
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

PAULO SILAS SEVERO DE SOUZA

A HEURISTIC ALGORITHM FOR MINIMIZING SERVER MAINTENANCE TIME AND
VULNERABILITY SURFACE ON DATA CENTERS

Porto Alegre

2020

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

A HEURISTIC ALGORITHM FOR
MINIMIZING SERVER

MAINTENANCE TIME AND
VULNERABILITY SURFACE ON

DATA CENTERS

PAULO SILAS SEVERO DE SOUZA

Thesis submitted to the Pontifical Catholic
University of Rio Grande do Sul in partial
fulfillment of the requirements for the
degree of Master in Computer Science.

Advisor: Prof. Dr. Tiago Coelho Ferreto

Porto Alegre
2020

REPLACE THIS PAGE WITH
THE LIBRARY CATALOG

PAGE

Paulo Silas Severo de Souza

A Heuristic Algorithm for Minimizing Server Maintenance Time

and Vulnerability Surface on Data Centers

This Thesis has been submitted in partial fulfillment

of the requirements for the degree of Master of

Computer Science, of the Graduate Program in

Computer Science, School of Technology of the

Pontifícia Universidade Católica do Rio Grande do

Sul.

Sanctioned on ________ _______, 20________.

COMMITTEE MEMBERS:

Prof. Dr. Lucas Mello Schnorr (PPGC/UFRGS)

Prof. Dr. César Augusto Fonticielha De Rose (PPGCC/PUCRS)

Prof. Dr. Tiago Coelho Ferreto (PPGCC/PUCRS - Advisor)

UM ALGORITMO HEURÍSTICO PARA MINIMIZAR TEMPO DE
MANUTENÇÃO DE SERVIDORES E SUPERFÍCIE DE

VULNERABILIDADE EM DATA CENTERS

RESUMO

Redução de custos e escalabilidade impulsionaram a adoção da computação em
nuvem por diferentes organizações. Para manter as funcionalidades prometidas, operado-
res realizam diversas atividades de manutenção, que vão desde a remoção do acúmulo
de poeira a correções de segurança nos servidores contra vulnerabilidades. Correções de
segurança geralmente exigem que a atualização dos equipamentos afetados seja realizada
o mais rápido possível, pois cada instante de espera pode indicar uma oportunidade para
invasão. Soluções atuais empregam diferentes abordagens para minimizar a duração da
manutenção. No entanto, tais estudos não consideram o tempo em que os servidores fi-
cam expostos a ataques. Neste estudo, argumenta-se que apenas minimizar o tempo de
manutenção não garante necessariamente a eficiência de estratégias de manutenção em
cenários críticos de segurança, onde proteger os servidores o mais rápido possível é a prio-
ridade. Portanto, propõe-se uma nova métrica chamada Superfície de Vulnerabilidade, que
permite quantificar a eficiência de estratégias de manutenção em cenários críticos de se-
gurança. Também é apresentada uma heurística que realiza decisões de manutenção para
minimizar a Superfície de Vulnerabilidade e o tempo de manutenção. Foram realizados di-
versos experimentos e os resultados mostraram a eficácia da solução proposta em reduzir
a Superfície da Vulnerabilidade, tempo de manutenção e número de migrações.

Palavras-Chave: Computação em Nuvem, Manutenção de Servidores, Virtualização, Se-
gurança.

A HEURISTIC ALGORITHM FOR MINIMIZING SERVER MAINTENANCE
TIME AND VULNERABILITY SURFACE ON DATA CENTERS

ABSTRACT

Cost reduction and enhanced scalability boosted the adoption of cloud comput-
ing by multi-sized companies. To maintain the promised features, cloud operators perform
several maintenance activities that range from removing dust accumulation to applying se-
curity patches on servers against vulnerabilities. The latter usually requires server update
as soon as possible, as each instant servers need to wait for an update can indicate an op-
portunity for attackers to breach customers’ applications. Current solutions employ different
approaches to minimize maintenance duration. However, they neglect the amount of time
servers stay exposed to attacks. In this study, we first argue that only reducing maintenance
time does not necessarily guarantee the efficiency of maintenance strategies on critical se-
curity patching scenarios, wherein safeguarding servers as soon as possible is the priority.
Therefore, we propose a new metric called Vulnerability Surface, which aids operators in
assessing the efficiency of maintenance strategies on critical security patching scenarios.
Then, we present a heuristic algorithm that performs maintenance decisions to minimize the
amount of time cloud servers remain exposed to attacks while reducing the amount of time
necessary for performing server maintenance. We conducted a set of experiments against
well-known strategies, and the results showed that the proposed solution achieves superior
results regarding vulnerability surface, maintenance time, and the number of migrations per
virtual machine.

Keywords: Cloud Computing, Server Maintenance, Virtualization, Security.

LIST OF FIGURES

2.1 An overview on the two main hypervisor architectures. 16

3.1 Virtual machines provisioning and maintenance scheduling strategy pro-
posed by Zheng et al. [34]. 18

3.2 Dependability-aware maintenance strategy proposed by Yanagisawa et al. [31]. 19

3.3 Batch scheduling scheme for server maintenance proposed by Zheng et
al. [35]. 20

3.4 Cost-Delay aware maintenance scheme proposed by Wang et al. [27]. 21

3.5 Maintenance scheduling scheme proposed by Okuno et al. [19]. 21

4.1 How maintenance decisions may produce different levels of the data cen-
ter’s safety during critical security maintenance patching scenarios. 25

4.2 How the proposed heuristic minimizes the Vulnerability Surface by prioritiz-
ing the maintenance of servers whose virtual machines demand less time
to be migrated. 32

5.1 Secured and vulnerable servers during server maintenance using different
approaches in the low occupation scenario. 36

5.2 Secured and vulnerable servers during server maintenance using different
approaches in the medium occupation scenario. 37

5.3 Secured and vulnerable servers during server maintenance using different
approaches in the high occupation scenario. 39

LIST OF TABLES

3.1 Summary of the main goals of related studies. 22

4.1 List of parameters used on the proposed heuristic. 29

5.1 Server configurations considered during the evaluation. 33

5.2 Virtual machine specifications adopted for the evaluation of the proposed
heuristic. 33

5.3 Testbed specifications. 35

5.4 Experiment results for the low occupation scenario. 35

5.5 Experiment results for the medium occupation scenario. 38

5.6 Experiment results for the high occupation scenario. 39

LIST OF ALGORITHMS

4.1 Proposed heuristic for performing data center maintenance. 30

CONTENTS

1 INTRODUCTION . 11

1.1 CONTRIBUTION . 11

1.2 ORGANIZATION . 12

2 BACKGROUND AND MOTIVATION . 13

2.1 CLOUD COMPUTING . 13

2.2 VIRTUALIZATION . 15

2.3 MAINTENANCE ON CLOUD DATA CENTERS . 17

3 STATE OF THE ART . 18

3.1 ZHENG ET AL., 2013 . 18

3.2 YANAGISAWA ET AL., 2013 . 18

3.3 ZHENG ET AL., 2014 . 19

3.4 WANG ET AL., 2014 . 20

3.5 OKUNO ET AL., 2019 . 20

3.6 DISCUSSION . 22

4 HEURISTIC ALGORITHM FOR SERVER MAINTENANCE 23

4.1 MOTIVATION . 23

4.2 VULNERABILITY SURFACE . 26

4.3 PROBLEM FORMULATION . 27

4.4 PROPOSED HEURISTIC . 28

4.4.1 SERVERS MAINTENANCE . 28

4.4.2 VIRTUAL MACHINES MIGRATION . 29

4.5 FINAL REMARKS . 31

5 EVALUATION AND DISCUSSION . 33

5.1 EXPERIMENTS DESCRIPTION . 33

5.2 ANALYSIS ON LOW OCCUPATION SCENARIO . 35

5.3 ANALYSIS ON MEDIUM OCCUPATION SCENARIO . 37

5.4 ANALYSIS ON HIGH OCCUPATION SCENARIO . 38

5.5 FINAL REMARKS . 40

6 CONCLUSIONS AND FUTURE WORK . 41

6.1 CONCLUSIONS . 41

6.2 FUTURE RESEARCH DIRECTIONS . 42

6.3 ACHIEVEMENTS . 43

REFERENCES . 44

11

1. INTRODUCTION

Cloud Computing enables the access to computing resources from anywhere through
the Internet without requiring any commitment of customers with physical infrastructure since
supplies are delivered as services [2]. Cloud’s delivery model also provides features such as
elasticity and scalability, which minimize resource wastage and allow customers to pay only
for what they use [13]. As a result, individuals and organizations are moving applications
to the cloud. To ensure cloud environments deliver the promised features, operators must
wisely perform maintenance activities to safeguard the data center’s health while providing
the accorded quality of service [34].

Many events may produce failures inside data centers, affecting the quality of ser-
vice (QoS) delivered to end-users. Aside from unintentional failures caused by issues like
capacity overload due or code bugs, server attacks are becoming highly frequent [17] [14].
Examples of attacks against cloud servers are many. One could program bots to perform
Distributed Denial of Service (DDoS) attacks [33]. Another example could be malicious soft-
ware designed to get unauthorized access to machines to steal data or even use an internal
server as a start point for attacks on other servers, and so on [4] [25].

Due to the gravity of recent attacks against cloud servers, even popular cloud
providers such as Microsoft Azure1, Amazon Web Services2, and Google Cloud Platform3

have reported that in some situations their operators had to focus all their attention on per-
forming maintenance on their data centers to safeguard servers against attackers. In 2018,
after the public disclosure of attacks against CPU vulnerabilities [17] [14], In its report, Mi-
crosoft Azure informed that maintenance activities had to be accelerated in such a way that
some availability zones suffered from downtime during the update.

Quickly responding to attacks is outmost to preserve data centers in operable con-
dition, but also for retaining reliability and reputation. In such a scenario, operators must
define a range of parameters that will determine "when" the maintenance will be performed,
"which" servers will be updated at the time, and "how" each one of them will be prepared to
undergo maintenance.

