RELACÕES FILOGENÉTICAS ENTRE OS GOLFINHOS DA FAMÍLIA DELPHINIDAE (MAMMALIA: CETACEA)

IGNACIO BENITES MORENO

2008
Relações filogenéticas entre os golfinhos da família Delphinidae

Ignacio Benites Moreno

Orientador: Dr. Roberto Reis

TESE DE DOUTORADO
PORTO ALEGRE – RS – BRASIL
2008
"far better an approximate solution to the right question ... than an exact answer to the wrong question, which can always be made precise"

[Tukey, J.W. 1962]
<table>
<thead>
<tr>
<th>SUMÁRIO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMÁRIO</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATÓRIA</td>
<td>v</td>
</tr>
<tr>
<td>AGRADECIMENTOS</td>
<td>vi</td>
</tr>
<tr>
<td>LISTA DE FIGURAS</td>
<td>xiii</td>
</tr>
<tr>
<td>LISTA DE TABELAS</td>
<td>xiv</td>
</tr>
<tr>
<td>RESUMO</td>
<td>xv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xvi</td>
</tr>
<tr>
<td>APRESENTAÇÃO</td>
<td>xvii</td>
</tr>
<tr>
<td>CAPÍTULO 1</td>
<td>1</td>
</tr>
<tr>
<td>Histórico do problema</td>
<td>2</td>
</tr>
<tr>
<td>Espécies estudadas</td>
<td>9</td>
</tr>
<tr>
<td>Bibliografia</td>
<td>13</td>
</tr>
<tr>
<td>CAPÍTULO 2</td>
<td>16</td>
</tr>
<tr>
<td>MORPHOLOGICAL PHYLOGENY OF THE DELPHINIDAE (MAMMALIA: CETACEA)</td>
<td>16</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>18</td>
</tr>
<tr>
<td>MATERIAL AND METHODS</td>
<td>25</td>
</tr>
<tr>
<td>Taxon selection</td>
<td>25</td>
</tr>
<tr>
<td>Character selection</td>
<td>27</td>
</tr>
<tr>
<td>Cladistic analysis and search strategies</td>
<td>28</td>
</tr>
<tr>
<td>RESULTS</td>
<td>35</td>
</tr>
<tr>
<td>Character description</td>
<td>35</td>
</tr>
<tr>
<td>Cladistics</td>
<td>36</td>
</tr>
<tr>
<td>Taxonomic account</td>
<td>36</td>
</tr>
<tr>
<td>Family diagnoses</td>
<td>36</td>
</tr>
<tr>
<td>Subfamily diagnoses</td>
<td>37</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>42</td>
</tr>
<tr>
<td>Delphinid phylogeny: proposal for classification changes</td>
<td>45</td>
</tr>
<tr>
<td>Orcininae, Orcinae and Peponocephalinae</td>
<td>45</td>
</tr>
<tr>
<td>Lissodelphininae and Lagenorhynchinae</td>
<td>47</td>
</tr>
<tr>
<td>Steninae</td>
<td>50</td>
</tr>
<tr>
<td>Delphininae</td>
<td>51</td>
</tr>
<tr>
<td>The problematic Stenella and Tursiops</td>
<td>53</td>
</tr>
<tr>
<td>Delphininae + Leucopleurus acutus</td>
<td>58</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>62</td>
</tr>
</tbody>
</table>
DEDICATÓRIA

Dedico este trabajo a mis viejos, mis queridos viejos, Cristina e Ignacio que nunca pensaron dos veces para darme todo lo necesario para que pueda llegar más lejos!
AGRADECIMENTOS

Como ninguém faz nada sozinho e durante estes anos de doutorado eu tive a felicidade de contar com a ajuda de muitas pessoas, nada mais justo do que relembrar alguns desses momentos. Todas as pessoas abaixo citadas são de grande importância pra mim e me ajudaram das mais diversas formas, não só com assuntos relacionados à tese, mas também com amizade, carinho e aquela mão amiga nas horas difíceis.

Ao meu Orientador, Prof. Dr. Roberto Reis, que acreditou nesta loucura e me ajudou desde o começo e em várias etapas do desenvolvimento deste trabalho.

À minha família, pelo constante apoio e incentivo para que pudesse me dedicar a fazer da minha profissão a coisa que mais gosto de fazer na vida além de me ajudarem de todas as formas para que eu pudesse chegar até aqui. Para Cristina e Ignacio, Francisco e Mari, e Loli, Marcos e Gael, meu muito obrigado, obrigado mesmo!

Aos grandes amigos de longa data e companheiros do GEMARS, Daniel Danilewicz Schiavon, Márcio Borges Martins, Larissa Rosa de Oliveira, Paulo Henrique Ott, Maurício Tavares, Cariane Campos Trigo e Sue Bridi Nakashima sem os quais este trabalho não passaria de um sonho. Meu muito obrigado pela ajuda no campo, no escritório, e nas mais diversas discussões sobre os cetáceos e a vida. Meu muito obrigado por compartilhar o sonho de trabalhar com mamíferos marinhas mesmo morando em Porto Alegre.

Aos estagiários do Gemars, Rodrigo Machado, Janaína Carrion Wickert, Raquel Almeida, Amanda Baron Di Giacomo, Daniela Hoss da Silva, Federico Sucunza Perez, Gisele Musskopf e Jonathas Barreto que ajudaram na preparação do material osteológico dos golfinhos e em outras importantes etapas deste trabalho.

