matlab provides gpfit() function for Pareto 

distributions, which is similar to gevfit. This function returns two parameters: Scale and Shape. The following 

table displays this parameter values for each case. 

Table X - Pareto parameter values for different thresholds. 

Threshold Scale () Shape () 

770* 2.165 10-3 -2.6401 

780* 1.581 10-3 -1.9289 

790* 1.944 10-3 -2.3712 

800* 1.866 10-3 -2.2764 

805* 1.672 10-3 -2.0399 

810* 1.958 10-3 -2.3885 

815* 1.386 10-3 -1.6907 

*Gpfit returned the message: Maximum likelihood has converged to a boundary point of the parameter 

space. Confidence intervals and standard errors cannot be computed reliably. 

 

It is imperative to enhance that there is no good convergence for any scenario. Therefore, no one 

outcome is reliable. Also, it is not possible to determine a distribution with only one value, as the 820-threshold 

case. The following quantile-quantile plots confirm these bad convergences. 

 

 

Figure 19 - Quantile-quantile plots for different threshold values. Reference: Author. 

 



The quantile-quantile plots proves the large difference between empirical distributions and Pareto’s. It 

is important to point that a good fitting shows a straight line (X = Y) from 0 to 1. However, no one of plots 

above not even reached 0.5 on the X axis. This lack of confidence is also evidenced on the outcomes, displayed 

on the following table: 

Table XI - Bubble Sort on Pick Over Threshold approach. 

Threshold pWCET(10-3) 
Difference 

|pWCET – WCET| 

770 820 6 

780 820 6 

790 820 6 

800 820 6 

805 820 6 

810 820 6 

815 820 6 

 

Unlike Block Maxima, the Peak Over Threshold analysis seems to be unreliable and useless according 

to histograms, QQ-plots and the gevfit result. However, the evidenced lack of confidence and invalid outcome 

may be caused, for example, by some unknown Matlab limitation, by some context characteristics as the 

chosen algorithm complexity and even by the collecting samples methodology. So, it is important to investigate 

and understand why POT doesn’t work properly in this context. Future works can consider this case. 

 

6.3 Finite Impulse Response Filter Case 

Other context regarded in this work is the FIR Filter, which is employed in digital filters. This algorithm 

receives two parameters, N and K in Figure 20. The first is the number of samples and the second is the filter 

order. The N variable may assume values from 1 to 64, whereas the K variable may assume only the even 

values from 1 to 64. The figure below shows the analyzed assembly code, in this case N and K variables have 

values 8 and 16 respectively: 



 

Figure 20 - Assembled code of the FIR Filter. Reference: Author. 

 

The FIR Filter code has seven different basic blocks compounding the program. The following image 

shows the Control Flow Graph of this algorithm. 



 

Figure 21 - CFG of FIR Filter code. Reference: Author. 

  

6.3.1 Static Analysis 

Similarly to the Bubble Sort Case, the static analysis applies IPET to the algorithm in order to compute 

the WCET. The APPENDIX A - IPET Example: Bubble Sort Case presents a detailed example of this method 

and all the involved computation. For FIR Filter case, IPET outcomes defines WCET as 59,223 (executed 

instructions). This high WCET estimation number is consequence of the loop repetition, since both inner loops 

upper bound is 1984 times. 

 

6.3.2 MBPTA: Collecting Samples 

This algorithm has two variables, N and K in Figure 20. The first is the number of samples and the 

second is the filter order. The N variable may assume values from 1 to 64, whereas the K variable may assume 

only the even values from 1 to 64 (32 different values). Considering the possible values each variable can 

assume, there are 32x64 possible cases, which means 2048 different cases.  

Since it is feasible to collect 2048 samples, it is possible to consider two scenarios: A and B. In the 

scenario A, it collects one sample for each input possibility, which means that it analyzes 2048 samples at all. 

The scenario B allows input values repetition and, hence, may regard a higher number of samples under 

analysis. 



Regarding unique samples, with no input value repetition, may affect the analysis, since the total of 

2048 samples implies in less samples under analysis, shorter basic blocks and maxima block, which might not 

be enough to apply EVT techniques properly. Notice that a sample is unique due to its input values, N and K, 

and not due to its outcome. Therefore, the collection of unique samples may contain repeated outcome values, 

although it has no samples with repeated input values. 

Scenario A has 2048 unique samples that means this scenario covers 100% of all possible cases. It might 

be useful to evaluate whether EVT’s accuracy decreases when considering a shorter number of samples on 

analysis. Regarding all samples outcomes, the highest observed result value is 59223, which is according to 

the statically analysis result. 

Scenario B has 5000 samples randomly collected with no control in input values. Thus, it might repeat 

some input values, although it may not use all possible values. The highest observer result value is 57431, 

below than the static worst-case result. Nevertheless, the total number of collected samples represents over 

than 244% of the required number to cover all cases. It might be useful to observe EVT results comparing both 

scenarios.  

Since both scenarios have samples enough to cover all possible cases, it is not required to estimate the 

minimal number of samples as explained in 4.1.5. However, it must be regarded to define a safe probability 

threshold. The following table shows the CRPS analysis for scenario A, the computation regards the equation 

𝐶𝑅𝑃𝑆 = ∑ [𝑓𝑥(𝑖) − 𝑓𝑦(𝑖)]2+∞
𝑖=0  according to 4.1.5. It starts considering 1024 samples (𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡), adding 64 

(𝑁𝑑𝑒𝑙𝑡𝑎) in each round of comparison. 

 

Table XII - Number of samples (Ncurrent) on analysis (A). Reference: Author. 

 

  



The table shows that maximal difference decreases linearly throughout the analysis. The difference 

stands consistently less than 1.10-8 when 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡= 1280 samples and further. This value still the same even 

when increasing 𝑁𝑑𝑒𝑙𝑡𝑎 to 128. The same CRPS analysis, for scenario B, is shown in the following table. It 

starts with 3500 samples and adds 100 in each round. 

Table XIII - Number of samples on analysis (B). Reference: Author. 

 

  

Unlike the scenario A, the maximal difference does not decrease linearly. Actually, Table XIII depicts 

some values above 1.10-6 (3800 and 4500 samples). Although having almost 250% more samples than A, the 

scenario B has a less reliable sample collection. Nevertheless, increasing the samples amount may facilitate 

statistical analysis, but may affect reliability as side effect. In addition, it is important to enhance the difference 

between these scenarios are the number of samples and the control of input values, which may incur the 

reliability issue.  

