Export this record: EndNote BibTex

Please use this identifier to cite or link to this item: http://tede2.pucrs.br/tede2/handle/tede/8444
Document type: Tese
Title: Segmentação automática de tecidos cerebrais em imagens de ressonância magnética do tipo fluid-attenuated inversion recovery
Author: Gonzalez , Luis Fernando Planella 
Advisor: Pinho, Márcio Sarroglia
First advisor-co: Ruiz, Duncan Dubugras Alcoba
Abstract (native): Esta tese propõe um método para a segmentação de tecidos cerebrais entre Substância Branca, Substância Cinzenta e Líquido Cefalorraquidiano, em Imagens de Ressonância Magnética do tipo Fluid Attenuated Inversion Recovery (FLAIR). Imagens do tipo FLAIR são importantes para o diagnóstico e controle de doenças como a Esclerose Múltipla e o Lúpus Eritematoso Sistêmico, por evidenciar Lesões de Substância Branca, características dessas doenças, através de áreas hiperintensas. Hiperintensidades, porém, podem ocorrer em qualquer área do cérebro, sendo necessária a segmentação de tecidos para confirmar as lesões. Porém, imagens FLAIR apresentam pouco contraste entre as substâncias branca e cinzenta, dificultando a segmentação de tecidos. Já a modalidade ponderada em T1 é a mais utilizada nesta operação, por apresentar maior contraste entre os tipos de tecido. No caso de doenças como a Esclerose Múltipla as imagens T1 podem não ser essenciais do ponto de vista clínico, representando um custo adicional. Não foram encontrados trabalhos publicados que segmentem tecidos diretamente sobre imagens do tipo FLAIR. A metodologia proposta neste trabalho utiliza uma Rede Neural Artificial, treinada com um conjunto de dados gerado a partir de imagens FLAIR de treino, cuja segmentação de tecidos está disponível, ou foi obtida a partir da T1. O modelo de classificação é então utilizado para segmentar tecidos em outras imagens FLAIR. São utilizados tanto atributos encontrados na literatura, quanto novos atributos propostos neste trabalho. Os resultados obtidos são promissores, sendo comparáveis aos resultados de outros trabalhos publicados, que segmentam tecidos utilizando imagens T1.
Abstract (english): This thesis proposes a method for brain tissue segmentation on Magnetic Resonance Images of type Fluid Attenuated Inversion Recovery (FLAIR), among White Matter, Gray Matter and Cerebrospinal Fluid. Images of type FLAIR are important for diagnosis and control of diseases such as Multiple Sclerosis or Systemic Lupus Erythematosus, for they show White Matter Lesions, which are characteristic of such diseases, as hyperintense areas. However, any brain area can display hyperintensities, requiring tissue segmentation to confirm the position of lesions. However, this image kind presents low contrast between White matter and Gray matter, which makes segmentation difficult. The T1-weighted modality is the most used one for this operation, as it presents good contrast between brain tissue types. For diseases such as Multiple Sclerosis, the T1 modality can be non-essential from a clinical perspective, representing an extra cost. No published works were found on tissue segmentation directly in images of type FLAIR. The methodology proposed in this thesis uses an Artificial Neural Network, trained with a dataset generated from train FLAIR images, for which either the tissue segmentation is available, or it was obtained from the T1 modality. The classification model is then used to segment tissues in other FLAIR images. The methodology uses both features which are commonly found in literature, as well as new features, proposed in this thesis. The results are promising, being comparable to results of other published works which segment brain tissues using the T1 modality.
Keywords: Segmentação Automática de Tecidos Cerebrais
Imagens de Ressonância Magnética
Aprendizado de Máquina
Classificação
Fluid-Attenuated Inversion Recovery (FLAIR)
Automatic Brain Tissue Segmentation
Magnetic Resonance Images
Machine Learning
Classification
CNPQ Knowledge Areas: CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
Language: por
Country: Brasil
Publisher: Pontifícia Universidade Católica do Rio Grande do Sul
Institution Acronym: PUCRS
Department: Escola Politécnica
Program: Programa de Pós-Graduação em Ciência da Computação
Access type: Acesso Aberto
Fulltext access restriction: Trabalho não apresenta restrição para publicação
URI: http://tede2.pucrs.br/tede2/handle/tede/8444
Issue Date: 19-Apr-2018
Appears in Collections:Programa de Pós-Graduação em Ciência da Computação

Files in This Item:
File Description SizeFormat 
LUIS FERNANDO PLANELLA GONZALEZ_TES.pdfLUIS_FERNANDO_PLANELLA_GONZALEZ_TES3.88 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.