Aos colegas e amigos do Laboratório de Ictiologia do Museu de Ciências e Tecnologia da PUCRS, Alexandre Cardoso, José Pezzi da Silva, Vinicius Bertaco, Edson E. Pereira, Viviane Santana, Pablo Lehman, Tiago Carvalho, Barbara
Calegari, Fernando Jerep, Fernanda Mayer, Nathalya Porciúncula e Mariangeles Arce pelo auxílio, paciência e amizade durante estes anos de excelentes convivência no laboratório. Além disso, pelas conversas, dicas e discussões sobre caracteres, conceitos de espécies, taxonomia, filogenia, cervejas, etc...

Aos professores do Laboratório de Ictiologia do Museu de Ciências e Tecnologia da UFRGS, Carlos Lucena, Margarete Lucena e Luis Roberto Malabarba, pelo grande apoio nestes anos e por tornar tudo muito mais fácil.

Um obrigado especial a Maria Luiza Moreira por fazer com que toda a burocracia que rodeia um pós-graduando seja uma tarefa muito simples é fácil! Muito obrigado por toda a tua ajuda!

Eu gostaria de agradecer ao Prof. Dr. Ewan Fordyce que me recebê em Dunedin, na Nova Zelândia e literalmente me abriu as portas do seu laboratório e me fez conhecer o novo mundo dos fósseis. Além disso, me facilitou muito a vida, mostrando caminhos, e muitas vezes os atalhos que só ele sabia, e por ter me ensinado muito sobre anatomia e evolução dos cetáceos. Além de um excelente profissional foi um ótimo amigo ajudando no dia a dia na Nova Zelândia e mostrando que a vida é tão importante quanto a pesquisa! Dear Ewan, thanks a lot for all your help!

Um muito obrigado aos colegas do Departamento de Geologia da Universidade de Otago que me ajudaram muito durante a minha estadia por lá. Desde conversas sobre evolução e teorias geológicas, até os jogos de futebol onde acabei me tornando um dos craques do time! Muito, muito obrigado ao Claudio Tapia, Daniel Thomas, Tatsuro Ando, Bob Dagg, Giulia Airoldi, Ray Marx, James Scott e Rob Deward.

Gostaria também de agradecer aos funcionários do departamento de Geologia da Universidade de Otago por realmente tornar tudo bem mais fácil e amigável, desde a burocracia até as configurações do computador! Um obrigado especial a Adrien Dever, Kay Swann, John G. Williams, Rick, Damian J. Walls, Mike W. Trinder e Alan F. Cooper.
A viagem a Nova Zelândia me permitiu conhecer alguns pesquisadores que me ensinaram muito com seus conhecimentos paleontológicos, meu muito obrigado a Nick Pyenson (USA), Hiroto Ichishima (Japão), Gerardo Gonzáles Barba (México) e Erich M. G. Fitzgerald (Austrália) por compartilhar o conhecimento e principalmente pela amizade.

Também sou muito grato aos pesquisadores que me receberam em suas coleções e, além disso, me ofereceram casa, comida, conhecimento e diversão. Muito obrigado ao mágico, ator e collection manager do Museum of New Zealand (NMNZ), Anton van Helden que nos recebeu de portas abertas em Wellington duas vezes e foi incrível! Sou muito grato também à Dra. Catherine Kemper, curadora da coleção de mamíferos do South Australian Museum (SAM) e seu marido Graham que nos receberam em Adelaide como se fossemos amigos de longa data!

A viagem à Nova Zelândia, também serviu para fazer grandes amizades com pessoa maravilhosas, que nos acolheram lá e nos fizeram sentir em casa quando a saudade apertava ou quando as coisas ficavam difíceis. A special thanks to Ewan e Marilyn Fordyce for make everything easier and for all the support! A Carola y Claudio, que hicieron con que los últimos 6 meses en Dunedin pasasen al tiro, huevón (infelizmente). Muchas gracias por todo, por las cenas con excelente comida y vinos de la mejor calidad. Muchas gracias por los viajes, por los campings de Purakanui, por los asaditos y por la linda amistad que nos dieron! A special thanks to Haggen, Sabine and their lovely family. Thanks very much for all the fun, the trips, the beers and the friendship! Muchas gracias también a Lucia y Juan por toda su amistad y ayuda que nos dieron en Dunedin. Muito obrigado também a Flávia e ao Shane pela amizade e as festas em Dunedin, sem falar no melhor carnaval dos últimos anos! Ao Rick e a Sophia por toda a ajuda em Dunedin e por nos tirar de casa e nos mostrar que não tínhamos que esperar pelo bom tempo para fazer alguma atividade outdoor.

Ao Maverick Group Ltd. (http://www.maverickgroup.co.nz/) em nome do seu diretor Rick Kelty e do professor Michael Moxham que corrigiram gramaticalmente e estruturalmente parte do texto da tese.

Sou muito grato ao Dr. William F. Perrin que me recebeu no seu laboratório para uma rápida visita em 2005 e foi extremamente prestativo e amigável, mostrando-me alguns caracteres morfológicos não publicados e ajudando-me com bibliografia. Sou extremamente grato também ao Daniel Cervelin que me recebeu em San Diego e foi mais do que um amigo, foi um verdadeiro irmão, me ajudando de maneira incrível! Nos 45 dias que estive na Califórnia o Martin, O Carlos a Maria Olga e a Nathalia Ojuez foram mais do que amigos, foram minha família! Agradeço também a Josefina e o David por toda a ajuda em San Diego!

David Jeniger ajudou incrivelmente com bibliografia, derrubando as barreiras que nos separam do primeiro mundo, mandando, via e-mail, uma quantidade enorme de artigos que não estavam disponíveis nos nossos bancos de dados nacionais! Valéria Crowder também me ajudou com algumas bibliografias disponíveis na Inglaterra.