 

6.3.3 MBPTA: Block Maxima Approach 

Since the literature do not specifies the criteria for splitting samples in basic block, in this work it divides 

samples in basic blocks according the order they were collected. For instance, regarding blocks with 100 

samples, the first basic block would contain the 1st to 100th samples.  

This Block Maxima analysis regards 2048 samples for scenario A (Table XIV) and 5000 samples for 

scenario B (Table XV): 

Table XIV - Different block sizes for Basic Blocks and Maxima Block (A). Reference: Author. 

Size of basic Blocks 1 10 20 25 40 50 100 200 250 500 1000 5000 

Number of Basic Blocks 5000 500 250 200 125 100 50 25 20 10 5 1 



Size of Maxima Block 5000 500 250 200 125 100 50 25 20 10 5 1 

 

Table XV - Different block sizes for Basic Blocks and Maxima Block (B). Reference: Author. 

Size of basic Blocks 1 2 4 8 16 32 64 128 256 512 

Number of Basic Blocks 2048 1024 512 256 128 64 32 16 8 4 

Size of Maxima Block 2048 1024 512 256 128 64 32 16 8 4 

 

Literature affirms that basic blocks must contain enough samples to represent the execution behavior 

properly. Figure 22 and Figure 23 show histograms for maxima blocks with different sizes.  

 

Figure 22 - Maxima blocks histograms for A (X axis means time, Y axis means occurences). Reference: 

Author. 

  

According to these histograms, the maxima block representability decrease as the samples number 

becomes lower. From 128 samples to below, the histograms do not represent the execution behavior properly, 

since it has less information. For this reason, the image disregard the histogram related to the maxima block 

with four samples. These histograms characteristics likely affect the pWCET outcome. 



 

Figure 23 - Maxima blocks histograms for B (X axis means time, Y axis means occurences). Reference: 

Author. 

  

Similarly, to the histograms in last image, the maxima block representability decrease when regarding 

less samples. On the other hand, unlike the scenario A, from 125 samples to below, the histograms do not 

represent the execution behavior properly, since it has less information. These histograms characteristics likely 

affect the pWCET outcome. 

After that, it is possible to apply EVT methodology, using Matlab. The function gevfit( ) receives an 

array containing the maxima block samples and returns three parameters calculated according to Generalized 

Extreme Value methodology. These parameters are location, scale and shape and the following tables show 

their values for each maxima block size regarding A and B. The pWCET outcome analysis must count that in 

some cases gevfit returned warning messages. 

 

Table XVI - Gevfit function response for different maxima block sizes (A). 

Maxima Block Size Location () Scale () Shape () 

2048 8456.389 8003.180 0.33435 

1024 8896.437 8246.997 0.31210 

512 9793.856 8753.928 0.26727 

256 11633.035 9818.336 0.18123 

128 15444.609 12050.860 0.02751 

64 25382.261 17986.367 -0.44034 

32 25861.017 17993.445 -0.44201 

16 26852.916 18023.875 -0.44890 

8 29014.667 18195.410 -0.48175 

4* 39645.564 25626.445 -1.30898 

 



Table XVII - Gevfit function response for different maxima block sizes (B). 

Maxima Block Size Location () Scale () Shape () 

5000 8279.365 7800.338 0.32319 

500 37499.584 8320.073 -0.36310 

250 42833.202 6346.083 -0.36504 

200 44311.495 5853.875 -0.37807 

125 46611.243 5182.819 -0.40576 

100 48083.872 4746.951 -0.44483 

50 51181.760 3776.319 -0.55532 

25 53787.696 2282.692 -0.55729 

20 54270.530 2012.918 -0.55511 

10* 55844.692 1753.467 -1.10538 

5* 56553.402 1150.2383 -1.31067 

1* 57431 0 0 

*Gevfit returned the message: Maximum likelihood estimation did not converge. Function evaluation limit 

exceeded. Maximum likelihood has converged to a boundary point of the parameter space. Confidence 

intervals and standard errors cannot be computed reliably. 

 

Although EVT distribution requires only these parameters values on its definition, comparing the 

defined distribution and the ECDF (empirically defined) might be useful to observe how these distributions 

fit. Figure 24 and Figure 25 display the quantile-quantile plots for different maxima block sizes in A and B.  

 

Figure 24 - Maxima block quantile-quantile plots (A). Font: Author. 

  



 

Figure 25 - Maxima block quantile-quantile plots (B). Reference: Author. 

 

Like histograms, the quantile-quantile plots point that when regarding a lower number of samples in 

maxima block, the analysis is affected. In this case, it influences how the empirical and the EVT distributions 

fit with small samples amount. It is important to enhance that it is not even possible to define a distribution for 

a unique value, as the one sample maxima block case.  

Besides the quantile-quantile plots, the maximal difference between distributions might be a useful and 

indicating information. The following tables display the differences between these distributions:  

 

Table XVIII - Differences between ECDF MBPTA(Block Maxima) and EVT distribution (A). 

Maxima Block Size Max 
Comparison 

(Max) 
Average 

Comparison 

(Average) 

2048 0.058 100% 0.031 100% 

1024 0.056 97% 0.030 97% 

512 0.053 91% 0.028 90% 

256 0.050 86% 0.023 74% 

128 0.041 71% 0.019 61% 

64 0.072 124% 0.037 119% 

32 0.080 138% 0.039 126% 

16 0.096 166% 0.045 145% 

8 0.131 226% 0.072 232% 

4 0.304 524% 0.160 516% 

 



Table XIX - Differences between ECDF MBPTA(Block Maxima) and EVT distribution (B). 

Maxima Block Size Max 
Comparison 

(Max) 
Average 

Comparison 

(Average) 

5000 0.059 100% 0.031 100% 

500 0.026 44% 0.007 23% 

250 0.040 68% 0.012 39% 

200 0.045 76% 0.013 42% 

125 0.073 124% 0.022 71% 

100 0.054 92% 0.024 77% 

50 0.070 119% 0.026 84% 

25 0.137 232% 0.046 148% 

20 0.135 229% 0.068 219% 

10 0.250 424% 0.124 400% 

5 0.238 403% 0.110 355% 

1 - - - - 

 

As quantile-quantile plots, this difference values also show the disparity due to different maxima block 

sizes. Decreasing the number of samples in maxima block increases considerably the distributions differences.  