1.1 Contribution

Previous investigations provide solutions to optimize server maintenance by means
of reducing virtual machine migrations and minimizing the maintenance time [34] [31] [35] [27].

1https://azure.microsoft.com/en-us/blog/securing-azure-customers-from-cpu-vulnerability/.
2https://aws.amazon.com/pt/security/security-bulletins/AWS-2018-013/.
3https://blog.google/topics/google-cloud/what-google-cloud-g-suite-and-chrome-customers-need-know-

about-industry-wide-cpu-vulnerability/.

12

However, they do not assess the efficiency of their proposals on safeguarding cloud servers
as soon as possible. Therefore, in this study, we intend to address this gap by supporting
cloud operators’ decision-making on critical security servers maintenance.

Throughout this study, we show that reducing the maintenance time does not nec-
essarily guarantee the efficiency of maintenance in critical security patching scenarios.
Therefore, we introduce the concept of Vulnerability Surface, which aims to aid cloud opera-
tors to evaluate the effectiveness of maintenance strategies on minimizing security breaches.

Besides, we present a heuristic algorithm that focuses on improving the trade-off
between preserving applications’ availability and reducing the data center’s Vulnerability Sur-
face. We show that our proposal overcomes well-known strategies in terms of maintenance
time, the number of migrations per virtual machine, and the Vulnerability Surface.

1.2 Organization

The remaining of this work is organized as follows:

• Chapter 2 elaborates on the fundamental concepts used in this study, especially re-
garding some of the main principles of cloud computing and how maintenance is per-
formed in cloud environments.

• Chapter 3 presents other studies that focus on optimizing maintenance in cloud data
centers, discusses the different aspects addressed by each of those studies, and indi-
cates how this work complements the literature.

• Chapter 4 presents the main contributions of this thesis, namely: (i) the definition of
the Vulnerability Surface metric, and (ii) a heuristic algorithm for minimizing the Vulner-
ability Surface during servers maintenance in data centers.

• Chapter 5 is divided into two parts: the first one presents the methodology used for
validating the proposed heuristic; the latter shows the evaluation results.

• Finally, Chapter 6 is reserved for the final considerations, which briefly reviews the
main contributions of this study and give directions for future research.

13

2. BACKGROUND AND MOTIVATION

This chapter presents a theoretical background on cloud computing, discussing the
main characteristics of this model, and describing how maintenance is performed in cloud
environments.

2.1 Cloud Computing

Cloud computing has become widely popular across the Information Technology
(IT) industry by allowing multi-sized companies to offer their businesses on a large scale with
reduced investments with computing infrastructure [3]. The basic idea of cloud computing
consists of delivering computing resources as services remotely over the Internet. According
to the National Institute of Standards and Technology (NIST) [18], cloud computing allows
its customers the on-demand access to ubiquitous, configurable resources with minimal
management effort.

Cloud computing promotes cost reduction by providing third-party managed infras-
tructure, but also by allowing customers to only pay for the amount of resources that are
actually being used [13]. This concept is called "pay-per-use" or "pay-as-you-go" billing,
which replaces fixed fees by specific charges based on computing resources usage. Any
additional cost with equipment replacement or maintenance performed in the background
by the provider is not charged [11]. In addition to its flexible billing model, Cloud computing
is also known through five particular characteristics: (i) On-demand self-service; (ii) Broad
network access; (iii) resource pooling; (iv) rapid elasticity; and (v) measured service.

The first two characteristics regard cloud customers’ autonomy in allocating and
accessing cloud resources. The on-demand self-service indicates that cloud customers can
rent computing resources without any interaction with the cloud vendor. This feature is pro-
vided by the cloud platform’s autonomic resource orchestration mechanisms that automate
the building, deployment, and management of applications. The broad network access char-
acteristic denotes the cloud’s interoperability, which allows users to access services from
different devices through the Internet.

The third and fourth characteristics regard the cloud’s ability to offer virtually infinite
resources with transparency regarding physical location. To accomplish this goal, cloud
services receive a dynamic slice of resources that can be acquired or released according to
the demand generated by customers. The fifth characteristic regards metering the resources
provided by cloud computing to provide transparency for both the provider and the customer.

Cloud vendors can also implement different service models to supply the various
needs of companies and individuals from different businesses. Cloud service models are

14

meant to fit with a different set of workflows, ranging from low-level provisioning of infras-
tructure resources such as storage, networks, and servers to high-level ready-to-use envi-
ronments. According to NIST [18], Cloud computing incorporates three service models:

• Infrastructure-as-a-Service (IaaS): the IaaS service model gives customers the on-
demand access to virtually provisioned hardware resources. Therefore, customers
can host their platforms on a cloud vendor’s infrastructure, saving costs with hardware
acquisition and maintenance.

• Platform-as-a-Service (PaaS): the PaaS offering concentrates on delivering pre-configured
cloud environments where customers can develop, test, and manage applications for
their businesses without the need for handling infrastructure-specific issues.

• Software-as-a-Service (SaaS): the SaaS model gives direct access to ready-to-use
vendor’s cloud-based applications through the web. Therefore, customers do not have
to deal with both infrastructure and platform configuration.

Cloud deployment models are organized according to access restrictions, size, and
ownership. In broad terms, it is possible to use cloud services on third-party-owned re-
sources or single-entity resources. The NIST [18] defines four different cloud deployment
models:

• Private clouds: rely on resources solely owned by a specific organization. This deploy-
ment model allows for enhanced security measures such as particular network restric-
tions. Although a third-party entity can manage private cloud’s physical infrastructure,
resources are not shared with other individuals.

• Public clouds: do not restrict resource usage to a single organization, which means
that several companies can share physical resources provided by the same vendor.
Although public clouds provide several security layers, there are higher security risks
than private clouds as a result of sharing resources.

• Hybrid clouds: combine private and public cloud characteristics to meet varying de-
mands. This deployment model usually consists of private environments that may
eventually allocate resources from public clouds. Hybrid clouds can be used by com-
panies with highly variable demand so that privately cloud-hosted applications can
utilize public cloud functionality when the demand exceeds the limits provided by the
private cloud.

• Community clouds: cloud environments owned by a group of individuals with common
purposes. Customers cut expenses by not having to hold a private cloud but also
ensure some levels of access restriction by only sharing resources with members of
the institutions that own the community cloud.

15

Supporting all features expected from cloud applications leverages concerns with
maintaining a considerable amount of computing systems that must be kept at strict condi-
tions. To this end, dedicated facilities specially designed to host computer systems are used.
These dedicated spaces are called data centers and employ specialized power supplies and
cooling mechanisms to support large-scale computing infrastructure. The data center infras-
tructure has changed from a tightly coupled model where each application was deployed on
an individual physical server to a fully virtualized environment, where compute, storage, and
network resources are provided on a virtualized fashion.

2.2 Virtualization

Nowadays, virtualization is the core technology on providing virtual abstractions for
cloud data centers resources [32] [30]. Virtualization utilizes software abstractions to create
virtual resources such as virtual components, virtual devices, or even virtual machines.

The virtualization component responsible for creating and managing virtual ma-
chines is called hypervisor [29] [1]. One of the hypervisor’s main feature consists of creating
logically separated environments (the virtual machines) and assigning each a slice of the
physical resources. Cloud environments utilize this feature as a means for allowing multite-
nancy, where multiple applications run on isolated subsystems inside a single physical host
for better resource utilization. Figure 2.1 depicts the architecture of the two main categories
of hypervisors, namely Type 1 and Type 2 hypervisors. The main differences between these
categories are described next:

• Type 1: also known as bare-metal architecture, manages guest operating systems (vir-
tual machines) directly from the host’s hardware, replacing the host operating system.
This type of hypervisor is very efficient in terms of performance and security, as there
are no abstraction layers between them and the physical resources that could promote
bottlenecks or attacks.

• Type 2: also known as hosted architecture, controls virtual machines from inside the
host operating system, running as a conventional application. This type of hypervisor’s
primary goal is providing access to alternative guest operating systems without the
need for replacing the host operating system. This virtualization type generates an
extra overhead compared to the Type 1 hypervisors. As a consequence, server-based
environments usually choose to adopt Type 1 hypervisors.

In addition to hosting multiple applications in the same server, modern cloud data
centers also utilize a virtualization technique called migration to move virtual machines be-
tween different servers. The migration process consists of transferring memory and storage

16

Hypervisor

Virtual
Machine

Virtual
Machine

 Hardware

(a) Type 1 (Bare-Metal) Architecture.

 Host Operating System

Hypervisor

Virtual
Machine

Virtual
Machine

 Hardware

(b) Type 2 (Hosted) Architecture.

Figure 2.1: An overview on the two main hypervisor architectures.

information that constitute the virtual machine state through the network to the destination
host server. There are two main techniques for migrating virtual machines: (i) cold migration
and (ii) live migration.

Cold migration consists of suspending the virtual machine on the source host and
then transferring the operating system and applications state through the network to the
destination host. Some hypervisors minimize cold migration duration when servers share
the same storage. In these scenarios, the hypervisor just informs the destination server
about the virtual machine disk location.

Live migration technique transfers the virtual machine state between hosts without
stopping the operating system and applications. Moving the virtual machine’s memory state
from the source to the destination host can be performed in two different ways: (i) pre-copy
memory migration [5] and (ii) post-copy memory migration [9].

In the pre-copy memory migration, the hypervisor copies all memory pages from
the source to the destination server while the virtual machine still runs on the source. Then,
the hypervisor starts an iterative copy process, which sends to the destination server all
memory pages that changed during the initial copy. In the post-copy memory migration, the
virtual machine is stopped on the source server, and a minimal device state (CPU state,
non-pageable memory, etc.) is transferred to the destination. Then, the virtual machine is
resumed on the destination server, and the remaining memory pages are moved.

