Export this record: EndNote BibTex

Please use this identifier to cite or link to this item: http://tede2.pucrs.br/tede2/handle/tede/8843
Document type: Dissertação
Title: Semi-supervised learning methods for unsupervised domain adaptation in medical imaging segmentation
Author: Ballester, Pedro Lemos 
Advisor: Barros, Rodrigo Coelho
Abstract (native): Machine learning applications make several assumptions regarding the scenario where they are employed. One common assumption is that data distribution in the test environment follows the same distribution of the training set. This assumption is systematically broken in most real-world scenarios; the difference between these distributions is commonly known as domain shift. Unsupervised domain adaptation aims at suppressing this problem by leveraging knowledge with unlabeled data from the test environment. One of the most sensitive fields for domain shift is medical imaging. Due to the heterogeneity in data distributions from scanners, models tend to vary in predictive performance when dealing with images from scanners with no examples in the training set. We propose two contributions in this work. First, we introduce the use of self-ensembling domain adaptation in the field of medical imaging segmentation in a spinal cord grey matter segmentation task. Next, based on the success of self-ensembling, we adapt two other recent work from the semi-supervised learning literature to the same task, namely, unsupervised data augmentation and MixMatch. We conduct ablation studies and other experiments in order to understand the behavior of each method and compare their best results. The results show improvements over training models in a supervised learning fashion and demonstrate that recent semi-supervised learning methods are promising for domain adaptation in medical imaging segmentation.
Abstract (english): Aplicações com aprendizado de máquina possuem diversas suposições sobre o cenário em que são colocadas. Uma suposição comum é a de que o ambiente de teste segue a mesma distribuição dos dados de treino. Essa suposição é sistematicamente quebrada em cénarios do mundo real; a diferença entre essas distribuições é conhecida como domain shift. Adaptação de domínio não-supervisionada visa mitigar esse problema impulsionando o conhecimento dos modelos com dados do ambiente de teste. Uma das áreas mais sensíveis a domain shift é a de imagens médicas. Devido a heterogeneidade das distribuições de dados das máquinas de aquisição de imagens, os modelos tendem a variar sua performance preditiva quando lidam com imagens vindas de máquinas sem nenhum exemplo no conjunto de treino. Este trabalho propõe duas contribuições. Primeiramente, o uso de self ensembling em adaptação de domínio para segmentação de imagens médicas para segmentação de substância cinzenta na medula espinhal é introduzido. Em seguida, baseado no sucesso do self-ensembling, outros trabalhos recentes da literatura de aprendizado semi-supervisionado são adaptados para o contexto apresentado, nominalmente, unsupervised data augmentation e MixMatch. Foram conduzidos estudos de ablação e experimentos para compreensão do comportamento dos métodos e comparação dos seus melhores resultados. Os resultados indicam uma melhoria em relação a treinamento puramente supervisionado, além de demonstrar que os métodos recentes de aprendizado semi-supervisionado são promissores para o campo de adaptação de domínio em segmentação de imagens médicas.
Keywords: Aprendizado Profundo
Adaptação de Domínio
Self-Ensembling
Aprendizado Semi-Supervisionado
Deep Learning
Domain Adaptation
Semi-Supervised Learning
CNPQ Knowledge Areas: CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
Language: eng
Country: Brasil
Publisher: Pontifícia Universidade Católica do Rio Grande do Sul
Institution Acronym: PUCRS
Department: Escola Politécnica
Program: Programa de Pós-Graduação em Ciência da Computação
Access type: Acesso Aberto
Fulltext access restriction: Trabalho não apresenta restrição para publicação
URI: http://tede2.pucrs.br/tede2/handle/tede/8843
Issue Date: 2-Aug-2019
Appears in Collections:Programa de Pós-Graduação em Ciência da Computação

Files in This Item:
File Description SizeFormat 
PEDRO LEMOS BALLESTER_DIS.pdfPEDRO_LEMOS_BALLESTER_DIS4.24 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.