Regarding A, the lowest difference is 0.041, which occurs when Maxima block has 128 samples collected from 

128 basic blocks, each basic block have 16 samples. Comparing all maxima block sizes in this scenario, 128 

seems ideal.   

Besides that, differences in scenario B does not seems linear. Although, the lowest difference value is 

0.026, when Maxima has 500 samples collected from 500 basic blocks, each basic block having 10 samples. 

Since the lowest difference value is 0.041 in A, the lowest difference in B is considerably better. Furthermore, 

the 250 samples case shows the difference value 0.040, which is lower than A also. 

It is worthy to enhance that the better options according to Table XVIII and Table XIX are the following 

Maxima block size: 128, 200 and 250 samples. That means the better options have the following basic blocks 

size: 10, 16 and 20.  

Finally, Table XX and Table XXI show the pWCET outcome for each maxima case. The probability 

threshold value is 10-8 for A and 10-6 for B, the reference value, the statically defined WCET, is 59223 executed 

instructions, as detailed in 6.3.1. 

Table XX - FIR Filter on Block Maxima approach, scenario A. 

Maxima Block Size pWCET(10-8) 
Difference 

|pWCET – WCET| 
Difference/WCET 

2048 225527 166304 280.81% 

1024 210630 151407 255.66% 

512 184534 125311 211.59% 

256 146892 87669 148.03% 

128 107117 47894 80.87% 

64 64277 5054 8.53% 

32 64647 5424 9.16% 

16 65196 5973 10.09% 

8 65429 6206 10.48% 



4 59220 3 0.01% 

 

According to Table XX, as larger the maxima block, the worse the pWCET estimation is. The difference 

between the pWCET(10-8) and the static WCET is 166304 for 2048 samples. On the other hand, when Maxima 

block has only 4 samples, the difference is 3. In addition, it is important to point that Gevfit function returned 

an error message for the Maxima with 4 samples (Table XVI). Thus, the lowest outcome difference is 5054 

and occurs for 64 samples. 

The histogram comparison (Figure 22) shows that maxima block represents the algorithm execution 

behavior when having 128 samples or more. Regarding this assumption, the best outcome difference is 47894, 

for 128 samples. Table XVIIITable XX also shows that 128 samples have the best fitting between the EVT 

defined and the empirical distributions, the maximal difference is 0.041 and the average difference is 0.019. 

When comparing the 64 samples case, the maximal difference is 75.6% higher and the average difference is 

94.7% higher than 128 samples case. Therefore, different analysis pointed the 128 samples case as more 

reliable and assured. However, the EVT results pointed the 64 samples as more accurate.   

Considering this cases, it is possible to deduce that the best samples amount in Maxima block for this 

analysis is among 3% and 6% of the total collected samples. 

The following table shows the EVT outcomes for scenario B: 

Table XXI - FIR Filter on Block Maxima approach, scenario B. 

Maxima Block Size pWCET(10-6) 
Difference 

|pWCET – WCET| 
Difference/WCET 

5000 209131 149908 253.12% 

500 58547 676 1.14% 

250 58820 403 0.68% 

200 58658 565 0.95% 

125 58608 615 1.04% 

100 58261 962 1.62% 

50 57837 1386 2.34% 

25 57796 1427 2.41% 

20 57819 1404 2.37% 

10 57430 1793 3.03% 

5 57430 1793 3.03% 

1 - -  

 

According to Table XXI, the worst outcome occurs for 5000 samples, when the difference between the 

EVT distribution and the ECDF is 149908. Despite that, the best-obtained result value is 58547, which means 

a difference of 676, for 500 samples. The difference worsens as the Maxima block has fewer samples. 

The histograms analysis (Figure 23) depicts that maxima block represents the algorithm execution 

behavior with 200 samples or more. Besides that, the Gevfit function returned an error message for 10, 5 and 

1 sample (Table XVII), so its outcomes might be ignored.  



The fitting analysis (Table XIX) also pointed the 500 samples case as the best one. The maximal 

difference is 0.026 and the average difference is around 0.007. The 250 samples case is the second best. 

However, when comparing it, the maximal difference is 53.8% higher and the average difference is 71.4% 

higher than the 500 samples case. Thus, all analysis and the EVT outcomes point 500 samples case as more 

reliable and accurate. 

Regarding these cases, by deduction, the best samples amount in Maxima block for this analysis is 

among 5% and 10% of the total collected samples. 

 

 

6.3.4 MBPTA: Pick Over Threshold Approach 

Like the Basic Block Approach, this Pick Over Threshold (POT) approach analyzes two scenarios: (A), 

only unique samples, and (B), repeated samples. Notice that there is an input control when collecting samples 

in A, for this cause it executes no input values twice. Besides that, A has 2048 samples and 100% of coverage. 

In other hand, B has 5000 samples but there is no assurance of coverage since it might repeat some input 

values.  

POT selects samples based on a threshold value. The number of samples under analysis depends on the 

chosen threshold value. Furthermore, it regards only samples that have values above the threshold value. The 

collected samples values in A vary from 80 to 59223, in B the values vary from 80 to 57431.  

The following table depicts the regarded thresholds in this approach. In addition, the image shows the 

number of samples under analysis. In other words, the figure shows how many samples have values above the 

given threshold: 

Table XXII - Threshold values and number of samples for scenarios A and B. Font: Author. 

 

 

The lowest threshold (80) ensure the total coverage of samples for both cases, which means all samples 

under analysis. Besides that, the highest threshold (58000) filters only two samples for A and no samples for 

scenario B. Figure 26 displays the POT histograms for scenario A whereas Figure 27 shows the histograms for 

scenario B. 

According to Figure 26, the histograms from threshold 80 to threshold 50750 represent the same 

executing behavior. In other hand, thresholds 54375 and 50000 clearly have no information to represent the 

algorithm executions properly.  



 

 

Figure 26 - Peak Over Threshold histograms for A (X axis means time, Y axis means occurences). 

Reference: Author. 

 

 

Figure 27 - Peak Over Threshold histograms for B (X axis means time, Y axis means occurences). 

Reference: Author. 

 

According to Figure 27, histograms point that cases with threshold 43500 and higher might not be 

reliable. Furthermore, the threshold 58000 case has no sample.  

As the block maxima approach, the Pick Over Threshold requires converging values between the 

collected samples and Pareto Distribution family.  Instead of gevfit, Matlab afford gpfit( ) function for Pareto 



distributions. This function find the proper Pareto distribution that best fits the given samples, also it returns 

two parameter Scale and Shape. The table below displays this parameter values for each case for both 

scenarios: 

Table XXIII - Pareto parameter values for different thresholds. 