Virtual machine migration is utilized by data center operators to achieve several
resource optimization goals, such as: (i) stacking virtual machines on a reduced number
of servers to reduce power consumption [24] [23], or (ii) separating applications with similar
resource bounds in order to avoid performance interference [21] [16]. Besides, migration can

17

also be used by operators to move virtual machines during maintenance in order to ensure
applications’ continuity.

2.3 Maintenance on Cloud Data Centers

As most cloud services demand specific quality of service goals such as high avail-
ability and low latency, cloud data center operators perform regular maintenance activities
to retain physical and logical components working on expected conditions.

Effective maintenance is capable of avoiding up to 40% of infrastructure failures [34].
However, some maintenance activities may require replacing or restarting components to
take effect. Therefore, maintenance also raises concerns regarding service outage [6] [7].
These side effects leverage researches around maintenance planning with the focus on pre-
serving acceptable levels of performance and availability of applications without sacrificing
maintenance timeliness [20].

In maintenance scenarios that affect applications functioning, affected virtual ma-
chines could be stopped until the maintenance is finished. However, this may raise con-
cerns with availability requirements. Therefore, one alternative would be to migrate virtual
machines to other active servers within the data center.

Several events may lead to maintenance in cloud data centers, each one with pos-
sibly different requirements. For instance, preventive maintenance may not require a strict
completion deadline. On the other hand, maintenance events for correction of security vul-
nerabilities usually need to be applied immediately to preserve the reliability of applications.
Examples of security threats to cloud data centers are numerous:

• Meltdown [17]: discovered in 2018, the Meltdown attack takes advantage of unpatched
operating systems to breach the isolation between applications and the operating sys-
tem, allowing an attacker to get access to unauthorized memory positions.

• Spectre [14]: also reported in 2018, the Spectre vulnerability exploits branch prediction
mechanisms present in modern processors to allow attackers to break the isolation
between applications, getting access to sensitive data.

• Fallout [4]: reported in late 2019 by breaching even Meltdown-patched CPUs, the Fall-
out attack exploits the CPU store buffer, used for ensuring applications can write spe-
cific cache lines they possess. This attack grants intruders access to recently written
data, cryptographic keys from other applications, and other sensitive data.

• RIDL (Rogue In-Flight Data Load) [25]: similar to Fallout, RIDL, which was also re-
ported in late 2019, exploits vulnerable CPU’s internal buffers to leak data from other
processes, from the host operating system, and even from other virtual machines.

18

3. STATE OF THE ART

As maintenance tasks help to safeguard the health of cloud data centers, sev-
eral researchers have been focused on developing solutions to improve the effectiveness of
maintenance either by ensuring its timeliness or reducing its impact on customers’ applica-
tions.

3.1 Zheng et al., 2013

Zheng et al. [34] focus on finding the best schedule for maintenance while respect-
ing their deadlines, and the number of users requests. The authors consider a set of sce-
narios where each server within the data center has a maintenance deadline, and virtual
machines are only occupied during a period of time.

Figure 3.1: Virtual machines provisioning and maintenance scheduling strategy proposed
by Zheng et al. [34].

The authors propose an approach that takes advantage of virtual machines inactiv-
ity period to consolidate them inside a sub-set of servers which were already updated or have
a distant maintenance deadline. As depicted in Figure 3.1, the authors show that consid-
ering both the virtual machines’ occupation period and the servers maintenance deadlines
allow operators to schedule servers for maintenance even in scenarios with limited resource
capacity.

3.2 Yanagisawa et al., 2013

Yanagisawa et al. [31] argue that one of the most outstanding challenges in allo-
cating virtual machines during maintenances is related to meeting the demand of the virtual

19

machines being migrated from servers scheduled to maintenance without compromising
fault-tolerance schemes.

The authors present a mixed-integer programming approach that performs server
maintenance while preserving a fault-tolerance mechanism called Active-Standby (depicted
in Figure 3.2). The Active-Standby fault-tolerance mechanism consists of creating a replica
that is kept inactive for each virtual machine inside the data center. The general idea of the
fault-tolerance maintenance scheme proposed in this study consists of avoiding migrating
all virtual machine replicas to the same server. If a failure occurs with one of the virtual
machines or a server stops working, the standby replica is activated in order to preserve the
application availability.

Figure 3.2: Dependability-aware maintenance strategy proposed by Yanagisawa et al. [31].

3.3 Zheng et al., 2014

Zheng et al. [35] discuss that preserving acceptable levels of availability during
maintenance in cloud data centers is one of the most challenging aspects for cloud operators
since if all servers are scheduled for maintenance at the same time, all applications will suffer
from service outage. On the other hand, performing the maintenance of servers one by one
may not be acceptable in cases of critical updates.

The authors present a heuristic that tries to maximize the number of servers to
be updated at the same time without compromising applications’ availability. When select-
ing servers to be emptied, the proposed heuristic prioritizes the less occupied ones, which
leads to more servers being updated at the same time. Besides, authors avoid unnecessary

20

migrations by prioritizing the migration of virtual machines to servers already updated. An
example of the proposed heuristic is presented in Figure 3.3.

Figure 3.3: Batch scheduling scheme for server maintenance proposed by Zheng et al. [35].

3.4 Wang et al., 2014

Wang et al. [27] argue that maintenance scenarios that demand restarting servers
to perform the update bring operators the decision of whether migrating virtual machines or
temporarily stopping them if they are not receiving user requests.

On the one hand, migrating virtual machines increases the data center’s network
and memory usage. On the other hand, the downtime caused by stopping virtual machines
may affect the users’ experience. Therefore, the authors present a heuristic that chooses
between migrating virtual machines (migration cost) and temporarily stopping them during
the maintenance period (delay of waiting for the server to be updated). An example of how
the proposed heuristic makes its decisions is depicted in Figure 3.4.

The authors improve the objective function’s flexibility using a variable α, which de-
notes the balance between the delay and the migration cost. As the value of α increases,
the more prominent will be the impact of the migration cost on the objective function. For ex-
ample, if α← 0, then the objective function will seek only minimizing the delay (by migrating
all virtual machines). On the other hand, if α←∞, then the objective function will pay more
attention to minimize the migration cost by stopping virtual machines on their original hosts
instead of migrating them before starting the maintenance.

3.5 Okuno et al., 2019

Okuno et al. [19] focus on minimizing the impact caused by maintenance on appli-
cations by scheduling the migration of virtual machines while preserving maintenance timeli-
ness. The authors achieve this goal by using a divide-and-conquer approach that divides the
maintenance scheduling problem into a set of sub-problems, which are solved individually,
and then combined into a solution for the initial problem.

21

Figure 3.4: Cost-Delay aware maintenance scheme proposed by Wang et al. [27].

The proposed strategy seeks to create groups of servers to be updated simulta-
neously. To create these groups, the proposed solution looks for combinations that respect
three conditions: (i) all virtual machines hosted by the servers within the group must be mi-
grated in at least one time slot; (ii) different instances of the same application must not be
migrated at the same time to respect the anti-affinity rules; and (iii) capacity constraints must
not be violated. Once the groups of servers to be updated simultaneously are defined, the
proposed solution updates them all in parallel. This process is depicted in Figure 3.5.

Figure 3.5: Maintenance scheduling scheme proposed by Okuno et al. [19].

22

3.6 Discussion

In this section, we discuss the different goals considered by previous investigations,
and then we elaborate on how this study complements the existing literature.

As we can see in Table 3.1, there is a broad spectrum of optimization goals that
can be considered during server maintenance in cloud environments. Some of these objec-
tives achieve improvements that can be felt by end-users directly. For example, minimizing
the number of migrations performed throughout the maintenance could avoid performance
bottleneck and downtime perceived by end-users accessing applications during the mainte-
nance. Amongst the related studies cited above, we can mention the example of Zheng et
al. [34], which focuses primarily on scheduling maintenance in idle periods as a means for
minimizing the impact of maintenance on applications.

Apart from the enhancements that impact end-user experience directly, such as
reduced downtime, several decisions could be made during server maintenance to benefit
users indirectly. As an example, we can deliberate on Yanagisawa et al. [31], which focuses
on ensuring that maintenance migrations will not affect fault-tolerance schemes’ effective-
ness. Even though fault-tolerance schemes do not intend to provide gains immediately
visible to end-users, such preventive measures end up by allowing applications to deliver a
higher quality of service long term.

Given the increasing concern with attacks against cloud servers, finding ways to
update servers as soon as possible is mandatory. Even though current studies present
solutions for optimizing maintenance direct and indirectly, none of them concentrate on se-
curity patching scenarios. Therefore, this study aims at complementing the existing literature
by helping operators to minimize the amount of time servers stay exposed to attacks while
waiting for update during server maintenance.

Table 3.1: Summary of the main goals of related studies.

Work Primary Goal
Zheng et al. [35] Reducing maintenance durationOkuno et al. [19]

Yanagisawa et al. [31] Preserving fault tolerance
Wang et al. [27] Optimizing virtual machine management
Zheng et al. [34] Minimizing the impact of maintenance on applications

This Work Safeguarding servers against attacks

23

4. HEURISTIC ALGORITHM FOR SERVER MAINTENANCE

This chapter presents the proposed work of server maintenance in cloud data cen-
ters focused on critical security patching scenarios. This chapter is divided into four parts:

• Initially, the motivation of this work is presented, which discusses some challenges of
performing maintenance in critical security scenarios.

• The second part of this chapter presents the Vulnerability Surface metric, which aids
operators to evaluate maintenance strategies on critical security patching scenarios.

• The third part of this chapter presents a detailed description of server update during
critical security maintenance in cloud data centers.

• Finally, a heuristic algorithm that solves the problem is described.

4.1 Motivation

Effective maintenance is essential for preserving cloud data centers on operable
conditions. As highly connected devices, cloud servers have several points of failure. Pos-
sible threats range from unusual network traffic intended to overload servers capacity to
malicious applications trying to breach the host operating system isolation to have access
to data from other applications. Therefore, effective maintenance planning comes on the
scene to mitigate the effects of these threats through several possible actions such as up-
grading operating system kernel, applying hypervisor hotfixes, or even replacing defective
components.

