Export this record: EndNote BibTex

Please use this identifier to cite or link to this item: http://tede2.pucrs.br/tede2/handle/tede/6247
Document type: Dissertação
Title: Feature selection for neuroimaging applied to word-category identification in dyslexic children
Author: Froehlich, Caroline Seligman 
Advisor: Meneguzzi, Felipe Rech
Abstract (native): Dislexia é um transtorno de aprendizagem de leitura caracterizado pela dificuldade persistente de uma criança a aprender a ler fluentemente, mesmo apresentando outras habilidades cognitivas normais. A dislexia é uma dificuldade de aprendizado complexo e difícil de diagnosticar. Métodos de diagnostico tradicionais, como questionários, não são somente imprecisos em quantificar a dislexia, como também também não são precisos no diagnóstico. Consequentemente, nós visamos investigar a base neural deste transtorno de leitura em crianças e adolescentes, como parte de um projeto que tem como objetivo desvendar algumas das causas neurológicas da dislexia entre crianças em alfabetização. Nesta dissertação, desenvolvemos um estudo da ativação do cérebro com o uso de exames de imagem de ressonância magnética (IRM) funcional coletados enquanto as crianças realizavam uma tarefa de pseudo-palavras. Este estudo amplia técnicas de aprendizado de máquina recentemente desenvolvidas que identificam que tipo de palavra os participantes de um estudo estavam lendo, baseado somente em sua atividade neural. Como dados de IRM funcional contem aproximadamente 30.000 voxels, neste trabalho experimentamos com algumas técnicas de seleção de features para remover voxels que não são relevantes para o algoritmo de aprendizado de máquina. Esse procedimento é amplamente utilizado para maximizar a acurácia do algoritmo, e algumas abordagens de feature selection permitem atingir resultados muito precisos.
Abstract (english): Dyslexia is a developmental reading disorder characterized by persistent difficulty to learn how to read fluently despite normal cognitive abilities. It is a complex learning difficulty that is often hard to quantify. Traditional methods based on questionnaires are not only imprecise in quantifying dyslexia, they are also not very accurate in diagnosing it. Consequently, we aim to investigate the neural underpinnings of this reading disorder in children and teenagers, as part of a project that aims to unravel some of the neurological causes of dyslexia among children at preliteracy age. In this dissertation, we develop a study of brain activation within functional MRI scans taken when children carried out pseudo-word tasks. Our study expands recently developed machine learning-based techniques that identify which type of word the study participants were reading based solely on participant’s brain activation. Because such functional MRI data contains about 30,000 voxels, we try several feature selection techniques for removing voxels that are not very helpful for the machine learning algorithm.This procedure is widely used for maximizing the machine learning algorithm accuracy, and some of these feature selection approaches allowed us to achieve very accurate results.
Keywords: INFORMÁTICA
DIAGNÓSTICO POR IMAGEM
PROCESSAMENTO DE IMAGENS
IMAGEM POR RESSONÂNCIA MAGNÉTICA
DISLEXIA
CNPQ Knowledge Areas: CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Language: eng
Country: Brasil
Publisher: Pontifícia Universidade Católica do Rio Grande do Sul
Institution Acronym: PUCRS
Department: Faculdade de Informática
Program: Programa de Pós-Graduação em Ciência da Computação
Access type: Acesso Aberto
URI: http://tede2.pucrs.br/tede2/handle/tede/6247
Issue Date: 26-Feb-2015
Appears in Collections:Programa de Pós-Graduação em Ciência da Computação

Files in This Item:
File Description SizeFormat 
473233 - Texto Completo.pdfTexto Completo3.08 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.