Export this record: EndNote BibTex

Please use this identifier to cite or link to this item: http://tede2.pucrs.br/tede2/handle/tede/8829
Document type: Dissertação
Title: Understanding contracts in natural language
Author: Pinheiro, Daniele Antunes 
Advisor: Meneguzzi, Felipe Rech
Abstract (native): Contracts are agreements between people or organization, called parties. They are usually written in formal language and are composed of a set of rules to be followed by the parties involved in it. In the processing of contracts, it is common to assume a manual step to extract the contract components to work with, which is a task that demands time and usually is domain based. Considering a scenario where every day there are more people interested in processing legal work, an automated tool to extract contractual components is extremely useful. This research defines an approach to automatically extract and formalize these components resulting in a semantic structure useful for other projects. To evaluate our work, we created a dataset containing 15 annotated contracts and measure our accuracy over different types of extractions. Our approach was used in two contract processing tasks: a new evaluation of fairness and conflict identification, with competitive results with the state of the art.
Abstract (english): Contratos são acordos entre pessoas ou organizações, chamados de partes. Geralmente são escritos em linguagem formal e são compostos por um conjuntos de regras que devem ser seguidas pelas partes envolvidas nele. No processamento de contratos, é comum assumir uma etapa manual para extrair os componentes do contrato, o que é uma tarefa que exige tempo e geralmente é baseada em domínio específico. Considerando um cenário onde todos os dias há mais pessoas interessadas em processar o trabalho legal, uma ferramenta automatizada para extrair componentes contratuais é extremamente útil. Esta pesquisa definiu um método para extrair e formalizar automaticamente esses componentes, resultando em uma estrutura semântica útil para outros projetos. Para avaliar nosso trabalho, nós criamos um dataset com 15 contratos anotados e medimos a nossa acurácia em diferentes tipos de extração. Nossa abordagem foi utilizada em dois tipos de processamento de contratos: uma nova avaliação de equanimidade e na identificação de conflitos, com resultados competitivos em relação ao estado da arte.
Keywords: Contracts
NLP
Machine Learning
Deep Learning
Contratos
Aprendizado de Máquinas
PLN
CNPQ Knowledge Areas: CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
Language: eng
Country: Brasil
Publisher: Pontifícia Universidade Católica do Rio Grande do Sul
Institution Acronym: PUCRS
Department: Escola Politécnica
Program: Programa de Pós-Graduação em Ciência da Computação
Access type: Acesso Aberto
Fulltext access restriction: Trabalho não apresenta restrição para publicação
URI: http://tede2.pucrs.br/tede2/handle/tede/8829
Issue Date: 20-Mar-2019
Appears in Collections:Programa de Pós-Graduação em Ciência da Computação

Files in This Item:
File Description SizeFormat 
DANIELE ANTUNES PINHEIRO_DIS.pdfDANIELE_ANTUNES_PINHEIRO_DIS790.06 kBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.