Aos amigos do CECLIMAR/UFRGS, que não mediram esforços para ajudar no nosso trabalho. Meu muito obrigado à Norma Würdig, João Carlos Coimbra, Luiz Paulo Cunha, Carla Ozório, Lizete, Estela, Ângelo, Edson, Neusa, Cláudio, Marlene, Pedroso, Loreci, Osvaldo e Ruth.

Os projetos desenvolvidos pelo GEMARS receberam, ultimamente, o apoio financeiro do Conselho Nacional de Desenvolvimento Tecnológico e Científico (CNPq), da Cetacean Society International (SCI), da Yacupacha Foundation e do Fundo nacional do Meio Ambiente (MMA-FNMA), que permitiram que durante todos estes anos de trabalho no litoral Norte do Rio Grande do Sul pudéssemos
coletar e manter uma das maiores coleções de mamíferos marinhos do Brasil que foi essencial para o desenvolvimento desta tese.

Gostaria de agradecer ao CNPq pela bolsa de doutorado que me permitiu dedicação total aos meus estudos. A CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) que me concedeu uma bolsa de doutorado sanduíche por nove meses para meus estudos na Nova Zelândia sem os quais este trabalho jamais poderia ter sido realizado. A realização deste trabalho contou também com o apoio financeiro da American Society for Mammalogy através do “The Latin American Student Field Research award”, sem este apoio, este trabalho não poderia ter sido desenvolvido. A University of Otago também ajudou com recursos financeiros, através do Prof. Dr. Ewan Fordyce, para permitir a minha vista à coleção do Museum of New Zealand enquanto estava em Dunedin.

Para poder concluir a minha tese foi essencial a visita ao National Museum of Natural History (NMNH). Para tanto, eu contei com o apoio incondicional do Charles Potter e o Jim Mead. Além disso, eu recebi do Smithsonian Institution, o “Short-Term Visitor Award” que cobriu todos os meus gastos de transporte e estadia em Washington durante 45 dias. Sou grato a Mary Sangrey que me recebeu no museu e literalmente me mostrou todos os caminhos, alem de ser uma pessoa maravilhosa e amiga. Charles Potter e Jim Mead foram mais que collection manager e curador respectivamente, foram amigos e me ajudaram de todas as maneiras possíveis com dicas, muito conhecimento e bibliografia. Jim Mead contribuiu de maneira incrível para a minha biblioteca com livros e obras raras que jamais pensei que iria conseguir. David Bohaska também me ajudou muito com a bibliografia e outras questões no museu. Mizuki Murakami foi uma ótima companhia durante cansativos dias de trabalho na coleção no NMNH, trocando idéias, músicas e bibliografia rara. Meu muito obrigado a todos!

Agradeço também a Juliana Coura e Alexandre Gonçalves por toda a ajuda, amizade e diversão que me proporcionaram em DC, nos raros momentos que não estava enfurnado na coleção do museu. Sou muito grato também a Christina Gebhard e Brian Schmidt por me acolherem em Washington e me oferecerem muito mais do que um quarto, muito obrigado por toda a ajuda durante a minha estadia em DC.
Quero agradecer também a Marlene (sogrinha), ao Francisco (sogrão) e ao Vinicius e a Carla, por me acolherem na família e por todo o apoio e amizade que me deram nestes quatro anos!

E por último, mas não menos importante, quero agradecer a Bita, incansável namorada, companheira, mulher e amiga, que apareceu na minha vida e só me trouxe alegrias. Ela fez com que nestes longos anos de doutorado, que se misturam com a vida de casado, a vida fosse muito mais alegre e divertida. A Bita, que me ouviu e prestou atenção quando eu falava das árvores mais parcimoniosas, das relações filogenéticas dos golfinhos, do zigomático do esquamosal e do Plioceno, com a mesma alegria com que compartilhou comigo os momentos felizes que passamos juntos nestes anos todos! Muito obrigado!!!

A todos vocês, meu muito obrigado!!!
Apoio Institucional:

Museu de Ciências e Tecnologia
PUCRS

University of Otago

Gemars

Te Whare Wānanga o Otago

NEW ZEALAND

Apoio Financeiro:

American Society of Mammalogists

The Latin American Student Field Research award

Smithsonian Institution

National Museum of Natural History
Short-term visitor award

Bolsas:

CNPq
Conselho Nacional de Desenvolvimento Científico e Tecnológico

Capes
LISTA DE FIGURAS

Figure 1 - The term of the orientation of the skull in dolphins. The skull of *Feresa attenuata* (USNM 550389, condylobasal length=CBL= 350.16). a - lateral view (left side), b - dorsal view. .. 30

Figure 2 - The skull of dolphin with osteological nomenclature. *Peponocephala electra* (USNM 504948, CBL=350.16). a - lateral view, b - dorsal view, c - ventral view. ... 31

Figure 3 - Right tympanic bone with osteological nomenclature. *Pseudorca crassidens* (NMNZ 2045, tympanic length=52.08). a - ventral view, b - dorsal view, c - lateral view, d - posterior view. ... 32

Figure 4 - Right periotic bone with osteological nomenclature. *Pseudorca crassidens* (NMNZ 2045, petrosal length=49.08). a - ventral view, b - dorsal view, c - lateral view, d - posterior view. ... 32

Figure 5 - Classifications of Delphinidae family at genus and subfamily levels. Note that the classifications are schematic in this illustration to show the suggested families and do not intend to depict relationships among the subfamilies. In the classification e, the polyphyle of *Cephalorhynchus* and *Lagenorhynchus* is exposed. (Modified from Caballero et al. 2008)............. 44
LISTA DE TABELAS