Threshold 
Scenario A Scenario B 

Scale () Shape () Scale () Shape () 

80 20907.891 -0.29750 20374.667 -0.30330 

14500* 43819.635 -0.73930 43063.200 -0.74930 

29000* 68855.758 -1.16270 66839.168 -1.16380 

36250* 81848.796 -1.38200 85321.420 -1.48560 

43500* 90660.376 -1.53080 100991.401 -1.75850 

50750* 122908.724 -2.07540 104063.626 -1.81200 

54375* 95431.500 -1.61140 99566.584 -1.73370 

58000* 113501.888 -1.91650 - - 

*Gpfit returned the message: Maximum likelihood has converged to a boundary point of the parameter 

space. Confidence intervals and standard errors cannot be computed reliably. 

 

It is important to enhance that there is only one good convergence, since the function returned error 

message for every cases except the first. Therefore, these outcomes must not be reliable. Further, the quantile-

quantile plots (Figure 28 and Figure 29) confirm that. Regarding these images, there is a good fitting between 

the defined Pareto distribution and the empirical only when regarding all samples, in threshold 80 case. It 

happens for both scenarios A and B. 

 

Figure 28 - Quantile-quantile plots for different threshold values (A). Font: Author. 

 



 

Figure 29 - Quantile-quantile plots for different threshold values (B). Font: Author. 

 

As the quantile-quantile plots point, there are considerable differences between the empirical 

distributions and those defined by Pareto family model. The following tables show the maximal and the 

average difference for every case regarding scenarios A and B. 

Table XXIV - Differences between ECDF MBPTA (Peak Over Threshold) and EVT distribution (A). 

Threshold Max 
Comparison 

(Max) 
Average 

Comparison 

(Average) 

80 3.3E-02 100% 1.0E-02 100% 

14500 6.5E-02 198% -7.0E-02 -687% 

29000 1.1E-01 336% -1.0E-01 -1032% 

36250 1.2E-01 354% -1.3E-01 -1302% 

43500 9.6E-02 292% -1.9E-01 -1883% 

50750 1.2E-01 360% -2.0E-01 -1957% 

54375 1.3E-10 0% -3.5E-01 -3449% 

58000 4.7E-09 0% -4.2E-01 -4173% 

 

Table XXV  - Differences between ECDF MBPTA (Peak Over Threshold) and EVT distribution (B). 

Threshold Max 
Comparison 

(Max) 
Average 

Comparison 

(Average) 

80 3.2E-02 100% 9.9E-03 100% 

14500 7.5E-02 235% -7.4E-02 -755% 

29000 1.1E-01 348% -1.1E-01 -1098% 

36250 1.4E-01 438% -1.2E-01 -1176% 

43500 1.2E-01 376% -1.5E-01 -1572% 

50750 5.9E-02 185% -2.8E-01 -2855% 

54375 6.3E-10 0% -3.5E-01 -3596% 

58000 - - - - 



 

Like the quantile-quantile plots, these differences values show the disparity due to different threshold 

values. Decreasing the number of samples in analysis increases considerably the distributions differences.  In 

both scenarios, the threshold 80 seems the best case. It has a maximal difference around 0.03 and an average 

difference around 0.01. 

Considering these cases, it is possible to deduce that considering all samples is the best option for Peak 

Over Threshold approach. Since the most reliable cases regards 100% of the total collected samples. Table 

XXVI shows the EVT outcomes for scenario A, besides, Table XXVII depicts the EVT outcomes for 

scenario B. The probability threshold value is 10-8 for A and 10-6 for B, the reference value, the statically 

defined WCET, is 59223 executed instructions, as detailed in 6.3.1. 

Table XXVI  - FIR Filter on Peak Over Threshold approach, scenario A. 

Threshold pWCET(10-8) 
Difference 

|pWCET – WCET| 
Difference/WCET 

80 61273 2050 3.46% 

14500 58912 311 0.53% 

29000 59203 20 0.03% 

36250 59218 5 0.01% 

43500 59221 2 0.003% 

50750 59222 1 0.002% 

54375 59222 1 0.002% 

58000 59222 1 0.002% 

 

Table XXVII  - FIR Filter on Peak Over Threshold approach, scenario B. 

Threshold pWCET(10-6) 
Difference 

|pWCET – WCET| 
Difference/WCET 

80 58915 308 0.52% 

14500 57143 2080 3.51% 

29000 57412 1811 3.06% 

36250 57428 1795 3.03% 

43500 57430 1793 3.03% 

50750 57430 1793 3.03% 

54375 57430 1793 3.03% 

58000 - -  

 

According to Table XXVI the threshold 80 case has the less accurate result and the outcomes value is 

more accurate when analyzing fewer sample. Therefore, for scenario A the most reliable outcome according 

other analysis is also the worst in accuracy according the results. It is important to enhance those samples in 

A represents 100% of coverage of all possible results. It might affect mainly with higher thresholds. The 

threshold 58000 case, for instance, has only two samples and one is the worst-case that is 59223. In addition, 

it is worthy to point that 61273 is not accurate but it is safe for worst-case, since its largest than 100% of 

possible values. 



In scenario B, unlike A, the most accurate result is also the most reliable. The threshold 80 case has the 

small difference between the outcome and the statically defined worst-case. Furthermore, other analysis also 

pointed this case as most trustable.  

It is important to enhance that 58915 is smaller than 59223. However, when considering every possible 

cases, there is only one case largest than that value, which is the WCET 59223. Therefore, 58915 covers 2047 

of 2048 cases, that means a hit probability of 99.951%. In other words, this result fails for 1 of 2048 cases, that 

means a failing probability of 0.000488, which is slower than the probability threshold (10-3) regarded on 

analysis. 

6.4 Comparison 

This section introduced two different contexts on which EVT is applied to estimate the pWCET, both 

consider the same processor platform (MIPS) but different algorithms: Bubble Sort and Finite Impulse 

Response (FIR) Filter. For both contexts the minimum number of samples is calculated according to CRPS 

and two approaches for filtering samples are applied: BM and POT.  

In Bubble Sort case, the analysis with BM approach presents reliable and accurate outcomes when 

Maxima Block has 90 or more samples. Furthermore, the bests scenarios are respectively 90 and 100 samples, 

which evidenced the difference between the pWCET and the reference value, only 0.24%. On the other hand, 

analyzing with POT approach does not succeed in the same way. In this case, no scenario has reliable 

outcomes, since Matlab can’t compute the distribution properly. 