Despite the benefits of maintenance on the overall data center’s dependability, sev-
eral maintenance activities require rebooting servers to take effect. Previous studies in-
vestigate the possibility of delaying or advancing maintenance to time windows wherein
applications are receiving fewer requests so that the impact caused by the downtime will
be reduced [34]. However, in some urgent scenarios delaying maintenance until the users’
demand reduces may not be an alternative. In these cases, operators must select some
servers to be updated at the same time, and then reallocate applications from these servers
before starting the update. Related studies that propose solutions for similar scenarios focus
only on minimizing the number of migrations and, therefore, minimizing the overall mainte-
nance time.

Although minimizing the overall maintenance time increases the maintenance ef-
fectiveness in emergency scenarios, it does not necessarily mean that the maintenance

24

strategy efficiently manages to secure the largest number of servers as possible. For in-
stance, in Figure 4.1 we present two maintenance strategies, namely Consolidation-Aware
Strategy and Delay-Aware Strategy, for updating 3 servers (with 10 units of capacity each).
The Consolidation-Aware Strategy focuses on migrating as many virtual machines as possi-
ble to consolidate the workload on a minimum number of servers, based on the premise that
this decision will eventually lead to more servers empty for maintenance. The Delay-Aware
Strategy only migrates virtual machines that will immediately (i.e., in the same maintenance
step) lead to a new empty server.

For simplicity purposes, we consider sequential migrations. For the migration delay,
we consider both the time for saving and restoring the virtual machine as 10 seconds and
the network delay as twice the size of the virtual machine. Therefore, the migration cost
for a given virtual machine vmj is set to 10 + vmj ,size × 2 + 10, and the server update time
is set to 60. Both strategies take the same amount of time to update Servers 1, 2, and 3,
but expose them to attacks during different periods. In this scenario, the main difference
between the two strategies can be observed in Step 2, wherein the Consolidation-Aware
Strategy chooses for consolidating virtual machines as much as possible, without discarding
migrations that will not result in a new empty server.

The additional cost of migrating the virtual machine VM4 from Server 2 to Server 3
causes an extra delay on the migration period of the Consolidation-Aware Strategy in Step
2, which leads to 160 seconds where the data center has 2 servers vulnerable to attacks.
On the other hand, the approach adopted by the Delay-Aware Strategy, which chose for not
migrating this virtual machine, led to a faster server update, wherein the data center had
2 vulnerable servers for only 134 seconds (26 seconds less than the Consolidation-Aware
Strategy).

In this study, we argue that only focusing on minimizing the maintenance duration
and preparing for maintenance as many servers as possible similar to the related studies
does not guarantee the effectiveness of maintenance strategies on critical security patching
scenarios, wherein securing servers against attacks is the greatest priority.

It is worth bearing in mind that both strategies in the previous example take the
same amount of time and require the same number of virtual machine migrations to perform
the maintenance. This indicates that only considering maintenance time, number of migra-
tions, and number of updated servers simultaneously as performance metrics may not be
sufficient to assess the efficiency of a maintenance strategy on a critical security mainte-
nance scenario. Therefore, in this study, we introduce the concept of Vulnerability Surface,
which aims to aid operators in measuring how efficiently maintenance strategies minimize
security breaches.

25

Initial State

Server 1
Not Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 3
Not Updated

Step 1
Updating empty

servers

Elapsed Time: 60s (+60s)
VM Migrations: 0

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 3
Updated

Step 2
Migrating VMs

Elapsed Time: 160s (+100s)
VM Migrations: 4 (+4)

Server 1
Not Updated

Server 2
Not Updated

VM5 (Demand: 6)

Server 3
Updated

VM4 (Demand: 3)

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Step 3
Updating empty

servers

Elapsed Time: 220s (+60s)
VM Migrations: 4

Server 1
Updated

Server 2
Not Updated

VM5 (Demand: 6)

Server 3
Updated

VM4 (Demand: 3)

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Step 4
Migrating VMs

Elapsed Time: 252s (+32s)
VM Migrations: 5 (+1)

Server 1
Updated

VM5 (Demand: 6)

Server 2
Not Updated

Server 3
Updated

VM4 (Demand: 3)

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Step 5
Updating empty

servers

Elapsed Time: 312s (+60s)
VM Migrations: 5

Server 1
Updated

VM5 (Demand: 6)

Server 2
Updated

Server 3
Updated

VM4 (Demand: 3)

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Consolidation-Aware Strategy

Initial State

Server 1
Not Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 3
Not Updated

Step 1
Updating empty

servers

Elapsed Time: 60s (+60s)
VM Migrations: 0

Server 1
Not Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 3
Updated

Step 2
Migrating VMs

Elapsed Time: 134s (+74s)
VM Migrations: 3 (+3)

Server 1
Not Updated

Server 3
Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Step 3
Updating empty

servers

Elapsed Time: 194s (+60s)
VM Migrations: 3

Server 1
Updated

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 3
Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Step 4
Migrating VMs

Elapsed Time: 252s (+58s)
VM Migrations: 5 (+2)

Server 1
Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 2
Not Updated

Server 3
Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Step 5
Updating empty

servers

Elapsed Time: 312s (+60s)
VM Migrations: 5

Server 1
Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 2
Updated

Server 3
Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Delay-Aware Strategy

Server 1
Not Updated

VM2 (Demand: 2)

VM1 (Demand: 2)

VM3 (Demand: 3)

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Figure 4.1: How maintenance decisions may produce different levels of the data center’s
safety during critical security maintenance patching scenarios.

26

4.2 Vulnerability Surface

The Vulnerability Surface seeks to support the evaluation of maintenance strate-
gies regarding how efficient each maintenance decision helps to safeguard cloud servers
against security threats. The Vulnerability Surface determines the efficiency of a mainte-
nance strategy based on the amount of time that servers need to wait before being updated
(i.e., the period they stay vulnerable to attacks).

Let T ← {t1, t2, ..., tn} be the set of iterations performed to update a cloud data
center. The elapsed time at the end of each iteration tn is stored in a vector ∆n and the
number of vulnerable servers (i.e., not updated servers) is stored in ϕ(n). The Vulnerabil-
ity Surface classifies the efficiency of a maintenance strategy based on the number of not
updated servers at the end of each iteration ti ∈ T. Bearing in mind that in critical security
maintenance scenarios we seek to update servers as soon as possible to safeguard them
against attacks. We define the Vulnerability Surface as:

∆ · ϕ (4.1)

The Vulnerability Surface presented in Equation 4.1 seeks to assess maintenance
strategies according to how fast they update servers. Therefore, the faster a maintenance
strategy update servers, the lower will be its Vulnerability Surface.

Existing approaches only focus on consolidating virtual machines in order to let
servers prepared for maintenance as soon as possible. Differently, the Vulnerability Surface
considers the trade-off between migrating virtual machines to empty servers and the amount
of time required by the migration. Therefore, strategies that avoid migrations that not lead
to a new server being emptied get a higher score. Considering the maintenance example
presented in Section 4.1, the Vulnerability Surface of both strategies will be defined as fol-
lows (for clarity purposes, we present an expanded notation for the Vulnerability Surface’s
summation):

• Consolidation Aware:

Step 1︷ ︸︸ ︷
2× 60 +

Step 2︷ ︸︸ ︷
2× 160 +

Step 3︷ ︸︸ ︷
1× 220 +

Step 4︷ ︸︸ ︷
1× 252 +

Step 5︷ ︸︸ ︷
0× 312 = 912

• Delay Aware:

Step 1︷ ︸︸ ︷
2× 60 +

Step 2︷ ︸︸ ︷
2× 134 +

Step 3︷ ︸︸ ︷
1× 194 +

Step 4︷ ︸︸ ︷
1× 252 +

Step 5︷ ︸︸ ︷
0× 312 = 834

Until the second step, both strategies had the same Vulnerability Surface. However,
the choice made by the Consolidation-Aware Strategy of migrating the virtual machine VM4
to Server 3 negatively impacted the overall score of this strategy since this migration delayed
the server update performed in the next step and did not lead to a new empty server.

27

4.3 Problem Formulation

In this work, we consider a cloud data center scenario containing several physical
servers. Each physical server may host one or several virtual machines that accommodate
applications. In such a situation, all physical servers within the data center must undergo
maintenance as soon as possible while ensuring applications’ availability.

Let S = {S1, S2, ..., Si} be the set of i physical servers within the data center. Each
physical server has a resource vector that represents CPU, memory, and disk capacity. As
stated in the previous chapters, countless kinds of maintenance could be performed to retain
an operable condition in cloud data centers. In this study, we focus on server maintenance
events with strict completion deadline, which also require the server to be restarted after the
update. Therefore, we state that servers must be emptied before undergoing maintenance
in order to preserve applications’ continuity.

The set of virtual machines accommodated in the physical servers is represented
by V = {VM1, VM2, ..., VMj}, in which every virtual machine has a resource vector that rep-
resents its CPU, memory, and disk demands. We represent the initial placement of virtual
machines on physical servers with the following binary matrix:

xi ,j =

1 if PMi is hosting VMj

0 otherwise.

In this study, we divide the maintenance process into one or several iterations of
two events: (i) virtual machines migration, performed before updating the physical servers
in order to preserve applications’ continuity; and (ii) servers maintenance, wherein servers
emptied in the previous step are updated. For the migration process, we consider cold
migration, wherein the virtual machine state is saved at the host server, this state is migrated
throughout the network, and when the transferring is completed, the state is restored at the
destination server. Given a scenario with no shared storage, we also consider migrating the
virtual machine disk. Therefore, in this study, we calculate the migration time of a virtual
machine vmj as the following equation:

migrationTime(vmj) = saveState(vmj) +
((vmj ,diskSize + vmj ,memorySize

Network Bandwidth

))
+ restoreState(vmj)

Considering such a maintenance scenario, our goal is threefold: (i) maximizing the
data center’s security in face of critical security maintenance by reducing the Vulnerability
Surface; (ii) maximizing the number of physical servers updated simultaneously in order
to reduce the maintenance time; and (iii) minimizing the number of migrations per virtual
machine to reduce the impact of maintenance on applications performance.