Table 1 - Classification of the living Delphinids, to the level of subspecies or populations (Modified from Reeves et al. 2003) ... 20

Table 2 - Morphological and molecular Delphinidae classification* 23
RESUMO

A família Delphinidae é a mais diversa entre os Cetáceos existentes possuindo uma grande variedade de morfotipos. Até o presente momento são reconhecidos 17 gêneros e pelo menos 37 espécies. A diversidade e a presente abundância de delfinídeos está relacionada com a rápida evolução que provavelmente ocorreu no Plioceno. A abrupta radiação dos delfinídeos durante o Plioceno é um fenômeno notável na evolução dos cetáceos. Durante este período, um declínio global da temperatura pode ter resultado em mudanças de habitats e na substituição dos kentriodontídeos pelo delfinídeos modernos. Até o presente momento não existe consenso sobre as divisões dentro dos Delfinídeos e a utilização atual das distintas subfamílias tem sido baseada em Delphinus (Delphininae), Steno (Steninae), Lissodelphis (Lissodelphininae), Cephalorhynchus (Cephalorhynchinae), e Globicephala (Globicephalinae). Estes grupos estão baseados principalmente em julgamentos fenéticos de apenas uma linha de evidência (e.g. músculos nasofaciais, seis da região do basicrânio, ou timpanoperiótico) e têm resultado em classificações contraditórias. Neste estudo, 147 caracteres morfológicos de 42 espécies de odontocetos recentes foram codificados através do exame direto dos exemplares. O grupo interno contou com o total de 35 diferentes OTUs (31 espécies + 3 subespécies + 1 população). Todos os 17 gêneros de delfinídeos estiveram representados com pelo menos uma espécie na presente análise. Esta é a primeira tentativa de produzir uma análise cladística dos delfinídeos utilizando morfologia com uma abrangente base de dados (crânio, timpanoperiótico, morfologia externa e coloração). Aproximadamente 57 caracteres são originais deste estudo. A análise da matriz com 147 caracteres e 43 táxons resultou em quatro árvores mais parcimoniosas de iguais tamanhos com o comprimento de 1034 passos. A árvore de consenso estrito revelou duas politomias. A primeira envolve as relações entre as três famílias de Delphinoidea (Monodontidae, Phocenidae e Delphinidae), e a outra refere-se às relações de Lagenorhynchus acutus dentro de Delphinidae. A monofilia das três famílias de Delphinoidea foi comprovada. As famílias Monodontidae e Phocenidae foram corroboradas com cinco sinapomorfias exclusivas cada, enquanto a família Delphinidae por quatro. Neste estudo demonstrou-se que os “blackfish” formam um grupo no polifilético que deve ser dividido em três subfamílias (Orcininae, Orcaellinae e a nova subfamília). Uma outra nova subfamília, Lagenorhynchinae, deve ser criada, para Lagenorhynchus albirostris. Neste estudo, a monofilia de Lissodelphininae foi também registrada com 10 espécies em três gêneros. Neste estudo, um bom suporte para Steninae foi encontrado, com Sousa profundamente agrupado nesta subfamília. Leucopleurus acutus agrupou-se na subfamília Delphininae. A subfamília Delphininae deve incluir apenas os gêneros Delphinus, Leucopleurus, Lagenodelphis, Stenella, “Stenella” longirostris e Tursiops. Os resultados obtidos através da morfologia são promissores. Este estudo demonstrou que uma análise cladística abrangente pode ajudar a entender as conturbadas relações entre os delfinídeos.
MORPHOLOGICAL PHYLOGENY OF THE DELPHINIDAE

ABSTRACT

The family Delphinidae is the most diverse among all living Cetacea and includes many distinct morphotypes. At the moment, 17 genera and approximately 37 species are recognized in the family. The diversity and present abundance of delphinids are related to the explosive evolution that probably occurred in the Pliocene. The abrupt radiation of delphinids in the Pliocene is a remarkable phenomenon in cetacean evolution. This period matches a global temperature decline that likely resulted in habitat changes and ecological replacement of kentriodontids by modern delphinids. There is still no consensus about subdivisions within the Delphinidae, and the current use of subfamilies is based around *Delphinus* (Delphininae), *Steno* (Steninae), *Lissodelphis* (Lissodelphininae), *Cephalorhynchus* (Cephalorhynchinae), and *Globicepha* (Globicephalinae). These groups were based mostly on phatic judgments of one single line of evidence (e.g. nasofacial muscles, basicranial sinuses, or tympanoperiotic) and resulted in contradictory classifications. In this study, 147 morphological characters from 43 living Odontocetes were codified by direct examination of specimens. The ingroup thus totals 35 different OTUs (31 species + 3 subspecies + 1 population). All of the 17 genera of the Delphinidae are represented by at least one species. This is the first attempt to produce a cladistic analysis of the Delphinidae using morphology with a comprehensive data set (skull, tympanoperiotic, external morphology and coloration). Approximately 57 of the 147 characters are original to this work. The analysis of the 147 character matrix with 43 taxa resulted in four equally most parsimonious trees with a length of 1034 steps. A strict consensus of the four primary trees revealed only two polytomies. The first involves the relationships of the three families in Delphinoidae (Monodontidae, Phocoenidae and Delphinidae), while the other refers to the relationships of *Lagenorhynchus acutus* within the Delphinidae. The monophyly of the three families of Delphinoida was recovered. The families Monodontidae and Phocoenidae were supported by five exclusive synapomorphies each. The family Delphinidae was supported by four exclusive synapomorphies. This study shows that the former group called "blackfish" is polyphyletic and should be split in three subfamilies: (Orcininae, Orcaellinae and a new subfamily). Another new subfamily, Lagenorhynchinae, should be created to place *Lagenorhynchus albirostris*. This study recovered a Lissodelphininae monophyletic with 10 species in three genera. In this study, a well supported Steninae was found, with *Sousa* deeply nested in the subfamily clade as the sister group to *Sotalia*. *Leucopleurus acutus* is nested within the subfamily Delphinidae. The subfamily Delphininae should include only the genera *Delphinus*, *Leucopleurus*, *Lissodelphis*, *Stenella*. "*Stenella* longirostris" and *Tursiops*. The morphological results presented here are promissory. This study makes clear that a comprehensive cladistic analysis can help to resolve the relationship within delphinids.
APRESENTAÇÃO