In FIR filter case, the analysis considers two scenarios when collecting samples: controlling input values 

(scenario A) and no controlling input values (scenario B).  

For scenario A, when applying BM, the reliable outcomes are obtained for Maxima Blocks with 128 or 

more samples. However, these outcomes are significantly inaccurate, some of them estimate more than 250% 

when compared to the reference WCET. The best reliable pWCET estimation is evidenced for Maxima Block 

with 128 samples, nevertheless, this outcome is 80.87% higher than the reference value, which means this 

approach is not so efficient in this case. When considering outcomes for POT approach, it also has several 

unreliable scenarios which can’t be calculated by Matlab. However there is one reliable scenario, when the 

threshold is 80. In this scenario the estimation is 3.46% higher than the reference WCET, which means that 

POT may be better for this context or even when controlling the input data. 

For scenario B, in BM approach, scenarios with Maxima Block with 200 or more samples generated 

reliable outcome. Although the 5000 samples case estimates a pWCET 250% higher than the reference, the 

other cases are considerable accurate. The best result is found for Maxima Block with 250 samples, in this 

scenario the difference between the pWCET and the reference WCET is only 0.68%. For POT approach, 

similarly to A, only the threshold 80 computed reliable outcomes, on the other hand, for B the result is even 

more accurate. The difference between the calculated pWCET and the reference WCET in this scenario is only 

0.52%. The following table show a comparison among the different analysis with BM and POT approaches: 



Table XXVIII – Comparing outcomes from BM and POT approaches. 

 Block Maxima Peak Over Threshold 

Bubble Sort 
Reliable outcomes 

Small difference is 0.24%  
No reliable outcomes 

FIR Filter (A) 
Few reliable outcomes 

Small difference is 80.87% 

Only one reliable outcome 

Difference is 3.46% 

FIR Filter (B) 
Reliable outcomes 

Small difference is 0.68% 

Only one reliable outcome 

Difference is 0.52% 

 

Based on this table it is possible to conclude that POT is considerably more intricate than BM, since 

only two scenarios resulted in reliable information. On the other hand, BM seems simpler, and more accurate 

than POT. Also, it is worthy to point that the input data control for collecting samples may prejudice BM 

accuracy significantly whereas POT accuracy is lightly affected. 

 

7 Conclusion 

 

This work presented a methodology to analyze pWCET estimates of hard real time systems and pointed 

out the process limitations related to that. With this purpose, it regarded two algorithms: Bubble Sort and FIR 

Filter. Furthermore, this work used the MIPS architecture processor, single core, to assemble and run the 

selected algorithms.  

Firstly, this methodology statically computed the WCET of both algorithms. After that, it applied the 

Measured Based Probabilistic Timing Analysis (MBPTA) approach to re-compute the WCET with different 

parameter values. This methodology used MARS, a MIPS simulator, to collect MBPTA samples. At the end, 

both outcomes, the one provided by statically computing and the one obtained by the MBPTA, were compared. 

It is worth noting that the number of samples and their empirical distribution affect the probability 

threshold. For this reason, the present work considered the probability according to CRPS calculation and not 

the standard for avionic systems (10-9).  

The methodology applied the Extreme Value Theory (EVT) in the sample sets following the Block 

Maxima approach, comparing the outcomes by different input parameters. For the Bubble Sort analysis, the 

most reliable and accurate outcomes have a Maxima block from 2% to 7% of the total samples. Presenting 

only 0.24% of difference between the pWCET and the reference value.  

On the other hand, for FIR Filter analysis controlling input data, Block Maxima computed only one 

reliable but not accurate outcome, it differs 80.87% when compared to the reference. When the analysis does 

not control the input data, the reliability and accuracy get better, the difference between the best outcome and 

the reference value is 0.68%. Further, FIR Filter analysis indicated that from 3% to 10% of all samples, the 

Maxima block provided the best outcomes.  



This methodology also applied EVT following the Peak Over Threshold (POT) approach, diversifying 

the input parameters. The outcomes in Bubble Sort pointed POT as irrelevant and unreliable, all cases had a 

bad calculation and no case reached a safe fitting behavior. This work doesn’t investigate what causes this 

problem, letting this topic as a future work.  

Besides that, POT analysis depicted accurate and reliable outcome values for FIR Filter, especially when 

collecting samples with no input control. This scenario pointed that, as more selected samples in analysis, more 

reliable and accurate are the results, it computed a value with 0.52% of difference when compared to reference 

value. In addition, when collecting unique samples, with input control, accuracy and reliability slightly 

decreased, the best outcome had a difference of 3.46% between the reference value and the result.  

Based on this work EVT is a useful and trustable technique to define pWCET. Block Maxima technique 

seems easier and more reliable since both algorithms had proper outcome values. On the other hand, the large 

number of samples required to feed a good Maxima Block is an important limitation to point. Further, this 

work does not investigate whether sample ordering when creating basic blocks affect or not the result.  

On the other hand, Peak Over Threshold seems more complex and limited than Block Maxima. This 

technique presented no reliable outcome for Bubble Sort study-case, further, this work could not point what is 

the cause. Therefore, it is an important problem to point as limitation. However, POT produced reliable and 

accurate results for FIR Filter case, even for analysis controlling input data, when Block Maxima failed.  

 

  



 

8 Future Work 

As future work, the following topics can be addressed in order to extend and explore the proposed work, 

they are: 

• Investigate why Peak Over Threshold failed for Bubble Sort case. The following questions may 

be a good start: 

o Are there limitations in Matlab functions for EVT? How they could affect the analysis? 

o Is the CRPS computation applicable for all scenarios? 

o Considering more samples can fix the problem? 

• Apply this work methodology for different algorithms, e.g. Selection Sort, Merge Sort, and 

heapsort, in order to assure whether the algorithm complexity affects EVT reliability. Also, 

compare Block Maxima and Peak Over Threshold accuracy. 

• Inspect whether the samples ordering affect or not Block Maxima technique. 
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APPENDIX A - IPET Example: Bubble Sort Case 

This section aims to explain all steps on IPET computation for the item 6.2 Bubble Sort Case. 

The following image shows the chosen algorithm’s CFG.  