28

4.4 Proposed Heuristic

As mentioned in the previous sections, in this work, we consider the cloud servers
maintenance process as an iteration of two processes: (i) migrating virtual machines in or-
der to empty servers and (ii) updating emptied servers. The process of migrating virtual ma-
chines is a variant of the Vector Bin Packing problem, which is an NP-Hard problem [10] [22].

Given a set S ← {S1, S2, ..., Sn} of n bins, each with a pre-defined capacity σ(Si),
and a set A ← {A1, A2, ..., Aj} of j items with size ρ(Aj), the Bin-Packing problem seeks at
finding a given arrangement of items into bins that minimizes the number of bins necessary
for accommodating all items without exceeding bins capacity.

The Bin-Packing problem can be applied to represent real-world problems of sev-
eral areas: saving investments with logistics by minimizing the number of containers neces-
sary for transporting products, increasing TV station incomings by arranging advertisements
in fixed-length TV show breaks, and so on.

The Bin-Packing problem also presents several variants, such as the Vector Bin
Packing, in which each item size is represented by a N-dimensional vector. The Vector Bin
Packing Problem can be applied during server maintenance in cloud data centers, where
choosing the best arrangement of virtual machines inside physical resources may lead to
more empty hosts available for maintenance.

Given the NP-hardness of the Vector Bin Packing problem, as the number of con-
sidered elements increases, the search space increases drastically, which makes prohibitive
the use of optimization techniques that guarantee an optimal solution, such as linear pro-
gramming. For this reason, in this study, we present a heuristic algorithm that can ensure
acceptable solutions in a bounded time.

The proposed solution for minimizing server maintenance and Vulnerability Surface
in cloud data centers is presented in Algorithm 4.1. The list of variables and functions used
in the algorithm is presented in Table 4.1. The proposed algorithm is divided into two dis-
tinct phases: (i) servers maintenance and (ii) virtual machines migration. The maintenance
phases that constitute the proposed heuristic algorithm are described in the next sections.

4.4.1 Servers Maintenance

The first phase aims at updating servers that are not hosting virtual machines. In
this phase, depicted in lines 2-5 of Algorithm 4.1, the proposed heuristic creates a subset
of servers E ∈ P, which is occupied by not updated servers that host no virtual machines.
Then, the algorithm iterates over E, performing the maintenance on the empty servers.

29

Table 4.1: List of parameters used on the proposed heuristic.

Parameter Description
S Set of servers in the data center
V Set of virtual machines in the data center
E Set of servers ready for maintenance (already empty)
U Set of updated servers
Y Set of servers being prepared for maintenance
M Set of not updated servers

H Collection of virtual machines that need to be migrated in order to
set a server as ready for maintenance

P List of destination server candidates for a virtual machine that needs
to be migrated

updated(si)
Binary function that returns 1 if a server si is updated, and
returns 0 otherwise

maintenance(si) Function that performs the maintenance on a server si

capacity (si) Function that returns the capacity of a server si

demand(si) Function that returns the demand of a server si

demand(vmi) Function that returns the demand of a virtual machine vmj

freeResources(si) Function that returns the amount of resources available on a server si

migrate(vmj , sk) Function that migrates a virtual machine vmj to a server sk

updateCost(si)
Function that returns the update cost of a server si based on the
amount of time necessary for migrating all virtual machines that it hosts

sort(set , sorting property , order) Function used for ordering a collection of elements according to a given
sorting property and a sorting order (i.e., ascending or descending)

4.4.2 Virtual Machines Migration

The second phase of the algorithm focuses on migrating virtual machines among
the available servers to empty servers. This phase is represented by lines 6-23. As the
algorithm tries to minimize the data center’s Vulnerability Surface, in this step, denoted in
the line 6 of Algorithm 4.1, the algorithm prioritizes emptying servers with lower update cost,
i.e., that will take less time to be emptied. A server may require a shorter time to be emptied
by having a small number of virtual machines or by hosting small virtual machines, which will
take a negligible time to be migrated. Once the list of servers to be emptied is formed, the
algorithm iterates over each server of this list in order to migrate virtual machines. The
proposed heuristic adopts a First-Fit Decreasing strategy, that, given a list of candidate
servers, it chooses the first one with enough resources to host each of the virtual machines,
starting from the largest one to the smaller one. The order in which candidate servers are
organized defines the chances of servers being chosen for hosting a virtual machine.

The proposed heuristic prioritizes updated servers (line 12 of Algorithm 4.1) to
avoid unnecessary migrations in the future steps, as all virtual machines migrated to not
updated servers will have to be relocated at least one more time to empty its host server.
Besides, updated servers with higher occupation rates are put first in the set, as choosing
less empty servers to host virtual machines may result in better packing of virtual machines,
which in turn may allow more virtual machines being migrated per step. Given that updated

30

Algorithm 4.1 Proposed heuristic for performing data center maintenance.
Input: S← {S1, S2, ..., Si}

V← {VM1, VM2, ..., VMj}
1: while

∑S
i updated(si) < |S| do

2: E← not updated servers ∈ S with no VMs
3: for each server si ∈ E do
4: maintenance(si)
5: end for
6: M← sort(not updated servers ∈ S, updateCost(), ascending)
7: Y← {}
8: U← updated servers ∈ S
9: for each server si ∈M do

10: H← sort(virtual machines hosted by si , demand(), descending)
11: for each virtual machine vmj ∈ H do
12: P← sort(U, demand(), descending) ∪ sort(M− {si ∪ Y}, demand(), descending)
13: if

∑P
l capacity(sl) ≥ demand(si) then

14: for each server sk ∈ P do
15: if freeResources(sk) ≥ demand(vmj) then
16: migrate(vmj , sk)
17: break
18: end if
19: end for
20: Y← Y ∪ {si}
21: end if
22: end for
23: end for
24: end while

servers may not have enough resources to host virtual machines or data centers may not
even have updated servers in a given moment, the proposed heuristic also considers the
migration of virtual machines to not updated servers. However, it puts them at the end of
the list, also ordered by occupation. It is worth bearing in mind that the list of not updated
servers that is appended to P excludes si since it cannot migrate its virtual machines to itself,
and the servers included in Y, which accommodates all servers emptied in the current step
and are waiting for the next iteration to be updated. This constraint avoids swapping virtual
machines from servers being emptied.

As depicted in the previous sections, one of the main aspects that may increase
the Vulnerability Surface during server maintenance is migrating virtual machines that will not
effectively lead to a new server being emptied in the current maintenance step. Therefore,
before starting migrating the virtual machines from a server, in the line 13 of Algorithm 4.1,
the proposed algorithm checks if there is space within the other servers to host all virtual
machines from the server being emptied. It is also worth bearing in mind that a better virtual
machine allocation may potentially result in more servers being updated simultaneously.
Therefore, the algorithm uses a First-Fit Decreasing strategy to migrate virtual machines,

31

starting from the larger ones to the smaller ones, until all virtual machines from a server
were migrated.

As depicted in Figure 4.2, the proposed heuristic minimizes the Vulnerability Sur-
face rate in 5.75% compared to the Delay-Aware Strategy. The reason for such improvement
results from the decision to start emptying servers that host a set of virtual machines that
demand less time to be migrated. In this example, the Delay-Aware Strategy chooses to
migrate the virtual machines from Server 1 to Server 3. In fact, the overall demand of Server
1 is smaller than that from Server 2. However, the additional cost of saving and restoring the
state of the three virtual machines from Server 1 (VM1, VM2, and VM3) makes the overall
migration time necessary for emptying this server longer than the time needed for empty-
ing Server 2, wherein the saving and restoring processes would have to be performed only
twice.

4.5 Final Remarks

During critical security maintenance in cloud data centers usually requires server
update as soon as possible since any delay may represent an opportunity to attacks. In
this chapter, we argue that only reducing the overall maintenance time does not necessarily
guarantee that servers are being safeguarded as soon as possible.

Therefore, we introduce a new metric called Vulnerability Surface that addresses
this gap by allowing operators to assess how efficient maintenance strategies protect servers
on these scenarios. Then, we present a heuristic algorithm that focuses on minimizing
the Vulnerability Surface with minimal overhead. In the next chapter, we present a set of
experiments performed to validate the proposal.

32

Delay-Aware Strategy

Initial State

Server 1
Not Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 3
Not Updated

Step 1

Elapsed Time: 60s (+60s)
VM Migrations: 0

Server 1
Not Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 3
Updated

Step 2

Elapsed Time: 118s (+58s)
VM Migrations: 2 (+2)

Server 2
Not Updated

Server 3
Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Step 3

Elapsed Time: 178s (+60s)
VM Migrations: 2

Server 1
Not Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Server 2
Updated

Server 3
Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Step 4

Elapsed Time: 252s (+74s)
VM Migrations: 5 (+3)

Server 1
Not Updated

Server 2
Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Server 3
Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Step 5

Elapsed Time: 312s (+60s)
VM Migrations: 5

Server 1
Updated

Server 2
Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Server 3
Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Proposed Heuristic

Initial State

Server 1
Not Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 3
Not Updated

Step 1

Elapsed Time: 60s (+60s)
VM Migrations: 0

Server 1
Not Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 3
Updated

Step 2

Elapsed Time: 134s (+74s)
VM Migrations: 3 (+3)

Server 1
Not Updated

Server 3
Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Step 3

Elapsed Time: 194s (+60s)
VM Migrations: 3

Server 1
Updated

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 3
Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Step 4

Elapsed Time: 252s (+58s)
VM Migrations: 5 (+2)

Server 1
Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 2
Not Updated

Server 3
Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Step 5

Elapsed Time: 312s (+60s)
VM Migrations: 5

Server 1
Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 2
Updated

Server 3
Updated

VM3 (Demand: 3)

VM2 (Demand: 2)

VM1 (Demand: 2)

Server 2
Not Updated

VM5 (Demand: 6)

VM4 (Demand: 3)

Server 1
Not Updated

VM2 (Demand: 2)

VM1 (Demand: 2)

VM3 (Demand: 3)

Figure 4.2: How the proposed heuristic minimizes the Vulnerability Surface by prioritizing
the maintenance of servers whose virtual machines demand less time to be migrated.