Esta tese está sendo apresentada segundo as Normas do Programa de Pós-Graduação em Biociências da Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS.

A dissertação está estruturada inicialmente com um breve histórico do problema estudado e um artigo científico como principal parte da tese. As tabelas e figuras que fazem parte do artigo encontram-se inseridas no decorrer do texto, e sempre que possível, logo a seguir da primeira citação, visando facilitar a leitura do mesmo. Foram incluídos alguns anexos no final do artigo. Estes anexos, provavelmente não serão incluídos no trabalho científico. Entretanto, visam ajudar os leitores a ter uma melhor compreensão do trabalho.

O periódico escolhido foi o Jornal of Mammalian Evolution, publicação trimestral da Society for the Study of Mammalian Evolution e foi redigido em inglês.

O artigo foi redigido, seguindo as normas que constam nas Instruções para autores do periódico, as quais se encontram em anexo (separados do corpo da tese conforme as regras do programa).
HISTÓRICO DO PROBLEMA

FAMÍLIA DELPHINIDAE

Iggy trabalhando no South Australian Museum. Foto Fabiane Fonseca
HISTÓRICO DO PROBLEMA

A Ordem Cetacea é representada por mamíferos extremamente adaptados à vida aquática. Atualmente, existem cerca de 86 espécies, divididas em duas sub-ordens diferenciadas, basicamente, pelo modo de alimentação e pelas estruturas morfológicas associadas a este tipo de hábito: a dos Mysticeti (misticetos), que apresentam estruturas córneas chamadas cerdas bucais; e a dos Odontoceti (odontocetos), os quais são providos de dentes (Jefferson et al. 2008). Seus ancestrais terrestres parecem estar relacionados a ungulados primitivos (Mesonychidae), que viveram no Cretáceo e Paleoceno e deram origem, no Eoceno, há aproximadamente 50 milhões de anos, aos primeiros cetáceos, já extintos. Eles apresentavam características intermediárias entre seus ancestrais terrestres e os cetáceos atuais, dentre elas o corpo serpentinaforme, heterodontia e o orifício respiratório localizado num ponto intermediário entre o extremo do rosto e a região dorsal da cabeça.

Entre os grupos atuais, os artiodáctilos são, geralmente, citados como grupo irmão de Cetacea, baseado em dados morfológicos e em dados moleculares (Geisler & Uhen 2003; Boisserie et al. 2005; Price et al. 2005; e.g. May-Collado & Agnarsson 2006; Agnarsson & May-Collado 2008) Entretanto, diferentes conjuntos de dados, tanto morfológicos, quanto moleculares, têm encontrado diversas relações filogenéticas entre os cetáceos e os ungulados e, até o presente momento, esse parece ser um assunto ainda por resolver (Berta et al. 2006).

As relações filogenéticas entre as subordens de Cetacea são ainda controversas. Alguns autores afirmam, baseados em dados moleculares do

A subordem Odontoceti inclui oito famílias: Ziphiidae (baleias de bico), Physeteridae (cachalote e cachalotes pigmeus), Platanistidae (golfinhos de rio Asiáticos), Iniidae (boto-coro-de-rosa e toninha), Lipotidae (bajis), Phocoenidae (marsopas), Monodontidae (narwhal e beluga) e Delphinidae (botos, golfinhos, baleias-piloto e orca) (figura 1) (Fordyce et al. 1994). Tanto estudos moleculares, quanto morfológicos suportam a existência de uma superfamília, denominada Delphinoidea (sensu de Muizon, 1988) que agrupa as famílias Delphinidae, Phocoenidae e Monodontidae (de Muizon 1988; Fordyce & Barnes 1994; Fordyce et al. 1994; Waddell et al. 2000; Gygax 2002; Nishida et al. 2003; May-Collado & Aagnarsson 2006).
Figura 1 – relações filogenéticas entre os odontocetos
Imagem: http://paleo.gly.bris.ac.uk/PalaeoFlies/whales/odontoceti.htm

Apesar dos vários estudos realizados, visando entender as relações filogenéticas entre os cetáceos, em nível de ordem e subordens, poucos foram focalizados em resolver as relações filogenéticas entre as famílias ou, mesmo, entre as espécies de cetáceos. Recentemente, foi realizado um estudo baseado em caracteres moleculares para verificar as relações filogenéticas na Superfamília Delphinoidea (Waddell et al. 2000). Um estudo mais detalhado, baseado unicamente em caracteres moleculares, foi realizado por Rosel et al. (1995) para verificar as relações filogenéticas na família Phocoenidae.

Apesar do conhecimento de que muitos gêneros dentro da família Delphinidae são, de fato, agrupamentos artificiais, até o presente momento não existe uma hipótese bem resolvida das relações filogenéticas entre as espécies da família Delphinidae (LeDuc 2002; Perrin 2002c; Perrin et al. 2007).