 

Figure 30  - Buble Sort CFG 

 

According to IPET technique, every basic block has two parameters, time (Ti) and number of 

execution (Ni). To define the basic block WCET is required to multiply this block execution times (𝑁𝑖) 

and its spent time for a unique execution (𝑇𝑖).  The WCET is the maximum summation of the outcomes of 

every block.  

𝑊𝐶𝐸𝑇 = ∑ 𝑁𝑖 ∗ 𝑇𝑖

𝑖∈𝐵𝑎𝑠𝑖𝑐𝐵𝑙𝑜𝑐𝑘𝑠

 

 

𝑊𝐶𝐸𝑇 = 𝑁𝐴 ∗ 𝑇𝐴 + 𝑁𝐵 ∗ 𝑇𝐵 + 𝑁𝐶 ∗ 𝑇𝐶 

+𝑁𝐷 ∗ 𝑇𝐷 + 𝑁𝐸 ∗ 𝑇𝐸 + 𝑁𝐹 ∗ 𝑇𝐹 + 𝑁𝐺 ∗ 𝑇𝐺 

+𝑁𝐻 ∗ 𝑇𝐻 + 𝑁𝑖 ∗ 𝑇𝑖 + 𝑁𝐽 ∗ 𝑇𝐽 

 

All basic block times are known, since instruction number is regarded as time unit in this case. The 

following figure shows the time for all blocks. 

 



 

Figure 31 - The basic blocks times. 

 

Although the time for all blocks are known, the number of execution have to be computed. IPET define 

some rules for this computation: 

• The first block executes only once (NA = 1). 

• The last block executes only once (NJ = 1). 

• The number of times the execution enters a given block is the same number that the execution 

leaves the block. 

Based on that it is possible the compute the block’s number. It regards the numbers of execution for 

every block, as NA, and also the number of transitions among the blocks, as NAB. The IPET equations for this 

CFG are described below: 

𝑁𝐴 = 𝑁𝐴𝐵 

𝑁𝐵 = 𝑁𝐴𝐵 = 𝑁𝐵𝐶 ,                 

𝑁𝑐 = 𝑁𝐵𝐶  +  𝑁𝐼𝐶 = 𝑁𝐶𝐷 + 𝑁𝐶𝐽,               

𝑁𝐷 = 𝑁𝐶𝐷 = 𝑁𝐷𝐸 , 

𝑁𝐸 = 𝑁𝐷𝐸 + 𝑁𝐻𝐸 + 𝑁𝐺𝐸 = 𝑁𝐸𝐹 + 𝑁𝐸𝐼 , 

𝑁𝐹 = 𝑁𝐸𝐹 = 𝑁𝐹𝐺 + 𝑁𝐹𝐻 , 

 𝑁𝐺 = 𝑁𝐹𝐺 = 𝑁𝐺𝐸 , 

𝑁𝐻 = 𝑁𝐹𝐻 = 𝑁𝐻𝐸 , 

𝑁𝐼 = 𝑁𝐸𝐼 = 𝑁𝐼𝐶 , 

𝑁𝐽 = 𝑁𝐶𝐽, 



The first (𝑁𝐴) block and the last (𝑁𝐽) block are executed only once. Besides that, the outer loop blocks 

(𝑁𝐷 , 𝑁𝐼) upper bound is 8 times whereas the inner loop (𝑁𝐹) upper bound is 64. 

𝑁𝐴 = 1,              𝑁𝐵 = 1,                 𝑁𝐷 = 8,             𝑁𝐼 = 8,                   𝑁𝐹 = 64, 

1 =  𝑁𝐴𝐵 , 

𝑁𝐵 = 1 = 𝑁𝐵𝐶 ,                 

𝑁𝑐 =  1 + 𝑁𝐼𝐶 = 𝑁𝐶𝐷 + 𝑁𝐶𝐽, 

8 =  𝑁𝐶𝐷 = 𝑁𝐷𝐸 , 

𝑁𝐸 =  8 + 𝑁𝐻𝐸 + 𝑁𝐺𝐸 = 𝑁𝐸𝐹 + 𝑁𝐸𝐼 , 

64 = 𝑁𝐸𝐹 = 𝑁𝐹𝐺 + 𝑁𝐹𝐻 , 

𝑁𝐺 = 𝑁𝐹𝐺 = 𝑁𝐺𝐸 , 

𝑁𝐻 = 𝑁𝐹𝐻 = 𝑁𝐻𝐸 , 

8 = 𝑁𝐸𝐼 = 𝑁𝐼𝐶 , 

1 = 𝑁𝐶𝐽 , 

After that is possible to replace some variables values and simplify the equation: 

𝑁𝐴 = 1,             

𝑁𝐵 = 1,                  

𝑁𝐶 = 9,               

𝑁𝐷 = 8,                

𝑁𝐸 = 72,              

𝑁𝐹 = 64, 

 𝑁𝐼 = 8,                    

 𝑁𝐺 = 𝑁𝐹𝐺 = 𝑁𝐺𝐸 , 

𝑁𝐻 = 𝑁𝐹𝐻 = 𝑁𝐻𝐸 , 

The number of executions of the blocks NG and NH depends on how mess the vector values are. 

Analyzing the bubble sort algorithm is possible to infer that the worst scenario has decreasing values in vector 

(8, 7, 5, 6, 4, 3, 2 and 1, for example). In this worst-case, the algorithm swaps the values 28 times during 



execution to order the vector. This implies NH = 28 and, hence NG = 36. The Figure 32 shows the number of 

executions for all blocks in the worst-case: 

 

Figure 32 - The number of executions for each block in the worst scenario. Reference: Author 

 

The Table XXIX displays the IPET result and all found values throughout this static analysis 

computation considering the worst-case. This analysis resulted in 826 executed instructions in the worst 

scenario, since this work regards executed instructions as time unit, the WCET is 826.   

Table XXIX - Static analysis for WCET. Reference: Author. 

 

APPENDIX B – EVT for multi-path WCET 

Regarding multiple-path program, the EVT application is direct, although there are three essential 

conditions:  

1) I.i.d. properties are requisite to the resultant distribution from multiple paths. 

2) Each path requires a sufficient number of execution time samples. 

3) The result refers to the observed paths set alone. 



 

A. Independent and identically distributed observations 

 

As in single-path programs, it is important to hold the i.i.d. property for multi-path programs, choosing 

random inputs in the measurement runs and grouping them, or testing all inputs and choosing the outcomes 

randomly when grouping. There is a necessary assumption in which it exists a direct and traceable correlation 

among the taken path, the observation and the input data and state. 