33

5. EVALUATION AND DISCUSSION

This chapter presents an evaluation carried out to validate the proposed heuristic
on critical security patching scenarios on cloud data centers. Initially, the chapter presents
a general description of the considered scenarios, including a discussion on the workload
characteristics and evaluated solutions. The remainder of the chapter presents and dis-
cusses the achieved results.

5.1 Experiments Description

Three workloads, divided by data center’s occupation rate, were used to evaluate
the effectiveness of the proposed heuristic: (i) Small Occupation (25%), (ii) Medium Occu-
pation (50%), and (iii) High Occupation (75%). Each workload consists of a variable number
of physical servers used to host a fixed number of 100 virtual machines. For each server,
we consider CPU, memory, and disk capacities. A detailed description of servers capacity
is depicted in Table 5.1.

Table 5.1: Server configurations considered during the evaluation.

Type CPU (# of Cores) Memory (GB) Disk (GB)
Small 4 4 32

Medium 8 8 64
Large 16 16 128

We choose for varying the number of servers instead of virtual machines since
we use a real-world based virtual machines distribution provided by a 2nd Watch’s report1,
that shows the most popular configurations among Amazon Web Services customers during
July-October, 2014. Based on this information, virtual machines are divided by capacity,
wherein 43% of them are small, 19% medium, and 38% large. The demand of each of these
virtual machine configurations is depicted in Table 5.2.

Table 5.2: Virtual machine specifications adopted for the evaluation of the proposed heuris-
tic.

Type CPU (# of Cores) Memory (GB) Disk (GB)
Small 1 1 8

Medium 2 2 16
Large 4 4 32

We consider a cloud data center scenario with a Fat-Tree network topology [15]
pre-configured with a per-server bandwidth limit of 1 Gbit/s defined for quality of service

1https://www.2ndwatch.com/blog/2nd-watch-aws-scorecard/.

34

and network fairness purposes. This means that a server has effectively 1Gbit/s of network
bandwidth to communicate with any other server within the data center. The evaluated
scenarios do not allow for simultaneous virtual machine migrations as a means to ensure
the QoS for the remaining applications that rely on networks and hosts used to migrate
virtual machines. Therefore, virtual machines are migrated one at a time. Regarding the
time required for updating servers, we consider a static period of 180 units of time (defined
without loss of generality). All evaluated workloads and heuristics used in this study were
created using the Python language. The initial placement for virtual machines is based on
a Random-Fit strategy, wherein servers may or not host virtual machines. We use a seed
value as input for the workload generator in order to enable reproducibility. Using the same
seed, we generate the three scenarios depicted earlier, based on different data center’s
occupation rates.

As mentioned in Section 4.4, in the context of this study, the server maintenance
process has a high computational complexity as migrating virtual machines among servers
is required for preparing servers for maintenance. For this class of problems, solutions that
ensure the optimal solution become prohibitively expensive. Therefore, in this work, we
focus on evaluating heuristic algorithms for performing the migration decisions that return
valid solutions within a bounded time. A description of the considered solutions is presented
next.

• First Fit (FF): performs a sequential search among the physical servers and selects
the first one with sufficient resources to host the virtual machine.

• Best Fit (BF): migrates the virtual machine to the physical server that has fewer re-
sources available but still has enough resources to meet the virtual machine demand.

• Worst Fit (WF): selects the physical server with more computational resources avail-
able that has sufficient resources to host the virtual machine.

The goal of all experiments is to indicate how each algorithm behaves on dif-
ferent critical security patching scenarios on cloud data centers. We evaluated the solu-
tions regarding maintenance time, the total number of migrations, the number of migrations
per virtual machine, Vulnerability Surface. All experiments assets, including the source-
code for the heuristics and the simulator, are publicly available at our GitHub repository
(https://github.com/GRIN-PUCRS/cloud-simulator). In the remainder of this chapter, we an-
alyze how several decisions affect a solution’s effectiveness. It is also intended to verify
if the proposed heuristic is able to provide good results regarding the considered metrics.
All solutions were executed in a Linux host machine whose specifications are depicted in
Table 5.3.

https://github.com/GRIN-PUCRS/cloud-simulator

35

Table 5.3: Testbed specifications.

Component Specification
Processor Intel Core i7-8650U CPU @ 1.90GHz
Memory 16GB DDR4 @ 2400MHz
Storage ADATA SU810NS38 SATA 256GB

Operating System elementary OS 5.1.5 Hera (kernel v5.3.0-59-generic)
Python Interpreter 3.6.9 (default, Apr 18 2020, 01:56:04)

5.2 Analysis on Low Occupation Scenario

The goal of this analysis is to examine the implications of decisions made by main-
tenance strategies on data center scenarios with a low occupation rate (25%). In this sce-
nario, we consider 135 heterogeneous servers (45 servers per configuration) hosting 100
virtual machines. In addition to the low occupation rate, this scenario distinguishes from
the others by having 35 initially emptied servers. Therefore, it is also intended to verify the
impact of having initially emptied servers on the maintenance process.

The results obtained executing the solutions are presented in Table 5.4. It is possi-
ble to observe that the proposed heuristic significantly overcomes the other strategies on all
evaluated metrics.

Table 5.4: Experiment results for the low occupation scenario.

Metrics Strategy
Best-Fit First-Fit Worst-Fit Proposed Heuristic

Maintenance Time 53158 22889 26410 19464
Virtual Machine Migrations 276 117 143 100

Vulnerability Surface 5297800 2270900 2623000 1928400

It is possible to observe that the proposed heuristic significantly outperforms the
other strategies on all evaluated metrics. Avoiding migrating virtual machines from servers
that will not lead to an immediately emptied server is the main factor that contributed to
the gains achieved by the proposed heuristic. As each virtual machine migration is per-
formed sequentially, performing unnecessary migrations significantly increases the mainte-
nance time.

Figure 5.1 depicts the maintenance progress of each strategy in this scenario. All
solutions start by updating the 35 servers initially empty. The main difference among them
is the period taken by the virtual machine migrations performed after updating the empty
servers. The proposed heuristic managed to update the remaining servers 3425 time steps
before the second-best solution, the First-Fit heuristic. In other words, the other evaluated
strategies exposed 100 servers to attacks for at least 3425 time steps longer than the pro-
posed heuristic.

36

0 2000 0 40000 60000
0

50

100

150

Tim e Steps

S
e

rv
e

rs

Vu ln erab le Servers Secu red Servers

(a) Best-Fit

0 2000 0 40000 60000
0

50

100

150

Tim e Steps

S
e

rv
e

rs

Vu ln erab le Servers Secu red Servers

(b) First-Fit

0 2000 0 40000 60000
0

50

100

150

Tim e Steps

S
e

rv
e

rs

Vu ln erab le Servers Secu red Servers

(c) Worst-Fit

0 2000 0 40000 60000
0

50

100

150

Tim e Steps

S
e

rv
e

rs

Vu ln erab le Servers Secu red Servers

(d) Proposed Heuristic

Figure 5.1: Secured and vulnerable servers during server maintenance using different ap-
proaches in the low occupation scenario.

In addition to migrating virtual machines from servers that would not be possibly
emptied in the current step, Best-Fit heuristic was seriously penalized by its attempt on
indiscriminately consolidating virtual machines as much as possible. In the context of this
study, migrating a virtual machine to a non-updated server implicates that the same virtual
machine will have to be migrated at least one more time, in order to empty its host server.

Although consolidating resources leads to better use of resources, the Best-Fit
heuristic considered all servers as candidates for hosting virtual machines, including the
non-updated ones. As a result, 176 unnecessary migrations were performed by exchanging
virtual machines among non-updated servers. This behavior not only resulted in the most
extensive maintenance time but also in the biggest Vulnerability Surface, as the Best-Fit
heuristic had to perform several extra migrations before being able to update all servers.

37

5.3 Analysis on Medium Occupation Scenario

The goal of this analysis is to investigate the behavior of different approaches in
data center scenarios with a medium occupation rate (50%). In this scenario, we consider a
set of 65 physical servers: 30 small, 20 medium, and 15 large.

Unlike the first workload, this scenario does not include empty servers on the initial
placement. Therefore, it is intended to examine the effectiveness of the evaluated solutions
when it is strictly necessary to migrate virtual machines to non-updated servers.

100 00 30000 5000 0
0

20

40

60

80

Tim e Steps

S
e

rv
e

rs

Vu ln erab le Servers Secu red Servers

(a) Best-Fit

100 00 30000 5000 0
0

20

40

60

80

Tim e Steps

S
e

rv
e

rs

Vu ln erab le Servers Secu red Servers

(b) First-Fit

100 00 30000 5000 0
0

20

40

60

80

Tim e Steps

S
e

rv
e

rs

Vu ln erab le Servers Secu red Servers

(c) Worst-Fit

100 00 30000 5000 0
0

20

40

60

80

Tim e Steps

S
e

rv
e

rs

Vu ln erab le Servers Secu red Servers

(d) Proposed Heuristic

Figure 5.2: Secured and vulnerable servers during server maintenance using different ap-
proaches in the medium occupation scenario.

The results obtained executing each of the observed heuristics are presented in
Table 5.5. Similar to the first workload, the proposed heuristic achieves better results com-
pared to the other solutions.

38

Once again, delaying virtual machine migrations that do not immediately lead to
an unoccupied server and avoiding migrations to not updated servers minimized the overall
maintenance time and number of migrations required by the proposed heuristic to update
the data center.

Table 5.5: Experiment results for the medium occupation scenario.