Atualmente há muita incerteza acerca das relações evolutivas entre as espécies de Delphinidae. Embora as classificações apresentadas ao longo dos
anos tenham diferido em um nível taxonômico (e. g. o arranjo da família em subfamílias), a composição de gêneros tem mudado pouco desde os estudos de Flower (1884) e True (1889) (Le Duc et al. 1999). Esta estabilidade taxonômica, ao longo dos últimos séculos, pode parecer resultante bem resolvida inferência filogenética sobre as inter relações das espécies. Entretanto, sabe-se que esse não é o caso e mudanças na classificação têm sido muito incomuns apesar de necessárias. Estudos rigorosos de análises cladísticas em cetáceos, utilizando dados morfológicos, têm sido raros. Dois trabalhos sobre as relações filogenéticas utilizando caracteres morfológicos em Delphinidae foram desenvolvidos sem utilizar, contudo, metodologia cladística (de Muizon 1988; Barnes 1990), porém poucos caracteres foram utilizados, as metodologias não foram descritas, e a monofilia de vários gêneros foi assumido, mas não testado (Le Duc et al. 1999).

Como salientado por vários autores (Le Duc et al. 1999; Le Duc 2002), sabe-se que a classificação tradicional da família Delphinidae não é congruente com as principais hipóteses de relacionamento, uma vez que alguns gêneros, como
Stenella e Tursiops, não são monofiléticos. Segundo Perrin (2002a), é necessário que se sejam feitos trabalhos utilizando a análise cladística do grupo, principalmente com caracteres morfológicos uma vez que nenhum estudo nesse sentido foi realizado (Perrin 2002a, b).

Superfamília Delphinoidea

A super família Delphinoidea contém três famílias extintas (Odobenocetopsidae, Alberidontidae e Kentriodontidae) (Fordyce et al. 1994). As duas primeiras famílias consistem em poucos fósseis conhecidos e com poucas espécies. Os fósseis de alguns kentriodontídeos são diversos e estão localizados basalmente dentro de Delphinoidea (Barnes 2002). Outras três famílias atuais estão presentes: Delphinidae, Phocoenidae e Monodontidae. Estas três famílias representam mais de 50% da diversidade de cetáceos atuais abrangendo 23 gêneros e 44 espécies (Jefferson et al. 2008). Esta superfamília parece ser monofilética, porém os dois eventos que deram origem as três famílias parecem ter ocorrido em um espaço de tempo muito pequeno, por isso as relações entre essas três famílias permanecem ambíguas (Milinkovitch et al. 1994).

Família Delphinidae

A família Delphinidae surgiu entre o meio e o fim do Mioceno (10-12 milhões de anos), e rapidamente, irradiou-se em diferentes formas morfológicas (LeDuc 2002, Barnes 2002). A família Delphinidae, com cerca de 37 espécies, em 17 gêneros, é a mais numerosa e diversa dentro da ordem Cetacea (Berta et al. 2006). Este agrupamento apresenta uma distribuição em todos os oceanos do mundo, ocorrendo, inclusive, em algumas bacias hidrográficas. A família apresenta uma diversa gama de variação morfológica e ecológica, incluindo
espécies de pequeno tamanho (1,5 m) até animais com mais de 9,0 m de comprimento total. Neste grupo, a diversidade morfológica é acentuada e animais com rostro longo e bem demarcado são comuns assim como espécies sem rostro visível ou de rostro curto. O número de dentes varia bastante dentro da família: algumas espécies não possuem mais do que 14 dentes no total (maxila e mandíbula) enquanto outras possuem mais de 200. Esta diversidade está relacionada com os hábitos alimentares, que variam desde espécies generalistas, passando por predadores de amplo espectro até animais que se alimentam exclusivamente de cefalópodes. Todos os representantes desta família são facilmente identificados pela osteologia craniana, especialmente por possuírem uma assimetria no vertex e na região nasal, pelo basicrânio e pelo periótico (Berta et al. 2006). A presente abundância de delfinídeos é aparentemente resultado da evolução explosiva que provavelmente ocorreu no final do Plioceno (3,5 m.a.) ou anteriormente no Mioceno superior, a partir da substituição dos primitivos kentriodontídeos, focenídeos e monodontídeos. Este incrível surgimento e diversificação da família Delphinidae no Plioceno é um dos mais notáveis fenômenos na evolução dos cetáceos (Barnes 2002, Berta et al. 2006).

A família Delphinidae é representada por nove gêneros supostamente monotípicos, cinco que possuem duas espécies e apenas três que possuem mais do que duas espécies (tabela 1) (Reeves et al. 2003). Até o presente momento existem muitas incertezas sobre as relações evolutivas entre as espécies desta família (LeDuc 2002). Não existe também consenso entre o número de subfamílias existentes já que estudos morfológicos não cladísticos apontam seis subfamílias (Perrin 1989) e estudos moleculares cinco (e.g. LeDuc et al. 1999). Recentemente, Buchholtz & Schur (2004) apresentaram uma classificação de

Família Phocoenidae e Monodontidae (grupos externos)

ESPÉCIES ESTUDADAS

Classe Mammalia LINNAEUS, 1758
Ordem Cetacea BRISSON, 1762
Subordem Odontoceti FLOWER, 1867
Família Delphinidae GRAY, 1821
Gênero tipo: Delphinus