 

B. Minimum Observations Number  

 

EVT does not regard different paths frequencies in the measured samples, since the worst-case path 

dominates the outcome in block maxima approach. Otherwise, a minimum samples number of each path may 

be a requirement to characterize the behavior adequately. Executing each input at least this minimum number 

may ensure this property. 

 

C. Path Coverage 

 

The EVT result is reputable for observed paths only. Untested paths might not be related to the pWCET 

estimates, since the execution time would not compound an identical distribution for those paths. This connects 

the i.i.d. concept to the path coverage achieved by input data. Furthermore, in complex applications, the loops 

and branches combinations increase considerably the number of possible paths during the program. For this 

reason, it is possible to establish a warning on the EVT result, describing it as valid only for the observed paths 

during execution (CUCU-GROSJEAN et al., 2012). 

 

D. EVT Step-by-step for multi-path 

 

The EVT application for multi-path program is very similar to single-path. There is only one difference 

in the first step, during the observations collection (CUCU-GROSJEAN et al., 2012). Each path requires an 

acceptable sample number to characterize its behavior. In other words, the number of paths multiplies the 

sample number required. For instance, it may be viable to start with 100P executions, where P is the number 

of paths. Moreover, it is possible to increase the additional number of observations in each round to P * N∆. 

 

APPENDIX C – Path Upper-Bounding (PUB) 

The Path Upper-Bound (PUB) method extends MBPTA to upper bound for any path in the program 

under analysis, even if the input vector does not induce the worst-case path. PUB extends the original program, 

adding instructions in the different program paths. Therefore, the execution time of any path upper bounds the 

worst-case execution time. However, it uses the extended program only for pWCET analysis time (KOSMIDIS 

et al., 2014).  



PUB estimates the probability of any program path upper bound. Figure 33 compares both MBPTA and 

PUB flows, since the collection step until pWCET estimating. MBPTA provides a pWCET estimating only 

for analyzed paths, as the analysis result may not upper-bound non-exercised paths. On the other hand, PUB 

operates on the original code. It is possible to upper bound the program execution time exercising any path, 

since the method adds instructions in every code branch. Moreover, Kosmidis et al. (2014) propose two PUB 

techniques: Address Merging (PUBam) and Address Aging (PUBaa). 

 

Figure 33 - MBPTA and PUB methodologies. Reference: Kosmidis et al. (2014).  

<Onde está a ref no texto desta figura?> 

 

8.1.1 Address Merging (PUBam) 

This methodology consists of performing the same data accesses regarding the same order in any path 

of a given conditional branch. Figure 34 shows a conditional branch in which the first path accesses the 

addresses @A, @B and @C, while the second accesses the addresses @D and @E. In this case, the PUBam 

proposes to edit the code to ensure a safe worst-case for both paths. PUBam also maintains the relative order 

of accesses. In other words, it respects the sequences @A, @B, @C and also @D, @E. Consequently, there 

are two possibilities for this case: access <@A;@B;@C;@D;@E >, or <@D;@E;@A;@B;@C >, or 

<@A;@D;@B;@E;@C>, but not <@A;@E;@D;@C;@B>. 



 

Figure 34 - Simple Code Replication. Reference: Kosmidis et al. (2014). 

 

To optimize the solution replicating all access in all branches it is possible to avoid unnecessary access 

replications. In order to do that, sequences or addresses replicated in both paths must be identified and not 

copied. The figure 35 shows an example that illustrates how a given if-then-else can be optimized. In this code 

there are three addresses sequences, @A,@C and @C, occurring both in then and else paths. Due to this, there 

is no blank space for those address in the left side column.  

 

Figure 35 - Code identification and replication. Reference: Kosmidis et al. (2014). 

 

Kosmidis et al. (2014) also consider different instructions flows as switch, loop, nested if-then-else and 

if-then (without else) constructs. 



• If-then: Regarding this construct as an if-then-else with an empty else branch, PUB simply adds 

in the else branch the code in the then branch. 

• Switch: Switch constructs may have more than two branches. PUB replies the sequence access 

as in if-then-else, however it does this for all branches. 

• Nested Conditionals: For nested conditional PUB, it may be applied recursively. Figure 36 

shows an example of if-then-else and if-then nested. This figure shows the original code in the 

first column, the inner conditional applying PUB in the second column and the final code in the 

last column. 

• Loops: Access in any branch remains the same in loops, although data cache access may vary 

crosswise iterations. For this reason, branch upper bounding is trustworthy even in this case. It 

is noteworthy mentioning that PUB replicates access only for those that do not access the same 

address in all branches in each iteration. The same occurs when accessing an array content, if 

different branches access the same array in different positions, those accesses must be replicated 

by PUB. 

• Infeasible paths, error codes: In several cases, there is no need to consider some branches in 

pWCET computation. In other words, it is possible to reduce the PUB overhead. For that, the 

user can instruct PUB, by annotations, to not consider instructions in some branches.  

• Operation modes: Software with different, and mutually exclusive, operations modes may be 

upper bounded in every operation mode independently. The user might identify and indicate 

every operation mode code to PUB and provide a path coverage for that mode instead of 

covering all code paths. Switch constructs, for instance, have different modes for each case. 

• Function Calls: when a given branch calls a function, PUB replicates its cache effects to the 

other branches. PUB may use a dummy function that access the same addresses in the same 

order that function call does. Alternatively, it is possible to apply a technique named Address 

Aging. However, if all branches call the same function, there is no need to replicate it. 



 

Figure 36 - Nested If code replication. Reference: Kosmidis et al. (2014). 

 

8.1.2 Address Aging (PUBaa) 

 

PUBam (Address Merging) is less efficient when each branch has different addresses sets to access, 

since PUB copies every accessed address to all branches (KOSMIDIS et al., 2014). Considering a switch with 

10 cases, for instance, if each branch access two different addresses, will result in an extended switch in which 

all branches access 20 addresses. 

To handle it, Kosmidis et al. (2014) propose the Address Aging technique (PUBaa). This method adds 

addresses accessed nowhere else in the code, resulting in missing and fetching useless data, instead of copying 

addresses on all the other branches. The access number PUBaa adds is the maximum number of any branches 

access. Regarding the previous example, instead of copy all the addresses, it adds two unique addresses in each 

branch. Therefore, every branch must have four addresses instead of 20. This still ensures the switch worst-

case, since there are at least two misses occurring in every case. 