Metrics Strategy
Best-Fit First-Fit Worst-Fit Proposed Heuristic

Maintenance Time 37696 45409 38343 27677
Virtual Machine Migrations 212 264 215 155

Vulnerability Surface 2181112 3043295 2353890 1166276

Figure 5.2 represents the maintenance progress of each of the evaluated heuristics.
It is possible to observe that all heuristics take a considerable amount of time to update
servers. However, by effectively choosing which virtual machines to migrate and the servers
to host them, the proposed heuristic manages to update a higher number of servers in a
smaller time interval.

The main advantage of the proposed heuristic over the other solutions consists of
choosing to update servers with a set of smaller virtual machines or those with few virtual
machines. This decision led to a shorter average time to empty servers in the first iteration.
As a result, the proposed heuristic managed to update more servers within a shorter period
compared to the other solutions.

In this workload, having no empty servers in the initial placement resulted in a better
result for strategies that focus on consolidating virtual machines. Indeed, consolidating vir-
tual machines was key to the positive results achieved not only by the proposed heuristic but
also by the Best-Fit heuristic, which, unlike in the first workload, achieved the second-best
results.

5.4 Analysis on High Occupation Scenario

The goal of this analysis is to investigate which decisions have the biggest impact
on the effectiveness of maintenance strategies on data centers with high occupation rates. In
this scenario, we consider a data center with 42 heterogeneous servers hosting 100 virtual
machines. In this workload, the average data center’s occupation is 75%.

The results obtained during the execution of the analyzed heuristics in this workload
are depicted in Table 5.6. The results showed that the proposed heuristic could significantly
overcome the other strategies on high occupation scenarios.

The overall higher occupation rate presented in this workload impacted on the num-
ber of iterations necessary for updating the data center on all heuristics. Figure ?? shows

39

Table 5.6: Experiment results for the high occupation scenario.

Metrics Strategy
Best-Fit First-Fit Worst-Fit Proposed Heuristic

Maintenance Time 32377 32730 28614 26471
Virtual Machine Migrations 185 188 162 135

Vulnerability Surface 1570447 1667182 1401141 841688

0 100 00 2000 0 30000 40000
0

10

20

30

40

50

Tim e Steps

S
e

rv
e

rs

Vu ln erab le Servers Secu red Servers

(a) Best-Fit

0 100 00 2000 0 30000 40000
0

10

20

30

40

50

Tim e Steps
S

e
rv

e
rs

Vu ln erab le Servers Secu red Servers

(b) First-Fit

0 100 00 2000 0 30000 40000
0

10

20

30

40

50

Tim e Steps

S
e

rv
e

rs

Vu ln erab le Servers Secu red Servers

(c) Worst-Fit

0 100 00 2000 0 30000 40000
0

10

20

30

40

50

Tim e Steps

S
e

rv
e

rs

Vu ln erab le Servers Secu red Servers

(d) Proposed Heuristic

Figure 5.3: Secured and vulnerable servers during server maintenance using different ap-
proaches in the high occupation scenario.

the maintenance progress of each solution. In this scenario, heuristics were able to update
fewer servers simultaneously. This situation occurred since fewer resources were available
in servers so that fewer virtual machines could be migrated to empty servers.

In this scenario, all solutions presented gains regarding the Vulnerability Surface in
up to 45.6%. Once again, properly choosing which virtual machine migrations to perform
was key for the positive results achieved by the proposed solution. On the one hand, the

40

First-Fit heuristic was the one that took longer to update the data center (32730 time steps),
as a result of performing 188 migrations during this process. The ineffective achievement
of First-Fit contrasts to the results of the proposed heuristic, that was able to safeguard all
servers in only 26471 time steps (difference of 6259 time steps), by reducing the number of
migrations to 135.

5.5 Final Remarks

Based on the experiment results, it is possible to verify that the proposed heuristic
effectively minimizes the time required to perform server maintenance in cloud data centers.
To achieve this, the proposed heuristic tries to avoid the migration of virtual machines to not
updated servers as much as possible, since each virtual machine migrated to a not updated
server will have to be migrated at least one more time during the maintenance to empty its
host server.

During the maintenance process, the proposed heuristic also focuses on improving
the Vulnerability Surface. For this purpose, it analyzes the workload of each server and
chooses for emptying the servers whose virtual machines will take less time to be migrated.
Consequently, it manages to empty a subset of servers to maintenance before the other
solutions, which means that these servers will be vulnerable for attacks during a shorter
period.

41

6. CONCLUSIONS AND FUTURE WORK

In this chapter, we present the conclusions and contributions of this work. We also
briefly present a list of publications achieved during the master’s course period.

6.1 Conclusions

Server maintenance is a critical task when cloud data centers are exposed to at-
tackers. In these scenarios, safeguarding as many servers as possible is crucial to minimize
the damage. However, applying security patches may require restarting servers. On the one
hand, operators could choose to stop all applications during maintenance. However, this
decision would severely impact applications’ availability requirements. On the other hand,
updating servers one at a time could avoid hurting applications performance, but it would
expose the data center to attacks for an unnecessary amount of time.

Previous investigations proposed different strategies for reducing server mainte-
nance duration while keeping the maintenance as transparent as possible to applications.
These studies mainly focus on finding optimal scheduling for maintenance tasks that have a
predefined deadline. Their solutions concentrate on delaying or advancing maintenance in
order to perform the update when few users are accessing applications. However, they do
not consider critical security patching scenarios, where maintenance must be performed as
soon as possible. In these scenarios, delaying maintenance even for a few moments could
mean giving space for attackers to invade customers’ applications.

Therefore, another approach should be considered. Evaluating new solutions based
on the same traditional metrics such as maintenance time and number of virtual machine
migrations would lead to solutions similar to the existing ones, that achieve good results
on minimizing the overall maintenance time, but neglect the amount of time servers stay
exposed to attacks.

This work presents a novel maintenance evaluation metric called Vulnerability Sur-
face, which assesses the efficiency of operational decisions on safeguarding servers during
maintenance. We first show that Vulnerability Surface is able to efficiently assess mainte-
nance strategies even when they suggest the same number of migrations and take the same
amount of time to update servers. Then, we present a heuristic algorithm that focuses on
achieving a balance between reducing the time necessary for performing maintenance and
minimizing the period servers remain vulnerable to attackers.

Experiments were conducted in simulated data center scenarios with different oc-
cupation rates, evaluating the proposed solution alongside Best-Fit, Worst-Fit, and First-Fit
heuristics. The results indicate that the proposed solution overcomes these strategies, be-

42

ing able to safeguard servers sooner and to minimize the maintenance time. The proposed
solution achieves better Vulnerability Surface results by giving priority to emptying servers
whose virtual machines demand less time to be migrated. Regarding the maintenance time
improvements, they result from the effort made by the proposed solution on avoiding migra-
tions that would not immediately lead to a server update and on prioritizing the migration of
virtual machines to updated servers.

Therefore, the contributions of this work can be summarized as follows:

• The modeling the Vulnerability Surface, a metric that aids operators to measure the
efficiency of maintenance strategies on security patching scenarios on cloud data cen-
ters;

• The proposal of a heuristic algorithm that performs maintenance decisions to minimize
the amount of time cloud servers remain exposed to attacks. At the same time, it
reduces the amount of time necessary to perform server maintenance on cloud data
centers.

6.2 Future Research Directions

In this study, we focus on providing a heuristic algorithm for updating servers
that host only traditional applications (which have most of its features within a single in-
stance, called monolith). However, several investigations show the increasing adoption
of microservice-based applications for better resource usage [26] [8]. In this paradigm,
components are divided into different instances and communicate with each other through
message-passing mechanisms.

As part of the same application, microservices should not be deployed too far from
each other due to latency issues. Therefore, when servers are being prepared to undergo
maintenance, the microservices hosted on it should be re-deployed on servers close to
each other to avoid communication overhead. Besides, microservices are usually hosted on
containers, which present weaker isolation than virtual machines. As a result, improper co-
location of containers could lead to performance interference issues [28] [12]. Accordingly,
looking for efficient solutions to ensure the quality of service delivered by microservice appli-
cations during data center maintenance represents a research topic that could be addressed
in future researches.

43

6.3 Achievements

In addition to the contributions mentioned above, we further participated in some
other studies on correlated topics on virtualization and resource management on cloud and
edge computing. These publications are listed next:

• IAGREE: Infrastructure-agnostic Resilience Benchmark Tool for Cloud Native Platforms
Paulo Souza, Wagner Marques, Rômulo Reis, Tiago Ferreto.
International Conference on Cloud Computing and Services Science (CLOSER), 2019.

• Performance-Aware Energy-Efficient Processes Grouping for Embedded Platforms
Paulo Souza, Wagner Marques, Marcelo Conterato, Tiago Ferreto, Fábio Rossi.
IEEE Symposium on Computers and Communications (ISCC), 2018.

• The Impact of Parallel Programming Interfaces on the Aging of a Multicore Embedded
Processor
Ângelo Vieira, Paulo Souza, Wagner Marques, Marcelo Conterato, Tiago Ferreto, Marcelo
Luizelli, Fábio Rossi, Jorji Nonaka.
IEEE International Symposium on Circuits and Systems (ISCAS), 2019.

• Improving the Trade-Off between Performance and Energy Saving in Mobile Devices
through a Transparent Code Offloading Technique
Rômulo Reis, Paulo Souza, Wagner Marques, Tiago Ferreto, Fábio Rossi.
International Conference on Cloud Computing and Services Science (CLOSER), 2019.

• Multilevel resource allocation for performance-aware energy-efficient cloud data centers
Fábio Rossi, Paulo Souza, Wagner Marques, Marcelo Conterato, Tiago Ferreto, Arthur Loren-
zon, Marcelo Luizelli.
IEEE Symposium on Computers and Communications (ISCC), 2019.

• Towards Balancing Energy Savings and Performance for Volunteer Computing through
Virtualized Approach
Fábio Rossi, Tiago Ferreto, Marcelo Conterato, Paulo Souza, Wagner Marques, Rodrigo Cal-
heiros, Guilherme Rodrigues.
International Conference on Cloud Computing and Services Science (CLOSER), 2019.