Gênero Cephalorhynchus Gray, 1846
- Cephalorhynchus commersonii (Lacépède, 1804) – Golfinho-de-Comerson
Existem duas populações separadas por 130° de longitude. Os animais das ilhas Kerguelen diferem marcadamente dos animais que habitam o extremo sul da América do Sul. Na América do Sul eles são encontrados até mais ou menos 42°45’S (Ilha de Chiloé) no lado do Oceano Pacífico e podem chegar até a costa do Rio Grande do Sul no lado do Atlântico.
- Cephalorhynchus eutropia (Gray, 1846) – Delfin Chileno
Endêmico da região do sul da América do Sul distribuído desde Valparaíso até a Isla Navarino no Chile.
- Cephalorhynchus heavisidii (Gray, 1828) – Haviside’s dolphin
Comumente encontrado nas águas costeiras da África sul ocidental ocorrendo desde a Namíbia (17°09’S) ao sul de Cape Point (34°21’S).
- Cephalorhynchus hectori (P.-J. van Béneden, 1881) – Hector’s dolphin
Golfinho endêmico das águas costeiras da Nova Zelândia.

Gênero Steno Gray, 1846
- Steno bredanensis (G. Cuvier in Lesson, 1828) – Golfinho-de-dentes-rugosos
Espécie de hábitos tropicais e temperados de todos os oceanos do mundo. Ocorre em águas oceânicas e ao longo da plataforma continental e também em águas costeiras.

Gênero Sousa Gray, 1866
- Souza teuszi (Kükenthal, 1892) – Atlantic humpback dolphin
Encontra-se distribuído na costa Oeste Africana desde Dakhla (23°54’N) em Sahara até o Arquipélago dos Bijagós (11°13’N) na Guinea-Bissau. Encontrado também na Nigéria e Camarões.
- Souza plumbea (G. Cuvier, 1829) – Indian humpback dolphin
Distribuído nas águas costeiras do Oceano Índico desde False bay (18°30’E), em Cape Province em direção norte ao longo da costa leste da África, incluindo Madagascar. Ocorre no Mar Vermelho até o Golfo de Suez, ocorre também no mar da Arábia e no Golfo Pérsico. Ocorre na costa asiática até pelo menos a Baía de Bengai. Eventualmente foram encontrados no rio Ganges a 250km do mar. Sua ocorrência no Mediterrâneo está relacionada com a passagem pelo Canal de Suez (passagem criada por influência antropogênica).
- Souza chinensis (Osbeck, 1765) – Pacific humpback dolphin
Esta espécie encontra-se descontinuamente distribuída no Oceano Pacífico Ocidental. Ocorre no sul da China, incluindo Taiwan. Podem subir o Rio Yangtze até a localidade de Wuhan (1.200km do mar). Ocorrem também no Golfo da
Tailândia, o Estério de Malacca, na costa nordeste de Borneo e na costa nordeste do Oeste da Austrália.

Gênero Sotalia Gray, 1866
- *Sotalia fluviatilis* (Gervais & De ville, 1853) – boto-cinza, tucuxi
 Espécie exclusivamente observada em água doce. Habita a Bacia Amazônica e seus principais tributários.
- *Sotalia guianensis* (P.-J. van Bénéden, 1864)
 Distribui-se desde a Bahia Norte em Santa Catarina até o Panamá, é uma espécie costeira que habita principalmente águas estuarinas.

Gênero Tursiops Gervais, 1855
- *Tursiops truncatus* (Montagu, 1821) – Boto, golfinho-nariz-de-garrafa
 Espécie amplamente distribuída em todos os mares do mundo. Ocorre principalmente em águas tropicais e temperadas. Duas populações são reconhecidas, uma oceânica e outra costeira.
- *Tursiops aduncus* (Ehremerberg, 1833) – Indian Ocean bottlenose dolphin
 Esta espécie ocorre na costa da oeste África desde Cape Province até o Mar vermelho. Ocorre também no Golfo Pérsico, Mar da Arábia, Bahia de Bengal até o Taiwan. Ocorre também na Austrália.

Gênero Stenella Gray, 1866
- *Stenella attenuata* (Gray, 1846) – Golfinho-pintado-pantropical
 Espécie amplamente distribuída nos oceanos, Atlântico, Pacífico e Índico. Ocorre principalmente em águas tropicais e temperadas ao longo do talude e em águas profundas. Pelo menos três sub-espécies são reconhecidas, todas elas habita diferentes regiões do O. Pacífico.
- *Stenella frontalis* (G. Cuvier, 1829) – Golfinho-pintado-do-Atlântico
 Esta espécie é endêmica do Oceano Atlântico. Distribui-se em águas tropicais e sub-tropicais, principalmente sobre a plataforma continental em profundidades menores do que 1.000m.
- *Stenella longirostris* (Gray, 1828) – Golfinho-rotador
 Distribui-se em todos os oceanos do mundo em águas tropicais e temperadas. Tem uma preferência por águas profundas sobre a plataforma continental além da quebra do talude. Quatro sub-espécies são reconhecidas.
- *Stenella clymene* (Gray, 1850) – Golfinho-de-Clymene
 Endêmica do Oceano Atlântico, habita águas oceânicas e profundas além do talude, tendo preferência por regiões tropicais e temperadas.
- *Stenella coeruleoalba* (Meyen, 1833) – Golfinho-listrado
 Ampia distribuição geográfica ocorrendo em todos os oceanos do mundo, inclusive no Mar Mediterrâneo. Tem preferências por regiões tropicais e temperadas ocorrendo também em águas mais frias.