PUBaa is potentially more efficient for a higher number of branches. However, for high imbalance and 

a low number of branches, PUBam is more efficient. PUBaa might be applied by using a data structure 

(dummy) and a pointer (next) to ensure that the address is accessed once (dummy[next]). Although it is also 

possible to implement PUBaa with hardware support, creating a special instruction that induces a cache miss, 

causing some data eviction, accessing memory and bringing useless content to cache memory. 

 

APPENDIX D – Extended Path Coverage (EPC) 



Ziccardi et al. (2015) present the Extended Path Coverage (EPC). This technique enhances the MBPTA 

process and results in a valid pWCET for the whole program, even without the worst-case inputs, either the 

full path coverage. EPC regards only measurements on the original program code, unlike PUB. EPC derives 

an execution times collection, which represents all the program paths just counting on basic block measurement 

sets. Therefore, it requires a basic block full coverage. 

In the MBPTA approach, the result is valid only for the paths covered and executions conditions for 

observations collected. EPC, on the other hand, extends the observations set synthetically to get the equivalent 

effect of full path coverage. EPC requires collecting executions time observations, sample set, for every 

program basic blocks.  

Basic block is a code snippet, the smallest unit of sequential code to execute. Measure basic blocks is 

industrially viable since the executions probing overhead might be negligible by adopting trace tools or 

advanced hardware debug interfaces.  

It is possible to make probabilistic execution times for a basic block to be path-independent. EPC 

increases, probabilistically, the probabilistic execution time to balance the benefits that basic blocks may take 

in some cases. As a given traversal path leading to this block, due to history sensitivity of execution, for 

instance. 

Every basic block execution time that is probabilistically path-independent may construct a whole 

program representative collection of execution times, even blocks that input vector do not exercise. The 

execution time observations over basic blocks may not be combined to obtain unobserved path execution time. 

By the way, path-independence is a mandatory requirement. Due to cache-level dependence and core-level 

dependence effects, each observation corresponds only to the executed path during the run.  

EPC copes these dependencies identifying unobserved paths’ probabilistic impact on the observed 

execution times set and it generates an artificially extended set of execution times regarding the entire program. 

MBPTA process might analyze this extended set to define the worst-case. The computed pWCET may be fully 

trustworth, once it is regarded as upper bound, due to the extended measurements obtained by thoroughly 

observing each possible path.  

Figure 37 depicts the EPC and MBPTA processes interactions. The main EPC process steps are (a) 

collecting execution time samples, (b) padding basic blocks and (c) construction of execution time. The 

original observations and the synthetic execution times, which EPC generates, feed the MBPTA process and 

allow it to compute a trustworthy pWCET for any exceedance probability. This pWCET relates to all paths in 

the program and all possible addresses. Furthermore, MBPTA convergence criterion may require synthetic 

measurements or observations. 



 

Figure 37 - EPC interaction with standard MBPTA process. Reference: Ziccardi et al. (2015). 

 

Figure 38 shows the EPC steps applied on a simple program. This program consists of two cascading 

conditional code. The first step collects execution time for individual basic blocks across the paths φ0 and φ2. 

Afterwards, the second step augments the execution times collected for each basic block to turn them into path-

independent. The third step synthetically computes execution time values for all the non-observed paths φ1 

and φ3. 

 

Figure 38 - EPC steps applied on a simple program. Reference: Ziccardi et al. (2015). 

 

The first step is to collect execution times for the program. It is not required to exercise all the paths, 

though it must cover every basic block (bbi) in the program. After extracting timing information for each basic 

block, it is possible to generate an empirical execution time profile EETP(bbi), relating every basic block bbi. 

The second step applies observations Obs(bbi, φ) to all basic blocks and their respective EETP(bbi). Each 

Obs(bbi, φ) is made probabilistically path-independent, denoted Obs+(bbi, φ), by adding a probabilistic 

padding. Augmented observations induce augmented execution time profiles EETP+(bbi). These profiles are 

independent of observed paths and over-approximates every basic block timing behavior on every path in the 

program that passes through it. The last step combines path-independent profiles to define a synthetic execution 

time profile 𝐸𝐸𝑇𝑃(𝜑) for each non-observed path φ. Building blocks in 𝑂𝐵𝑆(𝜑𝑖) computation, regarding φi 

as a program path, they are always valid upper bounds, since using probabilistically path-independent 



EETP+(bbi) ensures it. Feeding a 𝐸𝐸𝑇𝑃(𝜑) complementary set to MBPTA enables it to obtain a valid pWCET 

for all execution paths and for any exceedance probability. EPC application ends and gathers all the artificially 

constructed execution times obtained under different cache placements, randomly generated, and providing 

them to MBPTA. 

 

APPENDIX E – Matlab code examples 

The following code computes GEV for Block Maxima approach in Matlab, the filtering process 

happens before this execution and is provided in a samples.csv file. 

clc; close all; clear all; 

importfile('samples.csv'); 

 

[f,x] = ecdf(data); 

f2 = 1-f; 

paramEsts = gevfit(data); 

paramEsts 

 

location = paramEsts(3); 

scale    = paramEsts(2); 

shape    = paramEsts(1); 

 

p = 1 - gevcdf(x,shape,scale,location); 

 

plot(x,p,x,f2); 

figure; 

qqplot(p,f2); 

xlim([0 1]); 

ylim([0 1]); 

 

% for a better analysis decrease x step  

% This example uses a range between 2570 and 2580 

x = (2570:0.002:2580); 

 

p = 1 - gevcdf(x,shape,scale,location); 



 

p2 = 10^-9; 

figure; 

plot(x,p,x,p2); 

 

The following code computes GP for Block Maxima approach in Matlab, the filtering process happens 

before this execution and is provided in a samples.csv file. 

clc; close all; clear all; 

importfile('samples.csv'); 

 

[f,x] = ecdf(data); 

f2 = 1-f; 

paramEsts = gpfit(data); 

 

scale    = paramEsts(2); 

shape    = paramEsts(1); 

 

p = 1 - gpcdf(x,shape,scale); 

figure; 

plot(x,p,x,f2); 

figure; 

plot(x,f2); 

 

figure; 

qqplot(p,f2); 

 

% for a better analysis decrease x step  

% This example uses a range between 923.64 and 924 

% x = (923.64:0.002:924); 

 

p = 1 - gpcdf(x,shape,scale); 

 

p2 = 10^-9; 



figure; 

plot(x,p,x,p2); 

  



 