• Evaluating container-based virtualization overhead on the general-purpose IoT platform
Wagner Marques, Paulo Souza, Fábio Rossi, Guilherme Rodrigues, Rodrigo Calheiros, Marcelo
Conterato, Tiago Ferreto.
IEEE Symposium on Computers and Communications (ISCC), 2018.

• Reducing energy consumption in SDN-based data center networks through flow consol-
idation strategies
Marcelo Conterato, Tiago Ferreto, Fábio Rossi, Wagner Marques, Paulo Souza.
ACM/SIGAPP Symposium on Applied Computing (SAC), 2018.

44

REFERENCES

[1] Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Neugebauer, R.; Pratt,
I.; Warfield, A. “Xen and the art of virtualization”, ACM SIGOPS operating systems
review, vol. 37–5, October 2003, pp. 164–177.

[2] Buyya, R.; Yeo, C. S.; Venugopal, S. “Market-oriented cloud computing: Vision, hype,
and reality for delivering it services as computing utilities”. In: IEEE International
Conference on High Performance Computing and Communications, 2008, pp. 5–13.

[3] Buyya, R.; Yeo, C. S.; Venugopal, S.; Broberg, J.; Brandic, I. “Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th
utility”, Future Generation computer systems, vol. 25–6, June 2009, pp. 599–616.

[4] Canella, C.; Genkin, D.; Giner, L.; Gruss, D.; Lipp, M.; Minkin, M.; Moghimi, D.;
Piessens, F.; Schwarz, M.; Sunar, B.; Van Bulck, J.; Yarom, Y. “Fallout: Leaking
data on meltdown-resistant cpus”. In: ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 769–784.

[5] Clark, C.; Fraser, K.; Hand, S.; Hansen, J. G.; Jul, E.; Limpach, C.; Pratt, I.; Warfield, A.
“Live migration of virtual machines”. In: USENIX Symposium on Networked Systems
Design and Implementation, 2005, pp. 273–286.

[6] Gill, P.; Jain, N.; Nagappan, N. “Understanding network failures in data centers:
measurement, analysis, and implications”, ACM SIGCOMM Computer Communication
Review, vol. 41–4, August 2011, pp. 350–361.

[7] Gunawi, H. S.; Hao, M.; Suminto, R. O.; Laksono, A.; Satria, A. D.; Adityatama, J.;
Eliazar, K. J. “Why does the cloud stop computing?: Lessons from hundreds of service
outages”. In: ACM Symposium on Cloud Computing, 2016, pp. 1–16.

[8] Hasselbring, W. “Microservices for scalability: keynote talk abstract”. In: ACM/SPEC on
International Conference on Performance Engineering, 2016, pp. 133–134.

[9] Hines, M. R.; Deshpande, U.; Gopalan, K. “Post-copy live migration of virtual machines”,
ACM SIGOPS operating systems review, vol. 43–3, July 2009, pp. 14–26.

[10] Islam, M.; Razzaque, A.; Islam, J. “A genetic algorithm for virtual machine migration in
heterogeneous mobile cloud computing”. In: International Conference on Networking
Systems and Security, 2016, pp. 1–6.

[11] Jadeja, Y.; Modi, K. “Cloud computing-concepts, architecture and challenges”. In:
International Conference on Computing, Electronics and Electrical Technologies, 2012,
pp. 877–880.

45

[12] Jha, D. N.; Garg, S.; Jayaraman, P. P.; Buyya, R.; Li, Z.; Ranjan, R. “A holistic evaluation
of docker containers for interfering microservices”. In: IEEE International Conference
on Services Computing, 2018, pp. 33–40.

[13] Josep, A. D.; Katz, R.; Konwinski, A.; Gunho, L.; Patterson, D.; Rabkin, A. “A view of
cloud computing”, Communications of the ACM, vol. 53–4, April 2010, pp. 50–58.

[14] Kocher, P.; Horn, J.; Fogh, A.; Genkin, D.; Gruss, D.; Haas, W.; Hamburg, M.; Lipp, M.;
Mangard, S.; Prescher, T.; et al.. “Spectre attacks: Exploiting speculative execution”. In:
IEEE Symposium on Security and Privacy, 2019, pp. 1–19.

[15] Leiserson, C. E. “Fat-trees: universal networks for hardware-efficient supercomputing”,
IEEE transactions on Computers, vol. 100–10, October 1985, pp. 892–901.

[16] Lin, J.-W.; Chen, C.-H. “Interference-aware virtual machine placement in cloud
computing systems”. In: International Conference on Computer & Information Science,
2012, pp. 598–603.

[17] Lipp, M.; Schwarz, M.; Gruss, D.; Prescher, T.; Haas, W.; Fogh, A.; Horn, J.; Mangard,
S.; Kocher, P.; Genkin, D.; et al.. “Meltdown: Reading kernel memory from user space”.
In: USENIX Security Symposium, 2018, pp. 973–990.

[18] Mell, P.; Grance, T. “The nist definition of cloud computing”, NIST Special Publication,
vol. 800, September 2011, pp. 1–3.

[19] Okuno, S.; Iikura, F.; Watanabe, Y. “Maintenance scheduling for cloud infrastructure
with timing constraints of live migration”. In: IEEE International Conference on Cloud
Engineering, 2019, pp. 179–189.

[20] Silva Filho, M. C.; Monteiro, C. C.; Inácio, P. R.; Freire, M. M. “Approaches for optimizing
virtual machine placement and migration in cloud environments: A survey”, Journal of
Parallel and Distributed Computing, vol. 111, January 2018, pp. 222–250.

[21] Slama, W. B.; Brahmi, Z.; et al.. “Interference-aware virtual machine placement in
cloud computing system approach based on fuzzy formal concepts analysis”. In: IEEE
International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2018, pp. 48–53.

[22] Soomro, A. K.; Shaikh, M. A.; Kazi, H. “Ffd variants for virtual machine placement in
cloud computing data centers”, International Journal of Advanced Computer Science
and Applications, vol. 8–10, October 2017, pp. 261–269.

[23] Tang, M.; Pan, S. “A hybrid genetic algorithm for the energy-efficient virtual machine
placement problem in data centers”, Neural processing letters, vol. 41–2, April 2015,
pp. 211–221.

46

[24] Teng, F.; Yu, L.; Li, T.; Deng, D.; Magoulès, F. “Energy efficiency of vm consolidation in
iaas clouds”, The Journal of Supercomputing, vol. 73–2, July 2017, pp. 782–809.

[25] van Schaik, S.; Milburn, A.; Österlund, S.; Frigo, P.; Maisuradze, G.; Razavi, K.; Bos,
H.; Giuffrida, C. “RIDL: Rogue in-flight data load”. In: IEEE Symposium on Security and
Privacy, 2019, pp. 88–105.

[26] Villamizar, M.; Garcés, O.; Castro, H.; Verano, M.; Salamanca, L.; Casallas, R.; Gil,
S. “Evaluating the monolithic and the microservice architecture pattern to deploy web
applications in the cloud”. In: Computing Colombian Conference, 2015, pp. 583–590.

[27] Wang, X.; Chen, X.; Yuen, C.; Wu, W.; Wang, W. “To migrate or to wait: Delay-cost
tradeoff for cloud data centers”. In: IEEE Global Communications Conference, 2014,
pp. 2314–2319.

[28] Xavier, M. G.; De Oliveira, I. C.; Rossi, F. D.; Dos Passos, R. D.; Matteussi,
K. J.; De Rose, C. A. “A performance isolation analysis of disk-intensive workloads
on container-based clouds”. In: Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 2015, pp. 253–260.

[29] Xavier, M. G.; Neves, M. V.; Rossi, F. D.; Ferreto, T. C.; Lange, T.; De Rose, C. A.
“Performance evaluation of container-based virtualization for high performance
computing environments”. In: Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 2013, pp. 233–240.

[30] Xing, Y.; Zhan, Y. “Virtualization and cloud computing”. In: Future Wireless Networks
and Information Systems, Zhang, Y. (Editor), 2012, pp. 305–312.

[31] Yanagisawa, H.; Osogami, T.; Raymond, R. “Dependable virtual machine allocation”.
In: IEEE International Conference on Computer Communications, 2013, pp. 629–637.

[32] Youseff, L.; Butrico, M.; Da Silva, D. “Toward a unified ontology of cloud computing”. In:
Grid Computing Environments Workshop, 2008, pp. 1–10.

[33] Yu, S.; Tian, Y.; Guo, S.; Wu, D. O. “Can we beat ddos attacks in clouds?”, IEEE
Transactions on Parallel and Distributed Systems, vol. 25–9, July 2013, pp. 2245–2254.

[34] Zheng, Z.; Li, M.; Xiao, X.; Wang, J. “Coordinated resource provisioning and
maintenance scheduling in cloud data centers”. In: IEEE International Conference on
Computer Communications, 2013, pp. 345–349.

[35] Zheng, Z.; Wang, J.; Ren, J.; Hou, W.; Wang, J. “Least maintenance batch scheduling
in cloud data center networks”, IEEE Communications Letters, vol. 18–6, June 2014,
pp. 901–904.

	Introduction
	Contribution
	Organization

	Background and Motivation
	Cloud Computing
	Virtualization
	Maintenance on Cloud Data Centers

	State of the Art
	Zheng et al., 2013
	Yanagisawa et al., 2013
	Zheng et al., 2014
	Wang et al., 2014
	Okuno et al., 2019
	Discussion

	Heuristic Algorithm for Server Maintenance
	Motivation
	Vulnerability Surface
	Problem Formulation
	Proposed Heuristic
	Servers Maintenance
	Virtual Machines Migration

	Final Remarks

	Evaluation and Discussion
	Experiments Description
	Analysis on Low Occupation Scenario
	Analysis on Medium Occupation Scenario
	Analysis on High Occupation Scenario
	Final Remarks

	Conclusions and Future Work
	Conclusions
	Future Research Directions
	Achievements

	References