Gênero Delphinus Linnaeus, 1758
- *Delphinus delphis* Linnaeus, 1758 – Golfinho-comum-de-bico-curto
 Amplamente e descontumadamente distribuído em águas tropicais e temperadas no Atlântico, Pacífico e provavelmente Índico. Sua exata distribuição é incerta devido às confusões taxonômicas existentes.
- *Delphinus capensis* Gray, 1828 – Golfinho-comum-de-bico-longo
Assim como *D. delphis*, esta espécie é amplamente distribuída em águas tropicais e temperadas apresentando também uma certa descontinuidade. Assim como *D. delphis*, sua exata distribuição é ainda inexata devido aos problemas taxonômicos do gênero.

Gênero Lagenodelphis Fraser, 1956
- *Lagenodelphis hosei* Fraser, 1956 – Golfinho-de-Fraser
Possui uma distribuição tropical em todos os oceanos do mundo. Na América do Sul a maior parte dos registros está concentrada em águas temperadas do sul do Brasil, Uruguai e Argentina (Moreno et al. 2003).

Gênero Lagenorhynchus Gray, 1846
- *Lagenorhynchus albirostris* (Gray, 1846) – Whitebeaked dolphin
- *Lagenorhynchus obliquidens* Gill, 1865 – Pacific whitesided dolphin
Ocorre nas águas frias do Pacífico norte desde o lado asiático até a costa dos Estados Unidos.
- *Lagenorhynchus obscurus* (Gray, 1828) – Delfim obscuro
- *Lagenorhynchus australis* (Peale, 1848) – Golfinho-de-Peale
Distribui-se na costa sul da América do Sul, ocorrendo desde a Ilha Chiloé, no Chile até a costa central da Argentina, podendo chegar até o sul do Brasil. Ocorre no Canal de Beagle e nas Ilhas Malvinas.
- *Lagenorhynchus cruciger* (Quoy & Gaimard, 1824) – Delfim cruzado
Possui distribuição circunglobal em águas pelágicas das zonas Antárticas e Sub-antárticas, ocorrendo principalmente ao sul da Convergência Antártica, onde a maior parte dos registros se concentram entre 45º e 65ºS.

Gênero Lissodelphis Gloger, 1841
- *Lissodelphis borealis* Peale, 1848 – Northern right-whale dolphin
Ocorre nas águas temperadas e sub-árticas do Pacífico Norte.
- *Lissodelphis peronii* (Lacépède,1804) – Golfinho-de-Peron
Possui distribuição circumpolar em águas Antárticas e Sub-antárticas, principalmente entre 40º e 55ºS. Existem registros em regiões mais setentrionais como o Estado de São Paulo e a costa peruana na América do Sul e outros locais da África e Austrália.

Gênero Leucopleurus Gray, 1828
- *Leucopleurus acutus* (Gray, 1828) – Atlantic white-sided dolphin
Espécie de distribuição oceânica em águas frias e profundas do Atlântico Norte. Ocorre desde o Labrador (52ºN) até a Noruega. Chaga até a Virginia no sul e a Groenlândia ao norte.

Gênero Grampus Gray, 1828
- *Grampus griseus* (G. Cuvier, 1812) – Golfinho de Risso
Possui distribuição em todos os mares do mundo em águas tropicais, subtropicais e temperadas.

Gênero Peponocephala Nishiwaki & Norris, 1966
- *Peponocephala electra* (Gray, 1846) – Golfinho-cabeça-de-melão
Ocorre em todos os mares do mundo em águas tropicais e temperadas.

Gênero Ferusa Gray, 1870
- *Feresa attenuata* Gray, 1874 – Orca-pigméia
Distribui-se em todos os oceanos tropicais e temperados do mundo.

Gênero Pseudorca Reinhardt, 1862
- *Pseudorca crassidens* (Owen, 1846) – Falsa-orca
Possui uma distribuição em todos os mares do mundo sendo encontrada em águas tropicais e temperadas.

Gênero Orcinus Fitzinger, 1860
- *Orcinus orca* (Linnaeus, 1758) – Orca
Espécie amplamente distribuída ocorrendo em todos os oceanos do mundo. É encontrada desde o Equador até regiões polares (Ártico e Antártica). Possui densidades maiores em águas frias costeiras onde a produtividade é maior.

Gênero Globicephala Lesson, 1828
- *Globicephala melas* (Traill, 1809) – Baleia-piloto-de-peitorais-longas
Esta espécie apresenta distribuição descontínua, com uma população ocorrendo no hemisfério norte (exceto Pacífico) e outra no hemisfério sul. Ocorrem em águas temperadas e subpolar.
- *Globicephala macrorhynchus* Gray, 1846 – Baleia-piloto-de-peitoral-curta
Possui distribuição circumboreal em águas tropicais e temperadas quentes, principalmente entre os 40ºS e 40ºN.

Gênero Orcaella Gray, 1866
- *Orcaella brevirostris* (Owen in Gray, 1966) – Irrawaddy dolphin
Espécie com distribuição nas águas rasas e escuras dos rios do sul da Ásia e da Indonésia, Filipinas e ilhas próximas
- *Orcaella heinsohni* Beasley, Robertson & Arnold 2005 - Australian snubfin dolphin
Recentemente reconhecida como uma espécie diferente, esta espécie se distribui desde o norte da Austrália até partes de Papua Nova Guinéia. Ocorrendo em águas costeiras e barrentas em regiões tropicais e subtropicais.
BIBLIOGRAFIA

Heyning JE (1989) Comparative facial anatomy of beaked whales (Ziphiidae) and a systematic revision among the families of extant Odontoceti. Nat Hist Mus Los Angeles Cty Contrib Sci 405:1-64

True FW (1889) Contributions to the natural history of the cetaceans, a review of the family delphinidae. Bull US Natl Mus 36:1-238